
Annotated Systems for Common

Knowledge

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Ricardo Wehbe

von Argentinien

Leiter der Arbeit:

Prof. Dr. G. Jäger

Institut für Informatik und angewandte Mathematik

Annotated Systems for Common

Knowledge

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Ricardo Wehbe

von Argentinien

Leiter der Arbeit:

Prof. Dr. G. Jäger

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 24. Oktober 2010
Der Dekan:
Prof. Dr. S. Decurtins

Acknowledgements

First of all I am deeply indebted to Prof. Gerhard Jäger, who gave me the
opportunity to work in this wonderful group. His deep insight will remain
for me an influence which will go far beyond this work.

I want also to thank Prof. Sommaruga for having taken the time to read
this thesis. I acknowledge the generous support given me by the Hasler
Foundation, and to I am also very grateful to Kai Brünnler for the time
(and patience!) he dedicated to reviewing this work. I am also grateful to
Prof. Thomas Strahm.

Finally, the whole TIL group provided the ideal human landscape. I
will miss our coffee-breaks!

i

ii

iii

A Maŕıa Inés.

Contents

1 Prologue 1

2 Knowledge and Common Knowledge 3

2.1 Introduction . 4

2.2 Epistemology . 4

2.3 Epistemic Logic . 6

2.4 Armies, Children and Common Knowledge 12

2.5 Motivations . 22

3 CK with Focused Formulæ 23

3.1 Introduction . 23

3.2 Syntax and Semantics of CK 24

3.3 A Proof System . 33

3.4 Soundness . 36

3.5 Completeness . 41

3.6 Complexity . 66

3.7 Conclusions . 70

4 Notes on the Implementation 73

4.1 Introduction . 73

4.2 A Very Brief Introduction to Prolog 74

4.3 Usage of the Program . 86

4.4 Representation of Formulæ and Sequents 89

v

vi CONTENTS

4.5 Parsing and Converting Formulæ 94
4.6 Construction of a Proof in SCK 96
4.7 Construction of a Countermodel in SCK 97
4.8 Implementation of the Rules of S′CK 101
4.9 Implementation of the Decision Procedure 111

5 Some Examples 121
5.1 Introduction . 121
5.2 Examples . 121
5.3 Some Comparisons on the Performance 137
5.4 Some Conclusions . 139

6 Conclusions and Further Work 141
6.1 Introduction . 141
6.2 A Comparison With Other Approaches 141
6.3 Conclusions and Further Work 144

A Source Code 147
A.1 Introduction . 147
A.2 The Main Part . 148
A.3 The Parsing Module . 154
A.4 The Proof Module . 157
A.5 The Services Module . 163
A.6 The Reports Module . 165

B The Construction of a Coutermodel 177
B.1 Construction of a Countermodel in SCK 177

C Infix Operators 189
C.1 Implementation of Infix Operators 189

Bibliography 199

Chapter 1

Prologue

The logic of Common Knowledge [28] is a multimodal logic [18] in which
the modalities are interpreted as knowledge of the agents about a universe
of discurse and about the knowledge of other agents. It is thus related
to Epistemology, as explained in Chapter 2. Our work is also related to
the search of cut-free systems for modal logics, notably to the work of Kai
Brünnler and Martin Lange on annotated systems for temporal logics [13],
which in turn related to the work of Colin Stirling and Martin Lange on
Focus Games [56]. The adaptation made to the system of Brünnler and
Lange for Common Knowledge is described in Chapter 3.

A prototype for an implementation of the resulting system was written
in Prolog. The proof system can be implemented in a relatively straight-
forward way, at least regarding the decision procedure. Some details of the
implementation are discussed in Chapter 4 and the whole source code is
in Appendix A. The extraction of a countermodel in the case of a non-
provable sequent is a bit more complicated than the decision procedure. It
is described with some detail in Appendix B. The implementation of Prolog
we used (SWI- Prolog [85]) has a text interface neither allowing symbols
as �, ♦, �* and ♦* , that are used in the language, nor capital letters as
connectors (K, P, C, U.) We chose to allow the user to use these symbols
and to make a translation onto normal prefix Prolog terms. Another pos-

1

2 CHAPTER 1. PROLOGUE

sibility would have been to accept lowercase letters both as connectors and
as atomic propositions. Appendix C explains the changes that should be
done in the implementation to do this. Essentially the advantage would be
that the conversion is spared. The drawback would be that the resulting
form of the formulæ would still be rather difficult to read.

Chapter 5 shows various examples and compares the performance of the
program under different input sequents. As in the case of tableaux [35, 78],
the introduction of irrelevant branching formulæ worsens the performance.
This is not surprising, since both systems are akin to each other, as shown
in Chapter 6.

Chapter 2

Knowledge and Common

Knowledge

Jack thinks
he does not know

what he thinks
Jill thinks
he does not know

But Jill thinks he does know it.

So Jill does not know
she does not know

that Jack does not know
that Jill thinks
that Jack does know

and Jack does not know he does not know
that Jill does not know she does not know
that Jack does not know

that Jill thinks Jack knows
what Jack thinks he does not know

Jack doesn’t know he knows
and he doesn’t know

Jill does not know.

Jill doesn’t know she doesn’t know,
and doesn’t know

that Jack doesn’t know he knows
and that he does not know Jill does not know.

They have no problem.

Ronald Laing, Knots

3

4 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

2.1 Introduction

In this chapter we introduce some elementary concepts about epistemic
logic and common knowledge. The chapter is organised as follows: Sec-
tion 2.2 contains some general concepts about epistemology. Section 2.3
presents epistemic logic and Section 2.4 discusses informally the epistemic
modality we are interested in, namely common knowledge. Section 2.5
briefly discusses the original motivation. Some of the material of this chap-
ter anticipates what is more thoroughly developed in later ones, especially
in chapter 3.

2.2 Epistemology

There is little doubt that epistemological questions arise with philosophy
itself. Roughly speaking, epistemology is a branch of philosophy concerned
with the study of knowledge. “Knowledge” is a rather loose concept en-
compassing many different meanings: one knows a person, one knows the
rules of chess, one knows a city. The definition of knowledge as “justified
true belief”, which is sometimes attributed to Plato1 [15] seems to be no
longer philosophically defensible after the famous three- page paper of Get-
tier [32], where a couple of counterexamples are discussed. There are cases
where the possession of evidence is not sufficient for ensuring that it is not
the case that a belief is true merely because of luck. A well-known example
is the following one [34]:

Jack drives through a rural area in which what appear to be
barns are, with the exception of just one, mere barn façades.
From the road Jack is driving on, these facades look exactly
like real barns. Jack happens to be looking at the one and only
real barn in the area and believes that there is a barn over there.
Jack’s belief is justified because his visual experience justifies his

1The attribution is also unclear. Gerson [31] argues that Plato rejects the basis of
this analysis on the grounds that knowledge is not belief (not even “justified” or “true”
belief) plus “something else.”

2.2. EPISTEMOLOGY 5

belief: it originates in a reliable cognitive process. Yet Jack’s
belief is true merely because of luck. Had he noticed one of the
barn-façades instead, he would also have believed that there is
a barn over there. There is agreement among epistemologists
that Jack’s belief does not qualify as knowledge.

The problem of the nature of knowledge appears already in the pre-Socratic
fragments and it is at the background of the famous allegory of the cave
in the opening of the seventh book of Plato’s Republic. According to Ger-
son [31], philosophy began in Greece with the simple hypothesis that nature
has an order or structure (kosmos) and this order is intelligible. As a con-
sequence, it is subject to understanding (logos.) But it turns out that
this order is not immediately evident and the nature of its undertanding
constitutes already a non-trivial problem.

The idea of what is now called “positive introspection” (see Section 2.4)
appears already in Thomas Aquinas and several epistemic modalities (no-
tably those of knowledge and belief) are mentioned in the 14th century by
William of Occam and incorporated into his syllogisms [11, 50].

Ancient epistemology from the beginning of Greek philosophy up to
Descartes has a strong naturalistic view [31]: cognition is rooted in the
understanding of the natural world. There is another, “non-naturalistic”,
approach: knowledge is a matter of logic and semantics and as such not
a pure branch of natural science. Our work is inscribed within the latter
approach.

There are some concerns about the accuracy of a representation of
knowledge by means of a comparatively simple formal system [6, 7]: we
have already mentioned that knowledge is a rather ample concept. We
agree that some subtleties of knowledge require a more sophisticated for-
malism if they are formally representable at all. In this work we concentrate
on knowledge of propositions: for instance if we say

Jill knows that Béla Bartók wrote three piano concertos

Then we assert that Jill is an agent that is in possession of the knowledge
expressed by the proposition “Béla Bartók wrote three piano concertos.”

6 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

2.3 Epistemic Logic

The idea of applying the tools of formal logical analysis to epistemology is
relatively modern. Up to the middle of last century the lack of an appropiate
semantics limited the usefulness of epistemic logic [39]. Advances in modal
logics led several researchers, notably von Wright and Hintikka, to develop
a model theory for epistemic logics. The short work of von Wright An Essay
in Deontic Logic and the General Theory of Action of 1951 [86] is recognized
as having initiated the formal study of epistemic logic in its modern sense.
But it was not until the publication of Hintikka’s Knowledge and Belief [40]
in the early sixties that widespread interest in epistemic logics arose, not
only from philosophers but also from logicians and computer scientists2.

The addition of a K operator to a language with the usual propositional
connectives is due to Moore3 [67], giving rise to autoepistemic logic. Au-
toepistemic logic is a nonmonotonic logic [65, 66]. Roughly speaking, a
logic is nonmonotonic if a conclusion derived from certain premises may no
longer be derivable if the set of premises is extended. For instance, if Γ
is a set of propositional premises and ϕ is a propositional formula which
is not a propositional consequence of Γ, then ¬Kϕ may be derived (“ϕ is
not known.”) But if the set of premises is extended with ϕ, then ¬Kϕ is
no longer true. Nonmonotonic logics play an important rôle in common-
sense reasoning. The most important ones are circumscription [63], closed
world assumption [74], and default logic [75]. There is also a close relation
between autoepistemic logic and Prolog, the language in which the theo-
rem prover is implemented, through stable model semantics [30, 62] and
especially through negation as failure [20], as explained in Chapter 4.

We will not work with autoepistemic logic but with explicit cognitive
agents. Thus we begin with a countable set Φ of basic facts, the (atomic
propositions). These propositions will be denoted by p, q, possibly sub-
scripted, and a finite (and nonempty) set of agents A, which will be denoted
by 1, 2,. . . ,n.

2Indeed the author warns in the very first line: “The word ‘logic’ which occurs in the
subtitle of this work is to be taken seriously.”

3Actually he called this operator L in the original paper.

2.3. EPISTEMIC LOGIC 7

In epistemic logic it is possible to make statements of the form “1 knows
p”, “2 considers q possible” and “3 does not know p.” Two early applica-
tions of multiagent systems to epistemic logic are [36, 57]. More complex
statements are of course possible. For instance, “1 knows that he does not
know p”, or “2 considers possible that she knows q.” A formal syntax and
semantics is sketched in Section 2.4 and fully given in Chapter 3.

Possibility is not to be identified with belief . The distinction between
knowledge and belief is a remarkably subtle one. A thorough analysis of
this very interesting issue is beyond the scope of this work. We refer to
the philosophical literature; see for instance the very readable book of Pol-
lock [73] or the more technical articles of Hintikka [42] or Vorbraak [83].

The usual interpretation of knowledge and possibility in a possible-
worlds setting seems a quite natural one and has been proposed by sev-
eral researchers independently, among them Carnap [17], Hintikka [41],
Kripke [53], and others. See [24] for a tutorial on the history of possible
worlds semantics. This approach reached the form in which we know it to-
day in the work of Kripke [54]. This interpretation has also been critisised,
notably by Barwise [6, 7].

The idea is quite simple: there is a countable set of worlds, some of them
having access to others (possibly to themselves.) A world w2 is possible at
another world w1 if w2 is accessible from w1. A fact p is known at world
w1 if p holds at all worlds that are possible at (accessible from) w1. In the
same way, q is possible at world w1 if there is at least one possible world
accessible from w1 where q holds.

The introduction of several agents makes the structure more expressive
but also mode complicated: the accessibility relations between worlds are
different for each agent. This reflects the fact that not all agents have the
same knowledge. The epistemic statements of the form “1 knows p” or “q
is possible for 2” are dependent on the world.

The various epistemic logics are based on modal logic [18]. We make
a very brief survey of modal epistemic logic next. We begin with a very
simple epistemic modal logic we call E. This will be a fragment of the logic
we will work with in Chapter 3. We start with a signature σ = (Φ,A) where
Φ is a countable nonempty set of propositions and A is a finite nonempty

8 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

set of agents. Elements of Φ are represented by p, q, possibly subscripted,
and elements of A are represented by natural numbers starting at 1. The
syntax of the logic E is given by the following grammar:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) |�iϕ | ♦iϕ

where p ∈ Φ and i ∈ A.

Negation of more complex formulæ are obtained by their duals and the
De Morgan laws; see Chapter 3. The modality � is intended to mean
knowledge and the modality ♦ is its dual modality. Thus, the formula �iϕ

means “agent i knows ϕ” and the formula ♦iϕ means “it is not the case
that agent i knows ¬ϕ.” The semantics to this logic (and to the logic we
present in the next chapter) is given by epistemic models, defined next.
We use sometimes the ϕ ⇒ ψ (read as ϕ implies ψ) as an abbreviation of
(¬ϕ ∨ ψ).

Definition 2.1 (Epistemic frames) Let σ = (Φ,A) be a signature. An
epistemic frame over σ is a pair Fσ = (S,R) where S is a set of states or
worlds, and R = {R1, . . . , Rn} is a family of binary relations on S indexed
by the elements of A.

Definition 2.2 (Epistemic Models) Let σ = (Φ,A) be a signature. An
epistemic model over σ is a triple Mσ = (S,R, v) where S is a set of states,
v : S → ℘(Φ) is a valuation, and R = {R1, . . . , Rn} is a family of binary
relations on S indexed by the elements of A.

We say that the model Mσ = (S,R, v) is based on the frame Fσ =
(S,R). This definition and others are repeated in other chapters to make
them as self-contained as possible. The semantics of the logic E is defined
next. We assume henceforth that the signature σ = (Φ,A) is fixed and
omit the subindices when referring to models or frames.

Definition 2.3 (Satisfaction relation) Let M = (S,R, v) be a model
and let s ∈ S. The satisfaction relation |= is defined as follows:

2.3. EPISTEMIC LOGIC 9

(M, s) |= p iff p ∈ v(s)
(M, s) |= ¬p iff p 6∈ v(s)
(M, s) |= (ϕ ∨ ψ) iff (M, s) |= ϕ or (M, s) |= ψ

(M, s) |= (ϕ ∧ ψ) iff (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= �iϕ iff for all t ∈ S with (s, t) ∈ Ri, (M, t) |= ϕ

(M, s) |= ♦iϕ iff for some t ∈ S with (s, t) ∈ Ri, (M, t) |= ϕ

Given a model M = (S,R, v) and a state s ∈ S, a state t ∈ S is a
possible world for agent i at s if (s, t) ∈ Ri. We will interpret the modality
♦i as “agent i considers possible that.” This interpretation is justified
because (M, s) |= ♦iϕ if there is at least one possible world t at state s for
agent i such that (M, t) |= ϕ.

Example 2.4 Consider Figure 2.1. We assume that we have the signature
σ = ({p, q}, {1}), i.e., there are two atomic propositions and one single
agent. We indicate the atomic propositions that are true at some state in
parentheses. The arrows represent the accessibility relation between the
worlds for the single agent 1.

w1()

w2(p,q)

w4(p) w3(q)

-

? ?

?

6
�

I

Fig. 2.1: Possible Worlds, Knowledge and Possibility.

10 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

This figure represents the model M where:

S = {w1, w2, w3, w4}

R = {1 7→ {(w1, w2), (w1, w4), (w2, w2), (w2, w3), (w3, w1), (w3, w4),

(w4, w4)}}

v = {(w1,∅), (w2, {p, q}), (w3, {q}), (w4, {p})}

We have for instance:

(M, w1) |= �1p

(M, w1) |= ♦1q

(M, w2) |= �1q

(M, w4) 6|= �1q

(M, w1) |= ♦1�1q

♠

The truth or falsity of a statement clearly depends on the world at which
it is formulated. The proof system SE of Figure 2.2 is sound and complete
for this logic.

id
Γ, p, ¬p

∨
Γ, ϕ, ψ

Γ, (ϕ ∨ ψ)
∧

Γ, ϕ Γ, ψ

Γ, (ϕ ∧ ψ)

�i
ϕ, Σ

�iϕ, ♦iΣ, ∆

All rules carry the proviso that the active formula in the conclusion is not

part of the context.

Fig. 2.2: The system SE.

The proof is in a special case of the completeness proof of Chapter 3.

2.3. EPISTEMIC LOGIC 11

The system we have presented is the so-called modal logic K. There are
other modal logics which may be obtained by adding further axioms. We
list in Figure 2.3 some axioms and their traditional names [18, 28].

K (�iϕ ∧�i(ϕ⇒ ψ)) ⇒ �iψ (Distribution axiom)
T �iϕ⇒ ϕ (Knowledge axiom)
4 �iϕ⇒ �i�iϕ (Positive introspection axiom)
5 ¬�iϕ⇒ �i¬�iϕ (Negative introspection axiom)
D ¬�i⊥ (Consistency axiom)

Fig. 2.3: Some axioms of modal logic and their traditional names.

The main systems that result from adding these axioms to SE are S4
(SE combined with K, T, and 4) and S5 (SE combined with K, T, 4, and 5.)

The axioms 4 and 5 are the introspection axioms. Axiom 4 implies that
if an agent knows something, it knows that it knows it. Axiom 5 implies
that if an agent does not know something, it knows that it does not know it.
Axiom D implies that no agent may have inconsistent knowledge. Axiom
T implies that anything that is known must be true. This strong notion
of knowledge is usually what distinguishes knowledge from belief in formal
systems. Axiom K is a problematic one. It is sometimes called “logical om-
niscience” and is implausibly strong: if an agent knows something, it knows
all the logical consequences of it. According to this, any agent knowing the
rules of chess knows whether there is a winning strategy for white or not.

The use of some of the axioms or not depends on the notion of knowledge
one wants to capture.

There is an interesting relation between the additions of axioms and
restrictions on the binary relations. The following terminology is standard
(see for instance [28, 33]): A relation R on a set S is

• reflexive if for all s ∈ S, (s, s) ∈ R;

• symmetric if for all s, t ∈ S, (s, t) ∈ R if and only if (t, s) ∈ R;

12 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

• transitive if for all s, t, u ∈ S, whenever (s, t) ∈ R and (t, u) ∈ R, then
(s, u) ∈ R;

• serial if for all s ∈ S there is some t ∈ S such that (s, t) ∈ R;

• Euclidean if for all s, t, u ∈ S, whenever (s, t) ∈ R and (s, u) ∈ R,
then (t, u) ∈ R.

We say that a family of relations has a certain property if all its relations
have the property. We can establish the following correspondences between
the relations Ri in a frame F = (S,R) and the axioms:

Axiom Property of R

T �iϕ⇒ ϕ reflexive
4 �iϕ⇒ �i�iϕ transitive
5 ¬�iϕ⇒ �i¬�iϕ Euclidean
D ¬�i⊥ serial

We will be especially interested in one type of epistemic logic, namely
common knowledge. This is introduced in the next section.

2.4 Armies, Children and Common Knowledge

If we say that there is common knowledge among all agents of A of a
certain fact ϕ, we mean a notion that is not to be confused with the fact
that all agents know ϕ; it goes far beyond. Technically it is said that there
is common knowledge of ϕ among the agents of A when

All agents of A know ϕ;
All agents of A know that all agents know ϕ;
All agents of A know that all agents know that all agents know ϕ;
et cætera

In the end, this amounts to a largest fixed point. If we use the notation
�ϕ to abbreviate that all agents know ϕ and we denote by �*ϕ the fact that

2.4. ARMIES, CHILDREN AND COMMON KNOWLEDGE 13

ϕ is common knowledge among all agents, this can be elegantly expressed
in µ-calculus [2] as follows:

�*ϕ = νX.(�ϕ ∧�X)

The idea of common knowledge is not as bizarre as it may look. In fact,
common knowledge arises in a number of situations. It seems to have first
been mentioned in the context of convention [58]: a convention requires
common knowledge of it among those who observe it. An early reference
is also the multiagent system of McCarthy with a special agent called “any
fool” [64]: the fact that “any fool” knows something implies that every
other agent knows it too. Other areas include economics [3], protocols [84],
game theory [4] and natural language, from which we give a motivating
example below.

Assume the following setting, a variant of which is thoroughly discussed
in [19, 72]: there is a festival with György Ligeti’s music in the Colón
Theatre in Buenos Aires with one major work performed each night for a
week.

Scenario 1: in the morning Jill reads in the early edition of the
newspaper that Atmosphères will be played that night. Later,
she sees Jack and asks, “do you know the work that will be
played at the Colón tonight?”

The interesting part is the expression the work that will be played at the
Colón tonight , which Jill intends as a reference to Atmosphères and under
which conditions the reference will be successful. The first condition is, of
course, that Jill know that the work that will be played at the Colón tonight
uniquely describes Atmosphères. This is condition 1:

(1) Jill knows that the statement refers to Atmosphères.

The reference fails, for instance, if Jack does not have the faintest idea
about the work to be played at the theatre that night. But even if he knew
that, the reference might fail, as the following scenario shows.

14 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

Scenario 2: in the morning Jill reads in the early edition of
the newspaper that Aventures will be played that night and dis-
cusses the fact with Jack. Later, when he has left, she gets the
late edition where a correction has been made and Atmosphères
will be actually played that night. Later, she sees Jack and
asks, “do you know the work that will be played at the Colón
tonight?”

Although here condition 1 is satisfied, the reference has been made
without the proper assurances. Jack has no reason to believe that the
work she is referring to is Atmosphères and most likely he will believe it is
Aventures. Another condition is necessary and this is the following one:

(2) Jill knows that Jack knows that the statement refers to Atmosphères.

Seemingly we have covered all possibilities. But still the reference might
be misunderstood, as the following scenario shows:

Scenario 3: in the morning Jill reads in the early edition of
the newspaper that Aventures will be played that night and
discusses the fact with Jack. When the later edition arrives,
Jack sees that the work has been changed to Atmosphères and
circles it with his red pen. Jill picks up the late edition, notes
the correction and recognises Jack’s mark around it. Later, she
sees Jack and asks, “do you know the work that will be played
at the Colón tonight?”

The last scenario satisfies conditions (1) and (2). But if Jack has no
way to know that Jill has seen the late edition, he will probably still think
that she is referring to Aventures. Another condition must be added:

(3) Jill knows that Jack knows that Jill knows that the statement refers
to Atmosphères.

It is nevertheless still possible to think of another scenario.

2.4. ARMIES, CHILDREN AND COMMON KNOWLEDGE 15

Scenario 4: in the morning Jill reads in the early edition of
the newspaper that Aventures will be played that night and
discusses the fact with Jack. When the later edition arrives,
she notes that the work has been changed to Atmosphères and
circles it with her green pen. Still later, as Jill watches without
Jack noticing it, he picks up the late edition and sees Jill’s pen
mark. That afternoon, Jill sees Jack and asks, “do you know
the work that will be played at the Colón tonight?”

Here conditions (1), (2), and (3) are satisfied: Jill knows that the work
to be performed that night is Atmosphères; She knows that Jack knows it,
since she saw him look at the late edition. Moreover, she knows that he
knows that she knows it. Yet she is not still completely justified in thinking
that the reference will be correctly interpreted. Jack might reason like this:
“She knows that the work that will be performed tonight is Atmosphères.
But since she does not know that I am already aware of the correction, she
probably believes that I think it is Aventures.” Thus, the reference is still
not entirely accurate.

It is possible to fix this problem adding another condition, and there
will be still possible to think of another scenario where this is insufficient.
The only way to ensure that the reference is fully undestood is that both
have common knowledge that it uniquely describes Atmosphères.

Another classical problem is the Coordinated Attack Problem [36].

Two divisions of an army are camped on two hills overlooking
a common valley. If both divisions attack the enemy simulta-
neously they will win the battle, whereas if only one attacks
it will be defeated. The commanding general of the first divi-
sion wishes to coordinate a simultaneous attack the next day.
Neither general will attack unless he is sure that the other will
attack with him. The generals can communicate only by means
of a messenger. It takes one hour4 for the messenger to go from

4Actually the time the messenger takes is irrelevant. If he would find a way to go
from one camp to the other in five minutes, nothing would change.

16 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

one camp to the other. But it is possible that he gets lost or
captured by the enemy. If everything goes smoothly, how long
will it take for the generals to coordinate an attack?

After having seen the first example, it is possible to guess the answer. No
agreement will ever be reached. Assume General A sends a message “let’s
attack tomorrow at noon.” He does not know whether the message was
delivered or not and he will not attack until he is sure that the message has
been successfully delivered. General B answers with an acknowledgment.
But again, General B will not attack until he is sure that the acknowl-
edgment has been successfully delivered. Therefore, A must send another
message with an acknowledgment of the acknowledgment, and so on.

Coordinated attack deals with the problem of coordination under unre-
liable communications. It may be shown [28] that common knowledge is a
prerequisite for coordinated attack: if the Generals attack, then it is com-
mon knowledge among them that they attack. It can also be shown that
under the conditions described above, common knowledge is not attainable.
It is not surprising that coordination require some degree of reliability in
the communications.

Another problem that arises in distributed systems is the possibility of
failure of some individual component. For instance, some processes failing
during execution or some disk on a cluster breaking. This is expressed in
the Byzantine Generals Problem [55, 71]. It may be stated as follows:

Several divisions of the Byzantine army are camped outside an
enemy city, each division commanded by its own general. The
generals can communicate only through reliable messengers (no
broadcast is possible.) Some of the generals may be traitors.
All generals have an initial preference (either retreat or attack)
but they are all ready to retreat or attack provided the others
do the same. The goal of the protocol is to reach a situation in
which all loyal generals will either all attack or all retreat (the
traitors may do whatever they want; there are anyway beyond
control.)

2.4. ARMIES, CHILDREN AND COMMON KNOWLEDGE 17

This is the most general form to state the problem. Other possibilities
are to restrict the actions the traitors may do: they can crash (they do
not send messages any more after a certain point), they may commit omi-
sion failures sometimes, and they may act arbitrarily. A crash is a special
case of the omision failure, which is in turn a special case of the so called
“Byzantine failure” (arbitrary actions.) Byzantine failures are clearly the
most problematic.

The problem is trivial if the set of general is guaranteed traitor-free:
each general talk with each other (recall the communications are assumed
to be reliable) and a common course of action is decided. The situation
becomes much more complicated in the presence of traitors, since they do
not know who the traitors are: a traitor might tell a loyal general to attack
and another one to retreat.

As a matter of fact, this problem is quite complex. It has no solution in
the case of three generals in the presence of one single traitor [55]: either
the traitor initiates communication with contradictory messages, or when
he receives a message, he sends an opposing one to the general who did not
send the message. This situation is illustrated in figure 2.4. The traitor
is represented with a black circle. For situations with more than three
generals, there are algorithms for reaching an agreement when more than
three quarters of the generals are loyal. The problem arises in fault-tolerant
systems: in some redundant configurations it is important to know how
many devices might fail without the intended behaviour of the system as a
whole being compromised.

If the condition that whatever decision is taken it must be simultane-
ously taken by all loyal Generals, then common knowledge plays an impor-
tant rôle. This may be seen in the following simple case in which we consider
only crash failures (i.e., no lies): we have three Generals, no traitors, and
everyone wants to retreat. They all receive a message from the others: “let
us retreat.” Still, they cannot take the decision because General 2 does
not know whether General 3 has received the message from General 1. As
in the coordinated attack problem, any decision taken by a loyal General
(a non-faulty process) implies common knowledge among all loyal Gener-
als (non-faulty processes.) In this case we have common knowledge among

18 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

� ^

attack retreat

� ^

attack attack

�
retreat

Fig. 2.4: The Byzantine Generals Problem with one traitor.

the members of a so-called non-rigid set , in the sense that the identity of
the set is not fixed: we do not know how many Generals are loyals. The
problem is thoroughly analysed in [28].

The last problem we consider is the ubiquitous muddy children puz-
zle [10, 28]. This puzzle appears in several different incarnations: cheating
wives, cheating husbands, wise men. It may be stated in its version for
three children as follows:

A group of n children is playing. During the play k of them get
mud on their foreheads. Each can see the mud on the others
but not on his/her own forehead. Enters the father and says “at
least one of you has mud on your forehead.” The father now asks
the question “does any of you know whether your forehead is
clean or not?” over and over. Assuming the children are perfect
reasoners, truthful and that they answer simultaneously, what
happens?

Under these assumptions (strictly speaking, we need yet another as-
sumption; we will comment on this later on), the first k − 1 times the
father asks the question the children answer “no.” The kth time the ques-
tion is asked, the muddy children will answer “yes.” The informal proof
is a kind of induction on k. If k = 1, then the first time the father asks
the question, the only muddy child, seeing that all others have immaculate
foreheads, will know that he is the one. If k = 2, the first time the father

2.4. ARMIES, CHILDREN AND COMMON KNOWLEDGE 19

asks the question, both muddy children will answer “no”, but the second
time they may answer like this: “I see only one muddy child. Were I clean,
she would have answered ‘yes’; therefore I must be muddy.” The argument
proceeds on identical lines for k > 1.

There are some interesting things about this puzzle. The first one is
that there is an important change in the epistemic state of the children
when the father makes the announcement “at least one of you has mud
on your forehead”, although the information states a fact known to all the
children (if k > 1.) The change is that what everyone knew before the
announcement is common knowledge after it. The other interesting fact is
that each time the question is posed and negatively answered, there is also
a change in the epistemic state of the children, as explained below.

We have so far followed the presentation of Fagin et alii [28]. As we
commented above, there is, though, a missing assumption. Assume the
following scenario: we keep the assumptions that the children are perfect
reasoners, truthful and that they answer simultaneously.

Assume for the sake of argument that the three muddy children
are the twins Stella and Brunella, who are 4 years old, and
Paul, who is 5 and very proud of this fact and who, although a
perfect reasoner, entertains some prejudices about the opposite
sex. When the question is posed for the third time, Paul might
reason as the authors of the book expect: “were I clean, the
twins would each be seeing one single muddy children, namely
the other twin; After the first question they should have been
able to answer that they are muddy. So I must be muddy.” But
then he might think “but such a reasoning can be expected from
a grown-up child like me and not from small children like the
twins. Besides, they are girls. The fact that they don’t know
doesn’t mean anything.” And he would answer “no” again.

The last scenario shows that assuming that all children are truthful and
perfect reasoners is not enough. We need a (yet) stronger assumption: the
assumption must be common knowledge among them.

20 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

Now we will consider the problem from a more technical point of view.
Assume there are three children, Alice, Bob and Carol. The state in which
they are (clean or dirty) will be represented by a triple (a, b, c), where
a, b, c ∈ {0, 1}. The variables a, b and c respectively represent the states of
Alice, Bob and Carol. A value 0 means“clean” and a value 1 “muddy.” We
assume further that the actual state is (0, 1, 1), i.e., Alice is clean and Bob
and Carol are dirty. There are several possible worlds for each child: for
instance, since Bob cannot see his own forehead, he cannot tell the world
(0, 0, 1) from the world (0, 1, 1). We represent this situation by a graph
where the nodes are labelled with all possible worlds (a, b, c). An edge
labelled with x ∈ {a, b, c} between two worlds means that the corresponding
child cannot distinguish between them.

Before the first announcement of the father (“at least one of you has
mud on your forehead”) the whole situation can be depicted as in Figure 2.5.

(0,0,0)

(0,1,0)
(0,0,1)(1,0,0)

(1,0,1)
(0,1,1)(1,1,0)

(1,1,1)

a

a a

a

b

b

b

b

c

c

c

c

Fig. 2.5: The epistemic situation of the children before the first announce-
ment.

The actual world is highlighted with a double circle. The representation
shows what is common knowledge among the children, not the individual
knowledge they have. None of the children considers for instance that the
worls (0, 0, 0) is possible, but this is not common knowledge yet.

What happens after the announcement of the father? It becomes com-
mon knowledge that at least one of the children is muddy. The direct
consequence of it is that no child considers the world (0, 0, 0) possible. This

2.4. ARMIES, CHILDREN AND COMMON KNOWLEDGE 21

means that there are no longer edges between that world and any other.
The situation after the announcement is depicted in Figure 2.6.

(0,0,0)

(0,1,0)
(0,0,1)(1,0,0)

(1,0,1)
(0,1,1)(1,1,0)

(1,1,1)

a a

a

b

b

b
c

c

c

Fig. 2.6: The epistemic situation of the children after the first announcement.

Observe that in the new situation there are some worlds which are no
longer uncertain for some children. For instance, the world (1, 0, 0) cannot
be confused with any other by Alice. This corresponds of course to the
situation in which she sees only clean children and knows therefore that
she is “the one.” In the diagram this is reflected by the fact that there are
no edges labelled with a connecting this world with any other. The same
may be said of the worlds (0, 1, 0) for Bob and (0, 0, 1) for Carol: in the
former Bob sees only clean children and in the latter it is Carol who sees
only clean children. They could not confuse those world with any other.

After the father has asked the question for the first time and the children
have answered “no” in unison, it is common knowledge that these three
worlds are no longer possible. The new situation is depicted in Figure 2.7.

Now we have that for both Bob and Carol, the muddy children, the
actual world is no longer to be confused with any other. For Alice, the
clean child, it is still not possible to tell the actual world from the world
(1, 1, 1). When the father asks the question for the second time, Bob and
Carol answer affirmatively.

22 CHAPTER 2. KNOWLEDGE AND COMMON KNOWLEDGE

(0,0,0)

(0,1,0)
(0,0,1)(1,0,0)

(1,0,1)
(0,1,1)(1,1,0)

(1,1,1)

a
bc

Fig. 2.7: The epistemic situation of the children after the first round of
answers.

2.5 Motivations

The main motivation of the work was to obtain a cut-free proof system for
common knowledge without mixing semantics and syntax as in [68], without
finitising ω-rules as in [48] and without ω-rules as in [14]. The method we
use is an adaptation of the annotated sequent calculus for temporal logic
of Lange and Brünnler [13], which was inspired by the focus games of
Lange and Stirling [56]. The idea of adapting the methodology for common
knowledge was suggested by some similarities between CTL [27] and the
logic of common knowledge, which we will call CK henceforth.

Chapter 3

CK with Focused Formulæ

. . . seguid vuestra historia en ĺınea recta y nos os metáis en las curvas o transversales;
que para sacar una verdad en limpio menester son muchas pruebas y repruebas1.

Miguel de Cervantes, Don Quijote de la Mancha, Part II, Chapter XXVI

3.1 Introduction

In this chapter we describe an application of the method of annotations to
the logic CK [28]. The main motivation to do that is the observation of
the similarities between the � operator in CTL [27, 59] and the common
knowledge operator �* . This suggests the application of the method of
annotations, already used in CTL, to CK.

In this chapter we show, on the one hand, that the annotations method
is applicable to CK and, on the other hand, that worst-case complexity is
intractable, as it is for tableaux methods [1, 35, 78]. But there are some
advantages: the method does not require in general the construction of
the whole tree and it is a “one-pass” method, in contrast to other proof
methods [27, 59].

This chapter is organised as follows. Section 3.2 contains the syntax and
semantics of CK. Section 3.3 describes the rules of the proof system SCK.

1“Go on with your story without taking any sideroads; because to extract a truth
many proofs and verifications are necessary.”

23

24 CHAPTER 3. CK WITH FOCUSED FORMULÆ

The soundness and completeness of the system is proved in Sections 3.4
and 3.5 respectively. Considerations on the complexity of the method are
in Section 3.6 and the conclusions in Section 3.7.

3.2 Syntax and Semantics of CK

We start with a signature σ = (Φ,A) where Φ is a countable nonempty
set of propositions and A is a finite nonempty set of agents. Elements of
Φ will be denoted by p, q, possibly subscripted, and elements of A will be
denoted with sequential natural numbers beginning with 1. The logic is
expressed in negative normal form, i.e., only propositions appear negated.
We distinguish between formulæ and annotated formulæ. The syntax of
the former is given next.

Definition 3.1 (Syntax of formulæ) The formulæ (of CK) over a sig-
nature σ = (Φ,A) are constructed according to the following grammar:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) |�iϕ | ♦iϕ |�*ϕ | ♦*ϕ

where p ∈ Φ and i ∈ A.

Connectors are left-associative and the usual rules to eliminate paren-
theses apply. That means that ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn denotes ((. . . (ϕ1 ∧ ϕ2) ∧
. . .) ∧ ϕn) and that ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn denotes ((. . . (ϕ1 ∨ ϕ2) ∨ . . .) ∨ ϕn).
A literal is an element of the set Φ ∪ {¬p | p ∈ Φ}. Literals will be denoted
by a, b, possibly subscripted. The intended meaning of formulæ with no
occurrences of the symbols �, ♦, �* , or ♦* is the usual one. The intended
meaning of �iϕ is that agent i knows ϕ. The intended meaning of �*ϕ
is that ϕ is common knowledge among all agents (see Chapter 2.) The
connectors ♦ and ♦* are duals of � and �* respectively.

We will use some abbreviations. > abbreviates (p∨¬p) for some p ∈ Φ
and ⊥ abbreviates (p ∧ ¬p) for some p ∈ Φ.

Notation: if Γ = {ϕ1, . . . , ϕn} is a set of formulæ, then
∧

Γ = ϕ1∧ . . .∧ϕn
and

∨
Γ = ϕ1 ∨ . . . ∨ ϕn. In the specific case Γ = ∅, then

∧
Γ = > and

∨
Γ = ⊥.

3.2. SYNTAX AND SEMANTICS OF CK 25

We define further the following abreviations:

�ϕ =
∧
{�iϕ | i ∈ A}

♦ϕ =
∨
{♦iϕ | i ∈ A}

�(≤i)ϕ = �1ϕ ∧�2ϕ ∧ . . . ∧�iϕ, i ≥ 1

♦(≤i)ϕ = ♦1ϕ ∨ ♦2ϕ ∨ . . . ∨ ♦iϕ, i ≥ 1

Negation of complex formulæ is inductively defined by means of their
duals. Besides ¬¬p = p we have:

¬(α ∨ β) = (¬α ∧ ¬β) ¬�iϕ = ♦i¬ϕ ¬�*ϕ = ♦*¬ϕ
¬(α ∧ β) = (¬α ∨ ¬β) ¬♦iϕ = �i¬ϕ ¬♦*ϕ = �*¬ϕ

Observe that this implies, as expected, ¬> = ⊥ and ¬⊥ = >. The
semantics of formulæ is defined next.

Definition 3.2 (Epistemic Models) Let σ = (Φ,A) be a signature. An
epistemic model over σ is a triple Mσ = (S,R, v) where S is a set of states,
v : S → ℘(Φ) is a valuation, and R = {R1, . . . , Rn} is a family of binary
relations on S indexed by the elements of A.

We will talk just of models to refer to epistemic models. No conditions
are imposed on the relations in our case. Usually the system for knowledge
is S5 [28] where the relations are equivalence relations (i.e., they are reflex-
ive, symmetric and transitive.) Sometimes the states are also called possible
worlds [9, 28, 79]. The following notation is standard (see for instance [34].)

Notation: Assume M = (S,R, v) and A = {1, . . . , n}. If s, t ∈ S, then

(s, t) ∈ RA iff (s, t) ∈ Ri for some i ∈ A

(s, s) ∈ R0
A

(s, t) ∈ R1
A iff (s, t) ∈ RA

(s, t) ∈ Rq+1
A iff ∃u ∈ S ((s, u) ∈ R

q
A and (u, t) ∈ RA)

(s, t) ∈ R+
A iff (s, t) ∈ RkA for all k ≥ 1

(s, t) ∈ R∗
A iff (s, t) ∈ RkA for all k ≥ 0

26 CHAPTER 3. CK WITH FOCUSED FORMULÆ

Observe that RA is just the union of all the relations of the family R.
We will assume henceforth that the signature σ = (Φ,A) is arbitrary but
fixed and omit the subindex when referring to models. In the same way, all
formulæ will be assumed to be over σ.

Definition 3.3 (Paths in a model) Let M = (S,R, v) be a model. A
path in M is a (possibly infinite) sequence s0, s1, . . . of states of S such
that for any two consecutive states sj, sj+1 in the sequence, (sj , sj+1) ∈ RA.
An s- path is a path with s0 = s.

Definition 3.4 (Reachability in a model M) Let M = (S,R, v) be a
model and s, t ∈ S. The state t is reachable from s in k steps in M if and
only if there exists a finite s-path s0, s1, . . . , sk in M such that sk = t. The
state t is reachable from s if and only if it is reachable from s in k steps
for some k ≥ 1.

Definition 3.5 We define �jϕ and ♦j inductively as follows:

�0ϕ = ♦0ϕ = ϕ;
�k+1ϕ = ��kϕ;
♦k+1ϕ = ♦♦kϕ.

Any state is trivially reachable from itself in 0 step. A state s may be
unreachable from itself in one step, unless (s, s) ∈ RA. This means that
there may be a state s in a model M such that (M, s) |= �iϕ but (M, s) 6|=
ϕ. In the usual terminology of epistemic logic, agent i would not consider
the actual world as a possible one. This is why most knowledge logics
include the axiom T, which states that �iϕ implies ϕ. This is equivalent
to requiring the relations in R to be reflexive.

Definition 3.6 (Satisfaction relation) Let M = (S,R, v) be a model
and let s ∈ S. The satisfaction relation |= is defined as follows:

3.2. SYNTAX AND SEMANTICS OF CK 27

(M, s) |= p iff p ∈ v(s)
(M, s) |= ¬p iff p 6∈ v(s)
(M, s) |= (ϕ ∨ ψ) iff (M, s) |= ϕ or (M, s) |= ψ

(M, s) |= (ϕ ∧ ψ) iff (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= �iϕ iff for all t ∈ S with (s, t) ∈ Ri, (M, t) |= ϕ

(M, s) |= ♦iϕ iff for some t ∈ S with (s, t) ∈ Ri, (M, t) |= ϕ

(M, s) |= �*ϕ iff for all j > 0, (M, s) |= �jϕ

(M, s) |= ♦*ϕ iff for some j > 0, (M, s) |= ♦jϕ

Proposition 3.7 Let M = (S,R, v) be a model and let s ∈ S. Then

(i) (M, s) |= �kϕ if and only if (M, t) |= ϕ for all t ∈ S that are
reachable in k steps from s.

(ii) (M, s) |= ♦kϕ if and only if (M, t) |= ϕ for some t ∈ S that is
reachable in k steps from s.

(iii) (M, s) |= �*ϕ if and only if (M, t) |= ϕ for all states t that are
reachable from s.

(iv) (M, s) |= ♦*ϕ if and only if (M, t) |= ϕ for some state t that is
reachable from s.

Proof. Parts (i) and (ii). Induction on k.

Base case: the base case (k = 0) follows directly from Definition 3.5 for
(i) and (ii) in both directions.

Induction step (⇒). Part (i): assume (M, s) |= �k+1ϕ. Thus, (M, s) |=
��kϕ and therefore, for all states t ∈ S such that (s, t) ∈ RA, (M, t) |=
�kϕ and thus, by induction hypothesis, for all states u ∈ S that are reach-
able from t in k steps, (M, u) |= ϕ. But these states u are exactly the states
that are reachable from s in k+1 steps. Part (ii): assume (M, s) |= ♦k+1ϕ.
Thus, (M, s) |= ♦♦kϕ and therefore, for some state t ∈ S such that
(s, t) ∈ RA, (M, t) |= ♦kϕ and thus, by induction hypothesis, for some

28 CHAPTER 3. CK WITH FOCUSED FORMULÆ

state u ∈ S that is reachable from t in k steps, (M, u) |= ϕ. But the state
u is reachable from s in k + 1 steps.

Induction step (⇐). Part (i): assume that (M, t) |= ϕ for all states t ∈ S

that are reachable from s in k + 1 steps. Consider all states u ∈ S such
that (s, u) ∈ RA. Then we have that the states t are exactly those states
that are reachable from the states u in k steps and therefore, by induction
hypothesis, (M, u) |= �kϕ. Hence (M, s) |= ��kϕ = �k+1ϕ. Part (ii):
assume that (M, t) |= ϕ for some state t ∈ S that is reachable from s in
k + 1 steps. Thus there is a state u ∈ S such that (s, u) ∈ RA and t is
reachable from u in k steps. By induction hypothesis, (M, u) |= ♦kϕ and
thus (M, s) |= ♦k+1ϕ.

Parts (iii) and (iv). The result follows immediately from the definition of
the semantics of �*ϕ and ♦*ϕ and parts (i) and (ii) above. �

Besides formulæ, the language has annotated formulæ. An annotated
formula has an annotation attached to it that is used to check for repeti-
tions. A motivating example is given in section 3.3.

The syntax and semantics of annotated formulæ are defined next.

Definition 3.8 (Syntax of annotated formulæ) Let σ = (Φ,A) be a
signature, Let ϕ be a formula over σ and let i ∈ A. The annotated formulæ
of CK over σ are constructed according to the following grammar:

ϕH ::= �* [H]ϕ |�(≤i)�* [H]ϕ |�i�* [H]ϕ

where H (the annotation) is a finite set of finite sets of formulæ.

Notation: we use uppercase Greek letters (Γ, ∆, Σ), possibly subscripted,
to denote sets of formulæ and uppercase Latin letters (F, H), possibly
subscripted, to denote sets of sets of formulæ. All the same, to avoid any
possibility of confusion, we use commas to separate formulæ in a set of
formulæ and vertical bars (|) to separate sets of formulæ in an annotation.
Thus H |Γ, ψ denotes the annotation H ∪ {Γ ∪ {ψ}}.

The syntax of annotated formulæ will be justified when we give the
rules of the calculus.

3.2. SYNTAX AND SEMANTICS OF CK 29

Definition 3.9 (Corresponding formulæ) Let Γ be a set of formulæ
and let H = {Γ1, . . . ,Γq} be an annotation. Then the corresponding for-
mula of Γ is

∨
Γ and the corresponding formula of H is

∧
{
∨

Γi |Γi ∈ H}.

Notice that the annotations [] and [∅] are not the same: the former is
an empty annotation whose corresponding formula is >, while the latter
is an annotation containing an empty set of formulæ, whose corresponding
formula is

∧
{
∨

∅} =
∧
{⊥} = ⊥.

We will not use special notations for corresponding formulæ when it is
clear from the context what we are referring to. Thus, Γ may denote a set
of formulæ or its corresponding formula and analogously for H.

Definition 3.10 (Presequents, sequents) A presequent is a finite set
of formulæ and annotated formulæ. A sequent is a presequent with at most
one annotated formula. A sequent that consists only of formulæ (i.e., it
contains no annotated formula) is called history-free.

Notation: if Γ = {ϕ1, . . . , ϕq} is a sequent and H = {Γ1, . . . ,Γp}, is an
annotation, then

¬Γ = ¬
∨

Γ = ¬ϕ1 ∧ . . . ∧ ¬ϕq

¬H = ¬
∧

H = ¬Γ1 ∨ . . . ∨ ¬Γp

Definition 3.11 (Semantics of annotated formulæ)Let M = (S,R, v)
be a model and let s ∈ S. Then

(M, s) |= �* [H]ϕ iff for all s-paths s0, s1, . . . in M

either there is a k ≥ 0 in the path with (M, sk) |= ¬H
and for all j, 0 ≤ j < k, (M, sj) |= �ϕ,

or (M, sj) |= �ϕ for all j ≥ 0.

In the other cases, the semantics is extended in the natural way: if
i ∈ A, we have

(M, s) |= �i�* [H]ϕ iff for all t ∈ S with (s, t) ∈ Ri, (M, t) |= �* [H]ϕ

(M, s) |= �(≤i)�* [H]ϕ iff (M, s) |= �1�* [H]ϕ ∧ . . . ∧�i�* [H]ϕ

30 CHAPTER 3. CK WITH FOCUSED FORMULÆ

Definition 3.11 is equivalent to saying that if (M, s) |= �* [H]ϕ, then all
s- paths s0, s1, . . . have one of the following shapes:

- - -

︸ ︷︷ ︸

(H∧�ϕ)

(the rest does not matter)
(H∧�ϕ) (H∧�ϕ) (H∧�ϕ) (H∧�ϕ) ¬H

s0 s1 s2 sk−1 sk

- - - (the rest does not change)
�ϕ �ϕ �ϕ �ϕ

s0 s1 s2 s3

The following propositions give some characterisations of the semantics
of annotated formulæ.

Proposition 3.12 Let M = (S,R, v) be a model and let s ∈ S. Then
(M, s) 6|= �* [H]ϕ if and only if there is some finite s-path s0, s1, . . . , sk such
that:

(i) (M, sk) |= ♦¬ϕ

(ii) (M, si) |= H for all states si in the path.

(iii) (M, sj) |= �ϕ for all states with index j < k in the path.

Proof. (⇒) Assume (M, s) 6|= �* [H]ϕ. Then by the second disjunct of
Definition 3.11, there must be an s-path s0, . . . , sk such that

(M, sk) |= ¬�ϕ = ♦¬ϕ (3.1)

since otherwise �ϕ would hold for all states sj with j ≥ 0 and the assump-
tion would be contradicted. If we take the least such k, then for all indices
j < k in the path it is the case that

(M, sj) |= �ϕ (3.2)

Assume now that there is a state si in the path with (M, si) |= ¬H.
By (3.2), for all indices j such that j < i, it must be the case that

3.2. SYNTAX AND SEMANTICS OF CK 31

(M, sj) |= �ϕ and by the first disjunct of Definition 3.11 we get a con-
tradiction with the assumption. Thus for all states si in the path we have

(M, si) |= H (3.3)

Conditions (i), (ii), and (iii) are fulfilled by (3.1), (3.2), and (3.3), .

(⇐) Assume there is an s-path s0, . . . , sk such that conditions (i), (ii), and
(iii) hold. By condition (i), the second disjunct of Definition 3.11 cannot
hold. By conditions (ii) and (iii), no state sj with index j < k satisfies ¬H,
and states with indices greater than k cannot satisfy the first disjunct of
Definition 3.11 because of condition (i). Thus, (M, s0) 6|= �[H]ϕ. �

Proposition 3.12 amounts to saying that, if (M, s) 6|= �* [H]ϕ, then there
is at least one finite s-path s0, s1, . . . , sk that has the following shape:

- - -

︸ ︷︷ ︸

(H∧�ϕ)

(the rest does not matter)
(H∧�ϕ) (H∧�ϕ) (H∧�ϕ) (H∧�ϕ) (H∧♦¬ϕ)

s0 s1 s2 sk−1 sk

Definition 3.13 (Satisfiability, validity) A formula ϕ is satisfiable if
there is some model M = (S,R, v) such that for some state s ∈ S, (M, s) |=
ϕ. A formula ϕ is valid if for all models M = (S,R, v) and for all states
s ∈ S, (M, s) |= ϕ. We write in this case |= ϕ. A sequent is satisfiable
(respectively valid) if its corresponding formula is satisfiable (respectively
valid.) The definitions of satisfiability and validity for annotations and
annotated formulæ are analogous.

The semantics of annotated formulæ is similar to that of relativised com-
mon knowledge [9, 79]. As shown in [9], the relativised common knowledge
operator cannot be expressed in the logic we are working with.

Annotated formulæ have the following fixed point expressions.

Lemma 3.14 (Fixed point expressions of annotated formulæ) Let
M = (S,R, v) be a model and s ∈ S. Then

32 CHAPTER 3. CK WITH FOCUSED FORMULÆ

(i) (M, s) |= �* [H]ϕ if and only if (M, s) |= ¬H ∨ (�ϕ ∧��* [H]ϕ).

(ii) (M, s) 6|= �* [H]ϕ if and only if

(iia) (M, s) |= H, and

(iib) either (M, s) |= ♦¬ϕ,
or there is some t ∈ S with (s, t) ∈ RA such that (M, t) 6|= �* [H]ϕ.

Proof. Part (i) (⇒). Assume

(M, s) |= �* [H]ϕ (3.4)

By (3.4) and Definition 3.11, for all s-paths s0, s1, . . . we have one of the
following cases.
(Case 1)

(M, sk) |= ¬H for some index k in the path, and (3.5)

(M, sj) |= �ϕ for all indices j < k in the path, (3.6)

(Case 2)
(M, si) |= �ϕ for all indices i in the path. (3.7)

If (M, s) |= ¬H then we are done. We consider thus the case (M, s) |= H.
By (3.6) and (3.7),

(M, s) |= �ϕ (3.8)

Take now an arbitrary s-path s0, s1, If conditions (3.5) and (3.6) hold
for this path at state s0, then they still hold at state s1, since k > 0. In the
same way, if (3.7) holds for this path, the condition still holds at s1. Thus,
for all states s1 that are reachable in one step from s0 we have

(M, s1) |= �* [H]ϕ (3.9)

By (3.9), we get that (M, s) |= ��* [H]ϕ. The other conjunct is (3.8).

Part (i) (⇐). Assume

(M, s) |= ¬H ∨ (�ϕ ∧��* [H]ϕ) (3.10)

3.3. A PROOF SYSTEM 33

We want to show that the conditions of Definition 3.11 hold. If the first
part of the disjunction (3.10) holds, namely (M, s) |= ¬H, then we are
done. Assume now that the second part of the disjunction holds:

(M, s) |= �ϕ ∧��* [H]ϕ (3.11)

By (3.11), for all s-paths s0, s1, . . ., we have that in all cases

(M, s1) |= �* [H]ϕ

Since (M, s) |= �ϕ, we have by Definition 3.11 that (M, s) |= �* [H]ϕ.

Part (ii). Immediate from part (i), since this is just its negation. �

3.3 A Proof System

The proof system SCK consists of the rules shown in Figure 3.1, where the
notation ♦iΣ is an abbreviation of {♦iϕ |ϕ ∈ Σ}.

Since in all cases premises and conclusions are sequents, and thus by
Definition 3.10 they contain at most one annotated formula, we have in rule
�i that if �iϕ is not focused, then ∆ is history-free. Observe besides that
rules ∨, ♦* and �* can only be applied to unannotated formulæ. This is an
immediate consequence of Definition 3.8, since annotated formulæ cannot
appear within disjunctions, or as a subformula of ♦* - or �* -formulæ.

The proviso that the active formula in the conclusion is not a part of
the context amounts to saying that there is no hidden contraction in the
system. For example, the following is not an instance of the ∨ rule:

α, β, (α ∨ β)

(α ∨ β)

Definition 3.15 (Good instances of �i) Assume that the following in-
stance of the rule �i is given:

�i
ϕ, Σ

�iϕ, ♦iΣ, ∆

The instance of �i is a good instance of �i if for any formula ψ, ♦iψ 6∈ ∆.

34 CHAPTER 3. CK WITH FOCUSED FORMULÆ

id
Γ, p, ¬p

∨
Γ, ϕ, ψ

Γ, (ϕ ∨ ψ)
∧

Γ, ϕ Γ, ψ

Γ, (ϕ ∧ ψ)

�*
Γ, �ϕ Γ, ��*ϕ

Γ, �*ϕ
♦*

Γ, ♦♦*ϕ, ♦ϕ

Γ, ♦*ϕ

�i
ϕ, Σ

�iϕ, ♦iΣ, ∆
Γ is history-free rep

Γ, �* [H|Γ]ϕ

foc
Γ, �* []ϕ

Γ, �*ϕ
Γ is history-free �*H

Γ, �ϕ Γ, ��* [H|Γ]ϕ

Γ, �* [H]ϕ

All rules carry the proviso that the active formula in the conclusion is not

part of the context.

Fig. 3.1: The system SCK.

If �iϕ is the active formula in the conclusion of a good instance of �i,
then all formulæ of the form ♦iψ in the conclusion are also active. The
following definition is standard; see for example [82].

Definition 3.16 (Preproofs in a proof system S) Let S be a proof sys-
tem. A preproof in S is a (possibly infinite) tree whose nodes are labelled
with sequents. The labels at the immediate successors of a node labelled
with Γ are the premises by some application of a rule of S and Γ is the
conclusion. A preproof of Γ in S is a preproof whose root is labelled with
Γ.

Definition 3.17 (Axiomatic nodes and proofs in SCK) Let D be a
preproof of Γ in S

CK
. A node of D is axiomatic if it is an instance of id or

of rep. If D has only finite branches and all its leaves are axiomatic, then
D is a proof of Γ in S

CK
. In this case we write S

CK
` Γ.

3.3. A PROOF SYSTEM 35

A non-axiomatic node to which no rule may be applied is an irreducible
node. The following example gives a motivation for the use of annotations.
A preproof for a valid sequent is constructed without annotations, and an
infinite branch appears in the preproof (which is thus no proof.) Afterwards,
the use of annotations allows the construction of a proof.

Example 3.18 Assume for simplicity that A = {1} (the set of agents
is a singleton.) Let us first try to construct a proof for Γ = {♦*¬p,�* p},
which is clearly valid, without using annotations. This attempt is shown in
Figure 3.2.

Recall that we are using the system for proof-search and therefore the
preproof progresses bottom-up. Active formulæ are underlined in the con-
clusions, except in the case of axioms and the �1 rule.

♦*¬p, �* p
♦*

♦1¬p, ♦1♦*¬p, �* p
�*

♦1¬p, ♦1♦*¬p, �1p ♦1¬p, ♦1♦*¬p, �1�* p
�1 �1

¬p, ♦*¬p, p ¬p, ♦*¬p, �* p (•)
id ♦*

¬p, ♦1¬p, ♦1♦*¬p, �* p
�*

¬p, ♦1¬p, ♦1♦*¬p, �1p ¬p, ♦1¬p, ♦1♦*¬p, �1�* p
�1 �1

¬p, ♦*¬p, p ¬p, ♦*¬p, �* p (•)
id

Fig. 3.2: A preproof of a valid sequent without annotations.

The sequents marked with (•) are repeated. If we go on, the right branch
will be infinite; thus the proof cannot be constructed this way. Since the
common knowledge operator �* is a largest fixed point, this is an instance of
a “good repeat” [56]. The proof using annotations is shown in Figure 3.3.

In this case, we have got a proof for the sequent. ♠

36 CHAPTER 3. CK WITH FOCUSED FORMULÆ

♦*¬p, �* pH1 = {¬p, ♦1¬p, ♦1♦*¬p}
♦*

♦1¬p, ♦1♦*¬p, �* pH0 = {♦1¬p, ♦1♦*¬p}
foc

♦1¬p, ♦1♦*¬p, �* []p
�*H

♦1¬p, ♦1♦*¬p, �1p ♦1¬p, ♦1♦*¬p, �1�* [H0]p
�1 �1

¬p, ♦*¬p, p ¬p, ♦*¬p, �* [H0]p
id ♦*

¬p, ♦1¬p, ♦1♦*¬p, �* [H0]p
�*H

¬p, ♦1¬p, ♦1♦*¬p, �1p ¬p, ♦1¬p, ♦1♦*¬p, �1�* [H0|H1]p
�1 �1

¬p, ♦*¬p, p ¬p, ♦*¬p, �* [H0|H1]p
id ♦*

¬p, ♦1¬p, ♦1♦*¬p, �* [H0|H1]p
rep

Fig. 3.3: A proof of a valid sequent using annotations.

3.4 Soundness

In this section we give two definitions of soundness, a weak and a strong
one. We prove that all rules of SCK but two are strongly sound, the only
exception being�i and�*H , which are weakly sound but not strongly sound.
The system SCK is thus weakly sound.

Definition 3.19 (Strong and weak soundness) A rule is said to be
strongly sound if, for all models M = (S,R, v), for all states s ∈ S, if
(M, s) satisfies the premises, then it satisfies the conclusion.

A rule is said to be weakly sound if the validity of its premises implies
the validity of its conclusion.

We will say that a rule is sound if it is weakly sound. Strong soundness
clearly implies weak soundness: if for any model M = (S,R, v), for any
s ∈ S, the fact that (M, s) satisfies the premises implies that it satisfies

3.4. SOUNDNESS 37

the conclusion, if the premises are valid then the conclusion must also be
valid. The converse is not true: see the proof of Lemma 3.22 for some
counterexamples.

Fact 3.20 Let M = (S,R, v) be a model, let s ∈ S and let ϕ be a formula.
Then (M, s) |= �*ϕ if and only if (M, s) |= �ϕ ∧��*ϕ.

Proof.

(M, s) |= �*ϕ iff for all j > 0, (M, s) |= �
jϕ

iff (M, s) |= �ϕ and for all j > 1, (M, s) |= �
jϕ

iff (M, s) |= �ϕ and for all j > 0, (M, s) |= ��
jϕ

iff (M, s) |= �ϕ and (M, s) |= ��*ϕ

iff (M, s) |= �ϕ ∧��*ϕ

�

In Lemma 3.21 below, we fix a model M = (S,R, v). The idea of the
proof is to assume the existence of a state s ∈ S such that (M, s) satisfies
the premises but not the conclusion and to show that that assumption leads
to a contradiction, thus showing that if (M, s) satisfies the premises it must
also satisfy the conclusion.

Lemma 3.21 (Strong soundness) Rules id, ∨, ∧, ♦* , �* , foc, and rep
are strongly sound.

Proof. Strong soundness is obvious for rules id, ∨, and ∧. It is also
obvious for rule foc (recall that the corresponding formula of an empty
annotation is >.) We consider the other cases.

Rule ♦* . Assume:

(M, s) |= Γ,♦♦*ϕ,♦ϕ, (3.12)

(M, s) 6|= Γ,♦*ϕ. (3.13)

By (3.13), we have (M, s) |= ¬Γ ∧�*¬ϕ and by Fact 3.20, we get:

(M, s) |= ¬Γ ∧�¬ϕ ∧��*¬ϕ (3.14)

38 CHAPTER 3. CK WITH FOCUSED FORMULÆ

Expressions (3.12) and (3.14) are contradictory.

Rule �* . Assume

(M, s) |= Γ,�ϕ, (3.15)

(M, s) |= Γ,��*ϕ, (3.16)

(M, s) 6|= Γ,�*ϕ. (3.17)

By (3.17), (M, s) |= ¬Γ. Thus by (3.15) and (3.16), (M, s) |= (�ϕ∧��*ϕ).
By Fact 3.20, this contradicts (3.17).

Rule rep. Assume (M, s) 6|= Γ,�* [H|Γ]ϕ. Thus we have, on the one hand

(M, s) |= ¬Γ (3.18)

and, on the other hand, (M, s) 6|= �* [H|Γ]ϕ. By Lemma 3.14 part (iia), and
keeping in mind that the annotation [H|Γ] is interpreted as the conjunction
of the corresponding formula of H and Γ, we get:

(M, s) |= H ∧ Γ (3.19)

Expressions (3.18) and (3.19) are contradictory. �

Lemma 3.22 (Weak soundness) Rules �i and �*H are (weakly) sound
but not strongly sound.

Proof. We prove first weak soundness.

Rule �i. Assume

|= ϕ,Σ, (3.20)

6|= �iϕ,♦iΣ,∆. (3.21)

If Σ = {ψ1, . . . , ψq}, we have by (3.21) that there must be a model M =
(S,R, v) with a state s ∈ S such that

(M, s) |= ¬�iϕ ∧ ¬♦iψ1 ∧ . . . ∧ ¬♦iψq ∧ ¬∆

= ♦i¬ϕ ∧�i¬ψ1 ∧ . . . ∧�i¬ψq ∧ ¬∆ (3.22)

3.4. SOUNDNESS 39

The satisfiability of ♦i¬ϕ in (3.22) implies that there is some t ∈ S such
that (s, t) ∈ Ri and (M, t) |= ¬ϕ. The conjuncts�i¬ψj in (3.22) imply that
for all states u ∈ S such that (s, u) ∈ Ri, it is the case that (M, u) |= ¬Σ.
In particular, (M, t) |= ¬ϕ ∧ ¬Σ, which contradicts (3.20).

Rule �*H . This is the most interesting case. Assume

|= Γ,�ϕ, (3.23)

|= Γ,��* [H|Γ]ϕ, (3.24)

6|= Γ,�* [H]ϕ. (3.25)

By (3.25), there must be some model M = (S,R, v) with a state s ∈ S

such that

(M, s) |= ¬Γ, and (3.26)

(M, s) 6|= �* [H]ϕ. (3.27)

By (3.27) and Proposition 3.12, there is a finite s-path s0, s1, . . . , sk such
that

(M, sk) |= H ∧ ♦¬ϕ, and (3.28)

(M, sj) |= H ∧�ϕ for all j, 0 ≤ j < k. (3.29)

Now we prove by induction on i that for all states si in the path, 0 ≤ i ≤ k,
the following assertions hold:

(i) (M, si) |= �* [H|Γ]ϕ.

(ii) (M, si) 6|= �* [H]ϕ.

Base case (i = 0). By (3.23), (3.24) and (3.26) we get (M, s0) |= �ϕ and
(M, s0) |= ��* [H|Γ]ϕ. By Lemma 3.14 part (i), (M, s0) |= �* [H|Γ]ϕ, which
is assertion (i), whereas assertion (ii) follows from (3.25) and (3.26).

Induction step (i = q + 1). Assume that (i) and (ii) hold for index i = q

in the path. By (ii) and Lemma 3.14 part (iia), (M, sq) |= H. Thus, by (i)
and Lemma 3.14 part (i) we have

40 CHAPTER 3. CK WITH FOCUSED FORMULÆ

(M, sq) |= ¬Γ ∨ (�ϕ ∧��* [H|Γ]ϕ) (3.30)

There are two possibilities to satisfy (3.30). If (M, sq) |= ¬Γ, then by (3.23)
and (3.24), (M, sq) |= �ϕ and (M, sq) |= ��* [H|Γ]ϕ; the other possibility is
that (M, sq) |= �ϕ∧��* [H|Γ]ϕ. In both cases, we get (i) for index i = q+1.

Besides, since (M, sq) |= �ϕ, if (ii) holds for index i = q, by Lemma 3.14
part (iib) it holds for index i = q + 1.

Summing up, if (M, s) 6|= �[H]ϕ, there must be a finite s-path s0, . . . , sk
such that (3.28) and (3.29) hold. Besides, for all states in the path, asser-
tions (i) and (ii) hold.

In the induction step it was shown that (i) and (ii) for a state t imply
(M, t) |= �ϕ. In the particular case t = sk this yields a contradiction.
Therefore, there is no state sk in the path with (M, sk) |= ♦¬ϕ. The
assumption is thus contradicted.

Now we show that the rules are not strongly sound. We assume a signature
σ = (Φ,A) where A = {1} (i.e., there is one single agent.) The following is
an instance of rule �1:

�1
p

�1p

Clearly (M, s) |= p does not imply (M, s) |= �1p. The following figure
shows a model with a state s0 that satisfies the premise but not the con-
clusion.

s0 s1
-

{p} {¬p}

The figure corresponds to the model M = (S,R, v) with

• S = {s0, s1}.

• R = {1 7→ R1} with R1 = {(s0, s1)}.

• v(s0) = {p}, v(s1) = ∅.

3.5. COMPLETENESS 41

The following is an instance of rule �*H for the same signature. Since the
set of agents A is a singleton, the formulæ �ϕ and �1ϕ are equivalent for
this signature.

�*H
s, �p s, ��* [{s}|{t}]p

s,�* [{t}]p

The following figure shows a model M with a state s0 that satisfies the
premises but not the conclusion.

s0 s1 s2
- -

{¬p,¬s,t} {p,¬s,t} {¬p,¬s,t}

The figure corresponds to the model M = (S,R, v) with

• S = {s0, s1, s2}.

• R = {1 7→ R1} with R1 = {(s0, s1), (s1, s2)}.

• v(s0) = {t}, v(s1) = {p, t}, v(s2) = {t}.

On the one hand, we have that (M, s0) |= �p, since (M, s1) |= p. Besides,
(M, s0) |= ��* [{s}|{t}]p since (M, s1) |= �* [{s}|{t}]p (because (M, s1) |= ¬s;
see Lemma 3.14, part (i).)

Nevertheless, we have that (M, s0) 6|= �* [{t}]p: there is a path s0, s1 such
that (M, s1) |= t ∧ ♦¬p and for all states in the path with index less than
1, namely s0, (M, s0) |= t ∧ �p (see Lemma 3.14, part (ii).) Observe that
the premises are not valid. �

Theorem 3.23 (Soundness of S′
CK

) The system S
CK

is sound.

Proof. Immediate from Lemmas 3.21, and 3.22. �

3.5 Completeness

The proof of completeness is similar to the one in [13]. Completeness is
proved for a more restricted system S′

CK, which proves extended sequents,

42 CHAPTER 3. CK WITH FOCUSED FORMULÆ

defined next.

Definition 3.24 (Extended sequents) An extended sequent is a state-
ment of the form Γ : l, where Γ is a sequent and l is a finite list of formulæ.

A derivation in the system SCK imposes no restriction on the application
of the rules. In particular, any formula of the form �*ϕ in a history-free
sequent could be focused. It would also be possible that no formula at
all be focused. This may lead to non-termination, as in the first part
of Example 3.3, since a bad choice could be stubbornly repeated. The
preproofs in system S′

CK are carried out with a strategy that makes the
focusing process fair. This strategy goes beyond the scope of a mere proof
system, since a check for cyclic nodes is included. The list l of an extended
sequent Γ : l is used as a tool to achieve fairness in the focusing selection:
it is a priority list, and only the first formula that is in the list and in Γ
may be focused. After this, the priority list is changed so that the freshly
focused formula gets the lowest priority (i.e., it is pushed to the end of the
list.) The idea of this modification is to ensure that, when proof search is
performed, every formula of the form �*ϕ be sooner or later focused on in
a given branch.

The new system S′
CK is based on SCK. Its rules, with the exception of

�′ and foc′, are the rules of SCK with the addition of the priority list, which
is just passed from the conclusion on to the premises in all rules but foc′.

The system S′
CK is intended to be exclusively used in proof-search. Thus,

all applications of the rules will be backwards. Some definitions will be
necessary before we give the rules of the new proof system S′

CK.

First we introduce the locally reduced form of a sequent. The idea is that
a sequent is locally reduced if all propositional formulæ have been reduced
to literals and all other formulæ are either prefixed with �i or with ♦i for
some i ∈ A. These latter formulæ are no longer “local”, since they refer to
other (“otherworldly”) states. The strategy of the derivation will impose
that the rule �′, which corresponds to �i in system SCK, be only applied
to a sequent when no other rule is applicable. This requires that all other
rules must be applied as long as possible before rule �′ is applicable.

3.5. COMPLETENESS 43

Definition 3.25 (Locally reduced sequents) A sequent is locally re-
duced if it consists exclusively of literals and formulæ of the form �iϕ and
♦jψ for some i, j ∈ A.

In other words, no formula of the form (α ∨ β), (α ∧ β), �*α, �* [H]α

or ♦*α is in a locally reduced sequent. The key observation is that there
will be only one rule that will be backwards-applicable to a non-axiomatic
sequent in locally reduced form, namely �′.

Example 3.26 The following sequents are locally reduced:

Γ1 = {p, q, ¬q}

Γ2 = {¬p, ♦1p, ♦1♦*¬p, �1�* [H]p}

Γ3 = {♦1p, ♦2p, ♦3p, ♦1♦* p, ♦2♦* p, ♦3♦* p}

The following sequents are not locally reduced:

∆1 = {p, q, (¬p ∧ ¬q)}

∆2 = {♦* p}

∆3 = {♦1p, ♦2p, ♦3p, (♦1♦* p ∨ ♦2♦* p), ♦3♦* p}

♠

It will be shown later on that any sequent reaches a locally reduced
form after a finite number of application of the rules of S′

CK.

Some further restrictions will be imposed later on, to make the proof-
search procedure in S′

CK deterministic.

The rules of system S′
CK are shown in Figure 3.4 .

Contrarily to the rule �i of system SCK, the rule �′ in system S′
CK

branches out. There is, though, an essential difference between the rule �′

and the other branching rules. In the latter, the conclusion is valid if all
premises are valid. In the �′ rule, the conclusion is valid if at least one
premise is valid.

Besides, there is no longer absolute freedom on the application of this
rule. As explained above, the �′ rule may only be applied to sequents that

44 CHAPTER 3. CK WITH FOCUSED FORMULÆ

id′
Γ, p, ¬p : l

∨′ Γ, ϕ, ψ : l

Γ, (ϕ ∨ ψ) : l
∧′ Γ, ϕ : l Γ, ψ : l

Γ, (ϕ ∧ ψ) : l

�
′ Σ1 : l . . . Σq : l

Γ : l
where







Γ is locally reduced, and

Σj ∈ {Σ1, . . . ,Σq} iff
Σj

Γ is a good instance of �i

�*
′ Γ, �ϕ : l, Γ, ��*ϕ : l

Γ, �*ϕ : l
♦*

′ Γ, ♦♦*ϕ, ♦ϕ : l

Γ, ♦*ϕ : l

foc′
Γ,�* []ϕ : l1, l2,�* ϕ

Γ,�*ϕ : l1,�* ϕ, l2
where

{
Γ is history-free

no formula in Γ occurs in l1

rep′
Γ, �* [H|Γ]ϕ : l

�*
′
H

Γ, �ϕ : l Γ, ��* [H|Γ]ϕ : l

Γ, �* [H]ϕ : l

All rules carry the proviso that the active formula in the conclusion is not

part of the context.

Fig. 3.4: The system S
′
CK.

are locally reduced. The choice of the premises is also limited, since any
premise together with the conclusion must constitute a good instance of
�i.

The following definition has the goal of devicing a way to track which
agents are active in each one of the multiple premises of the �′ rule.

Definition 3.27 (i-premises in a preproof) Let D be a preproof in S′
CK

.
A premise ϕ,Σ : l of �′ where the active formulæ in the conclusion Γ are
�iϕ and ♦iΣ is called an i-premise of Γ in D.

3.5. COMPLETENESS 45

Observe that in general there is more than one i-premise in an instance of
a �′ rule; more concretely, there is exactly one i-premise for each formula
of the form �iψ ∈ Γ.

The next example shows how the premises of �′ are formed.

Example 3.28 Assume A = {1, 2, 3} and consider the sequent

Γ = {�1ϕ, �1ψ, �3ζ, ♦1α, ♦1β, ♦1γ, ♦2θ, ♦2ξ, p, q, ¬r}

If Γ : l is the conclusion of an instance of the �′ rule, the premises are

Σ1 = ϕ, α, β, γ : l

Σ2 = ψ, α, β, γ : l

Σ3 = ζ : l

The premises Σ1 and Σ2 are 1-premises of Γ : l. The premise Σ3 is
a 3- premise. There are no 2-premises. Observe that the following is an
instance of rule �1, but it is not a good instance of it. Thus, ϕ,α : l cannot
be a premise of an instance of �′ applied to Γ : l.

�1
ϕ, α

�1ϕ, �1ψ, �3ζ, ♦1α, ♦1β, ♦1γ, ♦2θ, ♦2ξ, p, q, ¬r

♠

Definition 3.29 (Successful and unsuccessful nodes in S
′
CK

) Let D
be a finite preproof of an extended sequent Γ : l in S′

CK
. A node of D is

successful if one of the following conditions holds:

• It is axiomatic (i.e., it is an instance of id′ or of rep′.)

• It is a conclusion of a �′ rule, and at least one premise of it is suc-
cessful.

• It is a conclusion of any other rule, and all premises of it are sucessful.

46 CHAPTER 3. CK WITH FOCUSED FORMULÆ

A node in D is unsuccessful if it is not successful.

Observe that Definition 3.29 applies only to finite preproofs.

Definition 3.30 (Proofs in S
′
CK

) A finite preproof in S′
CK
, is a proof of

Γ : l in S′
CK

if the root is labelled Γ : l and is successful. In this case, we
write S′

CK
` Γ : l.

There is an important difference between proofs in SCK and proofs in S′
CK

(Definitions 3.17 and 3.30): all leaves in a proof in SCK must be axiomatic,
while this is not necessarily the case in a proof in S′

CK, because of rule �′,
which might have some unsuccessful premises and a successful conclusion.

Lemma 3.31 (Embedding of S′
CK

in S
CK

) Let Γ be a history-free se-
quent and let l be a list. If S′

CK
` Γ : l, then S

CK
` Γ.

Proof. Assume S′
CK ` Γ : l. Then there is a proof D′ of Γ : l in S′

CK.
We construct a proof D of Γ in SCK starting from D′ by dropping all lists
and choosing one successful premise of each instance of �′. The latter must
exist because D′ is a proof.

The proof that D is indeed a proof of Γ in SCK is by a straightforward
induction on the depth of the proof. �

Definition 3.32 (Size of a formula, size of a sequent) The size of a
formula ϕ, denoted by size (ϕ), is inductively defined as follows:

• size (a) = 1.

• size (α ∧ β) = size (α ∨ β) = 1 + size (α) + size (β).

• size (�iα) = size (♦iα) = size (�*α) = size (♦*α) = 1 + size (α).

The size of a sequent Γ = {ϕ1, . . . , ϕq} is

size (Γ) = size (ϕ1) + . . .+ size (ϕq)

3.5. COMPLETENESS 47

Definition 3.33 (Closure of a formula) Let ϕ be a formula over a sig-
nature σ = (Φ,A). The closure of ϕ, denoted by clA(ϕ) is defined as follows:

• clA(a) = {a}.

• If ϕ = (α ∧ β) or ϕ = (α ∨ β), then
clA(ϕ) = {ϕ} ∪ clA(α) ∪ clA(β).

• If ϕ = �iα or ϕ = ♦iα, then
cl (ϕ) = {ϕ} ∪ cl (α).

• clA(�*α) = {�*α} ∪ {�≤i�*α | i ∈ A} ∪ {�i�*α | i ∈ A}

∪{�≤iα | i ∈ A} ∪ {�iα | i ∈ A} ∪ clA(α).

• clA(♦*α) = {♦*α} ∪ {♦≤i♦*α | i ∈ A} ∪ {♦i♦*α | i ∈ A}

∪{♦≤iα | i ∈ A} ∪ {♦iα | i ∈ A} ∪ clA(α).

Observe that the closure is parameterised by the set of agents. This is
because the aim of Definition 3.33 is, given a preproof D of a formula ϕ,
the characterisation of all the formulæ that may inhabit the nodes of D.
In the case of propositional formulæ and formulæ of the form �iψ or ♦iψ

this is straightforward. The case of formulæ of the form �*ψ or ♦*ψ is a
little bit more complex. The idea is the following: A formula �*ϕ will have
as premises �ϕ and ��*ϕ. Since �ϕ is an abbreviation of the conjunction
�1ϕ ∧ �2ϕ ∧ . . . ∧ �nϕ, for the n agents of A, and conjunction is left-
associative, further application of rule ∧′ will strip the conjunction of its
rightmost conjunct. Thus we need the big conjunction �ϕ = �≤nϕ as well
as all prefixes of it: �≤(n−1)ϕ,�≤(n−2)ϕ, We need also the formulae of
the form �iϕ that are separated from the big conjunction in each applica-
tion of rule ∧′. The case of the other premise, ��*ϕ is analogous. The case
of the formulæ of the form ♦*ϕ is also analogous with disjunctions instead
of conjunctions.

Next we provide an upper bound for the size of the closure of a formula.

Definition 3.34 (The δA function) Let ϕ be a formula over a signature
σ = (Φ,A). The function δA(ϕ) is inductively defined as follows:

48 CHAPTER 3. CK WITH FOCUSED FORMULÆ

• δA(a) = 1.

• δA(α ∧ β) = δA(α ∨ β) = 1 + δA(α) + δA(β).

• δA(�iα) = δA(♦iα) = 1 + δA(α).

• δA(�*α) = δA(♦*α) = 4 ∗ k + δA(α) where k = |A|.

Proposition 3.35 Let A = {1, . . . , k + 1} and let Ak = A\{k + 1} =
{1, . . . , k}. Then for any formula ϕ, δAk

ϕ ≤ δA(ϕ).

Proof. Induction on ϕ. The base case (ϕ = a) and the induction steps
for all formulæ other than ϕ = ♦*ψ or ϕ = �*ψ are immediate, since the
number of agents is not considered in these rules.

In the case ϕ = �*ψ we have

δAk
(�*ψ) = 4 ∗ k + δAk

(ψ)
IH

≤ 4 ∗ k + δA(ψ)

< 4 ∗ k + 4 + δA(ψ)

= 4 ∗ (k + 1) + δA(ψ)

= δA(�*ψ)

The case ϕ = ♦*ψ is analogous and omitted. �

Observe that size (ϕ) and δA(ϕ) differ only when ϕ contains subformulæ of
the form �*ψ or ♦*ψ.

Lemma 3.36 (Size of the closure of a formula) Let ϕ be a formula
over a signature σ = (Φ,A), then the size of clA(ϕ) is bounded by δA(ϕ).

Proof. Induction on size (ϕ) (outer induction.)

Base case (outer induction). If size (ϕ) = 1, then ϕ = a and |clA(ϕ)| =
|{a}| = 1 = δA(a).

Induction step (outer induction). If δA(ϕ) = k + 1, there are several
cases to be considered.

3.5. COMPLETENESS 49

If ϕ = (α ∧ β) or ϕ = (α ∨ β), then:

|clA(ϕ)| = 1 + |clA(α)|+ |clA(β)|
IH

≤ 1 + δA(α) + δA(β) = δA(ϕ)

If ϕ = �iα or ϕ = ♦iα, then:

|clA(ϕ)| = 1 + |clA(α)|
IH

≤ 1 + δA(α) = δA(ϕ)

If ϕ = �*α, we apply again induction on |A| to prove that |clA(ϕ)| ≤ δA(ϕ)
(inner induction.)

Base case (inner induction): A = {1}. Then we have:

|clA(�*α)| = |{�*α, �1α, �1�*α}| + |clA(α)|

< 4 ∗ 1 + |clA(α)|
IH

≤ 4 ∗ 1 + δA(α) (outer induction hypothesis)

= δA(�*α)

Induction step (inner induction): A = {1, . . . , k, k + 1}. We have:

clA(�*α) = {�*α} ∪ {�≤i�*α | i ∈ A} ∪ {�i�*α | i ∈ A}

∪{�≤iα | i ∈ A} ∪ {�iα | i ∈ A} ∪ clA(α) (3.31)

If we use the notation Ak for the set A\{k + 1} = {1, . . . , k}, we have for
any formula ψ:

{�(≤i)ψ | i ∈ A} = {�(≤i)ψ | i ∈ Ak} ∪ {�(≤k+1)ψ} (3.32)

This is a direct consequence of the definition of �(≤i) in page 25. Then
by (3.32) it is possible to rewrite (3.31) as follows:

clA(�*α) = {�* α} ∪ {�≤i�*α | i ∈ Ak} ∪ {�≤(k+1)�*α}

∪ {�i�*α | i ∈ Ak} ∪ {�k+1�*α}

∪ {�≤iα | i ∈ Ak} ∪ {�≤(k+1)α}

∪ {�iα | i ∈ Ak} ∪ {�k+1α} ∪ clA(α) (3.33)

50 CHAPTER 3. CK WITH FOCUSED FORMULÆ

Observe that in the last expression, the union of the framed components is
clAk

(�*α). Thus we can rewrite (3.33) as follows:

clA(�*α) = clAk
(�*α) ∪ {�≤(k+1)�*α, �k+1�*α, �≤(k+1)α, �k+1α}

Hence:

|clA(�*α)| = |clAk
(�*α)|+ |{�≤(k+1)�*α, �≤(k+1)α, �k+1�*α, �k+1α}|

= |clAk
(�*α)|+ 4

IH

≤ δAk
(�*α) + 4 (inner induction hypothesis)

= 4 ∗ k + δAk
(α) + 4

≤ 4 ∗ k + δA(α) + 4 (Proposition 3.35)

= δA(�*α)

The case ϕ = ♦*α is entirely analogous and is omitted. �

Definition 3.37 (Closure of a sequent) Let Γ = {ϕ1, . . . , ϕm} be a
history-free sequent over a signature σ = (Φ,A). The closure of Γ, de-
noted by clA(Γ) is defined as

clA(Γ) = clA(ϕ1) ∪ . . . ∪ clA(ϕm)

As a consequence of Lemma 3.36, the size of the closure of a sequent
Γ = {ϕ1, . . . , ϕm} is bounded by δA(Γ) = δA(ϕ1) + . . . + δA(ϕm).

Fact 3.38

(i) Let Γ : l be an extended sequent with Γ history-free. Then application
backwards of any rule of {∨′,∧′,�′,♦* ′,�* ′} yields extended sequents
∆ : l′, where ∆ ⊆ clA(Γ).

(ii) Let D be a preproof of Γ : l in S′
CK
. Then for any annotated formula

�* [H]ϕ occuring in a node of D, H ⊆ ℘(clA(Γ)).

Proof. Part (i) is immediate from the rules of S′
CK and Definition 3.33.

Part (ii) is immediate from part (i). �

3.5. COMPLETENESS 51

Lemma 3.39 (Finiteness of the set of labels of a preproof) Let Γ :
l be an extended sequent and let D be a preproof of Γ : l in S′

CK
. Then the

set of labels of D is finite.

Proof. All nodes of the preproof are labelled with extended sequents
∆ : l′. By Fact 3.38, ∆ ⊆ clA(Γ) and l′ contains the same elements as
l, possibly in a different order. Since the permutations of a finite list are
finite, it follows by Lemma 3.36 that the number of possible labels in a
preproof in S′

CK is finite. �

Observe that Lemma 3.39 does not imply that the preproofs are finite.
They may be infinite, but in this case they will necessarily contain repeated
nodes. This property will be used to construct finite preproofs. First we
need the notion of cyclicity.

Definition 3.40 (Similar sequents) Two sequents Γ1 and Γ2 are simi-
lar, denoted by Γ1 ∼ Γ2, if and only if:

1. they are both history-free and equal, or

2. they both contain annotated formulæ and Γ1 is of the form Γ, �* [H1]ϕ

and Γ2 is of the form Γ, �* [H2]ϕ for some Γ, ϕ.

Observe that, according to Definition 3.40, a history-free sequent cannot
be similar to a sequent containing an annotated formula.

Definition 3.41 (Cyclic occurrences) Let D be a preproof in S′
CK
. An

occurrence of an extended sequent Γ : l is cyclic in D if there is an occur-
rence of Σ : l as a conclusion of a �′ rule in the path linking the occurrence
of Γ : l to the root of D and Γ ∼ Σ.

The notion of cyclicity is shown in Figure 3.5.
Observe that the notion of cyclicity does not take into account anno-

tated formulæ.
Informally, the strategy we follow in the preproofs is the following: start-

ing from a sequent Γ, in a first step all rules except �′, foc′, �* ′ and �*
′
H

are applied as long as possible. The resulting sequents will have the form

52 CHAPTER 3. CK WITH FOCUSED FORMULÆ

Γ : l

Σ : l
Γ ∼ Σ

Fig. 3.5: A cyclic occurrence of Γ : l in a preproof D.

Σ,∆ where Σ is locally reduced and ∆ consists of formulæ of the form �*ϕ,
possibly with an occurrence of an annotated formula �* [H]ψ. In the next
step, if none of the formulæ in ∆ is annotated, one of them is focused ac-
cording to the priority list. Further, all rules except �* ′

H are applied as long
as possible. The resulting sequents will have the form Ψ,�* [H]ϕ where Ψ is
locally reduced. Finally, �*H is applied and rules ∧′ are applied as long as
possible.

The idea of this strategy of deferring application of rule �*
′ is to ensure

that all sequents that enter the annotations are locally reduced. This will
provide a kind of “normalisation” of the sequents collected in the annota-
tions which will be useful when we prove completeness. The application
of rules ∧′ at the very end (after an eventual application of rule �*

′) is
necessary to decompose the premises of rule �*H .

The key point to ensure termination of this process is that whenever a
cyclic node is found, the branch is closed. Thus, all cyclic occurrences will
be in the leaves of the resulting tree.

The preproof is constructed be the algorithm defined next. Recall that
we construct the preproof starting from the root upwards. Therefore, any
application of a rule is backwards.

Algorithm 3.42 (Construction of a finite preproof in S′
CK

) Let Γ
be a history- free sequent and let l (Γ) be a list of all formulæ of the form

3.5. COMPLETENESS 53

�*ϕ that are in clA(Γ). We define the algorithm of Figure 3.6 to construct
a preproof D of Γ : l (Γ) in S′

CK
. In the algorithm, a non-terminal leaf is a

non-cyclic leaf to which some rule may be backwards-applied.

1. input: a history-free sequent Γ;
2. output: a preproof D of Γ : l (Γ) in S′

CK;

3. begin

4. set D := Γ : l (Γ);
5. while

6. there are non-terminal leaves in D
7. do

8. apply id′, rep′, ∨′, ∧′, ♦* ′

9 to non-terminal leaves

10. until no longer possible;

11. apply foc′to non-terminal leaves

12 until no longer possible;

13. apply id′, rep′, ∨′, ∧′, ♦* ′, �*

14 to non-terminal leaves

15. until no longer possible;

16. apply �*
′
H to non-terminal leaves

17. until no longer possible;

18. apply ∧′ to non-terminal leaves

19. until no longer possible;

20. apply �′ to non-terminal leaves

21. until no longer possible;

22. od;

23. end.

Fig. 3.6: Algorithm to construct a preproof in CK.

Definition 3.43 (Successful and failed runs of Algorithm 3.42)Let
Γ be a history-free sequent and l (Γ) be a list with all formulæ of the form
�*ψ occurring in cl (Γ). A run of Algorithm 3.42 with input Γ is successful

54 CHAPTER 3. CK WITH FOCUSED FORMULÆ

if its output is a proof of Γ : l (Γ) in S′
CK
. It is failed otherwise.

The following functions are necessary to prove termination of Algo-
rithm 3.42. As usual, we need some function whose values decrease and
whose domain is a well-founded set to prove termination.

Definition 3.44 (The function δ) Let ϕ be a formula or an annotated
formula, let Γ : l be an extended sequent and let k = |A|. The function
δ(ϕ), which maps formulæ into natural numbers, is defined as follows:

• δ(a) = δ(�iϕ) = δ(♦iϕ) = 0 for all i ∈ A;

• δ(�*ϕ) = δ(♦*ϕ) = δ(�* [H]ϕ) = 2 ∗ k;

• δ(ϕ ∨ ψ) = δ(ϕ ∧ ψ) = 1 + δ(ϕ) + δ(ψ).

This function can be generalised to extended sequents in the natural way:

δ(Γ : l) = δ(ϕ1) + . . .+ δ(ϕm) where Γ = {ϕ1, . . . , ϕm}

Fact 3.45 Let ϕ be a formula or an annotated formula and let k = |A|.
Then δ(�ϕ) = δ(♦ϕ) = k − 1.

Proof. Induction on k. In the base case (k = 1) we have δ(�1ϕ) =
δ(♦1ϕ) = 0 = k − 1. For the induction step assume k = q + 1. Then we

have:

δ(�ϕ) = δ((. . . (�1 ∧ . . .) ∧�qϕ) ∧�q+1ϕ)

= δ(. . . (�1 ∧ . . .) ∧�qϕ) + δ(�q+1ϕ) + 1
IH
= q − 1 + 1 = k − 1

The case ♦ϕ is analogous and omitted. �

Fact 3.46

(i) Let Γ : l be the conclusion of an instance of ∨′ or ♦* ′, and let Γ1 : l be
the premise. Then δ(Γ) > δ(Γ1).

3.5. COMPLETENESS 55

(ii) Let Γ : l be the conclusion of an instance of ∧′ or �* ′ and let Γ1 : l and
Γ2 : l be the left and right premises respectively. Then δ(Γ) > δ(Γi)
for i ∈ {1, 2}.

Proof. The cases ∨′ and ∧′ are immediate. The case Γ,♦*ϕ : l yields
Γ,♦ϕ,♦♦*ϕ : l and

δ(Γ,♦*ϕ) = δ(Γ) + δ(♦*ϕ) = δ(Γ) + 2 ∗ k

< δ(Γ) + 2 ∗ k − 2 = δ(Γ) + δ(♦ϕ) + δ(♦♦*ϕ)

= δ(Γ,♦ϕ,♦♦*ϕ)

The case �* is dual and is omitted. �

Lemma 3.47 (Termination of Algorithm 3.42) Let Γ be a history-
free sequent. Then Algorithm 3.42 applied to Γ, (i) terminates, and (ii)
yields a finite preproof.

Proof. Part (i). We have to prove that all loops terminate. We consider
the loops separately, beginning with the inner ones. There are six inner
loops: lines 8–10, 11–12, 13–15, 16–17, 18–19, and 20–21.

• Lines 11–12 and 16–17 (application of foc′ and respectively of �* ′
H as

long as possible): the rule foc′ can only be applied finitely many times
on a finite set of sequents, since once the rule is applied to a node, it
is not applicable to its child node. The same is true for the �*

′
H rule.

• Lines 20–21 (application of �′ as long as possible): each application
of the rule �′ eliminates at least one �i connector. Again, since we
have a finite set of sequents and sequents are finite by Definition 3.10,
this process must terminate.

• Lines 8–10, 13–15, and 18–19: by König’s Lemma [5, 47], it suffices to
show that these loops do not yield infinite branches. Any leaf Σ : l to
which a rule ∨′, ♦* ′, ∧′ or �* ′ is applied yields child nodes with strictly
decreasing values of δ (Fact 3.46.) When δ(Σ) = 0, then Σ is locally
reduced and none of the given rules apply.

56 CHAPTER 3. CK WITH FOCUSED FORMULÆ

It remains to consider the outer loop (lines 5–22). Whenever the outer
loop is entered, a node is added to the preproof because there is at least
one non-terminal node to which a rule is applied. Since the rules have
only finitely many premises, non termination implies by König’s Lemma
the existence of an infinite branch. Moreover, it must be an infinite branch
with infinitely many occurrences of �′ because of the termination of the
inner loops. But by Lemma 3.39, such a branch must contain cyclic nodes
and then the while-loop is exited; thus we cannot have an infinite branch.

Part (ii): the termination of the algorithm implies the finiteness of the
preproof, since only finitely many nodes are added in each iteration. �

Observe that all cyclic nodes in the preproof obtained by Algorithm 3.42
are unsucessful, since they have no premises and are not axiomatic.

The idea of the completeness proof is to construct a countermodel for
an extended sequent Γ : l (Γ) whenever S′

CK 6` Γ : l (Γ). The procedure to
do so is given by Definition 3.49.

Notation: in the following definitions we use the notation nodes (τ) to
denote the set of nodes of a tree τ .

Definition 3.48 Let D be the preproof in S′
CK

resulting from a failed exe-
cution of Algorithm 3.42. The twinD function, which maps cyclic leaves of
D into nodes of D, is defined as follows: twinD(π1) = π0 if and only if π0
is the node that caused π1 to be cyclic.

The aim of the following definition is the extraction of a model from
a preproof D which results from a failed execution of Algorithm 3.42. To
achieve that, we transform D into a tree τ2 with intermediate steps τ0 and
τ1. In all cases, we want a notion of (1) what i-premises are in the new
trees, (2) what does it mean for a leaf to be cyclic in the new trees, and
(3) how does a function mapping cyclic leaves into the nodes that caused
them to be cyclic look like in the new trees.

Definition 3.49 (Extraction of a model in CK) Let D be the preproof
resulting from a failed execution of Algorithm 3.42 with input Γ. We define
the following procedure to construct a model:

3.5. COMPLETENESS 57

1. Extract from D the tree τ0 by dropping all priority lists. There is
an obvious bijection h : nodes (D) → nodes (τ0). The notions of i-
premise, cyclicity and twin function carry over in the natural way
from D to τ0 .

2. Extract from τ0 the tree τ1 as follows: starting from the root of τ0
upwards, for each instance of a rule other than �′ select the leftmost
unsuccessful premise and drop all others. Observe that there is always
an unsuccessful premise because of the assumption. Observe also that
in the case of rules with one premise, nothing is dropped. The tree τ1
has only unsuccessful nodes and branches out only in the instances of
�′. There is an obvious inclusion g : nodes (τ1) ↪→ nodes (τ0). The
notions of i-premise, cyclicity and twin function carry over from τ0
to τ1 : if π is a cyclic leaf of τ1, then twinτ1(π) = g−1(twinτ0(g(π))).
Since we prune whole subtrees, if a cyclic node π of τ0 is in τ1 , then
the node that caused π to be cyclic is also in τ1 and thus in the image
of g. Hence g−1 is defined for this latter node.

3. Extract the tree τ2 from τ1 as follows: for each branch of τ1 , col-
lapse all nodes that are connected and not separated by an instance
of �′, and label the resulting nodes with the union of the labels of the
collapsed nodes. This induces a function f : nodes (τ1) → nodes (τ2)
whose restriction f` to leaves is a bijection, since there is exactly one
leaf of τ1 collapsed in each leaf of τ2 , all others having been pruned
away. The notions of i-premise, cyclicity and twin function carry over
from τ1 to τ2 : if s, t ∈ nodes (τ2), then we define

• t is an i-premise of s if and only if there are π0, π1 ∈ nodes (τ1)
such that f(π0) = s, f(π1) = t and π1 is an i-premise of π0.

• A leaf t of τ2 is cyclic if and only if f−1
` (t) is cyclic. Further,

twinτ2(t) = f(twinτ1(f
−1
` (t))).

4. The model M = (S,R, v) is defined as follows:

• The set S is the set of nodes of the tree τ2 .

58 CHAPTER 3. CK WITH FOCUSED FORMULÆ

• (s, t) ∈ Ri if either t is an i-premise of s, or twin2(s) = u and t
is an i- premise of u.

• v(p) = {s | ¬p ∈ s}.

In the following example, Definition 3.49 is applied to a failed execution of
Algorithm 3.42.

Example 3.50 Let A = {1}, let Γ = {(¬p ∨ ¬q), (�* p ∧ �* q)} and let
l(Γ) = {�* p, �* q}. Then Algorithm 3.42 gives the preproof of Figure 3.7,
where the lists have been omitted (the active formulæ in the conclusions
are underlined except in the �′ rule and in the axioms:)

(¬p∨¬q), (�* p∧�* q)
∨′

¬p,¬q, (�* p∧�* q)
∧′

¬p,¬q,�* p ¬p,¬q,�* q
foc′ foc′

¬p,¬q,�* []p ¬p,¬q,�* []q
�* ′ �* ′

¬p,¬q,�1p ¬p,¬q,�1�* [{¬p,¬q}]p ¬p,¬q,�1q ¬p,¬q,�1�* [{¬p,¬q}]q
�′ �′�′ �′

p q�* [{¬p,¬q}]p �* [{¬p,¬q}]q
�* ′

H �* ′
H

�1p �1q�1�* [{¬p,¬q}|∅]p �1�* [{¬p,¬q}|∅]q
�′

1 �′
1�′

1 �′
1

p q�* [{¬p,¬q}|∅]p �* [{¬p,¬q}|∅]q
rep′ rep′

Fig. 3.7: A failed execution of Algorithm 3.42.

The tree τ1 is obtained by choosing the leftmost failed branch for each
instance of rules ∧′, �*

′ and �*
′
H starting from the root upwards. The

resulting tree and the model extracted thereof are shown in Figure 3.8.
Observe that the model is in this case a countermodel of Γ : l. This is not
a mere coincidence, as we will show later on.

♠

The following example shows how cyclic nodes are dealt with.

Example 3.51 Assume that after having applied of the process of Defini-
tion 3.49 we get a tree with the shape shown in Figure 3.9. The nodes s1

3.5. COMPLETENESS 59

(¬p∨¬q), (�* p∧�* q)
∨′

¬p,¬q, (�* p∧�* q)
∧′ (left)

¬p,¬q,�* p
foc′

¬p,¬q,�* []p
�* ′ (left)

¬p,¬q,�1p
�′

p
s0={(¬p∨¬q), (�* p∧�* q),¬p,¬q,�* p,�* []p,�1p}

s1={p}

R={17→(s0,s1)}

v(s0)={p,q}

v(s1)=∅

Fig. 3.8: The tree τ1 (left) and the model (right) extracted from the failed
execution of Figure 3.7.

and s3 and the nodes s0 and s5 are cyclic and must have the same premises,
as shown in Figure 3.10.

s0 twin(s5)=s0

Y *

R1 R2

s1 s2

k 3

R1 R2

k 3

R1 R2

s3

twin(s3)=s1

s4 s5 s6

Fig. 3.9: A tree resulting from the process of Definition 3.49.

♠

Notation: in the following definition, given a tree τ , parentτ (π) is a partial
function on nodes (τ) such that parentτ (π) is the parent node of π. Of
course, the function is undefined for the root of the tree.

Definition 3.52 (Height of a node of a tree) Let τ be a tree and let
π be a node of τ . The height of π, denoted by heightτ (π), is inductively
defined as follows:

60 CHAPTER 3. CK WITH FOCUSED FORMULÆ

s0 twin(s5)=s0

Y *

R1 R2

s1 s2

k 3

R1 R2

k 3

R1 R2

s3

twin(s3)=s1

s4

6

R1

-R2
s5 s6

� -
R1 R2

Fig. 3.10: The relations in the model derived from Figure 3.9.

heightτ (π) = 0 if π is the root of the tree;
heightτ (π) = heightτ (parentτ (π)) + 1 otherwise.

From now on until the end of this section, whenever we refer to a model M
constructed according to Definition 3.49, the trees D, τ0 , τ1 , and τ2 will
refer to the trees that are successively constructed to get the model M.

If the tree τ is clear from the context, we just write height (π) and
parent (π) instead of heightτ (π) and parentτ (π) respectively.

Fact 3.53 Let π0, . . . , πn be the nodes of τ1 collapsed in a node π of τ2 in
Definition 3.49. Then, for all i, j ∈ {0, . . . , n}, i 6= j implies height (πi) 6=
height (πj).

Proof. Immediate from the fact that the nodes π0, . . . , πn are all con-
nected in τ1 and that the only branching rule in τ2 is �′. If a node πi is a
conclusion of �′, then its premises are collapsed in other nodes of τ2 (see
Definition 3.49.) �

Notation: if M = (S,R, v) is a model obtained by application of Defi-
nition 3.49 and s ∈ S is a node of τ2 labelled with Γ, we write ϕ ∈ s if
ϕ ∈ Γ.

3.5. COMPLETENESS 61

In the following propositions we will assume that a model M = (S,R, v)
is constructed according to Definition 3.49 and that the nodes π1, . . . , πm
of τ1 , respectivey labelled with Γ1, . . . ,Γm, are collapsed in the node s of
τ2 and that they are ordered by height (this is always possible because of
Fact 3.53.) We denote by ∧left or ∧right an instance of ∧ with its right or
left premise dropped. The same convention apply to the rules �* and �* [H].
We have thus the following situation:

Γm
Rm

Γm−1

Γ1
R0

Γ0

Γ0 ∪ Γ1 ∪ . . . ∪ Γm−1 ∪ Γm-

τ1

s

Ri∈{∨
′,♦*

′,foc,∧′
left,∧

′
right,�*

′
left,�*

′
right,�*

′
left[H]

,�* ′
right[H]

}
i∈{0,...,m}

Fig. 3.11: The collapsing process from τ1 to τ2.

An important observation in Figure 3.11 is that Γm can only be a lo-
cally reduced sequent or an irreducible sequent. This is because all cyclic
sequents are similar to a conclusion of a �′ rule and are thus locally re-
duced. In the case where Γm is a conclusion of a �′ rule it must be locally
reduced. Since no other rule than �′ must be applicable to Γm, since oth-
erwise there would be another node labelled Γm+1 in τ1 collapsed in s with
height (Γm+1) > height (Γm), and πm cannot be axiomatic, the only other
possibility is that it be irreducible.

Proposition 3.54 Let M = (S,R, v) be a model constructed according to
Definition 3.49 and let s ∈ S. Then

(i) If �* [H]ϕ ∈ s, then �ϕ ∈ s or for some H ′, ��* [H′]ϕ ∈ s.

(ii) If �*ϕ ∈ s, then �ϕ ∈ s or ��*ϕ ∈ S or for some H ′, ��* [H′]ϕ ∈ s.

62 CHAPTER 3. CK WITH FOCUSED FORMULÆ

Proof. Part (i). If s ∈ S, then s is a node of τ2 containing the collapsed
nodes π0, . . . , πm of τ1 . Recall that the nodes π0, . . . , πm are ordered by
height and labelled with Γ0, . . . ,Γm and thus Γm is the label of the highest
node of τ1 collapsed in s. Since �* [H]ϕ ∈ s, then �* [H]ϕ ∈ Γi for some i,
1 ≤ i ≤ m.

Assume that the statement does not hold, i.e., that �* [H]ϕ ∈ s but there
is no k ∈ {0, . . . ,m} such that �ϕ ∈ Γk or ��* [H′]ϕ ∈ Γk. Thus, the rule
�*

′
H was not applied to any node πj of τ1 , m ≥ j ≥ i. Hence, �* [H]ϕ ∈ Γj

for all j such that m ≥ j ≥ i and in particular �* [H]ϕ ∈ Γm. Therefore,
Γm is neither an irreducible sequent (the rule �*

′
[H] is applicable to it) nor

a locally reduced sequent, which yields a contradiction.

Part (ii). Assume �*ϕ ∈ s, and �ϕ 6∈ s, ��*ϕ 6∈ s and ��* [H]ϕ 6∈ s then the
rule �* was not applied to any node πj of τ1 , m ≥ j ≥ i. Because of part
(i) of this Proposition, the formula was also not annotated. Thus, by an
analogous reasoning as part (i), �*ϕ ∈ Γm and we get a contradiction. �

Fact 3.55 Let M = (S,R, v) be a model obtained by application of Defini-
tion 3.49. Then M is finite.

Proposition 3.56 Let M = (S,R, v) be a model obtained by application
of Definition 3.49 and let s ∈ S. If �i�* [H]ϕ ∈ s, then there is an H ′ and
a t ∈ S such that �* [H′]ϕ ∈ t and (s, t) ∈ Ri.

Proof. As before, we assume that s is a node of τ2 containing the collapsed
nodes π0, . . . , πm of τ1 ordered by height and labelled with Γ0, . . . ,Γm.
Then �i�* [H]ϕ ∈ Γm, since the only rule that can process this formula is
�′. Therefore, the node πm is not irreducible.

If the node πm is not cyclic, then there is a node πm+1 collapsed in a state
t which is an i-premise of πm and contains �* [H]ϕ, and (s, t) ∈ Ri.

If πm is cyclic, there is a non-cyclic node twin (π) labelled Σ in τ1 such that
Σ ∼ Γm and thus �i�* [H′]ϕ ∈ Σ. Since the node is not cyclic, it has an
i-premise π′ labelled Σ′ that is collapsed in a state t containing �* [H′]ϕ and
(s, t) ∈ Ri by the construction of τ2 . �

3.5. COMPLETENESS 63

Proposition 3.57 Let M = (S,R, v) be a model constructed according to
Definition 3.49 and let s ∈ S. If �* [H]ϕ ∈ s, then for all s-paths s0, s1, . . .
there is a k < ω such that �ϕ ∈ sk.

Proof. Assume that the statement does not hold for some state s ∈ S

with �* [H0]ϕ ∈ s. Thus there must be some s-path s0, s1, . . . such that for
all sj in it, �ϕ 6∈ sj.

By assumption and Proposition 3.54, �* [H0]ϕ ∈ s0 implies ��* [H1]ϕ ∈ s0 and
by Proposition 3.56, �* [H1]ϕ ∈ s1. By a straightforward induction, we have
that for all j in the path, �* [Hj]ϕ ∈ sj and ��* [Hj+1]ϕ ∈ sj. Thus all states
sj in the path have a successor and the path is infinite. By Fact 3.55,
an infinite path has a loop. This means that there is a branch that has
the following shape in the tree τ1 . Double bars symbolise the successive
applications of rule ∧′ to get �i�* [H]ϕ starting from ��* [H]ϕ (steps 18–19
of Algorithm 3.42.)

Γ0,�* [H0]
ϕ

Γi,�* [Hi]
ϕ

�* ′
rightH

Γi,��* [Hi+1]
ϕ

∧′...∧′
Γi,�j�* [Hi+1]

ϕ
�′

Γi+1,�* [Hi+1]
ϕ

Γi,�* [Hp]ϕ
�* ′

rightH

Γi,��* [Hp+1]
ϕ

∧′...∧′
Γi,�j�* [Hp+1]

ϕ

-

-

cyclic occurrence

The nodes respectively labelled with Γi, �j�* [Hi+1]ϕ and Γi, �j�* [Hp+1]ϕ

result from applications of ∧′ on right premises of rule �*
′
H and there is no

cyclic node between them. Thus we have

Γi ∈ Hi+1 ⊂ Hp

Therefore, the node labelled with Γi, �* [Hp]ϕ is actually an instance of rep′,

64 CHAPTER 3. CK WITH FOCUSED FORMULÆ

which is not allowed by construction and we get thus a contradiction. �

Observe that as a consequence of Proposition 3.57, any formula that is
annotated must eventually be unannotated in the course of a failed proof-
search. The following Lemma shows that the model obtained by Defini-
tion 3.49 is indeed a countermodel of Γ.

Lemma 3.58 (Definition 3.49 yields a countermodel) Let Γ be a
history-free sequent such that Algorithm 3.42 applied to it fails (see Def-
inition 3.43) yielding a preproof D and let M = (S,R, v) be the model
constructed according to Definition 3.49. Then, if ϕ is a formula, s ∈ S

and ϕ ∈ s, then (M, s) |= ¬ϕ.

Proof. Induction on the structure of ϕ.

Base case: ϕ = p or ϕ = ¬p. The result follows immediately from Def-
inition 3.49: if ¬p ∈ s, then p ∈ v(s) and thus (M, s) |= p = ¬¬p. If
p ∈ s, then ¬p 6∈ s (by construction the nodes cannot be axiomatic) and
thus p 6∈ v(s). Therefore, (M, s) 6|= p and hence (M, s) |= ¬p.

Induction step:

If ϕ = (α ∧ β) ∈ s then by the ∧′ rule α ∈ s or β ∈ s and by induction
hypothesis either (M, s) |= ¬α or (M, s) |= ¬β. Thus (M, s) |= (¬α ∨
¬β) = ¬(α ∧ β).

If ϕ = (α∨ β) ∈ s then by the ∨′ rule α, β ∈ s and by induction hypothesis
(M, s) |= ¬α and (M, s) |= ¬β. Thus (M, s) |= (¬α ∧ ¬β) = ¬(α ∨ β).

If ϕ = �iα ∈ s then there are two possibilities:

• The state s is not cyclic. Thus by the �′ rule there is some t which
is an i-premise of s such that α ∈ t. In this case, (s, t) ∈ Ri by
construction and by induction hypothesis (M, t) |= ¬ϕ and thus
(M, s) |= ¬♦i¬ϕ = ¬�iϕ.

• The state s is cyclic and there is a state u ∈ S such that u = twin (s)
and �iα ∈ u. Thus by the �′ rule u has an i-premise t with α ∈ t.

3.5. COMPLETENESS 65

In this case, (s, t) ∈ Ri by construction and by induction hypothesis
(M, t) |= ¬ϕ and thus (M, s) |= ¬♦i¬ϕ = ¬�iϕ.

If ϕ = ♦iα ∈ s, then either in all states t that are i-premises of s, α ∈ t

or there is a state u ∈ S such that u = twin (s) and for all i-premises t
of u, α ∈ t. Since in both cases (s, t) ∈ Ri, and by induction hypothesis
(M, t) |= ¬α for all the states t, we have that (M, s) |= �i¬α = ¬♦iα.

If ϕ = ♦*α ∈ s, we prove that ♦α ∈ t and ♦♦*α ∈ t for all states t that
are reachable from s. It suffices to show that the statement holds for all
states that are reachable from s in m steps for some m. The proof proceeds
by induction on m. The base case (m = 0 and thus t = s) is immediate.
Assume that the statement holds for all states u that are reachable from
s in q steps. Since ♦♦*α ∈ u, for all states v with (u, v) ∈ RA, it is the
case that ♦*α ∈ v. Thus, ♦α ∈ v and ♦♦*α ∈ v. Hence, for all states t ∈ S

such that (s, t) ∈ R+
A, (M, t) |= ¬α and thus for all states t ∈ S such that

(s, t) ∈ R∗
A, (M, t) |= ¬♦α. Thus, (M, s) |= �*¬α = ¬♦*α.

If ϕ = �*α ∈ s, we prove that for all s-paths s0, . . . there is a k < ω

such that �α ∈ sk. If this is not the case, then there is an s-path in
which the right branch has been kept in all instances of rule �* or rule �*H

respectively applied to �*α or to �* [H]α when the tree τ1 was constructed
(see Definition 3.49.) Since for all states sj of the path it is the case that
�*α ∈ sj or �* [H]α ∈ sj, then by Proposition 3.54 it is also the case that
��*α ∈ sj or ��* [H]α ∈ sj and thus there is always a successor of sj. Thus,
such a path should be infinite. The result follows by Proposition 3.57: all
formulæ of the form �*ψ in an infinite path must eventually be annotated
and unannotated; thus there is a state sq in which �*α is annotated, and by
Proposition 3.57, there is a state sp which is reachable from sq such that
�α ∈ sp and by induction hypothesis, (M, sp) |= ¬�α and thus there is a
state t which reachable from sp in one step with (M, t) |= ¬α. Since sq is
reachable from s0 = s, so are sp and t. Hence (M, s) |= ¬�*α. �

Corollary 3.59 There is a decision procedure for establishing the validity
of a formula ϕ in S′

CK
.

66 CHAPTER 3. CK WITH FOCUSED FORMULÆ

Proof. Given a formula ϕ, it is always possible to apply Algorithm 3.42 to
construct a preproof. Since the resulting preproof is finite by Lemma 3.47,
it is possible to decide whether the execution has been successful or not
and thus whether the formula is valid or not. �

Lemma 3.60 (Completeness of S′
CK

) Let Γ be a history-free sequent
and let l (Γ) be a list of all formulæ of the form �*ϕ that are in cl (Γ). Then
|= Γ implies S′

CK
` Γ : l (Γ).

Proof. Immediate from Lemma 3.58. If S′
CK 6` Γ : l (Γ), then execution

of Algorithm 3.42 on Γ fails and it is possible to construct a countermodel
for Γ : l(Γ) according to Definition 3.49. �

Theorem 3.61 (Completeness of SCK) The system S
CK

is complete for
history-free sequents.

Proof. Direct from Lemmas 3.31 and 3.60. By Lemma 3.31, any proof in
S′

CK can be transformed in a proof in SCK. The completeness of SCK follows
from that of S′

CK (Lemma 3.60.) �

3.6 Complexity

The goal of this section is to determine an upper bound for the number
of nodes that the tree (strictly speaking a loop-tree [78]) constructed with
Algorithm 3.42 may have. We follow the notation of [70].

We state first some auxiliary results before we begin. We will use the
notation succ (π) for some sucessor of a node π in a tree τ . First we recall
some well-known facts about trees.

Definition 3.62 (Degree and height of a tree) Let τ be a tree and let
π be a node of τ . The degree of π is the number of child nodes it has. The
degree of τ , denoted by deg (τ) is defined as

deg (τ) = max {deg (π) |π is a node of τ}

3.6. COMPLEXITY 67

The height of τ , denoted by height (τ) is defined as

height (τ) = max {height (π) |π is s node of τ}

Proposition 3.63 (Number of leaves in a tree) Let τ be a tree with
height (τ) > 0. Then the number of leaves of τ is bounded by deg (τ)height (τ).

Proof. Induction on height(τ).

Base case: if height(τ) = 1, then the tree has deg (π0) leaves, where π0 is
the root, and also deg (π0) = deg (τ) = deg (τ)height (τ).

Induction step: if height(τ) = q + 1, we know by induction hypothesis
that there are deg (τ)q nodes at height q. Since each one of them may have
up to deg (τ) child nodes, we get that the number of nodes at height (q+1)
is at most

deg (τ)q ∗ deg (τ) = deg (τ)q+1

�

Lemma 3.64 (Number of nodes in a tree) Let τ be a tree. Then the
number of nodes of the tree is in deg (τ)O(height (τ)).

Proof. By Proposition 3.63 the number of leaves at height h is at most
deg (τ)height (τ), if we denote the number of nodes by nn, the degree of the
tree by q, and the height of the tree by h, we have:

nn = qh + qh−1 + qh−2 + . . .+ q1 + 1 < qh + . . .+ qh
︸ ︷︷ ︸

h times

+1

Now we show that h ∗ qh + 1 is in qO(h).

h ∗ qh + 1 = 2log2h ∗ 2h∗log2q + 1 = 2log2h+h∗log2q + 1

< 2h∗log2q+h∗log2q + 1 = 22∗h∗log2q + 1

⊆ 2O(h∗log2q) = 2O(h)∗log2q = qO(h)

�

68 CHAPTER 3. CK WITH FOCUSED FORMULÆ

In the case of preproofs in S′
CK, the degree is determined by rule �′,

since in all other cases we have that the rules have at most two premises.
The rule �′ has as many premises as formulæ of the form �iψ appear in
the conclusion.

Fact 3.65 Let Γ be a sequent. Then the size of cl (Γ) is in O(size (Γ)).

Proof. Immediate from Lemma 3.36. The size of a closure is bounded by
δA(Γ) (see Definition 3.34), which is at most 4 ∗ |A| times size (Γ). Thus,
δA(Γ) is in O(size (Γ). �

To determine how many nodes there are in the tree constructed with Algo-
rithm 3.42 we begin by determining the length of a branch.

Lemma 3.66 (Length of a branch in a preproof in S
′
CK

) Let D be
the tree obtained by Algorithm 3.42 applied on a sequent Γ and let n =
size (Γ). Then in the worst case, the number of nodes in a branch is in

O(n! ∗ 2n).

Proof. A branch is closed only when an axiomatic node, an irreducible
node or a cyclic node is reached. If a repetition of a sequent Γ : l is reached
without any instance of the foc′ rule in between, the cyclic node is reached
in the worst case after O(2n) nodes. But if shortly before reaching the cyclic
node an instance of foc′ occurs, and the same situation repeats itself for
all possible permutations of the list then the worst case is that all possible
permutations of the list must be processed before the repetition occurs. The
number of possible lists (again in the worst case) is in O(n!). Therefore, in
the worst case the name of nodes in a branch is in O(n! ∗ 2n). �

Fact 3.67 (Complexity of Algorithm 3.42) Let n = size (Γ). Then
the worst-case complexity of Algorithm 3.42 applied on a sequent Γ is in

2O((n+1)!∗2n).

3.6. COMPLEXITY 69

Proof. The degree of the tree is in O(n), since it is determined by the
rule �′. If we denote by nD the total number of nodes, and taking into
account that by Lemma 3.66 the height of the tree is in O(n!∗2n), we have
by Fact 3.64:

nD ⊆ O(n)O(n!∗2n) (3.34)

= 2log2O(n)∗O(n!∗2n) (3.35)

⊂ 2O(n)∗O(n!∗2n) (3.36)

⊂ 2O((n+1)!∗2n) (3.37)

�

As a consequence of Lemmas 3.64 and 3.66, we have that worst case
complexity is even worse than double exponential, as in [1], which is already
intractable.

The worst case occurs when there are formulæ of the form �*ψ making
intermittent appearances. Nevertheless, we cannot ignore the lists when
considering repetitions. The following example shows that a sequent could
be repeated with different lists.

Example 3.68 Assume for simplicity A = {1}. We make a preproof of
the extended sequent

Γ = {�p, �q, ♦* (�* p ∧ p), ♦* (�* q ∧ q), ♦*�p} : [�* p, �* q]

We write only the branch of the preproof in which the repetition of the
sequent with reversed lists occurs. Besides, we group several rules together.
The underlined formulæ in the conclusions are the active ones. We use the
following abbreviations:

ϕ := ♦* (�* p ∧ p)

ψ := ♦* (�* q ∧ q)

ζ := ♦*�p

70 CHAPTER 3. CK WITH FOCUSED FORMULÆ

�p,�q, ϕ, ψ, ζ : [�* p,�* q]
3×♦*

′
�p,�q,♦ϕ,♦ψ,♦ζ,♦(�* p∧p),♦(�* q∧q),♦�p : [�* p,�* q]

�′
p, q, ϕ, ψ, ζ, (�* p∧p), (�* q∧p),�p : [�* p,�* q] •

2×∧′(left)
p, q, ϕ, ψ, ζ,�* p,�* q,�p : [�* p,�* q]

3×♦*
′

p, q,♦ϕ,♦ψ,♦ζ,♦(�* p∧p),♦(�* q∧q),♦�p,�* p,�* q,�p : [�* p,�* q]
foc′

p, q,♦ϕ,♦ψ,♦ζ,♦(�* p∧p),♦(�* q∧q),♦�p,�* []p,�* q,�p : [�* q,�* p]
�*H(left)

p, q,♦ϕ,♦ψ,♦ζ,♦(�* p∧p),♦(�* q∧q),♦�p,�* []p,�q,�p : [�* q,�* p]
�* (left)

p, q,♦ϕ,♦ψ,♦ζ,♦(�* p∧p),♦(�* q∧q),♦�p,�q,�p : [�* q,�* p]
�′

p, q, ϕ, ψ, ζ, (�* p∧p), (�* q∧p),�p : [�* q,�* p] •

Fig. 3.12: A repetition of a sequent with different priority lists.

As shown in Figure 3.12, both sequents and lists must be taken into
account for the repetitions. ♠

3.7 Conclusions

The method has some nice properties: it is cut-free, it has potential for
parallelisation, since branching rules give rise to independent subtrees.
These subtrees could be treated as separate processes [8] or as separate
threads [81]. Besides, there is no ω-rules as in [2, 14]. One drawback is
that there is no known syntactic cut-elimination for this method. But the
main drawback is the complexity of the method in the worst case, as we
have seen in Section 3.6. The complexity of the decision problem in CK is
known to be EXPTIME-complete [37]. Worst case here is much worse.

Notwithstanding that, there are some nice points in the method that
make an implementation interesting. It is not necessary to construct the
whole tree, as for instance in [27]. Thus, the worst case is not necessarily
met. Besides, the other implementation we know of [1], which is based on

3.7. CONCLUSIONS 71

tableaux methods [35, 78], has a worst case which is double exponential:
although much better, still intractable.

By Corollary 3.59, Definition 3.49 provides a decision procedure. This
is what we have implemented. The implementation is described in the next
chapter. It is in SWI-Prolog and is a quite straightforward codification of
Definition 3.49.

Since the aforementioned process includes a check for weakly cyclic
statements, the Prolog program implements something which goes beyond
a mere proof system. Nevertheless, the implementation is quite concise and
brief.

72 CHAPTER 3. CK WITH FOCUSED FORMULÆ

Chapter 4

Notes on the

Implementation

Double, double, toil and trouble

Shakespeare, Macbeth, Act IV, Scene I

4.1 Introduction

In this chapter we describe some details of the implementation. We consider
the internal representations of formulæ and sequents and the conversions
between them, the process for the construction of a proof in SCK after having
obtained one in S′

CK (recall that this is always possible by Lemma 3.31),
and the process of construction of a countermodel when the proof search
process fails. The chapter closes with a description of the implementation
of the proof system S′

CK. The whole implementation comprises 530 lines of
source code and 108 defined predicates.

The chapter is organised as follows: section 4.2 gives an overview of Pro-
log with some considerations about the important issue of cuts. Section 4.3
explains the usage of the program and Section 4.4 describes the various
data representations that are used in the implementation. Section 4.5 ex-
plains the conversions between the different normal forms and the parsing

73

74 CHAPTER 4. NOTES ON THE IMPLEMENTATION

procedure. The process of deriving a proof in SCK from a proof in S′
CK is

shown in Section 4.6. The —rather more complex— process of construct-
ing a countermodel is briefly explained in Section 4.7. The implementation
of the rules of the proof system S′

CK is described in Section 4.8 and the
implementation of the decision procedure in Section 4.9.

4.2 A Very Brief Introduction to Prolog

This section provides a brief and informal introduction to Prolog1, the lan-
guage used for the implementation. This is intended as a general description
and we will paint with very broad brush in this introduction. For more de-
tailed information, the reader is referred to the specific literature. See for
instance —among many others— [12, 21, 22, 25, 26, 49, 60, 61, 77, 80].

Prolog is a declarative high-level language. A Prolog program is a set
of definite program clauses, or clauses for short, and goals. Clauses are
implications of the form a ⇐ b1 ∧ b2 ∧ . . . ∧ bq, and goals are implications
with an empty consequent. A Horn clause is either a definite program
clause or a goal.

The set of clauses can be viewed as a database with a description of
a problem and a goal as an enquiry to the database. The execution of a
Prolog program is triggered by the attempt to prove (or disprove) a goal.
The underlying machinery is the resolution principle [76].

The first implementation of Prolog in the mid-seventies [23] was based
in the observation of Kowalski [51, 52] that a Horn clause like p⇐ a∧ b∧ c
can be interpreted not only declaratively (“a, b and c imply p”), but also
procedurally (“to solve p, solve a, then b, and then c.”) Such a clause would
be written in SWI-Prolog [85], a Prolog version that complies with the de
facto standard of the language [21, 22, 61], as follows:

p :- a,b,c.

A goal like ⇐ p is represented as

? -p.

1The name is an acronym for “PROgrammation en LOGique.”

4.2. A VERY BRIEF INTRODUCTION TO PROLOG 75

We will use henceforth the SWI-Prolog notation, which is the version in
which the implementation was written. The only data structures in Prolog
are terms, defined next.

Definition 4.1 (Terms in Prolog) Terms in Prolog are either:

• Constants (string beginning with lowercase letters), variables (strings
beginning with uppercase letters) or numbers;

• Compound terms, which consist of a functor of arity n followed by n
terms called arguments.

It is well-known that terms are trees. Consider for instance, the following
term [80]:

sentence(nphrase(dogs),vbphrase(verb(like),nphrase(cheese)))

where sentence is the main functor (arity 2) and both of its arguments,
nphrase(dogs) and vbphrase(verb(like),nphrase(chesse)), are subterms of the
main term. This term is depicted in Figure 4.1.

sentence

nphrase vbphrase

dogs verb nphrase

like cheese

Fig. 4.1: A representation of a term as a tree.

A special type of compound terms are the lists. A list is a compound
term represented with

• an atom [] representing the empty list, and

76 CHAPTER 4. NOTES ON THE IMPLEMENTATION

• a compound term with functor “.” of arity 2. The arguments repre-
sent the head and the tail of the list, which is itself a list.

Lists may contain elements of any type. For instance the list containing
the numbers 7, 2, and 3 (in this order) is represented as

.(7,.(2,.(3,[])))

The tree representation of the above list is the following one:

7

2

3 []

Fig. 4.2: A representation of the list [7,2,3] as a tree.

The notation .(7,.(2,.(3,[]))) for a list is rather unwieldy and not used.
The usual notation for this list is [7, 2, 3]. which is the one we use hence-
forth.

To apply resolution the concept of unification is of central importance.
Given two terms t1 and t2, a unifier is a substitution γ for the variables in
t1 and t2 such that t1γ = t2γ.

Example 4.2 Consider the terms

t1 = f(g(b),h(a,W))
t2 = f(X,h(Y,u(Z)))

The substitution γ = {[W|u(Z)], [X|g(b)], [Y|a]} unifies t1 and t2, since

f(g(b),h(a,W))γ =f(g(b),h(a,u(Z)))=f(X,h(Y,u(Z)))γ

♠

4.2. A VERY BRIEF INTRODUCTION TO PROLOG 77

Observe that in general there is not a unique unifier for two terms.
For instance the unifier γ1 = {[W|u(p)], [X|g(b)], [Y|a]} would also do the
job. This is, though, a less general unifier than γ, since it instantiates the
variable Z, which is not necessary. In general, a unifier β is less general
than a unifier α if there is a substitution δ such that αδ = β. There are
well-known algorithms to determine the most general unifier (mgu) of two
terms [60].

Roughly speaking, the resolution method applied to Prolog programs
works as follows: [80] we start with a program P and a goal g, and an
empty substitution ϕ. A resolvent contains the terms that must be resolved;
initially it contains only the goal. If there is a term t and a clause h :-
c1,. . . ,cm such that t and c may be unified with mgu α, then the term t
in the resolvent is replaced by the terms c1, . . . ,cm and ϕ is replaced with
ϕα with some suitable renaming of variables. The process goes on until
the resolvent is empty, (success) or there is no head of a clause that unifies
with any term of the resolvent. Consider the following example.

Example 4.3 Let us consider the following program, where the numbers
at the lefthand side are only for explanatory purposes.

1. p(X) :- a(X), b(X), c(X).

2. a(1).
3. a(2).
4. a(3).

5. b(2).
6. b(3).

7. c(3).

The goal p(X) succeeds with the unification X = 3. This result is ob-
tained as follows:

1. We begin with the resolvent

ρ1 = (p(X)).

2. By clause 1, the only one whose head unifies with the term of the

78 CHAPTER 4. NOTES ON THE IMPLEMENTATION

resolvent, we get a new resolvent

ρ2 = (a(X), b(X), c(X)).

3. Clause 2 unifies with the first term of ρ2 with mgu=[X|1]. The new
resolvent is

ρ3 = (b(1), c(1)).

4. Since no clause unifies with the first term of ρ3, it is necessary to go
back to ρ2 and try another clause.

5. Clause 3 unifies with the first term of ρ2 with mgu=[X|2]. The new
resolvent is

ρ4 = (b(2), c(2)).

6. Clause 5 unifies with the first term of ρ2. The new resolvent is

ρ5 = (c(2)).

7. Since no clause unifies with the first term of ρ5, it is necessary to
backtrack to ρ4 and try another clause. Since no clause other than 5
unifies with the first term of ρ4, it is necessary to backtrack to ρ2.

8. Clause 4 unifies with the first term of ρ2 with mgu=[X|3]. The new
resolvent is

ρ6 = (b(3), c(3)).

9. Clause 6 unifies with the first term of ρ6. The new resolvent is

ρ7 = (c(3)).

10. Clause 7 unifies with the first term of ρ6. The new resolvent is ρ8 = ()
and this is thus a success node.

4.2. A VERY BRIEF INTRODUCTION TO PROLOG 79

♠

The process may be depicted in a graph in a standard way as follows:
nodes are resolvents, downward edges are labelled with the clauses applied
(and possibly with the unifiers) and upward edges represent backtracking.
In the last example we begin with the node corresponding to the goal ρ1.
From this node, we get an arc going to ρ2 and from the latter an arc going
to ρ3 From the last node we have to backtrack to ρ2 and get another arc
to ρ4 and so on.

The graph corresponding to the complete execution of this example is
shown in Figure 4.3.

ρ1 = (p(X))

?
clause 1

ρ2 = (a(X), b(X), c(X))

9

clause 2

[X|1]

?
clause 3

[X|2] z

clause 4

[X|3]

ρ3 = (b(1), c(1))

:

ρ4 = (b(2), c(2))

?
clause 5 6

6

ρ5 = (c(2))

ρ6 = (b(3), c(3))

?

?

clause 6

clause 6

ρ7 = (c(3))

ρ8 = ()

success

failure

failure

Fig. 4.3: The execution of the program of Example 4.2.

The following example shows a classical Prolog program to determine
whether an element is a member of a list. This predicate is so common that
most Prolog implementation have it inbuilt.

80 CHAPTER 4. NOTES ON THE IMPLEMENTATION

member(X,[H|T]) :- X=H.
member(X,[H|T]) :- member(X,T).

The two clauses form the predicate member/2 (this is standard Prolog
notation; it means that the predicate member that has two parameters.
The first one is the element whose membership we want to test and the
second one is the list.

The predicate contains a straightforward description of the problem: an
element is a member of a list if either it is the head of the list or it is a
member of its tail. Observe also that there is a recursive call in the second
clause, which is another distinctive feature of Prolog.

This program may be run with a goal. For instance, two possible runs
of the program are the following ones:

?- member(1,[2,3,d,1]).
true.

?- member(w,[2,3,d,1]).
false.

The execution trees for these runs are shown in Figures 4.4 and 4.5.
We begin with the first one, that shows the resolvents that occur in the
execution of a successful goal.

Although it is usually the case that the execution ends once a successful
branch has been found, it is possible to force backtracking so that all possi-
ble solutions be found. We d not use this possibility in our implementation.

The second graph shows the execution of an unsuccessful goal. The
execution fails after all possibilibies have been tested and have failed.

Observe that it is always the case that the first attempt is at the first
clause of the predicate member/2. After failure, it tries the recursive clause
(the second one.) The process repeats itsel until the first clause succeeds.

In the second case, the recursive call is repeated until the resolvent has
the term member(w,[]). Two terms whose main functors are different are
not unifiable. In particular, two constants (in this case, w and []) are not
unifiable and the execution returns false.

4.2. A VERY BRIEF INTRODUCTION TO PROLOG 81

member(1,[2,3,d,1]

) q
1 = 2 member(1,[3,d,1])

?) q
failure 1 = 3 member(1,[d,1])

?) q
failure 1 = 3 member(1,[1])

? ?
failure 1 = 1

?
success

Fig. 4.4: A successful execution.

member(w,[2,3,d,1]

) q
w = 2 member(w,[3,d,1])

?) q
failure w = 3 member(w,[d,1])

?) q
failure w = d member(w,[1])

?) q
failure w = 1 member(w,[])

? ?
failure failure

Fig. 4.5: A failed execution.

Let us cast a second glance at our program:

member(X,[H|T]) :- X=H.
member(X,[H|T]) :- member(X,T).

82 CHAPTER 4. NOTES ON THE IMPLEMENTATION

Observe that in the first clause above the variable T plays no rôle. The
same is true for the variable H in the second clause. Besides, it is not
necessary to use two different names of variables and then to state their
equality; it is enough to use the same name for both in the head of the
clause.

The following syntax is thus the usual one:

member(H,[H|]).
member(X,[|T]) :- member(X,T).

We finish this section mentioning that pure logical programming is not
enough for practical programming. There are thus extralogical features such
as i/o predicates, and meta-logical features, which we do not use here. More
details can be found in the bibliography.

As pointed out in [80], the main features that imply a departure from
pure resolution are negation as failure (NAF), introduced in [20], and cuts.
NAF means that the negation of a goal is true if the goal finitely fails.

It is a well-known feature of NAF that it is a nonmonotonic feature
which is different from classical negation. The difference is stressed in
modern implementations of Prolog by using \+ rather than not. Consider
for instance the following set of clauses.

composer(beethoven).
composer(mozart).

The following goal succeeds:

\+composer(stravinsky).

This is because the predicate composer(stravinsky) cannot be proved
with this set of clauses. The nonmonotonic nature of this feature is clear:
if the clause composer(stravinsky) is added to the set of clauses, the goal is
no longer successful.

NAF tends to be confused with CWA, which is actually stronger: in
CWA, something is taken to be false in a program if it is not a consequence

4.2. A VERY BRIEF INTRODUCTION TO PROLOG 83

of it; in NAF something is taken to be false if it the attempts to prove
it finitely fail. A goal leading to an infinite branch would be false from
the point of view of CWA and not from that of NAF. From a practical
point, implementing anything beyond NAF is hard. In our implementation
negation as failure does not occur.

Cuts, denoted by an exclamation mark (!), are a controversial feature.
On the one hand, they can greatly increase the efficiency of Prolog pro-
grams. On the other hand, they can change the declarative meaning of a
program. Following [80], a cut always succeed and commits Prolog to all
the choices made since the parent goal was unified with the head of the
clause the cut occurs in. As a consequence, a cut prunes all the clauses
that are below it and all alternatives solutions to the conjunction of goals
appearing at its left.

Let us briefly explain what cuts are. As we mentioned earlier, the
mechanism that Prolog uses for finding multiple solutions is backtracking .

Consider for instance the following program

1. p(X) :-a(X).
2. p(X) :-b(X).
3. p(X) :-c(X).

4. a(1).
5. b(2).
6. c(3).

The goal p(X) gives the solutions X=1, X=2, and X=3. The execution
tree is shown in Figure 4.6.

Now let us introduce a cut in the second clause of the program, namely:

1. p(X) :-a(X).
2. p(X) :-b(X), !.
3. p(X) :-c(X).

4. a(1).
5. b(2).
6. c(3).

84 CHAPTER 4. NOTES ON THE IMPLEMENTATION

p(X)
clause 1

)

1

a(X)

clause 4

X = 1
?

6

∅

X = 1 success

clause 2

?

6

b(X)

clause 5

X = 4
?

6

∅

X = 2 success

clause 3

q

c(X)

clause 6

X = 3
?

∅

X = 3 success

Fig. 4.6: The execution tree of a cut-free program.

The goal p(X) succeeds again, but now with solutions X=1 and X=2.
The branch leading to the third solution has been pruned away as shown
in Figure 4.7.

p(X)
clause 1

)

1

a(X)

clause 4

X = 1
?

6

∅

X = 1 success

clause 2

?

b(X), !

clause 5

X = 2
?

!

?

∅

X=2 success

Fig. 4.7: The execution tree of a program with a cut.

4.2. A VERY BRIEF INTRODUCTION TO PROLOG 85

Here the clauses below the cut have been pruned away. The unifica-
tion X = 3 is ruled out by the cut and the only solutions that have been
considered are X = 1 and X = 2.

To see what happens with alternative solutions at the left of the cut,
we consider a program in two versions, without and with cut.

Next we see the effect of cuts on the set of alternative solutions.

Version without cut Version with cut

1. p(X) :- a(X). 1. p(X) :- a(X), !.
2. a(1). 2. a(1).
3. a(2). 3. a(2).

The respective execution trees for the goal p(X) are shown in Figure 4.8.

p(X) p(X)

? ?
a(X) a(X), !

clause 1 clause 1

� �

clause 2 clause 2

∅ !

X = 1 success X = 2 success

*

j

clause 3

∅

?

∅

X = 1 success

Fig. 4.8: The execution trees for a simple program without and with cut.

The cut has eliminated all alternative solutions to the conjunction of
goals at its left. In the examples we have seen the cuts change the set of
solutions. This is not necessarily the case. Consider the following program
for merging two ordered lists, taken from [80]:

86 CHAPTER 4. NOTES ON THE IMPLEMENTATION

merge([H1|T1],[H2|T2],[H1|T3]) :- >(H1,H2), !,
merge(T1,[H2|T2],T3).

merge([H1|T1],[H2|T2],[H2|T3]) :- =<(H1,H2), !,
merge([H1|T1],T2,T3).

merge(L1,[],L1) :- !.
merge([],L2,L2) :- !.

It is clear that exactly one of the conditions, either H1 > H2 of H1 ≤ H2
holds. In this case, the cuts are used to prevent Prolog from searching
useless paths. Since only one of the clauses of the merge-program may be
chosen at a given point, it makes no sense to continue analysing the others,
and the cuts prune all the clauses under them. This is a case in which the
use of cuts does not change the set of solutions. These cuts are sometimes
called green cuts [80]. Cuts that change the set of solutions are called red
cuts. In our implementation, green and some red cuts have been used. We
will mention the most relevant ones.

4.3 Usage of the Program

The program is divided in several modules, namely main.pl, mod reports.pl,
mod services.pl, mod parse.pl, and mod proof.pl. All these files are text files
that may be opened and modified with any text editor. The file main.pl
has the possibility of setting the number of agents by choosing which of the
agents/1 clauses is active (exactly one must be active; all others must be
set as comments. This is done by preceding the line with the symbol ’%’)
For instance, the following is the setting for one single agent:

%agents([’1’,’2’,’3’]).
%agents([’1’,’2’]).
agents([’1’]).

Suppose for the sake of the example, that these files are in the directory
C:\Documents and Settings\UserName\My Documents\Prolog\CK\v.10. To
run the program, we start SWI-Prolog and write the goal

4.3. USAGE OF THE PROGRAM 87

1 ?- [’C:/Documents and Settings/UserName/My Documents/Prolog/
CK/v.10/main.pl’].

This goal loads the program and all its modules. It does not compile the
program (Prolog is an interpreted language.) If some change is introduced
in the program during the session (for instance the number of agents is set
to two instead of one), the program must be reloaded.

After we have entered the goal above, we get:

% mod parse compiled into parse 0.00 sec 10,512 bytes.
% mod proof compiled into proof 0.00 sec 14,652 bytes.
% mod services compiled into services 0.00 sec 6,024 bytes.
% mod reports compiled into reports 0.00 sec 23,420 bytes.
% C:/Documents and Settings/UserName/My Documents/Prolog/
CK/v.10/main.pl compiled 0.00 sec 86,588 bytes
true.

The execution of the program is triggered with the predicate prove/2,
whose first argument is the sequent to be proved or disproved and the
second one is the name of a text file where the session’s log will be stored.

For instance, suppose we try the prove the sequent (p∨q), (¬q∧¬p) and
to put the log of the proof in the file P01.txt. Assuming that the program
is set for one single agent, we write the goal

2 ? - prove(’(p V q),(¬q & ¬p)’,’P01’).
true.

The sequent is clearly valid. The program delivers a proof of it, that
is stored in the file P01.txt, located in the same directory as the programs.
The contents of this file has three components: the syntactic parsing, the
preproof, and the conclusion. The first part is the following:

The next part is the preproof. Each node is assigned a number (which
corresponds to the code of it in the tree) and the successors are indicated
by the respectives codes.

The preproof is shown as depicted in Figure 4.10:

Now let us try a sequent that is not valid, namely ♦*�1¬p,�1¬p. We
want the program to write the log in file P02.txt. We write the goal

88 CHAPTER 4. NOTES ON THE IMPLEMENTATION

Agents [1]
Sequent [(p V q), (¬q & ¬p)]

Formula Nr. 1: (p V q)
OK

Formula Nr. 2: (¬q & ¬p)
OK

** Parsing OK. Proof-search goes on.

Fig. 4.9: The parsing part of a simple proof.

Formula Nr. 1: (p V q)
OK

Formula Nr. 2: (¬q & ¬p)
OK

** Parsing OK. Proof-search goes on.

Node <0> = [(p V q), (¬q & ¬p)]
OR rule yields node <1>

Node <1> = [p, q, (¬q & ¬p)]
AND rule yields nodes <2> and <3>

Node <2> = [¬q, p, q]
instance of ID - - Node successful

Node <3> = [¬p, p, q]
instance of ID - - Node successful

** Total number of nodes = 4
** Maximum height of the tree = 3
** Time elapsed = 0e-06 sec

** The sequent is valid

Fig. 4.10: A simple proof.

4 ?- prove(’UK1¬p, K‘¬p’,’P02’).
true.

In this case, the program provides a countermodel to the given sequent.
The log contains three parts. The first one is the parsing part of the file

4.4. REPRESENTATION OF FORMULÆ AND SEQUENTS 89

P02.txt, which is very similar to the previous one and is omitted here. It
may be seen in Chapter 5The next part corresponds to the preproof. As
in the previous example, the tree is developed until no further progress is
possible.

The last part of the log contains a countermodel derived from the
failed preproof. The countermodel is constructed following the procedure
sketched in the completeness proof of Chapter 3 (see Definition 3.49.) This
is the most complicated part of the program; the proof procedure is rela-
tively simple and straightforward in comparison. We show next the pre-
proof.

Observe that the cyclic nodes <7> and <11> have been detected and
singled out. After the detection of a cyclic node the branch is not further
explored. The countermodel part is shown next.

Observe that the countermodel (S,R, v) obtained has three states S =
{s0, s1, s2}, and the relations for agent 1 are (s0, s1), (s1, s2), and (s2, s2).
The relation set for agent 2 is empty. Finally, the valuations are as follows:
v(s0) = ∅, v(s1) = v(s2) = {p}.

4.4 Representation of Formulæ and Sequents

Now we begin with the description of the actual implementation of S′
CK.

The program is a prototype and as such it has a plain user interface which
uses ASCII characters. Therefore we do not have at our disposal subindices
and symbols like �, ♦, ♦* or �* . Several choices were possible. We begin by
describing the actual implementation and comment on further possibilities
at the end of the section.

There are two main representations of formulæ and sequents. The nor-
mal form 0, abbreviated by NF0 is the representation used in the user
interface. The normal form 2 is the internal representation used by the
program. The normal form 1 is only an intermediate representation used
when converting from NF0 to NF2. This is illustrated in Figure 4.13.

The normal form 0 is a string of characters and is used to represent
sequents in a (more or less) readable form. For instance, the sequent

90 CHAPTER 4. NOTES ON THE IMPLEMENTATION

Node <0> = [UK1¬p, K2¬p]
U rule yields node <1>

Node <1> = [K1¬p, (P1UK1¬p V P2UK1¬p), (P1K1¬p V P2K1¬p)]
OR rule yields node <2>

Node <2> = [K1¬p, (P1K1¬p V P2K1¬p), P1UK1¬p, P2UK1¬p]
OR rule yields node <3>

Node <3> = [K1¬p, P1UK1¬p, P1K1¬p, P2UK1¬p, P2K1¬p]
BOX rule yields node <4>

Node <4> = [¬p, UK1¬p, K1¬p]
U rule yields node <5>

Node <5> = [¬p, K1¬p, (P1UK1¬p V P2UK1¬p), (P1K1¬p V P2K1¬p)]
OR rule yields node <6>

Node <6> = [¬p, K1¬p, (P1K1¬p V P2K1¬p), P1UK1¬p, P2UK1¬p]
OR rule yields node <7>

Node <7> =[¬p, K1¬p, P1UK1¬p, P1K1¬p, P2UK1¬p, P2K1¬p]
BOX rule yields node <8>

Node <8> =[¬p, UK1¬p, K1¬p]
U rule yields node <9>
Node <9> =[¬p, K1¬p, (P1UK1¬p V P2UK1¬p), (P1K1¬p V P2K1¬p)]
OR rule yields node <10>

Node <10> =[¬p, K1¬p, (P1K1¬p V P2K1¬p), P1UK1¬p, P2UK1¬p]
OR rule yields node <11>

Node <11> = [¬p, K1¬p, P1UK1¬p, P1K1¬p, P2UK1¬p, P2K1¬p]
cyclic node: twin node is <7> - - Node unsuccessful

Fig. 4.11: The tree of the second example.

{�* p, (¬p ∧ (q ∨ r)),♦1♦* q} is represented as

[’Cp, (p & (q V r)), P1Uq’]

The normal form 1 is an intermediate form. It is just a list of lists,
one for each formula of the sequent. The internal lists are sequences of the
characters of the corresponding NF0 representation without spaces. The
same sequent is represented as follows in NF1:

4.4. REPRESENTATION OF FORMULÆ AND SEQUENTS 91

** Countermodel = (S, R, v)

S = {s0, s1, s2}

R = {R1, R2}
R1 = {(s0, s1), (s1, s2), (s2, s2)}
R2 = {}

v = {(s0, []),
(s1, [p]),
(s2, [p])}

** Total number of nodes = 12
** Maximum height of the tree = 12
** Time elapsed = 0e-06 sec

** The sequent is not valid.

Fig. 4.12: The countermodel of the second example.

?

?

6

NF0

NF1

NF2

User interface

Implementation

Fig. 4.13: The different representations of formulæ and sequents.

[[’C’, p], [’(’, p, &, ’(’, q, ’V’, r, ’)’, ’)’], [’P’, 1, ’U’, q]]

Single quotation marks indicate that we are working with strings and
not variables. In order to process the formulæ, a Prolog term that reflects
the internal structure of it must be constructed. NF2 is the form in which
sequents are internally processed. The sequent we have considered above
is represented in NF2 as

92 CHAPTER 4. NOTES ON THE IMPLEMENTATION

[c(plit(p)), y(plit(p), o(plit(q), plit(r))), p(1, u(plit(q)))]

A sequent is thus expressed as a list of terms where each formula corre-
sponds to a term. The correspondence between the different representations
is shown in Figure 4.14.

Formula NF0 notation NF2 notation

p ’p’ plit(p)

¬p ’¬p’ nlit(p)

(ϕ ∨ ψ) ’(’ϕNF0’ V ’ψNF0’)’ o(ϕNF2,ψNF2)

(ϕ ∧ ψ) ’(’ϕNF0’ & ’ ψNF0’)’ y(ϕNF2,ψNF2)

�iϕ ’K’iϕNF0 k(i,ϕNF2)

♦iϕ ’P’iϕNF0 p(i,ϕNF2)

�*ϕ ’C’ϕNF0 c(ϕNF2)

♦*ϕ ’U’ϕNF0 u(ϕNF2)

Fig. 4.14: The representation of formulæ in NF0 and NF2.

Notation: we denote by ϕNF0 and ϕNF2 the representations of a formula
ϕ in NF0 and NF2 respectively. If T1 and T2 are strings, we abbreviate
by T1ϕNF0T2 the string resulting from the concatenation of the strings T1,
ϕNF0, and T2.

It is not hard to see that the NF2 notation is not very readable, even
when simple formulæ and sequents are represented. As commendet above,
the data are entered by the user in NF0 format and the program shows
them also in this form. The internal conversion and parsing procedures
are explained in the next section. We will omit the single quotation marks
whenever no confusion arises.

We comment now briefly on other alternatives. The main option was to
define the operators as infix and to use one single representation throughout
the process. There are some advantages with this approach. The main one
is that no conversion between the different forms are needed and that the

4.4. REPRESENTATION OF FORMULÆ AND SEQUENTS 93

parsing of formulæ becomes also unnecessary. Prolog returns an error code
if the term is not a correct one (recall that a formula in NF0 is a string and
thus it is always a correct term, even when the represented formula is not
well-formed.)

Nevertheless there are also some drawbacks when we use a single repre-
sentation. The main one is the difficulty to use uppercase letters (V, K, P,
C, and U) as functors. Prolog reserves all strings beginning with uppercase
letters as variables. We are thus faced with two possibilities:

1. We quote the uppercase letters. In this case, it is clear that we are
not referring to a variable. The sequent we have been considering
would then look thus:

[’C’ p , (p & (q ’V’ r)), ’P’(1,’U’ q)]

2. We may use lowercase letters. The problem is the possible confu-
sion between letters representing connectors and letters representing
atomic propositions. The sequent has in this case the following as-
pect:

[c p, (p & (q v r)), p(1,u(q))]

The latter option is probably best, although we did not find it entirely
satisfying.

To ease the reading of this chapter, where the implementation of some
predicates is briefly explained, we adopt the following convention: predi-
cates will be written in NFo, although they are in NF2 in the actual imple-
mentation, and we treat them as if they were infix operators. For instance,
the clause:

subformula(o(X,Y),[o(X,Y)|T]) :- subformula(X,T1),
subformula(Y,T2),
append(T1,T2,T)

will be written as follows:

94 CHAPTER 4. NOTES ON THE IMPLEMENTATION

subformula((X V Y),[(X V Y)|T]) :- subformula(X,T1),
subformula(Y,T2),
append(T1,T2,T)

The way in which infix operators may be defined is explained in Ap-
pendix C.

4.5 Parsing and Converting Formulæ

The first task is the parsing of the sequent entered by the user. This process
is performed simultaneously with the conversion of this sequent into NF2.
The parsing clauses control that the formula agrees with the syntax of
Definition 3.8. It is a rather strict implementation: not even redundant
parentheses are tolerated, and all parentheses prescribed by the grammar
must be included. In other words, formulæ like

ϕ ∧ ψ ∨ ξ (C(α ∨ β))

are not accepted: they must be respectively written as

((ϕ ∧ ψ) ∨ ξ) C(α ∨ β)

The main part of the parsing module is the set of clauses defining the
predicate parse formula/3, where the first parameter is the formula in NF1,
the second one is the formula in NF2, and the third one is an error code
(0 means that the parsing was successful and 1 means that syntax errors
were found.) The predicate is transcribed in Appendix A. It reflects the
tree-like nature of the term representing a formula. The parser determines
the tree-structure of the formula in NF1 and produces the corresponding
formula in NF2 as shown in the example of Figure 4.15.

Observe that the only difference in the shape of the trees is the edge
below the negation. This is because the atomic expresions in NF2 are
literals and not plain atomic propositions.

The determination of the main connector is easy in the case of connec-
tors �* , ♦* , �i and ♦i, since it it s the head of the list. In the case of ∧ or

4.5. PARSING AND CONVERTING FORMULÆ 95

p & (Cq V (K7p & K2¬p)) y(plit(p),o(c(q),y(k(7,plit(q)),k(2,nlit(q)))))

& y

p V plit(p) o

C & c y

q K K plit(q) k k

7 72 2q ¬ plit(q) nlit(q)

q

Fig. 4.15: The tree structures of a formula in NF0 and NF2.

∨, it is a little bit more complicated. To find the main connector we use
the parentheses depth, defined next.

Definition 4.4 (Parentheses-depth) Let L be a list and let X be an
element of the list. The parentheses-depth of X in L, or p-depth of X in
L for short, is defined as the number of left parentheses minus the number
of right parentheses in L at the left of X.

The main connector in a formula beginning with a left parenthesis is
the one with the least p-depth. For example, assume we have a formula
like

(((p ∨ q) ∧ (r ∧ ¬s)) ∨ ((¬p ∧ q) ∧ p))

The NF1 expression of this formula is the following list. The p-depths
of the connectors are indicated above them.

[’(’,’(’,’(’,p,
3

’V’ ,q,’)’,
2

’&’ ,’(’,r,
3

’&’ ,¬,s,),),
1

’V’ ,’(’,’(’,¬,p,
3

’&’ ,q,’)’,
2

’&’ ,p,’)’,’)’]

96 CHAPTER 4. NOTES ON THE IMPLEMENTATION

Observe that if a list represents a formula in NF1, no element of it
may have negative p-depth. Besides, in any formula beginning with a left
parenthesis there is exactly one connector ∨ or ∧ having p-depth 1.

When a formula has to be shown to the user, it is reconverted from
NF2 to NF0. This is done by the predicate term2string/2, where the first
argument is a NF2 expression and the second one the corresponding NF0
expression. This conversion is simpler than the other one. The complete
listing is in Appendix A.

4.6 Construction of a Proof in SCK

As shown in the first example of Section 4.5, a successful proof yields a
proof-tree in SCK. During the process of proof-search (see Sections 4.7
and 4.8 for a detailed description of it), the dynamic table deriv/9 is con-
structed. This table contains a complete description of the derivation tree.
Each entry of this table describes a node, successful or not, of the proof. The
general form of this clause is deriv(V,Seq,Hst,K,Rule,HF,R,Succ,H) where:

• V is a list of positive literals plit(X) such that the node contains nlit(p).
This list is used only in the construction of a countermodel (see Sec-
tion 4.6) and corresponds to the valuation v of it.

• Seq and Hst are representations in NF0 of the sequent and its anno-
tation, if any.

• K is the code of the node in the S′
CK proof.

• Rule is the rule that was backwards-applied to the conclusion. If the
node is irreducible, it has the value i; if it is cyclic, it has the value o.

• HF is a variable that indicates whether the sequent is history-free (0)
or annotated (1).

• R indicates whether the node is successful (0) or not (1).

4.7. CONSTRUCTION OF A COUNTERMODEL IN SCK 97

• Succ has either the codes of nodes with the premises in the case of
rules other than �′, or a list with terms of the form ap(A,Kx) where
A is an agent and Kx is the code of the i- premise node in the case of
rule �′.

• H is the height of the node measured in number of nodes.

The construction of the proof proceeds by scanning the tree from the
root upwards. All premises of rules other than �′ and one successful premise
of rule �′ are chosen. This is implemented in module mod reports. This
module writes a text file with the details of the derivation, and it is called
with argument (OO) where OO is the output stream.

Recall that the proof is actually a proof in S′
CK. The construction of

the proof in SCK starting from the proof in S′
CK is realised by the predicate

get derivation/1. Starting from the root of the derivation in ssck (the node
with code 0, the child nodes are obtained directly with the variable Succ in
the case of rules other than �′ and, in the latter case, the first successful
branch starting fromt the left is chosen. A branch is closed when an ax-
iomatic node has been found. The process goes on until all branches are
closed. The main difference between proofs in SCK and proofs in S′

CK is
the branching out of rule �′ in the latter. This is an “or-rule” in the sense
that it is enough that a single premise be satisfied for the conclusion to
be satisfied. In the case an instance of �′ is encountered, a corresponding
instance of � is derived by choosing the leftmost successful premise.

There is also the construction of the preproof when the proof is not suc-
cessful. The process is very similar to this one, with some slight differences.
The complete code is in Appendix A.

4.7 Construction of a Countermodel in SCK

In the case that the sequent is not provable, a countermodel is constructed
following Definition 3.49 of Chapter 3. We have already seen an example
with a sequent which is not valid in Section 4.3.

98 CHAPTER 4. NOTES ON THE IMPLEMENTATION

In this section we succinctly explain the construction of the counter-
model. The technical part is rather involved and a detailed explanation is
in Appendix B.

We first informally recall the procedure of construction of a model by
means of a simple example. The actual definition is in Chapter 3 (see Defi-
nition 3.49.) We are interested only in the structure of the failed preproof.
With this in mind we represent the sequents as nodes in a tree and the
edges are the application of the rules. Instances of all rules but �′ are
represented by simple lines. Instances of �′ rules are represented by lines
cut by a short segment and a specification of the agent i in the case of an
i-premise. The edges corresponding to instances of the rule �′ have been
singled out as shown in Figure 4.16

1

2

3

4 5

6

7 8
[i] [j]

(i) (ii) (iii)

Fig. 4.16: The representation of the nodes of a preproof.

Here, (i) is a rule with one single premise, (ii) represents a rule with
two premises and (iii) represents an instance of �′, where 7 is an i-premise
of 6 and 8 is a j-premise of 6. We give now an example of the algorithm
to obtain a countermodel from a failed preproof. Consider the preproof of
Figure 4.17.

First, a tree τ1 is constructed by going upwards in the preproof and
keeping the leftmost unsuccessful branch in any instance of a branching
rule other than �′. See Figure 4.18, where discarded branches are in grey.

The second part is the construction of the tree τ2 by collapsing all nodes
that are connected and not separated by an instance of �′.

With this tree, shown in the left part of Figure 4.19, the model can be
constructed. The states and the relations are shown in the right part of the

4.7. CONSTRUCTION OF A COUNTERMODEL IN SCK 99

00

01

02

03

04

05

[1] [2]06

07

08

09
	

10
X

11

12

13

[1] [2]
14

15

16

17

18
	

19

20

[1] [2]21

22

X

23

24

25

X

Xsuccessful leaf

 unsuccessful leaf

	 cyclic leaf

Fig. 4.17: The structure of a failed preproof.

00

01

02

03

04

05

[1] [2]06

07

08

09
	

11

12

13

[1] [2]
14

15

16

17

18
	

Fig. 4.18: The first step in the construction of a countermodel.

same figure.

Observe that (s1, s1), (s4, s1) ∈ R1 and (s1, s2), (s4, s2) ∈ R2. This is
because the nodes 05 and 09 are twin nodes, as are the nodes 05 and 18.

100 CHAPTER 4. NOTES ON THE IMPLEMENTATION

00

01

02

03

04

05

[1] [2]
06

07

08

09
	

11

12

13

[1] [2]
14

15

16

17

18
	

twin nodes
twin nodes

s0

s1
s2

s3
s4

s0

s1 s2

s3 s4

6

[1]

6

[2]

-
[1] �[2]

6

[1]

6

[2]?

[1]

?

[2]

Fig. 4.19: The last part of the construction of the countermodel (left) and
the resulting model (right.)

The node 06 is a 1-premise of 05 and the node 11 is a 2-premise of 05.
These nodes are collapsed according to the following table:

Nodes State

00–05 s0
06–09 s1
11–13 s2
14–16 s3
17–18 s4

Thus, according to Definition 3.49, there must be arrows labelled [1]
from the states containing 08 (s1) and 18 (s4) to the states containing
the 1-premises of 05 and arrows labelled [2] from the former states to the
states containing the 2-premises of 05. The 1-premise of node 05 is node
06, contained in state s1 and its 2-premise is node 11, contained in state
s2. Hence, there are arrows labelled [1] from s1 to itself and from s4 to s1
and arrows labelled [2] from s1 and s4 to s2 (see right part of Figure 4.19.)
Again, the basis is the table deriv/8, which stores the whole information

4.8. IMPLEMENTATION OF THE RULES OF S′CK 101

of the preproof. The extraction of the derivation is in module mod reports
as is the construction of a proof in Section 4.5. The construction of a
countermodel is a more complicated process than the construction of a
proof. We will give a general explanation without many technical details.

The first part is the construction of a premodel, which consists of two
lists:

• A list St of terms of the form st(N,P,Kx), where N is the code of the
state in the countermodel, P is a list of the propositions that hold
in the state according to Definition 3.49, and Kx is a list containing
codes of the nodes of the preproof that are collapsed in the state N.

• A list Re of terms br(A,K1,K2) where A is an agent, and K1 and K2
are codes of nodes in the preproof such that K2 is an A-premise of
K1.

The premodel contains the whole information of the model. Having the
lists St and Re, the extraction of the model is routine. The actual model
consists of:

• A list Ms of states s0, s1, and so on.

• A list Mv of valuations, containing terms of the form v(S,P) where S
is a state of the list Ms and P is a list of atomic propositions.

• A list Mr of lists of terms r(S1,S2), where S1 and S2 are states of the
list Ms. The i-th list is the list of relations of agent i.

This is done with the predicates get sv/3 and get r/4. The whole listing
is in Appendix A and a detailed explanation of the process of construction
of a countermodel is in Appendix B.

4.8 Implementation of the Rules of S′
CK

In this section we show how the rules and the proof-search process of system
S′

CK are implemented. The implementation of the decision procedure is in

102 CHAPTER 4. NOTES ON THE IMPLEMENTATION

module mod proof and may be consulted in Appendix A. In this section
we will use infix notation as explained above and we will assume that the
operators are implemented with the NF0 syntax. This is done to ease the
reading adnd does not correspond to the actual implementation as shown
in the aforementioned appendix.

We begin with the axiom id′:

id′
Γ, p, ¬p : l

All we have to do is to determine whether there are two complementary
literals in the sequent.

Recall that the sequents are expressed by a list L of formulæ in NF2. To
implement this rule we have to test whether there are two elements plit(X)
and nlit(X) for some X in L. In NF0, these literals are denoted by P and
¬P. The implementation is in Figure 4.20.

id rule(L) :- member(P,L), member(¬P,L).

Fig. 4.20: The implementation of rule id′.

The simplest rule with one single premise is ∨′:

∨′ Γ, ϕ, ψ : l

Γ, ϕ ∨ ψ : l

This rule is implemented as shown in Figure 4.21.
The predicate no dup(L1,L2) succeeds when L2 contains the same ele-

ments as L1 but with no duplicates. It is in module mod services. The
sort list/2 predicate is use here and in the following rules to have “nor-
malised” sequents so as to simplify their comparison.

The predicate o rule1(L1,L2) is recursively called (clause 4) until a dis-
junction appears at the head of L1 (clause 3.) Then both disjuncts are

4.8. IMPLEMENTATION OF THE RULES OF S′CK 103

1. o rule(L1,L2) :- o rule1(L1,L2a), no dup(L1a,L2b),
sort list(L2b,L2).

2. o rule1([],) :- !, fail.
3. o rule1([(X V Y)|T],[X,Y|T]) :- !.
4. o rule1([H|T1],[H|T2]) :- !, o rule1(T1,T2).

Fig. 4.21: The implementation of rule ∨′.

extracted and put in L2. If there is no disjunction in L1, clause 2 is reached
and the predicate fails. The cut in clause 2 is a green cut. It does not
change the set of solutions, since clause 2 is only reached when no disjunc-
tion (i.e., no term o(X,Y)) is in the first argument. It is there to avoid
useless backtracking.

The simplest rule with two premises is ∧′.

∧′ Γ, ϕ : l Γ, ψ : l

Γ, ϕ ∧ ψ : l

The implementation of this rule is in Figure 4.22.

1. y rule(L1,L2,L3) :- y rule1(L1,L2a,L3a),
no dup(L2a,L2b), no dup(L3a,L3b),
sort list(L2b,L2), sort list(L3b,L3).

2. y rule1([], ,) :- !, fail.
3. y rule1([(X & Y)|T],[X|T],[Y|T]) :- !.
4. y rule1([H|T1],[H|T2],[H|T3]) :- !, y rule1(T1,T2,T3).

Fig. 4.22: The implementation of rule ∧′.

The process is very similar to the previous one, but with two premises

104 CHAPTER 4. NOTES ON THE IMPLEMENTATION

instead of one. The predicate y rule(L1,L2,L3) is recursively called (clause
4) until a conjunction appears at the head of L1 (clause 3.) Then the two
conjuncts are extracted and respectively put in L2 and L3. If there is no
conjunction in L1, clause 2 is reached and the predicate fails.

The other rules are more complex. In the case of the rules ♦* ′ and �*
′, the

respective occurrences of ♦ and � in the premises make them dependent
on the number of agents: for instance, if there is one single agent (A = {1})
the premises of �*ϕ are �1ϕ and �1�*ϕ; if there are two agents (A = {1, 2}),
the premises of the same formula are (�1ϕ ∧ �2ϕ) and (�1�*ϕ ∧ �2�*ϕ).
The same happens with a formula of the form ♦*ϕ.

Recall the rule ♦* ′:

♦* ′ Γ, ♦♦*ϕ, ♦ϕ : l

Γ, ♦*ϕ : l

This rule is implemented as shown in Figure 4.23.

1. u rule(L1,L2) :- u rule1(L1,L2a), no dup(L2a,L2b),
sort list(L2b,L2).

2. u rule1([],) :- !, fail.
3. u rule1([U(X)|T],[E1,E2|T]) :- !, u unfold(X,E1,E2).
4. u rule1([H|T1],[H|T2]) :- !, u rule1(T1,T2).

5. u unfold(X,E1,E2) :-
agents(L), unfold(X,E1,E2,L).

6. u unfold(X,P(N,X),P(N,U(X)),[N]) :- !.
7. u unfold(X,(P(N,X) V Z1),(P(N,U(X)) V Z2),[N|T]) :- !,

u unfold(X,Z1,Z2,T).

Fig. 4.23: The implementation of rule ♦* ′.

The change with respect to a predicate like o rule is the introduction of
the u unfold/3 and u unfold/4 predicates. The idea of the call to predicate
u unfold(X,E1,E2) is the following: if ♦*ϕ is the active formula in the rule,

4.8. IMPLEMENTATION OF THE RULES OF S′CK 105

then X is instantiated to ϕ, and after the call to u unfold/3, we have the
following instantiations:

E1 = ((. . . (♦1ϕ ∨ ♦2ϕ) ∨ . . .) ∨ ♦nϕ)
E2 = ((. . . (♦1♦*ϕ ∨ ♦2♦*ϕ) ∨ . . .) ∨ ♦n♦*ϕ)

In both cases for all agents 1, 2, . . . , n ∈ A. This is shown next.

Fact 4.5 Let X be the NF2 representation of a formula ϕ and let L = [1,
2, . . . k] be a list of agents. Then u unfold(X,E1,E2,L) succeeds if E1 and
E2 are NF2 representation of the disjunctions

((. . . (♦1ϕ ∨ ♦2ϕ) ∨ . . .) ∨ ♦kϕ),

((. . . (♦1♦*ϕ ∨ ♦2♦*ϕ) ∨ . . .) ∨♦k♦*ϕ).

Proof. Induction on the length of L.

Base case: the base case (L=[1], the signature has one single agent) is
immediate: clause 6 succeeds and we get u unfold(X,p(1,X),p(1,u(X)),[1]).

Induction step: if L=[N|T], then by induction hypothesis we have that
u unfold(X,E1’,E2’,T) if E1’ and E2’ are NF2 representations of the disjunc-
tions ♦1ϕ∨ . . .∨♦k−1ϕ and ♦1♦*ϕ∨ . . .∨♦k−1♦*ϕ. This implies that clause
7 succeeds and we get u unfold(X,o(p(1,X),E1’), o(p(1,u(X)),E2’),L), where
the second and third arguments are NF2 representations of the disjunctions
♦1ϕ ∨ . . . ∨♦kϕ and ♦1♦*ϕ ∨ . . . ∨ ♦k♦*ϕ. �

The way the predicates u rule/2 and u rule1/2 work is quite similar to
the other predicates we saw before. The predicate u rule1/2 is recursively
called (clause 4) until a formula of the form u(X) appears (clause 3.) Then
the two disjunctions for all agents are extracted with predicate u unfold/3
and put in the premise. If there is no formula of the form u(X) in L1, clause
2 is eventually reached and the predicate fails.

Let us consider now the rule �*
′:

106 CHAPTER 4. NOTES ON THE IMPLEMENTATION

�*
′ Γ, �ϕ : l, Γ, ��*ϕ : l

Γ, �*ϕ : l

As it was the case with the predicate ♦* ′, we have to “unfold” the for-
mula �*

′ϕ so as to get instances of �′
iϕ for all agents i. This is done with

the predicates c unfold/3 and c unfold/4, which are duals of the predicates
u unfold/3 and u unfold/4 described above.

If �*ϕ is the active formula in the rule, then X is instantiated to ϕ, and
a call to c unfold(X,E1,E2) yields the following instantiations:

E1 = ((. . . (�1ϕ ∧�2ϕ) ∧ . . .) ∧�kϕ)
E2 = ((. . . (�1�*ϕ ∧�2�*ϕ) ∧ . . .) ∧�k�*ϕ)

In both cases for all agents 1, 2, . . . , k ∈ A.
The rule �* ′ is implemented as shown in Figure 4.24.

1. c rule(L1,L2) :- c rule1(L1,L2a), no dup(L2a,L2b),
sort list(L2b,L2).

2. c rule1([],) :- !, fail.
3. c rule1([c(X)|T],[E1,E2|T]) :- !, c unfold(X,E1,E2).
4. c rule1([H|T1],[H|T2]) :- !, c rule1(T1,T2).

5. c unfold(X,E1,E2) :- agents(L),
c unfold(X,E1,E2,L).

6. c unfold(X,k(N,X),k(N,u(X)),[N]) :- !
7. c unfold(X,y(k(N,X),Z1),y(k(N,u(X)),Z2),[N|T]) :- !, c unfold(X,Z1,Z2,T).

Fig. 4.24: The implementation of rule �*
′.

The correction of the predicate c unfold/3 is shown next.

Fact 4.6 Let X be the NF2 representation of a formula ϕ and let L = [1,
2, . . . k] be a list of agents. Then c unfold(X,E1,E2,L) if E1 and E2 are NF2

4.8. IMPLEMENTATION OF THE RULES OF S′CK 107

representation of the conjunctions

((. . . (�1ϕ ∧�2ϕ) ∧ . . .) ∧�kϕ),

((. . . (�1�*ϕ ∧�2�*ϕ) ∧ . . .) ∧�k�*ϕ).

Proof. Dual to the proof of Fact 4.5. �

The �′ rule has the extra complication that we do not know apriori
how many premises a conclusion may have. The rule is shown below:

�
′ Σ1 : l . . . Σq : l

Γ : l
where







Γ is locally reduced, and

Σi ∈ {Σ1, . . . ,Σq} iff
Σi

Γ is a good instance of �i

In other words, if we start with a conclusion Γ, for each formula of the
form �iψ in ϕ there is a premise ψ,∆, where ∆ consists of all formulæ ζ

such that there is a formula of the form ♦iζ in Γ. In the implementation L
represents Γ and k(A,X) represents �iψ.

The rule �′ is processed in three parts. First there is a test to verify
that the sequent L is a NF2 representation of a locally reduced sequent
and contains at least one formula of the form k(A,X). This is done by the
predicate is locally reduced/1. Second, the collections of all formulæ of the
form k(A,X) or p(A,X) are gathered. This is done by the predicate get kp/3.
The third and final part is the construction of the list of all good premises
(see Definition 3.15.) It is performed with the predicate get premises/5.

The main predicate is k rule(L,Lx,N) where L is the conclusion. The
term Lx is to be instantiated with a list of terms of the form ap(A,Ls),
where A is an agent and Ls is a premise of L by rule �′, and N is to
be instantiated with the total number of premises. We do not use just
a list of premises as in the other rules because we need the information
of the i-successors (see Section 3.6) to be able to eventually construct a
countermodel. Incidentally, in tableaux-systems this information is also
necessary but to track “unfulfilled eventualities” [1, 78].

108 CHAPTER 4. NOTES ON THE IMPLEMENTATION

1. k rule(L1,Lx,N) :- locally reduced(L), !, get kp(L,L1,L2),
get premises(L1,L2,Lxa,0,N), sort list2(Lxa,Lx).

2. sort list2([],[]).
3. sort list2([ap(A,L1)|T1],[ap(A,L2)|T2]) :- sort list(L1,L2),

sort list2(T1,T2).

Fig. 4.25: The implementation of rule �
′.

The implementation of the �′ rule is shown in Figure 4.25.

Now we will see in some detail the three parts of the rule. The imple-
mentation of the first part, locally reduced/1 is shown in Figure 4.26. The
predicate succeeds if the parameter L is a sequent in NF2 which is locally
reduced and has at least one term of the form k(A,X).

1. locally reduced([]) :- member(k(,),L),
quasi locally reduced(L).

2. quasi locally reduced([],[]).
3. quasi locally reduced([H|T]) :- quasi lr(H), quasi locally reduced(T).

4. quasi lr(p(,)).
5. quasi lr(k(,)).
6. quasi lr(plit()).
7. quasi lr(nlit()).

Fig. 4.26: The implementation of predicate locally reduced/1.

The call to the predicate locally reduced/1 just tests whether there is at
least one formula of the form k(N,X) in L (clause 1) and all formulæ of L
are literals or formulæ of the form k(N,X) or p(N,X) (clauses 2–7.)

The second part of the implementation of the �′ rule is performed by
the predicate get kp/3. Once the predicate locally reduced/1 has succeeded

4.8. IMPLEMENTATION OF THE RULES OF S′CK 109

with input L, the rule �′ may be applied on L (this is the reason of the cut in
clause 1 in Figure 4.25; this is a green cut, since no other rule is applicable,
and aims at avoiding useless backtracking.) The implementation is shown
in Figure 4.27.

1. get kp([],[],[]).
2. get kp([k(N,X)|T],[k(N,X)|T1],L2) :- get kp(T,T1,L2).
3. get kp([p(N,X)|T],L1,[p(N,X)|T2]) :- get kp(T,L1,T2).
4. get kp([plit()|T],L1,L2]) :- get kp(T,L1,L2).
5. get kp([nlit()|T],L1,L2]) :- get kp(T,L1,L2).

Fig. 4.27: The implementation of predicate get kp/3.

This predicate instantiates L2 with a list of all formulæ of the form
k(A,X) contained in L and L3 with a list of all formulæ of the form p(A,X)
contained in L.

The third part is performed by the predicate get premises(L1,L2,Lx),
where L1 and L2 are the lists of all formulæ of the form k(A,X) and p(A,X)
respectively, obtained from predicate get kp/3 and Lx is a list of terms of the
form ap(A,P), where A is an agent and P is a premise. The implementation
of this rule is shown in Figure 4.28.

1. get premises([], ,[]).
2. get premises([k(N,X)|T1],L,[ap(N,[X|T2])|T3]) :- get p(N,L,T2),

get premises(T1,L,T3).

4. get p(,[],[]).
5. get p(N,[p(N,X)|T1],[X|T2]) :- !, get p(N,T1,T2).
6. get p(N,[|T],L) :- !, get p(N,T,L).

Fig. 4.28: The implementation of predicate get premises/5.

The procedure is simple: for each formula k(A,X) in list L1, a list [X|T]

110 CHAPTER 4. NOTES ON THE IMPLEMENTATION

must be constructed, where T is the collection of all formulæ Y such that
p(A,Y) is in L2. This is done by predicate get p(A,L2,T), where L2 is the
list obtained from predicate get kp. The variable T is instantiated to the
collection of formulæ described above.

The remaining rules interact with annotations. We begin with rule rep′:

rep′
Γ, �* [H|Γ]ϕ : l

In this case, it is necessary to check whether the context Γ : l is in the
annotation.

The predicate rep rule/2 does not require much explanation. The input
is the list L containing the sequent we want to test for repetition and the
list A containing its annotation. The context is obtained with the predicate
get uset/2, which just eliminates the annotated formula from L. Finally, the
resulting contextis checked for membership in the annotation A.

The implementation is shown in Figure 4.29. Although all clauses have
been put together, the get uset/2 predicate is in the main module and
the rule rep/2 predicate, as all predicates implementing rules, is in the
mod proof module. The cuts are put only to eliminate redundant back-
tracking.

1. rep rule(L,A) :- get uset(L,C), member(C,A), !.

2. get uset(L,C) :- drop(L,a(),C), sort list(C1,C).

Fig. 4.29: The implementation of rule rep′.

In the case of the rule foc′, we have to look in the priority list which
formula is the first one and to change the list afterwards. The implemen-
tation of the rule is in predicate foc rule/4 of module mod proof. Predicate
foc(L1,L2,P1,P2), where L1, P1 and L2, P2 are the sequents and the prior-
ity lists before and after the rule has been applied. If there is no focusable
formula in L1 the predicate fails. The implementation is in Figure 4.30.

4.9. IMPLEMENTATION OF THE DECISION PROCEDURE 111

1. foc rule(, ,[],) :- !, fail.
2. foc rule(L1,L2,[H|T],P) :- foc rule(L1,L1a,H), !,

append(T,[H],P), sort list(L1a,L2).
3. foc rule(L1,L2,[H|T1],[H|T2]) :- foc rule(L1,L2,T1,T2).

4. foc rule([], ,) :- !, fail.
5. foc rule([c(X)|T],[a(X)|T],c(X)).
6. foc rule([H|T1],[H|T2],F) :- foc rule(T1,T2,F).

Fig. 4.30: The implementation of rule rep′.

The cuts in clauses 1 and 4 are to avoid useless backtracking. These
are green cuts. The cut in clause 2 is a red cut to rule out redundant
backtracking. This cut commits the program to the first solution found.
When predicate foc rule(L1,L2,P1,P2) is called, for each formula F in the
annotation P1, the predicate foc rule(L1,L1a,F) is called. If F is in L1, then
clause 5 succeeds, the list is rearranged, and clause 2 succeeds. Otherwise,
when all formulæ of L1 have been searched (clause 6), clause 4 fails and a
new formula of P1 is tested (clause 3). If none of the formulæ of P1 is in
L1, the predicate fails (clause 1.)

The last implementation of a rule to be analysed is that of �* ′
H . Not

surprisingly, its implementation is very similar to that of �* ′. It is shown in
Figure 4.31.

The a unfold/3 predicate is entirely analogous to the predicate c rule/3,
seen above (see Figure 4.24.)

4.9 Implementation of the Decision Procedure

The main part of the program is the decision procedure, which is a straight-
forward implementation of Algorithm 3.42 of Chapter 3. We will explain
here a simplified version of the procedure, where the list of parameters has
been reduced to its essential elements, i.e., all the arguments needed for

112 CHAPTER 4. NOTES ON THE IMPLEMENTATION

1. a rule(L1,L2,L3) :- a rule1(L1,L2a,L3a),
no dup(L2a,L2b), no dup(L3a,L3b),
sort list(L2b,L2), sort list(L3b,L3).

2. a rule1([], ,) :- !, fail.
3. a rule1([a(X)|T],[E1|T],[E2|T]) :- a unfold(X,E1,E2).
4. a rule1([H|T1],[H|T2],[H|T3]) :- a rule1(T1,T2,T3).

5. a unfold(X,E1,E2) :- agents(L), a unfold(X,E1,E2,L).

6. a unfold(X,k(N,X),k(N,a(X)),[N]).
7. a unfold(X,y(k(N,X),Z1),y(k(N,a(X)),Z2),[N|T]) :- a unfold(X,Z1,Z2,T).

Fig. 4.31: The implementation of rule �*
′
H .

the logs of the proof will be omitted. The complete listing may be found
in Appendix A.

The decision procedure begins by calling the predicate proof search(L,R),
where L is the sequent in NF2 and R is a variable with will be instantiated
with 0 if the proof is successful or 1 if it is not.

The first part is shown in Figure 4.32.

The predicate get ck(L,P) extracts all occurrences of subformulæ of the
form c(X) of L and collects them in P. It is used to construct the priority
list of the formulæ to be focused.

The call to the predicate proof search(L,P,A,K,R) starts the actual deci-
sion procedure. The parameters are the following ones:

• L is the sequent whose validity we want to establish.

• P is the priority list.

• A is the annotation, expressed as a list of lists of formulæ.

• K is the code of the current node. It is a natural number.

4.9. IMPLEMENTATION OF THE DECISION PROCEDURE 113

1. proof search(L,R) :- get ck(L,P), seq2tring(L,S),
proof search(L,S,P,[],[],”,0,R,0).

2. get ck([],[]).
3. get ck([plit()|T],L) :- get ck(T,L).
4. get ck([nlit()|T],L) :- get ck(T,L).
5. get ck([(X V Y)|T],L) :- get ck([X,Y|T],L).
6. get ck([(X & Y)|T],L) :- get ck([X,Y|T],L).
7. get ck([k(,X)|T],L) :- get ck([X|T],L).
8. get ck([p(,X)|T],L) :- get ck([X|T],L).
9. get ck([u(X)|T],L) :- get ck([X|T],L).
10. get ck([c(X)|T1],[c(X)|T2]) :- get ck([X|T1],T2).

Fig. 4.32: The implementation of the decision procedure, part I.

• R is a variable that will be instantiated to 0 is the sequent is valid
and to 1 otherwise.

The actual implementation uses more parameters to produce the final
output, as shown in Section 4.5. From the point of view of the implemen-
tation of the proof system, the only parameters that are strictly necessary
are these ones. In addition to this, to implement Algorithm 3.42, we need
a way to determine cyclicity. It is thus necessary to store some extra infor-
mation, what is done in the tables history/3 and parent/2. The former table
has infomation of nodes that are conclusions of the �′ rules (recall that in
Algorithm 3.42 cyclicity is tested only for such nodes) and the latter stores
the topography of the tree.

The three parameters of the table history/3 are (L,A,K), where

• L is sequent in NF2 without literals and annotated formulæ.

• A is the annotation in NF2.

• K is the code of the node, as before.

The implementation of the test for cyclicity is shown in Figure 4.33.

114 CHAPTER 4. NOTES ON THE IMPLEMENTATION

1. is cyclic(L,P,K0,K) :- get context(L,C), history(C,P,K0),
ancestor(K0,K).

2. ancestor(K0,K1) :- parent(K0,K1).
3. ancestor(K0,K1) :- parent(K1a,K1), ancestor(K0,K1a).

4. get context([],[]) :- !.
5. get context([a(X)|T],[c(X)|T]) :- !.
6. get context([H|T1],[H|T2]) :- !, get context(T1,T2).

Fig. 4.33: The implementation of the test for cyclicity.

The simplified code of the decision procedure is shown in Figure 4.34.
The complete source code can be found in Appendix A.

The last clause (clause 12) succeeds only when all others have failed. It
succeeds with irreducible nodes. In the case of the premises of rule �′, a
disjunctive proof process is started. The process is shown in Figure 4.35

Once the list of all possible premises have been constructed with pred-
icates k rule/3 and get codes/5, predicate or proof search(Lx,P,A,Kx,1,R) is
called. Here Lx is a list of all premises, P is the priority list, A is the anno-
tation (if any), Kx is a list of terms of the form ap(A,K) where A is an agent
(which is not used in this predicate) and K is the code of an A-premise.
R gets instantiated to 0 if some sequent of the list Lx is proved and to 1
otherwise. The fifth predicate has the current value of R. The initial value
is 1. This predicate calls proof search/5 for each sequent of the list Lx.

Some explanation about the encoding of the nodes is in order. In the
case of binary trees, it is enough to have a binary word: the code 〈〉 is the
code of the root, the two child nodes are 〈0〉 and 〈1〉, the two child nodes
of 〈0〉 are 〈00〉 and 〈01〉, and so on. A binary word identifies uniquely a
node [5]. The proof tree of a preproof in S′

CK is not binary (because of rule
�′) and this coding does no longer work. To avoid ambiguities, the codes
in the proof tree could use a separator (for instance a point) marking each
new entry. But then we have the drawback of the length of the codes for
deep trees. Therefore we chose just to assign natural numbers to the codes,

4.9. IMPLEMENTATION OF THE DECISION PROCEDURE 115

1. proof search(L, , , ,0) :- id rule(L), !.
2. proof search(L ,A ,0) :- rep rule(L,A), !.
3. proof search(L,P, ,K,1) :- is cyclic(L,P, ,K), !.
4. proof search(L,P,A,K,R) :- o rule(L,L1), !, get code(K,0,K0),

proof search(L1,P,A,K0,R).
5. proof search(L,P,A,K,R) :- y rule(L,L1,L2), !,

get code(K,0,K0), get code(K,1,K1),
proof search(L1,P,A,K0,R1),
proof search(L2,P,A,K0,R2),
R is max(R1,R2).

6. proof search(L,P,A,K,R) :- u rule(L,L1), !, get code(K,0,K0),
proof search(L1,P,A,K0,R).

7. proof search(L,P,[],K,R) :- foc rule(L,L,P,P1), !, get code(K,0,K0),
proof search(L1,P1,[],K0,R).

8. proof search(L,P,A,K,R) :- c rule(L,L1,L2), !,
get code(K,0,K0), get code(K,1,K1),
proof search(L1,P,A,K0,R1),
proof search(L2,P,A,K0,R2),
R is max(R1,R2).

9. proof search(L,P,A,K,R) :- a rule(L,L1,L2), !,
get code(K,0,K0), get code(K,1,K1),
proof search(L1,P,A,K0,R1),
proof search(L2,P,A,K0,R2),
R is max(R1,R2).

10. proof search(L,P,A,K,R) :- k rule(L,Lxx,N), !, assert(history(L1,P,K)),
get codes(Lxx,Lx,Kx,K),
or proof search(Lx,P,A,Kx,1,R).

11. proof search(, , , ,1) :- !.

Fig. 4.34: The implementation of the decision procedure, part II.

although this has some extra difficulties to determine the ancestor nodes,
for instance the need to have the dynamic table parent/2.

The following step is to show that this program is actually an imple-
mention of Algorithm 3.42, reproduced for convenience in Figure 4.36.

116 CHAPTER 4. NOTES ON THE IMPLEMENTATION

1. or proof search([], , , ,R,R).
2. or proof search([L|Lx],P,A,[ap(,K)|Kx],R0,R) :- focused(L), !,

proof search(L,P,A,K,R1),
R2 is min(R0,R1),
or proof search(Lx,P,A,Kx,R2,R).

3. or proof search([L|Lx],P,A,[ap(,K)|Kx],R0,R) :- !,
proof search(L,P,[],K,R1), R2 is min(R0,R1),
or proof search(Lx,P,A,Kx,R2,R).

4. focused(L) :- member(a(),L).

Fig. 4.35: The implementation of the decision procedure, part III.

Recall that a non-terminal node is one that is not cyclic and not irre-
ducible. The proof is for the simplified version. The extension of the proof
to the full version is straightforward, although rather tedious.

Proposition 4.7 The predicate proof search(L,R) is an implementation of
Algorithm 3.42. If at the end R is instantiated to 0, the execution is suc-
cessful; if it is instantiated to 1, it is failed.

Proof. It is not hard to see that as a result of the execution of predicate
get ck/2, the list P is a list containing all subformulæ of the form c(X) in L
(see Figure 4.32.)
Observe that each instance of proof search/5 corresponds to a branch of the
preproof; when a node branches out (for instance due to an application of
∧′), two calls to proof search/5 are done, one for each new branch. The
same happens in the rule �′. Besides, any terminal node closes the branch,
because either clause 3 or clause 11 (Figure 4.34) succeeds with R = 1.
Otherwise, the program will try to apply the following rules in this order:
id′, rep′, ∨′, ∧′, ♦* ′, foc′, �* ′, �* ′

H , �
′.

As long as a rule of the set {id′, rep′,∨′,∧′,♦* ′} is applicable, it will be ap-
plied (clauses 1, 2 and 4–6 of Figure 4.34.) Besides, because of the cuts, no
other rule will be applied in backtracking: the program is commited to the

4.9. IMPLEMENTATION OF THE DECISION PROCEDURE 117

1. input: a history-free sequent Γ;
2. output: a preproof D of Γ : l in S′

CK;

3. begin

4. set D := Γ : l (Γ);
5. while

6. there are non-terminal leaves in D
7. do

8. apply id′, rep′, ∨′, ∧′, ♦* ′

9 to non-terminal leaves

10. until no longer possible;

11. apply foc′ to non-terminal leaves

12 until no longer possible;

13. apply id′, rep′, ∨′, ∧′, ♦* ′, �*

14 to non-terminal leaves

15. until no longer possible;

16. apply �*
′
H to non-terminal leaves

17. until no longer possible;

18. apply ∧′ to non-terminal leaves

19. until no longer possible;

20. apply �′ to non-terminal leaves

21. until no longer possible;

22. od;

23. end.

Fig. 4.36: Algorithm to construct a preproof in CK.

first solution it finds. This represents the loop of lines 8–10 (Figure 4.36.) If
after that foc′ is applicable, then it will be applied (clause 7 of Figure 4.34.)

In the same way, as long as a rule of {id′, rep′,∨′,∧′,♦* ′,�* ′} is applicable, it
will be applied (clauses 1, 2, 4–6 and 8 of Figure 4.34; this represents the
loop of lines 13–15 of Figure 4.36.) Rule �*

′
H is only applied when none of

the others is (clause 9 of Figure 4.34.)

118 CHAPTER 4. NOTES ON THE IMPLEMENTATION

As explained in Chapter 3, after the application of rule �*
′
H , it is possible

that several instances of rule ∧′ are necessary. Finally, when no other rule
is applicable, �′ is applied (clause 10 of Figure 4.34.)

Now we show that if the variable R is instantiated to 0 the execution is
successful and if it is instantiated to 1, the execution is failed. This we do
by induction on the number of recursive calls to proof search/5.

Base case: if there is one call to proof search/5, then it must be the
case that clause 1, 2, 3, or 11 succeed, since all others call recursively the
predicate. If clause 1 or 2 succeeds, then we have either an instance of id′

or of rep′ and therefore a successful node and in both cases R is instantiated
to 0. If clauses 3 or 11 succeed we have a cyclic node or an irreducible one
and thus an unsuccessful node. The variable R is instantiated to 1.

Induction step: assume we have q + 1 calls to proof search/5.

Rules ∨′, ♦* ′ and foc′: if any of these rules is applied after a call to predicate
proof search(L,P,A,K,R), a recursive call proof search(L1,P1,A,K0,R) follows.
By induction hypothesis, if this node is successful, R will be instantiated to
0 and otherwise it will be instantiated to 1.

Rules ∧′, �*
′, and �*

′
H : if any of these rules is applied after a call to

proof search(L,P,A,K,R), two recursive calls proof search(L1,P,A1,K0,R1) and
proof search(L2,P,A2,K1,R2) respectively follow. By induction hypothesis,
the variables R1 and R2 will be instantiated to 0 or 1 depending on whether
the respective nodes are successful or unsuccessful. Since R is instantiated
to the maximum value of R1 and R2, if both premises are successful R will
be instantiated to 0 and it will be instantiated to 1 otherwise.

Rule �′: if this rule is applied after a call to proof search(L,P,A,K,R), this
yields a call to the predicate or proof search(Lx,P,A,Kx,1,R) where Lx is a
list of all premises and Kx is a list of terms of the form ap(Ag,Kn), where
Ag is an agent and Kn is the code of a Ag-premise.

Observe that the rule or proof search/5 is called with an initial value of
the comparison parameter set to 1 (the fourth parameter, see Figure 4.35.)
There is a call to proof search/5 for each one of the sequents of the list of

4.9. IMPLEMENTATION OF THE DECISION PROCEDURE 119

the first parameter (clause 13 of Figure 4.35) and the resulting value of R1
is compared to the current comparison value. If any of the premises in the
list of the first parameter succeeds, the value of the comparison parameter
is set to 0 and remains in this value. If none of the calls to proof search/5
succeeds, the value of the comparison parameter remains in 1. When the
list is empty, the value of R is set to the current comparison value. �

120 CHAPTER 4. NOTES ON THE IMPLEMENTATION

Chapter 5

Some Examples

5.1 Introduction

In this chapter we show several examples of the use of the program. The
examples range from simple ones to others that are more complex. For
typographic reasons, we have replaced in all outputs the symbol ¬ by the
symbol ˜.

Section 5.2 contains the examples. In Section 5.3 we make some com-
parisons on the performance of the program in different conditions: for
instance, the same sequent under different number of agents, the same
sequent with irrelevant formulæ, or valid sequents with the �* operator pre-
ceding the corresponding formula of a valid sequent. Section 5.4 contains
some conclusions.

5.2 Examples

We begin with two very simple examples to give a flavour of the way the
program works and the outputs it produces.

Example 5.1 We prove that the sequent {(p∨ q), (¬p∧¬q)} is valid. The
goal prove(’(p V q), (¬q & ¬p)’,ex01) stores the following output onto file
ex01.txt:

121

122 CHAPTER 5. SOME EXAMPLES

** Agents [1, 2]

** Sequent [(p V q),(~q & ~p)]

Formula Nr.1: (p V q)

OK

Formula Nr.2: (~q & ~p)

OK

** Parsing OK. Proof-search goes on.

Node <0> = [(p V q), (~q & ~p)]

OR rule yields node <1>

Node <1> = [p, q, (~q & ~p)]

AND rule yields nodes <2> and <3>

Node <2> = [~q, p, q]

instance of ID -- Node successful

Node <3> = [~p, p, q]

instance of ID -- Node successful

** Total number of nodes = 4

** Maximum height of the tree = 3

** Time elapsed = 945e-06 sec

** The sequent is valid.

Recall that the height of the tree is measured in number of nodes. The
value 3 for the height means that there are three nodes from the root to
the highest leaf, both included. ♠

Example 5.2 Consider Γ = {p, (¬p∧¬q)}, which is not valid. The output
file has the following contents:

** Agents [1, 2]

** Sequent [p, (~p & ~q)]

Formula Nr.1: p

OK

5.2. EXAMPLES 123

Formula Nr.2: (~p & ~q)

OK

** Parsing OK. Proof-search goes on.

Node <0> = [p, (~p & ~q)]

AND rule yields nodes <1> and <2>

Node <1> = [~p, p]

instance of ID -- Node successful

Node <2> = [~q, p]

irreducible node -- Node unsuccessful

** countermodel: M=(S,R,V)

S = {s0}

R = {R1,R2}

R1= {}

R2= {}

V = {(s0,[q])}

** Total number of nodes = 3

** Maximum height of the tree = 2

** Time elapsed = 875e-06 sec

** The sequent is not valid.

♠

Example 5.3 We consider the sequent {�1¬p,♦*�1¬p} with one single
agent.

** Agents [1]

** Sequent [K1~p, UK1~p]

Formula Nr.1: K1~p

OK

124 CHAPTER 5. SOME EXAMPLES

Formula Nr.2: UK1~p

OK

** Parsing OK. Proof-search goes on.

Node <0> = [K1~p, UK1~p]

U rule yields node <1>

Node <1> = [K1~p, P1UK1~p, P1K1~p]

BOX rule yields node <2>

Node <2> = [~p, UK1~p, K1~p]

U rule yields node <3>

Node <3> = [~p, K1~p, P1UK1~p, P1K1~p]

BOX rule yields node <4>

Node <4> = [~p, UK1~p, K1~p]

U rule yields node <5>

Node <5> 0 [~p, K1~p, P1UK1~p, P1K1~p]

cyclic node: twin node is <3> -- Node unsuccessful

** countermodel: M=(S,R,V)

S = {s0,s1,s2}

R = {R1}

R1= {(s0,s1),(s1,s2),(s2,s2)}

V = {(s0,[]),

(s1,[p]),

(s2,[p])}

** Total number of nodes = 6

** Maximum height of the tree = 6

** Time elapsed = 1707e-06 sec

** The sequent is not valid.

♠

5.2. EXAMPLES 125

Example 5.4 We try to prove the same sequent as in the last example,
namely {�1¬p,♦*�1¬p} with two agents.

** Agents [1, 2]

** Sequent [K1~p, UK1~p]

Formula Nr.1: K1~p

OK

Formula Nr.2: UK1~p

OK

** Parsing OK. Proof-search goes on.

Node <0> = [K1~p, UK1~p]

U rule yields node <1>

Node <1> = [K1~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <2>

Node <2> = [K1~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <3>

Node <3> = [K1~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

BOX rule yields node <4>

Node <4> = [~p, UK1~p, K1~p]

U rule yields node <5>

Node <5> = [~p, K1~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <6>

Node <6> = [~p, K1~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <7>

Node <7> = [~p, K1~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

BOX rule yields node <8>

Node <8> = [~p, UK1~p, K1~p]

U rule yields node <9>

126 CHAPTER 5. SOME EXAMPLES

Node <9> = [~p, K1~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <10>

Node <10> = [~p, K1~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <11>

Node <11> 0 [~p, K1~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

cyclic node: twin node is <7> -- Node unsuccessful

** countermodel: M=(S,R,V)

S = {s0,s1,s2}

R = {R1,R2}

R1= {(s0,s1),(s1,s2),(s2,s2)}

R2= {}

V = {(s0,[]),

(s1,[p]),

(s2,[p])}

** Total number of nodes = 12

** Maximum height of the tree = 12

** Time elapsed = 3098e-06 sec

** The sequent is not valid.

♠

Example 5.5 Consider the sequent {�1¬p,♦*�1¬p,�2¬p,♦*�2¬p} with
two agents.

** Agents [1, 2]

** Sequent [K1~p, UK1~p,K2~p,UK2~p]

Formula Nr.1: K1~p

OK

Formula Nr.2: UK1~p

OK

5.2. EXAMPLES 127

Formula Nr.3: K2~p

OK

Formula Nr.4: UK2~p

OK

** Parsing OK. Proof-search goes on.

Node <0> = [K1~p, UK1~p, K2~p, UK2~p]

U rule yields node <1>

Node <1> = [UK2~p, K1~p, K2~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <2>

Node <2> = [UK2~p, K1~p, K2~p, (P1K1~p V P2K1p), P1UK1p, P2UK1p]

OR rule yields node <3>

Node <3> = [UK2~p, K1~p, K2~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

U rule yields node <4>

Node <4> = [K1~p, K2~p, (P1UK2~p V P2UK2~p), (P1K2~p V P2K2~p), P1UK1~p,

P1K1~p, P2UK1~p, P2K1~p]

OR rule yields node <5>

Node <5> = [K1~p, K2~p, (P1K2~p V P2K2~p), P1UK1~p, P1UK2~p, P1K1~p,

P2UK1~p, P2UK2~p, P2K1~p]

OR rule yields node <6>

Node <6> = [K1~p, K2~p, P1UK1~p, P1UK2~p, P1K1~p, P1K2~p, P2UK1~p, P2UK2~p,

P2K1~p, P2K2~p]

BOX rule yields nodes <7>, <8>

Node <7> = [~p, UK1~p, UK2~p, K1~p, K2~p]

U rule yields node <9>

Node <9> = [~p, UK2~p, K1~p, K2~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <10>

Node <10> = [~p, UK2~p, K1~p, K2~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <11>

128 CHAPTER 5. SOME EXAMPLES

Node <11> = [~p, UK2~p, K1~p, K2~p, P1UK1~p, P1K1~~p, P2UK1~p, P2K1~p]

U rule yields node <12>

Node <12> = [~p, K1~p, K2~p, (P1UK2~p V P2UK2~p), (P1K2~p V P2K2~p),

P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

OR rule yields node <13>

Node <13> = [~p, K1~p, K2~p, (P1K2~p V P2K2~p), P1UK1~p, P1UK2~p, P1K1~p,

P2UK1~p, P2UK2~p, P2K1~p]

OR rule yields node <14>

Node <14> = [~p, K1~p, K2~p, P1UK1~p, P1UK2~p, P1K1~p, P1K2~p, P2UK1~p,

P2UK2~p, P2K1~p, P2K2~p]

BOX rule yields nodes <15>, <16>

Node <15> = [~p, UK1~p, UK2~p, K1~p, K2~p]

U rule yields node <17>

Node <17> = [~p, UK2~p, K1~p, K2~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <18>

Node <18> = [~p, UK2~p, K1~p, K2~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <19>

Node <19> = [~p, UK2~p, K1~p, K2~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

U rule yields node <20>

Node <20> = [~p, K1~p, K2~p, (P1UK2~p V P2UK2~p), (P1K2~p V P2K2~p),

P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

OR rule yields node <21>

Node <21> = [~p, K1~p, K2~p, (P1K2~p V P2K2~p), P1UK1~p, P1UK2~p, P1K1~p,

P2UK1~p, P2UK2~p, P2K1~p]

OR rule yields node <22>

Node <22> 0 [~p, K1~p, K2~p, P1UK1~p, P1UK2~p, P1K1~p, P1K2~p, P2UK1~p,

P2UK2~p, P2K1~p, P2K2~p]

cyclic node: twin node is <14> -- Node unsuccessful

Node <16> = [~p, UK1~p, UK2~p, K1~p, K2~p]

U rule yields node <23>

5.2. EXAMPLES 129

Node <23> = [~p, UK2~p, K1~p, K2~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <24>

Node <24> = [~p, UK2~p, K1~p, K2~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <25>

Node <25> = [~p, UK2~p, K1~p, K2~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

U rule yields node <26>

Node <26> = [~p, K1~p, K2~p, (P1UK2~p V P2UK2~p), (P1K2~p V P2K2~p),

P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

OR rule yields node <27>

Node <27> = [~p, K1~p, K2~p, (P1K2~p V P2K2~p), P1UK1~p, P1UK2~p, P1K1~p,

P2UK1~p, P2UK2~p, P2K1~p]

OR rule yields node <28>

Node <28> 0 [~p, K1~p, K2~p, P1UK1~p, P1UK2~p, P1K1~p, P1K2~p, P2UK1~p,

P2UK2~p, P2K1~p, P2K2~p]

cyclic node: twin node is <14> -- Node unsuccessful

Node <8> = [~p, UK1~p, UK2~p, K1~p, K2~p]

U rule yields node <29>

Node <29> = [~p, UK2~p, K1~p, K2~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <30>

Node <30> = [~p, UK2~p, K1~p, K2~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <31>

Node <31> = [~p, UK2~p, K1~p, K2~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

U rule yields node <32>

Node <32> = [~p, K1~p, K2~p, (P1UK2~p V P2UK2~p), (P1K2~p V P2K2~p),

P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

OR rule yields node <33>

Node <33> = [~p, K1~p, K2~p, (P1K2~p V P2K2~p), P1UK1~p, P1UK2~p, P1K1~p,

P2UK1~p, P2UK2~p, P2K1~p]

OR rule yields node <34>

130 CHAPTER 5. SOME EXAMPLES

Node <34> = [~p, K1~p, K2~p, P1UK1~p, P1UK2~p, P1K1~p, P1K2~p, P2UK1~p,

P2UK2~p, P2K1~p, P2K2~p]

BOX rule yields nodes <35>, <36>

Node <35> = [~p, UK1~p, UK2~p, K1~p, K2~p]

U rule yields node <37>

Node <37> = [~p, UK2~p, K1~p, K2~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <38>

Node <38> = [~p, UK2~p, K1~p, K2~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <39>

Node <39> = [~p, UK2~p, K1~p, K2~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

U rule yields node <40>

Node <40> = [~p, K1~p, K2~p, (P1UK2~p V P2UK2~p), (P1K2~p V P2K2~p),

P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

OR rule yields node <41>

Node <41> = [~p, K1~p, K2~p, (P1K2~p V P2K2~p), P1UK1~p, P1UK2~p, P1K1~p,

P2UK1~p, P2UK2~p, P2K1~p]

OR rule yields node <42>

Node <42> 0 [~p, K1~p, K2~p, P1UK1~p, P1UK2~p, P1K1~p, P1K2~p, P2UK1~p,

P2UK2~p, P2K1~p, P2K2~p]

cyclic node: twin node is <34> -- Node unsuccessful

Node <36> = [~p, UK1~p, UK2~p, K1~p, K2~p]

U rule yields node <43>

Node <43> = [~p, UK2~p, K1~p, K2~p, (P1UK1~p V P2UK1~p), (P1K1~p V P2K1~p)]

OR rule yields node <44>

Node <44> = [~p, UK2~p, K1~p, K2~p, (P1K1~p V P2K1~p), P1UK1~p, P2UK1~p]

OR rule yields node <45>

5.2. EXAMPLES 131

Node <45> = [~p, UK2~p, K1~p, K2~p, P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

U rule yields node <46>

Node <46> = [~p, K1~p, K2~p, (P1UK2~p V P2UK2~p), (P1K2~p V P2K2~p),

P1UK1~p, P1K1~p, P2UK1~p, P2K1~p]

OR rule yields node <47>

Node <47> = [~p, K1~p, K2~p, (P1K2~p V P2K2~p), P1UK1~p, P1UK2~p, P1K1~p,

P2UK1~p, P2UK2~p, P2K1~p]

OR rule yields node <48>

Node <48> 0 [~p, K1~p, K2~p, P1UK1~p, P1UK2~p, P1K1~p, P1K2~p, P2UK1~p,

P2UK2~p, P2K1~p, P2K2~p]

cyclic node: twin node is <34> -- Node unsuccessful

** countermodel: M=(S,R,V)

S = {s0,s1,s2,s3,s4,s5,s6}

R = {R1,R2}

R1= {(s0,s1),(s4,s5),(s6,s5),(s5,s5),(s1,s2),(s3,s2),(s2,s2)}

R2= {(s0,s4),(s4,s6),(s6,s6),(s5,s6),(s1,s3),(s3,s3),(s2,s3)}

V = {(s0,[]),

(s1,[p]),

(s2,[p]),

(s3,[p]),

(s4,[p]),

(s5,[p]),

(s6,[p])}

** Total number of nodes = 49

** Maximum height of the tree = 21

** Time elapsed = 22335e-06 sec

** The sequent is not valid.

♠

In the next example the proof uses annotations.

Example 5.6 Consider the sequent {�* ((p ∨ q) ∨ (¬q ∧ ¬p))} (this is the

132 CHAPTER 5. SOME EXAMPLES

sequent of Example 5.2 with the �* operator preceding it.)

** Agents [1, 2]

** Sequent [C((p V q) V (~q & ~p))]

Formula Nr.1: C((p V q) V (~q & ~p))

OK

** Parsing OK. Proof-search goes on.

Node <0> = [C((p V q) V (~q & ~p))]

FOC rule yields node <1>

Node <1> = [C[H]((p V q) V (~q & ~p))]

H = []

C[H] rule yields nodes <2> and <3>

Node <2> = [(K1((p V q) V (~q & ~p)) & K2((p V q) V (~q & ~p)))]

AND rule yields nodes <4> and <5>

Node <4> = [K1((p V q) V (~q & ~p))]

BOX rule yields node <6>

Node <6> = [((p V q) V (~q & ~p))]

OR rule yields node <7>

Node <7> = [(p V q), (~q & ~p)]

OR rule yields node <8>

Node <8> = [p, q, (~q & ~p)]

AND rule yields nodes <9> and <10>

Node <9> = [~q, p, q]

instance of ID -- Node successful

Node <10> = [~p, p, q]

instance of ID -- Node successful

Node <5> = [K2((p V q) V (~q & ~p))]

BOX rule yields node <11>

5.2. EXAMPLES 133

Node <11> = [((p V q) V (~q & ~p))]

OR rule yields node <12>

Node <12> = [(p V q), (~q & ~p)]

OR rule yields node <13>

Node <13> = [p, q, (~q & ~p)]

AND rule yields nodes <14> and <15>

Node <14> = [~q, p, q]

instance of ID -- Node successful

Node <15> = [~p, p, q]

instance of ID -- Node successful

Node <3> = [(K1C[H]((p V q) V (~q & ~p)) & K2C[H]((p V q) V (~q & ~p)))]

H = [[]]

AND rule yields nodes <16> and <17>

Node <16> = [K1C[H]((p V q) V (~q & ~p))]

H = [[]]

BOX rule yields node <18>

Node <18> = [C[H]((p V q) V (~q & ~p))]

H = [[]]

instance of REP -- Node successful

Node <17> = [K2C[H]((p V q) V (~q & ~p))]

H = [[]]

BOX rule yields node <19>

Node <19> = [C[H]((p V q) V (~q & ~p))]

H = [[]]

instance of REP -- Node successful

** Total number of nodes = 20

** Maximum height of the tree = 8

** Time elapsed = 3145e-06 sec

** The sequent is valid.

♠

134 CHAPTER 5. SOME EXAMPLES

In the next two examples we use the same sequent, namely {�* p,♦*¬p},
first with one agent and then with two.

Example 5.7 We prove the validity of the sequent {�* p,♦*¬p} for the case
of one agent.

** Agents [1]

** Sequent [Cp, U~p]

Formula Nr.1: Cp

OK

Formula Nr.2: U~p

OK

** Parsing OK. Proof-search goes on.

Node <0> = [Cp, U~p]

U rule yields node <1>

Node <1> = [Cp, P1~p, P1U~p]

FOC rule yields node <2>

Node <2> = [C[H]p, P1~p, P1U~p]

H = []

C[H] rule yields nodes <3> and <4>

Node <3> = [K1p, P1~p, P1U~p]

BOX rule yields node <5>

Node <5> = [~p, p, U~p]

instance of ID -- Node successful

Node <4> = [K1C[H]p, P1~p, P1U~p]

H = [[P1~p, P1U~p]]

BOX rule yields node <6>

Node <6> = [C[H]p, ~p, U~p]

H = [[P1~p, P1U~p]]

U rule yields node <7>

5.2. EXAMPLES 135

Node <7> = [C[H]p, ~p, P1~p, P1U~p]

H = [[P1~p, P1U~p]]

instance of REP -- Node successful

** Total number of nodes = 8

** Maximum height of the tree = 6

** Time elapsed = 1460e-06 sec

** The sequent is valid.

♠

Example 5.8 Consider the same sequent of Example 5.2, i.e. {�* p,♦*¬p},
for the case of two agents.

** Agents [1, 2]

** Sequent [Cp, U~p]

Formula Nr.1: Cp

OK

Formula Nr.2: U~p

OK

** Parsing OK. Proof-search goes on.

Node <0> = [Cp, U~p]

U rule yields node <1>

Node <1> = [Cp, (P1~p V P2~p), (P1U~p V P2U~p)]

OR rule yields node <2>

Node <2> = [Cp, (P1U~p V P2U~p), P1~p, P2~p]

OR rule yields node <3>

Node <3> = [Cp, P1~p, P1U~p, P2~p, P2U~p]

FOC rule yields node <4>

Node <4> = [C[H]p, P1~p, P1U~p, P2~p, P2U~p]

H = []

C[H] rule yields nodes <5> and <6>

136 CHAPTER 5. SOME EXAMPLES

Node <5> = [P1~p, P1U~p, P2~p, P2U~p, (K1p & K2p)]

AND rule yields nodes <7> and <8>

Node <7> = [K1p, P1~p, P1U~p, P2~p, P2U~p]

BOX rule yields node <9>

Node <9> = [~p, p, U~p]

instance of ID -- Node successful

Node <8> = [K2p, P1~p, P1U~p, P2~p, P2U~p]

BOX rule yields node <10>

Node <10> = [~p, p, U~p]

instance of ID -- Node successful

Node <6> = [P1~p, P1U~p, P2~p, P2U~p, (K1C[H]p & K2C[H]p)]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

AND rule yields nodes <11> and <12>

Node <11> = [K1C[H]p, P1~p, P1U~p, P2~p, P2U~p]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

BOX rule yields node <13>

Node <13> = [C[H]p, ~p, U~p]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

U rule yields node <14>

Node <14> = [C[H]p, ~p, (P1~p V P2~p), (P1U~p V P2U~p)]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

OR rule yields node <15>

Node <15> = [C[H]p, ~p, (P1U~p V P2U~p), P1~p, P2~p]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

OR rule yields node <16>

Node <16> = [C[H]p, ~p, P1~p, P1U~p, P2~p, P2U~p]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

instance of REP -- Node successful

5.3. SOME COMPARISONS ON THE PERFORMANCE 137

Node <12> = [K2C[H]p, P1~p, P1U~p, P2~p, P2U~p]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

BOX rule yields node <17>

Node <17> = [C[H]p, ~p, U~p]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

U rule yields node <18>

Node <18> = [C[H]p, ~p, (P1~p V P2~p), (P1U~p V P2U~p)]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

OR rule yields node <19>

Node <19> = [C[H]p, ~p, (P1U~p V P2U~p), P1~p, P2~p]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

OR rule yields node <20>

Node <20> = [C[H]p, ~p, P1~p, P1U~p, P2~p, P2U~p]

H = [[P1~p, P1U~p, P2~p, P2U~p]]

instance of REP -- Node successful

** Total number of nodes = 21

** Maximum height of the tree = 11

** Time elapsed = 4451e-06 sec

** The sequent is valid.

♠

5.3 Some Comparisons on the Performance

We have run some examples varying the parameters, namely the number of
agents. We have that an increment of agents increases linearly the execution
time. This is not a serious problem. All the same, the number of agents
could be limited to the agents the actually appear in the sequent. We have
not done this optimisation.

The following table shows the influence of increasing the number of
agents for three different sequents, namely {�1¬p,♦*�1¬p} (used in exam-
ples 3 and 4), {�* p,♦*¬p} (used in examples 7 and 8) and {�* (p∨ q),♦* (¬q∧
¬p)}. We have the following results:

138 CHAPTER 5. SOME EXAMPLES

sequent agents size height time (µsec)

1 6 6 0
{�1¬p,♦*�1¬p} 2 12 12 0

3 18 18 1,6×103

1 16 11 1,5×103

{♦*¬p,�* p} 2 21 15 62×103

3 932 46 9,27×106

1 14 7 821
{�* (p ∨ q),♦* (¬q ∧ ¬p} 2 37 12 2,65×103

3 68 17 7,28×103

In the presence of ♦* -formulæ or �* -formulæ the addition of agents has
a linear effect on the height of the tree. In the presence of �* -formulæ or ♦* -
formulæ containing branching subformulæ, the number of nodes of the trees
increment in a polynomial way. This is acceptable, although in many cases
the subtrees are copies of each other and this could be used to optimise the
program.

In the next examples we introduce redundant formulæ in the sequents
to see their effects on the size and height of the tree. We will work with two
agents in all cases and we denote by Γ the sequent {�* (p ∧ q),♦*¬p,♦*¬q},
to which we will add redundant formulæ. We have:

sequent size height time (msec)

Γ 34 17 3.11
Γ,♦* v1,♦* v2 52 29 9.57
Γ,♦* (v1 ∧ v2 73 24 10.64
Γ,♦* (�* v1 ∧ v2) 73 24 10.92
Γ,♦* (�* v1 ∧ �* v2) 73 24 10.92
Γ, ((v1 ∨ v2) ∨ v3) 88 28 12.30
Γ,�1�2(v1 ∧ v2) 154 26 21.58
Γ, ((v1 ∧ v2) ∧ v3) 260 28 60.92
Γ, (v1 ∧ v2), (v3 ∧ v4) 347 28 103.91
Γ,�* v1 718 29 227.22
Γ,�* v1,�* v2 4422 31 14278.81

Example 5.9 We perform a proof of the induction axiom (�ϕ ∧ �* (ϕ ⇒
�ϕ)) ⇒ �*ϕ. The corresponding sequent is {♦¬p, ♦* (p ∧ ♦¬p), �* p}. The
results are shown next.

5.4. SOME CONCLUSIONS 139

agents size height time (µsec)

1 10 7 2,75×103

2 28 14 10,74×103

♠

We finish with a couple of examples where the performance of the pro-
gram is less than optimal. This examples were run only for the second
version.

Example 5.10 We try to prove the sequents ♦*�*¬p, �*¬p and ♦*�* (¬p ∧
q), �*¬p. The change of the first formula results in a much worse perfor-
mance. This was also observed by Schwendimann [78]: branching formulæ
worsen the performance.

sequent size height time (msec)

♦*�*¬p, �*¬p 226 30 80.41
♦*�* (¬p ∧ q), �*¬p 2792 44 22.54×103

♠

5.4 Some Conclusions

We have observed, as noted by Schwendimann [78], that the main problem
regarding complexity are the branching rules, especially �* , whose premises
increase polynomially with the number of agents. There are some possibili-
ties of optimisation. For instance, agents that do not appear in the sequent
are not needed in the proof, although they could increase the number of
nodes in the tree.

Besides, the possibility of checking whether a branch has already ap-
peared could increase the efficiency of the method, since it is not uncommon
that the same branches appear repeatedly.

140 CHAPTER 5. SOME EXAMPLES

Chapter 6

Conclusions and Further

Work

6.1 Introduction

6.2 A Comparison With Other Approaches

We have found no other implementation of a calculus for common knowl-
edge. Further, we know of no other implementable calculus for common
knowledge: some of them have cuts [28, 79], and others have infinitary
rules [2, 14, 48]. The only other implementation of common knowledge we
are aware of is the tableau system of Abate, Goré and Widmann [1]. It is
an adaptation of the system of Schwendimann for PLTL [78]. We describe
briefly the main features of this system next.

A tableau [35, 78] is a single-rooted finite tree where each node is labelled
with a set of formulæ that is derived from the set of formulæ of its parent
node. Tableaux systems branch out in instances of disjunctive rules like ∨
or ♦* . Thus there is a duality between the trees that represent preproofs in
our system and tableaux. We will refer henceforth exclusively to tableaux
for CK.

There are several similarities between the tableau approach and ours.

141

142 CHAPTER 6. CONCLUSIONS AND FURTHER WORK

Both are “one-pass” procedures, in the sense that it is not necessary to
construct the whole tree and to make a second pass on it to prune useless
parts of it as for instance in [27, 59]. The only information which is needed
during the construction of the trees is the information of the current branch,
in both cases to be able to detect loops. In our case we store the whole
tree, but this is not necessary for the decision procedure. It is necessary
only if we want to extract a derivation in SCK if the sequent was valid or a
countermodel if it was not, as described in Chapter 4.

There are also some important differences. In our case there is a rel-
atively simple proof system underlying the implementation. The nodes of
the underlying preproofs, to which the rules are applied, are extended se-
quents (see Chapter 3, Section 3.5), i.e., sequents together with a priority
list. In the case of the tableau system, the rules are applied on tableau
nodes, that are rather complex objects, which require some devices like
“histories” to spot repetitions and variables, which pass information from
children to parents in the tableau. Another difference is that the procedure
we follow allows the construction of a countermodel when the sequent is
not valid. To extract a countermodel from a tableau system, the whole
derivation should be stored. This is not done in the tableau system we
comment.

There is a direct correspondence of the rules of the tableau system and
the rules of S′

CK as shown below.

Tableau S′
CK

id id′

∨ ∨′

∧ ∧′

[C] �*

〈C〉 ♦*
〈a〉 �′

Besides, the tableau systems has rules [E] and 〈E〉 for formulæ that cor-
respond to the abbreviations � and ♦ respectively (see Chapter 3, page 25.)
The rule 〈a〉 is an existential branching rule, as is �′ in S′

CK.

6.2. A COMPARISON WITH OTHER APPROACHES 143

A node in the tableau system has the form

(Γ :: HAg,HCr :: mrk, uev)

Where:

• Γ is a set of formulæ.

• HAg is a partial function from formulæ to agents. This function is
used in the 〈E〉 rule. When this rule is applied to a formula ♦♦*ϕ,
it takes the value of the node that is “tracking” the resulting ♦i♦*ϕ
formula.

• HCr is a history containing information concerning the current branch.
It contains lists with formulæ of the form ♦iϕ and �iϕ. New sets of
formulæ are added in each instance of 〈a〉. It is used to detect loops
and to “block” formulæ of the form ♦iϕ. A formula of this form is
blocked by an ancestor instance of 〈a〉 if the formula is already active
in the ancestor rule instance of 〈a〉. A blocked formula is not active
in another instance of the 〈a〉 rule.

• mrk is a variable that indicates whether the node is “marked” (closed)
or not. A node is closed if (1) it contains complementary literals (i.e.,
it is inconsistent), (2) it is not an existential node and all its child
nodes are closed, or (3) it is an existential node and some of its childs
is closed.

• uev (“unfulfilled eventualities”) is a partial function mapping formulæ
to N > 0. Roughly speaking, if uev(♦iψ) is defined, it means that
there is a “loop” starting at the parent node and reaching to a “block-
ing” node for ♦iψ higher up in the branch.

Although both methods share several similarities, the set of rules of
the tableau method is rather unintuitive and the rôle of the histories and
variables is far from clear. In the same way, the blocking mechanism is
complicated.

144 CHAPTER 6. CONCLUSIONS AND FURTHER WORK

In our case there is a clear difference between the level of the underlying
sequent system, where the only syntactic extension on the sequents is the
inclusion of the priority lists, and whose rules are relatively simple, and the
label of the implementation, where the need of collecting information for
the coonstruction of the proof or the countermodel makes the nodes more
complicated. This distinction is somewhat blurred in the tableau method,
where the set of rules is already very complicated.

The decision problem for CK is known to be EXPTIME-complete [37].
In the tableau-system, worst-case complexity is double exponential on the
size of the formula. In our case it is even worse, as shown in Chapter 3,
Section 3.6. This is because in the case of the tableau there is a unique
control for repetitions. In the annotated system the presence of the priority
list is responsible for the increase in worst-case complexity. Here the num-
ber of nodes in the worst case is in O(2(n+1)!∗2n), whereas in the tableau
approach it is in O(22

n

). The worst case is intractable in both cases.

Many good properties of the tableau approach are also present in ours.
One of them, the one-pass nature of both algorithms, has already been
mentioned. Another one is the potential for parellisation, either in the
form of threads [81] or of separate processes [8].

6.3 Conclusions and Further Work

The proof system presented here is cut-free and finitary. The complexity is
in the worst case intractable, but otherwise it is a one-pass tree similar to
the tableau method shown in Section 6.2. Some drawbacks of the original
proof system [13] are (not unexpectedly) inherited here, notably the lack
of a syntactic cut-elimination procedure.

There are some logics to which this approach might work. The first
obvious extension is relativised common knowledge [9, 79]. The semantics
of annotations is very similar to that of the relativised common knowledge.
In fact, there is a relativised common knowledge operator which can express
the semantics of annotated formulæ. The operator has the form �* (ϕ, psi)
and its dual has the form ♦* (ϕ,ψ). Given an epistemic model M = (S,R, v)

6.3. CONCLUSIONS AND FURTHER WORK 145

and a state s ∈ S, the satisfaction relation for this operator is defined as
follows:

(M, s) |= �* [H]ϕ iff for all s-paths s0, s1, . . . in M

either there is a k ≥ 0 in the path with (M, sk) |= ¬ψ
and for all j, 0 ≤ j < k, (M, sj) |= �ϕ,

or (M, sj) |= �ϕ for all j ≥ 0.

As a consequence, negation of these is operators is defined as follows:

¬�* (ϕ,ψ) = ♦* (ϕ,¬ψ) ¬♦* (ϕ,ψ) = �* (ϕ,¬ψ)

The above definition is equivalent to saying that if (M, s) |= �* (ϕ,ψ), then
all s-paths s0, s1, . . . have one of the following shapes:

- - -

︸ ︷︷ ︸

(ψ∧�ϕ)

(the rest does not matter)
(ψ∧�ϕ) (ψ∧�ϕ) (ψ∧�ϕ) (ψ∧�ϕ) ¬ψ

s0 s1 s2 sk−1 sk

- - - (the rest does not change)
�ϕ �ϕ �ϕ �ϕ

s0 s1 s2 s3

Thus it is possible to define a logic of (relativised) common knowledge
which is cut-free and finitary without using annotations. The price we pay
is that the “usual” common knowledge operator is just a special case of the
relativised one.

Another interesting logic is Propositional Dynamic Logic (PDL) [33, 38].
This logic has its roots in the first attempts at formalisation of procedural
programming languages [29, 43]. It has a set of atomic programs. More
complex programs can be a constructed by means of the atomic ones and
the some operations on programs such as concatenation (; —semicolon),
indeterminate repetition of a program (* —asterisk) and random execution
of one or another program (∪). It is also possible to construct a program
with the test operator (? —question mark) and a formula A: the program

146 CHAPTER 6. CONCLUSIONS AND FURTHER WORK

?A goes on to the next step if A evaluates to true and aborts otherwise.
Besides the usual propositional formulæ, there are formulæ as [α]A meaning
that after execution of program α formula A holds.

Since PDL is a multimodal logic (there is a set of binary relations, one
for each atomic program), the method shown here should be applicable.
There are non-cut-free axiomatisations for PDL [69] or cut-free axiomati-
sations for some fragments fo PDL [16].

Another possibility is the investigation of some optimisations for the
algorithm used here. Some optimisation research done in other areas, no-
tably Description Logics [44, 45, 46] might be useful to our problem. The
performance of the program might also be enhanced by avoiding multiple
proofs of branches that are identical up to the names of the propositional
variables. In all cases, a more efficient implementation would require the
use of a procedural language. Prolog is a nice language for fast prototyping,
but the heavy use of recursion puts a heavy burden on the resources of the
system.

Appendix A

Source Code

A.1 Introduction

This Appendix contains the whole source code together with the comments
that provide succinct explanations on what the different predicates do and
what their parameters represent. In order to ease the lecture of the code,
some page breaks heve been introduced so as to keep sections of the code
together.

The Appendix is organised as follows: Section A.2 contains the code
of the main program and all other sections contain the code of the mod-
ules used by it: SectionA.3 contains the code of module mod parse, which
performs the parsing of the formulæ of the sequent (the program will not
attempt to prove or disprove a syntactically incorrect sequent.) SectionA.4
contains the code of the module mod proof, which comprises the main pred-
icates to carry over the proof. The code of module mod services is in Sec-
tion A.5. This module contains some general-purpose predicates such as list
membership, list concatenation, and sorting of terms. The code of module
mod reports is in Section A.6. This module contains the predicates used to
write the final log of the proof or the countermodel when the sequent is not
a valid one. The negation symbol (¬) has been replaced by the tilde (˜) for
typographic reasons.

147

148 APPENDIX A. SOURCE CODE

A.2 The Main Part

The code that follows is the corresponding to the main part of the imple-
mentation of SCK.

:- use_module(mod_parse).

:- use_module(mod_proof).

:- use_module(mod_services).

:- use_module(mod_reports).

%%%

%% agents(L) :- L is the list of agents. Only one should be enabled. %%

%%%

%agents([’1’,’2’,’3’]).

agents([’1’,’2’]).

%agents([’1’]).

%%%

%% prove(S,X) :- S is the sequent to be proved and X.txt will be the %%

%% file that will store the results. %%

%% seq2list(L1,L2,L3) :- mod_parse; L1 is NF0, L2 is a list of formulae %%

%% in NF0 and L3 a list of formulae in NF1. %%

%% parse_seq(L1,L2,L3) :- mod_parse; L1 is a list of formulae in NF1 %%

%% and L2 is the list of formulae in NF2. L3 is a list of %%

%% codes of errors (0=OK, 1=syntax error.) %%

%%%

prove(S,X) :- get_time(T0), string_concat(X,’.txt’,XX), open(XX,write,OO),

agents(Ag), get_agents(Ag,StAg),

list_concat([’** Agents [’,StAg,’]’],St0), write(OO,St0), nl(OO),

list_concat([’** Sequent [’,S,’]’],St), write(OO,St), nl(OO),

nl(OO), seq2list(S,S1,S2), parse_seq(S2,F,E),

first_part(S1,E,F,OO,T0).

A.2. THE MAIN PART 149

%%%

%% first_part(S,E,F,OO) :- S is the list of formulae (NF0), E is the %%

%% list of parse results (0=OK, 1=syntax error), F is the %%

%% list of terms (NF2) and OO is the output stream. %%

%% first_part(S,E,F,OO,N,M) :- S, E, F, and OO as before; N=1 (errors), %%

%% N=0 (no errors), and M is a sequence-number for the %%

%% formulae. %%

%%%

first_part(S,E,F,OO,T0) :- first_part(S,E,F,OO,0,1,T0).

first_part([],[],F,OO,0,_,T0) :-

write(OO,’** Parsing OK. Proof-search goes on.’), nl(OO), nl(OO),

proof_search(F,R), last_part(R,OO,T0), forget_all.

first_part([],[],_,OO,1,_,_) :-

write(OO,’** There were syntax errors. Process aborted.’),

close(OO).

first_part([S|T1],[0|T2],F,OO,N,M,T0) :-

list_concat([’Formula Nr.’,M,’: ’,S],St),

write(OO,St), nl(OO), write(OO,’OK’), nl(OO), nl(OO),

plus(M,1,M1), first_part(T1,T2,F,OO,N,M1,T0).

first_part([S|T1],[1|T2],F,OO,_,M,T0) :-

list_concat([’Formula Nr.’,M,’: ’,S],St),

write(OO,St), nl(OO), write(OO,’Syntax error in formula’),

nl(OO), nl(OO), plus(M,1,M1), first_part(T1,T2,F,OO,1,M1,T0).

%%

%% last_part(R,OO) :- R is the result of proof_search %%

%% (R=0 the sequent is valid, R=1 the sequent is not %%

%% valid) and OO is the output stream. %%

%%

last_part(0,OO,T0) :- get_derivation(OO), sum_up(OO,T0),

write(OO,’** The sequent is valid.’), nl(OO), close(OO).

last_part(1,OO,T0) :- get_preproof(OO), get_model(OO), sum_up(OO,T0),

write(OO,’** The sequent is not valid.’), nl(OO), close(OO).

150 APPENDIX A. SOURCE CODE

%%

%% forget_all :- the dynamic databases are deleted. %%

%%

forget_all :- retractall(history(_,_,_)),

retractall(deriv(_,_,_,_,_,_,_,_,_)),

retractall(xcode(_)), retractall(dcode(_)),

retractall(parent(_,_)).

%%

%% proof_search(L,R) :- L is a sequent (NF2) and proof-search is %%

%% performed on it; R=0 means that there was a proof; %%

%% R=1 means that the proof-search failed. %%

%% proof_search(L,S1,P,A,S2,K,X,R,W,H) :- proof-search for sequent L; %%

%% P is the list of priorities, S1 is the sequent in NF0, %%

%% A is an annotation (NF2), S2 is the annotation in NF0, %%

%% K is the code of the node in the proof-tree, %%

%% X=0 (history-free) or X=1 (annotated sequent), %%

%% R=0 (successful node), R=1 (unsuccessful node) and %%

%% W=0 (no occurrence of K yet), W=1 (at least one %%

%% instance of K; H is the height of the proof. %%

%% deriv(L,S1,S2,K,Rule,X,R,Succ,H) :- P is the list of negative %%

%% literals occurring in the sequent; S1, S2, K, and X as %%

%% before; ’Rule’ is the rule applied to the sequent and %%

%% the list ’Succ’ has the codes of the successors; H is %%

%% the height of the preproof. %%

%%

proof_search(L,R) :- get_ck(L,P), seq2string(L,S), assert(xcode(0)),

proof_search(L,S,P,[],[],0,0,R,0,1).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% %%

%% Decision Procedure %%

%% %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

proof_search(L,S1,_,_,S2,K,X,0,_,H) :- id_rule(L), !, get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’ID’,X,0,[],H)).

A.2. THE MAIN PART 151

proof_search(L,S1,_,A,S2,K,1,0,_,H) :- rep_rule(L,A), !,

get_prop(L,Prop), asserta(deriv(Prop,S1,S2,K,’REP’,1,0,[],H)).

proof_search(L,S1,P,_,S2,K,X,1,1,H) :- locally_reduced(L),

is_cyclic(L,P,K0,K), !, get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’o’,X,1,[K0],H)).

proof_search(L,S1,P,A,S2,K,X,R,W,H) :- o_rule(L,L1), !,

seq2string(L1,S1a), plus(H,1,H1), get_xcode(K1),

assert(parent(K,K1)),

proof_search(L1,S1a,P,A,S2,K1,X,R,W,H1), get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’OR’,X,R,[K1],H)).

proof_search(L,S1,P,A,S2,K,X,R,W,H) :- y_rule(L,L1a,L1b), !,

seq2string(L1a,S1a), seq2string(L1b,S1b), plus(H,1,H1),

get_xcode(K1), get_xcode(K2),

assert(parent(K,K1)), assert(parent(K,K2)),

proof_search(L1a,S1a,P,A,S2,K1,X,R1,W,H1),

proof_search(L1b,S1b,P,A,S2,K2,X,R2,W,H1),

R is max(R1,R2), get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’AND’,X,R,[K1,K2],H)).

proof_search(L,S1,P,A,S2,K,X,R,W,H) :- u_rule(L,L1), !,

seq2string(L1,S1a), get_xcode(K1),

assert(parent(K,K1)), plus(H,1,H1),

proof_search(L1,S1a,P,A,S2,K1,X,R,W,H1), get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’U’,X,R,[K1],H)).

proof_search(L,S1,P,[],[],K,0,R,W,H) :- foc_rule(L,L1,P,P1), !,

seq2string(L1,S1a), get_xcode(K1),

assert(parent(K,K1)), plus(H,1,H1),

proof_search(L1,S1a,P1,[],[],K1,1,R,W,H1),

asserta(deriv(L,S1,[],K,’FOC’,0,R,[K1],H)).

152 APPENDIX A. SOURCE CODE

proof_search(L,S1,P,A,S2,K,X,R,W,H) :- c_rule(L,L1a,L1b), !,

seq2string(L1a,S1a), seq2string(L1b,S1b),

get_xcode(K1), get_xcode(K2), plus(H,1,H1),

assert(parent(K,K1)), assert(parent(K,K2)),

proof_search(L1a,S1a,P,A,S2,K1,X,R1,W,H1),

proof_search(L1b,S1b,P,A,S2,K2,X,R2,W,H1),

R is max(R1,R2), get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’C’,X,R,[K1,K2],H)).

proof_search(L,S1,P,A,S2,K,1,R,W,H) :- a_rule(L,L1a,L1b), !,

get_context(L,C), seq2string(L1a,S1a), seq2string(L1b,S1b),

seq2string(C,C1), get_xcode(K1), get_xcode(K2),

assert(parent(K,K1)), assert(parent(K,K2)), plus(H,1,H1),

proof_search(L1a,S1a,P,[],[],K1,0,R1,W,H1),

proof_search(L1b,S1b,P,[C|A],[C1|S2],K2,1,R2,W,H1),

R is max(R1,R2), get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’C[H]’,1,R,[K1,K2],H)).

proof_search(L,S1,P,A,S2,K,X,R,_,H) :- k_rule(L,Lxx), !,

get_context(L,C), assert(history(C,P,K)),

get_codes(Lxx,Lx,Kx,K),

or_proof_search(Lx,P,A,S2,Kx,1,R,H), get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’BOX’,X,R,Kx,H)).

proof_search(L,S1,_,_,S2,K,X,1,_,H) :- !, get_prop(L,Prop),

asserta(deriv(Prop,S1,S2,K,’i’,X,1,[],H)).

%%

%% or_proof_search(Lx,P,A,S2,Kx,R1,R,H) :- Lx is the list of premises %%

%% of rule K, P, A and S2 as before, Kx is a list of %%

%% terms ap(A,Kn) where A is an agent and Kn the code an %%

%% A-premise, R1 is an accumulator initially 1, R is the %%

%% result and H is the height of the node. %%

%%

or_proof_search([],_,_,_,_,R,R,_).

or_proof_search([L|Lx],P,A,S2,[ap(_,K)|Kx],R0,R,H) :- focused(L), !,

seq2string(L,S1),

plus(H,1,H1), proof_search(L,S1,P,A,S2,K,1,R1,1,H1),

R2 is min(R0,R1), or_proof_search(Lx,P,A,S2,Kx,R2,R,H).

A.2. THE MAIN PART 153

or_proof_search([L|Lx],P,A,S2,[ap(_,K)|Kx],R0,R,H) :- !,

seq2string(L,S1), plus(H,1,H1),

proof_search(L,S1,P,[],[],K,0,R1,1,H1),

R2 is min(R0,R1), or_proof_search(Lx,P,A,S2,Kx,R2,R,H).

focused(L) :- member(a(_),L).

%%

%% get_ck(L1,L2) :- L2 is the list of all subformulae of the form %%

%% c(A,X) occurring in L1. %%

%% get_xcode(K1) :- K1 is the next acailable code. %%

%% get_codes(Lxx,Lx,Kx,K) :-Lxx is a list of elements of the form %%

%% ap(Ag,P)where Ag is an agent and P is a premise by %%

%% rule K; Lx is the list of premises and Kx is a list of %%

%% elements of the form ap(Ag,Knxt) where Ag is an agent %%

%% and Knxt is the code of the Ag-successor. %%

%% get_context(L,C) :- L is a sequent and C is the corresponding %%

%% underlying set. %%

%%

get_ck([],[]) :- !.

get_ck([plit(_)|T],L) :- !, get_ck(T,L).

get_ck([nlit(_)|T],L) :- !, get_ck(T,L).

get_ck([o(X,Y)|T],L) :- !, get_ck([X,Y|T],L).

get_ck([y(X,Y)|T],L) :- !, get_ck([X,Y|T],L).

get_ck([k(_,X)|T],L) :- !, get_ck([X|T],L).

get_ck([p(_,X)|T],L) :- !, get_ck([X|T],L).

get_ck([u(X)|T],L) :- !, get_ck([X|T],L).

get_ck([c(X)|T1],[c(X)|T2]) :- !, get_ck([X|T1],T2).

get_xcode(C) :- xcode(N), plus(N,1,C), retract(xcode(N)),

assert(xcode(C)).

get_codes([],[],[],_).

get_codes([ap(Ag,P)|T1],[P|T2],[ap(Ag,Knxt)|T3],K) :- get_xcode(Knxt),

assert(parent(K,Knxt)), get_codes(T1,T2,T3,K).

get_context([],[]) :- !.

get_context([a(X)|T],[c(X)|T]) :- !.

get_context([H|T1],[H|T2]) :- !, get_context(T1,T2).

154 APPENDIX A. SOURCE CODE

%%

%% is_cyclic(L,P,K0,K) :- sequent L (eventually with priority list P) %%

%% is cyclic, i.e., there is an entry (L0,P,K) in the %%

%% database ’history’ such that L0 contains the same %%

%% formulae as L and K0 is in the same branch as K. %%

%% ancestor(K1,K2) :- K1 is lower in the same branch of deriv/8 as K2. %%

%% parent(K1,K2) :- K1 is the parent node of K2. %%

%%

is_cyclic(L,P,K0,K) :- get_context(L,C), history(C,P,K0), ancestor(K0,K).

ancestor(K0,K1) :- parent(K0,K1).

ancestor(K0,K1) :- parent(K1a,K1), ancestor(K0,K1a).

%%

%% get_prop(L,P) :- the list P contains all propositions p such that %%

%% nlit(p) is in sequent L (NF2). %%

%%

get_prop([],[]).

get_prop([nlit(X)|T1],[X|T2]) :- !, get_prop(T1,T2).

get_prop([_|T],P) :- !, get_prop(T,P).

A.3 The Parsing Module

The mod parse module implements the code for parsing sequents and for-
mulæ and for conversion among the different representations.

:- module(parse,[seq2list/3,parse_seq/3,seq2string/2]).

%%%

%% seq2list(S,L1,L2) :- The string S (sequent, NF0) yields L1 (the %%

%% individual formulae, NF0) and L2 is a list with %%

%% contains the symbols without spaces. %%

%% Example: if S=’(p V q), ((p & (q V ~q)), p’ then %%

%% L1=[’(p V q)’, ’((p & (q V ~q))’, ’p’] and %%

%% L2=[[’(’,’p’,’V’,’q’,’)’], %%

%% [’(’,’(’,’p’,’&’,’q’,’V’,’~’,’q’’)’,’)’], %%

%% [’p’]] %%

%%%

A.3. THE PARSING MODULE 155

seq2list(S,L1,L2) :- seq_sep(S,L1), seq2list2(L1,L2).

seq2list2([],[]).

seq2list2([H1|T1],[H2|T2]) :- formula2list(H1,H2),

seq2list2(T1,T2).

formula2list(S,L) :- string_to_list(S,L1), decode(L1,L).

decode([],[]).

decode([32|T],L) :- !, decode(T,L).

decode([H1|T1],[H2|T2]) :- !, char_code(H2,H1), decode(T1,T2).

%%

%% seq_sep(S,L) :- S is a string and L is a list containing the %%

%% substrings of S that are separated by commas. %%

%% Example: if S=’aa,b,ccc,d’, then L=[’aa’,’b’,’ccc’,’d’] %%

%%

seq_sep(S,[S]) :- first_comma(S,-1), !.

seq_sep(S1,[H|T]) :- !, first_comma(S1,N1), sub_string(S1,0,N1,N2,H),

plus(N1,1,N1a), plus(N2a,1,N2),

sub_string(S1,N1a,N2a,_,S2), seq_sep(S2,T).

%%

%% first_comma(S,N) :- the first comma of S appears at position N. %%

%% If S contains no commas, N is -1. %%

%%

first_comma(S,N) :- first_comma(S,0,N).

first_comma(S,N,-1) :- string_length(S,N), !.

first_comma(S,N1,N2) :- sub_string(S,N1,1,_,’,’), !, N2 is N1.

first_comma(S,N1,N2) :- !, plus(N1,1,N1a), first_comma(S,N1a,N2).

%%

%% parse_seq(L,F,E) :- formulae of sequent L are parsed. The results %%

%% are stored in F and the error codes in E. %%

%%

parse_seq([],[],[]).

parse_seq([H|T1],[F|T2],[E|T3]) :- parse_formula(H,F,E),

parse_seq(T1,T2,T3).

156 APPENDIX A. SOURCE CODE

%%

%% parse_formula(L,E,N2) :- the formula L (NF1) is parsed yielding %%

%% F (NF2) and error code E (E=0: no syntax errors; %%

%% E=1: syntax error.) %%

%%

parse_formula([X],plit(X),0) :- is_prop(X), !.

parse_formula([_],’’,1).

parse_formula([’~’,X],nlit(X),0) :- is_prop(X), !.

parse_formula([’~’,_],’’,1).

parse_formula([’C’|T],c(X),N) :- !, parse_formula(T,X,N).

parse_formula([’U’|T],u(X),N) :- !, parse_formula(T,X,N).

parse_formula([’K’,M|T],k(M,X),N) :- is_agent(M), !,

parse_formula(T,X,N).

parse_formula([’K’|_],’’,1).

parse_formula([’P’,M|T],p(M,X),N) :- is_agent(M), !,

parse_formula(T,X,N).

parse_formula([’P’|_],’’,1).

parse_formula([’(’|T],y(X1,X2),N) :- main_conn(T,T1,T2,’&’), !,

parse_formula(T1,X1,N1), parse_formula(T2,X2,N2),

N is max(N1,N2).

parse_formula([’(’|T],o(X1,X2),N) :- main_conn(T,T1,T2,’V’), !,

parse_formula(T1,X1,N1), parse_formula(T2,X2,N2),

N is max(N1,N2).

parse_formula(_,’’,1).

main_conn(L1,L2,L3,C) :- main_conn(L1,L2,L3,C,0).

main_conn([],_,_,_,_) :- !, fail.

main_conn([’&’|T1],[],T2,’&’,0) :- append(T2,[’)’],T1), !.

main_conn([’V’|T1],[],T2,’V’,0) :- append(T2,[’)’],T1), !.

main_conn([’(’|T1],[’(’|T2],L3,C,N) :- !, plus(N,1,N1),

main_conn(T1,T2,L3,C,N1).

main_conn([’)’|T1],[’)’|T2],L3,C,N) :- !, plus(N1,1,N),

main_conn(T1,T2,L3,C,N1).

main_conn([H|T1],[H|T2],L3,C,N) :- >=(N,0), !,

main_conn(T1,T2,L3,C,N).

is_prop(X) :- char_code(X,N), >=(N,97), =<(N,122).

is_agent(X) :- agents(L), member(X,L).

A.4. THE PROOF MODULE 157

%%%

%% seq2string(L,S) :- sequent L (NF2) is converted into string S. %%

%% term2string(F,S) :- formula F (NF2) is converted %%

%% into string S. %%

%%%

seq2string(L,S) :- seq2string(L,’’,S).

seq2string([],S,S).

seq2string([H|T],’’,S) :- !, term2string(H,S1),

seq2string(T,S1,S).

seq2string([H|T],S1,S) :- term2string(H,S2),

list_concat([S1,’, ’,S2], S3), seq2string(T,S3,S).

term2string(plit(X),X).

term2string(nlit(X),Y) :- string_concat(’~’,X,Y).

term2string(o(X,Y),S) :- term2string(X,S1),

term2string(Y,S2), list_concat([’(’,S1, ’ V ’,S2,’)’],S).

term2string(y(X,Y),S) :- term2string(X,S1),

term2string(Y,S2), list_concat([’(’,S1, ’ & ’,S2,’)’],S).

term2string(k(I,X),S) :- term2string(X,S0),

list_concat([’K’,I,S0],S).

term2string(p(I,X),S) :- term2string(X,S0),

list_concat([’P’,I,S0],S).

term2string(c(X),S) :- term2string(X,S0),

string_concat(’C’,S0,S).

term2string(u(X),S) :- term2string(X,S0),

string_concat(’U’,S0,S).

term2string(a(X),S) :- term2string(X,S0),

string_concat(’C[H]’,S0,S).

A.4 The Proof Module

The mod proof module implements the rules of the system.

:- module(proof,[id_rule/1, rep_rule/2, o_rule/2, y_rule/3, u_rule/2,

c_rule/3, a_rule/3,foc_rule/4,k_rule/2,locally_reduced/1]).

158 APPENDIX A. SOURCE CODE

%%

%% write_annot(L,OO,X) :- writes the annotation L (one context for %%

%% line) in stream OO if X=1; otherwise does nothing. %%

%%

write_annot(_,_,0) :- !.

write_annot([],OO,1) :- !, write(OO,’H = []’), nl(OO).

write_annot([H|T],OO,1) :- list_concat([’H = [[’,H,’]’],St),

write(OO,St), write_annot(T,OO).

write_annot([],OO) :- write(OO,’]’), nl(OO).

write_annot([H|T],OO) :- nl(OO), list_concat([’ [’,H,’]’],S),

write(OO,S), write_annot(T,OO).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Rules of the proof-system. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% id_rule(L) :- true if L is an instance of ID; fails otherwise. %%

%%

id_rule(L) :- member(plit(X),L), member(nlit(X),L), !.

%%

%% rep_rule(L,A) :- true if some context of list A is included in L %%

%% and contains a c-formula; fails otherwise. %%

%%

rep_rule(L,A) :- get_uset(L,C), !, includes(C,A).

get_uset(L,C) :- drop(L,a(_),C).

A.4. THE PROOF MODULE 159

%%

%% o_rule(L1,L2) :- true if L1 is the conclusion of rule OR applied to %%

%% L2; fails otherwise. %%

%% y_rule(L1,L2;L3) :- true if L1 is the conclusion of rule AND applied %%

%% to L2 and L3, fails otherwise. %%

%% u_rule(L1,L2) :- true if L1 is the conclusion of rule U applied to %%

%% L2; fails otherwise. %%

%% c_rule(L1,L2,L3) :- true if L1 is the conclusion of rule C applied %%

%% to L2 and L3; fails otherwise. %%

%% a_rule(L1,L2,L3) :- true if L1 is the conclusion of rule A applied %%

%% to L2 and L3; fails otherwise. %%

%%

o_rule(L1,L2) :- o_rule1(L1,L2a), no_dup(L2a,L2b),

sort_list(L2b,L2).

o_rule1([],_) :- !, fail.

o_rule1([o(X,Y)|T],[X,Y|T]) :- !.

o_rule1([H|T1],[H|T2]) :- !, o_rule1(T1,T2).

y_rule(L1,L2,L3) :- y_rule1(L1,L2a,L3a),

no_dup(L2a,L2b), no_dup(L3a,L3b), sort_list(L2b,L2),

sort_list(L3b,L3).

y_rule1([],_,_) :- !, fail.

y_rule1([y(X,Y)|T],[X|T],[Y|T]) :- !.

y_rule1([H|T1],[H|T2],[H|T3]) :- !, y_rule(T1,T2,T3).

u_rule(L1,L2) :- u_rule1(L1,L2a), no_dup(L2a,L2b),

sort_list(L2b,L2).

u_rule1([],_) :- !, fail.

u_rule1([u(X)|T],[E1,E2|T]) :- !, u_unfold(X,E1,E2).

u_rule1([H|T1],[H|T2]) :- !, u_rule1(T1,T2).

c_rule(L1,L2,L3) :- c_rule1(L1,L2a,L3a),

no_dup(L2a,L2b), no_dup(L3a,L3b), sort_list(L2b,L2),

sort_list(L3b,L3).

c_rule1([],_,_) :- !, fail.

c_rule1([c(X)|T],[E1|T],[E2|T]) :- !, c_unfold(X,E1,E2).

c_rule1([H|T1],[H|T2],[H|T3]) :- !, c_rule1(T1,T2,T3).

160 APPENDIX A. SOURCE CODE

a_rule(L1,L2,L3) :- a_rule1(L1,L2a,L3a),

no_dup(L2a,L2b), no_dup(L3a,L3b), sort_list(L2b,L2),

sort_list(L3b,L3).

a_rule1([],_,_) :- !, fail.

a_rule1([a(X)|T],[E1|T],[E2|T]) :- !, a_unfold(X,E1,E2).

a_rule1([H|T1],[H|T2],[H|T3]) :- !, a_rule1(T1,T2,T3).

%%

%% foc_rule(L1,L2,P1,P2) :- L2 is L1 with a focused formula. This is %%

%% the first formula in the priority list P1, which %%

%% becomes P2 when the chosen element is pushed to the %%

%% end of the list; fails if there are no focusable %%

%% formulae. %%

%% foc_rule(L1,L2,X) :- L2 is L1 with formula X focused; if X is not %%

%% in L1, the predicate fails. %%

%%

foc_rule(_,_,[],_) :- !, fail.

foc_rule(L1,L2,[H|T],L) :- foc_rule(L1,L1a,H), !,

append(T,[H],L), sort_list(L1a,L2).

foc_rule(L1,L2,[H|T1],[H|T2]) :- !, foc_rule(L1,L2,T1,T2).

foc_rule([],_,_) :- !, fail.

foc_rule([c(X)|T],[a(X)|T],c(X)) :- !.

foc_rule([H|T1],[H|T2],F) :- !, foc_rule(T1,T2,F).

%%

%% k_rule(L1,L2,N) :- L2 is a list with terms ap(N,P) where N is an %%

%% agent and P is a premise for this agent by rule K with %%

%% conclusion L1, and N is the total number of premises. %%

%%

k_rule(L,Lx) :- locally_reduced(L), !, get_kp(L,L1,L2),

get_premises(L1,L2,Lxa), sort_list2(Lxa,Lx).

sort_list2([],[]).

sort_list2([ap(A,L1)|T1],[ap(A,L2)|T2]) :- sort_list(L1,L2),

sort_list2(T1,T2).

A.4. THE PROOF MODULE 161

%%

%% locally_reduced(L) :- succeeds if L is locally reduced and has at %%

%% least one k-formula; fails otherwise. %%

%% get_kp(L,L1,L2) :- L1 contains all k-formulae of L and L2 contains %%

%% all p-formulae of L. The clause fails if L is not in %%

%% KNF. %%

%% get_premises(L1,L2,L3,) :- L1 is a list of k-formulae and L2 is a %%

%% list of p-formulae. L3 is a list with one premise of a %%

%% k-formula of L1 and all all premises of the p-formulae %%

%% of L2 corresponding to the same agent. %%

%% get_p(N,L1,L2) :- N is an agent, L1 is a list of p-formulae and L2 %%

%% is the list of p-formulae corresponding to agent N. %%

%%

locally_reduced(L) :- member(k(_,_),L), quasi_locally_reduced(L).

quasi_locally_reduced([]).

quasi_locally_reduced([H|T]) :- quasi_lr(H), quasi_locally_reduced(T).

quasi_lr(p(_,_)).

quasi_lr(k(_,_)).

quasi_lr(plit(_)).

quasi_lr(nlit(_)).

get_kp([],[],[]).

get_kp([k(N,X)|T],[k(N,X)|T1],L2) :- get_kp(T,T1,L2).

get_kp([p(N,X)|T],L1,[p(N,X)|T2]) :- get_kp(T,L1,T2).

get_kp([plit(_)|T],L1,L2) :- get_kp(T,L1,L2).

get_kp([nlit(_)|T],L1,L2) :- get_kp(T,L1,L2).

get_premises([],_,[]).

get_premises([k(N,X)|T1],L,[ap(N,[X|T2])|T3]) :- get_p(N,L,T2),

get_premises(T1,L,T3).

get_p(_,[],[]).

get_p(N,[p(N,X)|T1],[X|T2]) :- !, get_p(N,T1,T2).

get_p(N,[_|T],L) :- !, get_p(N,T,L).

%%

%% legend(Kx,St) :- writes the codes Kx of the premises of rule K %%

%% in St. %%

%%

162 APPENDIX A. SOURCE CODE

legend([K],St) :- !,

list_concat([’K rule yields node <’,K,’>’],St).

legend([K|T],St) :- !,

list_concat([’K rule yields nodes <’,K,’>’],St0),

legend(T,St0,St).

legend([K],St0,St) :- !, list_concat([St0,’ and <’,K,’>’],St).

legend([K|T],St0,St) :- !, list_concat([St0,’, <’,K,’>’],St1),

legend(T,St1,St).

%%

%% u_unfold(X,E1,E2) :- a formula X is "unfolded" into two %%

%% disjunctions for all agents; this corresponds to the %%

%% active formulae in the premise of rule U. %%

%% c_unfold(X,E1,E2) :- a formula X is "unfolded" into two %%

%% conjunctions for all agents; this corresponds to the %%

%% active formulae in the premise of rule C. %%

%% a_unfold(X,E1,E2) :- same as c_unfold/3 for annotated formulae. %%

%%

u_unfold(X,E1,E2) :- agents(L),

u_unfold(X,E1,E2,L).

u_unfold(X,p(N,X),p(N,u(X)),[N]) :- !.

u_unfold(X,o(p(N,X),Z1),o(p(N,u(X)),Z2),[N|T]) :- !,

u_unfold(X,Z1,Z2,T).

c_unfold(X,E1,E2) :- agents(L),

c_unfold(X,E1,E2,L).

c_unfold(X,k(N,X),k(N,c(X)),[N]) :- !.

c_unfold(X,y(k(N,X),Z1),y(k(N,c(X)),Z2),[N|T]) :- !,

c_unfold(X,Z1,Z2,T).

a_unfold(X,E1,E2) :- agents(L),

a_unfold(X,E1,E2,L).

a_unfold(X,k(N,X),k(N,a(X)),[N]) :- !.

a_unfold(X,y(k(N,X),Z1),y(k(N,a(X)),Z2),[N|T]) :- !,

a_unfold(X,Z1,Z2,T).

A.5. THE SERVICES MODULE 163

A.5 The Services Module

The mod services module implements the code for general-purpose predi-
cates, such as concatenation or sorting of lists.

:-module(services,[member/2,no_dup/2,append/3,list_concat/2,includes/2,

drop/3,sort_list/2,no_atoms/2,list_length/2,list_max/2,

get_agents/2]).

%%

%% member(X,L) :- Element X is a member of list L. %%

%% no_dup(L1,L2) :- L2 contains the elements of L1 without %%

%% duplicates. %%

%% append(L1,L2,L3) :- L3 is the concatenation of lists L1 and L2. %%

%% list_concat(L,X) :- string X is the concatenation of the strings of %%

%% list L. %%

%% sort_list(L1,L2) :- L2 has the same elements as L2 sorted by the %%

%% standard order @< of terms: %%

%% variables@<numbers@<atoms@<strings@<structures@<lists %%

%% list_length(L,N) :- N is the number of elements of list L. %%

%% list_max(L,Mx) :- Mx is the height of the highest code in the list %%

%% of codes L. %%

%% get_agents(L,S) :- L is a list of agents and S is a string %%

%% containing the agents separated by commas. %%

%% drop(L1,X,L2) :- List L2 is list L1 without the element X. Fails %%

%% if X is not a member of L1. %%

%% includes(X,L) :- X is a superset of some element of list L. Fails %%

%% if this is not the case. %%

%% inc(L1,L2) :- List L1 is a superset of list L2. Both lists are %%

%% ordered according to the standard order @< of terms %%

%% (see abbove.) %%

%%

includes(X,[H]) :- !, inc(X,H).

includes(L,[H|_]) :- inc(L,H), !.

includes(L,[_|T]) :- !, inc(L,T).

drop([H|T],H,T) :- !.

drop([H|T1],X,[H|T2]) :- !, drop(T1,X,T2).

164 APPENDIX A. SOURCE CODE

inc(_,[]) :- !.

inc([H|T1],[H|T2]) :- !, inc(T1,T2).

inc([_|T1],L2) :- !, inc(T1,L2).

member(H,[H|_]).

member(X,[_|T]) :- member(X,T).

no_dup([],[]).

no_dup([H|T],L) :- member(H,T), no_dup(T,L).

no_dup([H|T1],[H|T2]) :- no_dup(T1,T2).

append([],L,L).

append([H|T1],L,[H|T2]) :- append(T1,L,T2).

list_concat([],’’).

list_concat([H|T],X) :- list_concat(T,X1), string_concat(H,X1,X).

sort_list(L1,L2) :- swap(L1,L1a), !, sort_list(L1a,L2).

sort_list(L,L).

swap(L1,L2) :- append(Pre,[X1,X2|T],L1), X1@>X2, !,

append(Pre,[X2,X1|T],L2).

no_atoms([],[]).

no_atoms([plit(_)|T1],L2) :- !, no_atoms(T1,L2).

no_atoms([nlit(_)|T1],L2) :- !, no_atoms(T1,L2).

no_atoms([H|T1],[H|T2]) :- !, no_atoms(T1,T2).

list_length(L,N) :- list_length(L,N,0).

list_length([],N,N).

list_length([_|T],N,Ac) :- plus(Ac,1,Ac1), list_length(T,N,Ac1).

list_max(L,N) :- list_max(L,N,0).

list_max([],Mx,Mx).

list_max([H|T],Mx,Ac) :- >(H,Ac), !, list_max(T,Mx,H).

list_max([_|T],Mx,Ac) :- !, list_max(T,Mx,Ac).

get_agents([H|T],S) :- get_agents(T,S,H).

get_agents([],S,S).

get_agents([H|T],S,S1) :- list_concat([S1,’, ’,H],S2),

get_agents(T,S,S2).

A.6. THE REPORTS MODULE 165

A.6 The Reports Module

The mod reports module implements the code for the report about the
preproof (or proof), the display of the tree, and statistics (number of nodes,
height of the tree, time elapsed.) It contains also the code for the extraction
of a proof or of a countermodel.

:- module(reports,[get_derivation/1,get_preproof/1,get_model/1,sum_up/2]).

%%

%% get_model(OO) :- this predicate constructs a (counter-) model; OO %%

%% is the output stream. %%

%% get_model(S,R,V,OO) :- S is a list of states of the form ’s0’, %%

%% ’s1’, and so on; R is a list of lists of binary %%

%% relations on the set of states of the form %%

%% ’r(s0,s1)’; there is a list of relations for each %%

%% agent; V is a list of terms of the form ’v(s0,L)’ %%

%% where L is a list of propositions; OO is the output %%

%% stream. %%

%%

get_model(OO) :- get_premodel(S,R), retractall(mx(_)), get_sv(S,Ms,Mv),

prepare(Mr0), get_r(S,R,Mr0,Mr),

write(OO, ’** countermodel: M=(S,R,V)’), nl(OO), nl(OO),

write_states(Ms,OO), write_relations(Mr,OO),

write_valuations(Mv,OO).

166 APPENDIX A. SOURCE CODE

%%

%% get_premodel(S,R) :- this is the first step to get the %%

%% countermodel; S is a list of terms of the form %%

%% ’st(N,P,K)’ where N is the number of a state, P is a %%

%% list of propositions that hold in that state and K is %%

%% a list of nodes grouped in the state; the current %%

%% state is stored in the dynamic predicate ’mx(N)’; R %%

%% is a list of terms of the form ’br(A,K,K0)’ where A is %%

%% an agent and (K,K0) is a relation for this agent. %%

%% get_premodel(S,T,R,K) :- S and R as before; T is at the beginning %%

%% an term of the form ’st(N,K)’ with N and K as above %%

%% and K empty. K is the code of the node being analysed. %%

%% deriv(L,S1,S2,K,Rule,X,R,Succ) :- P is the list of negative %%

%% literals occurring in the sequent; S1, S2, K, and X as %%

%% before; ’Rule’ is the rule applied to the sequent and %%

%% the list ’Succ’ has the codes of the successors. This %%

%% is a dynamic predicate of the main program. %%

%%

get_premodel(S,R) :- assert(mx(0)), get_premodel(S,st(0,[]),R,0).

get_premodel([st(N,P,[K|Kx])],st(N,Kx),[],K) :-

deriv(P,_,_,K,’i’,_,1,_,_).

get_premodel([st(N,P,[K|Kx])],st(N,Kx),R,K) :-

deriv(P,_,_,K,’o’,_,1,[K0],_), get_cyclic_relations(R,K0,K).

get_premodel(S,st(N,Kx),R,K) :- deriv(_,_,_,K,Rul,_,1,[K0],_),

rule1(Rul), get_premodel(S,st(N,[K|Kx]),R,K0).

get_premodel(S,st(N,Kx),R,K) :- deriv(_,_,_,K,Rul,_,1,[K0,K1],_),

rule2(Rul), choose(K0,K1,Knxt),

get_premodel(S,st(N,[K|Kx]),R,Knxt).

get_premodel([st(N,P,[K|Kx])|T],st(N,Kx),R,K) :-

deriv(P,_,_,K,’BOX’,_,1,Lx,_),

get_relations(R2,Lx,K), get_nxt_states(T,R1,Lx), append(R1,R2,R).

A.6. THE REPORTS MODULE 167

%%

%% get_nxt_states(S,R,Nxt) :- get the following states when a ’BOX’ %%

%% rule occurs; S and R as in the predicate %%

%% ’get_premodel/2’, and Nxt is the list of elements of %%

%% the form ’ap(A,K)’ of the predicate deriv/8 (recall A %%

%% is an agent and K is a code.) %%

%% get_relations(R,Nx,K) :- creates a list of elements of the form %%

%% ’br(A,K0,K1)’ where A is an agent and K0 and K1 are %%

%% codes of nodes; Nx is a list of elements of the form %%

%% ’ap(A,K)’, as before and K is a code. %%

%% get_cyclic_relations(R,K0,K) :- similar to the previous one, but %%

%% for cyclic relations; K0 is the code of the cyclic %%

%% node, K is code of the node and R as before. %%

%% choose(K1,K2,K) :- all parameters are codes of nodes; K is either %%

%% K1 or K2; it must be unsuccessful. %%

%%

get_nxt_states([],[],[]).

get_nxt_states(S1,R,[ap(_,K)|T2]) :- retract(mx(N)), plus(N,1,N1),

assert(mx(N1)),

get_premodel(S,st(N1,[]),R1,K), get_nxt_states(T1,R2,T2),

append(S,T1,S1), append(R1,R2,R).

get_relations([],[],_).

get_relations([br(N,K,K0)|T1],[ap(N,K0)|T2],K) :- get_relations(T1,T2,K).

get_cyclic_relations(R,K0,K) :- deriv(_,_,_,K0,_,_,_,Lx,_),

get_relations(R,Lx,K).

choose(K,_,K) :- deriv(_,_,_,K,_,_,1,_,_), !.

choose(_,K,K).

%%

%% prepare(Mr) :- produces a list of N empty lists, one for each %%

%% agent. %%

%%

prepare(Mr0) :- agents(L), prepare(Mr0,L).

prepare([],[]).

prepare([[]|T1],[_|T2]) :- prepare(T1,T2).

168 APPENDIX A. SOURCE CODE

%%

%% get_sv(L1,L2,L3) :- L1 is a list of elements of the form %%

%% ’st(N,P,K)’, as in get_premodel/2; L2 is a list of %%

%% elements of the form ’s0’, ’s1’, and so on; L3 is a %%

%% list of the form ’v(SN,P)’ where SN is an element of %%

%% L2 and P is a list of propositions; SN is a state and %%

%% the elements of P are the propositions that hold in %%

%% SN. %%

%% get_r(L1,L2,L3,L4) :- L1 is as above; L2 is a list of elements of %%

%% the form ’br(A,K0,K1)’ where A is an agent and K0 and %%

%% K1 are codes of the nodes; L3 is an accumulator and %%

%% L4 is the the resulting list of lists of elements of %%

%% the form ’r(S1,S2)’, where S1 and S2 are states. %%

%% get_element(N,L,X) :- X is the N-th element of list L. %%

%% get_state(K1,S1,S) :- as above for individual K1 and S1. %%

%% add_to_list(L1,X,N,L2) :- L1 is a list of lists; X is added to the %%

%% N-th list and L2 is the result. %%

%% list_concat(L,S) :- L is a list of strings and S is the %%

%% concatenation of them all. %%

%%

get_sv([],[],[]) :- !.

get_sv([st(N,P,_)|T1],[SN|T2],[v(SN,P)|T3]) :- !,

string_concat(’s’,N,SN), get_sv(T1,T2,T3).

get_r(_,[],R,R).

get_r(S,[br(N,K1,K2)|T],Mr0,Mr) :- get_state(K1,S1,S),

get_state(K2,S2,S), atom_number(N,Nx),

add_to_list(Mr0,r(S1,S2),Nx,Mr0a), get_r(S,T,Mr0a,Mr).

get_state(K,SN,[st(N,_,Kx)|_]) :- member(K,Kx), !,

string_concat(’s’,N,SN).

get_state(K,N,[_|T]) :- !, get_state(K,N,T).

add_to_list([H|T],X,1,[[X|H]|T]) :- !.

add_to_list([H|T1],X,N,[H|T2]) :- !, plus(M,1,N),

add_to_list(T1,X,M,T2).

A.6. THE REPORTS MODULE 169

list_concat(L,S) :- list_concat(L,S,’’).

list_concat([],S,S).

list_concat([H|T],S,S0) :- string_concat(S0,H,S1),

list_concat(T,S,S1).

%%

%% write_states(Ms,OO) :- Ms is a list of states of the form ’s0’, %%

%% ’s1’, and so on and OO is an output stream. %%

%% write_relations(Mr,OO) :- Mr is a list of relations of the form %%

%% ’r(s0,s1)’ where ’s0’, ’s1’ as above, and OO is an %%

%% output stream. %%

%% write_valuations(Mv,OO) :- Mv is a list of valuiations of the form %%

%% ’v(s0,P)’ where ’s0’ as above and P is the list of the %%

%% propositions that hold in ’s0’. %%

%%

write_states(Ms,OO) :- sort(Ms,Ms0), get_string_s(Ms0,St0,’’),

string_concat(’S = {’,St0,St),

write(OO,St), nl(OO), nl(OO).

write_relations(Mr,OO) :- agents(L), get_string_r(L,R,’R = {’),

write(OO,R), nl(OO), write_rel1(Mr,L,OO), nl(OO).

write_valuations(Mv,OO) :- write(OO,’V = {’), write_valuations(Mv,OO,0).

write_valuations([],OO,_) :- write(OO,’}’),nl(OO),nl(OO).

write_valuations([v(S,P)|T],OO,0) :- list_concat([’(’,S,’,[’],S1),

get_string_v(P,S2,’’), list_concat([S1,S2,’])’],St),

write(OO,St), write_valuations(T,OO,1).

write_valuations([v(S,P)|T],OO,1) :- write(OO,’,’), nl(OO),

list_concat([’ (’,S,’,[’],S1),

get_string_v(P,S2,’’), list_concat([S1,S2,’])’],St),

write(OO,St), write_valuations(T,OO,1).

%%

%% get_preproof(OO) :- this predicate constructs a preproof; OO is the %%

%% output stream. %%

%% get-preproof(K,OO) :- K is the code of the node and OO is the %%

%% output stream. %%

%%

170 APPENDIX A. SOURCE CODE

get_preproof(OO) :- get_preproof(0,OO).

get_preproof(K,OO) :- deriv(_,S1,S2,K,’ID’,X,_,_,_),

list_concat([’Node <’,K,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,X),

write(OO,’instance of ID -- Node successful’),

nl(OO), nl(OO).

get_preproof(K,OO) :- deriv(_,S1,S2,K,’REP’,1,_,_,_),

list_concat([’Node <’,K,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,1),

write(OO,’instance of REP -- Node successful’),

nl(OO), nl(OO).

get_preproof(K,OO) :- deriv(_,S1,_,K,’i’,0,_,_,_),

list_concat([’Node <’,K,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO),

write(OO,’irreducible node -- Node unsuccessful’),

nl(OO), nl(OO).

get_preproof(K,OO) :- deriv(_,S1,S2,K,’o’,X,_,[K0],_),

list_concat([’Node <’,K,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,X),

list_concat([’cyclic node: twin node is <’,K0,

’> -- Node unsuccessful’],St2),

write(OO,St2), nl(OO), nl(OO).

get_preproof(K,OO) :- deriv(_,S1,S2,K,Rule,X,_,[Nxt],_),

rule1(Rule), list_concat([’Node <’,K,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,X),

list_concat([Rule,’ rule yields node <’,Nxt,’>’],St2),

write(OO,St2), nl(OO), nl(OO),

get_preproof(Nxt,OO).

get_preproof(K,OO) :- deriv(_,S1,S2,K,Rule,X,_,[Nxt1,Nxt2],_),

rule2(Rule), list_concat([’Node <’,K,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,X),

list_concat([Rule,’ rule yields nodes <’,

Nxt1,’> and <’,Nxt2,’>’],St2),

write(OO,St2), nl(OO), nl(OO),

get_preproof(Nxt1,OO), get_preproof(Nxt2,OO).

A.6. THE REPORTS MODULE 171

get_preproof(K,OO) :- deriv(_,S1,S2,K,’BOX’,X,_,L,_),

get_line(L,St2),

list_concat([’Node <’,K,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,X),

write(OO,St2), nl(OO), nl(OO),

get_preproofs(L,OO).

get_preproofs([],_).

get_preproofs([ap(_,K)|T],OO) :- get_preproof(K,OO),

get_preproofs(T,OO).

get_line([ap(_,K)],S) :- !,

list_concat([’BOX rule yields node <’,K,’>’],S).

get_line([ap(_,K)|T],S):- !,

list_concat([’BOX rule yields nodes <’,K,’>’],S1),

get_line(T,S1,S).

get_line([],S,S).

get_line([ap(_,K)|T],S1,S) :- list_concat([S1,’, <’,K,’>’],S2),

get_line(T,S2,S).

%%

%% get_derivation(OO) :- this predicate construct a derivation; OO is %%

%% the output stream. %%

%% get_derivation(K,C,OO) :- K is the code of the node, C is the %%

%% binary node(recall that there are multiple nodes %%

%% in ’deriv’), and OO is the output stream. %%

%%

get_derivation(OO) :- assert(dcode(0)), get_derivation(0,0,OO),

retractall(dcode(_)).

get_derivation(K,C,OO) :- deriv(_,S1,S2,K,’ID’,X,_,_,_),

list_concat([’Node <’,C,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,X),

write(OO,’instance of ID -- Node successful’),

nl(OO), nl(OO).

172 APPENDIX A. SOURCE CODE

get_derivation(K,C,OO) :- deriv(_,S1,S2,K,’REP’,1,_,_,_),

list_concat([’Node <’,C,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,1),

write(OO,’instance of REP -- Node successful’),

nl(OO), nl(OO).

get_derivation(K,C,OO) :- deriv(_,S1,S2,K,Rule,X,0,[Nxt],_),

rule1(Rule), get_dcode(C0),

list_concat([’Node <’,C,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO), write_annot(S2,OO,X),

list_concat([Rule,’ rule yields node <’,C0,’>’],St2),

write(OO,St2), nl(OO), nl(OO),

get_derivation(Nxt,C0,OO).

get_derivation(K,C,OO) :- deriv(_,S1,S2,K,Rule,X,0,[Nxt1,Nxt2],_),

rule2(Rule), get_dcode(C0), get_dcode(C1),

list_concat([’Node <’,C,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO),

write_annot(S2,OO,X),

list_concat([Rule,’ rule yields nodes <’,

C0,’> and <’,C1,’>’],St2),

write(OO,St2), nl(OO), nl(OO),

get_derivation(Nxt1,C0,OO), get_derivation(Nxt2,C1,OO).

get_derivation(K,C,OO) :- deriv(_,S1,S2,K,’BOX’,X,0,L,_),

get_nxt(L,Nxt), get_dcode(C0),

list_concat([’Node <’,C,’> = [’,S1,’]’],St1),

write(OO,St1), nl(OO),

write_annot(S2,OO,X),

list_concat([’BOX rule yields node <’,C0,’>’],St2),

write(OO,St2), nl(OO), nl(OO),

get_derivation(Nxt,C0,OO).

%%

%% get_dcode(X) :- gets the next available code for the derivation. %%

%%

get_dcode(C) :- dcode(X), plus(X,1,C), retract(dcode(X)),

assert(dcode(C)).

A.6. THE REPORTS MODULE 173

%%

%% write_annot(L,OO,X) :- writes the annotation L (one context for %%

%% line) in stream OO if X=1; otherwise does nothing. %%

%%

write_annot(_,_,0) :- !.

write_annot([],OO,1) :- !, write(OO,’H = []’), nl(OO).

write_annot([H1,H2|T],OO,1) :- !, list_concat([’H = [[’,H1,’],’],St),

write(OO,St), write_annot([H2|T],OO).

write_annot([H|T],OO,1) :- !, list_concat([’H = [[’,H,’]’],St),

write(OO,St), write_annot(T,OO).

write_annot([],OO) :- write(OO,’]’), nl(OO).

write_annot([H|T],OO) :- nl(OO), list_concat([’ [’,H,’]’],S),

write(OO,S), write_annot(T,OO).

%%

%% rule1(X) :- X is a rule with one premise other than K. %%

%% rule2(X) :- X is a rule with two premises other than K. %%

%%

rule1(’OR’).

rule1(’U’).

rule1(’FOC’).

rule2(’AND’).

rule2(’C’).

rule2(’C[H]’).

%%

%% get_nxt(L,N) :- L is a list of premises of a BOX rule and N is a %%

%% successful one. %%

%%

get_nxt([ap(_,H)|_],H) :- deriv(_,_,_,H,_,_,0,_,_).

get_nxt([_|T],N) :- get_nxt(T,N).

174 APPENDIX A. SOURCE CODE

%%

%% get_string_s(L,S,S0) :- prepares a string S with the elements of %%

%% list L; S0 is an accumulator. %%

%% write_rel1(L1,L2,OO) :- writes the relations in list L1 (of the %%

%% form ’r(s0,s1)’) for the agents in list L2 on output %%

%% stream OO. %%

%% write_rel2(L,S,St0) :- prepares the string S to be written for the %%

%% relations in list L, of the same form as above; St0 is %%

%% an accumulator. %%

%% get_string_r(L,S,S0) :- similar to get_string/3, bt for lists of %%

%% relations. %%

%% get_string_v(L,S,S0) :- similar to get_string/3 for lists of %%

%% valuations. %%

%%

get_string_s([],St,St0) :- string_concat(St0,’}’,St).

get_string_s([H|T],St,’’) :- !, get_string_s(T,St,H).

get_string_s([H|T],St,St0) :- !, list_concat([St0,’,’,H],St1),

get_string_s(T,St,St1).

write_rel1(_,[],_).

write_rel1([L|T1],[A|T2],OO) :- list_concat([’ R’,A,’= {’],St0),

write_rel2(L,S,St0), write(OO,S), nl(OO), write_rel1(T1,T2,OO).

write_rel2([],S,St0) :- !, string_concat(St0,’}’,S).

write_rel2([r(S0,S1)],S,St0) :- !,

list_concat([St0,’(’,S0,’,’,S1,’)}’],S).

write_rel2([r(S0,S1)|T],S,St0) :-

list_concat([St0,’(’,S0,’,’,S1,’),’],St1),

write_rel2(T,S,St1).

get_string_r([],R,S) :- string_concat(S,’}’,R).

get_string_r([A],R,S) :- !, list_concat([S,’R’,A,’}’],R).

get_string_r([A|T],R,S) :- !, list_concat([S,’R’,A,’,’],S0),

get_string_r(T,R,S0).

get_string_v([],S,S).

get_string_v([P|T],S,’’) :- !, get_string_v(T,S,P).

get_string_v([P|T],S,S0) :- list_concat([S0,’, ’,P],S1),

get_string_v(T,S,S1).

A.6. THE REPORTS MODULE 175

%%

%% sum_up(OO,T0) :- this predicate writes the total number of nodes, %%

%% the maximum height of the tree and the (roughly) time %%

%% elapsed regardless of the validity of the sequent; OO %%

%% is the output stream and T0 is the initial time. %%

%%

sum_up(OO,T0) :- findall(C,deriv(_,_,_,C,_,_,_,_,_),L1),

list_length(L1,N), findall(H,deriv(_,_,_,_,_,_,_,_,H),L2),

list_max(L2,H), get_time(T1), T is round((T1 - T0) * 1e+06),

list_concat([’** Total number of nodes = ’,N],S1),

list_concat([’** Maximum height of the tree = ’,H],S2),

list_concat([’** Time elapsed = ’,

T,’e-06 sec’],S3),

write(OO,S1), nl(OO), write(OO,S2), nl(OO), write(OO,S3),

nl(OO), nl(OO).

176 APPENDIX A. SOURCE CODE

Appendix B

The Construction of a

Coutermodel

B.1 Construction of a Countermodel in SCK

The procedure to construct the countermodel when the sequent is not prov-
able is the most complicated of the implementation. The decision procedure
and the construction of a proof in SCK starting from one in S′

CK are compara-
tively straightforward. The problem lies in the conversion between different
trees that are not isomorphic. This process was explained in Chapter 3.
The extraction of the countermodel is in module mod reports as is the pro-
cedure for the construction of a proof. The construction of a countermodel
is a more complicated process than the construction of a proof. We give
here a general explanation highlighting the more relevant parts without
incurring in many technical details. The complete code is in Appendix A.

The countermodel is constructed following Definition 3.49 of Chapter 3.
The output of the program is in the case of a sequent that is not provable,
the countermodel. An excerpt of the output of a failed proof for a simple
case (the sequent {♦*�1¬p,�1¬p}) is shown in Figure B.1. In this case,
some elements that are not essential have been omitted and replaced with
ellipses (. . .); the complete listing of the output for this example may be

177

178 APPENDIX B. THE CONSTRUCTION OF A COUTERMODEL

found in Chapter 5.

** Agents [1, 2]
** Sequent [UK1¬p,K1¬p]

Formula Nr.1: UK1¬p
OK

Formula Nr.2: K1¬p
OK

(. . .)

** countermodel: M=(S,R,V)

S = {s0,s1,s2}

R = {R1,R2}
R1= {(s0,s1),(s1,s2),(s2,s2)}
R2= {}

V = {(s0,[]),
(s1,[p]),
(s2,[p])}

** Total number of nodes = 12
** Maximum height of the tree = 12
** Time elapsed = 3273e-06 sec

** The sequent is not valid.

Fig. B.1: The output of a simple preproof.

The part of the proof that has been omitted in Figure B.1, denoted with
ellipses (. . .), is the preproof. The basis of the process, as in the construc-
tion of a proof, is the table deriv/8, which stores the whole information of
the preproof.

There are several problems that must be dealt with. For instance, a
state in the countermodel comprises several nodes in the preproof; besides,
not all nodes in the preproof are used, because of the pruning process when
the tree τ1 is constructed (see Definition 3.49 in Chapter 3.)

The first part is the construction of a premodel, which consists of two

B.1. CONSTRUCTION OF A COUNTERMODEL IN SCK 179

lists:

• A list St of terms of the form st(N,P,Kx), where N is the code of the
state in the countermodel, P is a list of the propositions that hold
in the state according to Definition 3.49, and Kx is a list containing
codes of the nodes of the preproof that are collapsed in the state N.

• A list Re of terms of the form br(A,K1,K2) where A is an agent, and
K1 and K2 are codes of nodes in the preproof such that K2 is an
A-premise of K1.

Example B.1 The meaning of the lists St and Re is shown in Figure B.2.
We have used the same sequent as in the example of Figure B.1. To make
the encoding of the nodes more readable, we write 0 for 〈〉, 1 for 〈0〉 and so
on.

♠

Observe that in the example above several nodes are grouped together
in single states following Definition 3.49.

The principal predicates to construct this premodel are compose state/4
and get nxt states/3. The simplified code of these predicates is shown in
Figure B.3. As before, some auxiliary subgoals have been abbreviated and
grouped as commentaries between symbols %.

The clause compose state/4 has four parameters, (St, S, R, K). Their
meaning is explained below:

• St is the list which will be unified with the list St of the premodel as
explained above, i.e., it is a list of terms of the form st(N,P,Kx), where
N is the code of the state in the model, P is a list of the propositions
that hold in N and Kx is a list containing codes of all nodes collapsed
in N.

• S is a term st(N,Kx) where N and Kx are the same as above. In this
term the nodes collapsed in state N are iteratively collected in list Kx.

180 APPENDIX B. THE CONSTRUCTION OF A COUTERMODEL

nodes

♦*�1¬p,�1¬p0
♦*

(♦1♦*�1¬p∨♦2♦*�1¬p), (♦1�1¬p∨♦2�1¬p),�1¬p1
∨

♦1♦*�1¬p,♦2♦*�1¬p, (♦1�1¬p∨♦2�1¬p),�1¬p2
∨

♦1♦*�1¬p,♦2♦*�1¬p,♦1�1¬p,♦2�1¬p,�1¬p3

�1

♦*�1¬p,�1¬p,¬p4
♦*

(♦1♦*�1¬p∨♦2♦*�1¬p), (♦1�1¬p∨♦2�1¬p),�1¬p,¬p5
∨

♦1♦*�1¬p,♦2♦*�1¬p, (♦1�1¬p∨♦2�1¬p),�1¬p,¬p6
∨

♦1♦*�1¬p,♦2♦*�1¬p,♦1�1¬p,♦2�1¬p,�1¬p,¬p7

�1

♦*�1¬p,�1¬p,¬p8
♦*

(♦1♦*�1¬p∨♦2♦*�1¬p), (♦1�1¬p∨♦2�1¬p),�1¬p,¬p9
∨

♦1♦*�1¬p,♦2♦*�1¬p, (♦1�1¬p∨♦2�1¬p),�1¬p,¬p10
∨

♦1♦*�1¬p,♦2♦*�1¬p,♦1�1¬p,♦2�1¬p,�1¬p,¬p11

-

-

�

R1

R1

R1

St = [st(0, [], [0, 1, 2, 3]), st(1, [p], [4, 5, 6, 7]), st(2, [p], [8, 9, 10, 11])]

Re = [br(1, [3, 4]), br(1, [7, 8]), br(1, [11, 8])]

Fig. B.2: The first part of the construction of a countermodel given a failed
derivation.

• R is a list of the same form as Re above, i.e., a list of terms br(A,K1,K2)
where A is an agent, and K1 and K2 are codes of nodes in the preproof
such that K2 is an A-premise of K1.

• The code K of the node being currently analysed.

The parameters of get nxt states/3 are:

• A list of the same form as St above.

• A list of the same form as Re above.

B.1. CONSTRUCTION OF A COUNTERMODEL IN SCK 181

1. get premodel(S,R) :- assert(mx(0)), compose state(S,st(0,[]),R,0).

2. compose state([st(N,P,[K|Kx])],st(N,Kx),[],K) :-
% The node is irreducible; P contains the atoms in N %

3. compose state([st(N,P,[K|Kx])],st(N,Kx),R,K) :-
% The node is cyclic and R contains the relations from K %
% to the premises of the node that made K cyclic; %
% P contains the atoms in N %

4. compose state(S,st(N,Kx),R,K) :-
% A rule ∨′, ∧′, ♦* ′, �* ′, or �* ′

H
is applied to the node and %

% K0 is the code of an unsuccessful premise %
compose state(S,st(N,[K|Kx]),R,K0).

5. compose state([st(N,P,[K|Kx])|T],st(N,Kx),R,K) :-
% Rule �′ is applied to the node; P contains %
% the propositions that hold in N and R2 contains %
% the relations from K to its premises %
get nxt states(T,R1,Lx), append(R1,R2,R).

6. get nxt states([],[],[]).
7. get nxt states(S1,R,[ap(,K)|T2]) :-

% get the code of the new state (N1) %
compose state(S,st(N1,[]),R1,K), get nxt states(T1,R2,T2),
append(S,T1,S1), append(R1,R2,R).

Fig. B.3: The first part of the contruction of a countermodel.

• A list of terms of the form ap(A,K) where A is an agent and K is a
code of a node.

The construction of a countermodel proceeds as follows: first the clause
get premodel(S,st(0,[]),R,0) is called. Here S and R will be instantiated to
the lists that constitute the premodel and the term st(0,[]) is an “empty”
term which will collect the codes of all nodes in the state 0 of the counter-
model. The fourth parameter is the code of the root of the preproof. Then
there are several possibilities:

182 APPENDIX B. THE CONSTRUCTION OF A COUTERMODEL

• If the branch is closed because an irreducible node has been encoun-
tered (clause 2), then the nodes collected in the second parameter
together with the current node in the fourth one are put together
in the list of the first parameter together with the list of all atomic
propositions P that hold in state N. The branch is closed and no fur-
ther recursive calls to compose state/4 are done. The list R is empty
for this branch, because there are no “next” states.

• If the branch is closed because a cyclic node has been encountered
(clause 3), Then the nodes collected in the second parameter together
with the current node in the fourth one are put together in the list
of the first parameter together with the list of all atomic propositions
P that hold in state N. The branch is closed and no further recursive
calls to compose state/4 are done. The list R contains the relations
from the cyclic node to the premises of the node that caused the
current node to be cyclic.

• If a rule other than �′ is applied to the node (clause 4), an unsuc-
cessful premise K0 is chosen, the node is added to the collapsed nodes
and a recursive call to compose state4/ follows.

• If a rule �′ is applied to the node (clause 6), then the state must be
closed and the next states processed. This is done as follows:

– The head of the list unifies with the term st(N,P,[K|Kx]), where
N is the code of the state being closed, P is the set of atomic
propositions that hold in N, and [K|Kx] is the set of all nodes
collapsed in N.

– The predicate get nxt states(T,R1,Lx) is called. Here T and R1
will be unified with the remaining tail of the lists constitut-
ing the premodel. The get nxt states/3 predicate will call com-
pose state/4 predicate for each code of a premise node K in the
list Lx, which consists of terms ap(A,K), where A is an agent.

A couple of observations are in order. In the first place, the predicate
compose state/4 takes only cyclic relations into account. The relations of

B.1. CONSTRUCTION OF A COUNTERMODEL IN SCK 183

the underlying tree τ1 (see Definition 3.49) have to be included after the call
to the get next states/3 predicate. This is done in the last subgoal of clause
5. In the second place, there is a small technical problem with the codes
of the states. It is clear that the first code is 0, but then several recursive
calls to the compose state/4 predicate behave as if they were independent
processes [8] or independent threads [81]. Thus, a situation in which two
calls to compose state/4 occur with the same state code, i.e., with the same
empty term st(N,[]) in the third parameter, must be avoided. This is done
with a dynamic table mx/1, which has the current available code. The
code abbreviated as “get the code of the new state” in clause 7 consists
of taking the current value of mx/1 and updating it by incrementing the
value in 1. This table plays the rôle of a global variable in usual procedural
programming. In a multiprocess or multithreading implementation, this
table should be treated as a mutual exclusion resource [8, 81].

The premodel contains the whole information of the model. Having the
lists S and R, the extraction of the model is routine. The actual model
consists of:

• A list Ms of states s0, s1, and so on.

• A list Mv of valuations, containing terms of the form v(S,P) where S
is a state of the list Ms and P is a list of atomic propositions.

• A list Mr of lists of terms r(S1,S2), where S1 and S2 are states of the
list Ms. The i-th list is the list of relations of agent i.

This is done with the predicates get sv/3 and get r/4, shown below.
The predicate get sv(S,Ms,Mv) instantiates Ms to the list of states and Mv
to the list of valuations mentioned above. The predicate get r(S,R,Mr0,Mr)
where Mr0 is an auxiliary list of n empty lists, one for each of the n agents.
instantiates Mr to the list of terms mentioned above. The predicates are
shown in Figure B.4 below.

The predicate get state(K,SN,S) instantiates the variable SN to the num-
ber corresponding to the state N where node K is collapsed and prefixes it
with s. Now we show that the model constructed corresponds to Defini-
tion 3.49.

184 APPENDIX B. THE CONSTRUCTION OF A COUTERMODEL

1. get sv([],[],[]) :- !.
2. get sv([st(N,P,)|T1],[SN|T2],[v(SN,P)|T3]) :- !,

string concat(’s’,N,SN), get sv(T1,T2,T3).

3. get r(,[],R,R).
4. get r(S,[br(N,K1,K2)|T],Mr0,Mr) :-

get state(K1,S1,S), get state(K2,S2,S),
atom number(N,Nx), add to list(Mr0,r(S1,S2),Nx,Mr0a),
get r(S,T,Mr0a,Mr).

5. get state(K,SN,[st(N, ,Kx)|]) :- member(K,Kx), !,
string concat(’s’,N,SN).

6. get state(K,N,[|T]) :- !, get state(K,N,T).

7. add to list([H|T],X,1,[[X|H]|T]) :- !.
8. add to list([H|T1],X,N,[H|T2]) :- !, plus(1,N,M),

add to list(T1,X,M,T2).

Fig. B.4: The actual construction of the countermodel (Ms,Mr,Mv).

In the following propositions we assume that there is a preproof whose
information is stored in the table deriv/9, a corresponding premodel (S,R),
and a corresponding model (Ms,Mr,Mv).

Proposition B.2 Let K0 and K1 be the codes of two nodes in the preproof
that have not been discarded in the construction of the premodel (S,R). If
K0 and K1 are connected and not separated for an instance of �′, then
there is a term (N,P,Kx) in S such that both K0 and K1 are in Kx. Further,
K0 and K1 do not appear in any other term of S.

Proof. Both nodes are separated by instances of ∨′, ∧′, foc′, ♦* ′, �* ′, or
�*

′
H . When predicate compose state/4 is called, clause 4 is repeated, since

clause 2 and 3 close the branch (and therefore any connection), and clause 5
is only executed when there is an instance of rule �′. Thus, both codes will
be stored in the third parameter of the predicate, the term st(N,Kx). When
the branch is closed, either by clause 2, 3, or 5, the term is incorporated to

B.1. CONSTRUCTION OF A COUNTERMODEL IN SCK 185

the first parameter under the code N of the state.

Observe besides that, once the predicate compose state/4 is called, then a
set of successor nodes is sent as third parameter to the get next states/3. In
all cases, the nodes that are considered belong to a group which is separated
from the already collapsed one by at least one instance of �′. The nodes
that are below in the tree are not considered again. �

Proposition B.3 If the negative literal nlit(p) is in some node K which is
collapsed in state N, then there is a term v(N,P) in Mv and p is in the list
P.

Proof. The first parameter of the table deriv/9 is a list of propositions
which is constructed by the predicate get prop/2, listed in Figure B.5 below.

1. get prop([],[]).
2. get prop([nlit(X)|T1],[X|T2]) :- !, get prop(T1,T2).
3. get prop([|T],P) :- !, get prop(T1,P).

Fig. B.5: The construction of the list of atomic propositions for the valuation
of the countermodel.

The cuts here are red cuts. They are used to rule out undesired solutions. It
is easy to see that for each negative literal nlit(X) in the sequent of the first
parameter, X is in the list of the second parameter. This predicate is only
called in the proof search process for sequents that are conclusions of the
�′ rule. This is enough, since the rule �′ is the only one that can eliminate
literals. Any other rule passes the literals from the conclusion on to the
premises. If a negative literal nlit(X) is in a node K, and the node is the con-
clusion of a rule other than �′, it will be in all its premises. If it is the con-
clusion of �′, then clause 5 in the predicate compose state/4 of Figure B.3
will be called and the state will be closed with a term st(N,P,Kx) where K
is in Kx and X is in P. Besides, there is a term deriv(P, , ,K, , , , ,).

When the predicate get sv/3 is called, for each term st(N,P,) in S, a
term v(SN,P) is added to Mv, where SN is just N prefixed with s. �

186 APPENDIX B. THE CONSTRUCTION OF A COUTERMODEL

Proposition B.4 Assume that the nodes K0, K1, and K2 have not been
discarded in the construction of the premodel (S,R). Assume further that
K0 is collapsed in state N0, K1 is collapsed in state N1 and K2 is collapsed
in state N2. Then:

(i) If K1 is an i-premise of K0, then there is a term r(N0,N1) in the i-th
list of Mr.

(ii) If twin (K1) = K0, and K2 is an i-premise of K0, then there is a term
r(N0,N1) in the i-th list of Mr.

Proof. First we show for part (i) that there is a term br(i,K0,K1) in the
list R of the premodel and for part (ii) that there is a term br(i,K1,K2) in
R.

Part (i). If K1 is an i-premise of K0, then K0 is a conclusion of �′ and
there is a term deriv(P, , ,K0,’BOX’, , ,Lx,), where Lx contains a term
ap(i,K1). Then clause 5 in Figure B.3 calls predicate get relations(R2,Lx,K0)
with R2 uninstantiated. This predicate is listed in Figure B.6.

1. get relations([],[],).
2. get relations([br(N,K,K0)|T1],[ap(N,K0)|T2],K) :- get relations(T1,T2,K).

Fig. B.6: The obtention of the relations between two states of the counter-
model.

It is easy to see that this predicate constructs a list of elements br(A,K0,K1)
where A is an agent and K0 and K1 are the codes of two nodes. The idea is to
specify that K1 is an A-premise of K0. Since there is a term ap(i,K1) in Lx,
then there is a term br(i,K0,K1) in the list to which R2 will be instantiated.

Part (ii). If twin (K1) = K0, there is a term deriv(P, , ,K1,’o’, , ,[K0],).
Besides, since we assume that K2 is an i-premise of K0, there is a term
deriv(P, , ,K0,’BOX’, , ,Lx,), where the list Lx contains a term ap(i,K2).
Then clause 3 in Figure B.3 succeeds and a subsequent call to the predicate

B.1. CONSTRUCTION OF A COUNTERMODEL IN SCK 187

get cyclic relations(R,K0,K1) with R uninstantiated follows. This predicate
just gets the aforementioned term deriv(P, , ,K0,’BOX’, , ,Lx,) and calls
get relations(R,Lx,K1) (see Figure B.6) with R uninstantiated. Thus, by part
(i) of this proposition, there is a term br(i,K1,K2).

Now we show that there is a term r(N0,N1) in the i-th list of Mr. The list Mr
is constructed by the predicate get r/3 shown in Figure B.7 below. When
a term br(i,K0,K1) is in R, the predicate add to list(Mr0,r(N0,N1),N,Mr0a)
(clauses 5 and 6) is called. Here Mr0 is the list before the addition of the
new element, r(N0,N1) is the term to be added to the list at position N,
and Mr0a will be unified with the resulting list. It is easy to prove by a
straightforward induction on N that the variable Mr0a unifies with the list
that results from adding term r(N0,N1) to the list at position N of Mr0.
The relevant clauses are shown below.

1. get r(,[],R,R).
2. get r(S,[br(N,K1,K2)|T],Mr0,Mr) :-

get state(K1,S1,S), get state(K2,S2,S),
atom number(N,Nx), add to list(Mr0,r(S1,S2),Nx,Mr0a),
get r(S,T,Mr0a,Mr).

3. get state(K,SN,[st(N, ,Kx)|]) :- member(K,Kx), !,
string concat(’s’,N,SN).

4. get state(K,N,[|T]) :- !, get state(K,N,T).

5. add to list([H|T],X,1,[[X|H]|T]) :- !.
6. add to list([H|T1],X,N,[H|T2]) :- !, plus(1,N,M),

add to list(T1,X,M,T2).

Fig. B.7: The construction of the list Mr.

�

188 APPENDIX B. THE CONSTRUCTION OF A COUTERMODEL

Appendix C

Infix Operators

C.1 Implementation of Infix Operators

It would have been possible to define the terms in an infix form instead
of the prefix form we used. As explained in Chapter 4, the main reason
to choose the prefix form was that this form was to be used only in the
inner manipulations of the formulæ and sequents and the user had another
representation.

The main advantage would have been to have a unique representation
of formulæ and thus avoid the problem of translating formulæ between the
interface and the theorem prover. The main drawback was that Prolog
imposes certain conditions in the syntax of operators, namely that they
cannot begin with capital letters. Thus, there was the risk of having con-
fusions betwen operators and atomic formulæ. This could have been over-
come by using new symbols for the operators �i, ♦i, �* and ♦* . But then
the objective of having a readable representation would have been rather
compromised.

Still, the use of infix operators or prefix operators with a parsing process
remains a matter of taste. Here we explain what has to be done to get infix
operators.

The predicate to define a new operator is op/3, whose usage is the

189

190 APPENDIX C. INFIX OPERATORS

following:

:- op(Precedence,Pattern,Symbol).

Here Precedence is an integer indicating the precedence; Pattern is ei-
ther fx, xf, fy or yf for unary operators and xfx, xfy, xfy or yfy for binary
operators. In these cases, x means a term of precedence strictly lower than
the precedence of f and y means a term of precedence lower than or equal
to that of f. Finally, Symbol is the name of the operator.

The op/3 predicate shold be executed before any use of the operator
Symbol in the program. This definition may be done in a module and when
the module is called, the operators are already defined. This is what we
did in the next example.

Example C.1 We will show the general procedure by means of a simple
example, a theorem prover for propositional logic. The program first re-
duces the formula to be proved to the negative normal form by eliminating
the connectors ≡ y ⇒ and repeatedly applying the De Morgan laws af-
terwards. The connectors are: ˜ (negation) \/ (a backslash and a slash;
disjunction), /\ (a slash and a backslash; conjunction), => (implication)
and <=> (equivalence.)

The module is defined thus:

:- module(mod proof,
[op(750,yfx,\/),
op(760,yfx,/\),
op(770,fx,˜),
op(780,yfx,=>),
op(780,yfx,<=>),
prove/2
]).

Fig. C.1: The definition of the module.

Notice that the predicate prove/2 and the operators are exported. The
negation has precedence over all connectors, followed by conjunction, dis-

C.1. IMPLEMENTATION OF INFIX OPERATORS 191

junction, implication and equivalence, the two latter with equal precedence.
The pattern yfx means that connectors with the same precedence are left-
associative.

The main program is shown next:

:- use module(mod proof).

attempt(F) :- prove(F,0), !, format(’The formula is valid’).
attempt() :- !, format(’The formula is not valid’).

Fig. C.2: The main module of the example.

For instance, two possible executions of the program are:

1 ?- attemt(p => (q => p)) .
The formula is valid
true.

2 ?- attemt(p => (q => a)).
The sequent is not valid
true.

Fig. C.3: Two runs of the program.

♠

Observe that the parentheses are necessary, since otherwise the formula

p1 ⇒ p2 ⇒ p3

would be interpreted as
((p1 ⇒ p2) ⇒ p3)

and not as
(p1 ⇒ (p2 ⇒ p3))

as intended.

192 APPENDIX C. INFIX OPERATORS

The complete code of the module, which is irrelevant to our purpose, is
listed next.

:- module(mod_proof,

[op(750,yfx,\/),

op(760,yfx,/\),

op(770,fx,~),

op(780,yfx,=>),

op(790,yfx,<=>),

prove/2

]).

prove(F,R) :- convert_onto_nnf(F,F1), proof_search([F1],R).

proof_search(S,0) :- member(~X,S), member(X,S), !.

proof_search(S,R) :- or_rule(S,S1), proof_search(S1,R).

proof_search(S,R) :- and_rule(S,S1,S2), proof_search(S1,R1),

proof_search(S2,R2), R is max(R1,R2).

proof_search(_,1) :- !.

convert_onto_nnf(F1,F2) :- elim_equiv(F1,F1a), elim_implic(F1a,F1b),

get_nnf(F1b,F2).

elim_equiv(X,X) :- atom(X).

elim_equiv((~X),(~X1)) :- elim_equiv(X,X1).

elim_equiv((X \/ Y),(X1 \/ Y1)) :- elim_equiv(X,X1), elim_equiv(Y,Y1).

elim_equiv((X /\ Y),(X1 /\ Y1)) :- elim_equiv(X,X1), elim_equiv(Y,Y1).

elim_equiv((X => Y),(X1 => Y1)) :- elim_equiv(X,X1), elim_equiv(Y,Y1).

elim_equiv((X <=> Y),((X1 => Y1) /\ (Y1 => X1))) :- elim_equiv(X,X1),

elim_equiv(Y,Y1).

elim_implic(X,X) :- atom(X).

elim_implic((~X),(~X1)) :- elim_implic(X,X1).

elim_implic((X \/ Y),(X1 \/ Y1)) :- elim_implic(X,X1), elim_implic(Y,Y1).

elim_implic((X /\ Y),(X1 /\ Y1)) :- elim_implic(X,X1), elim_implic(Y,Y1).

elim_implic((X => Y),((~X1) \/ Y1)) :- elim_implic(X,X1),

elim_implic(Y,Y1).

C.1. IMPLEMENTATION OF INFIX OPERATORS 193

get_nnf(F,F) :- is_nnf(F), !.

get_nnf((~(~X)),X1) :- get_nnf(X,X1).

get_nnf((~(X \/ Y)),(X1 /\ Y1)) :- get_nnf((~X),X1), get_nnf((~Y),Y1).

get_nnf((~(X /\ Y)),(X1 \/ Y1)) :- get_nnf((~X),X1), get_nnf((~Y),Y1).

get_nnf((X \/ Y),(X1 \/ Y1)) :- get_nnf(X,X1), get_nnf(Y,Y1).

get_nnf((X /\ Y),(X1 /\ Y1)) :- get_nnf(X,X1), get_nnf(Y,Y1).

is_nnf(X) :- atom(X).

is_nnf((~X)) :- atom(X).

is_nnf((X \/ Y)) :- is_nnf(X), is_nnf(Y).

is_nnf((X /\ Y)) :- is_nnf(X), is_nnf(Y).

or_rule([],_) :- !, fail.

or_rule([(X \/ Y)|T],[X,Y|T]).

or_rule([H|T],[H|T1]) :- or_rule(T,T1).

and_rule([],_,_) :- !, fail.

and_rule([(X /\ Y)|T],[X|T],[Y|T]).

and_rule([H|T],[H|T1],[H|T2]) :- and_rule(T,T1,T2).

194 APPENDIX C. INFIX OPERATORS

Index

RA, 25
R∗

A, 25
R+

A, 25
R0

A, 25
Rk

A, 25
�ϕ, 25
�

k, 26
�(≤i)ϕ, 25
�i

in CK, 24
Γ ∼ Σ, 51
Φ, 7, 24
\+ (negation in Prolog), 82∨

Γ, 24∧
Γ, 24

⊥, 24
�*

in CK, 24
�* (ϕ,ψ), 144
clA(Γ)

in CK, 50
clA(ϕ), 47
δ(Γ)

in CK, 54
δ(ϕ), 54
δA(Γ)

for CK, 50
δA(ϕ)

for CK, 47
♦ϕ, 25
♦k, 26
♦(≤i)ϕ, 25

♦i

in CK, 24
|= (for CK), 26
|= (for E), 8
SCK, 33
σ, 24
S′
CK, 41
τ0 , 57
τ1 , 57
τ2 , 57
deg (τ), 66
height (τ), 66
heightτ (π), 59
size (Γ), 46
size (ϕ), 46
twinD, 56
>, 24
♦*

in CK, 24
♦* (ϕ,ψ), 144
A, 7, 24
c(ϕ), 92
k(i,ϕ), 92
nlit(p), 92
o(ϕ,ψ), 92
p(i,ϕ), 92
plit(p), 92
u(ϕ), 92
y(ϕ,ψ), 92
! (cuts in Prolog), 83

agents, 8, 24

195

196 INDEX

annotated formulæ
of CK, see CK

annotations
for CK, 28

atomic propositions, 6
axiomatic nodes

in SCK, 34

backtracking, 83
Byzantine generals problem, 16

c(ϕ), 92
CK

annotated formulæ, 24
semantics, 29
syntax, 28

corresponding formulæ, 29
formulæ, 24

semantics, 26
syntax, 24

literals, 24
models, 8, 25
presequents, 29
satisfaction relation, 26
sequents, 29
signatures, 24

clauses, see definite program clauses
closure of a formula, 47

of CK, 47
closure of a sequent, 50
completeness

of CK, 41
coordinated attack problem, 15
corresponding formulæ

for CK, see C29
cyclic occurrences, 51

decision procedure for CK, 65
definite program clauses, 74
degree of a tree, 66
depth of a tree, 66

E
satisfaction relation, 8
semantics, 8
syntax, 8

epistemic frames, 8
relations, 8
states, 8
worlds, 8

epistemic models, 8, 25
relations, 8, 25
states, 8, 25
valuations, 8, 25

Euclidean relations, see relations
extended sequents

of CK, 42

fixed point expressions
of annotated formulæ, 31

formulæ
closure, 47
of CK, see CK

goals, 74
good instances of �i, 33
green cuts, 86

height o a tree, 66
height of a node of a tree, 59
history-free sequents

of CK, 29
Horn clauses, 74

i-premises
in CK, 44

introspection, 11
negative, 11
positive, 11

irreducible nodes, 35

k(i,ϕ), 92

literals

INDEX 197

of CK, 24
locally reduced sequents, 43
logical omniscience, 11

main (source code), 148
mgu, see most general unifier
mod parse (source code), 154
mod reports (source code), 165
mod services (source code), 163
mod proof (source code), 157
models, see epistemic models
most general unifier, 77

negative introspection, 11
negative normal form, 24
NF0, 89
NF1, 89
NF2, 89
nlit(p), 92
nodes in a preproof

axiomatic, 34
irreducible, 35
successful, 45
unsuccessful, 45

non-rigid sets, 18
normal form 0, see NF0
normal form 1, see NF1
normal form 2, see NF2

o(ϕ,ψ), 92

p(i,ϕ), 92
p-depth, 95
parentheses-depth, see p-depth
paths

for CK, 26
PDL, 145
plit(p), 92
positive introspection, 11
possible worlds, 7, 9, 25
preproofs, 34

successful nodes in S′
CK, 45

unsuccessful nodes in S′
CK, 45

presequents
of CK, see C29

Prolog, 74
backtracking, 83
compound terms, see terms
cuts, 82
extra-logical features, 82
green cuts, 86
lists, 75, 76
meta-logical features, 82
NAF, 82
negation as failure, 82
red cuts, 86
resolvent, 77
terms, 75

arguments, 75
functors, 75

unification, 76
variables, 75

prolog
constants, 75

proof systems
SCK, 33
SE, 10
S′
CK, 41

proofs
in SCK, 34
in S′

CK, 46
propositions, 7, 24

reachability
for CK, 26

red cuts, 86
reflexive relations, see relations
relations

Euclidean, 12
reflexive, 11
serial, 12
symmetric, 11
transitive, 12

resolution principle, 74

198 INDEX

resolvent, 77

s-paths, 26
satisfaction relation

for CK, seeCK26
for E, see E

satisfiability
for CK, 31

semantics of annotated formulæ
of CK, see CK

semantics of formulæ
of CK, seeCK26
of E, see E

sequents
of CK, seeCK29

serial relations, see relations
signatures

for CK, see CK
similar sequents, 51
size of a formula

of CK, 46
size of a sequent

of CK, 46
soundness

of CK, 36
strong, 36
weak, 36

strong soundness, 36
successful nodes

in S′
CK, 45

symmetric relations, see relations
syntax of formulæ

of CK, see CK
of E, see E

tableaux, 141
transitive relations, see relations

u(ϕ), 92
unification, 76
unsuccessful nodes

in S′
CK, 45

validity
for CK, 31

weak soundness, 36

y(ϕ,ψ), 92

Bibliography

[1] Pietro Abate, Rajeev Goré, and Florian Widmann. Cut-Free Single-Pass Tableaux
for the Logic of Common Knowledge. Manuscript. A short version was presented at
the Workshop on Agents and Deduction, TABLEAUX 2007, Aix en Provence.

[2] Luca Alberucci. The Modal µ-Calculus and the Logic of Common Knowledge. PhD
thesis, University of Bern, 2002.

[3] Robert Aumann. Agreeing to Disagree. Annals of Statistics, 4(6):1236–1239, 1976.

[4] Robert Aumann. Interactive Epistemology I: Knowledge. Journal of Game Theory,
28:263–300, 1999.

[5] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1999.

[6] Jon Barwise. Scenes and Other Situations. Journal of Philosophy, 78(7):369–397,
1981.

[7] Jon Barwise. Three Views of Common Knowledge. In Proc. of the 2nd Confer-
ence on Theoretical Aspects of Reasoning About Knowledge, pages 365–379. Morgan-
Kaufmann Publishers, 1988.

[8] Mordechai Ben-Ari. Principles of Concurrent Programming. Prentice-Hall, 1990.

[9] Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of Communication
and Change. Information and Computation, 204:1620–1662, 2006.

[10] Johan van Benthen. “One is a Lonely Number”: On the Logic of Communication.
Technical report, ILLC, University of Amsterdam, 2002.

[11] Ivan Boh. Epistemic Logic in the Latter Middle Ages. Routledge, 1993.

[12] Ivan Bratko. PROLOG Programming for Artificial Intelligence. Addison-Wesley,
1986.

[13] Kai Brünnler and Martin Lange. Cut-Free Systems for Temporal Logic. Journal of
Logic and Algebraic Programming, 76(2):216–225, 2008.

199

200 BIBLIOGRAPHY

[14] Kai Brünnler and Thomas Studer. Syntactic Cut-Elimination for Common Knowl-
edge. In Proc. of Methods for Modalities M4M5, pages 227–240, 2009.

[15] Yegor Bryukhov. Automatic Proof Search in Logic of Justified Common Knowledge.
In Proc. of the 4th Workshop “Methods for Modalities” (M4M’05), pages 187–201.
Springer-Verlag, 2005.

[16] Robert Bull. Cut Elimination for Propositional Dynamic Logic Without *.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 38:85–100,
1992.

[17] Rudolf Carnap. The Journal of Symbolic Logic. Journal of Symbolic Logic, 11(2):33–
46, 1946.

[18] Brian Chellas. Modal Logic. An Introduction. Cambridge University Press, 1980.

[19] Herbert Clark and Catherine Marshall. Definite Reference and Mutual Knowledge.
In Aravind Joshi, Bonnie Webber, and Ivan Sag, editors, Elements of Discourse
Understanding, pages 10–63. Cambridge University Press, 1981.

[20] Keith Clark. Negation as Failure. In Hervé Gallaire and Jack Minker, editors, Logic
and Data Bases, pages 293–322. Plenum Press, New York, 1978.

[21] William Clocksin and Christopher Mellish. Programmieren in Prolog (in German).
Springer-Verlag, 1990.

[22] Helder Coelho and José Cotta. Prolog by Example. Springer-Verlag, 1988.

[23] Alain Colmerauer and Philippe Roussel. La naissance de Prolog (in French). draft
of a paper in Thomas Bergin and Richard Gibson, editors, History of Programming
Languages, ACM Press/Addison-Wesley, 1996.

[24] Jack Copeland. Meredith, Prior and the History of Possible Worlds Semantics.
Synthese, 150(3):373–397, 2006.

[25] Yves Deville. Logic Programming. Addison-Wesley, 1990.

[26] Tony Dodd. Prolog: a Logical Approach. Oxford Science Publications, 1990.

[27] Ernest Allen Emerson. Temporal and Modal Logic. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume Volume B: Formal Models and
Semantics, pages 995–1072. Elsevier, Amsterdam, 1990.

[28] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning About
Knowledge. The MIT Press, Cambridge, MA, 1996.

[29] Robert Floyd. Assigning Meanings to Programs. In Proc. of the American Mathe-
matical Society Symposium on Applied Mathematics 19, pages 19–31, 1967.

[30] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In Robert Kowalski and Kenneth Bowen, editors, Logic Programming:
Proc. of the 5th International Conference and Symposium, pages 1070–1080, 1988.

BIBLIOGRAPHY 201

[31] Lloyd Gerson. Ancient Epistemology. Cambridge University Press, 2009.

[32] Edmund Gettier. Is Justified True Belief Knowledge? Analysis, 23:121–123, 1963.

[33] Robert Goldblatt. Logics of Time and Computation, volume CSLI Lecture Notes 7.
Center for the Study of Language and Information, 1987.

[34] Alvin Goldman. Discrimination and Perceptual Knowledge. The Journal of Philos-
ophy, 73:771–791, 1976.

[35] Rajeev Goré. Cut-Free Sequent and Tableau Systems for Propositional Normal
Modal Logics. PhD thesis, Cambridge University, 1992.

[36] Joseph Halpern and Yoram Moses. Knowledge and Common Knowledge in a Dis-
tributed Environment. Journal of the ACM, 37(3):549–587, 1990.

[37] Joseph Halpern and Yoram Moses. A Guide to Completeness and Complexity for
Modal Logics of Knowledge and Belief. Artificial Intelligence, 54:311–379, 1992.

[38] David Harel, Dexter Kozen, and Jarzy Tyurin. Dynamic Logic. MIT Press, Cam-
bridge, MA, 2000.

[39] Vincent Hendricks and John Symons. Where’s the Bridge? Epistemology and Epis-
temic Logic. Philosophical Studies, 128:137–167, 2006.

[40] Jaakko Hintikka. Logic and Belief. An Introduction to the Logic of the Two Notions.
King’s College London Publications, 1962.

[41] Jaakko Hintikka. Individuals, Possible Worlds, and Epistemic Logic. Noûs, 1(1):33–
62, 1967.

[42] Jaakko Hintikka. Reasoning about Knowledge in Philosophy: the Paradigm of Epis-
temic Logic. In Joseph Halpern, editor, Proc. of the 1st Conference on Theoretical
Aspects of Knowledge, pages 63–80. Morgan-Kaufmann Publishers, 1986.

[43] Charles Antony Hoare. An Axiomatic Basis for Computer Programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

[44] Ian Horrocks and Peter Patel-Schneider. Optimizing Description Logic Subsump-
tion. Journal of Logic and Computation, 9(3):267–293, 1999.

[45] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical Reasoning for Expres-
sive Description Logics. In Proc. of the 6th Int. Conf. on Logic for Programming
and Automated Reasoning (LPAR’99), LNAI 1705, pages 161–180. Springer Verlag,
1999.

[46] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical Reasoning for Very
Expressive Description Logics. Logic Journal of the IGPL, 8(3):239–264, 2000.

[47] Karel Hrbáček and Thomas Jech. Introduction to Set Theory. CRC Press, 1999.

[48] Gerhard Jäger, Mathis Kretz, and Thomas Studer. Cut-Free Common Knowledge.
Journal of Applied Logic, 5:681–689, 2007.

202 BIBLIOGRAPHY

[49] Feliks Kluźniak and Stanis law Szpanowicz. Prolog for Programmers. Academic
Press, 1985.

[50] Simo Knuuttila. Modalities in Medieval Philosophy. Routledge, 1993.

[51] Robert Kowalski. Predicate Logic as a Programming Language. In Proc. of IFIP
74, pages 569–574. North-Holland Publishing Company, 1974.

[52] Robert Kowalski. Algorithm = Logic + Control. Comm. of the ACM, 22(7):424–436,
1979.

[53] Saul Kripke. A Completeness Theorem in Modal Logic. The Journal of Symbolic
Logic, 24(1):1–14, 1959.

[54] Saul Kripke. A Semantical Analysis of Modal Logic I: Normal Modal Propositional
Calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–
96, 1963.

[55] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantyne Generals
Problem. ACM Transactions on Programming Languages and Systems, 4(3):382–
401, 1982.

[56] Martin Lange and Colin Stirling. Focus Games for Satisfiability and Completeness
of Temporal Logic. In Proc. of the 16th Symposium on Logic in Computer Science
(LICS’01), pages 357–365, 2001.

[57] Daniel Lehmann. Knowledge, Common Knowledge and Related Puzzles. In Proc.
3rd ACM Symposium on Principles of Distributed Computing, pages 62–67, 1984.

[58] David Lewis. Convention. Blackwell Publishing, 2002.

[59] Orna Lichtenstein and Amir Pnueli. Propositional Temporal Logics: Decidability
and Completeness. Logic Journal of the IGPL, 8(1):55–85, 2000.

[60] John Wylie Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[61] David Maier and David Warren. Computing with Logic. Logic Programming with
Prolog. The Benjamin/Cummings Publishing Company, Inc., 1988.

[62] Wiktor Marek and Miros law Truszczyński. Autoepistemic Logic. Journal of the
ACM, 38(3):587–618, 1991.

[63] John McCarthy. Circumscription: a Form of Nonmonotonic Reasoning. Artificial
Intelligence, 13:27–39, 1980.

[64] John McCarthy, Masahiko Sato, Takesh Hayashi, and Igarashi Shigeru. On the
Model Theory of Knowledge. Technical Report STAN-CS-78-657, Stanford Univer-
sity, 1979.

[65] Drew McDermott. Nonmonotonic Logic II: Nonmonotonic Modal Theories. Journal
of the ACM, 29(1):33–57, 1982.

BIBLIOGRAPHY 203

[66] Drew McDermott and Jon Doyle. Non-Monotonic Logic I. Artificial Intelligence,
13:41–72, 1980.

[67] Robert Moore. Semantical Considerations on Nonmonotonic Logic. Artificial Intel-
ligence, 28:75–94, 1985.

[68] Sara Negri. Proof Analysis in Modal Logic. Journal of Philosophical Logic, 34:507–
544, 2005.

[69] Hirokazu Nishimura. Semantical Analysis of Constructive PDL. Publ. RIMS, 18:427–
438, 1982.

[70] Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[71] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching Agreement in the
Presence of Faults. Journal of the ACM, 27(2):228–234, 1980.

[72] Raymond Perrault and Philip Cohen. Elements of Discourse Understanding. In
Aravind Joshi, Bonnie Webber, and Ivan Sag, editors, It’s For Your Own Good: a
Note on Inaccurate Reference, pages 217–230, 1981.

[73] John Pollock. Contemporary Theories of Knowledge. Rowman and Littlefield Pub-
lishers, 1986.

[74] Raymond Reiter. On Closed World Data Bases. In Hervé Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 55–76. Plenum Press, New York, 1978.

[75] Raymond Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–132,
1980.

[76] Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Jour-
nal of the ACM, 12(1):23–41, 1965.

[77] Neil Rowe. Artificial Intelligence through Prolog. Prentice-Hall, 1988.

[78] Stefan Schwendimann. A New One-Pass Tableau Calculus for PLTL. In Proc. of
the Int. Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, LNCS 1397, pages 277–292. Springer-Verlag, 1998.

[79] David Steiner. Belief Change Functions for Multi-Agent Systems. PhD thesis,
University of Bern, 2009.

[80] Leon Sterling and Ehud Shapiro. The Art of Prolog. Advanced Programming Tech-
niques. The MIT Press, Cambridge, MA, 1986.

[81] Andrew Tanenbaum. Modern Operating Systems. Pearson Prentice-Hall, 2009.

[82] Anne Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge Uni-
versity Press, 2000.

[83] Frans Vorbraak. Generalized Kripke Models for Epistemic Logics. In Joseph
Halpern, editor, Proc. of the 4rd Conference on Theoretical Aspects of Knowledge,
pages 214–228. Morgan-Kaufmann Publishers, 1992.

204 BIBLIOGRAPHY

[84] Yanjing Wang, Lakshmanan Kuppsamy, and Jan van Eijck. Verifying Epistemic
Protocols under Common Knowledge. In Proc. of the 12th Conf. on Theoretical
Aspects of Rationality and Knowledge (TARK-2009), pages 257–266, 2009.

[85] Jan Wielemaker. An Overview of the SWI-Prolog Program Environment. In Proc.
of the 13th Int. Workshop on Logic Programming Environments, pages 1–16. Tata
Institute of Fundamental Research, Mumbai, 2003.

[86] Georg Henrik von Wright. An Essay in Deontic Logic and the General Theory of
Action. Acta Philosophica Fennica, XXI, 1968.

Erklärung

gemäss Art. 28 Abs. 2 RSL 05

Name/Vorname: Ricardo Wehbe

Matrikelnummer: 05–131–479

Studiengang: Informatik

Bachelor � Master � Dissertation �

Titel der Arbeit: Annotated Systems for Common Knowledge

Leiter der Arbeit: Prof. Dr. G. Jäger

Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als
die angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus
Quellen entnommen wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass
andernfalls der Senat gemäss Artikel 36 Absatz 1 Buchstabe o des Gesetzes vom 5.
September 1996 über die Universität zum Entzug des auf Grund dieser Arbeit verliehenen
Titels berechtigt ist.

Bern, September 14, 2010

..
Ricardo Wehbe

205

Lebenslauf

1961 Geboren am 16. Mai in Ŕıo Cuarto, Argentinien.

1967 – 1973 Primarschule Ŕıo Cuarto.

1974 – 1978 Sekondarschule Ŕıo Cuart.

1979 – 1987 Ingenieurwissenschaftstudium an der Universität Córdoba, Argen-
tinien.

1999 – 1992 MSc in Ingenieurwissenschaft an der Bundesuniversität Rio de Janeiro,
Brasilien.
Titel der Masterarbeit: Verification of Concurrent Systems with
Fixpoints.

2005 –20 Doktorand bei Prof. Dr. G. Jäger an der Universität Bern.

207

