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1. G. Jäger, M. Kretz, and T. Studer. Cut-free common knowledge.
Journal Applied Logic, 5(4):681–689, 2007.

2. M. Kretz and T. Studer. Deduction chains for common knowledge.
Journal of Applied Logic, 4:331–357, 2006.
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Chapter 1

Modal Logic

1.1 Introduction

Modal logic as the formal study of modalities goes back to Lewis [52] who
introduced modal operators in order to solve the paradoxes of material im-
plication and to obtain logics of necessity and possibility. In modern terms,
his key idea was that we can take a formula A, prefix it with a 2 or 3 sym-
bol, and we obtain new formulae 2A (meaning that A is necessary) and 3A
(meaning that A is possible), respectively.

Since then, many different modal operators were proposed and used in many
different contexts. For instance, epistemic logic introduces modalities like
it is known that and temporal logic arises with modalities like eventually.
Looking at modal logic from a more abstract point of view, one noticed that
it provides a general framework to study relational structures which occur
naturally in various areas. For instance modal logic plays a very prominent
role in theoretical computer science. Automated verification of hardware and
software, knowledge-based programming, and intelligent distributed comput-
ing all rely on the theoretical background of modal logic. See [17, 18, 24] for
excellent overviews on recent developments in modal logic.

For many applications it is necessary to extend the basic language of modal
logic by additional operators. Assume, for instance, that in some temporal
logic we have a modal operator T such that TA means tomorrow A holds.
With this logic it is possible to talk about the future. We can express things
like in n days A holds - where n is a given natural number - by n-times
nesting the T operator. However, there are no quantifiers available. Thus we
cannot say for every n, in n days A holds which means that we cannot say

A holds on every day. (1.1)
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2 Chapter 1. Modal Logic

If we would work with an infinitary language, then (1.1) could be expressed
by the infinitary conjunction

A ∧ TA ∧ TTA ∧ TTTA ∧ · · · . (1.2)

In order to express (1.1) by a finite statement, we can either (1) extend our
language by a special modal operator saying on every day it holds that or
(2) introduce means to build least and greatest fixed points. For the second
solution, we observe that the greatest fixed point of the operator given by
λX.A ∧ TX is semantically equivalent to (1.2). The general extension of
modal logic by least and greatest fixed point operators is known as the modal
µ-calculus. It has been introduced by Kozen [46] in order to state and prove
properties of programs.

The logic of common knowledge is a variant of epistemic logic with an extra
modality C. The formula CA then means that A is common knowledge. The
equivalent of the formula CA in the modal µ-calculus is the greatest fixed
point of

λX.everybody knows that A and everybody knows that X. (1.3)

We are interested in the proof theory of modal fixed point logics. That means
we are concerned with the study of proofs as formal objects. In general, the
principal tasks of proof theory are the following: First, to formulate systems
of logic and characterize what follows from certain axioms, and second, to
study the structure of formal proofs (for instance to find normal forms and to
establish syntactic facts about proofs). In particular, these tasks include the
quest for deductive systems that have certain desired structural properties as
well as completeness proofs for those systems. Moreover, it also includes the
study of embeddings or, more general, of the syntactic relationship between
several systems.

There are already many issues about the proof theory of modal logics without
fixed point extensions. As Wansing [86] observed, standard sequent systems
for modal logic typically fail to be modular and do not satisfy most of the
properties usually demanded on sequent calculi. Some recent approaches to
solve these problems include the internalization of the Kripke semantics into
the inference system [57] or the use of deep sequents [20]. However, our inter-
est is on fixed point extension of modal logic and not on the consequences of
different frame conditions for deductive systems. Therefore we will not study
these problems here but focus on the effect of adding fixed point operators
to modal logic.
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This thesis is organized as follows. In the next section we start with intro-
ducing the language and semantics of the basic modal logic. Then we will
present Hilbert and Tait style deductive systems for it. Chapter 2 is devoted
to the study of common knowledge. First we present the logic of common
knowledge and we recall a Hilbert style system as well as an infinitary Tait
style system for common knowledge. Our contributions include:

1. the introduction of the first finitary, sound and complete, cut-free de-
ductive system for common knowledge,

2. the study of deduction chains for common knowledge which is a syntac-
tic and in a certain sense constructive method for proving completeness
of a deductive system,

3. a syntactic cut-elimination procedure for common knowledge which also
provides an upper bound on the depth of cut-free proofs,

4. a proof that the logic of common knowledge lacks interpolation,

5. an axiomatization for public announcements and common knowledge
where, in contrast to the classical setting, the announcement operators
are total.

In Chapter 3 we study infinitary deductive systems for the modal µ-calculus.
Our contributions include:

1. the study of a cut-free infinitary system for the so-called stratified frag-
ment of the µ-calculus,

2. a canonical completeness proof for an infinitary system for the modal µ-
calculus which is the only available proof working with standard meth-
ods from modal logic; all other proofs make use of sophisticated game
or automata theoretic means,

3. an embedding of a system with an ω-rule into a system with global
induction which results in a new proof of the finite model property of
the modal µ-calculus.

Chapter 4 concludes this thesis.

1.2 Basic Modal Logic

Language. Let L denote the basic language of propositional (multi-)modal
logic.



4 Chapter 1. Modal Logic

Definition 1 (Language L). Let

Φ = {p,∼p, q,∼q, r,∼r, . . .}

be a countable set of atomic propositions, T = {>,⊥} a set containing
symbols for truth and falsehood and M = {1, . . . , h} a set of indices. Define
the formulae of the language L inductively as follows:

1. If P is an element of Φ, then P is a formula of L.

2. If A and B are formulae of L, then so are (A ∧B) and (A ∨B).

3. If A is a formula of L and i ∈ M, then 2iA and 3iA are also formulae
of L.

In case there is no danger of confusion, we will omit parentheses in formulae.

Note that formulae are a priori in negation normal form. The negation ¬A
of a formula A is defined as usual by reflecting De Morgan’s laws, the law
of double negation, and the duality laws for modal operators. For formulae
A and B, we can now introduce implication and equivalence as usual by
A → B := ¬A ∨B and A ↔ B := (A → B) ∧ (B → A).

Semantics. We employ standard Kripke semantics for modal logics to give
meaning to formulae.

Definition 2 (Kripke structure). A Kripke structure K = (S, R, π) is a triple
where S is a non–empty set, R : M → P(S × S) and π : Φ → P(S) is a
function such that π(∼p) = S \ π(p) for all ∼p ∈ Φ. We call S the set of
states of K. The function R assigns an accessibility relation to each i ∈ M
where we write Ri for the relation R(i).

Assume we are given a Kripke structure K = (S, R, π) and an L formula A.
We define the set of states ‖A‖K of S at which A holds by induction on the
structure of A.

Definition 3 (Denotation). Let K = (S, R, π) be a Kripke structure. For
every A ∈ L we define the set ‖A‖K ⊆ S inductively as follows:

‖P‖K := π(P ) for all P ∈ Φ, ‖>‖K := S, ‖⊥‖K := ∅,
‖B ∧ C‖K := ‖B‖K ∩ ‖C‖K, ‖B ∨ C‖K := ‖B‖K ∪ ‖C‖K,

‖2iB‖K := {w ∈ S : v ∈ ‖B‖K for all v such that wRiv},
‖3iB‖K := {w ∈ S : v ∈ ‖B‖K for some v such that wRiv}.
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We call a formula A satisfiable if there is a Kripke structure K such that
‖A‖K is non-empty. For a Kripke structure K = (S, R, π) we write K |= A
if ‖A‖K = S. Moreover, we write K, s |= A if s ∈ ‖A‖K. The formula A is
called valid if for every Kripke structure K we have K |= A. Let Γ be a set
of formulae. We write Γ |= A if for all Kripke structures K such that K |= B
for each B ∈ Γ, we also have K |= A.

In the context of modeling knowledge, one often is interested in Kripke struc-
tures in which all accessibility relations are required to be equivalence rela-
tions. The corresponding logic is called S5. Its semantics is given as follows.
We will write Keq for the class of all Kripke structures (S, R, π) where each
accessibility relation Ri is an equivalence relation. The formula A is S5-valid,
if and only if K |= A for all K ∈ Keq . Further, we say that A is S5-satisfiable,
if and only if there is a K ∈ Keq such that ‖A‖K is non-empty.

Deductive Systems.

Definition 4 (The system HMod). The Hilbert calculus HMod for modal logic
is defined by the following axioms and inference rules:

Propositional axioms: Every instance of a propositional tautology

Modal axioms: For all formulae A and B and all indices i from M

2i(A → B) → (2iA → 2iB) (K)

Rules: For all formulae A and B and all indices i from M

A A → B

B
(MP)

A

2iA
(NEC)

We have the following standard completeness result.

Theorem 5 (Soundness and completeness of HMod). For any formula A of L
we have that

A is valid if and only if HMod ` A.

We can obtain a deductive system for the logic S5 by extending HMod as
follows.

Definition 6 (The system HS5). The system HS5 is defined by extending HMod

with the following axioms.
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Additional Modal axioms: For all formulae A and all indices i from M

2iA → A (T)
2iA → 2i2iA (4)
¬2iA → 2i¬2iA (5)

Again, we have the following standard completeness result.

Theorem 7 (Soundness and completeness of HS5). For any formula A of L
we have that

A is S5-valid if and only if HS5 ` A.

For proof-theoretic purposes, Hilbert systems often are not suitable since
(MP) does not have the subformula property. That means in instances of
(MP) there occurs a formula B in the premise which is not a subformula of
the conclusion A. A simple consequence of this is, for instance, that there is
no systematic proof search procedure possible in a Hilbert system.

Let us now look at a system that enjoys the subformula property. TMod is a
Tait style system [73, 80] for modal logic, that means a one-sided Gentzen
calculus which derives finite sets Γ, ∆, Σ, . . . of formulae. These sets are
called sequents and they are interpreted disjunctively. We use the following
shorthand: if Γ is the set {A1, . . . , An}, then 3iΓ := {3iA1, . . . ,3iAn}.

Definition 8 (The system TMod). The system TMod is defined by the following
axioms and inference rules:

Axioms: For all sequents Γ and all p in Φ

Γ, p,∼p (ID1) Γ,> (ID2)

Propositional rules: For all sequents Γ and formulae A and B

Γ, A,B

Γ, A ∨B
(∨)

Γ, A Γ, B

Γ, A ∧B
(∧)

Modal rules: For all sequents Γ and Σ and formulae A and all indices i from
M

Γ, A

3iΓ, 2iA, Σ
(2)

Again, we have the following standard completeness result.

Theorem 9 (Soundness and completeness of TMod). For any formula A of L
we have that

A is valid if and only if TMod ` A.
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In the sequel we will also consider extensions of sequent systems by the rule
(cut) which is given by

Γ, A Γ,¬A

Γ
(cut)

for all sequents Γ and formulae A. Note that semantic cut-elimination is an
immediate consequence of the completeness of TMod.

Corollary 10 (Semantic cut-elimination for TMod). For any formula A of L
we have that

TMod + (cut) ` A =⇒ TMod ` A.

Note that unlike in the case of Hilbert systems, there is no straightforward
way to extend TMod in order to obtain a Tait style system for S5.





Chapter 2

Common Knowledge

2.1 Introduction

Modal logic may be employed to reason about knowledge. A necessity for
this arises for example when modeling systems of distributed agents, say
computers connected over a network. In this setting, an agent knowing some
proposition A in a state s is usually understood as A holding in all states
reachable from s in one step and thus each agent’s knowledge may be mod-
eled using a respective box operator. Furthermore, through arbitrary nesting
of boxes epistemic situations of considerable complexity become expressible.
However, it is well known that there are certain situations of particular in-
terest which the basic language of modal logic cannot talk about. One such
example is common knowledge of a proposition A, which can roughly be
viewed as the infinitary conjunction all agents know A and all agents know
that all agents know A and so on.

Common knowledge is of particular interest in connection with coordination
among a set of agents. For example, it is common knowledge that red traffic
lights mean stop and green ones mean go. Thus most drivers feel safe when
they pass green lights. Now suppose that this fact is not common knowledge.
In that case each driver still knows that she can pass when the lights are green
and has to stop when the lights are red. However, she does not know that
the other drivers know the rule and therefore she will not feel safe any more.
Thus a safe driver will always stop (even when the lights are green) unless
there are no other cars at the crossing since she considers it possible that
another driver might jump a red light. Of course, for this simple example
it is enough to only consider knowledge about other people’s knowledge but
this need not be iterated ad infinitum. However, there are situations where
an arbitrary number of iterations of the knowledge operator has to be taken

9



10 Chapter 2. Common Knowledge

into account. Thus common knowledge is important for coordination and
simultaneous actions in multi-agent systems. In fact, one can even prove
that common knowledge is a prerequisite for simultaneous actions, see [32].

The classic study of the notion of common knowledge has been carried out
by Lewis [53]. As he acknowledges, part of his work is inspired by Schelling
[67]. Aumann in his seminal paper [8] provides the first mathematically rig-
orous formulation of common knowledge using set theory. A definition of
common knowledge in terms of epistemic logic has been given by Schiffer
[68]. Halpern and Moses [38] adopt this approach and introduce the logic of
common knowledge which is based on classical multi-modal logic. In particu-
lar, they show that the syntactic and set-theoretic approaches to developing
common knowledge are logically equivalent, see (2.1) below. Another pos-
sibility to formalize common knowledge is in Barwise’s situation semantics
[13, 14] where common knowledge is given by a greatest fixed point construc-
tion. It comes out that in the situation semantics the definitions of common
knowledge as infinite conjunction and as greatest fixed point differ whereas
in multi-modal logic they coincide. Many applications of common knowledge
in computer science are investigated in the textbooks by Fagin et al. [32] as
well as Meyer and van der Hoek [56].

Note that there is also Artemov’s notion of justified common knowledge [7]
which is based on the logic of proofs [6]. The main model theoretic difference
between common knowledge and justified common knowledge is the follow-
ing: the former captures the greatest solution of the fixed point equation of
common knowledge (1.3) whereas the latter considers all of its solutions. See
[5] for a detailed account on the relationship of these approaches to common
knowledge.

So far most of the work on common knowledge has been performed from a
model theoretic point of view. Notable exceptions are Alberucci and Jäger
[2, 3] who pioneered proof-theoretic investigations on common knowledge.
They introduce several sequent systems for common knowledge and present
first results with respect to cut-elimination. We will continue this line of
research.

Language. LCK is the language of (multi-)modal logic extended by the com-
mon knowledge operator C and its dual C̃.

Definition 11 (Language LCK). Define the formulae of the language LCK in-
ductively like the language L with the additional clause:

4. If A is a formula of LCK, then so are CA and C̃A.
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We define the following abbreviations:

EA := 21A ∧ · · · ∧2hA and ẼA := 31A ∨ · · · ∨3hA

for {1, . . . , h} = M. Thus EA stands for everybody knows A. We will also
need iterated applications of these operators:

E1A := EA and En+1A := E(EnA),

Ẽ1A := ẼA and Ẽn+1A := Ẽ(ẼnA).

Definition 12. We define the length ln(A) of a formula A as follows:

1. ln(p) := ln(∼p) := ln(>) := ln(⊥) := 1

2. ln(A ∧B) := ln(A ∨B) := ln(A) + ln(B)

3. ln(2iA) := ln(3iA) := ln(A) + 1

4. ln(CA) := ln(C̃A) := ln(A) · h + h + 1

Semantics. We extend the standard Kripke semantics for modal logics to
give meaning to LCK formulae as follows.

Definition 13 (Denotation). Let K = (S, R, π) be a Kripke structure. For
every A ∈ LCK we define the set ‖A‖K ⊆ S by adding the following clauses
to Definition 3.

‖CA‖K :=
⋂
{‖EmA‖K : m ≥ 1}

‖C̃A‖K :=
⋃
{‖ẼmA‖K : m ≥ 1}

The notions of validity and satisfiability of LCK formulae are defined accord-
ingly.

Our semantics of the operator C reflects the so-called iterative approach
to common knowledge where CA is treated to be equivalent to the infinite
conjunction E1A∧E2A∧E3A∧· · · . Alternatively, we could interpret common
knowledge as greatest fixed point since

‖CA‖K =
⋃
{X ⊆ S : X = ‖EA ∧ Eq‖K[q:=X]} (2.1)

where q is an atomic proposition that does not occur in A and K[q := X] is
like K except that the valuation function maps q to X. A proof of (2.1) can
be found for example in [32].

A crucial property for the logics we consider is the small model property.
Again, a proof can be found for instance in [32].
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Theorem 14 (Small Model Property). If an LCK formula A is satisfiable, then
there is a Kripke structure K with at most 2ln(A) states such that ‖A‖K 6= ∅.

Deductive Systems. The traditional way to formalize common knowledge is
to use a Hilbert style axiom system. Such a system has a co-closure axiom,
which states that common knowledge is a post-fixed point, and an induction
rule which states that this post-fixed point is the greatest fixed point.

Definition 15 (The system HCK). The system HCK is defined by extending
HMod with the following axioms and rules:

Co-closure axiom: For all formulae A

CA → E(A ∧ CA) (C)

Induction rule: For all formulae A and B

A → E(A ∧B)

A → CB
(IND)

Soundness and completeness of HCK can be shown by standard methods [32].

Theorem 16 (Soundness and completeness of HCK). For any formula A of
LCK we have that

A is valid if and only if HCK ` A.

The approach of using an induction rule does not work well for designing a
Gentzen style sequent calculus for common knowledge. Alberucci and Jäger
[3] show that a particular cut-free sequent system designed in this way is not
complete. To obtain a complete cut-free system they replace the induction
rule by an infinitary ω-rule which results in the following deductive system.

Definition 17 (The system Tω
CK). The system Tω

CK is defined from TMod by
changing the modal rules and adding the common knowledge rules as follows
where C̃{B1, . . . , Bn} := {C̃B1, . . . , C̃Bn}:

Modal rules: For all sequents Γ, ∆, Σ and formulae A and all indices i from
M

Γ, A, C̃∆

3iΓ, 2iA, C̃∆, Σ
(2C)
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Common knowledge rules: For all sequents Γ and formulae A

Γ, ẼA

Γ, C̃A
(C̃)

Γ, EkA for all k ≥ 1

Γ, CA
(C)

The rule (C) is a so-called ω-rule since it permits the derivation of CA from
the infinitely many premises EkA for all k ≥ 1. We call Tω

CK a semi-formal
system since, as opposed to formal systems, it has basic inferences with
infinitely many premises. Semi-formal systems are an important ingredient
in the proof-theoretic analysis of subsystems of arithmetic and set-theory.
The use of an ω-rule goes back to Hilbert who employed it to obtain certain
completeness results for arithmetic [40], see [33] for a detailed discussion.

Alberucci and Jäger [3] provide a completeness proof for Tω
CK by a canonical

counter-model construction.

Theorem 18 (Soundness and completeness of Tω
CK). For any formula A of

LCK we have that

A is valid if and only if Tω
CK ` A.

2.2 Contributions

Our contributions to the logic of common knowledge are presented in the
following papers:

1. Cut-free common knowledge [42]

2. Deduction chains for common knowledge [49]

3. Syntactic cut-elimination for common knowledge [22]

4. Common knowledge does not have the Beth property [79]

5. Total public announcements [76]

In the remainder of this chapter we will summarize the results of these con-
tributions.
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2.2.1 Cut-free common knowledge

As mentioned before cut-elimination seems not possible for finitary systems
which are based on an induction rule. So it was on open problem whether
there can be a finitary cut-free deductive system for common knowledge. In
Cut-free common knowledge [42] we developed the first sound and complete
cut-free system for common knowledge. Since then other such systems have
been found. Abate, Goré and Widmann, for example, introduce a cut-free
tableau system for common knowledge in [1]. Moreover, cut-free systems for
certain modal fixed point logics can be obtained by representing focus games
[50] as sequent calculi [21]. Using this approach, Wehbe presented a cut-free
sequent system for relativized common knowledge [87].

Regarding Tω
CK, we see that it is only the rule (C) which is responsible for

possibly infinite derivations. All proofs will be completely finite if we succeed
in restricting the infinitely many premises of each application of (C) to a finite
subset. Fortunately, this can be achieved by exploiting the small model
property of the logic of common knowledge. A similar approach for PDL
appears in Leivant [51].

We will now give a sketch of our approach to provide a finitary cut-free system
for common knowledge. For any formula A and finite set Γ = {B1, . . . , Bn}
we define the bounding function

bd(A, Γ) := 2ln(CA)+ln(B1)+···+ln(Bn).

Definition 19 (The system T<ω
CK). The system T<ω

CK is defined from Tω
CK by

replacing the infinitary rule for common knowledge by the following:

Finitary common knowledge rule: For all sequents Γ and formulae A

Γ, EkA for k = bd(A, Γ)

Γ, CA
(C<ω)

The completeness of T<ω
CK immediately follows from the completeness of Tω

CK.
To show the soundness we make use of the small model property as follows.
Assume that the conclusion Γ, CA of an instance of (C<ω) is not valid. By
the small model property, there exists a counter model with at most bd(A, Γ)
states. Using some basic facts about monotone operators we conclude that
this also must be a counter model to Γ, EkA where k = bd(A, Γ). Thus, the
disjunction over Γ, EkA is not valid. Therefore (C<ω) preserves validity. The
soundness of T<ω

CK follows by induction on the length of derivations.

Theorem 20 (Soundness and completeness of T<ω
CK). For any formula A of

LCK we have that

A is valid if and only if T<ω
CK ` A.
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2.2.2 Deduction chains for common knowledge

In Deduction chains for common knowledge [49], we aim to deepen the
proof-theoretic understanding of the logic of common knowledge by giving an
alternative completeness proof for Tω

CK using the method of deduction chains.
Deduction chains represent a syntactic and in a certain sense constructive
method for proving completeness of a formal system. Given a formula A,
the deduction chains of A are built up by systematically decomposing A into
its subformulae. In the case where A is a valid formula, the decomposition
yields a (usually cut-free) proof of A. If A is not valid, the decomposition
produces a counter model for A.

The method of deduction chains was first introduced by Schütte in [70, 72]
and has been used mainly in the proof theory of systems of first and second
order arithmetic. See for instance [44, 63] for applications of the method
in this field. In [71] Schütte extended deduction chains to modal logic and
we extend this approach again to accommodate fixed point constructs. The
main additional difficulty is that the presence of fixed points requires a fully
deterministic procedure for the decomposition of a given formula in order to
guarantee fairness in the case of an infinite deduction chain.

The two main ingredients in the method of deduction chains are the following
two lemmata. Since we are dealing with modal logic, a deduction chain
consists of so-called sequence trees and not just sequences of formulae as in
the non-modal case.

Lemma 21 (Principal semantic lemma). If there exists a deduction chain of
a formula A which is infinite or ends in a non-axiomatic sequence tree, then
there exists a counter model for A.

Note that the proof of this lemma is constructive and returns such a counter
model. It makes essential use of a fairness condition on the construction of
deduction chains.

Lemma 22 (Principal syntactic lemma). If all deduction chains for a formula
A end in axiomatic sequence trees, then there exists a proof of A in Tω

CK.

The proof of this lemma is along the following lines.

1. Code each sequence tree R in the deduction tree (consisting of all de-
duction chains) of A as a set of formulae CR.

2. Show that Tω
CK ` CL for each leaf L of the deduction tree.

3. Show by induction on the Kleene-Brouwer ordering of the deduction
tree that Tω

CK ` CR if Tω
CK ` CSi for all successors Si of R.
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4. Finally, observe CR = A for the root R of the deduction tree.

Remark 23. In order to prove step (3) of the above procedure, we need to
observe that (in certain cases) the rules of Tω

CK may also be applied deep
inside LCK formulae.

Corollary 24 (Completeness). If A is a valid formula of LCK, then Tω
CK ` A.

Proof. Assume that A is valid but not provable in Tω
CK. By contraposition of

the principal syntactic lemma there would need to exist a deduction chain of
A which is infinite or ends non-axiomatically. But in this case the principal
semantic lemma would supply us with a counter model for A, contradicting
our assumption. Thus A must be provable in Tω

CK and indeed the principal
syntactic lemma constructs such a proof.

2.2.3 Syntactic cut-elimination for common knowledge

We have mentioned that there exist several cut-free deductive systems for
common knowledge. However, we do not know of syntactic cut-elimination
procedures for any of these systems, that is a procedure that transforms
a proof which makes use of the rule (cut) to a proof without applications
of (cut). Let us look at the problem of cut-elimination in the system Tω

CK.
Consider the following proof:

��
��

��
�???????

π1

A, Γ, C̃¬B
(2)

2iA, 3iΓ, Σ, C̃¬B

...
��

��
��

�???????
π2k

2kB, ∆
...

(C) 1≤k<ω

CB, ∆
(cut)

2iA, 3iΓ, Σ, ∆

Here the inference rule above the cut on the left does not apply to the cut
formula while the inference rule on the right does. The typical transformation
would push the left rule instance below the cut, as follows:

��
��

��
�???????

π1

A, Γ, C̃¬B

...
��

��
��

�???????
π2k

2kB, ∆
...

(C) 1≤k<ω

CB, ∆
(cut)

A, Γ, ∆
(2)

2iA, 3iΓ, Σ, 3i∆
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However, this transformation introduces the 3i in 3i∆, and thus it does
not yield a proof of the original conclusion. This is caused by the context
restriction in the (2)-rule.

In Syntactic cut-elimination for common knowledge [22], we present a syn-
tactic cut-elimination procedure for an infinitary system of common knowl-
edge. In this system we use deep sequents which are essentially trees and
where rules apply anywhere deep inside of these trees. The general idea of
applying rules deeply has been proposed several times in different forms and
for different purposes. Schütte already used it in order to obtain systems
without contraction and weakening, which he considered more elegant [69].
Guglielmi used it to give a proof-theoretic system for a certain substructural
logic which cannot be captured in the sequent calculus. To do so, he devel-
oped the calculus of structures, a formalism which is centered around deep
inference and abolishes the traditional format of sequent calculus proofs [37].

The calculus of structures then has also been developed for modal logic [77].
Based on these ideas, Brünnler introduced the notion of a deep sequent and
gave a systematic set of sequent systems and a corresponding cut-elimination
procedure for the modal logics between K and S5 [20]. Kashima had used
the same notion of sequent already in [45] in order to give cut-free sequent
systems for some tense logics. Based on Kashima’s ideas, Tanaka [81] in-
troduced a system for predicate common knowledge logic. It essentially also
uses what we call deep sequents. In fact, if one disregards the rather different
notation and some choices in the formulation of rules, then one could say that
our system is the propositional part of Tanaka’s system. We already have
observed that applying rules deeply is also important to adapt the method
of deduction chains to common knowledge, see Remark 23.

There are cut-elimination procedures available for similar logics, for example
by Pliuskevicius [61] for an infinitary system for linear time temporal logic.
However, he does not need deep sequents. For linear time temporal logic it
is enough to use indexed formulae of the form Ai which denote A at the i-th
moment in time.

Deep sequents. A deep sequent is a finite multiset of formulae and boxed
sequents. A boxed sequent is an expression [Γ]i where Γ is a deep sequent and
1 ≤ i ≤ h. The letters Γ, ∆, Λ, Π, Σ now denote deep sequents and the word
sequent now refers to deep sequent, except when it is clear from the context
that a sequent is shallow, such as a sequent appearing in a derivation in Tω

CK.
A sequent is always of the form

A1, . . . , Am, [∆1]i1 , . . . , [∆n]in ,
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where the ij denote agents and thus range from 1 to h. As usual, the comma
denotes multiset union and there is no distinction between a singleton mul-
tiset and its element.
Fix an arbitrary linear order on formulae. Fix an arbitrary linear order
on boxed sequents. The corresponding formula of a non-empty sequent Γ,
denoted ΓF, is defined as follows:

A1, . . . , Am, [∆1]i1 , . . . , [∆n]in
F
= A1 ∨ · · · ∨ Am ∨2i1∆1F

∨ · · · ∨2in∆nF
,

where formulae and boxed sequents are listed according to the fixed orders.
The corresponding formula of an empty sequent is ⊥.

Sequent contexts. A sequent context is a sequent with exactly one occur-
rence of the special symbol { }, called the hole, which does not occur inside
formulae. Sequent contexts are denoted by Γ{ }, ∆{ }, and so on. The
sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆. For example, if
Γ{ } = A, [[B], { }] and ∆ = C, [D] then

Γ{∆} = A, [[B], C, [D]] .

Let us now introduce our system of deep sequents.

Definition 25 (The system Dω
CK).

Propositional axioms and rules: For all contexts Γ{}, p in Φ , and all for-
mulae A, B

Γ{p,∼p} Γ{>} Γ{A} Γ{B}
Γ{A ∧B}

(∧)
Γ{A, B}

Γ{A ∨B}
(∨)

Modal rules: For all contexts Γ{}, sequents ∆, formulae A, and all indices i
from M

Γ{[A]i}
Γ{2iA}

(2)
Γ{3iA, [∆, A]i}
Γ{3iA, [∆]i}

(3)

Fixed point rules: For all contexts Γ{} and formulae A

Γ{2kA} for all k ≥ 1

Γ{CA}
(C)

Γ{C̃A, 3kA}
Γ{C̃A}

(C̃)

We will also consider the structural rules necessitation, weakening, and con-
traction

Γ

[Γ]i
(nec)

Γ{∅}
Γ{∆}

(wk)
Γ{∆, ∆}
Γ{∆}

(ctr)
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as well as the rule cut

Γ{A} Γ{¬A}
Γ{∅}

(cut).

In an application of the rule (cut) the formula A is called the cut formula.
Notice that the rules of system Dω

CK are different from the corresponding rules
in system Tω

CK but have the same names. If we refer to a rule only by its
name then it will be clear from the context which rule is meant. For example
the cut in Tω

CK + (cut) is the one associated to system Tω
CK and the one in

Dω
CK + (cut) is the one associated with system Dω

CK.

Cut rank and derivability. We define the rank rk(A) of a formula A as
follows:

rk(p) := rk(∼p) := rk(>) := rk(⊥) := 0
rk(A ∧B) := rk(A ∨B) := max(rk(A), rk(B)) + 1
rk(2iA) := rk(3iA) := rk(A) + 1

rk(CA) := rk(C̃A) := ω + rk(A)

The cut rank of an instance of (cut) is the rank of its cut formula. For a
system S and ordinals α and γ and a sequent Γ we write S α

γ
Γ to say that

there is a proof of Γ in system S+(cut) with depth bounded by α and where
all instances of (cut) have cut rank strictly smaller than γ. In particular
S α

0
Γ means that there is a cut-free proof of Γ in S. Moreover, we use

S <α

γ
Γ to state that there exists β < α such that S β

γ
Γ.

Admissibility and invertibility. An inference rule ρ is depth- and cut-rank-
preserving admissible or, for short, perfectly admissible for a system S if
for each instance of ρ with premises Γ1, Γ2 . . . and conclusion ∆, whenever
S α

γ
Γi for each premise Γi then S α

γ
∆. For each rule ρ there is its inverse,

denoted by ¬ρ, which has the conclusion of ρ as its only premise and any
premise of ρ as its conclusion. An inference rule ρ is perfectly invertible for
a system S if ¬γ is perfectly admissible for S.

Lemma 26 (Admissibility of the structural rules and invertibility).

1. The rules necessitation, weakening and contraction are perfectly admis-
sible for system Dω

CK.

2. All rules in Dω
CK are perfectly invertible for Dω

CK.

We write α # β for the natural sum of α and β which, in contrast to the
ordinary ordinal sum, does not cancel additive components. For an intro-
duction to ordinals, and a definition of the natural sum in particular, we
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refer to Schütte [72]. The binary Veblen function ϕ is generated inductively
as follows:

1. ϕ0β := ωβ,

2. if α > 0, then ϕαβ denotes the βth common fixed point of the functions
λξ.ϕγξ for γ < α.

We obtain our cut-elimination result by applying the method of predicative
cut-elimination, see Pohlers [62, 63] and Schütte [72], which is a standard
tool for the proof-theoretic analysis of systems of set theory and second order
arithmetic. The so-called reduction lemma is the key lemma which one has
to prove in order to obtain predicative cut-elimination.

Lemma 27 (Reduction Lemma). For every formula A with rk(A) = γ we
have that

if Dω
CK

α1

γ
Γ{A} and Dω

CK
α2

γ
Γ{¬A}, then Dω

CK
α1 # α2

γ
Γ{∅}.

The following two elimination lemmata are standard consequences of the
reduction lemma.

Lemma 28 (First Elimination Lemma). If Dω
CK

α

γ+1
Γ then Dω

CK
2α

γ
Γ.

Lemma 29 (Second Elimination Lemma). If Dω
CK

α

β+ωγ Γ then Dω
CK

ϕγα

β
Γ.

The cut-elimination theorem follows by iterated application of the second
elimination lemma. ϕn

1 (α) denotes the n-times iteration of ϕ1, that is an
expression of the form ϕ1(ϕ1(. . . ϕ1(α) . . .)).

Theorem 30 (Cut-elimination for the deep system). If Dω
CK

α

ω·n Γ then

Dω
CK

ϕn
1 (α)

0
Γ.

There are the followings embeddings of the shallow system into the deep
system and vice versa.

Theorem 31 (Shallow into deep). If Tω
CK

α

γ
Γ then Dω

CK
ω·α
γ

Γ.

Theorem 32 (Deep into shallow). If Dω
CK

α

0
Γ then Tω

CK
ω·(α+1)

0
ΓF.

We can now state the cut-elimination theorem for the shallow system.

Theorem 33 (Cut-elimination for the shallow system).

If Tω
CK

α

ω·n Γ then Tω
CK

ω·(ϕn
1 (ω·α)+1)

0
Γ.
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We will now embed HCK into Dω
CK + (cut), keeping track of the proof depth

and thus, via cut elimination for Dω
CK, establish an upper bound for proofs

in Dω
CK. Via the embedding of the deep into the shallow system, this bound

also holds for the shallow system.

Theorem 34. If HCK ` A then Dω
CK

<ω2

ω2 A.

Theorem 35 (Upper bounds). If A is a valid formula, then

1. Dω
CK

<ϕ20

0
A, and

2. Tω
CK

<ϕ20

0
A.

The following figure summarizes the various embeddings we have established.

Tω
CK + (cut)

Thm 31

��

Tω
CK

HCK
Thm 34 //Dω

CK + (cut) Thm 30 // Dω
CK

Thm 32

OO

Figure 2.1: Overview of the various embeddings

We have looked at common knowledge based on the least normal modal
logic. However, we believe that our approach is independent of the particular
axiomatization of knowledge. The modal logic S5 seems to be the system for
knowledge. Contrary to shallow sequents, deep sequents can easily handle
S5, see [20]. So it is straightforward to design a system for S5-based common
knowledge. Generalizing contexts to allow two holes, the rule to add would
be

Γ{3A}{A}
Γ{3A}{∅}

(S5).

2.2.4 Common knowledge does not have the Beth property

Craig interpolation and Beth definability have become traditional questions
to ask of a logic system. They are important properties both at the theoret-
ical and at the practical level. Let us only mention some areas of computer
science where interpolation is applied: hardware/software specification, rea-
soning with large knowledge bases, type inference, theorem proving, and
model checking.
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It was an open question whether the logic of common knowledge has interpo-
lation. We were able to show that this is not the case in Common knowledge
does not have the Beth property [79].

Our proof that common knowledge does not have the Beth property is a vari-
ant of Maksimova’s proof that temporal logics with ‘the next’ do not have
the Beth property [54, 55]. See also [48] for a generalization of that proof
to fragments of propositional dynamic logic. Let us write A(P1, . . . , Pn) to
indicate that the formula A contains at most the displayed atomic proposi-
tions P1, . . . , Pn where we abbreviate such a sequence by ~P . Then the global
Beth property (B2) states that for any formula A(~P , X) if

A(~P , X), A(~P , Y ) |= X ↔ Y,

then there exists a formula B(~P ) such that

A(~P , X) |= X ↔ B(~P ).

The Craig interpolation property (CIP) states that if

A(~P , ~Q) → B(~P , ~R)

is valid, then there exists a formula C(~P ) such that

A(~P , ~Q) → C(~P ) and C(~P ) → B(~P , ~R)

are valid. Gabbay and Maksimova [35] provide an extensive study of these
and related concepts for modal and intuitionistic logics.

We define the following formulae where C+A := CA ∧ A and P, X, Y are
different atomic propositions.

A1(P, X) := C+(ẼX ↔ ∼X ∧ C̃∼P),

A2(P, X) := C+(X → C̃∼P),

A3(P ) := C+C̃CP,

A4(X) := C+(EX ↔ ẼX).

Using these definitions, we set

A(P, X) := A1(P, X) ∧ A2(P, X) ∧ A3(P ) ∧ A4(X).

Note that the formula A(P, X) ∧ A(P, Y ) → (X ↔ Y ) is valid. That means
A(P, X) defines X implicitly. We will show in the following that there cannot
be an explicit definition of X. Hence, Beth definability does not hold for the
logic of common knowledge.
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Theorem 36. The logic of common knowledge does not posses the global Beth
property (B2).

Proof. Let Z be the Kripke model given by:

1. the domain of Z is the set of integers,

2. the accessibility relations Ri for 1 ≤ i ≤ h are given by Ri(u, v) if and
only if v = u + 1,

3. Z, u |= X if and only if u is odd and u < 0,

4. Z, u |= P if and only if u ≥ 0.

We have Z |= A(P, X).
Let us call a formula B L-stable in Z if

∃u∀v ≤ u(Z, v |= B ⇔ Z, u |= B).

By induction on the structure of formulae we easily see that every formula
B which contains only P as a variable is L-stable in Z. Therefore, for each
formula B which contains only P as a variable, there exists a u < 0 such that
Z, u |= B ⇔ Z, u − 1 |= B. However, by definition we have Z, u |= X ⇔
Z, u− 1 6|= X. Hence B and X must have different truth values either at u
or at u− 1. That means Z 6|= B ↔ X. Because of Z |= A(P, X) this implies

A(P, X) 6|= X ↔ B(~P ).

Theorem 37. The logic of common knowledge lacks interpolation (CIP).

Proof. Let us introduce another (local) version (B1) of the Beth property:

for any formula A(~P , X) if

|= A(~P , X) ∧ A(~P , Y ) → (X ↔ Y ),

then there exists a formula B(~P ) such that

|= A(~P , X) → (X ↔ B(~P )).

The fact that A(P, X) ∧ A(P, Y ) → (X ↔ Y ) is valid and the model in the
proof of the previous theorem show that (B1) does not hold for the logic of
common knowledge. We conclude that the logic of common knowledge does
not enjoy Craig interpolation (CIP) because (B1) can be derived from (CIP),
see [26, 35].
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2.2.5 Total public announcements

At the end of the eighties, Plaza published the famous article about logics of
public communications [60]. In the sequel, the theory of knowledge change
caused by incoming information has been further developed by many authors.
We confine ourselves to mentioning just a few typical articles: Baltag et
al. [11, 12], van Benthem et al. [15, 16], van Ditmarsch et al. [28, 29, 30], as
well as Renne [65].

The language for logics of public announcements is the language of standard
multi-modal logic augmented with announcement operators [A] for every
formula A. The expression [A]B then stands for after every announcement
of A, it holds that B. In the classical setting, only truthful announcements
are considered in the sense that receiving a false announcement will lead to
an inconsistent epistemic state. Formally, we have that

¬[A]⊥ (2.2)

is not valid, see [29, Proposition 4.11].

We propose a system in which all announcements are considered, that means
(2.2) holds. Therefore, in our system announcements need not be truthful;
they can be true or false. As usual, a true announcement will lead to an
update of an agent’s epistemic state. However, a false announcement will
not lead to an inconsistent epistemic state, it will automatically be ignored
by the agent. That is, after a false announcement, an agent will have the
same epistemic state as before the announcement. Because (2.2) holds in our
system, we call it consistency preserving. The fact that announcements need
not be truthful is of particular importance if not only the agents’ knowledge
but also their beliefs are considered. See Steiner’s forthcoming PhD thesis
[75] for a detailed treatment of this topic.

A property we keep from the classical setting is

p → [A]p. (2.3)

That means, an announcement does not change atomic facts. We call a
system that satisfies (2.3) atomic preserving.

In Total public announcements [76], we present axiomatizations for public
announcements which satisfy both (2.2) and (2.3). We also propose a Kripke
semantics for our systems and show soundness and completeness of our ax-
iomatizations. For certain announcements, we show that agents can achieve
common knowledge by receiving the announcement. We investigate total
public announcements for S5, for the logic of common knowledge as well as
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for so-called relativized common knowledge. In the sequel we present our
results in the context of common knowledge.

Language and semantics.

Definition 38. Define the formulae of the language LA inductively like the
language LCK with the additional clause:

5. If A and B are formulae of LA, then so is [A]B.

The formula [A]B means B holds after the public announcement of A. As
usual, the formal semantics of an announcement is given in terms of deleting
edges in a Kripke structure.

Definition 39 (Denotation). Let K = (S, R, π) be a Kripke structure. For
every A ∈ LA we define the set ‖A‖K ⊂ S by adding the following clause to
Definition 13:

‖[C]B‖K := {s ∈ S : KC,s, s |= B}
where for given C ∈ LA and s ∈ S, the Kripke structure KC,s is simultane-
ously defined by

KC,s := (S, RC,s
1 , . . . , RC,s

n , V ),

RC,s
i :=

{
Ri ∩ {(u, v) ∈ S2 | K, u |= C iff K, v |= C} if K, s |= C,
Ri if K, s 6|= C.

The notions of validity and satisfiability of LA formulae are defined accord-
ingly. Again we write K |= A if ‖A‖K = S.

Note that if all Ri in K are equivalence relations, then KC,s belongs to Keq .
As before, we say an LA formula A is S5-valid, if and only if K |= A for all
K ∈ Keq .

Deductive system.

Definition 40 (The system HC,PubAn
S5 ). The system HC,PubAn

S5 is defined by ex-
tending HCK with the axioms (T), (4), (5), and adding the following axioms
and rules for announcements.

Announcements axioms and rules: For all p in Φ, all formulae A, B, C, and
all indices i from M

[A]p ↔ p (A1)
[A](B → C) → ([A]B → [A]C) (A2)
[A]¬B ↔ ¬[A]B (A3)
A → ([A]2iB ↔ 2i(A → [A]B)) (A4)
¬A → ([A]B ↔ B) (A5)
A ∧ [A]B → ([A][B]C ↔ [A ∧ [A]B]C) (A6)
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A

[B]A
(NEC.2)

A → [B]C A ∧B → E(B → A)

A ∧B → [B]CC
(IND.2).

Observe, that the public announcement operator is self-dual due to axiom
(A3). This means we do not have to distinct the statements ’B holds after
every (truthful) public announcement of A’ and ’B holds after some (truth-
ful) public announcement of A’. In our setting, there is only one public
announcement of a formula. It can be truthful or not.

The model change which is caused by a public announcement is a relativiza-
tion to a submodel, see van Benthem and Ikegami [16]. Many logics are
closed under relativizations. If this is the case for a given logic, then we
can extend it by announcement operators and establish a translation from
the logic with announcement operators into the logic without announcement
operators. Completeness of the logic without announcement operators then
implies completeness for the logic with announcement operators.

Van Benthem, van Eijck and Kooi [15] observed that the logic of common
knowledge is not closed under relativizations. Therefore a reduction to the
logic without announcement operators is not possible. Thus we have to
employ the method of maximal consistent sets to show completeness. Our
argument is the same as the one presented in [32] for the logic of common
knowledge except that we have more cases in the truth lemma.

Theorem 41 (Soundness and completeness of HC,PubAn
S5 ). For any formula A

of LA we have that

A is S5-valid if and only if HC,PubAn
S5 ` A.

Immediate consequences of this completeness proof are the finite model prop-
erty and the decidability of the satisfiability problem.

Next, we observe that agents can acquire common knowledge by receiving
an announcement. To show this, we need the notion of an announcement
resistant formula. An LA formula A is called announcement resistant, if

HC,PubAn
S5 ` A → [B]A

for every LA formula B. One can show that all propositional formulae as
well as all provable LA formulae are announcement resistant. In addition, if
A and B are announcement resistant, then so also are the formulae A ∧ B,
A∨B, 2iA, and CA. We have the following theorem about acquiring common
knowledge where [A]1B := [A]B and [A]k+1B := [A][A]kB.

Theorem 42. Let A be an announcement resistant LA formula. Then for all
k ≥ 1 we have

HC,PubAn
S5 ` A → [A]kCA.
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Modal µ-Calculus

3.1 Introduction

The logic of common knowledge is an extension of modal logic by one partic-
ular fixed point construction, see (2.1). Let us now consider the addition of
general least and greatest fixed point operators to modal logic which results
in the so-called modal µ-calculus.

The modal µ-calculus is a logic used extensively in certain areas of com-
puter science. It has its origin in the area of logics for the specification and
verification of properties of programs. Such logics have a long tradition in
computer science and many systems have been studied in the literature. Let
us only mention Propositional Dynamic Logic PDL [34, 64], Computational
Tree Logic CTL [25], and Hennessy-Milner Logic HML [39] to name a few.

The use of fixed point operators in program logics goes back at least to De
Bakker, Park and Scott, see for instance [9, 10, 59]. Then in 1983, Dexter
Kozen [46] published a study of a logic that combined simple modalities (like
in HML) with fixed point operators to provide a form of recursion. This
logic, the modal µ-calculus, has a simple syntax, an easily given semantics,
and yet the fixed points provide immense power. Most other modal logics can
be seen as fragments of the µ-calculus. It also provides one of the strongest
examples of the connections between modal and temporal logics, automata
theory and the theory of games.

Language. Lµ is the language of (multi-)modal logic extended by least and
greatest fixed point operators. We also consider the language L+

µ which is
Lµ with additional formulae to explicitly represent the finite approximations
(νkX)A of a greatest fixed point (νX)A.

27
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Definition 43 (Language Lµ). Let

V = {X,∼X, Y,∼Y, Z,∼Z, . . .}

be a set containing countably many variables and their negations. Define
the formulae of the language Lµ inductively like the language L with the
additional clauses:

4. If P is an element of V, then P is a formula of Lµ.

5. If A is a formula of Lµ and the negated variable ∼X does not occur in
A, then (µX)A and (νX)A are also formulae of Lµ.

If the negated variable ∼X does not occur in a formula A of Lµ, we say that
A is X–positive or alternatively positive in X. Formulae which are positive
in a certain variable determined by the context will henceforth be denoted
by letters A,B, C, . . .. Furthermore, we will call a formula A of Lµ closed, if
it does not contain free variables.

Definition 44 (Language L+
µ ). The formulae of the extended language L+

µ are
defined by adding the following clause to the induction of Definition 43

6. If A is a formula of L+
µ and the negated variable ∼X does not occur in

A, then (νkX)A is also a formula of L+
µ for every natural number k > 0.

We define X–positive and closed formulae of L+
µ analogously to those of Lµ.

We use (σX)A to denote formulae of the form (µX)A, (νX)A, and (νkX)A
for all k.

Again, for formulae of the language Lµ we define negation as usual reflecting
in addition the duality laws for fixed points. Negation is not defined for
the language L+

µ since we have not included duals for formulae of the form
(νkX)A.

Semantics. We extend the standard Kripke semantics for modal logics to
give meaning to L+

µ formulae as follows.

Definition 45 (Kripke structure). A Kripke structure K = (S, R, π) for L+
µ is a

triple where S is a non–empty set, R : M → P(S×S) and π : (Φ∪V) → P(S)
is a function such that π(∼X) = S\π(X) for all ∼X ∈ V and π(∼p) = S\π(p)
for all ∼p ∈ Φ. The function R assigns an accessibility relation to each i ∈ M
where we write Ri for the relation R(i). Furthermore, given a set T ⊆ S and
a variable X ∈ V we define the Kripke structure K[X := T ] as the triple
(S, R, π′), where π′(X) = T , π′(∼X) = S \ T and π′(P ) = π(P ) for all other
P ∈ Φ ∪ V.



3.1. Introduction 29

Assume we are given a Kripke structure K = (S, R, π) and an L+
µ formula A.

We define the set of states ‖A‖K of S at which A holds by induction on the
structure of A, with a side induction on all natural numbers greater than 0
to treat greatest fixed point approximations.

Definition 46 (Denotation). Let K = (S, R, π) be a Kripke structure. For
every A ∈ L+

µ we define the set ‖A‖K ⊆ S by adding the following clauses to
Definition 3:

‖P‖K := π(P ) for all P ∈ V.

For every formula (µX)A and (νX)A we define

‖(µX)A‖K :=
⋂
{T ⊆ S : T ⊇ FK

A,X(T )} and

‖(νX)A‖K :=
⋃
{T ⊆ S : T ⊆ FK

A,X(T )}

where FK
A,X is the operator on S given by FK

A,X(T ) := ‖A‖K[X:=T ] for every
subset T of S. Furthermore, if A is an X–positive formula, then we define
‖(νkX)A‖K for every k > 0 by induction on k as follows:

‖(ν1X)A‖K := ‖A[>/X]‖K

‖(νk+1X)A‖K := ‖A[(νkX)A]‖K.

Already in his initial study [46], Kozen proposed a Hilbert style deductive
system Hµ for the µ-calculus. Its two crucial ingredients are closure axioms
- saying that the formula (µX)A denotes a pre-fixed point - and induction
rules guaranteeing that this pre-fixed point is a least fixed point. Although
this system is very simple and natural, in [46] only completeness for the
so-called aconjunctive fragment could be shown. Completeness for the full
system remained open for more than a decade until Walukiewicz [85] was
able to provide a very intricate completeness proof making use of automata
and game theoretic results about the µ-calculus.

There are also other deductive systems available for the µ-calculus. As for
common knowledge, one can replace the induction rule with an ω-rule. In the
context of the µ-calculus, such a rule has first been proposed by Kozen in [47].
Another approach is to make use of so-called global induction. There, proofs
may have infinite long branches or may be circular. Such circular proofs and
proofs with infinite long branches then need to fulfill an additional global
condition in order to guarantee soundness. An example of a system with
infinite long branches is the tableau system for the µ-calculus presented by
Niwinski and Walukiewicz [58]. The area of circular logics is also very active.
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For instance, Sprenger and Dam [74] compare two proof systems for the µ-
calculus each using a different type of induction. Aldwinckle and Cockett [4]
claim several proof theoretic results about circular logics. However, they only
give examples; but no precise descriptions and also no proofs are provided.
Santocanale [66] also investigates a calculus of circular proofs and establishes
a form of cut-elimination by exploring the categorical semantics. Therefore,
his result applies to systems that are based on intuitionistic logic. Closely
related to the modal µ-calculus are the systems for inductive definitions which
Brotherston introduces in his recent PhD thesis [19]. He studies the proof
theory of systems with induction rules, of infinitary systems, as well as of
cyclic systems.

3.2 Contributions

Our contributions to the proof theory of the modal µ-calculus are presented
in the following papers:

1. Cut-free axiomatizations for stratified modal fixed point logic [41]

2. Canonical completeness of infinitary µ [43]

3. On the proof theory of the modal mu-calculus [78]

In the sequel we will summarize our results.

3.2.1 Cut-free axiomatizations for stratified modal fixed point

logic

In the paper Cut-free axiomatizations for stratified modal fixed point logic
[41] we introduce an infinitary Tait style deductive system for the stratified
fragment SFL of the modal µ-calculus. This fragment captures many impor-
tant logics like PDL, CTL, and the logic of common knowledge. Here we will
not give a precise definition of SFL nor formally state our results since [41]
only is a first step towards a canonical completeness proof for the modal µ-
calculus. Such a completeness proof for an infinitary system of the µ-calculus
will be presented in the next section.

So let us only sketch our results concerning SFL. Its language is stratified in
the following sense: Consider a formula (µX)A, where A is positive in the
variable X. We require that A may contain a subformula (µY)B or (νY)B
only if X does not appear free in B. This allows us to compute the meaning
of (µY)B, respectively (νY)B, and then use it to determine the meaning of
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(µX)A. Stratification guarantees that inner fixed points do not depend on
the outer ones. Hence it is possible to determine the meaning of any formula
by a simple induction on the levels of its fixed points and its complexity.

This is not possible when interleaving of fixed points is allowed. Consider the
formula of the form (µX)(νY)A[X, Y]. Here the meaning of the inner fixed
point (νY)A[X, Y] depends on the value assigned to X by the interpretation of
the outer fixed point (µX)(νY)A[X, Y] which in turn depends on (νY)A[X, Y].
Hence interleaving has the effect that the meaning of nested fixed points
cannot be determined one after another, but has to be treated in a more
complicated way.

Turning to our deductive systems for SFL we (i) provide a canonical com-
pleteness proof for it and (ii) show soundness of the finitary version of our
deductive system, similar to our result in Section 2.2.1 for common knowl-
edge. Furthermore, it is obvious that everything provable in the infinitary
system is also provable in the finitized version and, consequently, both sys-
tems are sound and complete.

3.2.2 Canonical completeness of infinitary µ

We extend our techniques to the modal µ-calculus in the paper Canonical
completeness of infinitary µ [43]. There we introduce the cut-free infinitary
system Tω

µ+ and establish its completeness by a canonical counter model
construction. This is the only available completeness proof for a deductive
system for the modal µ-calculus which is based on standard techniques from
modal logic. Thus our completeness proof is conceptually much simpler than
previous completeness proofs for systems for the µ-calculus. In fact, all
the previous proofs need to make heavy use of automata- or game-theoretic
machinery.

As for the logic of common knowledge and SFL, we can establish soundness
and completeness for the finitary version of Tω

µ+ that is based on a restricted
ω-rule. Thus we obtain a finite cut-free deductive system for the modal
µ-calculus.

In the context of the µ-calculus, the ω-rule has been introduced by Kozen
in [47]. There, he establishes the finite model property of the µ-calculus by
relating it to the theory of well-quasi-orders. This allows him to introduce an
ω-rule which derives the validity of a greatest fixed point from the validity
of all its (infinitely many) finite approximations. The finite model property
guarantees that it is enough to consider only the finite approximations as
premises in the ω-rule. Thus the resulting system is sound and complete.
However, note that Kozen’s infinitary system makes crucial use of a cut rule.
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Definition 47 (The system Tω
µ+). The system Tω

µ+ is formulated in the lan-
guage L+

µ . It is defined by adding the following axioms and inference rules
to TMod:

Axioms: For all sequents Γ and all X in V

Γ, X,∼X
(ID3)

Approximation rules: For all sequents Γ and X–positive formulae A and all
natural numbers k > 0

Γ,A[>/X]

Γ, (ν1X)A
(ν.1)

Γ,A[(νkX)A]

Γ, (νk+1X)A
(ν.k + 1)

Fixed point rules: For all sequents Γ and X–positive formulae A
Γ,A[(µX)A]

Γ, (µX)A
(µ)

Γ, (νkX)A for all k ≥ 1

Γ, (νX)A
(ν.ω)

In the sequel we give a sketch of our completeness proof. We assign to every
L+

µ formula A a sequence of ordinals rk(A) called the rank of A. By <lex we
denote the lexicographic ordering on these sequences. The rank function is
defined such that the following lemma holds.

Lemma 48. For all formulae B, C, and (νX)A of L+
µ and all natural numbers

n > 0 we have

1. rk(B), rk(C) <lex rk(B ∨ C) = rk(B ∧ C)

2. rk(B) <lex rk(2iB) = rk(3iB)

3. rk(A[>/X]) <lex rk((ν1X)A)

4. rk(A[(νnX)A]) <lex rk((νn+1X)A)

5. rk((νnX)A) <lex rk((νX)A)

Remark 49. It is not possible that the rank function additionally satisfies the
following condition

rk(A[(µX)A]) ≤lex rk((µX)A)

for then we would have

rk((µX)(νY)X ∧ Y) <lex rk(((µX)(νY)X ∧ Y) ∧ >)

<lex rk((ν1Y)((µX)(νY)X ∧ Y) ∧ Y)

<lex rk((νY)((µX)(νY)X ∧ Y) ∧ Y)

≤lex rk((µX)(νY)X ∧ Y)

which is a contradiction.
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Note that <lex is a wellordering on every set of sequences of ordinals with
length bounded by some natural number, though not a wellordering in gen-
eral. Hence, proofs by induction on the rank of formulae are only possible
if we can restrict ourselves to a classes of formulae where the length of the
rank is bounded. The strong closure SC(D) of a formula D, see [43], is such
a class which suffices for our purposes,

In order to show completeness of Tω
µ+, we aim at building a counter model

to any non-provable formulae D. The worlds of this model will consist of
so-called D-saturated sets.

Definition 50 (D–saturated set). Let D be a closed formula of Lµ. A finite
subset Γ of SC(D) is called D–saturated (with respect to Tω

µ+) if all of the
following conditions are satisfied:

(S.1) Tω
µ+ 0 Γ.

(S.2) For all formulae A and B of L+
µ we have

A ∨B ∈ Γ =⇒ A ∈ Γ and B ∈ Γ,

A ∧B ∈ Γ =⇒ A ∈ Γ or B ∈ Γ.

(S.3) For all X–positive formulae A of L+
µ and all natural numbers n > 0 we

have

(µX)A ∈ Γ =⇒ A[(µX)A] ∈ Γ,

(νX)A ∈ Γ =⇒ (νiX)A ∈ Γ for some natural number i > 0,

(νn+1X)A ∈ Γ =⇒ A[(νnX)A] ∈ Γ,

(ν1X)A ∈ Γ =⇒ A[>/X] ∈ Γ.

Given a closed formula D of Lµ, any non–provable sequent consisting only of
formulae from SC(D) may be extended to a D–saturated sequent which also
only contains formulae from SC(D). Starting from a non–provable sequent we
choose an iterative approach, repeatedly selecting a formula which violates
one of the conditions (S.2) or (S.3) and adding suitable formulae to the
sequent in order to make the respective condition satisfied. Seeing that this
process becomes stable after a finite number of iterations then finishes the
proof. Problems arise when we encounter a least fixed point formula, say
of the form (µX)A which violates condition (S.3) and for which we must
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thus add A[(µX)A]. Since this latter formula may itself violate one of the
saturation conditions and in general has a greater rank than (µX)A (see
Remark 49), the overall rank of violating formulae does not decrease during
this step and termination is not guaranteed. Therefore we have to make use of
a modified rank function, keeping a history of least fixed point formulae which
have already been considered and ignoring these. We obtain the following
lemma about the existence of saturated sets.

Lemma 51. Let D be a closed formula of Lµ. For every sequent Γ of SC(D)
which is not provable in Tω

µ+, there exists a sequent ∆ of SC(D) which is
D–saturated and Γ ⊆ ∆.

Definition 52 (Canonical counter model). Let D be a closed formula of Lµ.
Define the triple KD = (SD, RD, πD) as follows, where i ∈ M:

SD := {Γ ⊆ SC(D) : Γ D–saturated},
RD(i) := {(Γ, ∆) ∈ SD × SD : {B ∈ SC(D) : 3iB ∈ Γ} ⊆ ∆},
πD(P ) := {Γ ∈ SD : P /∈ Γ} for P ∈ Φ ∪ V.

In the sequel, we write ‖A‖D for ‖A‖KD
. The so-called Truth Lemma is the

crucial ingredient in completeness proofs for modal logics.

Lemma 53 (Truth Lemma). Let D be a closed formula of Lµ and A a closed
formula of SC(D). Then for all D–saturated sequents Γ of SC(D) we have

A ∈ Γ =⇒ Γ /∈ ‖A‖D. (3.1)

Proof. We give only a sketch of the proof. We cannot show (3.1) directly.
First we have to show that for all sequences of ordinals σ of a given length,
we have

A ∈ Γ =⇒ Γ /∈ ‖A‖σ
D (3.2)

where in ‖A‖σ
D a formula of the form (µX)A is not interpreted by the least

fixed point but only by an approximation of the least fixed point. It is σ
that specifies which approximations we have to take. We can show (3.2) by
main induction on σ and side induction on the rank of A. The interesting
case is if A is of the form (µX)A. Then, since A ∈ Γ and Γ is D–saturated,
we also have

A[(µX)A] ∈ Γ. (3.3)

In order to establish (3.2), we assume that

Γ ∈ ‖A‖σ
D (3.4)
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and aim to arrive at a contradiction. Since A is of the form (µX)A, there
exists a sequence of ordinals τ <lex σ with

Γ ∈ ‖A[(µX)A]‖τ
D. (3.5)

On the other hand, τ <lex σ implies that (3.3) together with the main
induction hypothesis yields

Γ /∈ ‖A[(µX)A]‖τ
D. (3.6)

Since (3.5) and (3.6) present us with a contradiction, our assumption (3.4)
must have been false. Thus we have established (3.2). Further, we can show
that there is a sequence of ordinals κ with ‖A‖D ⊆ ‖A‖κ

D. We conclude

A ∈ Γ =⇒ Γ /∈ ‖A‖κ
D =⇒ Γ /∈ ‖A‖D.

Theorem 54 (Completeness of Tω
µ+). For all closed formulae A of Lµ we have

that if A is valid, then Tω
µ+ A.

Proof. We show the contrapositive of the asserted implication and thus as-
sume that A is not provable in Tω

µ+. Then by Lemma 51 there exists an
A–saturated sequent Γ of SC(A) such that A ∈ Γ. Applying Lemma 53 we
conclude that Γ /∈ ‖A‖A, meaning that A cannot be valid. This concludes
the proof.

Again, it is possible to show soundness of a finitary version Tµ+ of Tω
µ+.

Moreover, note that these systems do not include a cut rule. Thus Tµ+ and
Tω

µ+ are sound and complete cut-free systems for the modal µ-calculus.

3.2.3 On the proof theory of the modal mu-calculus

There are two approaches to give infinitary axiomatizations for the modal
µ-calculus. The first approach is to make use of an ω-rule in order to ensure
that a fixed point is a least (respectively greatest) one. We followed this
approach in the previous section to introduce the system Tω

µ+.

The second approach is to define a deductive system Tpre
µ such that in a proof

search procedure fixed points are simply unfolded which corresponds to clo-
sure of fixed points. This results in a so-called preproof which may have
infinitely long branches. A global condition is then added which (roughly)
says that in each infinite branch, there must be an outermost greatest fixed
point unfolded infinitely often. A tableau version of such a system has first
been proposed by Niwinski and Walukiewicz [58]. They establish a complete-
ness result for their system which is the starting point for the completeness
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proof of the finitary axiomatizations carried out by Walukiewicz [84, 85].
Dax, Hofmann, and Lange [27] present a proof system with infinitely long
branches for the linear time µ-calculus. They also mention a related sys-
tem for the modal µ-calculus. We will employ their formulation of such an
infinitary proof system.

The main contribution of our paper On the proof theory of the modal mu-
calculus [78] is the embedding of Tω

µ+ in Tpre
µ . That means we provide a

translation from proofs in the first system to proofs in the second. This
provides completeness of Tpre

µ since Tω
µ+ is complete. Moreover, we get a new

proof of the finite model property of the µ-calculus. Note that these two
results are not new. Already Niwinski and Walukiewicz [58] established a
completeness result for a tableau version of Tpre

µ . Moreover, we do not get
the exponential bound for the size of the model obtained by Emerson and
Jutla [31]. However, our proof translation is a novel construction. We hope
that it contributes to a better understanding of the proof theory of modal
fixed point logics.

Definition 55. A preproof for a sequent Γ of Lµ formulae is a possibly infinite
tree whose root is labeled with Γ and which is built according to the following
rules.

Axioms: For all sequents Γ of Lµ, all p in Φ, and all X in V

Γ, p,∼p (ID1), Γ,> (ID2), Γ, X,∼X (ID3).

Propositional rules: For all sequents Γ and formulae A and B of Lµ

Γ, A,B

Γ, A ∨B
(∨)

Γ, A Γ, B

Γ, A ∧B
(∧)

Modal rules: For all sequents Γ and Σ and formulae A of Lµ and all indices
i from M

Γ, A

3iΓ, 2iA, Σ
(2)

Fixed point rules: For all sequents Γ and X–positive formulae A of Lµ

Γ,A[(µX)A]

Γ, (µX)A
(µ)

Γ,A[(νX)A]

Γ, (νX)A
(ν)

In the sequel we are going to introduce the notion of a thread in a branch of
the proof tree.
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Definition 56. The distinguished formula of a rule is the formula that is
explicitly displayed in the conclusion of the rule. The active formulae of a
rule are those formulae that are explicitly displayed in the rule. The formulae
in Γ and Σ are called side formulae of a rule.

Definition 57. Assume we are given a proof tree for some sequent. For all rule
applications r occurring in this proof tree, we define a connection relation
Con(r) on formulae as follows.

1. Assume r is not an instance of (2). We have (A, B) ∈ Con(r) if A = B
is a side formula of r or A is an active formula in the conclusion and B
is an active formula in a premise of r.

2. Assume r is an instance of (2). We have (2iA, A) ∈ Con(r) if 2iA
is the active formula in the conclusion of r and (3iB, B) ∈ Con(r) if
3iB ∈ 3iΓ.

Definition 58. Assume we are given a branch Γ0, Γ1, . . . in a proof tree and
let ri be the rule application that derived Γi from Γi+1. A thread in this
branch is a sequence of formulae A0, A1, . . . such that (Ai, Ai+1) ∈ Con(ri)
and Ai ∈ Γi for every i.

Definition 59. An Lµ formula A is called well-named if every variable is bound
at most once. Note that for a bound variable X in a well-named formula A,
there exists exactly one subformula of A that has the form (σX)B. We then
call (σX)B the binding formula of X. If the binding formula of a variable X
is of the form (νX)B, then X is called a ν-variable in A. Let A be formula
containing two bound variables X and Y. We say X is higher than Y if the
binding formula of Y is a subformula of the binding formula of X.

In the sequel we consider only proofs for sequents of well-named formulae.

Note that Tpre
µ preproofs may have infinitely long branches and thus also

threads may be infinite sequences. We have the following fact about threads.

Lemma 60. Assume we are given an infinite branch of a preproof for an Lµ

sequent Γ. Assume we are given a thread in this branch such that infinitely
many of its formulae are distinguished formulae of applications of (µ) and
(ν). Then there is a unique bound variable X such that

1. the binding formula of X occurs infinitely often in the thread and

2. for every other formula of the form (σY)A which occurs infinitely often,
we have that X is higher than Y .
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Definition 61. Assume we are given an infinite branch of a preproof for an Lµ

sequent Γ. Assume we are given a thread in this branch such that infinitely
many of its formulae are distinguished formulae of applications of (µ) and
(ν). Such a thread is called a ν-thread if the unique variable given by the
previous lemma is a ν-variable in Γ.

Definition 62. A Tpre
µ proof for a sequent Γ of Lµ formulae is a preproof of

Γ such that every finite branch ends in an axiom and every infinite branch
contains a ν-thread. We write Tpre

µ Γ if there exists a Tpre
µ proof for Γ.

Given a Tω
µ+ proof of an Lµ sequent Γ, it is possible to construct a a Tpre

µ

proof of Γ. Let us illustrate our approach by the following simple example.
Assume we are given the following Tω

µ+ proof of (µX)2X, (νY)3Y:

(µX)2X,>
2((µX)2X), 3>

(µX)2X, 3>
(µX)2X, (ν1Y)3Y

(µX)2X,>
2((µX)2X), 3>

(µX)2X, 3>
(µX)2X, (ν1Y)3Y

2((µX)2X), 3((ν1Y)3Y)

(µX)2X, 3((ν1Y)3Y)

(µX)2X, (ν2Y)3Y · · ·
(µX)2X, (νY)3Y

Starting from this proof we can construct a Tpre
µ proof as follows. We take the

branch through the premise (ν2Y)3Y of the infinitary greatest fixed point
rule. In that branch we drop all the iteration numbers. That is we replace
all subexpressions of the form (νkX)C by (νX)C. This gives us the following:

(µX)2X,>
2((µX)2X), 3>

(µX)2X, 3>
(µX)2X, (ν1Y)3Y

2((µX)2X), 3((ν1Y)3Y)

(µX)2X, 3((ν1Y)3Y)

(µX)2X, (ν2Y)3Y

(µX)2X, (νY)3Y

=⇒

(µX)2X,>
2((µX)2X), 3>

(µX)2X, 3>
(µX)2X, (νY)3Y

2((µX)2X), 3((νY)3Y)

(µX)2X, 3((νY)3Y)

(µX)2X, (νY)3Y

(µX)2X, (νY)3Y

Note that dropping the iteration numbers in the sequents (µX)2X, (ν2Y)3Y
and (µX)2X, (ν1Y)3Y makes them identical. Therefore we can loop between
these two sequents which results in the following infinite Tpre

µ proof:
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...
(µX)2X, (νY)3Y

2((µX)2X), 3((νY)3Y)

(µX)2X, 3((νY)3Y)

(µX)2X, (νY)3Y

In this example, we could choose the branch through the second premise of
the (ν.ω) in order to find two identical sequents. To show that this approach
works in general, we have to guarantee that if we derive a greatest fixed point
by a (ν.ω) rule, then there is a branch providing two identical sequents to
build a loop. We can employ a cardinality argument (using the so-called
Fischer-Ladner closure which is a finite set) to show that after dropping
the iteration numbers, there will be a branch with two identical sequents
with the same distinguished formula. Therefore, from a given Tω

µ+ proof,
we can construct the corresponding Tpre

µ preproof. In order to show that
this preproof is a proof, it remains to show that every infinite branch of the
preproof contains a ν-thread. This can be established by keeping track of
how fixed points (and their approximations) are unfolded in the Tω

µ+ proof,
and how this translates into the Tpre

µ preproof. Finally, we obtain a procedure
which constructs from a Tω

µ+ proof of a formula D a Tpre
µ proof of D.

Theorem 63. For all closed Lµ formulae D we have

Tω
µ+ D =⇒ Tpre

µ D.

Dax et al. [27] provide a simple soundness proof of their system for the
linear time µ-calculus. A straightforward adaptation of this proof shows
the soundness of Tpre

µ . Simply replace the case for the ’next’-rule by an
appropriate treatment of (2).

Theorem 64. The system Tpre
µ is sound.

Completeness of Tω
µ+ is established in Section 3.2.2 by a canonical counter-

model construction. We immediately obtain the following corollary about
soundness and completeness of Tω

µ+ and Tpre
µ with respect to Lµ formulae.

Corollary 65. Let A be an Lµ formula. We have

A is valid =⇒ Tω
µ+ A =⇒ Tpre

µ A =⇒ A is valid.

Note that Corollary 65 provides soundness of Tω
µ+ without referring to the

finite model property of the modal µ-calculus. This is interesting insofar as
one usually makes use of the finite model property to show that it suffices
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to consider only the finite approximations as premises in the ω-rule. That
means the finite model property is used to show that the ω-rule preserves
validity and hence the system with the ω-rule is sound. Now we have a
soundness proof which does not use the finite model property.

We can even employ Corollary 65 to obtain the finite model property of the
modal µ-calculus. Looking closely at the construction of the Tpre

µ preproof,
we notice that it is enough to consider finitely many premises of the ω-rule.
Therefore we obtain soundness for a system with a finitized version of the ω-
rule. Then we can adapt the canonical counter model construction of Section
3.2.2 such that it constructs a finite counter model. This results in a proof-
theoretic proof of the finite model property of the modal µ-calculus. However,
the best we get from such a construction is a double exponential bound for
the size of the model (compare with the exponential bound provided by [31]).



Chapter 4

Conclusion

We have investigated deductive systems for the logic of common knowledge
and the modal µ-calculus. Venema writes in [83] that the completeness the-
ory for the µ-calculus is a largely undeveloped field. We think that our work
contributes to the development of this field. For example, we could provide
a completeness proof for the modal µ-calculus which is based on a canoni-
cal counter model construction. That means we only use classical methods
from modal logic. Moreover, we could clarify on a syntactic level the proof-
theoretic relationship between the ω-rule and global induction by giving a
syntactic embedding of a system with an ω-rule into a system based on global
induction. Together with the above mentioned counter model construction
this gives a new proof of the finite model property for the µ-calculus.

Deduction chains are another classical method to establish completeness of
a deductive system. The constructive nature of this method elucidates the
underlying proof-theoretic principles of the system under consideration. We
have extended the method of deduction chains such that it can be applied
to the logic of common knowledge. Among other things this approach has
revealed that applying rules deep inside formulae is an inherent concept of
infinitary sequent calculi for modal fixed point logic.

A further issue is the development of deductive systems for modal fixed point
logics that have ‘nice’ proof-theoretic properties. Of course, there cannot be
a rigorous definition of what a ‘nice’ system is. However there is a consens
that such a system should allow for syntactic proofs for the admissibility
of weakening, contraction, and inverse rules as well as for a syntactic cut-
elimination procedure. Making use of deep inference, we were able to provide
an infinitary system for common knowledge that has all the desired proper-
ties. Moreover, we could establish ϕ20 as an upper bound on the depth of
cut-free proofs. Recently, we extended our techniques such that we are able

41
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to provide a ‘nice’ infinitary system for the modal µ-calculus. We obtain ϕω0
as an upper bound on the depth of cut-free proof in that system. Details will
be given in a publication under preparation.

These results give rise to some questions: What is the mathematical meaning
of the upper bound on the depth of cut-free proofs in the context of modal
fixed point logics? Is there a kind of boundedness lemma in modal logic
similar to the one used in the analysis of set theories and second order arith-
metic? Are the bounds mentioned above the best possible upper bounds on
the depth of cut-free proofs? What would be the equivalent of a wellordering
proof in modal logic?

The big question that remains is whether there are ‘nice’ finitary deductive
systems for modal fixed point logics. We have shown that it is possible to
finitize our systems. That means we do not need all of the infinitely many
premises of the ω-rule. It is enough to consider only finitely many of them
in order to guarantee that the rule preserves validity. As we have seen, this
fact is strongly related to the finite model property of the respective logic.
Unfortunately, by doing this modification of the ω-rule, one loses all the ‘nice’
properties of the infinitary systems. In fact, no ‘nice’ deductive system for
common knowledge is available so far.

We have provided a proof that the logic of common knowledge does not
have the Beth property and that it also lacks interpolation. This failure
of interpolation can be seen as an explanation why it is so difficult to find
‘nice’ deductive systems for common knowledge. Often the existence of a
cut-free system for a logic implies an interpolation property for that logic,
see any introduction to proof theory, for example [23, 36, 82]. However, if
interpolation is a consequence of cut-elimination, then by contraposition we
obtain that the failure of interpolation ‘implies’ the non-existence of a ‘nice’
cut-free system.

A set of agents may acquire common knowledge of a proposition A if there
is a public announcement of A. We have presented a system for public
announcements (and common knowledge) in which announcements are total.
That means announcements need not be truthful in our system. This is of
particular importance if not only the agents’ knowledge but also their beliefs
are considered. See Steiner’s forthcoming PhD thesis [75] for a detailed
treatment of this topic.
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works, vol. I, pages 208–213. Oxford University Press, 1986.

[34] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Science, 18(2):194–211,
1979.

[35] D. M. Gabbay and L. Maksimova. Interpolation and Definability in
Modal Logics. Clarendon Press, 2005.



46 Bibliography

[36] J.-Y. Girard. Proof Theory and Logical Complexity. Bibliopolis, 1987.

[37] A. Guglielmi. A system of interaction and structure. ACM Transactions
on Computational Logic, 8(1), 2007.

[38] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM, 37(3):549–587, 1990.

[39] M. Hennessy and R. Milner. On observing nondeterminism and concur-
rency. In Proceedings of the 7th Colloquium on Automata, Languages
and Programming, pages 299–309, 1980.

[40] D. Hilbert. Die Grundlegung der elementaren Zahlenlehre. Mathema-
tische Annalen, 104:485–494, 1931.
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[42] G. Jäger, M. Kretz, and T. Studer. Cut-free common knowledge. Journal
Applied Logic, 5(4):681–689, 2007.
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