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1 Introduction

In [8] the so-called basic theory of operations and numbers, which represents an applicative
basis of explicit mathematics, is introduced. BON is a theory defined in the language of partial
terms; it has notions of definedness, application, combinatory algebra, complete induction and
typedness as well as some additional axioms. In particular, because of the partial combina-
tory algebra, a term for λ-abstraction can be defined, details can be read upon in [13]. The
λ-abstraction also yields the existence of a term fix, which acts as a fixed-point combinator
for functions. BON does not have a syntactic notion of types, but rather has typedness as a
formal statement and, using the induction scheme, totality of many functions can be proven.
The axioms of BON contain the basis of types, namely they contain the atomic type N and
axioms about it.

In this master thesis, the ultimate goal is to introduce an untyped theory similar to BON.
This newly introduced theory bears the name BONΩ and is an extension of BON that is obtained
by adding tree ordinals as a second atomic type. Tree ordinals being the least set that contains
0Ω and is closed under the sup operation. The sup operation always takes a function from
natural numbers to ordinals as input and yields an ordinal number. Another way of thinking
of this is by imagining a tree, hence the name.

supf

f(0) f(1) f(2) . . .

sup (λx.0Ω)

0Ω 0Ω 0Ω . . .

The strength of BONΩ is equal to the one of ID1; to prove this, we reduce the theory
QTΩ from [1] to BONΩ in the lower bounds and BONΩ + µ to PAΩ from [11] in the upper
bounds, whereas BONΩ + µ the theory BONΩ extended by the non-constructive µ-operator.
The non-constructive µ-operator yields a zero of a function if it exists, and 0N otherwise. The
main motivation behind defining an untyped theory lies therein, that less information about
the terms, i.e. the whole typedness, needs to be coded into the language itself. We achieve
this by a rather strong form of induction in addition to assuming the typedness – as a formal
statement – of the defining constants. Then the typedness of terms follows logically, rather
than syntactically.

For the lower bounds, we essentially take the theory QTΩ—which is proven to be equivalent
to ID1. Then we show, that all provable statements of QTΩ can be proven in BONΩ, assuming
the typedness of the free variables.

For the upper bounds, we embed BONΩ in PAΩ from [11]—which is proven to be equivalent
to ID1. This is done by defining an inductive operator and using the theorems about fixed
points and inductive operators as shown in the very same paper. The translation is done by
defining a valuation function and then interpreting the application from BONΩ as fulfilling the
inductive operator.

Firstly, we show lower bounds for the proof theoretical strength of BONΩ. We start off,
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with defining the set of all type symbols, defined inductively by applying the −→ operation to
the base types N and Ω. Then we formally introduce the theory BONΩ and show some basic
properties about BONΩ, in particular, that in BONΩ it is always possible for any given type
to construct a term of the given type and that typedness of a term for some type implies its
definedness.

After the introduction of BONΩ, we define the theory QTΩ from [2]. QTΩ is a quantified
version of Gödel’s theory T over ordinal numbers. Most of the axioms of QTΩ can be translated
into BONΩ in a straight-forward manner. There are two issues that need to be addressed though:
QTΩ has two recursors built into the theory that have no correspondence in BONΩ, those are
translated by specifically-crafted terms that behave in an equivalent manner, those terms are
explicitly written down as part of the proof. The other issue that we need to deal with in the
embedding is, that in QTΩ, due to its typed nature, all terms that can be applied to each other
from a syntactical point of view automatically are total, because of the typedness requirements
for any term in QTΩ. In BONΩ, however, typedness is not part of the language, but rather just
a formula like any other. We therefore require the typedness of certain constants by axioms,
and we prove the typedness – and therefore definedness – of terms built by the application
function using the strong induction principles of BONΩ. Using those techniques we manage to
embed QTΩ into BONΩ and so we indirectly embed ID1 into BONΩ.

Secondly, we show upper bounds for the proof theoretical strength of BONΩ + µ. As men-
tioned before, BONΩ + µ is an extension of BONΩ that has the non-constructive µ-operator
scheme added. The µ-operator gives the least zero of the (coding of the) function it is applied
to, if the function has any zero at all and it gives 0N, otherwise. In this setting we have a
typedness axiom that requires µ to be a total function of functions (of natural numbers to
natural numbers) to natural numbers. The typedness is such a strong property that this ope-
rator cannot be constructively built up. As it turn out, though, the extension of BONΩ by the
µ-operator is harmless, i.e. BONΩ and BONΩ + µ are proof-theoretically equivalent.

We give a formal definition of PAΩ from [11] and define an inductive operator form thereon.
This inductive operator form is used to simulate the behaviour of BONΩ + µ in PAΩ. It is a
parallel inductive definition; on one hand the axioms of BONΩ + µ are coded into the operator
on the other hand the set of tree ordinal numbers is defined. The induction needs to be
simultaneous, because each part needs the lower layers of the other. A vital property of this
inductive operator form is the functionality of the inductive operator. This and the fixed-point
theorem due to [11] are two main tool used to embed BONΩ + µ into PAΩ.

Once the theory PAΩ and those properties are introduced, we define a valuation of terms
of BONΩ + µ that has the intended meaning „the term t has the value x“. This valuation is
used to define a translation of formulae of BONΩ + µ to PAΩ. We then can use the translation
to embed BONΩ + µ into PAΩ by proving the translation of every axiom of BONΩ + µ. In the
embedding proof, one challenge is the translation of the transfinite induction scheme, this part
is proved by an induction along the layers of the inductive definition of the inductive operator
form.

In the end we wrap up the results in a formal proof-theoretical equivalence theorem between
ID1, BONΩ and BONΩ + µ.
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2 The Theory BONΩ

Our main theory BONΩ is an untyped theory.

2.1 Definitions of the language, terms and formulae for BONΩ

Technically we could skip a definition of what a type is at this spot an only talk of abbreviations
of formulae, it turns out, however, that having a notion of types is useful here already, because
we do have axioms that involve „types“ (or abbreviations of formulae). And later in the setting
of QTΩ we will need the types in the formal definition of the language. Therefore, we define
what we consider types. In particular, there are are no product types in our setting, we define
those using currying.

Definition 1. The set of all type symbols T is defined inductively:

1. N ∈ T

2. Ω ∈ T

3. σ ∈ T ∧ τ ∈ T⇒ σ −→ τ ∈ T

It is convenient to have product types to formulate certain properties, but it is also simpler
to not have them as syntactical objects, therefore we introduce the following notation.

Notation 2. Let σ1, . . . , σn, τ ∈ T, then

(σ1 × σ2 × · · · × σn) −→ τ := σ1 −→ (σ2 −→ · · · (σn −→ τ) · · · )

We try to define a theory BONΩ based on BON from [13]. The following definition is basically
an extension of the definition of BONΩ, where we add additional constants for the ordinal part
of BONΩ. We also add a constant symbol µ to the language. This would not be necessary at
this point, but it allows us to only use one language for BONΩ and BONΩ + µ, which is defined
later.

Definition 3. The language L (BONΩ). There is a countably infinite supply of variables
v1, v2, . . . , the logical symbols ¬,∨,∃, an unary symbol ↓ for definedness and the binary sym-
bol = for equality. Furthermore, we have the following constants: k, s (combinators), 0N,
0Ω (numerical and ordinal zero), sN (numerical successor), pN (numerical predecessor), dN, dΩ

(definition by numerical and ordinal cases), sup, sup−1 (supremum on tree ordinals), µ (non-
constructive minimum operator). We have a binary function symbol · and two unary relation
symbols N, Ω.

The terms can be defined in the standard way. Also consider, that we only have one function
symbol, namely ·.

Definition 4. L (BONΩ) terms.

1. Every variable and every constant is a term
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2. If t1, . . . , tn are terms and f is an n-ary function symbol with n ≥ 1, then f (t1, . . . , tn) is
a term.

If s, t, t1, . . . , tn are terms and R is an n-ary relation symbol, then the expressions s↓, s = t

and R (t1 . . . , tn) are called atomic formulae.

As for formulae, the definition is standard; noteworthy is, that conjunction and universal
quantification are abbreviations, rather than formal symbols. This makes induction on the
formula build-up easier, for we do not need to consider that many cases in the induction step.

Definition 5. L (BONΩ) formulae.

1. Every atomic formula is a formula

2. If A is a formula, then ¬A is a formula.

3. If A and B are formulae, then A ∨B is a formula.

4. If A is a formula and x a variable, then ∃xA is a formula.

As seen in the following, we define the logical operators and quantifiers using abbreviations
1-4. The partial equality only states, that the two sides are equal if one of them is defined
5. The non-equality states, that both sides are defined and the terms are not equal 6, in
particular, s 6= t is a stronger statement than ¬ (s = t), because the definedness is not required
in the latter.

Notation 6. We shall use the following conventions

A ∧B := ¬ (¬A ∨ ¬B) (1)

A→ B := ¬A ∨B (2)

A↔ B := (A→ B) ∧ (B → A) (3)

∀xA := ¬∃x¬A (4)

s ' t := (s↓ ∨t↓)→ (s = t) (5)

s 6= t := s↓ ∧t↓ ∧¬ (s = t) (6)

t ∈ N := N (t) (7)

t ∈ Ω := Ω (t) (8)

t : N := t ∈ N (9)

t : Ω := t ∈ Ω (10)

(∃x : σ)A := ∃x (x : σ ∧ A) (11)

(∀x : σ)A := ∀x (x : σ → A) (12)

t : σ −→ τ := (∀x : σ) (tx : τ) (13)

ax :=
((

sup−1a
)
x
)

(14)
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2.2 Definition of BONΩ and basic properties

The theory BONΩ is based on BON, whereas the axioms, that are equivalent to the typedness
axioms, e.g. 0N : N and suc : N −→ N, were rewritten to fit the current context. Newly in
BONΩ, we have the special axioms for ordinals. Their intended meaning is the following:

• 0Ω : Ω

The ordinal zero naturally is an ordinal numbers.

• sup : (N −→ Ω) −→ Ω

The sup operator yields an ordinal number if applied to a function of natural numbers to
ordinals.

• sup−1 : Ω −→ (N −→ Ω)

The sup−1 operator is supposed to be the inverse of the sup operator, so it’s type has to
be inverse to the one of sup.

• (e : N −→ Ω)→ supe 6= 0Ω ∧ sup−1 (supe) = e

If e is (the coding of) a function from natural numbers to ordinals, i.e. a sequence of
ordinals, then the supremum will never be 0Ω and the supremum inverse is really the
inverse function to the supremum function.

• a : Ω→ (a 6= 0Ω → sup (sup−1a) = a)

If a is an ordinal, other than 0Ω, the the supremum is the inverse function of the supremum
inverse.

• x : N→ (0Ω)x = 0Ω

The supremum inverse of 0Ω is the constant 0Ω function, i.e. the supremum inverse
function yields 0Ω at every position x.

• a = 0Ω → dΩe1e2a = e1

The definition by ordinal cases yields the first argument e1 when 0Ω is given. Note that
we use here the constant 0Ω rather than comparing two ordinals. This is due to the fact,
that we did not define what the equality of two ordinals should be. Defining such an
equality is not that simple a task to do, because the ordinals, with the exception of 0Ω

are the results of the sup function, which takes a whole function as input, rather than
then a single value. Then there would be the question when are the inputs equal? Would
that be just that the values need to be equal, or maybe the term would have to be equal,
etc. And most importantly, it suffices that we can distinguish between 0Ω and not 0Ω.

• a ∈ Ω ∧ a 6= 0Ω → dΩe1e2a = e2

The definition by ordinal cases yields the second argument e2 when an ordinal number
other than 0Ω is given.
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• (e : N −→ N) ∧ (∃x ∈ N) (ex = 0N)→ e (µe) = 0N

The non-constructive µ operator yields a zero of the function e if it has one. As given by
the typedness, the µ operator yields a value if applied to any function of natural numbers
to natural numbers.

• A (0Ω) ∧ (∀a : Ω) (a 6= 0Ω ∧ (∀x : N)A (ax)→ A (a))→ (∀a : Ω)A (a)

The transfinite induction scheme says, that if the statement A holds for 0Ω and we can
show, that from A holding at each component of an ordinal number a, we can show that it
also holds at a itself, then we can conclude that the statement A holds for all the ordinal
numbers.

Definition 7. The theory BONΩ has the following axioms:

1. propositional axioms and rules: as usual.

2. quantifier axioms and rules: for all formulae A,B, all terms t and all variables x:

A[t/x] ∧ t↓→ ∃xA

A→ B

∃xA→ B
x 6∈ FV (B)

3. definedness axioms: for all n-ary function symbols f and relation symbols R and all terms
s, t and t1, . . . , tn:

t↓ if t is a variable or a constant

f (t1, . . . , tn)↓→ t1 ↓ ∧ · · · ∧ tn ↓

(s = t)→ s↓ ∧ t↓

R (t1, . . . , tn)→ t1 ↓ ∧ · · · ∧ tn ↓

4. equality axioms: or all n-ary function symbols f and relation symbols R and all terms s,
t, s1, . . . , sn and t1, . . . , tn:

t = t if t is a variable or a constant

(s = t)→ (t = s)

(t1 = t2) ∧ (t2 = t3)→ (t1 = t3)

R (s1, . . . , sn) ∧ (s1 = t1) ∧ · · · ∧ (sn = tn)→ R (t1, . . . , tn)

(s1 = t1) ∧ · · · ∧ (sn = tn)→ f (s1, . . . , sn) ' f (t1, . . . , tn)

5. Typedness axioms:
0N : N

suc : N −→ N
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0Ω : Ω

sup : (N −→ Ω) −→ Ω

sup−1 : Ω −→ (N −→ Ω)

6. partial combinatory algebra, for all variables x, y, z:

kxy = x

sxy↓ ∧sxyz ' (xz) (yz)

7. natural numbers, for all variables x, y

(∀x ∈ N) (x′ 6= 0N ∧ pN (x′) = x)

(∀x ∈ N)
(
x 6= 0N → pNx ∈ N ∧ (pNx)′ = x

)
A (0N) ∧ (∀x : N) (A (x)→ A (x′))→ (∀y : N)A (y)

8. definition by numerical cases, for all variables x, y, u, v

u ∈ N ∧ v ∈ N ∧ u = v → dNxyuv = x

u ∈ N ∧ v ∈ N ∧ u 6= v → dNxyuv = y

9. Ordinal Numbers, for all variables e, a, x

(e : N −→ Ω)→ supe 6= 0Ω ∧ sup−1 (supe) = e

a : Ω→
(
a 6= 0Ω → sup

(
sup−1a

)
= a
)

x : N→ (0Ω)x = 0Ω

10. Definition by cases on ordinal numbers, for all variables e1, e2, a

a = 0Ω → dΩe1e2a = e1 (15)

a ∈ Ω ∧ a 6= 0Ω → dΩe1e2a = e2 (16)

11. Transfinite induction scheme for any formula A(x)

A (0Ω) ∧
(∀a : Ω) (a 6= 0Ω ∧ (∀x : N)A (ax)→ A (a)) → (∀a : Ω)A (a)

Remark 8. In the previous definition of the axiom schemes 6-10, we can use just the definition
for variables, because from

BONΩ ` ∀xA ∧ t↓→ A [t/x]
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we get immediately, that each of those axioms works for all defined terms.
As shown in detail in [13], BONΩ has a term fix, that yields a fixed point theorem in BONΩ.

The proof is not difficult and can be read in detail in the named paper.

Theorem 9. There is a term fix, such that

BONΩ ` fixx↓ ∧fixxy ' x (fixx) y

In the following, we try to get used to the notion of typedness in BONΩ.

Remark 10. Let σ1, σ2, . . . , σn, τ ∈ T and let t be a term of BONΩ, then

t : (σ1 × · · · × σn) −→ τ ≡ (∀x1 : σ1) · · · (∀xn : σn) (tx1 · · ·xn : τ)

Example 11. As an example what exactly the types correspond to in BONΩ, consider the
following

t : (N −→ N) −→ (N −→ N)

(∀x : N −→ N) (tx : N −→ N)

∀x ((∀y : N) (xy : N)→ tx : N −→ N)

∀x ((∀y : N) (xy : N)→ (∀z : N) (txz : N))

∀x (∀y (y : N→ xy : N)→ ∀z (z : N→ txz : N))

Product types are only abbreviations for linear types. To see how the terms correspond,
you can check the following example.

Example 12. As an example for product types, consider the following

t : (N× N) −→ N

t : N −→ (N −→ N)

(∀x : N) (tx : N −→ N)

(∀x : N) (∀y : N) (txy : N)

so we see, that t takes two arguments of type N and returns txy : N.

For every type there actually is a defined term that has the correct type, so we always can
find a term for every type.

Lemma 13. For any type σ there is a term t such that

BONΩ ` t : σ ∧ t↓

Proof. By induction on the build-up of σ.

1. σ ≡ R for R ∈ {N,Ω}. Then set t := 0R. 0R : R is an axiom in both cases, R (0R)→ 0R ↓
is an axiom too.
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2. σ ≡ ν −→ τ . We apply the induction hypothesis to τ to get tτ . Set t := ktτ ; we have
from the induction hypothesis tτ ↓. The axiom ktτx = tτ gives us that ktτx↓ and so ktτ ↓.
But this is the same as t↓.

tτ : τ

=⇒ (∀x : ν) (tτ : τ)

=⇒ (∀x : ν) (tx : τ) ≡ t : ν −→ τ ≡ t : σ

It turns out, that we will later often want to get the definedness of a term from its typedness.
This general property can be shown uniformly for any type. The following lemma simply states:
If a term is of a particular type, then it is automatically defined.

Lemma 14. Typedness implies definedness. For any type σ and any term t

BONΩ ` t : σ → t↓

Proof. By induction on the build-up of σ.

1. σ ≡ R for R ∈ {N,Ω}. Then
t : σ ≡ t : R ≡ R (t)

since R is a relation symbol, we get the definedness of t directly from the axiom R (t)→
t↓.

2. σ ≡ ν −→ τ . Then

(t : ν −→ τ) ≡ (∀x : ν) (tx : τ) ≡ ∀x (x : ν → tx : τ) ≡ ¬∃x¬ (x : ν → tx : τ)

take the following axiom of BONΩ, where A := ¬ (x : ν → tx : τ) and s is a term such
that s : ν ∧ s↓

A [s/x] ∧ s↓→ ∃xA

(¬ (x : ν → tx : τ) [s/x] ∧ s↓)→ ∃x¬ (x : ν → tx : τ)

contra position immediately yields

∀x (x : ν → tx : τ)→ ((s : ν → ts : τ) ∨ ¬s↓)

Because s ↓, we get that t : σ → (s : ν → ts : τ). With some propositional reasoning
together with s : ν∧s↓ we get that t : σ → ts : τ . We can apply the induction hypothesis
to get ts : τ → ts↓. The definedness axioms then give us that ts↓→ t↓. Putting all those
together gives us t : σ → t↓.

10



So when we put together the lemmas and definitions from this section, we get, that BONΩ is
an extended version of BON, that is extended by the notion of typedness of terms—as a formal
statement. Furthermore we have some basic properties about how the typedness behaves, i.e.
what product types mean and that we always find a term, that has a particular type and that
typedness implies definedness.

3 The Theory QTΩ

The typed theory QTΩ has the typedness statements essentially coded into the types of the
variables and the application. A term can only be applied to another term if their types match.
Therefore this theory is total, in the sense, that all wrongly typed terms cannot be applied
to each other already on a syntactical level. This convenience on the one side, yields two
inconveniences: The typedness of the defining constants is coded into the language rather than
the theory’s axioms. And there is a need for the special recursor terms rσ and RΩ,σ in the
language. Those can be proven to be just normal terms, without the need to being added in
the case of BONΩ.

3.1 Definitions of the language, terms and formulae for QTΩ

All the constants from BONΩ we find here as well, though they have types and therefore some
of them occur multiple times, e.g. kσ,τ and sρ,σ,τ . Additionally, we have the combinators; those,
as we will prove later in the translation, can be constructed in BONΩ and were therefore not
necessary in the definition of BONΩ.

Definition 15. The Language L (QTΩ). For each σ ∈ T there is a countably infinite supply of
variables of type σ; we shall use xσ, yσ, zσ, uσ, vσ, wσ for such variables. For each σ ∈ T there
is a binary predicate =σ for equality at type σ; and for all σ, τ ∈ T there is an application
operator Apσ,τ . Furthermore, the language contains the following constants, for all σ, τ, ρ ∈ T,
with „c a constant of type σ“ indicated by „c ∈ σ“.

0N ∈ N

suc ∈ N −→ N

kσ,τ ∈ (σ × τ) −→ σ

sρ,σ,τ ∈ ((ρ −→ (σ −→ τ))× (ρ −→ σ)× ρ) −→ τ

rσ ∈ (σ × ((σ × N) −→ σ)× N) −→ σ

0Ω ∈ Ω

sup ∈ (N −→ Ω) −→ Ω

sup−1 ∈ Ω −→ (N −→ Ω)

RΩ,σ ∈ (((Ω× (N −→ σ)) −→ σ)× σ × Ω) −→ σ

11



The terms are defined similarly to the definition of terms in BONΩ, just that the typedness
is defined by the typedness of the Apσ,τ function.

Definition 16. L (QTΩ) terms. The terms are defined recursively:

1. variables and constants of type σ are terms of type σ

2. if t is a term of type σ −→ τ , t′ a term of type σ, then Apσ,τ (t, t′) is a term of type τ .

The definition of formulae is as usual, with the exception, that the equals relation =σ is
only applicable to terms of equal types, so therefore we have an equals relation for every type.
We usually skip writing the type explicitly, when it is clear from the context.

Definition 17. L (QTΩ) formulae.

1. prime formulae are expressions of the form t =σ s, where t and s are terms of type σ

2. a prime formula is a formula; arbitrary formulae are built from prime formulae with the
help of the logical operators ¬,∨,∃xσ.

3.2 Definition of QTΩ and basic properties

In the context of the typed theory, some of the more complicated axioms, like e.g. the induction
scheme, are simpler to formulate, because the correct typedness is already guaranteed by the
way, how formulae are build. So writing something, where a term would not be of the correct
type, would not be a formula according to the definition of formulae in QTΩ. The intended
meaning of the special axioms is:

• rxy0N = x rxy (z′) = y (rxyz) z

The recursor r simulates primitive recursion. At the recursion level 0N, it returns the
value x, and the value at the level z′ is the value of the function y applied to the value of
the previous level and the level itself. With other words, the value at a level depends of
the previous level, as well, as the level itself.

• RΩe1e20Ω = e2 a 6= 0Ω → RΩe1e2a = e1a (λx.RΩe1e2ax)

Similarly to the previous case, the recursor states, that a value on a level a depends of
the value at the levels of the components ax. So here the next level depends on the whole
function λx.RΩe1, e2, ax.

Definition 18. QTΩ has the following axioms.

1. propositional axioms and rules: as usual.

2. quantifier axioms and rules: for all formulae A,B, all terms t of type σ and all variables
x of type σ:

A[t/x]→ ∃xA
A→ B

∃xA→ B
x 6∈ FV (B)

12



3. equality axioms: for equality at all types, we assume

x = x

x = y → y = x

x = y ∧ y = z → x = z

y = z → xy = xz

x = y → xz = yz

4. defining equations for the constants:

kxy = x sxyz = (xz) (yz)

rxy0N = x rxy (z′) = y (rxyz) z

5. arithmetical axioms (where x, y are of type N):

x′ = y′ → x = y

0N 6= x′

A (0N) ∧ ∀x (A (x)→ A (x′))→ ∀yA (y)

6. additional axioms for tree ordinals: When e is of type N −→ Ω

supe 6= 0Ω ∧ sup−1 (supe) = e

a 6= 0Ω → sup
(
sup−1a

)
= a

(0Ω)x = 0Ω

7. the axioms about the recursor: where e1 is of type (Ω× (N −→ σ)) −→ σ, e2 of type σ
and a an ordinal number

RΩe1e20Ω = e2

a 6= 0Ω → RΩe1e2a = e1a (λx.RΩe1e2ax)

8. Induction on ordinal numbers

A (0Ω) ∧ ∀a (a 6= 0Ω ∧ ∀xA (ax)→ A (a))→ ∀aA (a)

4 Embedding QTΩ in BONΩ

In order to embed QTΩ in BONΩ, we need to be able to simulate all the axioms of PAΩ. For that
we define a translation of QTΩ formulae into BONΩ formulae and then prove, that if QTΩ proves

13



a formula, then BONΩ proves the translation. As it turns out, most of the axioms of QTΩ have
their obvious counterparts in BONΩ with the exception of the recursors. Earlier, we mentioned,
that due to the strength of induction that we have in BONΩ, we are able to prove that there
are terms in BONΩ that behave like the recursors, without having to add the recursors to the
definition of our theory. Due to the fact, that those recursor terms are a little complicated and
that the simulation of them need to show two things, namely that the resulting terms are the
same as in QTΩ and that the recursor is of the correct type, we make the following lemmas.

4.1 The numerical recursor term recN in BONΩ

The term recN is the simulation of the rσ recursor. From the proof we will get, that the recursor
term does not depend of the type of the input and output; it is the same term for every type
σ. In the first part, we show that the terms yield the expected and in the second part, we show
that for every σ the recursor has the necessary type.

Lemma 19. Numerical recursor. There is a term recN, such that

1. BONΩ ` (z : N)→ (recNxy0N ' x ∧ recNxy (z′) ' y (recNxyz) z)

2. BONΩ ` recN : (σ × (σ × N −→ σ)× N) −→ σ

Proof. Set
recN := (λxy.fixt)

t := (λez.dNx (y (e (pNz)) (pNz)) 0Nz)

recNxyz ' (fixt) z ' t (fixt) z ' t (recNxy) z

' dNx (y ((recNxy) (pNz)) (pNz)) 0Nz

from z : N→ z′ : N ∧ z′ 6= 0N and z : N we get

recNxy0N ' x

recNxy (z′) ' y ((recNxy) (pN (z′))) (pN (z′))

' y ((recNxy) z) z

' y (recNxyz) z

So far, we only applied terms to other terms. As such, we a priori do not know, if there exist
values and if such potential values have the necessary type.
To show the typedness, we need to recall remark 10:

recN : (σ × ((σ × N) −→ σ)× N) −→ σ

≡ (∀x : σ) (∀y : (σ × N) −→ σ) (∀z : N) (recNxyz : σ)

Now we can look at our partial equality from before, given those types. To show this, we need

14



to apply induction on natural numbers. Set

A (z) := (∀x : σ) (∀y : (σ × N) −→ σ) (recNxyz : σ)

First we show A (0N).

recNxy0N ' dNx (y ((recNxy) (pN0N)) (pN0N)) 0Nz ' x

from x : σ, we get recNxy0N : σ, and so A (0N).
For A (z)→ A (z′) consider the following

recNxy (z′) ' dNx (y ((recNxy) (pN0N)) (pN0N)) 0N ' y (recNxyz) z

Consider, what y : (σ × N) −→ σ means:

(∀v : σ) (∀n : N) (yvn : σ)

with other words, if we put v of type σ and a natural number n into y, we get something of
type σ. A (z), together with the premises, gives us recNxyz : σ. We also have given z : N, but
that means, that recNxyz is such a v and z is such an n, that we get

y (recNxyz) z : σ

but given the partial equality recNxy (z′) ' y (recNxyz) z, we get our A (z′):

recNxy (z′) : σ

Applying induction, we get:

A (0N) ∧ (∀x : N) (A (x)→ A (x′))→ (∀z : N)A (z)

so we get
(∀z : N) (∀x : σ) (∀y : (σ × N) −→ σ) (recNxyz : σ)

this is exactly what we need.

4.2 The ordinal recursor term recΩ in BONΩ

Analogously to the previous lemma, here we do the same for the ordinal recursor. Also the
ordinal recursor is just one term, not depending of σ.

Lemma 20. Ordinal recursor. There is a term recΩ, such that

1. BONΩ ` a ∈ Ω ∧ a 6= 0Ω →
(
recΩe1e20Ω ' e1 ∧ recΩe1e2a ' e1a (λx.recΩe1e2ax)

)
2. BONΩ ` recΩ : (((Ω× (N −→ σ)) −→ σ)× σ × Ω) −→ σ

15



Proof. Set

recΩ := (λfa.fixt)

t := (λha.dΩe2 (e1a (λx.hax)) a)

recΩfaα ' (fixt) a ' t (fixt) a ' t (recΩe1e2) a

' dΩe2 (e1a (λx.recΩe1e2ax)) a

So far, we only applied terms to other terms. As such, we a priori do not know, if there exist
values and if such potential values have the necessary type. Recall the definition of typedness
in BONΩ and remark 10:

recΩ : (((Ω× (N −→ σ)) −→ σ)× σ × Ω) −→ σ

≡ (∀e1 : (Ω× (N −→ σ)) −→ σ) (∀e2 : σ) (∀a : Ω) (recΩe1e2a : σ)

To show this, we need induction on ordinal numbers. Set

A (a) := (∀e1 : (Ω× (N −→ σ)) −→ σ) (∀e2 : σ) (recΩe1e2a : σ)

First we show A (0Ω).

recΩe1e20Ω ' dΩe2 (e1a (λx.recΩe1e20Ωx)) 0Ω ' e2

from e2 : σ, we get recΩe1e20Ω : σ and thus A (0Ω).
For A (ax)→ A (a), consider the following:
From a : Ω and a 6= 0Ω, we get

recΩe1e2a ' dΩe2 (e1a (λx.recΩe1e2ax)) a ' e1a (λx.recΩe1e2ax)

The condition e : (Ω× (N −→ σ)) −→ σ gives us

e : (Ω× (N −→ σ)) −→ σ

(∀b : Ω) (∀e : N −→ σ) (e1be : σ)

With other words, if we insert an ordinal number b and a function e from natural numbers to
σ into the function e1, we get a value in σ.
Consider the following partial equality:

recΩe1e2ax ' (λx.recΩe1e2ax)x

From (∀x : N)A (ax), we get:
(∀x : N) (recΩe1e2ax : σ)
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(∀x : N) ((λx.recΩe1e2ax)x : σ)

(λx.recΩe1e2ax) : N −→ σ

We therefore see, that λx.recΩe1e2ax is a function e, such that e1be : σ. This gives us

e1a (λx.recΩe1e2ax) : σ

and so
recΩe1e2a : σ

As such, we now can apply the transfinite induction and we get:

(∀a : Ω)A (a)

≡ (∀a : Ω) (∀e1 : (Ω× (N −→ σ)) −→ σ) (∀e2 : σ) (recΩe1e2a : σ)

and this is the typedness of recΩ.

4.3 Translation of QTΩ formulae to BONΩ formulae and basic proper-
ties thereof

Now, that we showed, that we can simulate the recursors, we can finally define a translation of
QTΩ terms to BONΩ terms. This translation will be used to define the translation of formulae
which in turn is going to be used to state the embedding theorem. The typed constants QTΩ

are translated into their counterparts in BONΩ, the same goes for variables. The two recursors
are translated by the recursors terms we showed to exist in the previous lemmas. And the
application in QTΩ is translated to the application in BONΩ.

Definition 21. Define a translation

4 : L (QTΩ) −→ L (BONΩ)

for terms, set

1. 0N 7−→ 0N

2. suc 7−→ suc

3. kσ,τ 7−→ k

4. sρ,σ,τ 7−→ s

5. 0Ω 7−→ 0Ω

6. sup 7−→ sup

7. sup−1 7−→ sup−1

8. rσ 7−→ recN
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9. RΩ,σ 7−→ recΩ

10. xσ 7−→ x

11. Apσ,τ (s, t) 7−→ s4 · t4

for formulae; let t and s be terms of type σ

1. t =σ s 7−→ t4 = s4

2. ¬A 7−→ ¬A4

3. A ∨B 7−→ A4 ∨B4

4. ∃xσA 7−→ (∃x : σ)A4

4.3.1 Substitution lemma of the translation

In the embedding proof, we will often need the following substitution lemma to apply the
induction hypothesis.

Lemma 22. Substitution lemma.

A [t/x]4 ≡ A4
[
t4/x4

]
Proof. Consider the following cases:

1. A is a constant
A [t/x]4 ≡ A4︸︷︷︸

constant

≡ A4
[
t4/x4

]
2. A ≡ x

A [t/x]4 ≡ x [t/x]4 ≡ t4 ≡ x4
[
t4/x4

]
3. A ≡ y 6≡ x

A [t/x]4 ≡ y [t/x]4 ≡ y4 ≡ y4
[
t4/x4

]
4. A ≡ s1 =σ s2

A [t/x]4 ≡ (s1 =σ s2) [t/x]4 ≡ (s1 [t/x] =σ s2 [t/x])4

≡ (s1 [t/x])4 = (s2 [t/x])4

≡ s41
[
t4/x4

]
= s42

[
t4/x4

]
≡

(
s41 = s42

) [
t4/x4

]
≡ A4

[
t4/x4

]
5. A ≡ ¬B

A [t/x]4 ≡ (¬B) [t/x]4 ≡ ¬B [t/x]4 ≡ ¬B4
[
t4/x4

]
≡ A4

[
t4/x4

]
18



6. A ≡ B ∨ C

A [t/x]4 ≡ (B ∨ C) [t/x]4 ≡ (B [t/x] ∨ C [t/x])4 ≡ B [t/x]4 ∨ C [t/x]4

≡ B4
[
t4/x4

]
∨ C4

[
t4/x4

]
≡
(
B4 ∨ C4

) [
t4/x4

]
= A4

[
t4/x4

]
7. A ≡ ∃xσB

A [t/x]4 ≡ A4 ≡ A4
[
t4/x4

]
8. A ≡ ∃yσB and y 6≡ x

A [t/x]4 ≡ ((∃yσB) [t/x])4 ≡ (∃yσB [t/x])4 ≡ (∃y : σ) (B [t/x])4

≡ (∃y : σ)
(
B4

[
t4/x4

])
≡
(
(∃y : σ)B4

) [
t4/x4

]
≡ A4

[
t4/x4

]

4.3.2 Typedness theorem of the translation

In the embedding theorem, we will assume the typedness of the variables and we will typically
need that some term has the correct type. What the following theorem states, is that the
typedness of the free variables implies the correct typedness of terms build up from those free
variables. Or more precisely, in order to prove that the translation of a L (QTΩ) term has the
same type in BONΩ, we only need to assume the correct typedness of the free variables, but not
of the whole term. The correct typedness of the term is a logical consequence of the typedness
of the free variables, rather than a syntactical requirement.

Theorem 23. Typedness in BONΩ. Let t [~x] be an L (QTΩ) term of type σ, with all free variables
exposed. Further, let x1 be of type σ1, x2 of type σ2, . . . and xn of type σn, respectively. Then

BONΩ ` x1 : σ1 ∧ x2 : σ2 ∧ · · · ∧ xn : σn → t4 [~x] : σ

Proof. The proof is by induction on the build-up of the L (QTΩ) term t.

1. t ≡ 0N, so t is of type N:
t4 = 0N

4 = 0N

we have an axiom
0N : N

and this is exactly what we need.

2. t ≡ suc, so t is of type N −→ N

t4 = suc4 = suc

the following is an axiom and exactly what we need

suc : N −→ N
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3. t ≡ kσ,τ , so t : σ −→ (τ −→ σ)

t4 = (kσ,τ )4 = k

we need to show, that
k : (σ × τ) −→ σ

(∀x : σ) (∀y : τ) (kxy : σ)

from kxy = x, we immediately get the needed.

4. t ≡ sρ,σ,τ , so t : ((ρ −→ (σ −→ τ))× (ρ −→ σ)× ρ) −→ τ

t4 = (sρ,σ,τ )4 = s

we need to show the following

s : ((ρ −→ (σ −→ τ))× (ρ −→ σ)× ρ) −→ τ

(∀x : ρ −→ (σ −→ τ)) (∀y : ρ −→ σ) (∀z : ρ) (sxyz : τ)

(∀x : ρ −→ (σ −→ τ)) (∀y : ρ −→ σ) (∀z : ρ) ((xz) (yz) : τ)

from y : ρ −→ σ and z : ρ, we get yz : σ, from x : ρ −→ (σ −→ τ) and z : ρ, we get
xz : σ −→ τ . And from xz : σ −→ τ and yz : σ, we get (xz) (yz) : τ . And that is what
we need.

5. t ≡ 0Ω, so 0Ω : Ω

t4 = (0Ω)4 = 0Ω

but 0Ω : Ω is an axiom of BONΩ

6. t ≡ sup, so sup : (N −→ Ω) −→ Ω

t4 = (sup)4 = sup

but sup : (N −→ Ω) −→ Ω is an axiom of BONΩ

7. t ≡ sup, so sup−1 : Ω −→ (N −→ Ω)

t4 =
(
sup−1

)4
= sup−1

but sup−1 : Ω −→ (N −→ Ω) is an axiom of BONΩ

8. t ≡ rσ for this case, the typedness is one half of lemma 19.

9. t ≡ RΩ,σ for this case, the typedness is one half of lemma 20.

10. t ≡ x for some variable, so x : σ

t4 = (x)4 = x

but x : σ is the premise of this lemma.
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11. t ≡ Apσ,τ (a [−→x ] , b [−→y ]), so a : σ −→ τ , b : σ, t : τ , x1 : µ1, . . . , xm : µm, y1 : ν1, . . . yn : νn

t4 = (Apσ,τ (a [−→x ] , b [−→y ])) = a4 [−→x ] · b4 [−→y ]

from the induction hypothesis we know, that

BONΩ ` x1 : µ1 ∧ · · · ∧ xm : µm︸ ︷︷ ︸
P1

→ a [−→x ] : σ −→ τ

and
BONΩ ` y1 : ν1 ∧ · · · ∧ yn : νn︸ ︷︷ ︸

P2

→ b [−→y ] : σ

=⇒ BONΩ ` P1 ∧ P2 → a [−→x ] : σ −→ τ ∧ b [−→y ] : σ

=⇒ BONΩ ` P1 ∧ P2 → (∀z : σ) (a [−→x ] z : τ) ∧ b [−→y ] : σ

=⇒ BONΩ ` P1 ∧ P2 → a [−→x ] b [−→y ] : τ

4.3.3 Modus ponens on translated formulae

In the embedding we do not go into detail how the basic logical rules translate, but one basic
logical rule needs to be considered; the modus ponens. The problem there is, that the free
variables in the conclusion are a subset of the free variables from the premises. And we need to
show, that the free variables from the conclusion suffice for our embedding purposes. Therefore
we show, that the modus ponens rule also works on the translated formulae:

Theorem 24. Modus ponens on the translated formulae. Let A [−→x ] and B [−→y ] be L (BONΩ)

formulae with all free variables exposed. Then

BONΩ ` (x1 : σ1) ∧ · · · ∧ (xm : σm)→ A [−→x ]
4

& BONΩ ` (x1 : σ1) ∧ · · · ∧ (xm : σm) ∧ (y1 : τ1) ∧ · · · ∧ (yn : τn)→ (A [−→x ]→ B [−→y ])

=⇒ BONΩ ` (y1 : τ1) ∧ · · · ∧ (yn : τn)→ B [−→y ]

Proof. We use the following abbreviations:

X := (x1 : σ1) ∧ · · · ∧ (xm : σm)

Y := (y1 : τ1) ∧ · · · ∧ (yn : τn)

A := A [−→x ]

B := B [−→y ]

so we can assume
X → A X ∧ Y → (A→ B)
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the latter we can rewrite to (X → A) → (X ∧ Y → B) using some propositional reasoning.
Now we can apply the modus ponens in BONΩ:

X → A (X → A)→ (X ∧ Y → B)

X ∧ Y → B

now we can consider what the premise X ∧ Y is:

(x1 : σ1) ∧ · · · ∧ (xm : σm) ∧ (y1 : τ1) ∧ · · · ∧ (yn : τn)

we introduce two new abbreviations Xc (for variables common A and B) and Xu (for variables
unique to A) for xi occurring in A and B or only A, respectively.

Xc :=
∧

xi free in B

xi : σi

Xu :=
∧

xi not free in B

xi : σi

then X ↔ Xc ∧ Xu and since X ∧ Y → B can be proven, we can apply substitution. We
substitute a term ti of the type σi for every xi not occurring freely in B. Such a term exist
according to the lemma 13. But for each one of those terms, BONΩ ` ti : σi and so we can cut
them out of the premise to get

Xc ∧ Y → B

but since all the variables from Xc are common, the terms formulae xi : σi of Xc all occur in
Y . Therefore we can do a contraction to get

Y → B

and this is what we need.

4.4 The theorem for embedding QTΩ into BONΩ

For the embedding of QTΩ into BONΩ, we assume that the free variables be of the correct
types. Then we get the correct typedness of terms using the typedness theorem and we apply
the translation of formulae to prove all the axioms.

Theorem 25. Embedding QTΩ in BONΩ. Let A [−→x ] be an L (QTΩ) formula with all free
variables exposed. Further, let x1 be of type σ1, x2 of type σ2, . . . , xn of type σn, respectively.
Then

QTΩ ` A [−→x ] =⇒ BONΩ ` (x1 : σ1) ∧ (x2 : σ2) ∧ · · · ∧ (xn : σn)→ A [−→x ]
4

Proof. To show, that our theory can prove any of the formulae, it suffices to show, that our
theory can prove any of the axioms.
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Because both theories use the usual propositional axioms and rules, we will go into detail
only on the other axioms, with the exception of the modus ponens, because here we need to
consider what happens with the free variables. In the following, always assume that A and B
are formulae of QTΩ.

1. Modus ponens: This is exactly the theorem 24.

2. Quantifier axioms and rules:

(a) (
A

[
a (−→y )

x

]
→ ∃xσA

)4
!

(
A

[
a (−→y )

x

])4
→ (∃xσA)4

According to the previous lemma 22 this is the same as

A4

[
(a (−→y ))

4

x4

]
→ (∃x : σ)A4

We define a new formula

B (z) := z : σ ∧ A4
[ z
x4

]
We now apply the axiom scheme of BONΩ to get:

B

(
(a (−→y ))

4

z

)
∧ (a (−→y ))

4 ↓→ ∃zB (z)

(
(a (−→y ))

4
: σ ∧ A4

[
(a (−→y ))

4

x4

])
∧ (a (−→y ))

4 ↓→ ∃z
(
z : σ ∧ A4

[ z
x4

])
(

(a (−→y ))
4

: σ ∧ A4
[

(a (−→y ))
4

x4

])
∧ (a (−→y ))

4 ↓→ (∃z : σ)A4

The typedness theorem 23 gives us that BONΩ ` (−→y )
4

: −→τ → (a (−→y ))
4

: σ. Since
the free variables −→y of a are a subset of the free variables in the whole formula, we
have the correct types of them in the premise of this theorem. Therefore we can
deduce (a (−→y ))

4
: σ and so we get the desired.

(b) For the other quantifier rule

(A→ B)4

(∃xσA→ B)4
!

A4 → B4

(∃x : σ)A4 → B4

we have the following as induction hypothesis

−→x : −→σ → (A4 → B4)
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since we do not a priori know if x occurs freely in A4 → B4, we have two possible
cases

i. x does not occur freely and therefore it does not occur in −→x : −→σ . In the following
tautology, set C := −→x : −→σ , D := A4, E := B4 and F := x : σ, respectively

(C → (D → E))→ ((F ∧D)→ (C → E))

so we get (
x : σ ∧ A4

)
→
(−→x : −→σ → B4

)
since x does not occur freely in A4 → B4 and thus does not occur freely in
−→x : −→σ , it indeed does not occur freely in −→x : −→σ → B4 and so we can apply
the quantifier rule (

x : σ ∧ A4
)
→
(−→x : −→σ → B4

)
(∃x : σ)A4 → (−→x : −→σ → B4)

now in the following tautology set C := (∃x : σ)A4, D := −→x : −→σ and E := B4,
respectively

(C → (D → E))→ (D → (C → E))

and this finally gives us

−→x : −→σ →
(
(∃x : σ)A4 → B4

)
ii. x occurs freely in A4 → B4, therefore x : σ must be one of the conjuncts in
−→x : −→σ . Without loss of generality assume, that x : σ be the first conjunct and
−→x : −→σ ≡ x : σ∧

−→
x′ :
−→
σ′ . In the following tautology, set C := x : σ, D :=

−→
x′ :
−→
σ′ ,

E := A4 and F := B4, respectively.

((C ∧D)→ (E → F ))→ ((C ∧ E)→ (D → F ))

So we get (
x : σ ∧ A4

)
→
(−→
x′ :
−→
σ′ → B4

)
since x does not occur freely on the right side of the implication, we can apply
the quantifier axiom and get(

x : σ ∧ A4
)
→
(−→
x′ :
−→
σ′ → B4

)
(∃x : σ)A4 →

(−→
x′ :
−→
σ′ → B4

)
As in the previous case, now in the following tautology, set C := (∃x : σ)A4,
D := −→x : −→σ and E := B4, respectively

(C → (D → E))→ (D → (C → E))
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and this finally gives us

−→x : −→σ →
(
(∃x : σ)A4 → B4

)
3. For equality axioms, we get the following:

(a) t [−→x ] =σ t [−→x ]

(t [−→x ] =σ t [−→x ])
4 ! t [−→x ]

4
= t [−→x ]

4

from −→x : −→σ and t [−→x ] of type σ in QTΩ, we get t [−→x ] : σ and from typedness we get
definedness. And therefore t [−→x ]

4
= t [−→x ]

4 can be proved in BONΩ. This happens
by build-up of the term; for variables and constants, this is an axiom in itself and for
the application of a function, we can get the equality from the induction hypothesis.

(b) (s =σ t)→ (t =σ s)

((s =σ t)→ (t =σ s))
4 !

(
s4 = t4

)
→
(
t4 = s4

)
This in itself is an axiom of BONΩ.

(c) (a =σ b) ∧ (b =σ c)→ (a =σ c)

((a =σ b) ∧ (b =σ a)→ (a =σ b))
4

!
(
a4 = b4

)
∧
(
b4 = a4

)
→
(
a4 = c4

)
But this also is an axiom in itself.

(d) (a [−→x ] =σ b [−→y ])→ (c [−→z ] a [−→x ] =τ c [−→z ] b [−→y ])

((a [−→x ] =σ b [−→y ])→ (c [−→z ] a [−→x ] =τ c [−→z ] b [−→y ]))
4

!
(
a [−→x ]

4
= b [−→y ]

4
)
→
(
c [−→z ]

4
a [−→x ]

4
= c [−→z ]

4
b [−→y ]

4
)

in this case, the types are noteworthy: because of the nature of the typed calculus,
c actually can not have just any arbitrary type, but it must be of type σ −→ τ for
otherwise this would not even be a formula. From a [−→x ]

4
= b [−→y ]

4, we immediately
get c [−→z ]

4
a [−→x ]

4 ' c [−→z ]
4
b [−→y ]

4. In order to show, that this partial equality is
in fact a total one, we exploit the types: We get a [−→x ]

4
: σ, b [−→y ]

4
: σ and also

c [−→z ]
4

: σ −→ τ from the typedness theorem 23. As such c [−→z ]
4
a [−→x ]

4
: τ and

therefore defined. And this gives us c [−→z ]
4
a [−→x ]

4
= c [−→z ]

4
b [−→y ]

4

(e) (a [−→x ] =σ−→τ b [−→y ])→ (a [−→x ] c [−→z ] =τ b [−→y ] c [−→z ])

((a [−→x ] =σ−→τ b [−→y ])→ (a [−→x ] c [−→z ] =τ b [−→y ] c [−→z ]))
4

!
(
a [−→x ]

4
= b [−→y ]

4
)
→
(
a [−→x ]

4
c [−→z ]

4
= b [−→y ]

4
c [−→z ]

4
)

again, the types are important: a and b are of type σ −→ τ and c is of type σ,
otherwise this would not even be a formula. From a [−→x ]

4
= b [−→y ]

4, we get the
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partial equality a [−→x ]
4
c [−→z ]

4 ' b [−→y ]
4
c [−→z ]

4. From the typedness theorem 23, we
get, that a [−→x ]

4
: σ −→ τ and c [−→z ]

4
: σ and so, of course a [−→x ]

4
c [−→z ]

4
: τ . And

from that, we get that the partial equality is in fact a total one.

4. now for the defining equation for the constants.

(a)
(kxy =σ x)4 ! (kxy)4 = x4 ! kx4y4 = x4

and the last is an axiom of BONΩ.

(b)
(sxyz =σ (xz) (yz))4 ! sx4y4z4 =

(
x4y4

) (
x4z4

)
notice, that in BONΩ we only have the partial equality sx4y4z4 '

(
x4y4

) (
x4z4

)
from the axiom. On the other hand, from the type of s in QTΩ, we know that x is
of type ρ −→ (σ −→ τ), y of type ρ −→ σ and z of type ρ, respectively. From the
typedness theorem 23, we of course can get those types also in BONΩ, apart from
that, we also have the type of s, which gives us – together with the types of x, y and
z –

(
x4y4

) (
x4z4

)
: σ. Therefore the partial equality is actually a total one.

(c)
(rxy0N =σ x)4 ! recNx

4y40N = x4

this is an immediate consequence of lemma 19, together with the types of x4 and
y4.

(d)
(rxy (z′) =σ y (rxyz) z)

4 ! recNx
4y4

(
z4
)′

= y4
(
recNx

4y4z4
)
z4

this is an immediate consequence of lemma 19, together with the types of x4,y4 and
z4.

5. For the arithmetical axioms, consider the following:

(a)
(x′ =N y

′ → x =N y)
4 !

(
x4
)′

=
(
y4
)′ → (

x4
)

= y4

From the typedness theorem 23, we of course get, that x4 : N and x4 : N. The
following line is an instance of an equality axiom of BONΩ(

x4
)′

=
(
y4
)′ → pN

((
x4
)′)

= pN

((
y4
)′)

we immediately conclude (
x4
)′

=
(
y4
)′ → x4 = y4

because we know, that x4 : N and y4 : N.
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(b)
(0N 6=σ x

′)
4 ! ¬

(
0N =

(
x4
)′)

Here, the type of x′ is not enough, we need to get the type of x. Luckily, in the
typed system QTΩ, x′ can only be written, if x is of type N, for otherwise it would
not be a term of the language, but then we get from the typedness theorem 23, that
x4 : N in BONΩ. And from this we get the even stronger statement

0N 6=
(
x4
)′

by using an axiom about the natural numbers.

(c) (
A (0N) ∧ ∀xN (A (x)→ A (x′))→ ∀yNA (y)

)4
! A4 (0N) ∧ (∀x : N)

(
A4 (x)→ A4 (x′)

)
→ (∀y : N)

(
A4 (y)

)
and this is exactly the definition of the induction in BONΩ.

6. For tree ordinals we have the following cases

(a) (
supe 6=Ω 0Ω ∧ sup−1 (supe) =N−→Ω e

)4
! (supe 6=Ω 0Ω)4 ∧

(
sup−1 (supe) =N−→Ω e

)4
! ¬

(
sup
(
e4
)

= 0Ω

)
∧ sup−1

(
sup
(
e4
))

= e4

From the typedness theorem 23, we get that e4 : N −→ Ω and we get from the
axiom the even stronger statement

supe 6= 0Ω ∧ sup−1 (supe) = e

(b) (
a 6=Ω 0Ω → sup

(
sup−1a

)
=Ω a

)4
! ¬

(
a4 = 0Ω

)
→ sup

(
sup−1a4

)
= a4

similar to the previous case, we can get a4 : Ω and so the stronger statement

a4 6= 0Ω → sup
(
sup−1a4

)
= a4

(c)
((0Ω)x =Ω 0Ω)4 ! (0Ω)x = 0Ω

this is the case, provided we can show x : N; but in QTΩ x is of type N and therefore
we get x : N, so we can immediately apply the axiom and get the needed.

7. For the recursor we get the following:
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(a)
(RΩe1e20Ω =σ e2)

4 ! recΩe
4
1 e
4
2 0Ω = e42

this is an immediate consequence of lemma 20, together with the types of e41 and
e42 .

(b)
(a 6=Ω 0Ω → RΩe1e2a =σ e1a (λx.RΩe1e2ax))

4

! ¬
(
a4 = 0Ω

)
→ recΩe

4
1 e
4
2 a
4 = e41 a

4
(
λx.recΩe

4
1 e
4
2

(
a4
)
x4

)
we first apply the typedness theorem 23 to e1, e2 and a. From that, we get the type
of a4 and therefore, we can strengthen the statement ¬

(
a4 = 0Ω

)
to a4 6= 0Ω. This,

together with the types of e41 , e
4
2 and a4 and together with lemma 20 gives us the

needed.

8. For the induction on ordinal numbers consider the following:

(A (0Ω) ∧ ∀a (a 6=Ω 0Ω ∧ ∀xA (ax)→ A (a))→ ∀aA (a))4

! A4 (0Ω) ∧ (∀a : Ω)
(
¬ (a = 0Ω) ∧ (∀x : N)A4 (ax)→ A4 (a)

)
→ (∀a ∈ Ω)A4 (a)

but in this case ¬ (a = 0Ω) is equivalent to a 6= 0Ω, because we already have a : Ω. And
so this gives us an instance of the induction scheme in BONΩ.

5 The Theory BONΩ + µ

We are able to embed an extension of the theory BONΩ into a well-known theory. By embedding
this extension, we implicitly prove, that the addition of the non-constructive µ operator is
harmless, in other words, it does not change the proof-theoretical strength of BONΩ. The
intended meaning of the additional axioms for BONΩ + µ is the following

• µ : (N −→ N) −→ N

The non-constructive µ operator is a total function that returns a natural number when
applied to any function of natural numbers to natural numbers.

• (e : N −→ N) ∧ (∃x ∈ N) (ex = 0N)→ e (µe) = 0N

This formula means, that for any (coding of a) function from natural numbers to natural
numbers, that has a zero, the µ operator returns a zero, i.e.

Definition 26. The theory BONΩ + µ is an extension of BONΩ. In addition to all the axioms
and rules of BONΩ it has the following additional axioms for the non-constructive µ operator:
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µ : (N −→ N) −→ N

(e : N −→ N) ∧ (∃x ∈ N) (ex = 0N)→ e (µe) = 0N

6 The Theory PAΩ

The theory PAΩ is an extension of the Peano arithmetic where inductive definitions are added.
PAΩ is slightly less minimalistic in the setting than ID1, but it proves the same set of arithmetic
statements. We will embed BONΩ + µ into PAΩ thus showing that BONΩ + µ is not stronger
than ID1. When we combine the knowledge from the lower bounds with the proofs of the
upper bounds, we get, that BONΩ and BONΩ + µ are indeed equivalent to ID1. The typedness
statements can be expressed formally and totality of typed functions can be proved using the
induction principles.

In order to embed BONΩ + µ in PAΩ, we first define a „simulation relation“. The intended
purpose of it is, to simulate the behaviour of the application in BONΩ + µ. Next, we define
a valuation of term from BONΩ + µ to PAΩ and finally a formula translation from BONΩ + µ

to PAΩ. Other than in the lower bounds, PAΩ immediately proves the translated BONΩ + µ

formula without the need of adding any premises, this will be proved in the embedding theorem.

6.1 Definitions of the language, terms and formulae for PAΩ

Definition 27. The Language L (PA). Let L (PA) be the usual first-order language of arith-
metic with number variables a, b, c, u, v, w, x, y, z, . . . (possibly with subscripts), the constant
0, as well as function and relation symbols for all primitive recursive functions and relations.
The terms and formulae are defined as usual.

Remark 28. We assume the existence of a primitive recursive coding of sequences with seqn (t)

being fulfilled iff t is a sequence number of length n. We write t = 〈s0, . . . , sn−1〉 to express, that
t is (a coding of) the sequence s0, . . . , sn−1. Furthermore, we write (t)i for the i-th component
si of t.

In order to define the language needed in the rest of the thesis, we need an intermediate step,
where we extend L (PA) with a new n-ary relation symbol P , not belonging to the language in
order to get L (PA, P ). An L (PA, P ) formula is called P -positive, if each occurrence of P in
the formula is positive. We call P -positive formulae which contain at most −→x free inductive
operator forms, and let A (P,−→x ) range over such forms.

Definition 29. The language L (PAΩ). Let L (PAΩ) be an extension of L (PA). L (PAΩ) contains
a countably infinite supply of ordinal variables α, β, γ, . . . (possibly with subscripts), a new
binary relation symbol < for the less relation on the ordinals and an (n+ 1)-ary relation symbol
PA for each inductive operator form A (P,−→x ) for which P is n-ary.

The number terms of L (PAΩ) are the number terms of L (PA); the ordinal terms are the
ordinal variables.

29



Definition 30. L (PAΩ) formulae.

1. If R is an n-ary relation symbol of L (PA), then R (s1, . . . , sn) is an (atomic) formula.

2. (α < β), (α = β) and PA (α,−→s ) are (atomic) formulae. We write Pα
A (−→s ) for PA (α,−→s ).

3. If B and C are formulae, then ¬B and B ∨ C are formulae.

4. If B is a formula, then ∃xB are formulae.

5. If B is a formula, then ∃αB are formulae.

6. If B is a formula, (∃α < β)B are formulae.

Notation 31. We use the following notations; for every L (PAΩ) formula B, we write Bα to
denote the formula, which is obtained by replacing all unbounded quantifiers (Qβ) in B by
(Qβ < α). Additional abbreviations are:

B ∧ C := ¬ (¬B ∨ ¬C)

∀xB := ¬∃x¬B

∀αB := ¬∃α¬B

(∀α < β)B := ¬ (∃α < β)¬B

P<α
A (−→s ) := (∃β < α)P β

A (−→s )

PA (−→s ) := ∃αPα
A (−→s )

Definition 32. An L (PAΩ) formula is called a ΣΩ formula if all negative existential ordinal
quantifiers are bounded; correspondingly, it is called a ΠΩ formula, if all positive existential
quantifiers are bounded.

6.2 Definition of PAΩ and basic properties

The axioms of PAΩ have the following intended meaning:

• Pα
A (−→s )↔ A (P<α

A ,−→s )

– This means basically, that the set PA is built up inductively, that is, an element of
PA is always added by applying the inductive operator A.

• B → ∃αBα for ΣΩ formulae

– If a statement is true, then there must be a layer from which onwards it holds.

Definition 33. The Theory PAΩ has the following axioms:

1. Number-theoretic axioms. These comprise the axioms of Peano Arithmetic PA with the
exception of complete induction on the natural numbers.
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2. Inductive operator axioms. For all inductive operator forms A (P,−→x ):

Pα
A (−→s )↔ A (P<α

A ,−→s )

3. ΣΩ-reflection axioms. For every ΣΩ-formula B:

B → ∃αBα

4. Linearity of the relation < on the ordinals.

α 6< α ∧ (α < β ∧ β < γ → α < γ) ∧ (α < β ∨ α = β ∨ β < α)

5. Induction on the natural numbers. For all formulae B (x):

B (0) ∧ (∀x) (B (x)→ B (x′))→ (∀x)B (x)

6. Induction on the ordinals. For all formulae B (α):

∀α ((∀β < α)B (β)→ B (α))→ (∀α)B (α)

According to [8], the following fixed point theorem holds in PAΩ, the proof of which is omitted:

Theorem 34. For all inductive operator forms A (P,−→x ), and all formulae B (−→x )

PAΩ ` ∀−→x (PA (−→x )↔ A (PA,
−→x ))

PAΩ ` ∀−→x (A (B,−→x )→ B (−→x ))→ ∀−→x (PA (−→x )→ B (−→x ))

Because PAΩ contains the induction scheme on natural numbers, the following so-called least
element principle is provable in PAΩ. We will use this property in the embedding theorem. The
intended meaning is, that from having the existence of a number fulfilling a property, we also
get, that there is a least such number.

Remark 35. For all L (PAΩ) formulae A:

PAΩ ` ∃xA (x)→ ∃x (A (x) ∧ (∀y < x)¬A (y))

7 Embedding BONΩ + µ in PAΩ

7.1 The inductive simulation operator and basic properties

In the following, we assume the existence of a numeral ĉ that is not a sequence number, for all
the constants c of BONΩ + µ. Those numerals are all different, so that no clashes can occur.

This simulation relation has two parts, the „simulation“ and the definition of ordinal num-
bers. This is needed, because we need the ordinal numbers to define how the application works

31



and vice versa. By a parallel inductive definition of both sets, we can define one inductive
operator for both sets. The parallel induction is done by considering sets consisting of elements
of the forms (x, y, z, 0) (for application) and (a, 0, 0, 1) (for ordinals); obviously the application
part is disjoint from the ordinal part. The defining formulae, however, use the whole definition
of the operator. Most of the formulae only describe how the result of the application of terms
is supposed to be coded, whereas the other axioms have the following intended meaning:

• seq2 (x) ∧ (x)0 = k̂ ∧ (x)1 = z

this is the k-combinator;
〈

k̂, s
〉
t, yields s.

• seq3 (x) ∧ (x)0 = ŝ ∧ (∃v, w) (P ((x)1 , y, v, 0) ∧ P ((x)2 , y, w, 0) ∧ P (v, w, z, 0))

this is the s-combinator; 〈̂s, s, t〉u yields (su) (tu)

• seq4 (x) ∧ (x)0 = d̂N ∧ (x)3 = y ∧ z = (x)1

this is the definition by numerical cases for u = v;
〈

d̂N, s, t, u
〉
v yields s

• seq4 (x) ∧ (x)0 = d̂N ∧ (x)3 6= y ∧ z = (x)1

this is the definition by numerical cases for u 6= v;
〈

d̂N, s, t, u
〉
v yields t

• seq3 (x) ∧ (x)0 = d̂Ω ∧ y = 0̂Ω ∧ z = (x)1

this is the definition by ordinal cases for 0Ω;
〈

d̂Ω, s, t
〉

0̂Ω yields s

• seq3 (x) ∧ (x)0 = d̂Ω ∧ y 6= 0̂Ω ∧ P (y, 0, 0, 1) ∧ z = (x)2

this is the definition by ordinal cases for an ordinal u other than 0Ω;
〈

d̂N, s, t
〉
u yields t

• x = ŝup ∧ z = 〈ŝup, y〉

sup applied to y is just simply the pair 〈ŝup, y〉

• x =
〈

sup−1, 0̂Ω

〉
∧ z = 0̂Ω

sup−1 applied to 0̂Ω is the constant 0̂Ω function.

• x = ŝup−1 ∧ (∃e) (y = 〈ŝup, e〉 ∧ z = e)

sup−1 applied to a sup yields the inner term

• x =
〈

sup−1, 0̂Ω

〉
∧ z = 0̂Ω

sup−1 applied to 0̂Ω is the constant 0̂Ω function.

• x = µ̂ ∧ ∀v∃w (w 6= 0 ∧ P (y, v, w, 0)) ∧ z = 0

this is the first case of the non-constructive µ-operator. If the function y does not have a
zero, then µ applied to it yields 0.
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• x = µ̂ ∧ P (y, z, 0, 0) ∧ ∀v (v < z → (∃w) (w 6= 0 ∧ P (y, v, w, 0)))

this is the second case of the non-constructive µ-operator. The µ-operator yields a zero
of the function y, that is, y applied to the result z is 0. Also it yields the smallest such
value, that is, all values smaller do not yield 0 if y is applied to them.

Furthermore, we have formulae for ordinal numbers:

• x = 0̂Ω

We assume, that 0̂Ω be an ordinal number

• ∃e (x = 〈ŝup, e〉 ∧ ∀u∃a (P (a, 0, 0, 1) ∧ P (e, u, a, 0)))

if there is an e, such that e · u is an ordinal for arbitrary natural numbersu, then sup e is
an ordinal.

Definition 36. We define an operator form A (P, x, y, z, q), whereas P is an 4-ary relation
symbol not belonging to the language. Let Ai (P, x, y, z) be the formulae

x = k̂ ∧ z =
〈

k̂, y
〉

A1

seq2 (x) ∧ (x)0 = k̂ ∧ (x)1 = z A2

x = ŝ ∧ z = 〈̂s, y〉 A3

seq2 (x) ∧ (x)0 = ŝ ∧ z = 〈ŝ, (x)1 , y〉 A4

seq3 (x) ∧ (x)0 = ŝ ∧ (∃v, w) (P ((x)1 , y, v, 0) ∧ P ((x)2 , y, w, 0) ∧ P (v, w, z, 0)) A5

x = ŝN ∧ z = y + 1 A6

x = p̂N ∧ y = z + 1 A7

x = d̂N ∧ z =
〈

d̂N, y
〉

A8

seq2 (x) ∧ (x)0 = d̂N ∧ z =
〈

d̂N, (x)1 , y
〉

A9

seq3 (x) ∧ (x)0 = d̂N ∧ z =
〈

d̂N, (x)1 , (x)2 , y
〉

A10

seq4 (x) ∧ (x)0 = d̂N ∧ (x)3 = y ∧ z = (x)1 A11

seq4 (x) ∧ (x)0 = d̂N ∧ (x)3 6= y ∧ z = (x)2 A12

x = d̂Ω ∧ z =
〈

d̂Ω, y
〉

A13

seq2 (x) ∧ (x)0 = d̂Ω ∧ z =
〈

d̂Ω, (x)1 , y
〉

A14

seq3 (x) ∧ (x)0 = d̂Ω ∧ y = 0̂Ω ∧ z = (x)1 A15

seq3 (x) ∧ (x)0 = d̂Ω ∧ y 6= 0̂Ω ∧ P (y, 0, 0, 1) ∧ z = (x)2 A16

x = ŝup ∧ z = 〈ŝup, y〉 A17

x = ŝup−1 ∧ y = 0̂Ω ∧ z =
〈

ŝup−1, y
〉

A18

x = ŝup−1 ∧ (∃e) (y = 〈ŝup, e〉 ∧ z = e) A19
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x =
〈

sup−1, 0̂Ω

〉
∧ z = 0̂Ω A20

x = µ̂ ∧ ∀v∃w (w 6= 0 ∧ P (y, v, w, 0)) ∧ z = 0 A21

x = µ̂ ∧ P (y, z, 0, 0) ∧ ∀v (v < z → (∃w) (w 6= 0 ∧ P (y, v, w, 0))) A22

Further let AΩ (P, x) be the disjunction of the formulae

x = 0̂Ω

∃e (x = 〈ŝup, e〉 ∧ ∀u∃a (P (a, 0, 0, 1) ∧ P (e, u, a, 0)))

Then

A (P, x, y, z, q) :=

(
q = 0 ∧

∨
i

Ai (P, x, y, z)

)
∨ (q = 1 ∧ y = 0 ∧ z = 0 ∧ AΩ (P, x))

7.1.1 The functionality of the simulation relation

The next result gives a functionality property in the last argument of the formulae Pα
A (x, y, z, q)

and PA (x, y, z, q) which are induced by the operator form A (P, x, y, z, q).

Notation 37. We use the abbreviations T (x, y, z) and O (a) for PA (x, y, z, 0) and PA (a, 0, 0, 1),
respectively.

Lemma 38. PAΩ proves:

∀α∀x, y, u, v
(
T α (x, y, u) ∧ T α (x, y, v) → u = v

)
(23)

∀x, y, u, v
(
T (x, y, u) ∧ T (x, y, v) → u = v

)
(24)

Proof. We prove the first property by induction on the levels α of the inductive definition. Let

ϕ (γ) := ∀x, y, u, v (T γ (x, y, u) ∧ T γ (x, y, v)→ u = v)

The induction scheme says, that

∀α ((∀β < α)ϕ (β)→ ϕ (α))→ (∀α) (ϕ (α))

Therefore, we assume that T β (x, y, u)∧T β (x, y, v)→ u = v for all β < α and T α (x, y, u)∧
T α (x, y, v) for arbitrary variables x, y, u, v. We want to show u = v from these assumptions,
if we manage, we are done. In each defining clause of A (P, x, y, z, q), we get some condition
on the last argument. The condition on the last argument has different forms and we have to
consider different cases:

• It is an equation (cases A1, A2, A3, A4, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17,
A18, A20 and A21). So from the induction hypothesis we get u = t [x, y] and v = t [x, y].
Then we get u = v from the axioms about terms.
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• It is y = u + 1 and y = v + 1 (cases A6 and A7). Then u = v follows from the axioms
about terms.

• It is (∃e0) (y = 〈ŝup, e0〉 ∧ u = e0) and (∃e1) (y = 〈ŝup, e1〉 ∧ v = e1) (case A19). Because
〈·, ·〉 is functional, we get that e0 = e1 and so u = v.

• It is (∃u1, v1)
(
T β (x1, y, u1) ∧ T β (x2, y, v1) ∧ T β (u1, v1, u)

)
and

(∃u2, v2)
(
T β (x1, y, u2) ∧ T β (x2, y, v2) ∧ T β (u2, v2, v)

)
(case A5).

The induction hypothesis gives us, that T β (x, y, w1) ∧ T β (x, y, w2) → w1 = w2. We
can apply the induction hypothesis to T β (x1, y, u1) and T β (x1, y, u2), to get u1 = u2.
From T β (x2, y, v1) and T β (x2, y, v2), we get v1 = v2. And so from T β (u1, v1, u) and
T β (u1, v1, v), we get u = v.

• It is T β (y, u, 0), T β (y, v, 0), ∀a
(
a < u→ (∃w1)

(
w1 6= 0 ∧ T β (y, a, w1)

))
and

∀b
(
b < v → (∃w2)

(
w2 6= 0 ∧ T β (y, b, w2)

))
(case A22). Assume u < v.

So ∃w1

(
w1 6= 0 ∧ T β (y, u, w1)

)
. But T β (y, u, 0) and from induction hypothesis, we get

that w1 = 0 which is a contradiction. Therefore u < v cannot hold. Analogously v < u

cannot hold and therefore u = v.

Putting all those together, we actually get, that our premises give us u = v. Therefore the
premise of the induction scheme, i.e. (∀β < α)ϕ (β)→ ϕ (α), holds, and we get the conclusion

∀α∀x, y, u, v (T α (x, y, u) ∧ T α (x, y, v)→ u = v)

So we showed the first statement of the lemma. And the second is just existential quantification
over the first one.

7.2 Valuation of terms of BONΩ+µ in PAΩ and basic properties thereof

Because a direct translation of BONΩ + µ terms does not make sense, we go through an inter-
mediate step of defining the valuation of terms. This valuation gives us a PAΩ formula Vt (z)

with the intended meaning: the term t has the value z. The most interesting case here is, how
the application is interpreted: The term s · t has the value that is obtained by putting in the
values of s and t into the simulation relation. So we see, that the simulation relation is directly
used to define, how BONΩ + µ terms are interpreted in PAΩ.

Definition 39. Valuation:

1. Vx (z) 7−→ z = x

2. VsN
(z) 7−→ z = ŝN

3. VpN
(z) 7−→ z = p̂N

4. VsΩ
(z) 7−→ z = ŝΩ

5. Vk (z) 7−→ z = k̂
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6. Vs (z) 7−→ z = ŝ

7. V0N
(z) 7−→ z = 0

8. VdN
(z) 7−→ z = d̂N

9. VdΩ
(z) 7−→ d̂Ω

10. V0Ω
(z) 7−→ z = 0̂Ω

11. Vsup (z) 7−→ z = ŝup

12. Vsup−1 (z) 7−→ z = ŝup−1

13. Vµ (z) 7−→ z = µ̂

14. Vs·t (z) 7−→ ∃x∃y (Vs (x) ∧ Vt (y) ∧ T (x, y, z))

One would expect, that the value of a term should be functional, that is, if x and y are
values of a term t, then x = y. This property is indeed true:

Remark 40. Notice, that as a direct consequence of Lemma 38, for any term t

PAΩ ` Vt (x) ∧ Vt (y)→ x = y

7.2.1 Substitution lemma of the valuation

Remark 41. Furthermore one would expect, that the valuation should play nicely with substi-
tutions. It should be possible to replace a substitution in BONΩ +µ with a substitution in PAΩ,
whereas the term substituted in PAΩ should be the value of the one substituted in BONΩ + µ.
As is proved in the following lemma, this is indeed the case.

Lemma 42. Let t, s be terms and x a variable of L (BONΩ). Then

Vt (u)→
(
Vs[t/x] (v)↔ Vs (v) [u/x]

)
Proof. We prove this by induction on the build-up of s.

1. s ≡ x

Vs[t/x] (v)⇐⇒ Vt (v)

Vs (v) [u/x]⇐⇒ Vx (v) [u/x]⇐⇒ x = v [u/x]⇐⇒ u = v

now consider the following
Vt (u) ∧ Vt (v)→ u = v

this gives us the implication from the left to the right

Vt (u) ∧ u = v → Vt (v)

and this gives us the other implication
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2. x does not occur freely. Then

Vs[t/x] (v)⇐⇒ Vs (v)⇐⇒ Vs (v) [u/x]

because V does not introduce free variables.

3. s ≡ t1 · t2

Vs[t/x] (v)⇐⇒ (∃y) (∃z)
(
Vt1[t/x] (y) ∧ Vt2[t/x] (z) ∧ T (y, z, v)

)
by the induction hypothesis this is the equivalent to

⇐⇒ (∃y) (∃z)

Vt1 (y) [u/x] ∧ Vt2 (z) [u/x] ∧ T (y, z, v)︸ ︷︷ ︸
x not free


⇐⇒ (∃y) (∃z) (Vt1 (y) ∧ Vt2 (z) ∧ T (y, z, v)) [u/x]

⇐⇒ Vs (v) [u/x]

7.3 The translation of BONΩ + µ formulae to PAΩ formulae and basic
properties thereof

We translate BONΩ+µ formulae to PAΩ using the valuation defined above. The logical operators
and quantifiers are simply passed through, whereas the atomic formulae are translated using the
valuation. The intended meaning of each of the translations for atomic formulae is as follows:

• (t↓)♦ := ∃xVt (x)

a term is defined, if it has a value

• (s = t)♦ := ∃x (Vs (x) ∧ Vt (x))

two terms are equal (remember, that equality implies definedness), if they have a common
value

• (N (t))♦ := ∃x (Vt (x))

a term is a natural number if it is defined and the value is a natural number. The second
part can be skipped, however, since all the numbers are natural numbers anyway; the set
of natural numbers is not defined inductively, but is a fixed part of the definition of PAΩ.

• (Ω (t))♦ := ∃x (Vt (x) ∧O (x))

a term is an ordinal number if it is defined and the value is an ordinal number. Here, the
second part does indeed make sense, because we defined the set of ordinal numbers as a
part of the definition of the simulation relation.
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Definition 43. Translation for formulae:

1. (t↓)♦ 7−→ ∃xVt (x)

2. (s = t)♦ 7−→ ∃x (Vs (x) ∧ Vt (x))

3. (N (t))♦ 7−→ ∃x (Vt (x))

4. (Ω (t))♦ 7−→ ∃x (Vt (x) ∧O (x))

5. (¬A)♦ 7−→ ¬A♦

6. (A ∨B)♦ 7−→ A♦ ∨B♦

7. (∃xA)♦ 7−→ ∃xA♦

7.3.1 Substitution lemma of the translation

One would wish for the translation of formulae to play nicely with the substitution of terms. If
a term t is substituted for the variable x in BONΩ +µ, one would wish for this to be equivalent
to substituting the value of t in PAΩ instead. The following lemma yields us, that this is indeed
true.

Lemma 44. Let A [x] be a formula and t be a term of L (BONΩ). Then

PAΩ ` Vt (z)→
(

(A [t/x])♦ ↔ A♦ [z/x]
)

Proof. We prove this by induction on the build-up of A. Assume Vt (z):

1. If A ≡ s↓.

((s↓) [t/x])♦ ⇐⇒ (s [t/x]↓)♦ ⇐⇒ ∃y
(
Vs[t/x] (y)

)
⇐⇒ ∃y (Vs (y) [z/x])

⇐⇒ (∃y (Vs (y))) [z/x]⇐⇒ (s↓)♦ [z/x]

2. If A ≡ s1 = s2.

((s1 = s2) [t/x])♦ ⇐⇒ (s1 [t/x] = s2 [t/x])♦ ⇐⇒ ∃y
(
Vs1[t/x] (y) ∧ Vs2[t/x] (y)

)
∃y (Vs1 (y) [z/x] ∧ Vs2 (y) [z/x])⇐⇒ (∃y (Vs1 (y) ∧ Vs2 (y))) [z/x]

⇐⇒ (s1 = s2)
♦ [z/x]

3. If A ≡ N (s).

(N (s) [t/x])♦ ⇐⇒ (N (s [t/x]))♦ ⇐⇒ ∃y
(
Vs[t/x] (y)

)
⇐⇒ ∃y (Vs (y) [z/x])

⇐⇒ (∃y (Vs (y))) [z/x]⇐⇒ (N (s))♦ [z/x]
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4. If A ≡ Ω (s).

(Ω (s) [t/x])♦ ⇐⇒ (Ω (s [t/x]))♦ ⇐⇒ ∃y
(
Vs[t/x] (y) ∧O (y)

)
⇐⇒ ∃y

(
Vs[t/x] (y) ∧O (y)

)
⇐⇒ ∃y (Vs (y) [z/x] ∧O (y))⇐⇒ (∃y (Vs (y) ∧O (y))) [z/x]⇐⇒ (Ω (s))♦ [z/x]

5. If A ≡ ¬B.

(A [t/x])♦ ⇐⇒ ((¬B) [t/x])♦ ⇐⇒ (¬ (B [t/x]))♦ ⇐⇒ ¬ (B [t/x])♦

⇐⇒ ¬
(
B♦ [z/x]

)
⇐⇒ (¬B)♦ [z/x]⇐⇒ (¬B)♦ [z/x]⇐⇒ A♦ [z/x]

6. If A ≡ B ∨ C.

(A [t/x])♦ ⇐⇒ ((B ∨ C) [t/x])♦ ⇐⇒ (B [t/x] ∨ C [t/x])♦

⇐⇒
(
B♦ [z/x] ∨ C♦ [z/x]

)
⇐⇒

(
B♦ ∨ C♦

)
[z/x]

⇐⇒ (B ∨ C)♦ [z/x]⇐⇒ A♦ [z/x]

7. If A ≡ (∃y)B.

(A [t/x])♦ ⇐⇒ ((∃yB) [t/x])♦ ⇐⇒ (∃y (B [t/x]))♦ ⇐⇒ ∃y
(
B [t/x]♦

)
⇐⇒ ∃y

(
B♦ [z/x]

)
⇐⇒

(
∃yB♦

)
[z/x]⇐⇒ (∃yB)♦ [z/x]

⇐⇒ A♦ [z/x]

7.4 The embedding theorem for BONΩ + µ into PAΩ

In this section we prove the embedding theorem for PAΩ. That is, for every provable formula
of BONΩ +µ the translation can be proved in PAΩ. This immediately yields us, that BONΩ +µ

it at most as strong as PAΩ. Of PAΩ we know, that it is as strong as ID1. And so we get, that
BONΩ + µ is at most as strong as ID1, which yields us the equivalence of BONΩ + µ with ID1.

Theorem 45. Embedding BONΩ + µ in PAΩ. Let A [−→x ] be an L (BONΩ) formula with all free
variables exposed. Then

BONΩ + µ ` A [−→x ] =⇒ PAΩ ` A [−→x ]
♦

Proof. To prove the assertion, it is enough to prove, that the translation works for every axiom
of BONΩ + µ. Consider the following cases:

1. Quantifier axioms
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(a) (A [s/x] ∧ s↓→ ∃xA)♦ ! A [s/x]♦ ∧ (s↓)♦ → (∃xA)♦.

⇐⇒ (A [s/x])♦ ∧ ∃yVs (y)→ ∃xA♦ (25)

Lemma 44 gives us the following, whereas we choose z to be a fresh variable:

Vs (z)→
(

(A [s/x])♦ ↔ A♦ [z/x]
)

So in particular the following holds:

Vs (z)→
(

(A [s/x])♦ → A♦ [z/x]
)

In PAΩ we have the quantifier axiom

A♦ [z/x]→ ∃xA♦

those two put together yield

Vs (z)→
(

(A [s/x])♦ → ∃xA♦
)

since now z is not occurring freely in the conclusion, we may apply the quantifier
rule of PAΩ to get

(∃y)Vs (v)→
(

(A [s/x])♦ → ∃xA♦
)

and then with some tautologies, we get(
(A [s/x])♦ ∧ ∃yVs (y)

)
→ ∃xA♦

and that is what we need.

(b) (
A→ B

∃xA→ B

)♦
!

A♦ → B♦

∃xA♦ → B♦

the latter is a rule of PAΩ.

2. Definedness axioms

(a) a↓ for some constant or variable a. Then A♦ ! a↓♦

a↓♦⇐⇒ ∃xVa (x)⇐⇒ ∃x (x = â)

and the latter holds of course because â is such an x.

(b) s · t↓→ s↓ ∧ t↓.

(s · t↓→ s↓ ∧ t↓)♦ ! (s · t↓)♦ → (s↓)♦ ∧ (t↓)♦

! ∃zVs·t (x)→ ∃xVs (x) ∧ ∃yVt (y)
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∃z∃u∃v (Vs (u) ∧ Vt (v) ∧ T (x, y, z))→ ∃xVs (x) ∧ ∃yVt (y)

we get the existence of Vs and Vt in the premise, and so the right side holds as well.

(c) (s = t)→ s↓ ∧ t↓

((s = t)→ s↓ ∧ t↓)♦ ! ∃x (Vs (x) ∧ Vt (x))→ ∃y (Vs (y)) ∧ ∃z (Vt (z))

(d) N (t)→ t↓

(N (t)→ t↓)♦ ! N (t)♦ → (t↓)♦ ! ∃xVt (x)→ ∃yVt (y)

(e) Ω (t)→ t↓

(Ω (t)→ t↓)♦ ! Ω (t)♦ → (t↓)♦ ! ∃x (Vt (x) ∧ A 〈x, 1〉)→ ∃yVt (y)

3. Equality axioms

(a) t = t for some constant or variable.

(t = t)♦ ! ∃x (Vt (x) ∧ Vt (x))

⇐⇒ ∃x (x = t ∧ x = t)⇐⇒ ∃x (x = t)

the existence is fulfilled for the x being t and so it clearly holds.

(b) (s = t)→ (t = s)

((s = t)→ (t = s))♦ ! (s = t)♦ → (t = s)♦

⇐⇒ ∃x (Vs (x) ∧ Vt (x))→ ∃y (Vt (y) ∧ Vs (y))

(c) (t1 = t2) ∧ (t2 = t3)→ (t1 = t3)

((t1 = t2) ∧ (t2 = t3)→ (t1 = t3))
♦

⇐⇒ ∃x (Vt1 (x) ∧ Vt2 (x)) ∧ ∃y (Vt2 (y) ∧ Vt3 (y))→ ∃z (Vt1 (z) ∧ Vt3 (z))

from remark 40, we get, that in fact x = y. So we get ∃v (Vt1 (v) ∧ Vt2 (v) ∧ Vt3 (v))

and therefore the conclusion holds.

(d) N (s) ∧ (s = t)→ N (t)

(N (s) ∧ (s = t)→ N (t))♦ ! ∃xVs (x) ∧ ∃y (Vs (y) ∧ Vt (y))→ ∃z (Vt (z))

(e) Ω (s) ∧ (s = t)→ Ω (t)

(Ω (s) ∧ (s = t)→ Ω (t))♦

! ∃x (Vs (x) ∧O (x)) ∧ ∃y (Vs (y) ∧ Vt (y))→ ∃z (Vt (z) ∧O (z))
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we get, that x = y = z. So we get, that

∃x (Vs (x) ∧O (x)) ∧ ∃y (Vs (y) ∧ Vt (y))→ ∃z (Vs (z) ∧ Vt (z) ∧O (z))

which gives us what we need

(f) (s1 = t1) ∧ (s2 = t2)→ (s1 · s2 ' t1 · t2)

((s1 = t1) ∧ (s2 = t2)→ (s1 · s2 ' t1 · t2))♦

⇐⇒ (s1 = t1) ∧ (s2 = t2)→ ((s1 · s2 ↓ ∨t1 · t2 ↓)→ s1 · s2 = t1 · t2)

∃x1 (Vs1 (x1) ∧ Vt1 (x1))

∧ ∃x2 (Vs2 (x2) ∧ Vt2 (x2))

→ ∃z3 (Vs1·s2 (z3)) ∨ ∃z4 (Vt1·t2 (z4))

→ ∃z5 (Vs1·s2 (z5) ∧ Vt1·t2 (z5))

given the first two clauses, the third clause (the disjunction) implies the conclusion.
Therefore, we can assume them and only need to prove the conclusion. We need to
show, that

∃z3 (Vs1·s2 (z3)) ∨ ∃z4 (Vt1·t2 (z4))→ ∃z5 (Vs1·s2 (z5) ∧ Vt1·t2 (z5))

the premise is equivalent to the following

∃z3∃x3∃y3 (Vs1 (x3) ∧ Vs2 (y3) ∧ T (x3, y3, z3))

∨ ∃z4∃x4∃y4 (Vt1 (x4) ∧ Vt2 (y4) ∧ T (x4, y4, z4))

from the premise we get x3 = x4 and y3 = y4 and so from T (x3, y3,z3) and
T (x3, y3, z4), we get that z3 = z4. Therefore, we can join the two statements:

∃z∃x∃y (Vs1 (x) ∧ Vt1 (x) ∧ Vs2 (y) ∧ Vt2 (y) ∧ T (x, y, z))

and this is equivalent to the conclusion.

4. Typedness axioms

(a)
(0N : N)♦ ! (N (0N))♦ ! ∃xV0N

(x)⇐⇒ ∃x (x = 0)

(b)
(suc : N −→ N)♦ ! ((∀x : N) (sucx : N))♦ ! (∀x (N (x)→ N (sucx)))♦

⇐⇒ ∀x (∃yVx (y)→ ∃yVsuc·x (y))

⇐⇒ ∀x (∃yVx (y)→ ∃z∃u∃v (Vsuc (u) ∧ Vx (v) ∧ T (u, v, z)))
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from this we get, that v = y and that u = ŝuc, therefore our conclusion requires,
that T (ŝuc, y, z), but that is true for z = y + 1.

(c)
(0Ω : Ω)♦ ! (Ω (0Ω))♦ ! ∃x (V0Ω

(x) ∧O (x))

so we get, that x = 0̂Ω to fulfil the left part of the conclusion. From the definition
of PA, we get, that O (0Ω) holds. Therefore the whole statement holds.

(d)
(sup : (N −→ Ω) −→ Ω)♦ ! ((∀x : N −→ Ω) (supx : Ω))♦

! (∀x ((∀y (y : N→ xy : Ω))→ (supx : Ω)))♦

! (∀x ((∀y (N (y)→ Ω (xy)))→ Ω (supx)))♦

! ∀x ((∀y (∃v1Vy (v1)→ ∃v2 (Vxy (v2) ∧O (v2))))→ ∃v3 (Vsupx (v3) ∧O (v3)))

so we get, that v1 = y, because y is a variable.

⇐⇒ ∀x
(
∀y (∃v2∃v4∃v5 (Vx (v4) ∧ Vy (v5) ∧ T (v4, v5, v2) ∧O (v2)))

→ ∃v3 (Vsupx (v3) ∧O (v3))

)
we get, that v4 = x and v5 = y

⇐⇒ ∀x ((∀y∃v2 (T (x, y, v2) ∧O (v2)))→ ∃v3 (Vsupx (v3) ∧O (v3)))

⇐⇒ ∀x
(

(∀y∃v2 (T (x, y, v2) ∧O (v2)))

→ ∃v3 (∃v6∃v7 (Vsup (v6) ∧ Vx (v7) ∧ T (v6, v7, v3)) ∧O (v3))

)
we get, that v6 = ŝup and v7 = x

⇐⇒ ∀x ((∀y∃v2 (T (x, y, v2) ∧O (v2)))→ ∃v3 (T (ŝup, x, v3) ∧O (v3)))

we get, that v3 = 〈ŝup, x〉

⇐⇒ ∀x ((∀y∃v2 (T (x, y, v2) ∧O (v2)))→ O (〈ŝup, x〉))

in order to prove this, we assume the premise. Consider what is A (PA, w, 0, 0, 1) for
w = 〈ŝup, x〉:

A (PA, w, 0, 0, 1)⇐⇒ ∃w1 (w = 〈ŝup, w1〉 ∧ ∀w2∃w3 (O (w3) ∧ T (w1, w2, w3)))
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we get, that w1 = x

⇐⇒ ∀w2∃w3 (w = 〈ŝup, x〉 ∧O (w3) ∧ T (x,w2, w3))

⇐⇒ ∀y∃w3 (w = 〈ŝup, x〉 ∧O (w3) ∧ T (x, y, w3))

we get, that w3 = v2

⇐⇒ ∀y∃v2 (w = 〈ŝup, x〉 ∧O (v2) ∧ T (x, y, v2))

From ∀x (A (PA, 〈ŝup, x〉 , 0, 0, 1)→ O (〈ŝup, x〉)), we get

∀y∃v2 (O (v2) ∧ T (x, y, v2))→ O (〈ŝup, x〉)

This is what we need.

(e)

(µ : (N −→ N) −→ N)♦ ! ((∀e : N −→ N) (µe : N))♦ ! (∀e (e : N −→ N→ µe : N))♦

! (∀e ((∀x : N) (ex : N)→ µe : N))♦ ! ∀e
(

((∀x : N) (ex : N))♦ → (µe : N)♦
)

! ∀e
(
∀x
(

(x : N)♦ → (ex : N)♦
)
→ (µe : N)♦

)
now we apply the definition of the translation. Consider, that (x : N)♦ is true for
every variable, because it translates to ∃z (Vx (z)) which translates to ∃z (z = x)

which is obviously fulfilled for z = x. Therefore we can replace it with >.

⇐⇒ ∀e (∀x (∃y (Vex (y)))→ ∃z (Vµe (z)))

now we apply the translation of the application and get

⇐⇒ ∀e (∀x (∃y (∃u1∃u2 (Ve (u1) ∧ Vx (u2) ∧ T (u1, u2, y))))→ ∃z (Vµe (z)))

so we get u2 = x and u1 = e

⇐⇒ ∀e (∀x∃y (T (e, x, y))→ ∃z (Vµe (z)))

according to the definition of the valuation, this is equivalent to

⇐⇒ ∀e (∀x∃y (T (e, x, y))→ ∃z (∃u3, u4 (Vµ (u3) ∧ Ve (u4) ∧ T (u3, u4, z))))

we immediately get, that u3 = µ̂ and u4 = e

⇐⇒ ∀e (∀x∃y (T (e, x, y))→ ∃z (T (µ̂, e, z)))

in order to prove this statement, we assume ∀x∃y (T (e, x, y)) for an arbitrary e and
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prove the conclusion. We consider two cases:

i. ∀x∀y (T (e, x, y)→ y 6= 0). If we apply the fixed point theorem to T (µ̂, e, z),
we get that ∃z (T (µ̂, e, z)) is fulfilled by z = 0, according to A21.

ii. ¬ (∀x∀y (T (e, x, y)→ y 6= 0)) and this is equivalent to ∃x (T (e, x, 0)). By ap-
plying the fixed point theorem in this case, together with the premises, we get

∃z (T (µ̂, e, z))

⇐⇒ ∃z (T (e, z, 0) ∧ ∀v (v < z → ∃w (w 6= 0 ∧ T (e, v, w))))

When we apply the least element principle from remark 35 to the premise, we
get

∃x (T (e, x, 0) ∧ (∀y < x) (¬T (e, y, 0)))

when we combine the premise ∀x∃y (T (e, x, y)) with the previous line, we get

∃x (T (e, x, 0) ∧ (∀y < x) (¬T (e, y, 0) ∧ ∃u (T (e, y, u))))

and ¬T (e, y, 0) ∧ T (e, y, u) gives us, that u 6= 0 ∧ T (e, y, u) and that is what
we need.

5. Defining axioms for the constants

(a) kxy = x

(kst = s)♦ ! ∃z (Vkst (z) ∧ Vs (z))

⇐⇒ ∃z (∃u1∃u2 (Vks (u1) ∧ Vt (u2) ∧ T (u1, u2, z)) ∧ Vs (z))

⇐⇒ ∃z∃u1∃u2 (Vks (u1) ∧ Vt (u2) ∧ Vs (z) ∧ T (u1, u2, z))

⇐⇒ ∃z∃u1∃u2∃v1∃v2
(Vk (v1) ∧ Vs (v2) ∧ Vt (u2) ∧ Vs (z) ∧ T (u1, u2, z) ∧ T (v1, v2, u1))

but this only can be true, if v2 = z and v1 = k̂, because we have Vs (v2)∧Vs (z) and
Vk (v1).

⇐⇒ ∃z∃u1∃u2
(
Vs (z) ∧ Vt (u2) ∧ T (u1, u2, z) ∧ T

(
k̂, z, u1

))
in order for T

(
k̂, z, u1

)
to be true, u1 =

〈
k̂, z
〉
. If we set u1 thus, we do not need

to require T
(

k̂, z, u1
)
, because this is always the case and so we get

⇐⇒ ∃z∃u2
(
Vs (z) ∧ Vt (u2) ∧ T

(〈
k̂, z
〉
, u2, z

))
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according to A3, T
(〈

k̂, z
〉
, u2, z

)
is true for any z and u2.

⇐⇒ ∃z∃u2 (Vs (z) ∧ Vt (u2))

⇐⇒ (s↓ ∧ t↓)♦

From the definedness axioms of BONΩ + µ this follows from kst = s and since we
proved the translation for the definedness axioms, this yields the required.

(b) sab ↓ ∧sabc ' (ac) (bc) We can split this conjunction into two separate statements.
First we show the definedness:

(sab↓)♦ ! ∃z (Vsab (z))

⇐⇒ ∃z∃y1∃y2 (Vsa (y1) ∧ Vb (y2) ∧ T (y1, y2, z))

⇐⇒ ∃z∃y1∃y2∃x1∃x2
(Vs (x1) ∧ Va (x2) ∧ T (x1, x2, y1) ∧ Vb (y2) ∧ T (y1, y2, z))

from Vs (x1), we get x1 = ŝ, x2 = a and y2 = b

⇐⇒ ∃z∃y1 (T (̂s, a, y1) ∧ T (y1, b, z))

From A3, we get that y1 = 〈̂s, a〉

⇐⇒ ∃z (T (〈̂s, a〉 , b, z))

From A4, we get that z = 〈̂s, a, b〉, whereas z is such a term, that fulfils the condition
T (〈̂s, a〉 , b, z), this yields the required.

(sabc ' (ac) (bc))♦ ! ((sabc↓ ∨ (ac) (bc)↓)→ (sabc = (ac) (bc)))♦

if neither side is defined, the statement is true, therefore we assume that at least one
term is defined and we need to show the equality. Consider the following

Vsabc (z)

⇐⇒ ∃−→x (Vsab (x1) ∧ Vc (x2) ∧ T (x1, x2, z))

⇐⇒ ∃−→x (Vsa (x3) ∧ Vb (x4) ∧ T (x3, x4, x1) ∧ T (x1, c, z))

⇐⇒ ∃−→x
(
Vs (x5) ∧ Va (x6) ∧ T (x5, x6, x3)

∧ T (x3, b, x1) ∧ T (x1, c, z)

)
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We get that x5 = ŝ

⇐⇒ ∃−→x (T (̂s, a, x3) ∧ T (x3, b, x1) ∧ T (x1, c, z))

We get that x3 = 〈̂s, a〉

⇐⇒ ∃−→x (T (〈̂s, a〉 , b, x1) ∧ T (x1, c, z))

We get that x1 = 〈̂s, a, b〉
⇐⇒ (T (〈̂s, a, b〉 , c, z))

The fixed point theorem yields T (〈̂s, a, b〉 , c, z) ↔ A (PA, 〈̂s, a, b〉 , c, z, 0), we can
apply the operator and get the right condition of A5 for P ≡ PA. Therefore, we are
allowed to do the following.

⇐⇒ ∃v, w (T (a, c, v) ∧ T (b, c, w) ∧ T (v, w, z))

⇐⇒ ∃v, w (Vac (v) ∧ T (b, c, w) ∧ T (v, w, z))

⇐⇒ ∃v, w (Vac (v) ∧ Vbc (w) ∧ T (v, w, z))

⇐⇒ V(ac)(bc) (z)

So we see that Vsabc (z) is equivalent to V(ac)(bc) (z). Now we can consider the trans-
lation

((sabc↓ ∨ (ac) (bc)↓)→ (sabc = (ac) (bc)))♦

!
(
∃x1 (Vsabc (x1)) ∨ ∃x2

(
V(ac)(bc) (x2)

))
→
(
∃z
(
Vsabc (z) ∧ V(ac)(bc) (z)

))
because of the previous equivalence, we can rewrite the premise as

∃x1
(
Vsabc (x1) ∧ V(ac)(bc) (x1)

)
∨ ∃x2

(
Vsabc (x2) ∧ V(ac)(bc) (x2)

)
⇐⇒ ∃x

(
Vsabc (x) ∧ V(ac)(bc) (x)

)
but that is the conclusion.

6. The axioms for natural numbers

(a) (∀x ∈ N) (x′ 6= 0N ∧ pN (x′) = x)

((∀x ∈ N) (x′ 6= 0N ∧ pN (x′) = x))
♦ ! (∀x (x ∈ N→ (x′ 6= 0N ∧ pN (x′) = x)))

♦

! (∀x (x ∈ N→ (x′ ↓ ∧0N ↓ ∧¬ (x′ = 0N) ∧ pN (x′) = x)))
♦

this is true if the premise implies each of the conclusions separately, so we can split
it into four parts:

i.
(∀x (x ∈ N→ x′ ↓))♦
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! ∀x (∃y (Vn (y))→ ∃z (Vn′ (z)))

⇐⇒ ∀x∃y∃z (Vx (y)→ Vx′ (z))

⇐⇒ ∀x∃y∃z∃u∃v (Vx (y)→ (VsN
(u) ∧ Vx (v) ∧ T (u, v, z)))

we get that u = ŝN and v = y, so

⇐⇒ ∀x∃y∃z (Vx (y)→ T (ŝN, y, z))

But this is fulfilled for z = y + 1.

ii.
(∀x (x ∈ N→ 0N ↓))♦

! ∀x (∃y (Vx (y))→ ∃z (V0N
(z)))

but this is true for z = 0

iii.
(∀x (x ∈ N→ ¬ (x′ = 0N)))

♦

! ∀x (∃y (Vx (y))→ ¬∃z (Vx′ (z) ∧ V0N
(z)))

⇐⇒ ∀x∃y∃z (Vx (y)→ ¬ (Vx′ (z) ∧ V0N
(z)))

from V0N
(z), we get that z = 0

⇐⇒ ∀x∃y (Vn (y)→ ¬Vx′ (0))

⇐⇒ ∀x∃y∃x1∃x2 (Vx (y)→ ¬ (VsN
(x1) ∧ Vx (x2) ∧ T (x1, x2, 0)))

we get that x1 = ŝN and x2 = y

⇐⇒ ∀x∃y (Vx (y)→ ¬T (ŝN, y, 0))

and from T (ŝN, y, 0), we get that 0 = y + 1. But this is always false and so the
conclusion is always true.

iv.
(∀x (x ∈ N→ pN (x′) = x))

♦

! ∀x
(
∃y (Vx (y))→ ∃z

(
VpN(x′) (z) ∧ Vx (z)

))
⇐⇒ ∀x∃y∃z

(
Vx (y)→

(
VpN(x′) (z) ∧ Vx (z)

))
we get, that z = y

⇐⇒ ∀x∃y
(
Vx (y)→ VpN(x′) (y)

)
⇐⇒ ∀x∃y∃x1∃x2 (Vx (y)→ (VpN

(x1) ∧ Vx′ (x2) ∧ T (x1, x2, y)))
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we get, that x1 = p̂N

⇐⇒ ∀x∃y∃x2∃u∃v
(Vx (y)→ (VsN

(u) ∧ Vx (v) ∧ T (u, v, x2) ∧ T (p̂N, x2, y)))

we get, that v = y and u = ŝN

⇐⇒ ∀x∃y∃x2 (Vx (y)→ (T (ŝN, y, x2) ∧ T (p̂N, x2, y)))

from T (ŝN, y, x2), we get, that x2 = y + 1

⇐⇒ ∀x∃y (Vx (y)→ T (p̂N, y + 1, y))

but the conclusion is true, because y + 1 = y + 1

So if we put those four cases together, we get the required conclusion.

(b) (∀x ∈ N)
(
x 6= 0N → pNx ∈ N ∧ (pNx)′ = x

)
(
(∀x ∈ N)

(
x 6= 0N → pNx ∈ N ∧ (pNx)′ = x

))♦
!

(
∀x
(
x ∈ N→

(
(x↓ ∧0N ↓ ∧¬x = 0N)→

(
pNx ∈ N ∧ (pNx)′ = x

))))♦
this is true, if we can get the conclusions from the premises.

! ∀x∃−→y

(
Vx (y1)

→
(

(Vx (y2) ∧ V0N
(y3) ∧ ¬ (Vn (y4) ∧ V0N

(y4)))

→
(
VpNx (y5) ∧ V(pNx)

′ (y6) ∧ Vx (y6)
)))

we immediately get that, y2 = y4 = y6 = y1 and y4 = y3.

⇐⇒ ∀x∃−→y
(
Vx (y1)→

(
¬V0N

(y1)→
(
VpNx (y5) ∧ V(pNx)

′ (y1)
)))

⇐⇒ ∀x∃−→y

(
Vx (y1)

→ (¬V0N
(y1)→ (VpNx (y5) ∧ VsN

(y7) ∧ VpNx (y8) ∧ T (y7, y8, y1)))

)

we get that y7 = ŝN and y8 = y5

⇐⇒ ∀x∃−→y (Vx (y1)→ (¬V0N
(y1)→ (VpNx (y5) ∧ T (ŝN, y5, y1))))
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we get, that y1 = y5 + 1

⇐⇒ ∀x∃−→y (Vx (y5 + 1)→ (VpNx (y5)))

⇐⇒ ∀x∃−→y (Vx (y5 + 1)→ (VpN
(y9) ∧ Vx (y10) ∧ T (y9, y10, y5)))

we get, that y9 = p̂N and y10 = y5 + 1

⇐⇒ ∀x∃−→y (Vx (y5 + 1)→ T (p̂N, y5 + 1, y5))

and the conclusion is true, because x5 + 1 = x5 + 1

(c) A (0N) ∧ (∀x : N) (A (x)→ A (x′))→ (∀y : N)A (y)

(A (0N) ∧ (∀x : N) (A (x)→ A (x′))→ (∀y : N)A (y))
♦

⇐⇒ (A (0N))♦ ∧ ((∀x : N) (A (x)→ A (x′)))
♦ → ((∀y : N)A (y))♦

we can apply the substitution lemma 44 to A (0N) to get

⇐⇒ A♦ (0) ∧ ∀x
(

(x : N)♦ →
(
A (x)♦ → A (x′)

♦
))
→ ∀y

(
(y : N)♦ → A (y)♦

)
in this case we apply the substitution lemma repeatedly to get

⇐⇒ A♦ (0) ∧ ∀x
(
∃uVx (u)→

(
A♦ (x)→ A♦ (x′)

))
→ ∀y

(
∃vVy (v)→ A♦ (y)

)
but ∃uVx (u) and ∃vVy (v) are both always true, because x and y are variables. And
so, we get

⇐⇒ A♦ (0) ∧ ∀x
(
A♦ (x)→ A♦ (x′)

)
→ ∀y

(
A♦ (y)

)
but this is an instance of the induction scheme in PArΩ.

7. Definition by numerical cases

(a) u ∈ N ∧ v ∈ N ∧ u = v → dNxyuv = x

(u ∈ N ∧ v ∈ N ∧ u = v → dNxyuv = x)♦

! ∃−→x (Vu (x1) ∧ Vv (x2) ∧ Vu (x3) ∧ Vv (x3)→ VdNxyuv (x4) ∧ Vx (x4))

we get, that x1 = x2 = x3 = v = u and x4 = x

⇐⇒ ∃−→x (VdNxyu (x5) ∧ Vv (x6) ∧ T (x5, x6, x))

we get, that x6 = u

⇐⇒ ∃−→x (VdNxy (x7) ∧ Vu (x8) ∧ T (x7, x8, x5) ∧ T (x5, u, x))
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we get, that x8 = u

⇐⇒ ∃−→x
(

VdNx (x9) ∧ Vy (x10) ∧ T (x9, x10, x7)

∧ T (x7, u, x5) ∧ T (x5, u, x)
)

we get, that x10 = y

⇐⇒ ∃−→x
(

VdN
(x11) ∧ Vx (x12) ∧ T (x11, x12, x9)

∧ T (x9, y, x7) ∧ T (x7, u, x5) ∧ T (x5, u, x)
)

we get, that x11 = d̂N and x12 = x

⇐⇒ ∃−→x
(
T
(

d̂N, x, x9

)
∧ T (x9, y, x7)

∧ T (x7, u, x5) ∧ T (x5, u, x)
)

we get, that x9 =
〈

d̂N, x
〉

⇐⇒ ∃−→x
(
T
(〈

d̂N, x
〉
, y, x7

)
∧ T (x7, u, x5) ∧ T (x5, u, x)

)
we get, that x7 =

〈
d̂N, x, y

〉
⇐⇒ ∃−→x

(
T
(〈

d̂N, x, y
〉
, u, x5

)
∧ T (x5, u, x)

)
we get, that x5 =

〈
d̂N, x, y, u

〉
⇐⇒ ∃−→x

(
T
(〈

d̂N, x, y, u
〉
, u, x

))
and so we get, that T

(〈
d̂N, x, y, u

〉
, u, x

)
is fulfilled and so actually VdNxyuu (x)

which is the same as VdNxyuv (x). Therefore the conclusion holds.

(b) u ∈ N ∧ v ∈ N ∧ u 6= v → dNxyuv = y This case is analogous to the previous one.
The main difference is, that from u 6= v, we get, that there cannot be one variable
z, that fulfils ∃z (Vu (z) ∧ Vv (z)) and therefore we get the case A12 rather than A11.

(m 6= n)♦ ! (m↓ ∧n↓ ∧¬ (m = n))♦

! ∃xVm (x) ∧ ∃yVn (y) ∧ ¬∃z (Vm (z) ∧ Vn (z))
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so we immediately get, that x 6= y. This leads to the conclusion, that

∃−→x (Vs (x1) ∧ Vt (x2) ∧ VdNstmn (x2))

This statement can be fulfilled for x1 = s and x2 = t.

8. The axioms for ordinal numbers

(a) (e : N −→ Ω)→ supe 6= 0Ω ∧ sup−1 (supe) = e We split this into the two parts of the
conjunction.

i.
((e : N −→ Ω)→ supe 6= 0Ω)♦

! (∀n (n : N→ en : Ω)→ (supe↓ ∧0Ω ↓ ∧¬ (supe = 0Ω)))♦

⇐⇒ ∀n∃−→x

(
(Vn (x1)→ Ven (x2) ∧O (x2))

→ (Vsupe (x3) ∧ V0Ω
(x4) ∧ ¬ (∃y) (Vsupe (y) ∧ V0Ω

(y)))

)

we get, that x4 = y = 0̂Ω

⇐⇒ ∀n∃−→x
(

(Vn (x1)→ Ven (x2) ∧O (x2))→
(
Vsupe (x3) ∧ ¬Vsupe

(
0̂Ω

)))

⇐⇒ ∀n∃−→x
(

Vn (x1) ∧ Ve (x4) ∧ Vn (x5) ∧ T (x4, x5, x2) ∧O (x2)

→ Vsup (x6) ∧ Ve (x7) ∧ T (x6, x7, x3)

∧ ¬
(
Vsup (x8) ∧ Ve (x9) ∧ T

(
x8, x9, 0̂Ω

)))
we get, that x6 = x8 = ŝup, x9 = x1 and x7 = x9 = x4

⇐⇒ ∀n∃−→x
(

Vn (x1) ∧ Ve (x4) ∧ T (x4, x1, x2) ∧O (x2)

→ T (ŝup, x4, x3) ∧ ¬T
(

ŝup, x4, 0̂Ω

))
we get, that x3 = 〈ŝup, x4〉 and x9 = x1

⇐⇒ ∀n∃−→x
(

Vn (x1) ∧ T (x4, x1, x2) ∧O (x2)

→ ¬T
(

ŝup, x4, 0̂Ω

))
but we know, that T (ŝup, x4, z) is true iff z = 〈ŝup, x4〉 and 0̂Ω 6= 〈ŝup, x4〉.
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ii. (
(f : N −→ Ω)→ sup−1 (supe) = e

)♦
!

(
∀n (n : N→ en : Ω)→ sup−1 (supe) = e

)♦
! ∀n∃−→x

(
Vn (x1) ∧ Ven (x2) ∧O (x2)→ Vsup−1(supe) (x3) ∧ Ve (x3)

)
⇐⇒ ∀n∃−→x

(
Vn (x1) ∧ Ven (x2) ∧O (x2)

→ Vsup−1 (x4) ∧ Vsupe (x5) ∧ T (x4, x5, x3) ∧ Ve (x3)
)

we get, that x4 = ŝup−1

⇐⇒ ∀n∃−→x
(
Vn (x1) ∧ Ven (x2) ∧O (x2)

→ Vsup (x6) ∧ Ve (x7) ∧ T (x6, x7, x5) ∧ T
(

ŝup−1, x5, x3
)
∧ Ve (x3)

)
we get, that x6 = ŝup and x7 = x3

⇐⇒ ∀n∃−→x
(
Vn (x1) ∧ Ven (x2) ∧O (x2)

→ T (ŝup, x3, x5) ∧ T
(

ŝup−1, x5, x3
)
∧ Ve (x3)

)
we get, that x5 = 〈ŝup, x3〉

⇐⇒ ∀n∃−→x
(
Vn (x1) ∧ Ven (x2) ∧O (x2)

→ T
(

ŝup−1, 〈ŝup, x3〉 , x3
)
∧ Ve (x3)

)
from A19 we get, that T

(
ŝup−1, 〈ŝup, x3〉 , x3

)
holds.

⇐⇒ ∀n∃−→x
(
Vn (x1) ∧ Ve (x8) ∧ Vn (x9) ∧ T (x8, x9, x2) ∧O (x2)→ Ve (x3)

)
we get, that x8 = x3 and x9 = x1

⇐⇒ ∀n∃−→x
(
Vn (x1) ∧ Ve (x3) ∧ T (x3, x1, x2) ∧O (x2)→ Ve (x3)

)
but this is immediately true, because Ve (x3) appears on both sides of the im-
plication.

(b)
a : Ω→

(
a 6= 0Ω → sup

(
sup−1a

)
= a
)

we assume the premises and need to show the conclusion. So we can assume
(a : Ω ∧ a 6= 0Ω)♦, that is

∃−→x (Va (x1) ∧O (x1) ∧ Va (x2) ∧ ¬∃y (Va (y) ∧ V0Ω
(y)))
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we get, that x2 = x1 and y = 0̂Ω

∃−→x
(
Va (x1) ∧O (x1) ∧ ¬Va

(
0̂Ω

))
so in particular, we get that x1 6= 0̂Ω, because otherwise, we would have Va (x1) ∧
¬Va (x1). Therefore the following holds

∃x1
(
x1 6= 0̂Ω ∧ Va (x1) ∧O (x1)

)
from x1 6= 0̂Ω and O (x1), we get according to the definition of O, that

∃e (x1 = 〈ŝup, e〉 ∧ ∀u∃a (O (a) ∧ T (e, u, a)))

now consider what is the statement of the conclusion(
sup
(
sup−1a

)
= a
)♦

⇐⇒ ∃−→x
(
Vsup(sup−1a) (x3) ∧ Va (x3)

)
we get, that x3 = x1

⇐⇒ ∃−→x (Vsup (x4) ∧ Vsup−1a (x5) ∧ T (x4, x5, x1))

we get, that x4 = ŝup

⇐⇒ ∃−→x (Vsup−1 (x6) ∧ Va (x7) ∧ T (x6, x7, x5) ∧ T (ŝup, x5, x1))

we get, that x6 = ŝup−1 and x7 = x1

⇐⇒ ∃−→x
(
T
(

ŝup−1, x1, x5
)
∧ T (ŝup, x5, x1)

)
from the premise, we get, that x1 = 〈ŝup, e〉 for some e

⇐⇒ ∃−→x
(
T
(

ŝup−1, 〈ŝup, e〉 , x5
)
∧ T (ŝup, x5, 〈ŝup, e〉)

)
but now, we are in the case A19 of the inductive simulation operator and immediately
get, that in order to fulfil the first conjunct, we get x5 = e

⇐⇒ ∃−→x (T (ŝup, e, 〈ŝup, e〉))

and this clause is true, because it is exactly the case A17.

(c)

((0Ω)n = 0Ω)♦ !
((

sup−10Ω

)
n = 0Ω

)♦
! ∃−→x

(
V(sup−10Ω)n (x1) ∧ V0Ω

(x1)
)
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we get, that x1 = 0̂Ω

⇐⇒ ∃−→x
(
Vsup−10Ω

(x2) ∧ Vn (x3) ∧ T
(
x2, x3, 0̂Ω

))
we get, that x3 = n

⇐⇒ ∃−→x
(
Vsup−1 (x4) ∧ V0Ω

(x5) ∧ T (x4, x5, x2) ∧ T
(
x2, n, 0̂Ω

))
we get, that x4 = ŝup−1 and x5 = 0̂Ω

⇐⇒ ∃−→x
(
T
(

ŝup−1, 0̂Ω, x2

)
∧ T

(
x2, n, 0̂Ω

))
we get, that x2 =

〈
sup−1, 0̂Ω

〉
⇐⇒ ∃−→x

(
T
(〈

sup−1, 0̂Ω

〉
, n, 0̂Ω

))
and A20 yields the conclusion.

9. Definition of cases on ordinal numbers.

(a)
(u = 0Ω → dΩxyu = x)♦

⇐⇒ ∃−→x (Vu (x1) ∧ V0Ω
(x1)→ VdΩxyu (x2) ∧ Vx (x2))

for x1 = u = 0̂Ω and x2 = x

⇐⇒ ∃−→x (VdΩfg (x3) ∧ Vu (x4) ∧ T (x3, x4, x2))

for x4 = 0̂Ω, we get

⇐⇒ ∃−→x
(
VdΩx (x5) ∧ Vy (x6) ∧ T (x5, x6, x3) ∧ T

(
x3, 0̂Ω, x

))
for x6 = y

⇐⇒ ∃−→x
(
VdΩ

(x7) ∧ Vx (x8) ∧ T (x7, x8, x5) ∧ T (x5, y, x3) ∧ T
(
x3, 0̂Ω, x

))
for x7 = d̂Ω and x8 = x, we get for x5 =

〈
d̂Ω, x

〉
, we get

⇐⇒ ∃−→x
(
T
(〈

d̂Ω, x
〉
, y, x3

)
∧ T

(
x3, 0̂Ω, x

))
for x3 =

〈
d̂Ω, x, y

〉
⇐⇒ ∃−→x

(
T
(〈

d̂Ω, x, y
〉
, 0̂Ω, x

))
but this is true, according to the definition of PA.
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(b)
(a ∈ Ω ∧ a 6= 0Ω → dΩxya = y)♦

⇐⇒ ∃−→u

(
Va (u1) ∧O (u1) ∧ Va (u2) ∧ V0Ω

(u3)

∧ ¬∃z (Va (z) ∧ V0Ω
(z))→ VdΩxya (u4) ∧ Vy (u4)

)

we get u1 = u2 = a, u3 = 0̂Ω and u4 = y

⇐⇒ ∃−→u (O (a) ∧ ¬∃z (Va (z) ∧ V0Ω
(z))→ VdΩxy (u5) ∧ Va (u6) ∧ T (u5, u6, g))

we get u6 = a

⇐⇒ ∃−→u

(
O (a) ∧ ¬∃z (Va (z) ∧ V0Ω

(z))

→ VdΩx (u7) ∧ Vy (u8) ∧ T (u7, u8, u5) ∧ T (u5, a, y)

)

we get u8 = y

⇐⇒ ∃−→u

(
O (a) ∧ ¬∃z (Va (z) ∧ V0Ω

(z))→ VdΩ
(u9)

∧ Vx (u10) ∧ T (u9, u10, u7) ∧ T (u7, g, u5) ∧ T (u5, a, y)

)

we get u9 = d̂Ω and u10 = x

⇐⇒ ∃−→u

(
O (a) ∧ ¬∃z (Va (z) ∧ V0Ω

(z))

→ T
(

d̂Ω, x, u7

)
∧ T (u7, y, u5) ∧ T (u5, a, y)

)

we get, that u7 =
〈

d̂Ω, x
〉

⇐⇒ ∃−→u
(
O (a) ∧ ¬∃z (Va (z) ∧ V0Ω

(z))→ T
(〈

d̂Ω, x
〉
, y, u5

)
∧ T (u5, a, y)

)
we get, that u5 =

〈
d̂Ω, x, y

〉
⇐⇒ O (a) ∧ ¬∃z (Va (z) ∧ V0Ω

(z))→ T
(〈

d̂Ω, x, y
〉
, a, y

)
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consider, what we can get from the premise:

¬∃z (Vy (z) ∧ V0Ω
(z))⇐⇒ ¬∃z

(
z = a ∧ z = 0̂Ω

)
⇐⇒ ¬∃z

(
a = 0̂Ω

)
⇐⇒ a 6= 0̂Ω

so now we can use this equivalence and continue the proof.

⇐⇒ O (a) ∧ a 6= 0̂Ω → T
(〈

d̂Ω, x, y
〉
, a, y

)
and now we have have all the premises necessary to use case A12 in the definition of
PA to get, that indeed T

(〈
d̂Ω, x, y

〉
, a, y

)
. This concludes the proof of this case.

10. The non-constructive minimum operator.

((e : N −→ N) ∧ (∃x ∈ N) (ex = 0N)→ e (µe) = 0N)♦

! (e : N −→ N)♦ ∧ ((∃x ∈ N) (ex = 0N))♦ → (e (µe) = 0N)♦

first, we rewrite the translations of the parts, then we prove the formula:

(e : N −→ N)♦

⇐⇒ (∀x (x : N→ ex : N))♦

⇐⇒ ∀x (∃y (Vx (y))→ ∃z (Vex (z)))

the premise is true for y = x

⇐⇒ ∀x∃z (Vex (z))

we apply the definition of the valuation

⇐⇒ ∀x∃z (∃u, v (Ve (u) ∧ Vx (v) ∧ T (u, v, z)))

we get, that u = e and v = x

⇐⇒ ∀x∃z (T (e, x, z))

the next part to consider is the following:

(∃x ∈ N) (ex = 0N)♦

⇐⇒ ∃x
(

(x ∈ N)♦ ∧ (ex = 0N)♦
)

⇐⇒ ∃x (∃y (Vx (y)) ∧ ∃z (Vex (z) ∧ V0N
(z)))

the first part (∃y) (Vx (y)) is fulfilled for y = x and we get that z = 0

⇐⇒ ∃x (Vex (0))
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applying the definition of the valuation, we get

⇐⇒ ∃x (∃u, vVe (u) ∧ Vx (v) ∧ T (u, v, 0))

so we get u = e and v = x

⇐⇒ ∃x (T (e, x, 0))

The last part to consider is the conclusion:

(e (µe) = 0N)♦

with the same arguments as before, we get

⇐⇒ ∃y (Vµe (y) ∧ T (e, y, 0))

and this can be further rewritten to

⇐⇒ ∃y (T (µ̂, e, y) ∧ T (e, y, 0))

so the whole statement that we need to show is the following:

∀x∃z (T (e, x, y)) ∧ ∃x (T (e, x, 0))→ ∃y (T (µ̂, e, y) ∧ T (e, y, 0))

to do so, we apply the fixed point theorem to T (µ̂, e, y). Knowing, that ∃x (T (e, x, 0)),
we are in the case A22.

∃y (T (µ̂, e, y) ∧ T (e, y, 0))

⇐⇒ ∃y (T (e, y, 0) ∧ (∀v) (v < y → ∃w (w 6= 0 ∧ T (e, v, w))))

When we apply the least element principle from remark 35 to the premise, we get

∃x (T (e, x, 0) ∧ (∀y < x) (¬T (e, y, 0)))

when we combine the premise ∀x∃y (T (e, x, y)) with the previous line, we get

∃x (T (e, x, 0) ∧ (∀y < x) (¬T (e, y, 0) ∧ ∃u (T (e, y, u))))

and ¬T (e, y, 0) ∧ T (e, y, u) gives us, that u 6= 0 ∧ T (e, y, u) and that is what we need.

11. Transfinite induction scheme.

Assume, we have the premises given, e.g. assume

A (0Ω)♦ ∧ ((∀a : Ω) (a 6= 0Ω ∧ (∀x : N)A (ax)→ A (a)))♦

If we from those premises can get the following, we are done:

((∀a : Ω)A (a))♦ ⇐⇒ (∀a (Ω (a)→ A (a)))♦
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we can pull through the translation ♦ to the inner formula

⇐⇒ ∀a
(

(∃x) (Va (x) ∧O (x))→ A (a)♦
)

notice, that in this formula, a is just simply a variable of PAΩ, and therefore Va (x) ≡
a = x.

⇐⇒ ∀a
(
O (a)→ A (a)♦

)
consider, that O (a) in PAΩ is the same as (∃α) (Oα (a))

⇐⇒ ∀a
(
∃α (Oα (a))→ A (a)♦

)
⇐⇒ ∀a

(
¬∃α (Oα (a)) ∨ A (a)♦

)
⇐⇒ ∀a

(
∀α (¬Oα (a)) ∨ A (a)♦

)
⇐⇒ ∀a∀α

(
Oα (a)→ A (a)♦

)
⇐⇒ ∀α∀a

(
Oα (a)→ A (a)♦

)
We can prove this by transfinite induction in PAΩ. The formula to be proven by induction
is the following:

B (γ) :≡ ∀a
(
Oγ (a)→ A (a)♦

)
We assume (∀β < α)B (β). If we can prove from this, that B (α) for an arbitrary α, we
get

∀α ((∀β < α)B (β)→ B (α))

and we can apply the induction in PAΩ to get ∀αB (α), which is the same as

∀α∀a
(
Oα (a)→ A (a)♦

)
and this proves the translation. Now assume

(∀β < α)B (β)

⇐⇒ (∀β < α)∀a
(
Oβ (a)→ A (a)♦

)
⇐⇒ ∀a (∀β < α)

(
Oβ (a)→ A (a)♦

)
⇐⇒ ∀a (∀β < α)

(
¬Oβ (a) ∨ A (a)♦

)
⇐⇒ ∀a

(
¬ (∃β < α)Oβ (a) ∨ A (a)♦

)
⇐⇒ ∀a

(
(∃β < α)Oβ (a)→ A (a)♦

)
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⇐⇒ ∀a
(
O<α (a)→ A (a)♦

)
in order to show ∀a

(
Oα (a)→ A (a)♦

)
, we assume Oα (a) and need to prove A (a)♦.

Consider two cases:

• a was added to Pα
A on a layer < α. But then O<α (a) holds and we get A (a)♦ from

∀a
(
O<α (a)→ A (a)♦

)
.

• a was added to Pα
A on the layer α.

Oα (a)⇐⇒ A (P<α
A , a, 0, 0, 1)

⇐⇒ a = 0̂Ω ∨ ∃e (∀z∃y (O<α (y) ∧ T <α (e, z, y)) ∧ a = 〈ŝup, e〉)

if a = 0̂Ω, then we get A (a)♦ from the induction hypothesis A (0Ω)♦ in BONΩ and
the substitution lemma 44. So now we assume, that a 6= 0̂Ω. Consider the second
induction hypothesis in BONΩ:

((∀a : Ω) (a 6= 0Ω ∧ (∀x : N)A (ax)→ A (a)))♦

⇐⇒ (∀a)
(
O (a)→

(
a 6= 0̂Ω ∧ ∀xA (ax)

♦
)
→ A (a)♦

)
From Oα (a)→ O (a) and a 6= 0̂Ω, we get

∀a
(
∀xA (ax)

♦ → A (a)♦
)

Consider the following formula

∀a, e, z, y
(
(O<α (y) ∧ T <α (e, z, y)) ∧ a = 〈ŝup, e〉 → V(sup−1a)z (y)

)
Notice the universal quantifiers, i.e. we can choose all the variables arbitrarily.
Assuming the premise, we can prove the conclusion:

V(sup−1a)z (y)

⇐⇒ ∃v1, v2 (Vsup−1a (v1) ∧ Vz (v2) ∧ T (v1, v2, y))

since z is a variable, Vz (v2) ≡ z = v2.

⇐⇒ ∃v1, v3, v4 (Vsup−1 (v3) ∧ Va (v4) ∧ T (v3, v4, v1) ∧ T (v1, z, y))

the same argument yields

⇐⇒ ∃v1
(
T
(

ŝup−1, a, v1
)
∧ T (v1, z, y)

)
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the premise gives us a = 〈ŝup, e〉

⇐⇒ ∃v1
(
T
(

ŝup−1, 〈ŝup, e〉 , v1
)
∧ T (v1, z, y)

)
we get, that v1 = e

⇐⇒ T (e, z, y)

but given T <α (e, z, y) this is true. We use this fact as follows. We know, that

∃e (∀z∃y (O<α (y) ∧ T <α (e, z, y)) ∧ a = 〈ŝup, e〉)

=⇒ ∃e
(
∀z∃y

(
O<α (y) ∧ T <α (e, z, y) ∧ V(sup−1a)z (y)

)
∧ a = 〈ŝup, e〉

)
Given the induction hypothesis, that ∀a

(
O<α (a)→ A (a)♦

)
, we get

=⇒ ∃e
(
∀z∃y

(
O<α (y) ∧ T <α (e, z, y) ∧ A (y)♦ ∧ V(sup−1a)z (y)

)
∧ a = 〈ŝup, e〉

)
the substitution lemma 44 gives us, that

=⇒ ∃e
(
∀z∃y

(
O<α (y) ∧ T <α (e, z, y) ∧ A (az)

♦
)
∧ a = 〈ŝup, e〉

)
and so in particular

∀zA (az)
♦

this is the premise of the second induction hypothesis in BONΩ.

((∀a : Ω) (a 6= 0Ω ∧ (∀x : N)A (ax)→ A (a)))♦

so we get A (a)♦. Now we showed that for an a added to PA at the layer α, we get
Oα (a)→ A (a)♦.

We therefore proved

(∀β < α)∀a
(
Oβ (a)→ A (a)♦

)
→ ∀a

(
Oα (a)→ A (a)♦

)
We apply the induction scheme in PAΩ to B (α) ≡ ∀a

(
Oα (a)→ A (a)♦

)
and get

∀α∀a
(
Oα (a)→ A (a)♦

)
and this is equivalent to the following

⇐⇒ ∀a∀α
(
Oα (a)→ A (a)♦

)
⇐⇒ ∀a∀α

(
¬Oα (a) ∨ A (a)♦

)
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⇐⇒ ∀a
(
¬∃αOα (a) ∨ A (a)♦

)
⇐⇒ ∀a

(
¬O (a) ∨ A (a)♦

)
⇐⇒ (∀a)

(
O (a)→ A (a)♦

)
⇐⇒ ((∀a : Ω)A (a))♦

and this concludes the proof, for this is the conclusion of the transfinite induction in
BONΩ.

8 Proof-theoretical strength of BONΩ and BONΩ + µ

In this section we put together all the main theorems from the different parts of this master
thesis to get the following result about the proof theoretical strength of BONΩ and BONΩ + µ.
In the first part, we showed that

QTΩ ` A =⇒ BONΩ ` A4

in the second part, we showed that

BONΩ + µ ` A =⇒ PAΩ ` A♦

according to [2], we get that
ID1 ≡ QTΩ

and according to [11], we get that
ID1 ≡ PAΩ

All those put together yield the

Theorem 46.
QTΩ ≡ BONΩ ≡ BONΩ + µ ≡ PAΩ ≡ ID1
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