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1 Introduction

In [§] the so-called basic theory of operations and numbers, which represents an applicative
basis of explicit mathematics, is introduced. BON is a theory defined in the language of partial
terms; it has notions of definedness, application, combinatory algebra, complete induction and
typedness as well as some additional axioms. In particular, because of the partial combina-
tory algebra, a term for A-abstraction can be defined, details can be read upon in [13]. The
A-abstraction also yields the existence of a term fix, which acts as a fixed-point combinator
for functions. BON does not have a syntactic notion of types, but rather has typedness as a
formal statement and, using the induction scheme, totality of many functions can be proven.
The axioms of BON contain the basis of types, namely they contain the atomic type N and
axioms about it.

In this master thesis, the ultimate goal is to introduce an untyped theory similar to BON.
This newly introduced theory bears the name BONg and is an extension of BON that is obtained
by adding tree ordinals as a second atomic type. Tree ordinals being the least set that contains
Oq and is closed under the sup operation. The sup operation always takes a function from
natural numbers to ordinals as input and yields an ordinal number. Another way of thinking

of this is by imagining a tree, hence the name.

supf sup (Az.0q)
/\ /\
FO) f(1) f2 ... 0o O0q Oq ...

The strength of BONg is equal to the one of IDy; to prove this, we reduce the theory
QTq from [I] to BONg in the lower bounds and BONg + p to PAq from [11] in the upper
bounds, whereas BONg + o the theory BONg extended by the non-constructive p-operator.
The non-constructive p-operator yields a zero of a function if it exists, and Oy otherwise. The
main motivation behind defining an untyped theory lies therein, that less information about
the terms, i.e. the whole typedness, needs to be coded into the language itself. We achieve
this by a rather strong form of induction in addition to assuming the typedness — as a formal
statement — of the defining constants. Then the typedness of terms follows logically, rather
than syntactically.

For the lower bounds, we essentially take the theory QTg—which is proven to be equivalent
to ID;. Then we show, that all provable statements of QT can be proven in BONg, assuming
the typedness of the free variables.

For the upper bounds, we embed BONq in PAq from [I1]—which is proven to be equivalent
to ID;. This is done by defining an inductive operator and using the theorems about fixed
points and inductive operators as shown in the very same paper. The translation is done by
defining a valuation function and then interpreting the application from BONgq as fulfilling the
inductive operator.

Firstly, we show lower bounds for the proof theoretical strength of BONn. We start off,



with defining the set of all type symbols, defined inductively by applying the — operation to
the base types N and €. Then we formally introduce the theory BONqg and show some basic
properties about BONg, in particular, that in BONgq it is always possible for any given type
to construct a term of the given type and that typedness of a term for some type implies its
definedness.

After the introduction of BONg, we define the theory QTgq from [2]. QTgq is a quantified
version of Godel’s theory T over ordinal numbers. Most of the axioms of QT can be translated
into BONq in a straight-forward manner. There are two issues that need to be addressed though:
QTgq has two recursors built into the theory that have no correspondence in BONgq, those are
translated by specifically-crafted terms that behave in an equivalent manner, those terms are
explicitly written down as part of the proof. The other issue that we need to deal with in the
embedding is, that in QTq, due to its typed nature, all terms that can be applied to each other
from a syntactical point of view automatically are total, because of the typedness requirements
for any term in QTq. In BONg, however, typedness is not part of the language, but rather just
a formula like any other. We therefore require the typedness of certain constants by axioms,
and we prove the typedness — and therefore definedness — of terms built by the application
function using the strong induction principles of BONg. Using those techniques we manage to
embed QTq into BONg and so we indirectly embed ID; into BONg.

Secondly, we show upper bounds for the proof theoretical strength of BONg + . As men-
tioned before, BONg + u is an extension of BONg that has the non-constructive p-operator
scheme added. The p-operator gives the least zero of the (coding of the) function it is applied
to, if the function has any zero at all and it gives Oy, otherwise. In this setting we have a
typedness axiom that requires u to be a total function of functions (of natural numbers to
natural numbers) to natural numbers. The typedness is such a strong property that this ope-
rator cannot be constructively built up. As it turn out, though, the extension of BONg by the
p-operator is harmless, i.e. BONg and BONq + p are proof-theoretically equivalent.

We give a formal definition of PAqg from [II] and define an inductive operator form thereon.
This inductive operator form is used to simulate the behaviour of BONg + p in PAq. It is a
parallel inductive definition; on one hand the axioms of BONg + u are coded into the operator
on the other hand the set of tree ordinal numbers is defined. The induction needs to be
simultaneous, because each part needs the lower layers of the other. A vital property of this
inductive operator form is the functionality of the inductive operator. This and the fixed-point
theorem due to [II] are two main tool used to embed BONg + i into PAgq.

Once the theory PAg and those properties are introduced, we define a valuation of terms
of BONg + p that has the intended meaning ,the term ¢ has the value z*. This valuation is
used to define a translation of formulae of BONg + i1 to PAq. We then can use the translation
to embed BONq + 1 into PAq by proving the translation of every axiom of BONg + p. In the
embedding proof, one challenge is the translation of the transfinite induction scheme, this part
is proved by an induction along the layers of the inductive definition of the inductive operator
form.

In the end we wrap up the results in a formal proof-theoretical equivalence theorem between

ID1, BONg and BONq + .



2 The Theory BONgq

Our main theory BONg is an untyped theory.

2.1 Definitions of the language, terms and formulae for BONg

Technically we could skip a definition of what a type is at this spot an only talk of abbreviations
of formulae, it turns out, however, that having a notion of types is useful here already, because
we do have axioms that involve ,types* (or abbreviations of formulae). And later in the setting
of QTq we will need the types in the formal definition of the language. Therefore, we define
what we consider types. In particular, there are are no product types in our setting, we define

those using currying.

Definition 1. The set of all type symbols T is defined inductively:
1. NeT
2.Q€eT
3.oeTATeT=0—717€T

It is convenient to have product types to formulate certain properties, but it is also simpler
to not have them as syntactical objects, therefore we introduce the following notation.

Notation 2. Let oq,...,0,,7 € T, then
(o1 X oy X X0,) —T =0, — (02— (0, —>7T)++)

We try to define a theory BONg based on BON from [I3]. The following definition is basically
an extension of the definition of BONg, where we add additional constants for the ordinal part
of BONg. We also add a constant symbol u to the language. This would not be necessary at
this point, but it allows us to only use one language for BONg and BONg + p, which is defined
later.

Definition 3. The language £ (BONg). There is a countably infinite supply of variables
V1, V9, . . ., the logical symbols —,V, 3, an unary symbol | for definedness and the binary sym-
bol = for equality. Furthermore, we have the following constants: k, s (combinators), Oy,
Oq (numerical and ordinal zero), sy (numerical successor), py (numerical predecessor), dy, do

1

(definition by numerical and ordinal cases), sup, sup~' (supremum on tree ordinals), x (non-

constructive minimum operator). We have a binary function symbol - and two unary relation

symbols N, €.

The terms can be defined in the standard way. Also consider, that we only have one function

symbol, namely -.
Definition 4. £ (BONgq) terms.

1. Every variable and every constant is a term

4



2. If ty,...,t, are terms and f is an n-ary function symbol with n > 1, then f (¢ ...,%,) is

a term.
If s,t,t1,...,t, are terms and R is an n-ary relation symbol, then the expressions s|, s =t
and R (ty...,t,) are called atomic formulae.

As for formulae, the definition is standard; noteworthy is, that conjunction and universal
quantification are abbreviations, rather than formal symbols. This makes induction on the
formula build-up easier, for we do not need to consider that many cases in the induction step.

Definition 5. £ (BONq) formulae.
1. Every atomic formula is a formula
2. If Ais a formula, then —A is a formula.
3. If A and B are formulae, then AV B is a formula.
4. If A is a formula and = a variable, then JzA is a formula.

As seen in the following, we define the logical operators and quantifiers using abbreviations
4 The partial equality only states, that the two sides are equal if one of them is defined
Bl The non-equality states, that both sides are defined and the terms are not equal [6 in
particular, s # t is a stronger statement than — (s = t), because the definedness is not required
in the latter.

Notation 6. We shall use the following conventions

ANB = —=(-AV-B) (1)
A—B = -AVDB (2)
A< B = (A= B)AN(B— A) (3)
VoA = —3o-A (4)
s~t = (s|Vt])—=(s=1t) (5)
s#£t = slAtL A= (s=1) (6)
teN = N() (7)
teQ = Q) (8)
t:N := teN (9)
t:Q = teQ (10)
(Jx:0)A = Jx(z:0ANA) (11)
Vez:0)A = Vo(z:0— A) (12)
t:o— 71 = (Vo:o0)(tr:7) (13)
a; = ((sup~'a)z) (14)



2.2 Definition of BONg and basic properties

The theory BONg is based on BON, whereas the axioms, that are equivalent to the typedness
axioms, e.g. Oy : N and suc : N — N, were rewritten to fit the current context. Newly in
BONq, we have the special axioms for ordinals. Their intended meaning is the following:

OOQZQ

The ordinal zero naturally is an ordinal numbers.

esup: (N— Q) — Q

The sup operator yields an ordinal number if applied to a function of natural numbers to
ordinals.

esup:Q— (N—Q)

The sup~! operator is supposed to be the inverse of the sup operator, so it’s type has to
be inverse to the one of sup.

e (¢:N— Q) — supe # 0q Asup™! (supe) = e

If e is (the coding of) a function from natural numbers to ordinals, i.e. a sequence of
ordinals, then the supremum will never be Oq and the supremum inverse is really the

inverse function to the supremum function.

e a:Q — (a#0q—sup(sup~ta) =a)

If a is an ordinal, other than Og, the the supremum is the inverse function of the supremum

inverse.

0:L‘:N—>(OQ)IZOQ

The supremum inverse of Oqg is the constant Oq function, i.e. the supremum inverse
function yields Oq at every position x.

o ¢ =0q — dgejesa = e

The definition by ordinal cases yields the first argument e; when 0Oq is given. Note that
we use here the constant Oq rather than comparing two ordinals. This is due to the fact,
that we did not define what the equality of two ordinals should be. Defining such an
equality is not that simple a task to do, because the ordinals, with the exception of 0q
are the results of the sup function, which takes a whole function as input, rather than
then a single value. Then there would be the question when are the inputs equal? Would
that be just that the values need to be equal, or maybe the term would have to be equal,
etc. And most importantly, it suffices that we can distinguish between 0q and not Ogq.

e a € QANa+#0q— doejesa = ey

The definition by ordinal cases yields the second argument e; when an ordinal number
other than Ogq is given.



e (e:N—N)A (Jx €N)(ex =0y) — e(ue) = Oy

The non-constructive p operator yields a zero of the function e if it has one. As given by
the typedness, the p operator yields a value if applied to any function of natural numbers

to natural numbers.

e A(0g) A (Va:Q)(a#0qA (Vx:N)A(a,) — A(a)) = (Va: Q) A(a)

The transfinite induction scheme says, that if the statement A holds for 0q and we can
show, that from A holding at each component of an ordinal number a, we can show that it
also holds at a itself, then we can conclude that the statement A holds for all the ordinal

numbers.
Definition 7. The theory BONg has the following axioms:
1. propositional axioms and rules: as usual.

2. quantifier axioms and rules: for all formulae A, B, all terms ¢ and all variables x:

Alt/z] N tl— JzA

A— B

A B LEIVIB)

3. definedness axioms: for all n-ary function symbols f and relation symbols R and all terms
s, tand ty,..., t,:
tl if ¢ is a variable or a constant

f(t177tn)\l’_>t1\l//\/\ tn\lf
(s=1t)—=sL At

R(tl,,tn)—)tli/\/\ tn\L

4. equality axioms: or all n-ary function symbols f and relation symbols R and all terms s,

t, s1,...,8, and tq1, ..., t,:
t=t if ¢ is a variable or a constant
(s=t) = (t=ys)
(t1 =to) A (ta =t3) — (t1 = t3)
R(s1y...,$p)AN(si=t) A A(sp=1t,) = R(ty,...,1,)
(si=t) N A(sp=1tn) = f(s1,...,80) = f(t1,...,tn)

5. Typedness axioms:
ON : N

suc: N — N



10.

11.

0q : Q2
sup: (N— Q) — Q

sup :Q — (N— Q)
partial combinatory algebra, for all variables x, y, z:
kry = x
syl Nsxyz ~ (x2) (yz)
natural numbers, for all variables x,y
(Vo € N) (' # 0y A pn (2') = 2)

(Vx € N) (x # 0y — pnr € NA (pnz) = x)
AON)AVz:N)(A(z) = A(z") = (Vy:N) A(y)

definition by numerical cases, for all variables x,y, u,v
ueNAveNAu=v—dyryuv =z
ueENAvENANUF#V—dyryuv =y

Ordinal Numbers, for all variables e, a, x

(e:N — Q) — supe # 0q Asup™ ! (supe) = e

a:Q— (a # 0q — sup (sup’la) = a)
J]ZN—>(OQ)I:OQ

Definition by cases on ordinal numbers, for all variables ey, es, a
a = 0q — doejesa = e; (15)
a € QANa#0q— dgejesa = ey (16)
Transfinite induction scheme for any formula A(x)

A0q) A
(Va:Q)(a#0q A Vz:N)A(a,) = A(a)) — (Va:Q)A(a)

Remark 8. In the previous definition of the axiom schemes 6§10, we can use just the definition

for variables, because from

BONq FVzAA t|— Alt/x]



we get immediately, that each of those axioms works for all defined terms.
As shown in detail in [I3], BONg has a term fix, that yields a fixed point theorem in BONg,.
The proof is not difficult and can be read in detail in the named paper.

Theorem 9. There is a term fix, such that
BONgq F fixx | Afixzy ~ z (fixx)y

In the following, we try to get used to the notion of typedness in BONg.
Remark 10. Let 01,09,...,0,,7 € T and let ¢t be a term of BONg, then

t:(oy X xop) —717=Nry:00) - (Vo :0p) (txy - 2y 0 T)

Example 11. As an example what exactly the types correspond to in BONgq, consider the
following
t:(N—N)— (N—N)

(Ve : N — N) (tz : N — N)
Ve ((Vy:N)(zy:N) = tz: N — N)
Va ((Yy : N) (zy : N) — (Vz : N) (tzz : N))
Ve(Vy(y: N — a2y :N) = Vz(z:N—tzz:N))

Product types are only abbreviations for linear types. To see how the terms correspond,
you can check the following example.

Example 12. As an example for product types, consider the following

t:(NxN)—N
t:N— (N—N)
(Vz :N) (tz : N — N)
(Vz : N) (Vy : N) (tzy : N)
so we see, that t takes two arguments of type N and returns tzy : N.

For every type there actually is a defined term that has the correct type, so we always can
find a term for every type.

Lemma 13. For any type o there is a term t such that
BONgFt:0oA t]

Proof. By induction on the build-up of o.

1. o =Rfor R € {N,Q}. Then set t := Ox. Ox : R is an axiom in both cases, R (0g%) — On |
is an axiom too.



2. 0 = v — 7. We apply the induction hypothesis to 7 to get t,. Set t := kt,; we have
from the induction hypothesis ¢, ]. The axiom kt,x = t, gives us that ki x| and so ki, .
But this is the same as t.

t. T
— (Vo :v)(t; : 7)
—= (Ve :v)(tz:7)=t:v—717=t:0
[l

It turns out, that we will later often want to get the definedness of a term from its typedness.
This general property can be shown uniformly for any type. The following lemma simply states:
If a term is of a particular type, then it is automatically defined.

Lemma 14. Typedness implies definedness. For any type o and any term t
BONg FHt:0 =t

Proof. By induction on the build-up of o.

1. o =R for R € {N,Q}. Then
t:o=t: R=R(¢)

since fR is a relation symbol, we get the definedness of ¢ directly from the axiom R (¢) —

t].

2. 0o =v — 7. Then
(t:v—71) =N :v)(te:7)=Ve(v:v—tr:7)=-TJx-(v:v—>tr:T)

take the following axiom of BONg, where A := = (z:v — tx:7) and s is a term such
that s : v A sl
Als/z] AN sl— JzA

(—(x:v—tx:7)[s/z]ANs)) = Tx—(x:v—tx:T)
contra position immediately yields

Ve(z:v—te:7)— ((s:v—ts:7)V-sl)

Because s |, we get that t : 0 — (s:v — ts: 7). With some propositional reasoning
together with s : ¥ As| we get that £ : ¢ — ts: 7. We can apply the induction hypothesis
to get ts : 7 — ts]. The definedness axioms then give us that ts|— t]. Putting all those
together gives us t: 0 — t|.

10



So when we put together the lemmas and definitions from this section, we get, that BONgq is
an extended version of BON, that is extended by the notion of typedness of terms—as a formal
statement. Furthermore we have some basic properties about how the typedness behaves, i.e.
what product types mean and that we always find a term, that has a particular type and that
typedness implies definedness.

3 The Theory QTg

The typed theory QTgq has the typedness statements essentially coded into the types of the
variables and the application. A term can only be applied to another term if their types match.
Therefore this theory is total, in the sense, that all wrongly typed terms cannot be applied
to each other already on a syntactical level. This convenience on the one side, yields two
inconveniences: The typedness of the defining constants is coded into the language rather than
the theory’s axioms. And there is a need for the special recursor terms r’ and Rq, in the

language. Those can be proven to be just normal terms, without the need to being added in

the case of BONgq.

3.1 Definitions of the language, terms and formulae for QTg

All the constants from BONq we find here as well, though they have types and therefore some
of them occur multiple times, e.g. k" and s”?7. Additionally, we have the combinators; those,
as we will prove later in the translation, can be constructed in BONq and were therefore not
necessary in the definition of BONgq.

Definition 15. The Language £ (QTq). For each o € T there is a countably infinite supply of
variables of type o; we shall use x7,y7, 27, u?, v?, w’ for such variables. For each ¢ € T there
is a binary predicate =, for equality at type o; and for all 0,7 € T there is an application
operator Ap””. Furthermore, the language contains the following constants, for all o, 7,p € T,
with ,,c a constant of type ¢ indicated by ,,c € o*.

On €N
suce N— N
kTe(oxT)—0
sTe((p—(c—T7)x(p—0)xXp) —7T
r’ € (cx((cxN)—0)xN)—o0o
0q € Q
supe (N— Q) — Q
sup ' eQ— (N— Q)

Ra, € ((Qx(N—0)) —0)xoxQ)—0

11



The terms are defined similarly to the definition of terms in BONgq, just that the typedness
is defined by the typedness of the Ap”” function.

Definition 16. £ (QTgq) terms. The terms are defined recursively:

1. variables and constants of type o are terms of type o
2. if t is a term of type 0 — 7, t’ a term of type o, then Ap”7(t,t') is a term of type 7.

The definition of formulae is as usual, with the exception, that the equals relation =, is
only applicable to terms of equal types, so therefore we have an equals relation for every type.
We usually skip writing the type explicitly, when it is clear from the context.

Definition 17. £ (QTgq) formulae.
1. prime formulae are expressions of the form ¢ =, s, where t and s are terms of type o

2. a prime formula is a formula; arbitrary formulae are built from prime formulae with the
help of the logical operators —, Vv, 3x°.

3.2 Definition of QT and basic properties

In the context of the typed theory, some of the more complicated axioms, like e.g. the induction
scheme, are simpler to formulate, because the correct typedness is already guaranteed by the
way, how formulae are build. So writing something, where a term would not be of the correct
type, would not be a formula according to the definition of formulae in QTq. The intended

meaning of the special axioms is:

o rzyly =z rey (2') =y (reyz) 2
The recursor r simulates primitive recursion. At the recursion level Oy, it returns the
value z, and the value at the level 2’ is the value of the function y applied to the value of
the previous level and the level itself. With other words, the value at a level depends of
the previous level, as well, as the level itself.

o Roeieslq = ey a # 0q — Rgejesa = era (Ax.Rgeresay)

Similarly to the previous case, the recursor states, that a value on a level a depends of
the value at the levels of the components a,. So here the next level depends on the whole

function \xz.Rgqeq, e, a.
Definition 18. QTgq has the following axioms.
1. propositional axioms and rules: as usual.

2. quantifier axioms and rules: for all formulae A, B, all terms t of type ¢ and all variables

x of type o:
Alt/x] — JzA
A— B
T FV (B
wisg  CEIVD)

12



3. equality axioms: for equality at all types, we assume

T=Y—>Y=2
T=YNYy=2z—>r =2
Y=z =Ty =22

T=Y T2 =Yz
4. defining equations for the constants:
kry = x seyz = (22) (y2)
reyOy = rey (2') =y (reyz) 2
5. arithmetical axioms (where z,y are of type N):
r=y sr=y

On 7§ x
A(On) AVz (A(x) = A(2)) — VyA (y)

6. additional axioms for tree ordinals: When e is of type N — Q
supe # Og A sup™* (supe) = e

a # 0q — sup (sup™'a) = a
(02), = 0q

7. the axioms about the recursor: where e; is of type (2 x (N — 0)) — 0o, e of type o
and a an ordinal number

Rqejes0q = e

a # 0q — Rgeiesa = era (Ax.Rgeiesay)
8. Induction on ordinal numbers

A(0q) AVa(a # 0g AVzA (ay) = A(a)) — VaA (a)

4 Embedding QTq in BONq

In order to embed QTgq in BONq, we need to be able to simulate all the axioms of PAq. For that
we define a translation of QTg formulae into BONg formulae and then prove, that if QTq proves

13



a formula, then BONq proves the translation. As it turns out, most of the axioms of QTq have
their obvious counterparts in BONg with the exception of the recursors. Earlier, we mentioned,
that due to the strength of induction that we have in BONg, we are able to prove that there
are terms in BONg that behave like the recursors, without having to add the recursors to the
definition of our theory. Due to the fact, that those recursor terms are a little complicated and
that the simulation of them need to show two things, namely that the resulting terms are the
same as in QTq and that the recursor is of the correct type, we make the following lemmas.

4.1 The numerical recursor term recy in BONg

The term recy is the simulation of the r? recursor. From the proof we will get, that the recursor
term does not depend of the type of the input and output; it is the same term for every type
o. In the first part, we show that the terms yield the expected and in the second part, we show

that for every o the recursor has the necessary type.

Lemma 19. Numerical recursor. There is a term recy, such that
1. BONg k- (2 : N) = (recnzyOy =~ @ A recnay (2') ~ y (recnzyz) 2)
2. BONgFrecy: (0 x (0 XxN—0)xN) — 0o

Proof. Set
recy = (Azy.fixt)

t:= (Aez.dnz (y (e (pn2z)) (pnz)) On2)

recyryz o~ (fixt)z ~t(fixt)z ~t(recyzy)z

~ dnz (y ((recnzy) (pPn2)) (Pnz)) Onz

fromz:N — 2" : NA 2 # 0y and z : N we get

12

recyryOy T
recyzy (2) =~ y((recnazy) (pn (27))) (pn ()
~ y((recnzy) z) 2

~ y(recnryz) 2

So far, we only applied terms to other terms. As such, we a priori do not know, if there exist
values and if such potential values have the necessary type.
To show the typedness, we need to recall remark

recy: (0 X ((0 xN) —0)xN) — 0o
= (Vz:0)(Vy: (0 xN) — o) (Vz:N)(recyzyz : 0)

Now we can look at our partial equality from before, given those types. To show this, we need
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to apply induction on natural numbers. Set
A(z):=Vz:0)(Vy: (0 x N) — o) (recyzyz : 0)
First we show A (Oy).
recyzyOn ~ dyz (v ((recnzy) (pnOn)) (PNON)) Onz =~ @

from x : o, we get recyzyOy : o, and so A (Oy).
For A(z) — A(Z') consider the following

recnzy (2) ~ dyz (y ((reenzy) (pnOn)) (PNON)) On = v (recnzyz) 2
Consider, what y : (0 x N) — ¢ means:
(Vv :o)(VYn:N)(yon: o)

with other words, if we put v of type ¢ and a natural number n into y, we get something of
type 0. A(z), together with the premises, gives us recyzyz : 0. We also have given z : N, but
that means, that recyzyz is such a v and z is such an n, that we get

y (recyzyz)z: o
but given the partial equality recyzy (2') ~ y (recnzyz) z, we get our A (2'):
recyzy (7)) 1 o
Applying induction, we get:
AON) A (Vo :N)(A(x) > A(a") = (V2 :N) A(z)

so we get

(Vz:N)(Vz:0)(Vy: (60 x N) — o) (recnzyz : 0)

this is exactly what we need. O

4.2 The ordinal recursor term recq in BONq

Analogously to the previous lemma, here we do the same for the ordinal recursor. Also the
ordinal recursor is just one term, not depending of o.

Lemma 20. Ordinal recursor. There is a term recq, such that
1. BONgFa € QAa+#0q — <reCQ€162OQ ~ e Arecqeiea ™~ e1a (Ax.rechlegaz)>

2. BONg Frecg: (%X (N—0)) — 0) xoxQ) — 0

15



Proof. Set

recq := (Afa.fixt)

t := (Aha.dgesy (e1a (Ax.ha,)) a)
recofaa ~ (fixt)a ~t(fixt)a ~t(recqeies)a
~ dqey (e1a (A\r.recqeresa,)) a

So far, we only applied terms to other terms. As such, we a priori do not know, if there exist
values and if such potential values have the necessary type. Recall the definition of typedness
in BONg and remark [10

recg: (X (N—0)) —0)xoxQ) — 0

= (Ve : (Qx (N—0)) — 0) (Ves : 0) (Va : Q) (recqeiesa : o)
To show this, we need induction on ordinal numbers. Set
Aa):=(Ver : (2% (N— o)) — 0) (Vey : 0) (recqeresa : 0)
First we show A (0q).
recqe1ea0q =~ des (e1a (Ar.recqeieslq,)) 0 =~ €9

from ey : 0, we get recqejes0q : 0 and thus A (0q).
For A (a,) — A(a), consider the following:
From a : Q and a # 0q, we get

recqejesa ~ does (e1a (Az.recqeiesa,)) a ~ eja (Az.recqeresay)
The condition e : (2 x (N — ¢)) — o gives us
e:(Q2x(N—0)) —0

(Vb:Q)(Ve: N — o) (erbe : 0)

With other words, if we insert an ordinal number b and a function e from natural numbers to
o into the function e;, we get a value in o.
Consider the following partial equality:

recqejesa, ~ (A\r.recqeiesa,) T

From (Vz : N) A (a,), we get:

(Vz : N) (recqeiesay : o)
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(Vx : N) ((Az.recqeiesa,) x : o)
(Ax.recqejesa,) : N — o

We therefore see, that \z.recqejesa, is a function e, such that e;be : . This gives us

era (Ar.recqejesay) : o

and so

recqoeieat . 0
As such, we now can apply the transfinite induction and we get:

(Va : Q) A(a)
= (Va:Q) (Ve : (2x (N—0)) — 0) (Ves : 0) (recqeiesa: o)

and this is the typedness of recq. O

4.3 Translation of QT formulae to BONg formulae and basic proper-
ties thereof

Now, that we showed, that we can simulate the recursors, we can finally define a translation of
QTq terms to BONq terms. This translation will be used to define the translation of formulae
which in turn is going to be used to state the embedding theorem. The typed constants QTq
are translated into their counterparts in BONg, the same goes for variables. The two recursors
are translated by the recursors terms we showed to exist in the previous lemmas. And the
application in QTgq is translated to the application in BONg.

Definition 21. Define a translation
AN L(QTq) — L(BONgq)

for terms, set

1. On — Opn

2. suc — suc

3. k77T — k

4. P77 — s

3. Oq = Oq

6. sup — sup

7. sup~ ! — sup!

8. r7 — recy

17



9. Rq, — recq
10. 29 — =z
11. Ap77 (s,t) —> 52 - 2

for formulae; let ¢t and s be terms of type o
1. t=, s —> t> =352
2. ~Ar— A

3. AVB+—— A%V B*

4. I2°A— (x : 0) A

4.3.1 Substitution lemma of the translation

In the embedding proof, we will often need the following substitution lemma to apply the
induction hypothesis.

Lemma 22. Substitution lemma.
Alt/z)" = A® [t8 /2]

Proof. Consider the following cases:

1. A is a constant

Altfa)" = AL =A% [15 /"]
2. A=z
Alt)a)” = x[t)2)” =5 =2 [t /2]
3. A=y #zx

Alt/z]® = y[t/z)”> =y~ = y» [t°/2"]
4. A=s1 =, 89

Alt/z]”

s1=0 82) [t/2]" = (s1[t/2] =5 sa[t/2])"

t/a])” = (sa[t/2])"

~—~

»
=

Il
»
=D
I
»
>
N—
Y

>

~
&

|_|l>

I
'S
>
T~
>
~
8
I_lD

5. A=-B
Alt/a)® = (=B) [t/x]® = ~B[t/x]” = ~B* [t*/2"] = A® [t* 2"]
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6. A=BvVvC

Alt/z]® = (BVCO)|[t/z]” = (Bt/z] Vv C[t/z])" = B[t/z]" Vv C [t/z]"
= B~ [t°/a%] v O [t7/2"] = (B2 Vv C?) [t7/27] = A% [t°/2°]

7. A=d2°B
Alt/z]” = A® = A [t2 )22
8. A=3y’Band y £

Alt/)" = (By'B)[t/«))" = By’ Blt/2])" = 3y : o) (Bt/2])"
= (Jy:0) (B~ [t*/2%]) = ((By: 0) B®) [t°/27] = A® [t° /2]

4.3.2 Typedness theorem of the translation

In the embedding theorem, we will assume the typedness of the variables and we will typically
need that some term has the correct type. What the following theorem states, is that the
typedness of the free variables implies the correct typedness of terms build up from those free
variables. Or more precisely, in order to prove that the translation of a £ (QTgq) term has the
same type in BONg, we only need to assume the correct typedness of the free variables, but not
of the whole term. The correct typedness of the term is a logical consequence of the typedness
of the free variables, rather than a syntactical requirement.

Theorem 23. Typednessin BONg. Lett[Z] be an L (QTgq) term of type o, with all free variables
exposed. Further, let x1 be of type o1, xo of type 02, ... and x, of type o,, respectively. Then

BONQI—xl:01/\332:02/\---/\xn:0n—>tA[f]:0
Proof. The proof is by induction on the build-up of the £ (QTq) term ¢.

1. t =0y, so t is of type N:
t5 = 0y° = Oy

we have an axiom
ON :N

and this is exactly what we need.

2. t =suc, so t is of type N — N
t2 = suc® = suc
the following is an axiom and exactly what we need

suc: N — N
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3.

10.

t=k%7",s0t:0 — (T — 0)
A:(ka;r)A:k

we need to show, that
k:(oxT1)—0

(Ve :0o)(Vy : 1) (kry : o)
from kxy = x, we immediately get the needed.

t=s""Ts0t:((p—(c—7))%x(p—0)Xp)—T
1 = (PomYE g
we need to show the following
s:((p—(c—7))x(p—0)xp) —7T
Ve:p—(c—7)My:p—0)(Vz:p)(szyz:7)

(Va: p— (0 — 7)) (Fy i p— 0) (V21 p) ((22) (y2) : 7)

)

(
from y : p — o and z : p, we get yz : o, from z : p — (0 —> 7) and z : p, we get
rz:0 — 7. And from xz : 0 — 7 and yz : 0, we get (zz) (yz) : 7. And that is what

we need.

t =0q, so 0q : Q2

but Oq : € is an axiom of BONg
t=sup,sosup: (N— Q) — Q

t* = (sup)” = sup

but sup : (N — Q) — Q is an axiom of BONq

t=sup,sosupl:Q— (N— Q)
t = (sup™)* = sup™!

but sup™! : Q@ — (N — Q) is an axiom of BONg

t = r? for this case, the typedness is one half of lemma [19]

t = Rq, for this case, the typedness is one half of lemma [20]

t = x for some variable, so z : o

but x : ¢ is the premise of this lemma.
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11. tEAp"’T(a[7],b[7]), SOa:0—>T, b0, t:T, X1 1y Tt oy Y15 Vise oo Yn t Un
t = (Ap7 (a[T],0[¥])) = a® [T] - b° 7]
from the induction hypothesis we know, that

BONQI—JJI:,ul/\~~~/\xm:,um—>a[?]:U—>7’

Py

and
BONQI—y1:Vl/\'--Ayn:Vn%b[7]:a
P

— BONqg+F PLAPy, = a[@]:0 — 7Ab[Y]:0

— BONq P, AP, — (Vz:0) (a[Z]z:T)Ab[Y]: 0
— BONg F PLA P, = a[Z]b[Y]: 7

4.3.3 Modus ponens on translated formulae

In the embedding we do not go into detail how the basic logical rules translate, but one basic
logical rule needs to be considered; the modus ponens. The problem there is, that the free
variables in the conclusion are a subset of the free variables from the premises. And we need to
show, that the free variables from the conclusion suffice for our embedding purposes. Therefore
we show, that the modus ponens rule also works on the translated formulae:

Theorem 24. Modus ponens on the translated formulae. Let A[Z] and B[] be £ (BONg)
formulae with all free variables exposed. Then

BONg F (21 : 01) A+ A (T : 0) — A[Z]”
& BONgtF (z1:01) A A@m:om) Ay T A A (yn 2 10) = (A[Z] = B[Y))
— BONqF (g1 : 7)) A A (yn: 70) = B[]

Proof. We use the following abbreviations:

X = (wr:o) A A(xp:om)
Vo= (im) A AYn 7o)
A = A[Z]
B = B[Y]

SO wWe Can assume
X — A XANY - (A— B)
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the latter we can rewrite to (X — A) — (X AY — B) using some propositional reasoning.
Now we can apply the modus ponens in BONgq:

X —A (X —-A) = (XANY — B)
XNY =B

now we can consider what the premise X AY is:
(1 o) N A(@ o) Ayr : ) Ao A (Y 2 Th)

we introduce two new abbreviations X, (for variables common A and B) and X, (for variables

unique to A) for z; occurring in A and B or only A, respectively.

X, = /\ T 0;

xz; free in B

Xu = /\ XT; . 0;

x; not free in B

then X < X. A X, and since X AY — B can be proven, we can apply substitution. We
substitute a term t; of the type o; for every x; not occurring freely in B. Such a term exist
according to the lemma [13] But for each one of those terms, BONg F ¢; : 0; and so we can cut
them out of the premise to get

X.NY =B

but since all the variables from X. are common, the terms formulae z; : o; of X, all occur in
Y. Therefore we can do a contraction to get

Y - B

and this is what we need. O

4.4 The theorem for embedding QTg into BONg

For the embedding of QTq into BONg, we assume that the free variables be of the correct
types. Then we get the correct typedness of terms using the typedness theorem and we apply
the translation of formulae to prove all the axioms.

Theorem 25. Embedding QTq in BONg. Let A[Z] be an L (QTq) formula with all free
variables exposed. Further, let x1 be of type o1, xo of type os, ..., x, of type o,, respectively.
Then

QTQI—A[T]:BONQI—(xl:01)/\(x2:02)/\---/\(xn:Un)—>14[7]A

Proof. To show, that our theory can prove any of the formulae, it suffices to show, that our
theory can prove any of the axioms.
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Because both theories use the usual propositional axioms and rules, we will go into detail
only on the other axioms, with the exception of the modus ponens, because here we need to
consider what happens with the free variables. In the following, always assume that A and B
are formulae of QTq.

1. Modus ponens: This is exactly the theorem [24]

2. Quantifier axioms and rules:

(a)

(A {“(7)} — EIa:"A)A . (A {a@)])A — (32 A)>

i T

According to the previous lemma [22] this is the same as

—(a (7))A] — (Jz: 0) AP

rd

We define a new formula

B(2):=z:0NA® [a:%}

We now apply the axiom scheme of BONg to get:

5 <<a (¥)*

z

) Aa ()" 1= 3B (2)

<<a (V)" o AA®

ﬁ]) AMa (@)1 3 (2200 42 [ 5])

(a(¥))"

rd

((am)A Lo AAS

) Aa ()" 1= (3z:0) A

The typedness theorem 23 gives us that BONg - (7)™ : 7 — (a (7))” : 0. Since
the free variables ¥ of a are a subset of the free variables in the whole formula, we
have the correct types of them in the premise of this theorem. Therefore we can
deduce (a (?))A : 0 and so we get the desired.

(b) For the other quantifier rule

(A— B)” AS — BA
(327 A — B)A (x:0) A — BA

we have the following as induction hypothesis

77 — (A® = B?)
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since we do not a priori know if = occurs freely in A® — B”, we have two possible

cases

1.

ii.

x does not occur freely and therefore it does not occur in 7 : 7. Inthe following
tautology, set C' := 7., D:=A% FE:=B®and F :=z : o, respectively

(C—(D—E)— (FAD)— (C—E))

so we get
(m:a/\AA) — (7:?—>BA)
since x does not occur freely in A — B” and thus does not occur freely in

T 7, it indeed does not occur freely in 7 @ — B2 and so we can apply
the quantifier rule
(x:a/\AA) — (7:7—>BA)
(3z:0) AL — (¥ : & — B2)
now in the following tautology set C' := (3z : 0) A2, D := @ : & and E := B2,

respectively

(C—(D—EFE)—(D—=(C—E)

and this finally gives us
77— (3 :0) A® = B?)

x occurs freely in A® — B”, therefore x : ¢ must be one of the conjuncts in
7 : 7. Without loss of generality assume, that x : o be the first conjunct and

- = _ = =
7 =x:0A2 : 0. Inthe following tautology, set C :=z : o, D := 2’ : o',
E := A”® and F := B%, respectively.

(CAD)—=(E—=F))— ((CANE)—=(D—F))

So we get N
(a::o/\AA) — (ZL’/:UI—>BA>

since x does not occur freely on the right side of the implication, we can apply
the quantifier axiom and get

- =
(:v:a/\AA) — (x’:a’—>BA>
= .

(Fx:0) A® — (x/ o —>BA)

As in the previous case, now in the following tautology, set C' := (3w : o) AZ,
D:=7:7 and E := B?”, respectively

(C—(D—EFE)—(D—(C—E)
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and this finally gives us
77— ((3z : 0) A® — B?)

3. For equality axioms, we get the following:

(t[@] =0 t[T)" ew t[T]" = t[2]°

from @ : & and ¢ [7] of type o in QTg, we get ¢ [7'] : o and from typedness we get

definedness. And therefore t [77]” = ¢ [Z']” can be proved in BONg. This happens
by build-up of the term; for variables and constants, this is an axiom in itself and for
the application of a function, we can get the equality from the induction hypothesis.

(b) (s =0 1) = (t =5 5)

This in itself is an axiom of BONgq.

() (a=s0)N(b=4c)— (a=4,c)

But this also is an axiom in itself.

(@) (a[T) =, b[Y]) = (c[Z]a[T] =, c[Z]b[¥])

V) = (c[Z]a[@] = c[Z]b[¥])"
71°) = (c[21%a[@]" = c[Z1°0[7]°)

in this case, the types are noteworthy: because of the nature of the typed calculus,

((a[@] =+ b
s (a 7% =b

¢ actually can not have just any arbitrary type, but it must be of type ¢ — 7 for
otherwise this would not even be a formula. From a [7]A =b [7]A, we immediately
get ¢[Z]%a[Z]" ~ c[Z]°b[¥]”. In order to show, that this partial equality is
in fact a total one, we exploit the types: We get a [?]A co, b [7]A : o and also
0[7]A : 0 —> 7 from the typedness theorem . As such 0[7]A a [7]A : 7 and
therefore defined. And this gives us ¢[Z]" a [7]A =c [7]A b [7]A

(e) (a[T]=o—r b[Y]) = (a[T]c[Z] = 0[Y]c[Z])

(a[@) =o—sr b[W]) = (a[T]c[Z] = b[Y]c[Z])"
o (al@)® =0[F1%) = (a[@1°e[Z]° =0[F]° c[Z]°)

again, the types are important: a and b are of type 0 — 7 and c is of type o,

otherwise this would not even be a formula. From a[7]” = b[¥/]", we get the
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partial equality a [?]A c [7]A ~b [7]A c [7]A. From the typedness theorem , we
get, that a[Z]” : 0 — 7 and ¢[Z]” : ¢ and so, of course a [Z]” ¢[Z]" : 7. And
from that, we get that the partial equality is in fact a total one.

4. now for the defining equation for the constants.

(a)

)S =t

= 1% e koty® =2

(kzy =, )" e (kay x

and the last is an axiom of BONgq.

(szyz =, (22) (yz))" ovs szPy? 2> = (z2y”) (2°27)

notice, that in BONg we only have the partial equality sz®y®z> ~ (z2y”) (z222)
from the axiom. On the other hand, from the type of s in QTq, we know that x is
of type p — (6 — 7), y of type p — o and z of type p, respectively. From the
typedness theorem [23] we of course can get those types also in BONg, apart from
that, we also have the type of s, which gives us — together with the types of z,y and
z— (xAyA) (mAzA) : 0. Therefore the partial equality is actually a total one.

(rzyOn =, :B)A e ooy Yyt 0y = 22

this is an immediate consequence of lemma together with the types of 2% and

ye.

(rey () = y (rzyz) 2)° e recyz®y® (ZA), = y* (recyaz”y”2?) 2

this is an immediate consequence of lemma , together with the types of 22,y and

22,

5. For the arithmetical axioms, consider the following:

(a)

(@ =ny »a=ny)" e (12) = (1) = (2°) =y°

From the typedness theorem , we of course get, that ® : N and 2 : N. The
following line is an instance of an equality axiom of BONq

(@) = %) = ow ((+2)) = pw (5°))

we immediately conclude

because we know, that 2 : N and y* : N.

26



(On 2 2 o = (O = (22)')
Here, the type of 2’ is not enough, we need to get the type of x. Luckily, in the
typed system QTgq, 2’ can only be written, if = is of type N, for otherwise it would

not be a term of the language, but then we get from the typedness theorem 23] that

2® N in BONg. And from this we get the even stronger statement
ON # (Z'A)/

by using an axiom about the natural numbers.

(A(On) AV (A (z) = A(2))) » WA ()"
o AL (On) A (V2 N) (AA (x) — AL (91:’)) — (Vy : N) (AA (y))

and this is exactly the definition of the induction in BONgq.

6. For tree ordinals we have the following cases

(a)
1 A
(supe #q Og Asup™" (supe) =n—q €)
_ A
s (supe #q 0g)™ A (sup™ (supe) =n—sq €)
T (sup (eA) = OQ) Asup~! (sup (eA)) = b
From the typedness theorem , we get that e® : N — Q and we get from the
axiom the even stronger statement

supe # Og Asup™' (supe) = e

(a #q 0q — sup (sup’la) =q a)A
s (aA = OQ) — sup (sup_laﬁ) =a”
similar to the previous case, we can get a® : Q and so the stronger statement

a® # 0q — sup (sup’laA) =a®

()
((0), =a 00)" «~ (0q), = Oq

this is the case, provided we can show z : N; but in QTq x is of type N and therefore

we get x : N, so we can immediately apply the axiom and get the needed.

7. For the recursor we get the following:
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A A A A
(Rqeies0q =, €2)” e~ recqel e; 0 = €5

this is an immediate consequence of lemma , together with the types of elA and
A

62 .
(a #q 0q — Rqeiesa =, e1a ()\ZL‘.RQ@l@QGw))A
s (aA = OQ) — rechlAGQAoLA = elAaA </\9U.rec:QelA62A (aA)xA>

we first apply the typedness theorem 23| to e1, e5 and a. From that, we get the type
of a® and therefore, we can strengthen the statement — (aA = OQ) to a® # 0q. This,
together with the types of elA, 62A and a® and together with lemma [20| gives us the
needed.

8. For the induction on ordinal numbers consider the following:

(A (0q) AVa (a #q 0g AVzA (a,) — A(a)) — VaA (a)®
e A% (0g) A (Va:Q)(=(a=0g) A (Va:N)A* (a,) — A® (a))
— (Ya € Q) A% (a)

but in this case = (a = 0q) is equivalent to a # Oq, because we already have a : Q. And
so this gives us an instance of the induction scheme in BONgq.

5 The Theory BONq + p

We are able to embed an extension of the theory BONg into a well-known theory. By embedding
this extension, we implicitly prove, that the addition of the non-constructive p operator is
harmless, in other words, it does not change the proof-theoretical strength of BONg. The
intended meaning of the additional axioms for BONgq + p is the following
e 1:(N— N)— N
The non-constructive p operator is a total function that returns a natural number when
applied to any function of natural numbers to natural numbers.
e (e:N—N)A(Jz €N)(ex =0y) — e(ue) = Oy
This formula means, that for any (coding of a) function from natural numbers to natural

numbers, that has a zero, the pu operator returns a zero, i.e.

Definition 26. The theory BONg + 1 is an extension of BONg. In addition to all the axioms
and rules of BONg it has the following additional axioms for the non-constructive p operator:
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p:(N— N) — N

(e:N—N) A (JzeN)(ex=0y)— e(ue) =0y

6 The Theory PAgq

The theory PAq is an extension of the Peano arithmetic where inductive definitions are added.
PAq is slightly less minimalistic in the setting than ID;, but it proves the same set of arithmetic
statements. We will embed BONq + p into PAq thus showing that BONg + 1 is not stronger
than ID;. When we combine the knowledge from the lower bounds with the proofs of the
upper bounds, we get, that BONg and BONq + p are indeed equivalent to ID;. The typedness
statements can be expressed formally and totality of typed functions can be proved using the
induction principles.

In order to embed BONg + i in PAq, we first define a ,simulation relation. The intended
purpose of it is, to simulate the behaviour of the application in BONgq + u. Next, we define
a valuation of term from BONg + p to PAg and finally a formula translation from BONg + p
to PAg. Other than in the lower bounds, PAg immediately proves the translated BONgq + p
formula without the need of adding any premises, this will be proved in the embedding theorem.

6.1 Definitions of the language, terms and formulae for PAq

Definition 27. The Language £ (PA). Let £ (PA) be the usual first-order language of arith-
metic with number variables a, b, ¢, u, v, w,x,y, z,... (possibly with subscripts), the constant
0, as well as function and relation symbols for all primitive recursive functions and relations.

The terms and formulae are defined as usual.

Remark 28. We assume the existence of a primitive recursive coding of sequences with seq,, (t)

being fulfilled iff ¢ is a sequence number of length n. We write t = (sq, ..., S,—1) to express, that
t is (a coding of) the sequence sy, ..., s,_1. Furthermore, we write (¢), for the i-th component
S; of t.

In order to define the language needed in the rest of the thesis, we need an intermediate step,
where we extend £ (PA) with a new n-ary relation symbol P, not belonging to the language in
order to get L (PA, P). An L (PA, P) formula is called P-positive, if each occurrence of P in
the formula is positive. We call P-positive formulae which contain at most 7 free inductive

operator forms, and let A (P, 7) range over such forms.

Definition 29. The language £ (PAq). Let £ (PAq) be an extension of £ (PA). L (PAq) contains
a countably infinite supply of ordinal variables «, 3,7, ... (possibly with subscripts), a new
binary relation symbol < for the less relation on the ordinals and an (n + 1)-ary relation symbol
P4 for each inductive operator form A (P, 7) for which P is n-ary.

The number terms of L (PAq) are the number terms of £ (PA); the ordinal terms are the
ordinal variables.
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Definition 30. £ (PAq) formulae.
1. If R is an n-ary relation symbol of £ (PA), then R (sy,...,s,) is an (atomic) formula.
2. (< B), (a=pB) and P4 (o, ) are (atomic) formulae. We write P§ (&) for Py (ar, 3).
3. If B and C' are formulae, then =B and B V C are formulae.
4. If B is a formula, then JdxB are formulae.
5. If B is a formula, then daB are formulae.
6. If B is a formula, (3o < §) B are formulae.

Notation 31. We use the following notations; for every £ (PAq) formula B, we write B* to
denote the formula, which is obtained by replacing all unbounded quantifiers (Q3) in B by
(QB < «). Additional abbreviations are:

BAC :=—(-BV-C)

Ve B :=—-dx—-B
VaB := -da—-B
(Va < f)B:==(3Ja < p)-B
Pi*(¥):= (3 <) P{(F)
PA(¥) = 3aP§ (¥)

Definition 32. An £ (PAg) formula is called a % formula if all negative existential ordinal
quantifiers are bounded; correspondingly, it is called a II® formula, if all positive existential

quantifiers are bounded.

6.2 Definition of PAg and basic properties
The axioms of PAg have the following intended meaning:

o P§(3) 0 AP, D)

— This means basically, that the set P4 is built up inductively, that is, an element of
P, is always added by applying the inductive operator A.

e B — JaB® for ¢ formulae
— If a statement is true, then there must be a layer from which onwards it holds.

Definition 33. The Theory PAq has the following axioms:

1. Number-theoretic axioms. These comprise the axioms of Peano Arithmetic PA with the

exception of complete induction on the natural numbers.
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2. Inductive operator axioms. For all inductive operator forms A (P, 7)

P (%) ¢ A(P;*,F)

3. Yf-reflection axioms. For every Y-formula B:

B — daB®

4. Linearity of the relation < on the ordinals.

ataN(a<fAB<y—=a<y)ANla<fVa=pV<a)

5. Induction on the natural numbers. For all formulae B (x):

B(0) A (Vx) (B (x) = B(2')) — (Vz) B ()

6. Induction on the ordinals. For all formulae B («):

Va (V8 < a) B(f) = B(a)) = (Va) B («)

According to [§], the following fixed point theorem holds in PAg, the proof of which is omitted:

Theorem 34. For all inductive operator forms A(P, @), and all formulae B (')
PAQF YT (P (T) & A(Py, T))

PAQFVZ (A(B, @) = B(7)) = V7 (Py(7) = B(7))

Because PAg contains the induction scheme on natural numbers, the following so-called least
element principle is provable in PAg. We will use this property in the embedding theorem. The
intended meaning is, that from having the existence of a number fulfilling a property, we also
get, that there is a least such number.

Remark 35. For all £ (PAq) formulae A:

PAg F JzA (z) — Jx (A (z) A (Vy < ) -A(y))

7 Embedding BONq + 1 in PAq

7.1 The inductive simulation operator and basic properties

In the following, we assume the existence of a numeral ¢ that is not a sequence number, for all

the constants ¢ of BONg + p. Those numerals are all different, so that no clashes can occur.
This simulation relation has two parts, the ,simulation” and the definition of ordinal num-

bers. This is needed, because we need the ordinal numbers to define how the application works
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and vice versa. By a parallel inductive definition of both sets, we can define one inductive
operator for both sets. The parallel induction is done by considering sets consisting of elements
of the forms (z,y, z,0) (for application) and (a, 0,0, 1) (for ordinals); obviously the application
part is disjoint from the ordinal part. The defining formulae, however, use the whole definition
of the operator. Most of the formulae only describe how the result of the application of terms

is supposed to be coded, whereas the other axioms have the following intended meaning:
o seq, (z) A (x), = kA (z), = 2
this is the k-combinator; <E, s> t, yields s.
o seq; () A (x), =5A (Fv,w) (P ((2);,y,v,0) AP ((x)y,y,w,0) A P(v,w, z,0))
this is the s-combinator; (s, s, t) u yields (su) (tu)
o seq, (z) A (x)y =dn A (z); =y Az = (2),
this is the definition by numerical cases for u = v; <@, s, t, u> v yields s
o seqy (z) A (z)y =dvA(z); #yAz=(z),
this is the definition by numerical cases for u # v; <a§, s, t, u> v yields ¢
e seq; () A (x), =do Ay =0 Az= (x),
this is the definition by ordinal cases for Oq; <E§, s, t> 6; yields s
d seq3(x) /\(x)() :a;/\y 7£6§\2/\P(y,070,1)/\22 (SL’)2
this is the definition by ordinal cases for an ordinal v other than Og; <8§, s, t> u yields ¢
o &= Az = (s0b,y)
sup applied to y is just simply the pair (sup, )
° = <sup_1,6;> Az =0q
sup~! applied to 6; is the constant 6; function.
. :U:s?p\*l/\(Ele)(y: (sup,e) Az =e)
sup~! applied to a sup yields the inner term
o T = <sup*1,6;> Az =0q
sup~! applied to 6; is the constant 6; function.

e r =/ AYvIw(w#O0AP(y,v,w,0))Az=0

this is the first case of the non-constructive p-operator. If the function y does not have a
zero, then p applied to it yields 0.
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e t=0AP(y,2z,0,0) AVuv(v<z— (Fw)(w#0AP(y,v,w,0)))

this is the second case of the non-constructive p-operator. The p-operator yields a zero

of the function y, that is, y applied to the result z is 0. Also it yields the smallest such

value, that is, all values smaller do not yield 0 if y is applied to them.

Furthermore, we have formulae for ordinal numbers:

e z =0q

We assume, that 6; be an ordinal number

e Je(z = (sup,e) AVuTa (P (a,0,0,1) A P (e,u,a,0)))

if there is an e, such that e - u is an ordinal for arbitrary natural numbersu, then sup e is

an ordinal.

Definition 36. We define an operator form A (P, z,y, z,q), whereas P is an 4-ary relation

symbol not belonging to the language. Let A; (P, x,y, z) be the formulae

x:R/\z:<E,y>

sedy (2) A (z)y = kA (2), = 2

r=SAz=(s5Y)
seqy () A (2)y =8 Az = (5, (2);,v)
seqs (x) A (z), =S A

sed, () A (), —dg Nz = <aga (x)1>y>

seds () A (2)y = do Ay = 0g Az = (),

squ(x)/\ I)():a;/\y?é@/\P(yJO?O?l)/\Z:<I>2
:E:S/U\p/\Z=<5/U\P7y>

)

x:sup—l/\yzag/\z:<sjp?1,y>

—

x =sup~t A (3e) (y = (sup,e) Az =e)
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xr = <sup’1,6;>/\z:6; Ago
r=paAYo3w(w#O0ANP (y,v,w,0)) Az=0 Ay
r=0ANP(y,20,0)AVo(v<z— (Fw)(w#0AP(y,v,w,0))) Ay

Further let Ag (P, z) be the disjunction of the formulae
Tr = OQ

Je (x = (sup, e) AVu3a (P (a,0,0,1) A P (e, u,a,0)))
Then

A(Pz,y,z2,q) = (qz()/\\/AAP,:c,y,z)) V(g=1ANy=0Az=0AAq(P,x))

7.1.1 The functionality of the simulation relation

The next result gives a functionality property in the last argument of the formulae P$ (z, vy, 2, q)

and Py (x,y, z,q) which are induced by the operator form A (P, x,y, 2, q).

Notation 37. We use the abbreviations T (z,y, z) and O (a) for P4 (z,y, z,0) and P4 (a,0,0,1),
respectively.

Lemma 38. PAq proves:

vave,y,u, (T (o, u) AT (2,9,0) = uw=10) (23)

YV, y, u, U(T(CL’, Y, u) NT (z,y,v) — u= v> (24)

Proof. We prove the first property by induction on the levels a of the inductive definition. Let

o (y) =V, y,u, 0 (T (x,y,u) AT (2,y,v) = u =)

The induction scheme says, that

Va (V8 < a) ¢ (8) = ¢(a)) = (Vo) (¢ (a))

Therefore, we assume that 77 (z,y, u) AT? (z,y,v) = u =v for all 8 < a and T (z,y,u) A
T (z,y,v) for arbitrary variables z,y,u,v. We want to show u = v from these assumptions,
if we manage, we are done. In each defining clause of A (P, z,y,z,q), we get some condition
on the last argument. The condition on the last argument has different forms and we have to
consider different cases:

e It is an equation (cases , , , , , O S I o e o U W U U VO

|A1gl |Ag| and [A9q]). So from the induction hypothesis we get v = ¢ [z, y] and v = ¢ [z, y].

Then we get u = v from the axioms about terms.
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e ltisy=u+1andy=v+1 (cases[4q and [A7]). Then u = v follows from the axioms
about terms.

e It is (Jeg) (y = (sup,ep) Au=eg) and (Tey) (y = (sup,e1) Av =e;) (case [A1g). Because
(-,-) is functional, we get that ey = e; and so u = v.

o Tt is (Gur,v1) (T7 (21,4, ur) A TP (22,9, 01) A TP (ur,v1,u)) and
(Fug, v2) (TP (w1, y,u2) A TP (2,y,v2) ATP (uz,v9,v)) (case .

The induction hypothesis gives us, that 77 (x,y,w,) A T? (z,y, w2) — w; = wy. We
can apply the induction hypothesis to 77 (z1,y,u1) and T? (21,9, u2), to get u; = us.
From 77 (xq,y,v1) and T? (x2,y,v2), we get v; = vo. And so from T7 (uy,vy,u) and
TP (uy,v1,v), we get u = v.

o It is 77 (y,u,0), T? (y,v,0), Va (a <u— (Jwy) (wl £0ANTP (y,a, wl))) and
Vb (b < v — (3ws) (wa #0A TP (y,b,ws))) (case [Ay]). Assume u < v.
So Jw, (w1 £0ANTP (y, u,wl)). But 77 (y,u,0) and from induction hypothesis, we get
that w; = 0 which is a contradiction. Therefore u < v cannot hold. Analogously v < u

cannot hold and therefore u = v.

Putting all those together, we actually get, that our premises give us u = v. Therefore the

premise of the induction scheme, i.e. (VG < )¢ (8) — ¢ («), holds, and we get the conclusion
Vavx,y,u,v (T (x,y,u) AT (z,y,v) = u =)

So we showed the first statement of the lemma. And the second is just existential quantification
over the first one. m

7.2 Valuation of terms of BONq+ 1 in PAg and basic properties thereof

Because a direct translation of BONg + 4 terms does not make sense, we go through an inter-
mediate step of defining the valuation of terms. This valuation gives us a PAq formula V, (z)
with the intended meaning: the term ¢ has the value z. The most interesting case here is, how
the application is interpreted: The term s -t has the value that is obtained by putting in the
values of s and ¢ into the simulation relation. So we see, that the simulation relation is directly
used to define, how BONq + p terms are interpreted in PAg.

Definition 39. Valuation:
1. V,(2)— z=2x
2. Vg, (2) — 2z = sy
3. Vo, (2) — z=pn
4. Vo, (2) — 2 =sg

5. Vk(2)|—>z:/k\
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6. Vs(2) —> 2 =75
7. Vo (2) —> 2 =0
8. VdN(z)l—%z:gE
9. Vy, (2) — do
10. Vo, (2) —> 2 = 0
11. Vg (2) —> z = sup
12. Vgpp1 (2) ¥— 2 = sw/p\—1
13. V,(2) —2=1
14. Vi (2) — J23y (Vs () AV () AT (2,9, 2))

One would expect, that the value of a term should be functional, that is, if  and y are

values of a term ¢, then x = y. This property is indeed true:

Remark 40. Notice, that as a direct consequence of Lemma for any term ¢
PAqFV, (2) AV, (y) mz =1y

7.2.1 Substitution lemma of the valuation

Remark 41. Furthermore one would expect, that the valuation should play nicely with substi-
tutions. It should be possible to replace a substitution in BONg + i with a substitution in PAq,
whereas the term substituted in PAq should be the value of the one substituted in BONgq + p.

As is proved in the following lemma, this is indeed the case.

Lemma 42. Let t, s be terms and x a variable of L(BONgq). Then

Vi (u) = (Ve (v) < Vi (v) [u/z])
Proof. We prove this by induction on the build-up of s. O

1. s==x
Vs[t/m] (U) =V, (U)

Vs () [u/z] <=V, (v) [u/z] <=z =vu/z] <= u=v

now consider the following
Vi(u) AV, (v) 2 u=wv

this gives us the implication from the left to the right
Vi (u) ANu=v— Vi (v)
and this gives us the other implication
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2. x does not occur freely. Then
Viit/a) (v) <=V, (v) <= V, (v) [u/x]

because V does not introduce free variables.

3. SEtl'tQ

Vir/a) (V) <= (3y) 32) (Virtesa) (W) A Vigpega) (2) AT (y, 2,0))

by the induction hypothesis this is the equivalent to

< (Fy) (32) | Ve, (v) [u/ax] AV, (2) [u/2] AT (y, 2,0)
t free
< (Fy) (32) (Ve, () AV, (2) AT (y, 2,0)) [u/]

— V, (v) [u/z]

7.3 The translation of BONg + i formulae to PAg formulae and basic

properties thereof

We translate BONg+pu formulae to PAq using the valuation defined above. The logical operators
and quantifiers are simply passed through, whereas the atomic formulae are translated using the

valuation. The intended meaning of each of the translations for atomic formulae is as follows:
o (t1)° =32V, (2)
a term is defined, if it has a value
o (s=1)°:=3x(V,(2) AV, (2))
two terms are equal (remember, that equality implies definedness), if they have a common
value
o (N(1)® =3z (Vi (2))

a term is a natural number if it is defined and the value is a natural number. The second
part can be skipped, however, since all the numbers are natural numbers anyway; the set
of natural numbers is not defined inductively, but is a fixed part of the definition of PAg.

()% :=3x(Vi(2) AO(x))

a term is an ordinal number if it is defined and the value is an ordinal number. Here, the
second part does indeed make sense, because we defined the set of ordinal numbers as a
part of the definition of the simulation relation.
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Definition 43. Translation for formulae:
1 (t))° — JaV, (z)
2. (s =)° — 3z (V, (2) AV, (2))
3. (N()® — 3z (V, ()
4. Q)Y — 3z (V, (z) AO (2))
5. (mA)¢ — A0
6. (AV B)Y —s AV B¢

7. (AwA)° — JzA©

7.3.1 Substitution lemma of the translation

One would wish for the translation of formulae to play nicely with the substitution of terms. If
a term t is substituted for the variable x in BONq + p, one would wish for this to be equivalent
to substituting the value of ¢ in PAg instead. The following lemma yields us, that this is indeed
true.

Lemma 44. Let A[z] be a formula and t be a term of L (BONgq). Then
PAG F V, (2) — <(A [t/2])% « A® [z/x])

Proof. We prove this by induction on the build-up of A. Assume V; (2):

1. If A=s].

(s [t/2])® = (s[t/2]1)° <= Ty (Ve () <= 3y (Vs (y) [2/2])
= (Fy (Vs ))) [2/2) <= (s1)° [2/x]
2. If A =s; = s9.
(51 = 52) t/a])® <= (51 /2] = 82 [t/21)° = Ty (Vo) (0) A Vet ()

Fy (Vs, () [2/2] AV, (y) [2/2]) <= By (Vs, () A Vs, (1)) [2/2]

= (s1=52)" [2/a]
3. If A=N{(s).
(N () [t/2])® <= (N (s[t/2])° <= 3y (Vi) (v)) <= 3y (Vs () [/2])

= (3y (Vs () [z/2] <= (N (5))° [2/2]
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1 IEA=Q(s)
(Q(s) [t/2])® = (Q(s[t/2])® <= 3y (Ve (1) A O (1)) <= 3y (Vajysa) () A O (1))
— 3y (V. (y) [z/2] A O (y)) <= Gy (Vs (y) NO 1)) [2/2] <= (Q(s)) [2/2]
5. If A= -B.
(At/2))® <= ((=B) [t/2))® <= (=(B[t/a]))® <= = (B[t/z])°

= - (B®[2/1]) <= (=B)? [2/1] <= (=B)? [2/1] <= A [z/]

6. f A=BVC.
(A[t/a])® <= (BV C) [t/a])° <= (Bt/z] v C[t/a])®
= (B®[z/a] v C° [z/a]) <= (B v C°) [z/a]
— (BV O’ [z/1] = A®[z/x]
7. If A= (3y) B.

(Alt/2])® <= (@yB)[t/2))° = 3y (Bt/2]))° <= 3y (B t/2]°)

— Ty (B [z/2]) <= (FyB®) [2/z] <= (3yB)* [2/x]

— AV [z/2]

7.4 The embedding theorem for BONg + i into PAq

In this section we prove the embedding theorem for PAg. That is, for every provable formula
of BONg + p the translation can be proved in PAq. This immediately yields us, that BONg + p
it at most as strong as PAqg. Of PAq we know, that it is as strong as ID;. And so we get, that
BONq + 1 is at most as strong as |Dq, which yields us the equivalence of BONg + p with ID;.

Theorem 45. Embedding BONg + y1 in PAq. Let A[Z] be an £ (BONg) formula with all free
variables exposed. Then

BONg + - A[7] => PAq - A[Z]°

Proof. To prove the assertion, it is enough to prove, that the translation works for every axiom
of BONg + p. Consider the following cases:

1. Quantifier axioms
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(a) (Als/z] Asl— FzA)® ew Als/2]0 A (s]) = 3zA)°.

= (A[s/2])® ATV, (y) — A (25)
Lemma [44] gives us the following, whereas we choose z to be a fresh variable:

V. () = ((Als/a))® & A° [z/a])
So in particular the following holds:

Y, (2) = ((Als/a])® = A% [z/a])
In PAg we have the quantifier axiom

A [z/x] — JzA°
those two put together yield
V, (2) = ((A [s/2])¢ — axAO)

since now z is not occurring freely in the conclusion, we may apply the quantifier
rule of PAg to get
(3y) V, (v) — ((A [s/2])% — axAO)

and then with some tautologies, we get
((A [s/2])% A 3yV, (y)) 5 3zA0

and that is what we need.

A— B \° A% — B®
— W —
JxA — B JxA® — B¢
the latter is a rule of PAq.

2. Definedness axioms

(a) al for some constant or variable a. Then A® e« a )¢
al®<= WV, (z) <= Iz (z = 0)

and the latter holds of course because @ is such an z.

(b) s-tl— sl At].
(s-tl= sLALDT em (s-t1)% = (s)7 A ()
v 32V () — F2V () A FyVe (y)

40



Jz3uTv (Vg (u) AV (0) AT (2,9, 2)) — JxV, () A FyV, (y)
we get the existence of V, and V, in the premise, and so the right side holds as well.

(c) (s=1) = siAnt]

(s =1) = sd AtD) ew 3 (V, (2) AV (2) = 3y (Vs () A 32 (Vi (2))
(d) N(t) = t]

(N(8) = t1)% e N (1)® = (£1)® o T2V, (2) = YV, (y)

(e) Q(t) = tl

Q) = 1) e Q)% = (1) & Tz (Vi (2) A A (2, 1)) = FyVi (y)

3. BEquality axioms
(a) t =t for some constant or variable.
(t =) ew 3z (V, (z) AV, (2))

= Jr(r=tNr=t)< Jz(x=1t)

the existence is fulfilled for the x being ¢ and so it clearly holds.
(b) (s =) = (t =)

(tr =ta) A(ta = t3) = (t1 = 13))°

= 3w (Vi (2) AV, (2)) Ay (Vi, () AV (y) = 32 (Vi (2) AV (2))

from remark 40 we get, that in fact x = y. So we get Jv (Vy, (v) A Vi, (v) AV, (v))
and therefore the conclusion holds.

(d) N(s) A (s =1t) = N (1)
(N(s) A (s =) = N(£)% ew 3V, (2) ATy (Vs (9) AV () = 32 (Vi (2))

(€) Q(s)A(s=1) = Q(t)
Q(s)A(s=1) = Q(t)°

e 3z (Vs (2) A O (2)) ATy (Vs (y) AV (y)) = 32 (Ve (2) AO(2))
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we get, that x = y = 2. So we get, that
Fz (V, (2) AO(2)) A3y (Vs (y) AV (y) = T2 (Vs (2) AV, (2) NO(2))

which gives us what we need

(f) (81 = tl) VAN (82 = tg) — (81 © 89 >ty - tg)
((s1=t1) A (s3=ts) = (s1- 83 =11 - 15))°

e (Sl = tl) VAN (82 :tg) — ((81 . SQ\L Vi tQ\U — 8189 =13 tg)

3wy (V, (21) AV, (21))

A Fxa (Vi (22) AV, (22))
—  dz (Vsl.sg (Z3>> V dzy (th'tz (24))
= Fz5 (Vs (25) A Vi, (25))

given the first two clauses, the third clause (the disjunction) implies the conclusion.
Therefore, we can assume them and only need to prove the conclusion. We need to
show, that

EIZ3 (V81~52 (23)) V dzy (Vtrtz (24)) — 3Z5 (VS1'S2 (Z5) A Vtrtz (25))
the premise is equivalent to the following

Jzg3x3ys (Vs, (23) AV, (y3) AT (23,y3, 23))
Vo 3zy3243ys (Vi, (24) A Vi, (ya) AT (24, Y4, 24))

from the premise we get z3 = x4 and y3 = y4 and so from T (x3,ys 23) and

T (x3,ys, z4), we get that z3 = z4. Therefore, we can join the two statements:
EIZEIIEIy (Vsl (I) A Vh (Z‘) A V52 (y) A Vtz (y) NT (ZE, Y, Z))
and this is equivalent to the conclusion.

4. Typedness axioms

(a)
(On = N)© s (N (0n))® s T2V, () <= Fz (2 = 0)

(b)
(suc: N — N)© «ms ((Vz : N) (sucz : N))¥ v (Vo (N (z) = N (sucz)))®

= Vz (FyV, (y) = F2Fudv (Ve (u) AV, (0) AT (u, v, 2)))
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from this we get, that v = y and that v = suc, therefore our conclusion requires,
that 7T (suc,y, ), but that is true for z =y + 1.

()
(0q : )% v (2(0q))® & Tz (Vo, (1) A O ()

so we get, that © = 6; to fulfil the left part of the conclusion. From the definition
of P4, we get, that O (0q) holds. Therefore the whole statement holds.

(d)
(sup : (N — Q) — Q) e ((Vz : N — Q) (supz : Q))°

e (Vo (Vy (y N = 2y - Q) — (supz : Q)))¢
s (V2 ((Vy (N (y) = Q(2y))) — Q(supa)))®
s Y (Vy (31 Vy (v1) = Fug (Vay (v2) A O (v2)))) = Fvs (Vsups (v3) A O (v3)))

so we get, that v; = y, because y is a variable.
= Vz (Vy (FvaFvyFus (Vy, (v4) AV, (v5) AT (v4, v5,02) A O (v2)))
— Ell)g (Vsupm (1}3) ANO (Ug)))

we get, that vy =z and v =y

— Vz ((Vyflvg (T ($, Y, ’U2) A O (UQ))) — El'US (Vsupz (U3) NO (03)))

= e (930 (T (5,0 A O 1)
— Jus (Bus3vr (Ve (v6) A Vi (v7) AT (06, v7,v3)) A O (vg)))
we get, that vg = sup and v; = x
= Vo ((Vy3va (T (2,y,v2) A O (v2))) — Fvs (T (sup, =, v3) A O (v3)))
we get, that vz = (sup, )
= Va (Vy3vz (T (z,y,v2) A O (v2))) = O((sup, z)))

in order to prove this, we assume the premise. Consider what is A (P4, w,0,0,1) for
w = (sup, x):

A (PA, w, 0,0, 1) <~ Juy (’U) = <S/Ll\p7 w1> A YwgTws (@ (wg) A T(wl, wa, wg)))
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we get, that w; =«
<= YwyJws (w = (sup, z) A O (w3) AT (x, ws, w3))

— vy;lwfﬂ (w = <§‘I\p7$> NO (w3) A T(l’,y,wg))

we get, that ws = v,
= VyTuy (w = (s0p, 2) A O (v2) AT (2,9, 1))
From Va (A (Py, (s0p, ) ,0,0,1) — O ({sip, z))), we get
VyTvz (O (v2) AT (2,9, v2)) = O ((sup, z))
This is what we need.
(¢)
(1 (N — N) —> N)® s (Ve s N — N) (e : N))® oo (Ve (€ : N —> N — pe s N))©
s (Ve ((Vz : N) (ez : N) = e : N))© ews Ve (((Vw I N) (ex : N))© = (e : N)<>)
o Ve (‘v’x <(:1c :N)® = (ex : N)<>) S (e N)<>)

now we apply the definition of the translation. Consider, that (z : N)Q is true for
every variable, because it translates to 3z (V, (2)) which translates to 3z (2 = )

which is obviously fulfilled for z = x. Therefore we can replace it with T.
= Ve (Vo (3y (Veo () = 32 (Ve (2)))
now we apply the translation of the application and get
<= Ve (Vo (Jy (FuiFug (Ve (ur) AV, (ug) AT (u1,u2,7)))) = 32 (Ve (2)))
so we get us =z and u; = e
= Ve (Yo3y (T (e, 2,y)) = 32 (Vpe (2)))
according to the definition of the valuation, this is equivalent to
= Ve (Vz3y (T (e,z,y)) — Tz (Fug, us (V, (ug) A Ve (ug) AT (uz, ug, 2))))
we immediately get, that uz3 = 1 and uy = ¢
<= Ve (VaIy (T (e,z,y)) — Iz (T (i, e, 2)))

in order to prove this statement, we assume Vx3y (7 (e, z,y)) for an arbitrary e and
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prove the conclusion. We consider two cases:

i. VaVy (T (e,z,y) — y # 0). If we apply the fixed point theorem to T (ji,e, 2),
we get that 3z (T (1, e, 2)) is fulfilled by z = 0, according to

ii. = (VaVy (T (e,x,y) — y # 0)) and this is equivalent to 3z (T (e, z,0)). By ap-
plying the fixed point theorem in this case, together with the premises, we get

32 (T (i, e, 2))

< 32 (T (e,2,0) AVo (v <z = FJw(w#ONT (e,v,w))))

When we apply the least element principle from remark [35] to the premise, we
get
Jz (T (e, z,0) A (Vy < z) (=T (e,9,0)))

when we combine the premise Vz3y (T (e, x,y)) with the previous line, we get
Fz (T (e, x,0) A (Vy < 2) (=T (e,y,0) A Ju(T (e, y,u))))

and =T (e,y,0) AT (e,y,u) gives us, that u # 0 AT (e,y,u) and that is what
we need.

5. Defining axioms for the constants

(a) key =z
(kst = 5)¢ e Iz (Vi (2) AV, (2))

<= Jz (FugFug (Vis (ug) A Vi (ug) AT (ur,u9,2)) A Vg (2))
<> FzFuy Fug (Vi (ur) A Vi (ug) AV (2) AT (uqg, ug, 2))

pes ElZEIUlzl’(LQElUlElUQ
(Ve (01) AV (02) AV (u2) AV (2) AT (ur,uz, 2) AT (v1, 09, u1))

but this only can be true, if v, = z and v; = E, because we have Vg (v5) AV, (2) and
Vk ('Ul).

< JzFuyFus (Vs (2) ANV (ug) AT (ug,ug, 2) NT </k\, z, Ul))

in order for 7 (R z, ul) to be true, uy = <R, z> If we set u; thus, we do not need

to require T (E, z,u1 ), because this is always the case and so we get

<> JzTuy (Vs (2) ANV (ug) NT <<R z> , U, z))
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according to , T (<E, z> , U, z) is true for any z and us.
<= Jz3us (Vs (2) AV (ug))

= (s} At])°

From the definedness axioms of BONq + p this follows from kst = s and since we
proved the translation for the definedness axioms, this yields the required.

sab| Asabc ~ (ac) (bc) We can split this conjunction into two separate statements.

First we show the definedness:
(sabl)¥ v 3z (Vogy (2))

<= 3231y (Vea (1) AV (12) AT (Y1, 92, 2))

— Jz3y Jyo 2o
(Vs (1) AV, (22) AT (21, 22,51) AV (y2) AT (Y1, Y2, 2))

from V, (1), we get x1 =5, 29 =a and yo = b
< Jz3y; (T 5,a,91) AT (y1,b, 2))
From [A3] we get that y; = (5, a)
<= 3z(T ((s,a),b, 2))

From[A4 we get that z = (S, a, b), whereas z is such a term, that fulfils the condition
T ((s,a),b, z), this yields the required.

(sabe ~ (ac) (be))® e~ ((sabcl V (ac) (be) L) — (sabe = (ac) (be)))®

if neither side is defined, the statement is true, therefore we assume that at least one

term is defined and we need to show the equality. Consider the following

Vsabc (Z)

= T (Ve (21) AV, (22) AT (21, 29, 2))
= T (Vau (23) AV, (24) AT (25, 24, 21) AT (21, ¢, 2))

<~ El? (VS (565) N Va (LCG) A T (%5, Te, .’133)

A T(I’g,b,xl)/\T(.ThC,Z)>
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We get that 25 =35
— 37 (T 5, a,25) AT (23,0, 21) AT (1, ¢, 2))
We get that x3 = (5, a)
— T (T (G, a),b,x1) AT (21,¢,2))

We get that x; = (5, a, b)
> (T ((5,a,0) ¢, 2))

The fixed point theorem yields T ({s,a,b),c,z) <> A(Pa, (s,a,b),c,z,0), we can
apply the operator and get the right condition of |[As| for P = P4. Therefore, we are
allowed to do the following.

< Ju,w (T (a,c,v) NT (b,c,w) AT (v,w, 2))
<= Jv,w (Voo (V) AT (b, c,w) AT (v, w, 2))
<= Fv,w (Vg (v) AV (W) AT (v, w0, 2))

= Vi) o) (2)

So we see that Vg (2) is equivalent to V(qe)se) (2). Now we can consider the trans-
lation

((sabel V (ac) (be) L) — (sabe = (ac) (be)))®
o (31 (Vaae (1)) V 322 (Viaoyve) (22))) = (32 (Veave (2) A Viaeyve) (2)))
because of the previous equivalence, we can rewrite the premise as
E|.I1 (Vsabc (.Z'1> A V(ac)(bc) (3:1)) \% Ele (Vsabc (-732) N V(ac)(bc) (-772))
< dz (Vsabc (x) A V(ac)(bc) (l’))
but that is the conclusion.

6. The axioms for natural numbers
(a) (Vz € N)(2' #0n Apn (2)) = 2)
(V2 € N) (2/ # On Apn () = 2))% ew (Vo (z € N = (2 # Oy Apy (o) = 2)))°

oms (Vz (z € N = (2' L AOnL A= (2 = 0n) A py (7)) = 2)))°

this is true if the premise implies each of the conclusions separately, so we can split
it into four parts:
i.

(Vo (z €N = 2/ 1)
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eV (Jy (Vi (y) = 32 (Vi (2)))
s VaTy3z (V. () = Ve (2))
<= VaIyTzTuIv (V, (y) = (Vs () AV, (0) AT (u,v, 2)))

we get that u = sy and v = ¥, so
<= Vrdy3z (V, (y) = T (SN, 9, 2))

But this is fulfilled for z =y + 1.
ii.
(Vz (z € N = 0y 1)®
o Y (y (Ve (y)) = 32 (Vo (2)))

but this is true for z =0
| (Vz (z e N = = (' = 0y))°
e YV (Jy (Ve (y) = 32 (Vi (2) A Vo, (2)))
g VazEIyEIZ (V:Jc (y) - 7 (V:v’ (Z) A VON (2)))

from Vo, (z), we get that z =0
= Va3y (Vi (y) = =Var (0))

= VoIyIz, s (V. (y) = = (Vg (21) AV, (22) AT (21, 22,0)))

we get that 21 = sy and 29 =y
<« Vady (V. (y) = =T (5n,9,0))

and from T (sn,y,0), we get that 0 = y + 1. But this is always false and so the

conclusion is always true.
‘ (Vo (z € N—pn(2') = f))o
s Yz (Fy (V, (1)) = T2 (Vo (2) A Vo (2)))
<> VxEIyElz (Vx (y) — (VpN(ax’) (Z) A VIE (’Z>))

we get, that z =y
= VaIy (V. (y) = Vouw) (v))

< Vady3z 3wz (Vo (y) = (Vey (21) A Vo (22) AT (21, 22, )))
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we get, that 1 = pn

—  Vredydz,dudv
(Vo (y) = (Vou () AV (0) AT (u,v,22) AT (PN, 22, 9)))

we get, that v = y and u = sy
= YaIyIry (Vo (y) = (T (58, ¥, 22) AT (PN, 72,9)))
from T (sn,y, 22), we get, that 2o =y + 1
= Vady (Vo (y) = T (Pn,y + L, y))

but the conclusion is true, because y +1 =y + 1

So if we put those four cases together, we get the required conclusion.

(b) (Vz €N) (z #0n — pnz € NA (pnz) = )
(Vo € N) (z # 0y — pnz € NA (pnz) = :lc))<>

e (Vo (z € N—= ((z) AONL A-z = 0n) = (pnz € N A (paz) = x))))<>

this is true, if we can get the conclusions from the premises.

N = <Vx(y1)
= (V2 (92) A Voy (1) A = (Vi (1) A Vo, (32))

— (VPNm (yS) A V(pNx)/ (yG) AV, (yG))>>

we immediately get that, yo = y4 = y¢ = y1 and y4 = y3.

<~ Vﬂﬂ? (Va: (y1) = <_‘VON (y1) = (VPNx (ys) A V(me)’ (?/1))))

— VzIy (Vz (1)

= (=2Voy (1) = (Vpua (5) A Vs (y7) A Ve (y8) AT (Y7, Ys, y1)))>

we get that y; = sy and yg = ys

S VJ,’H? (Vg: (yl) — (_'VON (yl) — (VpNx (y5) A T(ST\U Ys, yl))))
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we get, that y; = y5 + 1
= VrAY (Vo (s +1) = (Voe (45)))

— VrIYy (Vo (ys +1) = (Vo (Wo) A Ve (y10) AT (Yo, Y10, ¥5)))

we get, that yg = py and 1190 = y5 + 1
= VI3Y (Vo (ys+1) = T (pn,y5 + 1, 95))

and the conclusion is true, because x5+ 1 = x5 + 1

(c) A(On) A (Vo : N) (A (z) = A(2)) = (Vy : N) A(y)
(A(On) A (Vo : N) (A (z) = A(2)) = (Vg : N) A (y)°
= (AN A (V2 : N) (A () — A2)" = (Vg : N) A ()°
we can apply the substitution lemma [44] to A (Oy) to get
= A O) AV ((2:N)° = (A@)° > A@)°)) vy (N = A)°)
in this case we apply the substitution lemma repeatedly to get
= A% (0) AVz (3uV, (u) = (A (z) = A% () = Yy (FvV, (v) = A® (y))

but uV, (u) and FvV, (v) are both always true, because x and y are variables. And
so, we get
> A% (0) AVz (A9 (z) = A% (2))) — Vy (A° (v))

but this is an instance of the induction scheme in PAS,.
7. Definition by numerical cases
(a) ue NAveNAu=v— dyryuv =z
(weNAveNAu=v— dyzyuw = z)°

s JT (Vy (1) AV (29) AV, (23) AV, (23) = Vyayue (24) AV, (24))

we get, that 1 =29 =23 =v=wand x4 ==z
= IZ (Vayayu (T5) AV, (26) AT (25, 76, 7))
we get, that x4 = u

= I7 (Vayay (27) AV (28) AT (27,28, 25) AT (25,1, 7))

20



we get, that xs = u

< 37 ( Vde (.Tg) A Vy (1’10) A T(I‘g, Z10, I7)

A T(x'ﬁ u, "L‘5) A T(I57 u, l’))
we get, that x19 =y
<~ 37 < VdN (ZL‘11> A\ Vm (1’12) A T(ZEH,ZL‘m, {L‘g)
A T (xg,y,x7) AT (x7,u, x5) A T(a:g,,u,x))
we get, that x1; = @ and 10 =
<:>EI? < 'T(a;,%-%) /\T($97?J7$7)
A T(iL’7, u, -TS) A T(Q?g,, u, .CC))

we get, that xq9 = <E§,x>

— 37 ( T(<aa,:c>,y,x7>
A T(x7,u,x5)AT(x5,u,x)>

we get, that x7; = <a;,x,y>
«— I7 <T <<a;,x, y> U, a:5> AT (x5, u,x))

we get, that x5 = <a§,x,y,u>

= 37 (7 (o) )

and so we get, that T<<g§,az,y,u> ,u,x) is fulfilled and so actually Vg iyuu (7)

which is the same as Vg zyu (). Therefore the conclusion holds.

u€NAveENAu#v— dyryuv = y This case is analogous to the previous one.
The main difference is, that from u # v, we get, that there cannot be one variable
z, that fulfils 3z (V, (2) AV, (2)) and therefore we get the case rather than [A;]

(m # n) «ws (m] Anl A= (m=n))?

s 32V, (2) A YV, (y) A =32 (V,, (2) AV, (2))

51



so we immediately get, that x # y. This leads to the conclusion, that
37 (Vy (21) AV, (22) A Vagstmn (22))
This statement can be fulfilled for 1 = s and x5 = ¢.
8. The axioms for ordinal numbers

(a) (e: N — Q) — supe # 0q Asup~! (supe) = e We split this into the two parts of the

conjunction.

| ((e: N — Q) — supe # 0q)¢

evs (Yn(n: N —en: Q) — (supel AOql A= (supe = 0:2)))<>

< Vnﬂ? ((Vn (1'1) — Ven (‘1'2) A @ (372))

= (Vaupe (23) A Vog (24) A = (3Y) (Vsupe (9) A Vg (y)))>

we get, that x4 =y = 6;

— VnI7T ((Vn (1) = Ven (22) A O (22)) — (VSUPG () A ~Vaupe (6;»)

= VnI7 ( V, (21) AV, (24) AV, (25) AT (24, 25, 22) A O (s)
— Vsup (ZL‘G) A\ Ve (1'7) A T(ZEG, X7, l’g)
A (Vsup (28) AV, (29) AT (:cg, o, @)))

we get, that 24 = x5 = sup, 9 = 21 and 27 = 19 = 14

— vn3T ( V, (21) A Ve (22) AT (24, 21, 22) A O (22)

— T (stp, w1, 25) A =T (s3p,1,0q) )
we get, that x3 = (sup, z4) and 29 = 2,

— VYnI7 ( Vo (1) AT (24, 21, 22) A O (25)

T (s 5a))

but we know, that 7 (SUp, x4, 2) is true iff z = (sup, z4) and Og # (SUp, z4).
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| ((f : N — Q) — sup™! (supe) = e)<>

e (VR (n:N—en:Q)— sup™' (supe) = e)<>

s YnAT (Vyy (1) A Ve (22) A O (29) = Veup-1(supe) (23) A Ve (23))

= vnI7 <vn (21) A Ve (22) A O ()
S Vapor (24) A Ve (25) AT (24, 75, 73) AV, (x3)>

—

we get, that x4 = sup~!
— V37 <Vn (1) A Von (22) A O (3)

—

— Vap (26) A Ve (27) AT (w6, 27,25) AT (sup~, 25,25 ) A Ve (5) )
we get, that x4 = sup and a7 = x5
— V37 (Vn (1) A Von (22) A O (2)
— T (sup, x3, x5) /\T(sf[:)?l,xg),xg) AV, ({L'g))
we get, that x5 = (sup, z3)

— Vn37 (Vn (1) A Vin (22) A O (2)

LT (@7 (SUp, 23) ,x3> AV, (£E3)>

from |A9| we get, that T (su/p:, (sup, x3) ,x3> holds.

— wa?(vn (21) A Ve (25) AV, (z9) AT (25, 29, 22) A O (23) — V., (xg))
we get, that g3 = x3 and z9 = 13
= VnI7 (Vn (21) AV, (23) AT (23,21, 22) A O () — V, (x3)>

but this is immediately true, because V. (z3) appears on both sides of the im-

plication.

(b)

a:Q— (a =% 0q — sup (sup_la) = a)

we assume the premises and need to show the conclusion. So we can assume
(a:QAa0q)°, that is

37 (Va (x1> NO <I1> A Va ($2) A _'Ely (Va (y) A VOQ (y))>
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we get, that xo = z1 and y = 6;2

37 <Va (21) A O (1) AV, (@))

so in particular, we get that x; # 6;, because otherwise, we would have V, (z1) A
=V, (21). Therefore the following holds

Jxy (:L‘l + 65 AV, (z1) NO (xl))
from z; # Og and O (x1), we get according to the definition of O, that
Je (21 = (sup,e) AVuTda (O (a) AT (e,u,a)))
now consider what is the statement of the conclusion
(sup (sup_la) = a)<>

<~ EI? (Vsup(supfla) ($3> AV, (l’g))

we get, that x3 = 1
== 37 (Voo (4) A Vaup-ta (25) A T (24, 75, 21))
we get, that x4, = sup
= IT (Vaup-1 (16) A Vo (27) AT (6, 27, 75) AT (SUp, 5, 1))
we get, that xg = s?p?1 and 7 = 11
— J7 (7’ <sf;;1,561,965> A 7'(5@,:175,:61))
from the premise, we get, that z; = (sup, e) for some e
= 37 (T (sup™ %, (5b, ) 25 ) A T (5, 5, (5T, €)) )

but now, we are in the case of the inductive simulation operator and immediately
get, that in order to fulfil the first conjunct, we get x5 = ¢

= 37 (T (sup, e, (sup, €)))

and this clause is true, because it is exactly the case

((0a), = 02)® » ((sup™'0a) n = OQ)<> e 3T (Visup-togyn (21) A Vog (21))
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we get, that x1 = 65
< 37 (VSUP_IOQ (.TQ) VAN Vn (Ig) VAN T (IQ, T3, 6;))
we get, that x3 =n

= 37 (Vaup1 (24) A Vg (25) AT (24,25, 23) AT (22,1,00) )
we get, that x4 = s?p\*1 and x5 = 65
= 37 (T (sup~,09,22) AT (22,n,00) )
we get, that 7o = <sup*1,6;>
— J7 <’T <<sup_1,®> ,n,6;>)
and yields the conclusion.

9. Definition of cases on ordinal numbers.

(a)
(u = 0q — dozyu = )°

= 37T (V, (1) A Voo (21) = Vageyu (22) AV, (22))

forxlzu:ﬁandm:x
=TT (Vagsg (13) AV, (24) AT (23, 24, )
for x4 = 6;, we get
— 37 (Vdnx (x5) NV (26) AT (25,26, 23) AT <9c3, 6;2, :c))
for xg =y

— J7 (Vdn (x7) ANV, (x8) AT (7,28, 25) AT (25,9, 23) AT (3@,,65, :L‘))
for x7 = gg; and zg = x, we get for x5 = <a;,x>, we get

37 (7 () ) 17 (125)

for x3 = <E§,x, y>
52 (7 (G220} )

but this is true, according to the definition of Pjy.
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(aEQAa#OQ—>d9$ya:y)<>

— Ju (va (u1) A O (uy) AV, (u) A Vo (us)
A =32 (Ve (2) AV, (2)) = Vaguya (ug) AV, (u4)>

we get up = us = a, u3:6;andu4:y
— I (O(a) N =32 (Va(2) AN Vo, (2)) = Vagay (us) AV (us) AT (us, us, 9))

we get ug = a
— U (@ (a) A =3z (V4 (2) A Vg, (2))
= Vage (ur) AV, (ug) AT (ur, us, us) AT (us, a, y))
we get ug =y
— I (@ (a) A =3z (V4 (2) AV, (2)) = Vg, (ug)
A Vo, (uo) AT (ug, utg, ur) AT (ur, g, us) AT(u5,a,y)>
we get ug = dg and ujp =
— JU (@ (a) A =3z (V, (2) A Vo, (2))
= T (do,w,ur) AT (ur,y,us) AT (s, y)>

we get, that u; = <E§x>

= 3T (0(a) A =32 (Va (2) A Voo (2)) = T ({da @) s ) A T (us,0.9)
we get, that us = <£,x, y>

= Oa) A 32 (Vy (2) AVo, (2) = T (<E§ z, y> a, y)
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consider, what we can get from the premise:
-3z (V, (2) A Vg, (2)) <= 3= <z:a/\z:6§> — —dz (a:@;) — a+#0q
so now we can use this equivalence and continue the proof.
= O(a) Aa #0q — T(<5§,:c,y> ,a,y)

and now we have have all the premises necessary to use case in the definition of
P4 to get, that indeed T <<d9, x, y> ,a, y) This concludes the proof of this case.

10. The non-constructive minimum operator.
((e: N — N) A (3z € N) (ex = Oy) — € (pe) = On)

e (e:N— N)Y A ((Fz e N) (ez = 0n)) — (e (pe) = 0n)°

first, we rewrite the translations of the parts, then we prove the formula:
(e: N — N)¥

— (Vo (z: N = ex: N)©
= Vz (Fy (Ve (y)) = 32 (Ver (2)))

the premise is true for y =z
< Vodz (V. (2))

we apply the definition of the valuation
< Vodz (Fu,v (Ve (u) AV, () AT (u,v, 2)))
we get, that u =e and v =z
< Vao3z (T (e, x, 2))
the next part to consider is the following:
(Fz € N) (ex = 0y)°

< Tz ((x eN)® A (ex = ON)<>>
<— dz (Hy (Vm (y)) A3z (Ve:v (Z) A VON (2)))

the first part (Jy) (V, (y)) is fulfilled for y = = and we get that z =0

= 3z (Ver (0))
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applying the definition of the valuation, we get
<= Jz (Ju, vV, (u) AV, () AT (u,v,0))

sowe get u=eand v==1x
< 3z (T (e,2,0))

The last part to consider is the conclusion:
(e (pe) = 0n)°
with the same arguments as before, we get
=y (Ve () AT (e,9,0))
and this can be further rewritten to
= (T (w.e,y) AT (e,y,0))
so the whole statement that we need to show is the following:
Va3z (T (e,z,y)) Az (T (e,x,0)) — Jy (T (1, e,y) AT (e,y,0))

to do so, we apply the fixed point theorem to 7 (fi,e,y). Knowing, that 3z (7T (e, x,0)),
we are in the case [Ayg]

Fy (T (i,e,y) AT (e,y,0))
< Jy (T (e,4,0) A (Vo) (v <y — Fw(w#O0AT (e,v,w))))

When we apply the least element principle from remark [35] to the premise, we get
Az (T (e, z,0) A (Vy < x) (=T (e,y,0)))
when we combine the premise Vx3y (T (e, z,y)) with the previous line, we get
Jz (T (e,z,0) A (Vy < z) (=T (e,y,0) A Ju (T (e,y,u))))

and =7 (e,y,0) AT (e,y,u) gives us, that u # 0 AT (e,y,u) and that is what we need.

. Transfinite induction scheme.

Assume, we have the premises given, e.g. assume
A(00)% A ((Va: Q) (a # 0g A (Vo : N) A(a,) — A(a)))®
If we from those premises can get the following, we are done:
((Va: Q) A(a)® <= (Va(Q(a) = A(a)))°
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we can pull through the translation <) to the inner formula
— Va ((3;5) (Vo (2) AO(2)) — A (a><>)

notice, that in this formula, a is just simply a variable of PAq, and therefore V, (z) =
a=zx.

= Va (@ (a) = A (a)<>>
consider, that O (a) in PAg is the same as (Ja) (0% (a))

= Va (Ela (0° (a)) — A (a)<>>

= Va (=30 (0" (@) v A(a)°)
= va (Ya (0" (a)) v A (0)°)
= Vava (0° (a) = A(a)?)

— YaVa (@a (a) = A (a)0>

We can prove this by transfinite induction in PAq. The formula to be proven by induction
is the following:

B (v) :=Va <(O)7 (a) = A (a)o)

We assume (V3 < a) B (f). If we can prove from this, that B («) for an arbitrary a, we
get

va (V5 < a) B(f) = B())

and we can apply the induction in PAg to get VaB («), which is the same as
VaVa ((O)a (a) = A (a)<>>

and this proves the translation. Now assume

(VB < a) B(B)
(V4 < a)Va (@ﬂ <>)
— Ya (V8 < a) ( <>)
= Ya (V8 < a) («@B <>>
—s Va (ﬂ (38 < @) 0° (a 0)
—Va ((35 < )0 (a <>)
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> Va (@<a (a) = A (a)<>)

in order to show Va (@a (a) > A (a)o), we assume Q% (a) and need to prove A (a)°.
Consider two cases:

e a was added to P§ on a layer < . But then Q< (a) holds and we get A (a) from
Va (@<a (a) = A (a)<>).

e a was added to P§ on the layer «.
0% (a) <= A(P;“,a,0,0,1)

— a=0q Ve (V23y (0% () AT (e,2,)) Aa = (sTp,e))

if @ = Og, then we get A (a)? from the induction hypothesis A (0q)? in BONg and
the substitution lemma . So now we assume, that a # 0g. Consider the second
induction hypothesis in BONgq:

((Va: Q) (a# 0 A (Va: N) A(ar) = A(a)))®
— (Ya) (@ (a) = (a £ 0g A VaA (%)0) A (a)<>>
From 0° (a) — O (a) and a # O, we get
Va (va (a.) — A (a)<>)
Consider the following formula
Va, e, 2,y (O (y) AT (e, 2,y)) Aa = (50p, €) = Vieup-1a)= (1))

Notice the universal quantifiers, i.e. we can choose all the variables arbitrarily.

Assuming the premise, we can prove the conclusion:

V'(sup—1 a)z (y)

<= vy, vy (Vsupfla (U1) AV, (U2) A T(Uh V2, ?J))

since z is a variable, V, (v5) = z = vs.
— El'Ul, V3, Ug (“}'Sup_1 (U3> A Va <U4) A T (U37 Vg, Ul) A T (U17 Z, y))
the same argument yields

< Jduy (T (s?p?l,a,m) A T<U17'Z7y)>
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the premise gives us a = (sup, e)

= 3y (T (sup~, (sTp, €) 11 ) AT (00,7,9))

we get, that vy = e
<~ T (e, z,y)

but given 7<% (e, z,y) this is true. We use this fact as follows. We know, that
Je (V23y (0= (y) AT (e, 2,9)) Aa = (sup,e))
= 3e (V23y (07 () AT (e, 2,9) A Visup-1a): (¥)) Aa = (sup, e))
Given the induction hypothesis, that Va <@<O‘ (a) = A (a)<>>, we get
— 3e (Va3y (O () AT (e, 2,9) AAW)® A Viap1a): (1) Aa = (STp,))
the substitution lemma [44] gives us, that
— Jde (VzEIy <@<a (W) ANT=(e,z,y) N A (az)<>> A a = (sup, e))

and so in particular

VzA (a,)®
this is the premise of the second induction hypothesis in BONgq.

(Va: Q) (a #0a A (Vo : N) A (ay) = A(a)))®

so we get A (a)o. Now we showed that for an a added to P4 at the layer o, we get
0° (a) = A(a)”.

We therefore proved

(V8 < a) Ya (@B (a) = A (a)<>> s Va (@a (a) = A (a)<>)

We apply the induction scheme in PAg to B («) = Va (@0‘ (a) » A (a)<>> and get

VaVa (@a (a) = A (a)<>>

and this is equivalent to the following

= YaVa (@a (a) = A <a)0)

— Vava (ﬁ@a (a)V A (a)o)
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< Va (—Eloz@a (a) VA (a)o)
> Va (ﬁ@ (a)V A (a)o)
= (va) (O(a) = A(a)°)

— ((Va: Q) A(a)®

and this concludes the proof, for this is the conclusion of the transfinite induction in
BONg.

8 Proof-theoretical strength of BONg and BONq + u

In this section we put together all the main theorems from the different parts of this master
thesis to get the following result about the proof theoretical strength of BONg and BONg + p.
In the first part, we showed that

QTq - A= BONq I A%
in the second part, we showed that

BONg 4+ p - A = PAq - A°

according to [2], we get that
ID; = QTq

and according to [11], we get that
ID; = PAq

All those put together yield the

Theorem 46.
QTQ = BONQ = BONQ +u= PAQ = ID]_
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