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ABSTRACT. Justification logics are epistemic logics that explicitly include justifications for the
agents’ knowledge. We develop a multi-agent justification logic with evidence terms for in-
dividual agents as well as for common knowledge. We define a Kripke-style semantics that is
similar to Fitting’s semantics for the Logic of Proofs LP. We show the soundness, completeness,
and finite model property of our multi-agent justification logic with respect to this Kripke-style
semantics. We demonstrate that our logic is a conservative extension of Yavorskaya’s minimal
bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship
of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief
analysis of the coordinated attack problem in the newly developed language of our logic.
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1. Introduction

Justification logics are epistemic logics that explicitly include justifications for
the agents’ knowledge (Artemov, 2008). The first logic of this kind, the Logic of
Proofs LP, was developed by Artemov to provide the modal logic S4 with provability
semantics (Artemov, 1995; Artemov, 2001). The language of justification logics has
also been used to create a new approach to the logical omniscience problem (Artemov
et al., 2009) and to study self-referential proofs (Kuznets, 2010).

Instead of statements A is known, denoted �A, justification logics reason about
justifications for knowledge by using the construct [t]A to formalize statements t is
a justification for A, where, dependent on the application, the evidence term t can be
viewed as an informal justification or a formal mathematical proof. Evidence terms
are built by means of operations that correspond to the axioms of S4, as is illustrated
in Fig. 1.
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S4 axioms LP axioms
�(A→ B)→ (�A→ �B) [t](A→ B)→ ([s]A→ [t · s]B) (application)
�A→ A [t]A→ A (reflexivity)
�A→ ��A [t]A→ [!t][t]A (inspection)

[t]A ∨ [s]A→ [t+ s]A (sum)

Figure 1. Axioms of S4 and LP

Artemov has shown that the Logic of Proofs LP is an explicit1 counterpart of the
modal logic S4 in the following formal sense: each theorem of LP becomes a theorem
of S4 if all the terms are replaced with the modality �; and, vice versa, each theorem
of S4 can be transformed into a theorem of LP if the occurrences of modality are re-
placed with suitable evidence terms (Artemov, 2001). The latter process is called real-
ization, and the statement of correspondence is called a realization theorem. Note that
the operation + introduced by the sum axiom in Fig. 1 does not have a modal analog,
but it is an essential part of the proof of the realization theorem in (Artemov, 2001).
Explicit counterparts for many normal modal logics between K and S5 have been de-
veloped (see a recent survey in (Artemov, 2008) and a uniform proof of realization
theorems for all single-agent justification logics in (Brünnler et al., 2010)).

The notion of common knowledge is essential in the area of multi-agent systems,
where coordination among agents is a central issue. For a thorough introduction to
epistemic logics in general and to common knowledge in particular, one can refer to
the standard textbooks (Fagin et al., 1995; Meyer et al., 1995). Informally, common
knowledge of A is defined as the infinitary conjunction everybody knows A and ev-
erybody knows that everybody knows A and so on. This is equivalent to saying that
common knowledge of A is the greatest fixed point of

λX.(everybody knows A and everybody knows X) . (1)

An explicit counterpart of McCarthy’s any fool knows common knowledge modal-
ity (McCarthy et al., 1978), where common knowledge of A is defined as an arbi-
trary fixed point of (1), is presented in (Artemov, 2006). The relationship between
the traditional common knowledge from (Fagin et al., 1995; Meyer et al., 1995) and
McCarthy’s version is studied in (Antonakos, 2007).

In this paper, we develop a multi-agent justification logic with evidence terms for
individual agents as well as for common knowledge, with the intention to provide an
explicit counterpart of the h-agent modal logic of traditional common knowledge S4Ch.
For the sake of compactness and readability, we will not treat groups of agents.

1. For other meanings of “explicit” see Sect. 8.
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Multi-agent justification logics with evidence terms for each agent are considered
in (Yavorskaya (Sidon), 2008; Renne, 2009a; Artemov, 2010), but common knowl-
edge is not present in any of them. Renne’s system combines features of modal and
dynamic epistemic logics (Renne, 2009a) and hence cannot be directly compared to
our system. Artemov’s interest lies mostly in exploring a case of two agents with un-
equal epistemic powers: e.g., Artemov’s Observer has sufficient evidence to reproduce
the Object Agent’s thinking, but not vice versa (Artemov, 2010). Yavorskaya studies
various operations of evidence transfer between agents (Yavorskaya (Sidon), 2008).
Yavorskaya’s minimal2 two-agent justification logic LP2, which is an explicit counter-
part of S42, is the closest to our system. We will show that in the case of two agents
our system is a conservative extension of LP2.

An epistemic semantics for LP, F-models, was created by Fitting by augmenting
Kripke models with an evidence function that specifies which formulae are evidenced
by a term at a given world (Fitting, 2005). Independently, Mkrtychev proved a stronger
completeness result for LP with respect to singleton F-models (Mkrtychev, 1997),
now known as M-models, where the role of the accessibility relation is completely
taken over by the evidence function. The semantics of F-models has been adapted
to the whole family of single-agent justification logics (for details, see (Artemov,
2008)). Artemov extends F-models to the language with both evidence terms for
McCarthy’s common knowledge modality and ordinary modalities for the individual
agents (Artemov, 2006), creating the most general type of epistemic models, some-
times called AF-models, where common evidence terms are given their own accessibil-
ity relation, which does not directly depend on the accessibility relations for individual
modalities. The absence of ordinary modalities in Yavorskaya’s two-agent justifica-
tion systems provides for a stronger completeness result with respect to M-models
(Yavorskaya (Sidon), 2008).

The paper is organized as follows. In Sect. 2, we introduce a language and give an
axiomatization of a family of multi-agent justification logics with common knowledge.
In Sect. 3, we prove their basic properties including the internalization property, which
is characteristic of all justification logics. In Sect. 4, we develop an epistemic seman-
tics and prove soundness and completeness with respect to this semantics as well as
with respect to singleton models, thereby demonstrating the finite model property. In
Sect. 5, we show that for the two-agent case, our logic is a conservative extension of
Yavorskaya’s minimal two-agent justification logic. In Sect. 6, we demonstrate how
our logic is related to the modal logic of traditional common knowledge and discuss
the problem of realization. In Sect. 7, we provide an analysis of the coordinated at-
tack problem in our logic. Finally, in Sect. 8, we discuss how the newly introduced
terms affect the agents, including their ability to communicate information in various
communication modes.

2. Minimality here is understood in the sense of the minimal transfer of evidence.
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2. Syntax

To create an explicit counterpart of the modal logic of common knowledge S4Ch,
we use its axiomatization via the induction axiom from (Meyer et al., 1995) rather than
via the induction rule to facilitate proving the internalization property for the resulting
justification logic. We supply each agent with its own copy of terms from the Logic of
Proofs, while terms for common and mutual knowledge employ additional operations.
The fact that each agent has its own set of operations makes our framework more
flexible. For instance, agents may be thought of as representing different arithmetical
proof systems that use different encodings (cf. (Yavorskaya (Sidon), 2008)).

As motivated in (Bucheli et al., 2010b), a proof of CA can be viewed as an infinite
list of proofs of the conjuncts EmA from the representation of common knowledge
through an infinite conjunction. To generate a finite representation of this infinite list,
we use an explicit counterpart of the induction axiom

A ∧ [t]C(A→ [s]EA)→ [ind(t, s)]CA

with a binary operation ind(·, ·). To facilitate access to the elements of the list, ex-
plicit counterparts of the co-closure axiom provide evidence terms that can be seen as
splitting the infinite list into its head and tail,

[t]CA→ [ccl1(t)]EA , [t]CA→ [ccl2(t)]E [t]CA ,

by means of two unary co-closure operations ccl1(·) and ccl2(·).

Evidence terms for mutual knowledge are viewed as tuples of the individual agents’
evidence terms. The standard tupling operation and h unary projections are employed
as means of translation between the individual agents’ and mutual knowledge evi-
dence. Note that, strictly speaking, evidence terms for mutual knowledge are not
necessary because they could be defined, just like the modality for mutual knowledge
can be defined in the modal case. However, the resulting system would be very cum-
bersome in notation and usage.

While only two of the three operations on LP terms (see Fig. 1) are adopted for
common knowledge evidence and none is adopted for mutual knowledge evidence, it
will be shown in Sect. 3 that three out of the four remaining operations are definable,
with a notable exception of inspection for mutual knowledge, as is to be expected.
While the usage of the application operation for common knowledge evidence terms is
justifiable on the grounds of the corresponding modal (K) axiom for common knowl-
edge, the necessity of the sum operation for common knowledge evidence terms is
less clear and can only be shown once the realization theorem is proved (see Sect. 6
for details).

We consider a system of h agents. Throughout the paper, i always denotes an
element of {1, . . . , h}, ∗ always denotes an element of {1, . . . , h,C}, and ~ always
denotes an element of {1, . . . , h,E,C}.
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Let Cons~ := {c~1 , c
~
2 , . . . } and Var~ := {x~1 , x

~
2 , . . . } be countable sets of

proof constants and proof variables respectively for each ~. The sets Tm1, . . . ,Tmh,
TmE, and TmC of evidence terms for individual agents and for mutual and common
knowledge respectively are inductively defined as follows:

1. Cons~ ⊆ Tm~ and Var~ ⊆ Tm~;

2. !it ∈ Tmi for any t ∈ Tmi;

3. t+∗ s ∈ Tm∗ and t ·∗ s ∈ Tm∗ for any t, s ∈ Tm∗;

4. 〈t1, . . . , th〉 ∈ TmE for any t1 ∈ Tm1, . . . , th ∈ Tmh;

5. πit ∈ Tmi for any t ∈ TmE;

6. ccl1(t) ∈ TmE and ccl2(t) ∈ TmE for any t ∈ TmC;

7. ind(t, s) ∈ TmC for any t ∈ TmC and any s ∈ TmE.

Tm := Tm1 ∪ · · · ∪ Tmh ∪ TmE ∪ TmC denotes the set of all evidence terms. The
indices of the operations !, +, and · will most often be omitted if they can be inferred
from the context. A term is called ground if no proof variables occur in it.

Let Prop := {P1, P2, . . . } be a countable set of propositional variables. Formulae
are denoted by A,B,C, . . . and are defined by the grammar

A ::= Pj | ¬A | (A ∧A) | (A ∨A) | (A→ A) | [t]~A ,

where t ∈ Tm~ and Pj ∈ Prop. The set of all formulae is denoted by FmLPC
h

. We
adopt the following convention: whenever a formula [t]~A is used, it is assumed to be
well-formed: i.e., it is implicitly assumed that term t ∈ Tm~. This enables us to omit
the explicit typification of terms.

Axioms of LPC
h:

1. all propositional tautologies

2. [t]∗(A→ B)→ ([s]∗A→ [t · s]∗B) (application)

3. [t]∗A ∨ [s]∗A→ [t+ s]∗A (sum)

4. [t]iA→ A (reflexivity)

5. [t]iA→ [!t]i [t]iA (inspection)

6. [t1]1A ∧ · · · ∧ [th]hA→ [〈t1, . . . , th〉]EA (tupling)

7. [t]EA→ [πit]iA (projection)

8. [t]CA→ [ccl1(t)]EA, [t]CA→ [ccl2(t)]E [t]CA (co-closure)

9. A ∧ [t]C(A→ [s]EA)→ [ind(t, s)]CA (induction)
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A constant specification CS is any subset

CS ⊆
⋃

~∈{1,...,h,E,C}

{
[c]~A : c ∈ Cons~ and A is an axiom of LPC

h

}
.

A constant specification CS is called C-axiomatically appropriate if, for each ax-
iom A, there is a proof constant c ∈ ConsC such that [c]CA ∈ CS . A constant specifi-
cation CS is called homogeneous, if CS ⊆ {[c]~A : c ∈ Cons~ and A is an axiom}
for some fixed ~: i.e., if for all [c]~A ∈ CS the constants c are of the same type.

For a constant specification CS , the deductive system LPC
h(CS) is the Hilbert sys-

tem given by the axioms of LPC
h above and by the rules modus ponens and axiom

necessitation:

A A→ B

B
,

[c]~A
, where [c]~A ∈ CS .

By LPC
h we denote the system LPC

h(CS) with

CS =
{

[c]CA : c ∈ ConsC and A is an axiom of LPC
h

}
. (2)

For an arbitrary CS , we write ∆ `CS A to state that A is derivable from a set of
formulae ∆ in LPC

h(CS) and omit CS when working with the constant specification
from (2) by writing ∆ ` A. We also omit ∆ when ∆ = ∅ and write `CS A or ` A,
in which case A is called a theorem of LPC

h(CS) or of LPC
h respectively. We use ∆, A

to mean ∆ ∪ {A}.

3. Basic properties

In this section, we show that our logic possesses the standard properties expected of
any justification logic. In addition, we show that the operations on terms introduced in
the previous section are sufficient to express the operations of sum and application for
mutual knowledge evidence and the operation of inspection for common knowledge
evidence. This is the reason why +E, ·E, and !C are not primitive connectives in the
language. It should be noted that no inspection operation for mutual evidence terms
can be defined, which follows from Lemma 28 in Sect. 6 and the fact that EA→ EEA
is not a valid modal formula.

LEMMA 1. — For any constant specification CS and any formulae A and B:

1. `CS [t]EA→ A for all t ∈ TmE; (E-reflexivity)

2. for any t, s ∈ TmE, there is a term t ·E s ∈ TmE such that
`CS [t]E(A→ B)→ ([s]EA→ [t ·E s]EB); (E-application)

3. for any t, s ∈ TmE, there is a term t+E s ∈ TmE such that
`CS [t]EA ∨ [s]EA→ [t+E s]EA; (E-sum)
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4. for any t ∈ TmC and any i ∈ {1, . . . , h}, there is a term ↓ it ∈ Tmi such that
`CS [t]CA→ [↓ it]iA; (i-conversion)

5. `CS [t]CA→ A for all t ∈ TmC. (C-reflexivity)

PROOF. —

1. Immediate by the projection and reflexivity axioms.

2. Set t ·E s := 〈π1t ·1 π1s, . . . , πht ·h πhs〉.

3. Set t+E s := 〈π1t+1 π1s, . . . , πht+h πhs〉.

4. Set ↓ it := πiccl1(t).

5. Immediate by 4. and the reflexivity axiom. �

Unlike Lemma 1, Lemma 2 requires that a constant specification CS be C-axio-
matically appropriate.

LEMMA 2. — Let CS be C-axiomatically appropriate and A be a formula.

1. For any t ∈ TmC, there is a term !Ct ∈ TmC such that
`CS [t]CA→ [!Ct]C [t]CA. (C-inspection)

2. For any t ∈ TmC, there is a termW t ∈ TmC such that
`CS [t]CA→ [W t]C [ccl1(t)]EA. (C-shift)

PROOF. —

1. Set !Ct := ind(c, ccl2(t)), where [c]C([t]CA→ [ccl2(t)]E [t]CA) ∈ CS .

2. SetW t := c′ ·C (!Ct), where [c′]C([t]CA→ [ccl1(t)]EA) ∈ CS .

The existence of constants c and c′ is guaranteed by the C-appropriateness of CS . �

The following two lemmas are standard in justification logics. Their proofs can be
taken almost word for word from (Artemov, 2001) and are, therefore, omitted here.

LEMMA 3 (DEDUCTION THEOREM). — Let CS be a constant specification and
∆ ∪ {A,B} ⊆ FmLPC

h
. Then ∆, A `CS B if and only if ∆ `CS A→ B.

LEMMA 4 (SUBSTITUTION). — For any constant specification CS , any proposi-
tional variable P , any ∆ ∪ {A,B} ⊆ FmLPC

h
, any x ∈ Var~, and any t ∈ Tm~,

if ∆ `CS A, then ∆(x/t, P/B) `CS(x/t,P/B) A(x/t, P/B) ,

where A(x/t, P/B) denotes the formula obtained by simultaneously replacing all oc-
currences of x in A with t and all occurrences of P in A with B and ∆(x/t, P/B)
and CS(x/t, P/B) are defined accordingly.
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The following lemma states that our logic can internalize its own proofs, which is
an important property of justification logics.

LEMMA 5 (C-LIFTING). — Let CS be a homogeneous C-axiomatically appropriate
constant specification. For any formulae A,B1, . . . , Bn, C1, . . . , Cm and any terms
s1, . . . , sn ∈ TmC, if

[s1]CB1, . . . , [sn]CBn, C1, . . . , Cm `CS A ,

then for each ~ there is a term t~(xC1 , . . . , x
C
n, y

~
1 , . . . , y

~
m) ∈ Tm~ such that

[s1]CB1, . . . , [sn]CBn, [y1]~C1, . . . , [ym]~Cm `CS [t~(s1, . . . , sn, y1, . . . , ym)]~A

for fresh variables x1, . . . , xn ∈ VarC and y1, . . . , ym ∈ Var~.

PROOF. — We proceed by induction on the derivation of A.

If A is an axiom, there is a constant c ∈ ConsC such that [c]CA ∈ CS because
CS is C-axiomatically appropriate. Then take

tC := c, ti :=↓ ic, tE := ccl1(c)

and use axiom necessitation, axiom necessitation and i-conversion, or axiom necessi-
tation and the co-closure axiom respectively.

For A = [sj ]CBj , 1 ≤ j ≤ n, take

tC :=!Cxj , ti :=↓ i!Cxj , tE := ccl2(xj)

for a fresh variable xj ∈ VarC and, after xj is replaced with sj , use C-inspection,
C-inspection and i-conversion, or the co-closure axiom respectively.

For A = Cj , 1 ≤ j ≤ m, take t~ := yj for a fresh variable yj ∈ Var~.

For A derived by modus ponens from D → A and D, by induction hypothesis
there are terms r~, s~ ∈ Tm~ such that [r~]~(D → A) and [s~]~D are derivable.
Take t~ := r~ ·~ s~ and use ~-application, which is an axiom for ~ = i and for
~ = C or follows from Lemma 1 for ~ = E.

For A = [c]CE ∈ CS derived by axiom necessitation, take

tC :=!Cc, ti :=↓ i!Cc, tE := ccl2(c)

and use C-inspection, C-inspection and i-conversion, or the co-closure axiom re-
spectively. No other instances of the axiom necessitation rule are possible. Indeed,
CS must contain formulae of the type [c]CE because of C-axiomatic appropriate-
ness. The homogeneity of CS then means that formulae neither of type [c]iE nor
of type [c]EE can occur in CS . �

COROLLARY 6 (CONSTRUCTIVE NECESSITATION). — Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any formula A, if `CS A,
then for each ~ there is a ground term t ∈ Tm~ such that `CS [t]~A.
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The following two lemmas show that our system LPC
h can internalize versions of

the induction rule used in various axiomatizations of S4Ch (see (Bucheli et al., 2010b)
for a discussion of several axiomatizations of this kind).

LEMMA 7 (INTERNALIZED INDUCTION RULE 1). — Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any term s ∈ TmE and any
formula A, if `CS A→ [s]EA, there is t ∈ TmC such that `CS A→ [ind(t, s)]CA.

PROOF. — By constructive necessitation, `CS [t]C(A → [s]EA) for some t ∈ TmC.
It remains to use the induction axiom and propositional reasoning. �

LEMMA 8 (INTERNALIZED INDUCTION RULE 2). — Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any formulae A and B and
any term s ∈ TmE, if we have `CS B → [s]E(A ∧ B), then there exists t ∈ TmC and
c ∈ ConsC such that `CS B → [c · ind(t, s)]CA, where [c]C(A ∧B → A) ∈ CS .

PROOF. — Assume
`CS B → [s]E(A ∧B) . (3)

From this we immediately get `CS A ∧ B → [s]E(A ∧ B). Thus, by Lemma 7, there
is a t ∈ TmC with

`CS A ∧B → [ind(t, s)]C(A ∧B) . (4)

Since CS is C-axiomatically appropriate, there is a constant c ∈ ConsC such that

`CS [c]C(A ∧B → A) . (5)

Making use of C-application, we find by (4) and (5) that

`CS A ∧B → [c · ind(t, s)]CA . (6)

From (3) we get by E-reflexivity that `CS B → A∧B. This, together with (6), finally
yields `CS B → [c · ind(t, s)]CA. �

4. Soundness and completeness

DEFINITION 9. — An (epistemic) model meeting a constant specification CS is a
structureM = (W,R, E , ν), where (W,R, ν) is a Kripke model for S4h with a set of
possible worlds W 6= ∅, with a function R : {1, . . . , h} → P(W ×W ) that assigns a
reflexive and transitive accessibility relation on W to each agent i ∈ {1, . . . , h}, and
with a truth valuation ν : Prop → P(W ). We always write Ri instead of R(i) and
define the accessibility relations for mutual and common knowledge in the standard
way: RE := R1 ∪ · · · ∪Rh and RC :=

⋃∞
n=1(RE)n.

An evidence function E : W × Tm → P
(

FmLPC
h

)
determines the formulae evi-

denced by a term at a world. We define E~ := E � (W × Tm~). Note that whenever
A ∈ E~(w, t), it follows that t ∈ Tm~. The evidence function E must satisfy the
following closure conditions: for any worlds w, v ∈W ,
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1. E∗(w, t) ⊆ E∗(v, t) whenever (w, v) ∈ R∗; (monotonicity)

2. if [c]~A ∈ CS , then A ∈ E~(w, c); (constant specification)

3. if (A→ B) ∈ E∗(w, t) and A ∈ E∗(w, s), then B ∈ E∗(w, t · s); (application)

4. E∗(w, s) ∪ E∗(w, t) ⊆ E∗(w, s+ t); (sum)

5. if A ∈ Ei(w, t), then [t]iA ∈ Ei(w, !t); (inspection)

6. if A ∈ Ei(w, ti) for all 1 ≤ i ≤ h, then A ∈ EE(w, 〈t1, . . . , th〉); (tupling)

7. if A ∈ EE(w, t), then A ∈ Ei(w, πit); (projection)

8. if A ∈ EC(w, t), then A ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)); (co-closure)

9. if A ∈ EE(w, s) and (A→ [s]EA) ∈ EC(w, t),
then A ∈ EC(w, ind(t, s)). (induction)

When the model is clear from the context, we will directly refer to R1, . . . , Rh,
RE, RC, E1, . . . , Eh, EE, EC, W , and ν.

DEFINITION 10. — A ternary relationM, w 
 A for formula A being satisfied at a
world w ∈ W in a modelM = (W,R, E , ν) is defined by induction on the structure
of the formula A:

1. M, w 
 Pn if and only if w ∈ ν(Pn);

2. 
 behaves classically with respect to the propositional connectives;

3. M, w 
 [t]~A if and only if

1) A ∈ E~(w, t) and

2) M, v 
 A for all v ∈W with (w, v) ∈ R~.

We writeM 
 A ifM, w 
 A for all w ∈ W . We writeM, w 
 ∆ for ∆ ⊆ FmLPC
h

ifM, w 
 A for all A ∈ ∆. We write 
CS A and say that formula A is valid with
respect to CS ifM 
 A for all epistemic modelsM meeting CS .

LEMMA 11 (SOUNDNESS). — All theorems are valid: `CS A implies 
CS A.

PROOF. — Let M = (W,R, E , ν) be a model meeting CS and let w ∈ W . We
show soundness by induction on the derivation of A. The cases for propositional
tautologies, for the application, sum, reflexivity, and inspection axioms, and for the
modus ponens rule are the same as for the single-agent case in (Fitting, 2005) and are,
therefore, omitted. We show the remaining five cases:

(tupling) Assume M, w 
 [ti]iA for all 1 ≤ i ≤ h. Then for all 1 ≤ i ≤ h,
we have 1) M, v 
 A whenever (w, v) ∈ Ri and 2) A ∈ Ei(w, ti). By the
tupling closure condition, it follows from 2) thatA ∈ EE(w, 〈t1, . . . , th〉). Since
RE =

⋃h
i=1Ri by definition, it follows from 1) that M, v 
 A whenever

(w, v) ∈ RE. Hence,M, w 
 [〈t1, . . . , th〉]EA.
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(projection) Assume M, w 
 [t]EA. Then 1) M, v 
 A whenever (w, v) ∈ RE

and 2) A ∈ EE(w, t). By the projection closure condition, it follows from 2)
that A ∈ Ei(w, πit). In addition, since RE =

⋃h
i=1Ri, it follows from 1) that

M, v 
 A whenever (w, v) ∈ Ri. Thus,M, w 
 [πit]iA.

(co-closure) AssumeM, w 
 [t]CA. Then 1)M, v 
 A whenever (w, v) ∈ RC and
2) A ∈ EC(w, t). It follows from 1) that M, v′ 
 A whenever (w, v′) ∈ RE

sinceRE ⊆ RC; also, due to the monotonicity closure condition,M, v′ 
 [t]CA
sinceRE◦RC ⊆ RC. By the co-closure closure condition, it follows from 2) that
A ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)). Hence, M, w 
 [ccl1(t)]EA
andM, w 
 [ccl2(t)]E [t]CA.

(induction) Assume M, w 
 A and M, w 
 [t]C(A → [s]EA). From the sec-
ond assumption and the reflexivity of RC, we get M, w 
 A → [s]EA; thus,
M, w 
 [s]EA by the first assumption. So A ∈ EE(w, s) and, by the second
assumption, A → [s]EA ∈ EC(w, t). By the induction closure condition, we
have A ∈ EC(w, ind(t, s)). To show thatM, v 
 A whenever (w, v) ∈ RC, we
prove that M, v 
 A whenever (w, v) ∈ (RE)n by induction on the positive
integer n.

The base case n = 1 immediately follows fromM, w 
 [s]EA.

Induction step. If (w, v) ∈ (RE)n+1, there must exist v′ ∈ W such that
(w, v′) ∈ (RE)n and (v′, v) ∈ RE. By induction hypothesis,M, v′ 
 A. Since
M, w 
 [t]C(A→ [s]EA), we getM, v′ 
 A→ [s]EA. Thus,M, v′ 
 [s]EA,
which yieldsM, v 
 A.

Finally, we conclude thatM, w 
 [ind(t, s)]CA.

(axiom necessitation) Let [c]~A ∈ CS . Since A must be an axiom,M, w 
 A for
all w ∈ W , as shown above. Since M is a model meeting CS , we also have
A ∈ E~(w, c) for all w ∈ W by the constant specification closure condition.
Thus,M, w 
 [c]~A for all w ∈W . �

DEFINITION 12. — Let CS be a constant specification. A set Φ of formulae is
called CS-consistent if Φ 0CS φ for some formula φ. A set Φ is called maximal
CS-consistent if it is CS-consistent and has no CS-consistent proper extensions.

Whenever safe, we do not mention the constant specification and only talk about
consistent and maximal consistent sets. It can be easily shown that maximal consistent
sets contain all axioms of LPC

h and are closed under modus ponens.

DEFINITION 13. — For a set Φ of formulae, we define

Φ/~ := {A : there is a t ∈ Tm~ such that [t]~A ∈ Φ} .

DEFINITION 14. — Let CS be a constant specification. The canonical (epistemic)
modelM = (W,R, E , ν) meeting CS is defined as follows:
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1. W := {w ⊆ FmLPC
h

: w is a maximal CS-consistent set};

2. Ri := {(w, v) ∈W ×W : w/i ⊆ v};

3. E~(w, t) := {A ∈ FmLPC
h

: [t]~A ∈ w};

4. ν(Pn) := {w ∈W : Pn ∈ w}.

LEMMA 15. — Let CS be a constant specification. The canonical epistemic model
meeting CS is an epistemic model meeting CS .

PROOF. — The proof of the reflexivity and transitivity of each Ri, as well as the
argument for the constant specification, application, sum, and inspection closure con-
ditions, is the same as in the single-agent case (see (Fitting, 2005)). We show the
remaining five closure conditions:

(tupling) Assume A ∈ Ei(w, ti) for all 1 ≤ i ≤ h. By definition of Ei, we have
[ti]iA ∈ w for all 1 ≤ i ≤ h. Therefore, by the tupling axiom and maximal
consistency, [〈t1, . . . , th〉]EA ∈ w. Thus, A ∈ EE(w, 〈t1, . . . , th〉).

(projection) Assume A ∈ EE(w, t). By definition of EE, we have [t]EA ∈ w. There-
fore, by the projection axiom and maximal consistency, [πit]iA ∈ w. Thus,
A ∈ Ei(w, πit).

(co-closure) Assume A ∈ EC(w, t). By definition of EC, we have [t]CA ∈ w. There-
fore, by the co-closure axioms and maximal consistency, [ccl1(t)]EA ∈ w and
[ccl2(t)]E [t]CA ∈ w. Thus, A ∈ EE(w, ccl1(t)) and [t]CA ∈ EE(w, ccl2(t)).

(induction) Assume A ∈ EE(w, s) and (A→ [s]EA) ∈ EC(w, t). By definition of EE
and EC, we have [s]EA ∈ w and [t]C(A → [s]EA) ∈ w. From `CS [s]EA → A
(Lemma 1.1) and the induction axiom, it follows by maximal consistency that
A ∈ w and [ind(t, s)]CA ∈ w. Therefore, A ∈ EC(w, ind(t, s)).

(monotonicity) We show only the case of ∗ = C since the other cases are the same as
in (Fitting, 2005). It is sufficient to prove by induction on the positive integer n
that

if [t]CA ∈ w and (w, v) ∈ (RE)n, then [t]CA ∈ v . (7)

Base case n = 1. Assume (w, v) ∈ RE: i.e.,w/i ⊆ v for some i. As [t]CA ∈ w,
[πiccl2(t)]i [t]CA ∈ w by maximal consistency, and hence [t]CA ∈ w/i ⊆ v.
The argument for the induction step is similar.

Now assume (w, v) ∈ RC =
⋃∞

n=1(RE)n and A ∈ EC(w, t). By definition
of EC, we have [t]CA ∈ w. As shown above, [t]CA ∈ v. Thus, A ∈ EC(v, t). �

REMARK 16. — Let R′C denote the binary relation on W defined by

(w, v) ∈ R′C if and only if w/C ⊆ v .

An argument similar to the one just used for monotonicity shows that RC ⊆ R′C.
However, for h > 1 the converse does not hold for any homogeneous C-axiomatically
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appropriate constant specification CS , which we demonstrate by adapting an example
from (Meyer et al., 1995). For a fixed propositional variable P , let

Φ := {[sn]E . . . [s1]EP : n ≥ 1, s1, . . . , sn ∈ TmE} ∪ {¬ [t]CP : t ∈ TmC} .

This set is CS-consistent for any P ∈ Prop.

To prove this, let Φ′ ⊆ Φ be finite and let m denote the largest nonnegative integer
such that [sm]E . . . [s1]EP ∈ Φ′ for some s1, . . . , sm ∈ TmE (in particular, m = 0 if
no such terms exist). Define the model N :=

(
N, RN , EN , νN

)
by

• RNi := {(n, n+ 1) ∈ N2 : n mod h = i} ∪ {(n, n) : n ∈ N};

• EN (n, s) := FmLPC
h

for all n ∈ N and all terms s ∈ Tm;

• νN (Pj) := {1, 2, . . . ,m+ 1} for all Pj ∈ Prop.

Clearly, N meets any constant specification; in particular, it meets the given CS . For
h > 1, it can also be easily verified that N , 1 
 Φ′; therefore, Φ′ is CS-consistent.

Since Φ is CS-consistent, there exists a maximal CS-consistent set w ⊇ Φ. Let us
show that the set Ψ := {¬P}∪ (w/C) is also CS-consistent. Indeed, if it were not the
case, there would exist formulae [t1]CB1, . . . , [tn]CBn ∈ w such that

`CS B1 → (B2 → · · · → (Bn → P ) . . . ) .

Then, by Corollary 6, there would exist a term s ∈ TmC such that

`CS [s]C(B1 → (B2 → · · · → (Bn → P ) . . . )) .

But this would imply [(. . . (s · t1) · · · tn−1) · tn]CP ∈ w—a contradiction with the
consistency of w.

Since Ψ is also CS-consistent, there exists a maximal CS-consistent set v ⊇ Ψ.
Clearly, w/C ⊆ v: i.e., (w, v) ∈ R′C. But (w, v) /∈ RC because this would imply
P ∈ v, which would contradict the consistency of v. It follows that RC ( R′C.

Similarly, we can define R′E by (w, v) ∈ R′E if and only if w/E ⊆ v. However,
R′E = RE for any C-axiomatically appropriate constant specification CS . Indeed, it
is easy to show that RE ⊆ R′E. For the converse direction, assume (w, v) /∈ RE,
then (w, v) /∈ Ri for any 1 ≤ i ≤ h. So there are formulae A1, . . . , Ah such that
[ti]iAi ∈ w for some ti ∈ Tmi, but Ai /∈ v. Now let [ci]C(Ai → A1∨· · ·∨Ah) ∈ CS
for constants c1, . . . , ch. Then [↓ ici · ti]i(A1 ∨ · · · ∨ Ah) ∈ w for all 1 ≤ i ≤ h, so
[〈↓1c1 · t1, . . . , ↓hch · th〉]E(A1∨· · ·∨Ah) ∈ w. However,Ai /∈ v for any 1 ≤ i ≤ h;
therefore, by the maximal consistency of v,A1∨· · ·∨Ah /∈ v either. Hence, w/E * v,
so (w, v) /∈ R′E. �

LEMMA 17 (TRUTH LEMMA). — Let CS be a constant specification andM be the
canonical epistemic model meeting CS . For all formulae A and all worlds w ∈W ,

A ∈ w if and only ifM, w 
 A .
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PROOF. — The proof is by induction on the structure of A. The cases for proposi-
tional variables and propositional connectives are immediate by definition of 
 and by
the maximal consistency of w. We check the remaining cases:

Case A is [t]iB. Assume A ∈ w. Then B ∈ w/i and B ∈ Ei(w, t). Consider any v
such that (w, v) ∈ Ri. Since w/i ⊆ v, it follows that B ∈ v, and thus, by induction
hypothesis,M, v 
 B. It immediately follows thatM, w 
 A.

For the converse, assumeM, w 
 [t]iB. By definition of 
, we get B ∈ Ei(w, t),
from which [t]iB ∈ w immediately follows by definition of Ei.

Case A is [t]EB. Assume A ∈ w and consider any v such that (w, v) ∈ RE. Then
(w, v) ∈ Ri for some 1 ≤ i ≤ h: i.e., w/i ⊆ v. By definition of EE, we have
B ∈ EE(w, t). By the maximal consistency of w, it follows that [πit]iB ∈ w, and
thus B ∈ w/i ⊆ v. Since by induction hypothesis,M, v 
 B, we can conclude that
M, w 
 A. The argument for the converse repeats the one from the previous case.

Case A is [t]CB. Assume A ∈ w and consider any v such that (w, v) ∈ RC:
i.e., (w, v) ∈ (RE)n for some n ≥ 1. As in the previous cases, B ∈ EC(w, t) by
definition of EC. It follows from (7) in the proof of Lemma 15 thatA ∈ v, and thus, by
C-reflexivity and maximal consistency, also B ∈ v. Hence, by induction hypothesis,
M, v 
 B. Now M, w 
 A immediately follows. The argument for the converse
repeats the one from the previous cases. �

Note that, unlike the converse directions in the proof above, the corresponding
proofs in the modal case are far from trivial and require additional work (see e.g.
(Meyer et al., 1995)). The last case, in particular, usually requires more sophisticated
methods that would guarantee the finiteness of the model. This simplification of proofs
in justification logics is yet another benefit of using terms instead of modalities.

THEOREM 18 (COMPLETENESS). — LPC
h(CS) is sound and complete with respect

to the class of epistemic models meeting CS: i.e., for all formulae A ∈ FmLPC
h

,

`CS A if and only if 
CS A .

PROOF. — Soundness was already shown in Lemma 11. For completeness, letM be
the canonical model meeting CS and assume 0CS A. Then {¬A} is CS-consistent and
hence is contained in some maximal CS-consistent set w ∈ W . So, by Lemma 17,
M, w 
 ¬A, and hence, by Lemma 15, 1CS A. �

In the case of LP, the finite model property can be demonstrated by restricting the
class of epistemic models to the so-called M-models, introduced by Mkrtychev in
(Mkrtychev, 1997). We will now adapt M-models to our logic and prove the finite
model property for it.

DEFINITION 19. — An M-model is a singleton epistemic model.
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THEOREM 20 (COMPLETENESS WITH RESPECT TO M-MODELS). — LPC
h(CS) is

also sound and complete with respect to the class of M-models meeting CS .

PROOF. — Soundness follows immediately from Lemma 11. Now assume 0CS A,
then {¬A} is CS-consistent, and henceM, w0 
 ¬A for some world w0 ∈ W in the
canonical epistemic modelM = (W,R, E , ν) meeting CS .

Let M′ = (W ′, R′, E ′, ν′) be the restriction of M to {w0}: i.e., W ′ := {w0},
R′i := {(w0, w0)} for all i, E ′ := E � (W ′ × Tm), and ν′(Pn) := ν(Pn) ∩W ′.

SinceM′ is clearly an M-model meeting CS , it only remains to demonstrate that
M′, w0 
 B if and only ifM, w0 
 B for all formulae B. We proceed by induction
on the structure of B. The cases where either B is a propositional variable or its
primary connective is propositional are trivial. Therefore, we only show the case of
B = [t]~C. First, observe that

M, w0 
 [t]~C if and only if C ∈ E ′~(w0, t) . (8)

Indeed, by Lemma 17,M, w0 
 [t]~C if and only if [t]~C ∈ w0, which, by definition
of the canonical epistemic model, is equivalent to C ∈ E~(w0, t) = E ′~(w0, t).

IfM, w0 
 [t]~C, thenM, w0 
 C since R~ is reflexive. By induction hypoth-
esis,M′, w0 
 C. By (8) we have C ∈ E ′~(w0, t), and thusM′, w0 
 [t]~C.

IfM, w0 1 [t]~C, then by (8) we have C /∈ E ′~(w0, t), soM′, w0 1 [t]~C. �

COROLLARY 21 (FINITE MODEL PROPERTY). — LPC
h(CS) enjoys the finite model

property with respect to epistemic models.

REMARK 22. — Note that, in the case of LPC
h(CS), the finite model property does

not imply that common knowledge can be deduced from sufficiently many approxi-
mants, unlike in the modal case. This is an immediate consequence of the set

Φ := {[sn]E . . . [s1]EP : n ≥ 1, s1, . . . , sn ∈ TmE} ∪ {¬ [t]CP : t ∈ TmC}

being consistent, as shown in Remark 16. In modal logic, a set analogous to Φ can
only be satisfied in infinite models, whereas in our case, due to the evidence function
completely taking over the role of the accessibility relations, there is a singleton M-
model that satisfies Φ. �

5. Conservativity

We extend the two-agent version LP2 of the Logic of Proofs (Yavorskaya (Sidon),
2008) to an arbitrary h in the natural way and rename it in accordance with our naming
scheme:

DEFINITION 23. — The language of LPh is obtained from that of LPC
h by restricting

the set of operations to ·i, +i, and !i and by dropping all terms from TmE and TmC.
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The axioms are restricted to application, sum, reflexivity, and inspection for each i.
The definition of constant specification is changed accordingly.

We show that LPC
h is conservative over LPh by adapting the technique from (Fitting,

2008), for which evidence terms are essential.

DEFINITION 24. — The mapping × : FmLPC
h
→ FmLPh

is defined as follows:

1. P×n := Pn for propositional variables Pn ∈ Prop;

2. × commutes with propositional connectives;

3. ([t]~A)× :=

{
A× if t contains a subterm s ∈ TmE ∪ TmC,

[t]~A
× otherwise.

THEOREM 25. — Let CS be a constant specification for LPC
h. For an arbitrary for-

mula A ∈ FmLPh
,

if LPC
h(CS) ` A, then LPh(CS×) ` A ,

where CS× := {[c]iE× : [c]iE ∈ CS}.

PROOF. — Since A× = A for any A ∈ FmLPh
, it suffices to demonstrate that for any

formula D ∈ FmLPC
h

, if LPC
h(CS) ` D, then LPh(CS×) ` D×, which can be done by

induction on the derivation of D.

Case when D is a propositional tautology. Then so is D×.

Case when D = [t]iB → B is an instance of the reflexivity axiom. Then D× is either
the propositional tautologyB× → B× or [t]iB

× → B×, an instance of the reflexivity
axiom of LPh.

Case when D = [t]iB → [!t]i [t]iB is an instance of the inspection axiom. Then
D× is either the propositional tautology B× → B× or [t]iB

× → [!t]i [t]iB
×, an

instance of the inspection axiom of LPh.

Case whenD = [t]∗(B → C)→ ([s]∗B → [t · s]∗C) is an instance of the application
axiom. We distinguish the following possibilities:

1. Both t and s contain a subterm from TmE∪TmC. In this subcase, D× has the form
(B× → C×) → (B× → C×), which is a propositional tautology and, thus, an
axiom of LPh.

2. Neither t nor s contains a subterm from TmE ∪ TmC. Then D× is an instance of
the application axiom of LPh.

3. Term t contains a subterm from TmE ∪ TmC while s does not. Then D× has the
form (B× → C×) → ([s]iB

× → C×), which can be derived in LPh(CS×) from
the reflexivity axiom [s]iB

× → B× by propositional reasoning. In this subcase,
translation × does not map an axiom of LPC

h to an axiom of LPh.



Justifications for Common Knowledge 17

4. Term s contains a subterm from TmE ∪ TmC while t does not. Then D× is
[t]i(B

× → C×)→ (B× → C×), an instance of the reflexivity axiom of LPh.

Case when D = [t]∗B ∨ [s]∗B → [t+ s]∗B is an instance of the sum axiom. We
distinguish the following possibilities:

1. Both t and s contain a subterm from TmE∪TmC. In this subcase, D× has the form
B× ∨B× → B×, which is a propositional tautology and, thus, an axiom of LPh.

2. Neither t nor s contains a subterm from TmE ∪ TmC. Then D× is an instance of
the sum axiom of LPh.

3. Term t contains a subterm from TmE ∪ TmC while s does not. Then D× has the
form B×∨ [s]iB

× → B×, which can be derived in LPh(CS×) from the reflexivity
axiom [s]iB

× → B× by propositional reasoning. This is another subcase when
translation × does not map an axiom of LPC

h to an axiom of LPh.

4. Term s contains a subterm from TmE ∪ TmC while t does not. Then D× has the
form [t]iB

× ∨B× → B×, which can be derived in LPh(CS×) from the reflexivity
axiom [t]iB

× → B× by propositional reasoning. This is another subcase when
translation × does not map an axiom of LPC

h to an axiom of LPh.

Case whenD = [t1]1B∧· · ·∧[th]hB → [〈t1, . . . , th〉]EB is an instance of the tupling
axiom. We distinguish the following possibilities:

1. At least one of the ti’s contains a subterm from TmE∪TmC. ThenD× has the form
C1 ∧ · · · ∧ Ch → B× with at least one Ci = B× and is, therefore, a propositional
tautology.

2. None of the ti’s contains a subterm from TmE ∪ TmC. Then D× has the form
[t1]1B

× ∧ · · · ∧ [th]hB
× → B×, which can be derived in LPh(CS×) from the

reflexivity axiom. This is another subcase when translation × does not map an
axiom of LPC

h to an axiom of LPh.

Case when D is an instance of the projection axiom [t]EB → [πit]iB or of the co-
closure axiom: i.e., [t]CB → [ccl1(t)]EB or [t]CB → [ccl2(t)]E [t]CB. ThenD× is the
propositional tautology B× → B×.

Case whenD = B∧ [t]C(B → [s]EB)→ [ind(t, s)]CB is an instance of the induction
axiom. Then D× is the propositional tautology B× ∧ (B× → B×)→ B×.

Case when D is derived by modus ponens is trivial.

Case when D is [c]~B ∈ CS . Then D× is either B× or [c]iB
×. In the former case,

B× is derivable in LPh(CS×), as shown above, because B is an axiom of LPC
h; in the

latter case, [c]iB
× ∈ CS×. �

REMARK 26. — Note that CS× need not, in general, be a constant specification
for LPh because, as noted above, for an axiom D of LPC

h, its image D× is not al-
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ways an axiom of LPh. To ensure that CS× is a proper constant specification, all
formulae of the forms

(A→ B)→ ([s]iA→ B) , A ∨ [s]iA→ A ,

[t1]1A ∧ · · · ∧ [th]hA→ A , [t]iA ∨A→ A

have to be made axioms of LPh. Another option is to use Fitting’s concept of embed-
ding one justification logic into another, which involves replacing constants in D with
more complicated terms in D× (see (Fitting, 2008) for details). �

6. Forgetful projection and a word on realization

Most justification logics are introduced as explicit counterparts to particular modal
logics in the strict sense described in Sect. 1. Although the realization theorem for LPC

h

remains an open problem, in this section we prove that each theorem of our logic LPC
h

states a valid modal fact if all the terms are replaced with the corresponding modalities,
which is one direction of the realization theorem. We also discuss approaches to the
more difficult opposite direction.

In the modal language of common knowledge, modal formulae are defined by the
grammar

A ::= Pj | ¬A | (A ∧A) | (A ∨A) | (A→ A) | �iA | EA | CA ,

where Pj ∈ Prop. The set of all modal formulae is denoted by FmS4Ch
. The Hilbert

system S4Ch (Meyer et al., 1995) is given by the modal axioms of S4 for individual
agents, by the necessitation rule for �1, . . . ,�h, and C, by modus ponens, and by the
axioms

C(A→ B)→ (CA→ CB), CA→ A, EA↔ �1A ∧ · · · ∧�hA,

A ∧ C(A→ EA)→ CA, CA→ E(A ∧ CA).

DEFINITION 27 (FORGETFUL PROJECTION). — The mapping ◦ : FmLPC
h
→ FmS4Ch

is defined as follows:

1. P ◦j := Pj for propositional variables Pj ∈ Prop;

2. ◦ commutes with propositional connectives;

3. ([t]iA)◦ := �iA
◦;

4. ([t]EA)◦ := EA◦;

5. ([t]CA)◦ := CA◦.
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LEMMA 28. — Let CS be a constant specification. For any formula A ∈ FmLPC
h

, if

LPC
h(CS) ` A, then S4Ch ` A◦.

PROOF. — The proof is by an easy induction on the derivation of A. �

DEFINITION 29 (REALIZATION). — A realization is a mapping r : FmS4Ch
→ FmLPC

h

such that (r(A))◦ = A. We usually write Ar instead of r(A).

We can think of a realization as a function that replaces occurrences of modal
operators (including E and C) with evidence terms of the corresponding type. The
problem of realization for a given homogeneous C-axiomatically appropriate constant
specification CS can be formulated as follows:

Is there a realization r such that LPC
h(CS) ` Ar for any theorem A of S4Ch?

A positive answer to this question would constitute the more difficult direction of the
realization theorem, which is often demonstrated by means of induction on a cut-free
sequent proof of the modal formula.

The cut-free systems for S4Ch presented in (Alberucci et al., 2005) and (Brünnler
et al., 2009) are based on an infinitary ω-rule of the form

EmA,Γ for all m ≥ 1

CA,Γ
(ω).

However, realizing such a rule presents a serious challenge because it requires achiev-
ing uniformity among the realizations of the approximants EmA.

Finitizing this ω-rule via the finite model property, Jäger et al. obtain a finitary
cut-free system (Jäger et al., 2007). Unfortunately, the “somewhat unusual” structural
properties of the resulting system (see discussion in (Jäger et al., 2007)) make it hard
to use it for realization.

The non-constructive, semantic realization method from (Fitting, 2005) cannot be
applied directly because of the non-standard behavior of the canonical model (see
Remark 16).

Perhaps the infinitary system presented in (Bucheli et al., 2010b), which is finitely
branching but admits infinite branches, can help in proving the realization theorem
for LPC

h. For now this remains work in progress.

7. Coordinated attack

To illustrate our logic, we will now analyze the coordinated attack problem along
the lines of (Fagin et al., 1995), where additional references can be found. Let us
briefly recall this classical problem. Suppose two divisions of an army, located in
different places, are about to attack their enemy. They have some means of communi-
cation, but these may be unreliable, and the only way to secure a victory is to attack
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simultaneously. How should generals G and H who command the two divisions coor-
dinate their attacks? Of course, general G could send a message mG

1 with the time of
attack to general H . Let us use the proposition del to denote the fact that the message
with the time of attack has been delivered. If the generals trust the authenticity of the
message, say because of a signature, the message itself can be taken as evidence that
it has been delivered. So general H , upon receiving the message, knows the time of
attack: i.e.,

[
mG

1

]
H del. However, since communication is unreliable, G considers it

possible that his message has not been delivered. But if general H sends an acknowl-
edgment mH

2 , he in turn cannot be sure whether the acknowledgment has reached G,
which prompts yet another acknowledgment mG

3 by general G, and so on.

In fact, common knowledge of del is a necessary condition for the attack. Indeed,
it is reasonable to assume it to be common knowledge between the generals that they
should only attack simultaneously or not attack at all, i.e., that they attack only if both
know that they attack: [t]C(att → [s]E att) for some terms s and t. Thus, by the
induction axiom, we get att → [ind(t, s)]C att. Another reasonable assumption is that
it is common knowledge that neither general attacks unless the message with the time
of attack has been delivered: [r]C(att → del) for some term r. Using the application
axiom, we obtain att→ [r · ind(t, s)]C del.

We now show that common knowledge of del cannot be achieved and that con-
sequently no attack will take place, no matter how many messages and acknowledg-
ments mG

1 ,m
H
2 ,m

G
3 , . . . are sent by the generals, even if all the messages are suc-

cessfully delivered.

In the classical modeling without evidence, the reason is that the sender of the last
message always considers the possibility that his last message, say mH

2k, has not been
delivered. To give a flavor of the argument carried out in detail in (Fagin et al., 1995),
we provide a countermodel where mH

2 is the last message, it has been delivered, but
H is unsure of that: i.e.,[

mG
1

]
H del,

[
mH

2

]
G

[
mG

1

]
H del, but ¬ [s]H

[
mH

2

]
G

[
mG

1

]
H del

for all terms s. Consider any modelM where W := {0, 1, 2, 3}, ν(del) := {0, 1, 2},
RG is the reflexive closure of {(1, 2)}, RH is the reflexive closure of {(0, 1), (2, 3)}.
The only requirements on the evidence function E are to satisfy del ∈ EH

(
0,mG

1

)
and[

mG
1

]
H del ∈ EG

(
0,mH

2

)
. Whatever EC is, we haveM, 0 1 [s]H

[
mH

2

]
G

[
mG

1

]
H del

andM, 0 1 [t]C del for any s and t becauseM, 3 1 del.

Let us investigate a different scenario. In our models with evidence terms, there is
an alternative possibility for the lack of knowledge: insufficient evidence. For exam-
ple, G may receive the acknowledgment mH

2 but may not consider it to be evidence
for
[
mG

1

]
H del because the signature of H is missing. We now demonstrate that com-

mon knowledge of the time of attack cannot emerge, basing the argument solely on the
lack of common knowledge evidence, in contrast to the classical approach. Consider
the M-modelM = (W,R, E , ν) obtained as follows: W := {w}, Ri := {(w,w)},
ν(del) := {w}, and E is the minimal evidence function such that del ∈ EH

(
w,mG

1

)
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and
[
mG

1

]
H del ∈ EG

(
w,mH

2

)
. In this model, M,w 1 [t]C del for any evidence

term t because del /∈ EC(w, t) for any t. To prove the latter statement, it is sufficient
to note that for any term t, by Lemma 28,

0
[
mG

1

]
H del ∧

[
mH

2

]
G

[
mG

1

]
H del→ [t]C del (9)

because
S4Ch 0 �H del ∧�G�H del→ C del ,

which is easy to demonstrate. Let Mcan be the canonical epistemic model meeting
the empty constant specification and Ecan be its evidence function. Since the negation
of the formula from (9) must be satisfiable, for each t there is a world wt fromMcan

such that del ∈ Ecan
H

(
wt,m

G
1

)
and

[
mG

1

]
H del ∈ Ecan

G

(
wt,m

H
2

)
, but by the Truth

Lemma 17, del /∈ Ecan
C (wt, t). Since Ecan � ({wt} × Tm) satisfies all the closure

conditions, the minimality of E implies that EC(w, s) ⊆ Ecan
C (wt, s) for any term s. In

particular, del /∈ EC(w, t) for any term t.

8. Discussion

In this paper, we have provided a system of evidence terms for describing common
knowledge, which can be used instead of modal logic representation. One benefit of
this new representation is that several proofs that are quite hard in the modal case,
e.g., those of completeness and conservativity, are made easier in our logic. There are
other merits to this system as well.

In the single-agent case, as is pointed out in (Artemov, 2008), an explicit codifi-
cation of knowledge by evidence (in Artemov’s case, of the individual knowledge of
the agent) enables knowledge to be analyzed and recorded. Recording and subsequent
retrieving of evidence can be viewed as a form of single-agent communication, with
which any mathematician is familiar. A proof of a theorem, if not recorded immedi-
ately, may require as much effort to be restored later as finding it required originally.
This role of evidence terms in knowledge transfer is reminiscent of what is called ex-
plicit knowledge in Knowledge Management3 and is contrasted with tacit knowledge.
As described in (Nonaka, 1991), “Explicit knowledge is formal and systematic. For
this reason, it can be easily communicated and shared, in product specifications or a
scientific formula or a computer program.” In this sense, evidence terms in the single-
agent case serve as a kind of explicit knowledge. Indeed, if an agent can find a proof
he/she wrote down a year ago, it will restore his/her knowledge of the statement of the
theorem.

The situation with common knowledge evidence is more complicated. An evi-
dence of common knowledge of some fact A, even when transmitted to all agents and

3. The term “explicit knowledge” sounds so natural that it has been used in different areas
with completely different meanings. For instance, in epistemic logic, explicit knowledge is a
type of knowledge that is not logically omniscient, as opposed to implicit knowledge (Fagin et
al., 1995).
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received by them4, does not generally create common knowledge of A for the same
reasons that were discussed in the previous section. In fact, there exist general results
about the impossibility of achieving common knowledge via certain modes of commu-
nication, e.g., in asynchronous systems (Fagin et al., 1995). Clearly, an introduction
of evidence terms cannot and should not change this general phenomenon.

However, there exist modes of communication that ensure that a transmission of a
common knowledge evidence term to all the agents in the group does create common
knowledge among the agents. A prime example of such a mode is, of course, public
announcements, a well-known method of creating common knowledge. Thus, one
of the benefits of our system of terms is a finite encoding of common knowledge,
which is largely infinitary in nature. This finite encoding enables to transmit evidence,
which, under certain modes of communication, creates common knowledge among the
agents. Of course, common knowledge can also be created by a public announcement
of the fact itself rather than of evidence in support of the fact. There is an important
difference, however. When, in his seminal 1989 work (Plaza, 2007), Plaza analyzed
one of the standard stories used to explain the concept of common knowledge, the
Muddy Children Puzzle, in order to explain how common knowledge is created by a
public announcement, he had to assume that the announcements are truthful and the
agents are trustful. Indeed, an announced fact cannot become common knowledge,
or any kind of knowledge, if the fact is false. And clearly, if the agents do not trust
the announcement, their knowledge would only change provided they can verify the
announced facts.

Verifiability of announcements is exactly what we achieve by introducing evidence
terms into the language. An agent who receives a justification for A needs neither to
assume that A is true nor to trust the speaker because the agent can simply verify the
received information. A similar idea of supplying messages with justifications can
be used to describe a distributed system that authorizes the disbursement of sensitive
data, such as medical records, while maintaining a specified privacy policy (Blass et
al., 2011). Interestingly, like in our analysis of the coordinated attack, the authors also
propose to use the sender’s signature as evidence for the information about his/her
intentions or policies.

Verifiability of evidence turns out to be sufficient for creating common knowledge.
Indeed, Yavorskaya considered a situation where agents can verify each other’s evi-
dence: [t]iA →

[
!ji t
]
j [t]iA for i 6= j (Yavorskaya (Sidon), 2008). The !ji -operation

implicitly presumes communication since i’s evidence t has to be somehow available
to agent j. It is not hard to show that an addition of this operation to our logic leads
to a situation where any individual knowledge also automatically creates common
knowledge of the same fact: for any term t ∈ Tmi, there is a term s(x) ∈ TmC such
that ` [t]iA → [s(t)]CA. However, the mode of communication necessary for the

4. Unreliable communication does not prevent knowledge from being explicit. Thus, in the
context of explicit vs. tacit knowledge, we only discuss the usefulness of evidence terms that
have been received by the agent(s).
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!ji -operation to work must be reliable and immediate, which restricts the applicability
of such a logic; for instance, it precludes an analysis of asynchronous systems. In
summary, the kind of knowledge that can be induced via justification transmission is
generally the same as in the case of statement transmission and depends primarily on
the mode of communication, on its reliability.

So another benefit of introducing evidence terms is their verifiability, including
cases when evidence terms are communicated between agents. Yet another benefit,
this time on the meta-logical level, is an ability to analyze common knowledge and the
process of its creation. Similar to Artemov’s analysis of the famous Gettier examples
in (Artemov, 2008), the system of evidence terms for common knowledge can also be
used to uncover hidden assumptions. Further, as shown in the previous section, it can
yield new scenarios for well-known epistemic puzzles.

Our contribution in this paper is technical in the sense that we aim to study neither
the nature of common knowledge nor ways of transmitting data to achieve it. Our
goal is to provide tools for analyzing the fine structure of common knowledge, tools
that can be used, irrespective of the mode of communication between the agents, even
when the communication itself remains on the meta-logical level as in the standard
rendition of the Muddy Children Puzzle, e.g., in (Fagin et al., 1995).

9. Conclusions

We have presented a justification logic LPC
h with common knowledge, which is a

conservative extension of the multi-agent justification logic LPh. The major open
problem at the moment remains proving the realization theorem, one direction of
which we have demonstrated.

Our analysis of the coordinated attack problem in the language of LPC
h shows that

access to evidence creates more alternatives than the classical modal approach. In
particular, the lack of knowledge can occur either because messages are not delivered
or because evidence of authenticity is missing.

We have mostly concentrated on the study of C-axiomatically appropriate constant
specifications. For modeling distributed systems with different reasoning capabilities
of agents, it is also interesting to consider i-axiomatic appropriate, E-axiomatic ap-
propriate, and heterogeneous constant specifications, where only certain aspects of
reasoning are common knowledge.

We established soundness and completeness with respect to epistemic models and
singleton M-models. The question remains whether other semantics for justification
logics such as (arithmetical) provability semantics (Artemov, 1995; Artemov, 2001)
and game semantics (Renne, 2009b) can be adapted to LPC

h. Further avenues of re-
search include but are not limited to the decidability of LPC

h, the comparison of its
complexity to that of S4Ch, and the extension of our treatment of common knowledge
to the logics with the individual modalities of type K, K5, etc.
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A long-term goal of our research is to find justification counterparts of dynamic
epistemic logics with common knowledge. A step in this direction (although still
without common knowledge) was made in (Bucheli et al., 2010a) by proposing a
justification counterpart to public announcement logic. Clearly, both types of systems,
explicit counterparts to common knowledge logics and to dynamic epistemic logics,
will have to be studied on their own first, before being combined.
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