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Abstract. Data privacy is an important application of ontology modu-
larization. The aim is to publish one module while keeping the informa-
tion of another module private. We show how locality and partitioning -
two basic concepts in the theory of modular ontologies - naturally lead
to privacy preserving query answering over modular ontologies.

1 Introduction

Recently, big effort has been made to understand modules in the context of
ontologies and description logic. The problems studied in that context are to find
formalisms for combining OWL ontologies as well as methods for decomposing
ontologies. These issues mainly are investigated in order to enable safe ontology
reuse and to obtain better reasoning algorithms.

We believe that there is another important application of ontology modular-
ization, namely data privacy for ontologies. If we are given a modular ontology,
then it should be possible to publish a module while keeping the information of
another module private. We show how concepts of modular ontologies, such as
locality and partitioning, naturally lead to privacy preserving modules.

The privacy notion we study is provable data privacy which has been intro-
duced in the context of relational database systems [1]. This notion has later
been extended to logic based systems in [2]. Assume we are given a set of axioms
T (which can be seen as general public background knowledge, the database
schema, or an ontology) and a public view definition V . A view VI is possible
if it may be the answer an agent obtains when issuing the queries of V . We say
privacy is preserved for a query C if for no possible view VI the agent can infer
from T and VI that an individual a belongs to the answer of C. In database sys-
tems this is formalized as the set of certain answers to C is empty with respect
to T and VI . For logic based systems this is equivalent to saying that T and VI

do not entail a : C for any a.
This paper is organized as follows. In the next section we introduce the ex-

pressive description logic SHOIQ for which we will state our privacy results.
Further we recall the definitions of provable data privacy in the context of de-
scription logic. In Section 3, we present a first privacy result which is based in
the notion of locality. Intuitively, a concept C is local with respect to a signature
S if we can interpret C by the empty set no matter how S is interpreted. This
leads immediately to a privacy result since having an interpretation I where



CI is empty means that a : C cannot be inferred for any a. Then in Section 4
we investigate data privacy based on partitioning of ontologies. This allows us
to include in the public view definition other queries than in the locality based
approach. Finally we discuss related work and conclude.

2 Technical Preliminaries

In the first part of this section we introduce the description logic SHOIQ, see
[3], which underlies modern ontology languages such as OWL. In the second part
we recall the notion of provable data privacy from [1].

A SHOIQ signature S is the disjoint union of a set of role names R, a set
of concept names C, and a set of nominals I. A SHOIQ role is either R ∈ R or
an inverse role R− for R ∈ R. The set of SHOIQ concepts C is given by the
following grammar

C :== A | j | ¬C | C u C | ∃R.C | ≥ nS.C

where A ∈ C, j ∈ I, and R,S are roles where S is a simple role1, and n is a positive
integer. We use the abbreviations: C t D := ¬(¬C u ¬D), ∀R.C := ¬∃R.¬C,
and ≤ nS.C := ¬(≥ n + 1S.C).

A SHOIQ TBox is a finite set of role inclusion axioms R1 v R2 where Ri are
roles, transitivity axioms trans(R) where R ∈ R, and general concept inclusion
axioms C1 v C2 where Ci are concepts. The signature sig(T ) of a TBox T is the
set of symbols occurring in T . Similarly, we define the signature of an axiom and
of a concept, respectively.

An interpretation I for the signature S is a par (∆I , ·I) where ∆I is a non-
empty set (called the domain) and ·I is the interpretation function such that
RI ⊆ ∆I ×∆I for each R ∈ R, CI ⊆ ∆I for each C ∈ C, and jI is a singleton
subset of ∆I for each j ∈ I. The interpretation function extends to complex roles
by (R−)I := {(y, x) : RI(x, y)} and to concepts by:

(¬C)I := ∆I \ CI

(C uD)I := CI ∩DI

(∃R.C)I := {x : ∃y(RI(x, y) ∧ CI(y))}
(≥ nR.C)I := {x : ]{y : RI(x, y) ∧ CI(y)} ≥ n}.

We say I |= R1 < R2 iff RI
1 ⊆ RI

2, I |= trans(R) iff RI is transitive, and
I |= C < D iff CI ⊆ DI . An interpretation I is a model of a TBox T (I |= T ) iff
it is a model of all axioms of T . A TBox is consistent if it has a model. A TBox
T entails an axiom α (T |= α) iff I |= T implies I |= α for each I.

In this paper we restrict ourselves to the case of data privacy with respect to
retrieval queries. Since our ontology language includes nominals, we do not need
to introduce individuals. Informally, the statement that an individual a belongs
to a concept C can be expressed as {a} v C. Therefore we will treat nominals
as individuals and write j : C for j v C when j ∈ I.
1 See [3] for a precise definition of simple roles.



Definition 1 (Query, answer, view).

1. A retrieval query is a concept C.
2. The answer to a query C with respect to a TBox T is the set of all nominals

a ∈ I for which T |= a : C.
3. A view definition is a finite set of queries.
4. A view VI of a view definition V is a finite set of axioms of the form a : C

such that if a : C is an element of VI , then C ∈ V .
5. A view VI is possible with respect to a TBox T and a view definition V , if

VI is a view of V and T ∪ VI is consistent.

In [1] we introduced the notion of provable data privacy. It turned out that
for the setting we introduced above, provable data privacy can be reduced to
entailment, see [2]. We make use of this fact here to give the following definition
of data privacy.

Definition 2 (Data privacy).

1. Given a TBox T , a view VI , and a query C, we say that privacy is preserved
for C with respect to T and VI if the set of answers to C with respect to
T ∪ VI is empty.

2. Given a TBox T , a view definition V , and a query C, we say that privacy is
preserved for C with respect to T and V if for all views VI that are possible
with respect to T and V we have that privacy is preserved for C with respect
to T and VI .

3 Locality based privacy

We prove a first privacy theorem based on the notion of locality which was first
introduced in [4] in order to provide a logical framework for modular ontologies.
A similar theorem for subsumption queries and SHIQ TBoxes is shown in [5].

Definition 3 (Trivial expansion). An S-interpretation J = (∆J , ·J) is an
expansion of an S′-interpretation I = (∆I , ·I) if S′ ⊆ S, ∆J = ∆I , and XJ = XI

for every X ∈ S′. A trivial expansion of I to S is an expansion J of I such that
XJ = ∅ for every role name and concept name X ∈ S \ S′.

Definition 4 (Locality). Let S be a signature.

1. A concept A is positively local wrt. S if for every trivial expansion J of any
S-interpretation to any S′ ⊇ S ∪ sig(A) we have AJ = ∅.

2. An axiom α is local wrt. S if every trivial expansion J of any S-interpretation
to any S′ ⊇ S ∪ sig(α) is a model of α.

Note that the definition of locality implies that an axiom containing a nominal
j cannot be local wrt. S if j /∈ S.

Grau et al. [6] show how locality can be tested by standard DL reasoners.
Although for SHOIQ this is a NEXPTIME-complete problem, the locality test



will often perform well in practice. However, they also present a tractable ap-
proximation to the locality condition which is based on the syntactic structure
of concepts.

In order to state our first privacy theorem we make the following assumptions.
Let P and S be two signatures with P ⊆ S. Let T be a TBox over S and let
TP ⊆ T be those axioms of T that are built from the signature P only. Further,
we assume that all axioms of T \ TP are local wrt. P.

Theorem 1. Let C be a positive local query wrt. P. Let V be a view definition
which contains only queries over P. Then data privacy is preserved for C with
respect to the TBox T and the view definition V .

Proof. Let
VI be a possible view with respect to T and V . (1)

Since V contains only concepts of P, we find that sig(VI)\P consists of nominals
only. Therefore

C is positively local wrt. P ∪ sig(VI), (2)
all axioms of T \ TP are local wrt. P ∪ sig(VI). (3)

Because of (1) there exists a P ∪ sig(VI)-interpretation I such that I |= TP

and I |= VI . Let J be a trivial expansion of I to S ∪ sig(C). Thus by (3) and
the definition of locality we immediately get for each α ∈ T \ TP that J |= α.
Therefore we have J |= T ∪ VI . Moreover, by (2) we find CJ = ∅. Since VI was
arbitrary, we conclude that privacy is preserved for C. ut

4 Partition based privacy

The assumption in the previous theorem that the view only consists of queries
over P may be too restrictive in practice. In this section, we will present a
privacy result that is based on partitioning an ontology T in a public part TP

and a private (hidden) part TH . The public view definition V may now contain
queries that access TH . However, this access will occur only via quantifiers and
these quantifiers serve the purpose of information hiding. Therefore privacy will
be preserved for positively local concepts of TH .

Definition 5 (Safe TBox).

1. A TBox is called safe if all its axioms are local with respect to ∅.
2. A concept is positively local if it is positively local with respect to ∅.

In [7] an algorithm is presented to generate modules from a safe ontology. We
use this algorithm to produce a partitioning of a TBox T such that T = TP ∪TH

where TH and TP are disjoint. Moreover this algorithm gives a function V such
that

1. V assigns to each concept A in sig(T ) either 1 or 2, and



2. V assigns to each role R in sig(T ) a pair (i, j) with i, j ∈ {1, 2}.

The semantic counterpart of the partitioning of a TBox is given by the following
construction which is used in the proof of Theorem 3 in [7]. Let I = (∆I , ·I) be
a model for the TBox T . We define an interpretation J as follows.

1. For each x ∈ ∆I we generate two new objects x1 and x2. We then set
∆J

1 := {x1 : x ∈ ∆I}, ∆J
2 := {x2 : x ∈ ∆I}, and ∆J := ∆J

1 ∪∆J
2 .

2. For each concept name A with V(A) = i we set AJ := {xi : x ∈ AI}.
3. For each role name R with V(R) = (i, j) we set RJ := {(xi, yj) : (x, y) ∈ RI}.

It is easy to see that

1. ∆J
1 ∩∆J

2 6= ∅,
2. AJ ⊆ ∆J

i for each concept name A with V(A) = i, and
3. RJ ⊆ ∆J

i ×∆J
j for each role name R with V(R) = (i, j).

As in [7] we can show the following lemma.

Lemma 1. For every concept C with V(C) = i we have:

1. if C is positively local, then CJ = {xi : x ∈ CI},
2. if C is not positively local, then CJ = ∆J

j 6=i ∪ {xi : x ∈ CI}.

From this we immediately get the following theorem, again see [7] for a proof.

Theorem 2. Let T be a safe TBox and I be a model of T . Let J be the inter-
pretation given above. Then J also is a model of T .

Next we introduce the notion of an open concept. We will then prove that privacy
is preserved for positively local concepts C with V(C) = 2 with respect to the
TBox T and any view definition which consists of open concepts only. This
privacy result is based on the fact that the view definition (consisting of open
concepts) accesses private information only via quantifiers. These quantifiers
serve the purpose of information hiding.

Definition 6. Let T , TP , TH , and V as above. The open concepts are inductively
defined by the following clauses.

1. A concept C is open if V(C) = 1.
2. C tD and C uD are open if both C and D are open.
3. ¬C is open if C is a positively local concept with V(C) = 2.
4. ∃R.C and ≥ nR.C are open if V(R)) = (1, 2) and V(C) = 2.
5. ∃R.C and ≥ nR.C are open if V(R)) = (1, 1) and C is an open concept.
6. ∀R.C and ≤ nR.C are open if V(R)) = (1, 2) and V(C) = 2.
7. ∀R.C and ≤ nR.C are open if V(R)) = (1, 1) and C is an open concept.

An open view definition is a view definition that consists of open concepts only.

Theorem 3. Let T be a safe TBox as above. Let V be an open view definition.
Let C be a positively local concept with V(C) = 2. Then privacy is preserved for
C with respect to T and V .



Proof. Assume we are given a view VI based on V and a model I of T and VI .
We define the interpretation J as above where we additionally define

aJ := {x1 : {x} = aI} for each nominal a ∈ sig(VI). (4)

By Theorem 2, we know that J models T . We now show that J also is a model
of VI . Let a : D be an assertion on VI for an open concept D. We show by
induction on the structure of D that {x1 : x ∈ DI} ⊆ DJ .

1. D is a concept with V(D) = 1. In this case our claim follows from Lemma 1.
2. D is of the form E t F or E u F with E and F being open. The claim is an

immediate consequence of applying the induction hypothesis to E and F .
3. D is of the form ¬E where E is a positively local concept with V(E) = 2. We

find by Lemma 1 that ∆J
1 ⊆ DJ . Therefore we have {x1 : x ∈ DI} ⊆ DJ .

4. D is of the form ∃R.E or ≥ nR.E for (i) a role name R with V(R) = (1, 2)
and a concept E with V(E) = 2 or (ii) R with V(R) = (1, 1) and an open
concept E. Assume there are x, y such that RI(x, y) and EI(y). In case (i)
we find RJ(x1, y2) by the definition of J and by Lemma 1 we find EJ(y2).
In case (ii) we find RJ(x1, y1) and applying the induction hypothesis to E
yields EJ(y1). Therefore in both cases we conclude x1 ∈ (∃R.E)J . The cases
for ≥ nR.E are similar.

5. D is of the form ∀R.E or ≤ nR.E for (i) a role name R with V(R) = (1, 2)
and a concept E with V(E) = 2 or (ii) R with V(R) = (1, 1) and an open
concept E. Assume x ∈ (∀R.E)I . Let y be such that RJ(x1, y). In case (i) we
have that y is of the form z2 for some z with RI(x, z). Thus we have z ∈ EI

and Lemma 1 yields EJ(y). In case (ii) we have that y is of the form z1 for
some z with RI(x, z). Thus we have z ∈ EI and by the induction hypothesis
we obtain y ∈ EJ . Therefore in both cases we conclude x1 ∈ (∀R.E)J . The
cases for ≤ nR.E are similar.

From {x1 : x ∈ DI} ⊆ DJ and (4) we conclude that J |= a : D. Thus J is a
model of T and VI such that for each nominal a ∈ sig(VI) we have aJ ∈ ∆J

1 .
Since CJ ⊆ ∆J

2 by Lemma 1, we conclude that privacy is preserved for C. ut

Remark 1. We have to be careful when we try to enlarge the class of open
concepts. The following examples show that privacy will be violated if we allow
additional open concepts. Let C be a concept with V(¬C) = 1 and V(C) = 1.
Further let D be a positively local concept with V(D) = 2. We consider the
following cases:

1. Suppose E u F is open if E is open. Then V = {C u D} is an open view
definition. However, the view a : C uD entails a : D.

2. Suppose E tF is open if E is open. Then V = {C tD,¬C} is an open view
definition. However, {a : C tD, a : ¬C} is a possible view with respect to V
which entails a : D.

3. Suppose ¬E is open if E is open. Then V = {¬¬D} is an open view defini-
tion. However, the view {a : ¬¬D} entails a : D.



Thus in all three cases, there is a possible view with respect to which the set of
answers to D is non-empty. Therefore in all three cases privacy is not preserved
for D with respect to V .

5 Related work and conclusion

We have introduced the problem of provable data privacy with respect to views in
[1, 2]. An investigation of privacy with respect to view definitions in the context
of ALC ontologies is provided in [8]. Provable data privacy is a privacy notion
which corresponds to entailment. Of course there are also other - more fine
grained - notions, most prominently perfect privacy [9]. Unfortunately, lack of
space does not permit a discussion of them here.

Locality has been introduced in [4] in order to support safe merging of ontolo-
gies. That means an ontology can be integrated with a foreign ontology without
changing the meaning of the foreign ontology. Later, locality has also been used
to support partial reuse of ontologies [6]. There the problem is to find a frag-
ment of an ontology which captures completely the meaning of some terms. The
problem of extracting modules from a given ontology has also been addressed in
[7] where the partitioning algorithm is presented which is the core to our results
in Section 4. It is worth mentioning that the result of partitioning an ontology
can be seen as a knowledge base in the language of E-connections [10]. In fact,
all models of an E-connection ontology have the form required for Theorem 3.

A basic notion for the study of modularity is the one of a conservative exten-
sion, see for instance [11]. Grau and Horrocks [12] establish a tight connection
between conservative extensions and privacy guarantees for logic-based informa-
tion systems. Privacy aware access to ontologies is also addressed in [13] in the
context of view-based query answering over ontologies.

Summing up, we have established two privacy theorems stating that given a
modular ontology T , a view definition V , and a query C, privacy is preserved for
C wrt. T and any possible view of V . Our first result is based on the notion of
locality whereas the second one relies on a partitioning algorithm for ontologies.
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