
The Suslin operator in applicative theories: its
proof-theoretic analysis via ordinal theories

Gerhard Jäger Dieter Probst∗

Abstract

The Suslin operator E1 is a type-2 functional testing for the well-
foundedness of binary relations on the natural numbers. In the context
of applicative theories, its proof-theoretic strength has been analyzed
in Jäger and Strahm [18]. This article provides a more direct approach
to the computation of the upper bounds in question. Several theories
featuring the Suslin operator are embedded into ordinal theories tai-
lored for dealing with non-monotone inductive definitions that enable
a smooth definition of the application relation.

1 Introduction

The so-called Suslin operator E1 is a type-2 functional testing for the well-
foundedness of binary relations on the natural numbers. The least ordinal
not recursive in E1 is the first recursively inaccessible ordinal ι0, its 1-section
coincides with the sets of natural numbers in the constructible hierarchy up
to ι0, providing, therefore, a model of ∆1

2 comprehension,

(N, 1-sec(E1), . . .) |= (∆1
2-CA).

For more on the recursion and definability theory of E1 we refer to the com-
prehensive textbook Hinman [9].

The Suslin operator has also a natural place within the context of ap-
plicative theories. These theories are obtained by restricting systems of Fe-
ferman’s explicit mathematics (see [4, 5, 6]) to their first order part and
provide a natural axiomatic framework for dealing with abstract computa-
tions. This approach has been discussed, from a more general perspective,
in Jäger, Kahle, and Strahm [15].

∗Research partly supported by the Alexander von Humboldt Foundation.

1

Jäger and Strahm [18] characterizes the proof-theoretic strength of the
Suslin operator in the applicative context, depending on the induction princi-
ples which are permitted. In particular, it is shown that SUS plus the schema
of induction on the natural numbers for arbitrary formulas is a theory proof-
theoretically equivalent to the system ∆1

2-CA of second order arithmetic with
∆1

2 comprehension,
SUS + (L-IN) ≡ ∆1

2-CA.

Subsystems with restricted forms of induction on the natural numbers have
been studied in that article as well.

Simply embedding the appropriate systems of second order arithmetic
into SUS plus induction takes care of the lower bounds. The determination
of the upper bounds has been more demanding. Working within an exten-
sion of Kripke-Platek set theory for a recursively inaccessible universe, a Σ
definable fixed point of a specific ∆1

2 inductive definition is used to interpret
the application relation of SUS. Then, in order to show that the obtained
structure is indeed a model of SUS, a rather subtle ”inside-outside-argument”
is used in establishing a relationship between proper set-theoretic functions
and operations defined in terms of this application relation.

The purpose of this article is to provide a more direct and simpler ap-
proach to the computation of the upper bounds in question. We introduce
ordinal theories tailored for directly dealing with certain non-monotone in-
ductive definitions, similar to those of Jäger [13] and Jäger and Strahm [17],
and develop the required structures directly within those. Alternatively, we
could also work with theories for Richter-styled combined non-monotone op-
erators (see Jäger [14] for a more systematic proof-theoretic treatment of
such systems) as originally proposed in Probst [19]. However, the line we are
going to follow now seems to be the more “explicit”.

2 The theory SUS

The following presentation of the theory SUS and its induction principles is
taken from Jäger and Strahm [18]. SUS is formulated in a first order lan-
guage L of partial terms with variables a, b, c, f, g, h, u, v, w, x, y, z . . . (pos-
sibly with subscripts). L includes individual constants k, s (combinators),
p, p0, p1 (pairing and unpairing), 0 (zero), sN (numerical successor), pN (nu-
merical predecessor), dN (definition by numerical cases), rN (primitive recur-
sion), µ (non-constructive µ operator), and E1 (Suslin operator). In addition,
L has a binary function symbol · for (partial) term application, unary relation
symbols ↓ (defined) and N (natural numbers), as well as a binary relation
symbol = (equality).

2

The individual terms (r, s, t, r0, s0, t0, . . .) of L are inductively generated
as follows:

1. The individual variables and individual constants are individual terms.

2. If s and t are individual terms, then so also is (s · t).

We usually abbreviate (s · t) as (st) or – in case that no confusion arises –
simply as st. We also adopt the convention of association to the left so that
s1s2 . . . sn stands for (. . . (s1s2) . . . sn). Moreover, we often write s(t1, . . . , tn)
for st1 . . . tn. Further, we put t′ := sNt and 1 := 0′. General n-tupling is
defined by induction on n ≥ 1 such that

<s1> := s1 and <s1, . . . , sn+1> := p<s1, . . . , sn>sn+1.

Finally, we frequently use the vector notation ~Z for finite strings of objects
Z1, . . . ,Zn of the same sort. Whenever we write ~Z, the length of this string
is either irrelevant or given by the context.

The formulas (A,B,C,A0, B0, C0, . . .) of L are inductively generated as
follows:

1. Each atomic formula N(t), t↓, and (s = t) is a formula.

2. If A and B are formulas, then so also are ¬A, (A ∨ B), (A ∧ B), and
(A→ B).

3. If A is a formula, then so also are ∃xA and ∀xA.

Our applicative theories are based on partial term application. Hence, it is
not guaranteed that terms have a value, and t↓ is read as “t is defined” or “t
has a value”. Accordingly, the partial equality relation ' is introduced by

(s ' t) := (s↓ ∨ t↓) → (s = t).

We write (s 6= t) for (s↓ ∧ t↓ ∧ ¬(s = t)) and introduce the following abbre-
viations concerning the predicate N:

t ∈ N := N(t),

(∃x ∈ N)A := ∃x(x ∈ N ∧ A),

(∀x ∈ N)A := ∀x(x ∈ N → A),

t ∈ (N 7→ N) := (∀x ∈ N)(tx ∈ N),

t ∈ (N1 7→ N) := t ∈ (N 7→ N),

t ∈ (Nm+1 7→ N) := (∀x ∈ N)(tx ∈ (Nm 7→ N)).

3

Now we are going to recall the basic theory BON of operations and numbers
which has been introduced in Feferman and Jäger [8]. Its underlying logic
is the classical logic of partial terms due to Beeson [1, 2] with strictness and
equality axioms; it is also described in Feferman [7] and Jäger, Kahle, and
Strahm [15]. The non-logical axioms of BON are divided into the following
five groups.

I. Partial combinatory algebra.

(1) kab = a,

(2) sab↓ ∧ sabc ' ac(bc).

II. Paring and projection.

(3) p0<a, b> = a ∧ p1<a, b> = b.

III. Natural numbers.

(4) 0 ∈ N ∧ (∀x ∈ N)(x′ ∈ N),

(5) (∀x ∈ N)(x′ 6= 0 ∧ pN(x′) = x),

(6) (∀x ∈ N)(x 6= 0 → pNx ∈ N ∧ (pNx)′ = x).

IV. Definition by numerical cases.

(7) u ∈ N ∧ v ∈ N ∧ u = v → dN(a, b, u, v) = a,

(8) u ∈ N ∧ v ∈ N ∧ u 6= v → dN(a, b, u, v) = b.

V. Primitive recursion on N.

(9) f ∈ (N 7→ N) ∧ g ∈ (N3 7→ N) → rN(f, g) ∈ (N2 7→ N),

(10) f ∈ (N 7→ N) ∧ g ∈ (N3 7→ N) ∧ a ∈ N ∧ b ∈ N ∧ h = rN(f, g) →
h(a, 0) = f(a) ∧ h(a, b′) = g(a, b, h(a, b)).

As usual, the axioms of a partial combinatory algebra allow one to define λ-
abstraction and to demonstrate a recursion or fixed point theorem. For proofs
of these standard results the reader is referred to Beeson [1] or Feferman [4].
The second assertion of the following lemma is a slight extension of the usual
λ-abstraction which requires our axioms about pairing and projections.

4

Lemma 1 1. For each L term t and all variables x there exists an L
term (λx.t) whose variables are those of t, excluding x, such that BON
proves

(λx.t)↓ and (λx.t)x ' t.

2. For each L term t and all variables x0, . . . , xn−1 (n ≥ 1) there exists an
L term s whose variables are those of t, excluding x0, . . . , xn−1, such
that BON proves

s↓ ∧ s(x0, . . . , xn−1) ' t.

3. There exists a closed L term fix such that BON proves

fix(f)↓ ∧ fix(f, x) ' f(fix(f), x).

Next we introduce the two type-2 functionals which are to be analyzed in
the context of applicative theories. The non-constructive or unbounded µ
operator is characterized by the following two axioms.

The non-constructive µ operator.

(µ.1) f ∈ (N 7→ N) ↔ µf ∈ N,

(µ.2) f ∈ (N 7→ N) ∧ (∃x ∈ N)(fx = 0) → f(µf) = 0.

A much stronger functional is the Suslin operator E1, which tests for the
well-foundedness of a binary relation on N (given as a total operation from
N2 to N).

The Suslin operator E1.

(E1.1) f ∈ (N2 7→ N) ↔ E1f ∈ N,

(E1.2) f ∈ (N2 7→ N) →
((∃g ∈ (N 7→ N))(∀x ∈ N)(f(g(x′), g(x)) = 0) ↔ E1f = 0).

The extension of BON by the two axioms for the non-constructive µ operator
has been baptized BON(µ), the theory SUS for the Suslin operator is BON(µ)
plus the two axioms for E1, i.e.

BON(µ) := BON + (µ.1) + (µ.2),

SUS := BON(µ) + (E1.1) + (E1.2).

In the sequel we will be interested in three forms of complete induction
on the natural numbers N, namely set induction, N induction, and formula

5

induction. Let us first recall the notion of a subset of N from Feferman and
Jäger [8]. Sets of natural numbers are represented via their characteristic
functions which are total on N. Accordingly, we define

f ∈ P(N) := (∀x ∈ N)(fx = 0 ∨ fx = 1)

with the intention that an object x belongs to the set f ∈ P(N) if and only
if (fx = 0). The three relevant induction principles are now given as follows.

Set induction on N (S-IN).

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0→ f(x′) = 0) → (∀x ∈ N)(fx = 0).

N induction on N (N-IN).

f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N→ f(x′) ∈ N) → (∀x ∈ N)(fx ∈ N).

Formula induction on N (L-IN). For all formulas A[u] of L:

A[0] ∧ (∀x ∈ N)(A[x]→ A[x′]) → (∀x ∈ N)A[x].

In Jäger and Strahm [18] it is shown how E1 can be used to model the
hyperjump in our applicative context. As a consequence, we obtain the
following embedding theorem, where sets of natural numbers of second order
arithmetic are represented as elements of P(N) in SUS. As usual, Π1

1-CA0

is the subsystem of second order arithmetic with comprehension restricted
to Π1

1 formulas and complete induction on the natural numbers restricted
to sets; Π1

1-CA<ωω and Π1
1-CA<ε0 are the extensions of Π1

1-CA0 which permit
the iteration of Π1

1 comprehension along suitable primitive recursive well-
orderings of order types less than ωω and ε0, respectively.

Theorem 2 We have the following inclusions:

1. Π1
1-CA0 ⊆ SUS + (S-IN),

2. Π1
1-CA<ωω ⊆ SUS + (N-IN),

3. Π1
1-CA<ε0 ⊆ SUS + (L-IN).

6

3 The theory INA of numbers and ordinals

In this section we introduce a theory of natural numbers and ordinals, similar
to those in Jäger [13] and Jäger and Strahm [17]. Our system INA allows us
to formalize a variety of monotone and non-monotone inductive definitions
and provides closure properties reflecting the idea that the ordinals of INA
reach up to the first recursively inaccessible ordinal.

Let L0 denote the language of first order arithmetic, which has number
variables a, b, c, d, e, f, u, v, w, x, y, z, . . . (possibly with subscripts) as well as
symbols for all primitive recursive functions and relations. Number terms
(r, s, t, r0, s0, t0, . . .) and formulas (A,B,C,A0, B0, C0, . . .) of L0 are defined as
usual; for notational convenience, numerals are identified with the respective
natural numbers.

In addition, we make use of a primitive recursive coding machinery in
L0: 〈. . .〉 is a standard primitive recursive function for forming n-tuples
〈t0, . . . , tn−1〉; Seq is the primitive recursive set of sequence numbers; lh(t)
denotes the length of (the sequence number coded by) t; (t)i is the ith com-
ponent of (the sequence coded by) t if i < lh(t), i.e. t = 〈(t)0, . . . , (t)lh(t)−1〉
if t is a sequence number.

Further, let X be a fresh n-ary relation symbol and write L0(X) for the
extension of L0 by X. An L0(X) formula which contains at most a0, . . . , an−1

free is called an n-ary operator form, and we let A[X, a0, . . . , an−1] range over
such forms.

For formulating INA we extend L0 to a two-sorted language L? by adding
a new sort of ordinal variables π, ρ, σ, τ, η, ξ, . . . (possibly with subscripts),
new binary relation symbols < and = for the less and equality relation on
the ordinals1 and a unary relation symbol Ad to express that an ordinal is
admissible. Moreover, L? includes an (n+1)-ary relation symbol PA for each
operator form A[X, a0, . . . , an−1].

The number terms of L? are the number terms of L0, the atomic formulas
of L? are the atomic formulas of L0 plus all expressions (σ < τ), (σ = τ),
Ad(σ), and PA(σ,~r) for any n-ary operator form A[X,~a]; usually, we write
Pσ
A [~r] for PA(σ,~r).

The formulas (A,B,C,A0, B0, C0, . . .) of L? are generated from the atomic
L? formulas by closing under negations, disjunctions, conjunctions, implica-
tions, equivalences, quantifications over the natural numbers, bounded quan-
tifications (∃ξ < σ) and (∀ξ < σ) over the ordinals, and unbounded quantifi-
cations over the ordinals.

1It will always be clear from the context whether < and = denote the less and equality
relation on the natural numbers or on the ordinals.

7

An L? formula is called ∆O
0 if it does not contain unbounded ordinal

quantifiers; it is called ΣO if it does not contain positive occurrences of un-
bounded universal ordinal quantifiers or negative occurrences of unbounded
existential ordinal quantifiers. Given an L? formula A and an ordinal variable
σ not occurring freely in A, we write Aσ to denote the formula which is ob-
tained from A by replacing all unbounded ordinal quantifiers Qξ by bounded
ordinal quantifiers (Qξ < σ). Hence every formula Aσ is ∆O

0 . Additional
abbreviations are

P<σ
A [~r] := (∃ξ < σ)P ξ

A[~r] and PA[~r] := ∃ξP ξ
A[~r].

The theory INA is formulated in classical two sorted predicate logic with
equality in both sorts and contains the following non-logical axioms.

I. Number-theoretic axioms. The axioms of Peano arithmetic PA with
the exception of complete induction on the natural numbers.

II. Linearity axioms.

σ 6< σ ∧ (σ < τ ∧ τ < η → σ < η) ∧ (σ < τ ∨ σ = τ ∨ τ < σ).

III. Operator axioms. For all operator forms A[X,~a]:

Pσ
A [~r] ↔ A[P<σ

A , ~r].

IV. ΣO reflection axioms. For all ΣO formulas A:

A → ∃ξAξ.

V. Axioms for Ad . For all ΣO formulas A[~τ] whose free ordinal variables
are from the list ~τ :

Ad(σ) ∧ ~τ < σ ∧ Aσ[~τ] → (∃ξ < σ)(~τ < ξ ∧ Aξ[~τ]),(Ref)

∀η∃ξ(η < ξ ∧ Ad(ξ)).(Lim)

VI. Induction principles. For all L? formulas A[a] and B[σ]:

A[0] ∧ ∀x(A[x]→ A[x+ 1]) → ∀xA[x],(L?-IN)

∀η((∀ξ < η)B[ξ]→ B[η]) → ∀ηB[η].(L?-I<)

8

The corresponding induction principles claiming induction for ∆O
0 formulas

only are denoted by (∆O
0 -IN) and (∆O

0 -I<), respectively. INAr is the subsys-
tem of INA which we obtain if we restrict (L?-IN) to (∆O

0 -IN) and (L?-I<) to
(∆O

0 -I<). Moreover, INAw is defined to be INAr + (L?-IN) and thus permits
full complete induction and induction on the ordinals for ∆O

0 formulas.
The theories INA, INAw, and INAr are closely related to theories KPi,

KPiw, and KPi r for iterated admissible sets which are studied, for example,
in Jäger [10, 11, 12] and Jäger and Pohlers [16]. It is easy to show that INA is
contained in KPi, INAw in KPiw, and INAr in KPi r. Also, if we write (ΣO-IN)
for the schema of complete induction on the natural numbers for ΣO formulas
and (Σ-IN) for the schema of complete induction on the natural numbers for
Σ formulas of the language of theories for admissible sets, then KPi r + (Σ-IN)
comprises INAr + (ΣO-IN).

Theorem 3 We have the following inclusions:

1. INAr ⊆ KPi r,

2. INAr + (ΣO-IN) ⊆ KPi r + (Σ-IN),

3. INAw ⊆ KPiw,

4. INA ⊆ KPi.

4 Modeling SUS in INAr

The theory INAr provides a canonical framework for defining a model of
the applicative theory SUS. The crucial step is the interpretation of the
application relation (rs ' t). This will be achieved by the non-monotone
inductive definition presented in Definition 4. It is our strategy to introduce
a specific operator form A[X, a, b, c, d] such that the corresponding relation
symbol PA codes several important assertions, for example:

PA[a, b, c, 0] :: a applied to b yields c,

PA[a, b, 0, 1] ::

{
b belongs to the accessible part of the binary relation
represented by a,

PA[a, 0, 0, 2] ::

{
the accessible part of the relation represented by a
is completely built up,

PA[a, 0, 0, 3] :: the binary relation represented by a is well-founded,

PA[a, 0, 0, 4] :: the binary relation represented by a is not well-founded.

9

The following abbreviations and shorthand notations will help to make Def-
inition 4 more readable. Let D[f, a, b, c] be an L? formula with at most
f, a, b, c free.

Application, totality, and functionality with respect to D. For any
natural number n and all vectors ~a = a0, . . . , an−1 and ~x = x0, . . . , xn−1,

App1
D[f, a0, b] := D[f, a0, b, 0],

Appn+1
D [f,~a, an, b] := ∃x(AppnD[f,~a, x] ∧D[x, an, b, 0]),

TotnD[f] := ∀~x∃yAppnD[f, ~x, y],

FunnD[f] :=

{
TotnD[f] ∧
∀~x∀y∀z(AppnD[f, ~x, y] ∧ AppnD[f, ~x, z] → y = z).

Primitive recursion with respect to D. If f and g represent a unary and
a ternary functional operation with respect to D, then the following formula
RcD[f, g, u, v, w] describes the graph of the operation which is defined from
f and g by primitive recursion with application in the sense of D:

RcD[f, g, u, v, w] :=

{
∃x(Seq(x) ∧ lh(x) = v + 1 ∧ D[f, u, (x)0] ∧
(∀y < v)App3

D[g, u, y, (x)y, (x)y+1] ∧ w = (x)v).

Finally, for all natural numbers n we set

Seqn[t] := Seq(t) ∧ lh(t) = n

and choose pairwise different numerals k̂, ŝ, p̂, p̂0, p̂1, ŝN, p̂N, d̂N, r̂N, µ̂, and Ê1

which do not belong to {0} ∪ Seq . They serve as codes of the corresponding
constants of L.

Definition 4 The operator form A[X, a, b, c, d] is defined to be the conjunc-
tion of the formula ∀x¬X(a, b, x, 0) with the disjunction of the following for-
mulas (1)–(28):

(1) a = k̂ ∧ c = 〈k̂, b〉 ∧ d = 0,

(2) Seq2[a] ∧ (a)0 = k̂ ∧ c = (a)1 ∧ d = 0,

(3) a = ŝ ∧ c = 〈̂s, b〉 ∧ d = 0,

(4) Seq2[a] ∧ (a)0 = ŝ ∧ c = 〈̂s, (a)1, b〉 ∧ d = 0,

10

(5) Seq3[a] ∧ (a)0 = ŝ ∧
∃x∃y(X((a)1, b, x, 0) ∧X((a)2, b, y, 0) ∧X(x, y, c, 0)) ∧ d = 0,

(6) a = p̂ ∧ c = 〈p̂, b〉 ∧ d = 0,

(7) Seq2[a] ∧ (a)0 = p̂ ∧ c = 〈(a)1, b〉 ∧ d = 0,

(8) a = p̂0 ∧ ∃x(b = 〈c, x〉) ∧ d = 0,

(9) a = p̂1 ∧ ∃x(b = 〈x, c〉) ∧ d = 0,

(10) a = ŝN ∧ c = b+ 1 ∧ d = 0,

(11) a = p̂N ∧ b = c+ 1 ∧ d = 0,

(12) a = d̂N ∧ c = 〈d̂N, b〉 ∧ d = 0,

(13) Seq2[a] ∧ (a)0 = d̂N ∧ c = 〈d̂N, (a)1, b〉 ∧ d = 0,

(14) Seq3[a] ∧ (a)0 = d̂N ∧ c = 〈d̂N, (a)1, (a)2, b〉 ∧ d = 0,

(15) Seq4[a] ∧ (a)0 = d̂N ∧ (a)1 = (a)2 ∧ c = (a)3 ∧ d = 0,

(16) Seq4[a] ∧ (a)0 = d̂N ∧ (a)1 6= (a)2 ∧ c = b ∧ d = 0,

(17) a = r̂N ∧ c = 〈̂rN, b〉 ∧ d = 0,

(18) Seq2[a] ∧ (a)0 = r̂N ∧ c = 〈̂rN, (a)1, b〉 ∧ d = 0,

(19) Seq3[a] ∧ (a)0 = r̂N ∧ c = 〈̂rN, (a)1, (a)2, b〉 ∧ d = 0,

(20) Seq4[a] ∧ (a)0 = r̂N ∧ Fun1
X [(a)1] ∧ Fun3

X [(a)2] ∧
RcX [(a)1, (a)2, (a)3, b, c] ∧ d = 0,

(21) a = µ̂ ∧ Fun2
X [b] ∧ ∀x∃y(y 6= 0 ∧ X(b, x, y, 0)) ∧ c = 0 ∧ d = 0,

(22) a = µ̂ ∧ Fun2
X [b] ∧ (∀x < c)∃y(y 6= 0 ∧ X(b, x, y, 0)) ∧ X(b, c, 0, 0)

∧ d = 0,

(23) Fun2
X [a] ∧ ∀x(App2

X [a, x, b, 0]→ X(a, x, 0, 1)) ∧ c = 0 ∧ d = 1,

(24) Fun2
X [a] ∧ ∀x(∀y(App2

X [a, y, x, 0]→ X(a, y, 0, 1))→ X(a, x, 0, 1))

∧ b = 0 ∧ c = 0 ∧ d = 2,

(25) Fun2
X [a] ∧ X(a, 0, 0, 2) ∧ ∀xX(a, x, 0, 1) ∧ b = 0 ∧ c = 0 ∧ d = 3,

(26) Fun2
X [a] ∧ X(a, 0, 0, 2) ∧ ∃x¬X(a, x, 0, 1) ∧ b = 0 ∧ c = 0 ∧ d = 4,

11

(27) a = Ê1 ∧ X(b, 0, 0, 3) ∧ c = 1 ∧ d = 0,

(28) a = Ê1 ∧ X(b, 0, 0, 4) ∧ c = 0 ∧ d = 0.

The clauses (1)–(22) are identical to the clauses of the inductive definition
used in Jäger and Strahm [18]; clauses (23)–(28) will be needed below to take
care of the Suslin operator E1. In contrast to [18], we here have to deal with
a non-monotone definition clause A[X, a, b, c, d].

Definition 5 For all natural numbers n greater than 0, all number variables
~a, b, f , and all ordinal variables σ we set:

Appnσ[f,~a, b] := AppnP<σA
[f,~a, b], Appn∞[f,~a, b] := AppnPA

[f,~a, b],

Totnσ[f] := TotnP<σA
[f], Totn∞[f] := TotnPA

[f],

Funnσ[f] := FunnP<σA
[f], Funn∞[f] := FunnPA

[f].

The following lemma states an important extension property: if f codes a
function in the sense of P<σ

A , then it does so as well in the sense of any P<τ
A

with σ ≤ τ and in the sense of PA. The input-output behavior of these
“functions” is identical.

Lemma 6 For all ordinal variables σ, τ , all number variables f , and all
natural numbers n ≥ 1, the theory INAr proves:

1. Funnσ[f] ∧ σ ≤ τ → Funnτ [f].

2. Funnσ[f] ∧ σ ≤ τ → ∀~x∀y(Appnσ[f, ~x, y]↔ Appnτ [f, ~x, y]).

3. Funnσ[f] → Funn∞[f].

4. Funnσ[f] → ∀~x∀y(Appnσ[f, ~x, y]↔ Appn∞[f, ~x, y]).

The first two parts of this lemma directly follow from the form of our operator
form which prevents adding tuples (f, a, c, 0) to P τ

A if at an earlier stage
a tuple (f, a, b, 0) has been included. The third and the fourth part are
immediate consequences of the first and the second.

The next observation states that any f which codes an n-ary function in
the sense of PA does so already in the sense of an initial segment P<σ

A of PA.

Lemma 7 For any natural number n ≥ 1 and any number variable f , the
theory INAr proves:

1. Totn∞[f] → ∃σTotnσ[f].

2. Funn∞[f] → ∃σFunnσ[f].

12

Proof Assume Totn∞[f], i.e. ∀~x∃yAppn∞[f, ~x, y]. Since this is a ΣO formula,
ΣO reflection implies ∃σ∀~x∃yAppnσ[f, ~x, y]. Thus we have ∃σTotnσ[f], and the
first assertion is proved. The second assertion is an immediate consequence
of the first since uniqueness with respect to PA yields uniqueness with respect
to any P<σ

A . 2

Also the next assertion is easily established, simply prove it by (∆O
0 -IN)

with respect to x.

Lemma 8 For any ∆O
0 formula D[f, a, b, c], the theory INAr proves

Fun1
D[f] ∧ Fun3

D[g] → ∀a∀x∃!yRcD[f, g, a, x, y].

Any f can be regarded as a binary relation in the sense of P<σ
A or PA. If we

want to do so, the notation introduced in the following definition increases
readability.

Definition 9 For all number variables a, b, f and all ordinal variables σ we
set

a ≺σf b := App2
σ[f, a, b, 0] and a ≺∞f b := App2

∞[f, a, b, 0].

The formula Pσ
A [f, 0, 0, 2] implies that f codes a binary function, provided

that application is interpreted in the sense of P<σ
A , and that the corresponding

relation ≺σf is progressive. We prove that the build up of the accessible part
of ≺σf closes at σ.

Lemma 10 The theory INAr proves:

1. Pσ
A [f, 0, 0, 2] → ∀ξ∀x(P ξ

A[f, x, 0, 1]→ P<σ
A [f, x, 0, 1]).

2. Pσ
A [f, 0, 0, 2] → (∀x(PA[f, x, 0, 1]↔ P<σ

A [f, x, 0, 1]).

3. ¬∃η∃ξ(Pη
A[f, 0, 0, 3] ∧ P ξ

A[f, 0, 0, 4]).

Proof Assume Pσ
A [f, 0, 0, 2]. Then the operator axiom for A implies

Fun2
σ[f],(1)

∀x((∀y ≺σf x)P<σ
A [f, y, 0, 1] → P<σ

A [f, x, 0, 1]).(2)

In order to establish our first assertion, we show

∀x(P ξ
A[f, x, 0, 1]→ P<σ

A [f, x, 0, 1])

13

by (∆O
0 -I<). So pick a ξ and an x such that P ξ

A[f, x, 0, 1]. In view of the
operator axiom for A we then also have

Fun2
ξ [f],(3)

(∀y ≺ξf x)P<ξ
A [f, y, 0, 1].(4)

From (1), (3), (4), Lemma 6, and the induction hypothesis we conclude

(∀y ≺σf x)P<σ
A [f, y, 0, 1].(5)

Hence (2) and (5) yield P<σ
A [f, x, 0, 1], as required.

The second assertion follows trivially from the first. For the third asser-
tion, assume that there are η and ξ such that Pη

A[f, 0, 0, 3] and P ξ
A[f, 0, 0, 4].

Then the operator axiom for A yields

∀xP<η
A [f, x, 0, 1],(6)

∃x¬P<ξ
A [f, x, 0, 1](7)

together with Pσ
A [f, 0, 0, 2] and P τ

A[f, 0, 0, 2] for some σ < η and τ < ξ. Hence
by the second assertion

∀x(PA[f, x, 0, 1]↔ P<σ
A [f, x, 0, 1]) and ∀x(PA[f, x, 0, 1]↔ P<τ

A [f, x, 0, 1]).

From these equivalences we easily conclude that

∀x(P<η
A [f, x, 0, 1]↔ P<ξ

A [f, x, 0, 1]),

so that either (6) or (7) has to be wrong, which is a contradiction. 2

Remember that in modeling SUS in INAr, the L? formula PA[a, b, c, 0] is
intended to take care of application (ab = c) within L. The previous consid-
erations set the stage for proving that the following form of functionality is
satisfied, which is crucial to this approach.

Lemma 11 The theory INAr proves:

1. ∀a∀b∀x∀y(P<σ
A [a, b, x, 0] ∧ P<σ

A [a, b, y, 0] → x = y).

2. ∀a∀b∀x∀y(PA[a, b, x, 0] ∧ PA[a, b, y, 0] → x = y).

Proof We show the first assertion by (∆O
0 -I<). Assuming P<σ

A [a, b, x, 0] and
P<σ
A [a, b, y, 0], we derive the existence of η, ξ < σ such that Pη

A[a, b, x, 0] and

P ξ
A[a, b, y, 0]. Moreover, in view of the operator axiom for A, the ordinals η

14

and ξ have to be identical and therefore P ξ
A[a, b, x, 0] and P ξ

A[a, b, y, 0] must
hold. Now we proceed by distinction of cases according to the form of a.

1. If Seq3[a] and (a)0 = ŝ, then our assertion follows from the operator axiom
for A and the induction hypothesis.

2. If Seq4[a] and (a)0 = r̂N, then our assertion follows from the operator
axiom for A and Lemma 8.

3. If a = Ê1, then our assertion follows from the operator axiom for A and
Lemma 10.

4. In all other cases our assertion is trivially satisfied.

This finishes the proof of the first assertion; the second is an immediate
consequence of the first. 2

The embedding of SUS into INAr first requires to take care of the terms
of L. This is achieved by associating to each L term t formulas Vσ

t [u] and
V∞t [u] of L? expressing that u is the value of t under the interpretation of the
application in L via the formulas P<σ

A [·, ·, ·, 0] and P∞A [·, ·, ·, 0], respectively.

Definition 12 For each L term t we introduce formulas Vσ
t [u] and V∞t [u]

of L?, with u not occurring in t, which are inductively defined as follows:

1. If t is a variable, then Vσ
t [u] and V∞t [u] are the formula (t = u).

2. If t is a constant, then Vσ
t [u] and V∞t [u] are the formula (t̂ = u).

3. If t is the term (rs), then we set

Vσ
t [u] := ∃x∃y(Vσ

r [x] ∧ Vσ
s [y] ∧ P<σ

A [x, y, u, 0]),

V∞t [u] := ∃x∃y(V∞r [x] ∧ V∞s [y] ∧ P∞A [x, y, u, 0]).

This treatment of the terms of L leads to the following translations of arbi-
trary L formulas into formulas of L?.

Definition 13 The translations of an L formula A into the formulas [A]σ

and [A]∞ of L? are inductively defined as follows:

1. For the atomic formulas of L we stipulate

[N(t)]σ := ∃xVσ
t [x], [N(t)]∞ := ∃xV∞t [x],

[t↓]σ := ∃xVσ
t [x], [t↓]∞ := ∃xV∞t [x],

[s = t]σ := ∃x(Vσ
s [x] ∧ Vσ

t [x]), [s = t]∞ := ∃x(V∞s [x] ∧ V∞t [x]).

2. If A is a formula ¬B, then [A]σ is ¬[B]σ and [A]∞ is ¬[B]∞.

15

3. If A is a formula (B j C) for j ∈ {∨,∧,→}, then [A]σ is ([B]σ j [C]σ)
and [A]∞ is ([B]∞ j [C]∞).

4. If A is a formula QxB for Q ∈ {∃,∀}, then [A]σ is Qx[B]σ and [A]∞

is Qx[B]∞.

In Feferman and Jäger [8] the theory BON(µ) is embedded into the system
PAr

Ω of ordinals over Peano arithmetic. PAr
Ω is a subsystem of INAr, and al-

though a slightly different inductive definition has been used, the embedding
proof in [8] carries over to INAr without any problems. Moreover, it is easily
checked that only the closure properties of admissibles are needed for this
interpretation so that also the following relativized embedding is obtained.

Theorem 14 For all L formulas A we have:

1. BON(µ) ` A =⇒ INAr ` [A]∞.

2. BON(µ) ` A =⇒ INAr ` Ad(σ)→ [A]σ.

It is still left to show that our translation of L formulas validates the two
axioms of the Suslin operator E1. For doing so, the following lemma is central;
it tells us that for any f which codes a binary function in the sense of P<τ

A

or PA, its accessible part is completely built up at a suitable ordinal stage.

Lemma 15 The theory INAr proves:

1. Ad(σ) ∧ τ < σ ∧ Fun2
τ [f] → Pσ

A [f, 0, 0, 2].

2. Fun2
∞[f] → ∃ξP ξ

A[f, 0, 0, 2].

Proof Assume Ad(σ), τ < σ, and Fun2
τ [f]. By ΣO reflection at σ we thus

obtain
∀x((∀y ≺τf x)P<σ

A [f, y, 0, 1] → P<σ
A [f, x, 0, 1]).

Now, because of Fun2
τ [f] and τ < σ, Lemma 6 yields Fun2

σ[f] as well as the
equivalence of the assertions y ≺σf x and y ≺τf x for any x and y. Altogether
we thus have

Fun2
σ[f] ∧ ∀x((∀y ≺σf x)P<σ

A [f, y, 0, 1] → P<σ
A [f, x, 0, 1]).

Simple checking of the operator axiom for A thus implies Pσ
A [f, 0, 0, 2].

In addition, given Fun2
∞[f], Lemma 7 tells us that there has to be a τ

for which Fun2
τ [f], and by the limit axiom (Lim) there exists a σ such that

Ad(σ) and τ < σ. Now the second assertion follows from the first. 2

16

Lemma 16 The theory INAr proves:

1. Ad(ρ) ∧ Ad(σ) ∧ τ < σ < ρ ∧ Fun2
τ [f]

→ (P<ρ
A [Ê1, f, 0, 0] ∨ P<ρ

A [Ê1, f, 0, 1]).

2. Fun2
∞[f] ↔ (PA[Ê1, f, 0, 0] ∨ PA[Ê1, f, 1, 0]).

Proof For the proof of the first assertion assume Fun2
τ [f] and let ρ and σ

be admissibles with τ < σ < ρ. By the previous lemma we have Pσ
A [f, 0, 0, 2].

Now, since ρ is admissible, it is easy to see that there are η and ξ such that
σ < η < ξ < ρ. Together with Lemma 6 this implies

Fun2
η[f] ∧ P<η

A [f, 0, 0, 2].

Depending on whether ∀xP<η
A [a, x, 0, 1] or ∃x¬P<η

A [a, x, 0, 1] the operator ax-
iom for A implies Pη

A[f, 0, 0, 3] or Pη
A[f, 0, 0, 4], respectively. Consequently, we

have P<ξ
A [f, 0, 0, 3] or P<ξ

A [f, 0, 0, 4], yielding P ξ
A[Ê1, f, 0, 0] or P ξ

A[Ê1, f, 1, 0] by
a further use of the operator axiom for A. Our assertion follows immediately.

The direction from left to right of the second assertion is immediate from
the first and Lemma 7. For the converse direction, we observe that the as-
sumption (PA[Ê1, f, 0, 0]∨PA[Ê1, f, 1, 0]) implies (Pσ

A [f, 0, 0, 3]∨Pσ
A [f, 0, 0, 4])

for some σ. Thus, Fun2
σ[f] is a consequence of the operator axiom for A. To

see that Fun2
∞[f] it only remains to apply Lemma 6. 2

Theorem 17 The theory INAr proves

[f ∈ (N2 7→ N)]∞ ↔ [E1f ∈ N]∞.

Proof According to Definition 12 and Definition 13, [f ∈ (N2 7→ N)]∞

is equivalent to Tot2
∞[f] and thus, because of Lemma 11, also to Fun2

∞[f].
Applying Definition 12 and Definition 13 once more, we also obtain that
[E1f ∈ N]∞ is equivalent to ∃xPA[Ê1, f, x, 0] which, in view of the operator
axiom for A, is equivalent to

Fun2
∞[f] ∧ (PA[Ê1, f, 0, 0] ∨ PA[Ê1, f, 1, 0]).

The claimed equivalence is thus an immediate consequence of Lemma 16. 2

For the formulations and proofs of the following theorems some further
auxiliary notations are useful. We set

{f}σ(u0, . . . , un−1) ' v := Appnσ(f, u0, . . . , un−1, v),

{f}∞(u0, . . . , un−1) ' v := Appn∞(f, u0, . . . , un−1, v)

and follow the standard conventions of recursion theory when working with
expressions like {f}σ(~u) and {f}∞(~u).

17

Lemma 18 The theory INArproves:

1. P<σ
A [f, 0, 0, 2] ∧ Fun1

σ[g] ∧ ∀x({g}σ(x+ 1) ≺σf {g}σ(x))

→ Pσ
A [f, 0, 0, 4].

2. Fun2
∞[f] ∧ Fun1

∞[g] ∧ ∀x({g}∞(x+ 1) ≺∞f {g}∞(x))

→ PA[f, 0, 0, 4].

Proof To show the first assertion, let us assume that Fun1
σ[g] and

P<σ
A [f, 0, 0, 2],(1)

∀x({g}σ(x+ 1) ≺σf {g}σ(x)).(2)

From (1), the operator axiom for A, and Lemma 6 we conclude that

Fun2
σ[f](3)

and prove ∀ξ∀x¬P ξ
A[f, {g}σ(x), 0, 1] by (∆O

0 -I<). Assume, for the contrary,

that there exist ξ and a such that P ξ
A[f, {g}σ(a), 0, 1]. Then the operator

axiom for A implies

Fun2
ξ [f],(4)

(∀x ≺ξf {g}
σ(a))P<ξ

A [f, x, 0, 1].(5)

In view of Lemma 6 we obtain from (3), (4), and (5) that

(∀x ≺σf {g}σ(a))P<ξ
A [f, x, 0, 1].(6)

Hence, because of (2), we also have

P<ξ
A [f, {g}σ(a+ 1), 0, 1].

But this contradicts the induction hypothesis, implying that our assumption
was wrong, and thus we know that ∀ξ∀x¬P ξ

A[f, {g}σ(x), 0, 1], in particular,

∀x¬P<σ
A [f, {g}σ(x), 0, 1].(7)

However, this assertion together with (1) and (3) implies Pσ
A [f, 0, 0, 4], as

desired in the first assertion.

If we have Fun2
∞[f], Fun1

∞[g], and ∀x({g}∞(x + 1) ≺∞f {g}∞(x)), all we
must do is to apply Lemma 6, Lemma 7, and Lemma 15 in order to derive
the existence of a σ such that

P<σ
A [f, 0, 0, 2] ∧ Fun1

σ[g] ∧ ∀x({g}σ(x+ 1) ≺σf {g}σ(x)).

The first assertion now yields Pσ
A [f, 0, 0, 4], and hence PA[f, 0, 0, 4]. 2

18

Theorem 19 The theory INAr proves

[f ∈ (N2 7→ N)]∞ →
([(∃g ∈ (N 7→ N))(∀x ∈ N)(f(g(x′), g(x)) = 0)]∞ → [E1f = 0]∞).

Proof As in the proof of Theorem 17 one easily verifies that the formulas
[f ∈ (N2 7→ N)]∞ and [(∃g ∈ (N 7→ N))(∀x ∈ N)(f(g(x′), g(x)) = 0)]∞ imply

Fun2
∞[f] ∧ ∃g(Fun1

∞[g] ∧ ∀x({g}∞(x+ 1) ≺∞f {g}∞(x))).

Applying the previous lemma, we continue with PA[f, 0, 0, 4]. But by the

operator axiom for A then PA[Ê1, f, 0, 0]; so [E1f = 0]∞ as desired. 2

This is the required translation of one direction of (E1.2). To prove the
translation of the converse direction we follow the pattern of Jäger and
Strahm [18] and convince ourselves that a suitable amount of relativized
recursion theory (for example a form of S-m-n theorem) can be developed
within INAr in the sense of Lemma 20 to Lemma 23 below. We omit the
proofs of these lemmas which – as we freely admit – are quite tedious. We
only remark that everything works since primitive recursion and the non-
constructive µ operator are directly built in into our inductive definition and
combinatorial completeness is available due to our codings of k and s.

Further, if X is a fresh n-ary relation symbol and A[X] a formula of
L0(X), then A[{f}σ] and A[{f}∞] are the L? formulas obtained from A[X]
by replacing all subformulas X(t0, . . . , tn−1) by {f}σ(t0, . . . , tn−1) ' 0 and
{f}∞(t0, . . . , tn−1) ' 0, respectively.

Lemma 20 Let X be a fresh m-ary relation symbol and A[X,~v] an L0(X)
formula with at most the variables ~v = v0, . . . , vn−1 free. Then there exists a
number term t such that INAr proves:

(R1) Ad(σ) ∧ τ < σ ∧ Funmτ [f] → Funn+1
σ [t],

(R2) Ad(σ) ∧ τ < σ ∧ Funmτ [f] → (A[{f}τ , ~v] ↔ {t}σ(f,~v) ' 0).

Lemma 21 Let X be a fresh m-ary relation symbol and A[X, u,~v] an L0(X)
formula with at most the variables u and ~v = v0, . . . , vn−1 free. Then there
exists a binary primitive recursive function F such that INAr proves:

(R3) Ad(σ) ∧ τ < σ ∧ Funmτ [f] → Funnσ[F(f, u)],

(R4) Ad(σ) ∧ τ < σ ∧ Funmτ [f] → (A[{f}τ , u, ~v] ↔ {F(f, u)}σ(~v) ' 0).

19

Lemma 22 For every binary primitive recursive function F there exists a
unary primitive recursive function G such that INAr proves

(R5) Ad(σ) → (P<σ
A [Ê1,F(u, v), w, 0] ↔ P<σ

A [G(u), v, w, 0]).

Lemma 23 Let X be a fresh m-ary and Y a fresh n-ary relation symbol
and B[X, Y, u, v] an L0(X, Y) formula with at most the variables u and v
free. Further assume that INAr proves

∀ξ∀f∀g(Funmξ [f] ∧ Funnξ [g] → ∀x∃!yB[{f}ξ, {g}ξ, x, y]).

Then there exists a ternary primitive recursive function H such that INAr

proves:

(R6) Ad(σ) ∧ τ < σ ∧ Funmτ [f] ∧ Funnτ [g] → Fun1
σ[H(f, g, u)],

(R7) Ad(σ) ∧ τ < σ ∧ Funmτ [f] ∧ Funnτ [g] →
{H(f, g, u)}σ(0) ' u ∧
{H(f, g, u)}σ(v + 1) ' w ↔ B[{f}τ , {g}τ , {H(f, g, u)}σ(v), w].

After this interlude we come back to the still missing part of the treatment
of the Suslin axiom (E1.2) in INAr.

Definition 24 For all number variables u, v, f and all ordinal variables σ
we set

u vσf v :=

{
∃x(∃y > 0)(Seq(x) ∧ lh(x) = y ∧ (x)0 = u ∧
(x)y .−1 = v ∧ (∀z < y .− 1)((x)z ≺σf (x)z+1)).

This means that vσf describes the transitive reflexive closure of the relation
≺σf introduced in Definition 9. For any codes f, g, numbers u, and ordinals
σ, we say that g is the restriction of f to u in the sense of P<σ

A if the formula
Rest [σ, f, g, u] is satisfied,

Rest [σ, f, g, u] :=

{
Fun2

σ[f] ∧ Fun2
σ[g] ∧

∀x∀y(x ≺σg y ↔ (x ≺σf y ∧ y vσf u)).

Some important properties of restrictions are summed up in the following
lemma.

Lemma 25 Let D[σ, τ, f, g, u] be short for the L? formula

Ad(σ) ∧ τ < σ ∧ Rest [τ, f, g, u].

Then the theory INAr proves:

20

1. D[σ, τ, f, g, u] → (∀x vτf u)(P<σ
A [g, x, 0, 1]↔ P<σ

A [f, x, 0, 1]).

2. Ad(ρ) ∧ σ < ρ ∧ D[σ, τ, f, g, u] ∧ (¬P<σ
A [f, u, 0, 1] ↔ P<ρ

A [Ê1, g, 0, 0]).

Proof We assume D[σ, τ, f, g, u] and prove the following two assertions by
∆O

0 indiction on the ordinals and ΣO reflection at σ:

∀ξ(∀x vτf u)(P ξ
A[f, x, 0, 1]→ P<σ

A [g, x, 0, 1]),(1)

∀ξ(∀x vτf u)(P ξ
A[g, x, 0, 1]→ P<σ

A [f, x, 0, 1]).(2)

The first assertion is a trivial consequence of (1) and (2). According to
Lemma 15 we also have Pσ

A [f, 0, 0, 2] and Pσ
A [g, 0, 0, 2] and know that building

up the accessible parts of f and g closes at σ. By Lemma 10, the properties
of our restriction, and the definition of vτf we see that

∀ξ∀x(P ξ
A[g, x, 0, 1]→ P<σ

A [g, x, 0, 1],(3)

(∀x 6vτf u)P<σ
A [g, x, 0, 1],(4)

P<σ
A [f, v, 0, 1] ∧ w vτf v → P<σ

A [f, w, 0, 1].(5)

If ρ is an admissible greater than σ and ¬P<σ
A [f, u, 0, 1], then the first asser-

tion and (3) give us ¬P<ξ
A [g, u, 0, 1] for any ξ with σ < ξ < ρ. Of course, also

Fun2
ξ [g] and P<ξ

A [g, 0, 0, 2], and so the operator axiom for A yields P ξ
A[g, 0, 0, 4]

and P<ρ
A [Ê1, g, 0, 0]).

On the other hand, P<ρ
A [Ê1, g, 0, 0]) implies that there exists an x not in

the accessible part of g, i.e. ¬P<σ
A [g, x, 0, 1]. Together with (4) and (5) we

obtain ¬P<σ
A [f, u, 0, 1]. 2

Lemma 26 The theory INAr proves

Fun2
∞[f] ∧ PA[Ê1, f, 0, 0] → ∃g(Fun1

∞[g] ∧ ∀x({g}∞(x+ 1) ≺∞f {g}∞(x))).

Proof We assume Fun2
∞[f] and PA[f, 0, 0, 4] and conclude from Lemma 7

that there exists an ordinal ξ such that Fun2
ξ [f]. In a first step select admis-

sibles π, ρ, σ, and τ for which

ξ < τ < σ < ρ < π.

Then we pick a fresh binary relation symbol X, let A[X, u, v, w] be the L0(X)
formula

∃x(∃y > 0)(Seq(x) ∧ lh(x) = y ∧ (x)0 = u ∧ (x)y .−1 = w

∧ (∀z < y .− 1)X((x)z+1, (x)z)) ∧ X(v, w)

21

and make use of Lemma 21, applied to this formula, and of Lemma 22 to
obtain primitive recursive functions F and G such that

Fun2
τ [F(f, u)](1)

for all u and, in addition,

A[{f}ξ, u, v, w] ↔ {F(f, u)}τ (v, w) ' 0,(2)

P<ρ
A [Ê1,F(f, u), v, 0] ↔ {G(f)}ρ(u) ' v(3)

for all u, v, and w. Recalling Lemma 16,

Funρ[G(f)](4)

follows from (3). A further observation, making use of (2), states

Rest [τ, f,F(f, u), u].(5)

Clearly, see Lemma 15, the accessible parts of {f}ξ and {F(f, u)}τ are com-
pletely built up at σ, i.e.

Pσ
A [f, 0, 0, 2] ∧ Pσ

A [F(f, u), 0, 0, 2].(6)

By Lemma 10 the assumption PA[f, 0, 0, 4] provides us with an a not in
the accessible part of {f}ξ and thus ¬P<σ

A [f, a, 0, 1]. Because of (5) we can
conclude with the previous lemma that

P<ρ
A [Ê1,F(f, a), 0, 0].(7)

A next important preliminary step, before turning to the construction of the
required g, is to establish the following implication

P<ρ
A [Ê1,F(f, u), 0, 0] → (∃x ≺τf u)P<ρ

A [Ê1,F(f, x), 0, 0]).(8)

Proof of (8): Assume P<ρ
A [Ê1,F(f, u), 0, 0]. Then (5) and the previous lemma

imply ¬P<σ
A [f, u, 0, 1]. Thus, by (6) and Lemma 10, there exists an x such

that x ≺τf u and ¬P<σ
A [f, x, 0, 1]. It suffices to apply (5) and the previous

lemma again to obtain our assertion.

Now pick an additional fresh unary relation symbol Y and consider the
L0(X, Y) formula

B[X, Y, u, v] :=

{
(X(v, u) ∧ Y (v) ∧ (∀w < v)(X(w, u)→ ¬Y (w)))

∨ (¬∃w(X(w, u) ∧ Y (w)) ∧ v = 0).

22

In order to apply Lemma 23, we simply notice that INAr proves

∀η∀h1∀h2(Fun2
η[h1] ∧ Fun1

η[h2] → ∀x∃!yB[{h1}η, {h2}η, x, y]).

Hence we know that there exists a ternary primitive recursive function H
such that, for g := H(f,G(f), a), we have Fun1

π[g] because of (1) and (4) as
well as

{g}π(0) ' a,

{g}π(v + 1) ' w ↔ B[{f}τ , {G(f)}ρ, {g}π(v), w].

Our scenario has been set in a way that with (7) and (8) simple ∆O
0 induction

on the natural numbers proves

∀x(P<ρ
A [Ê1,F(f, {g}π(x)), 0, 0] ∧ {g}π(x+ 1) ≺τf {g}π(x)).

By Lemma 6 this implies Fun1
∞[g] and ∀x({g}∞(x + 1) ≺∞f {g}∞(x)) as

desired and finishes the proof or our theorem. 2

Theorem 27 The theory INAr proves

[f ∈ (N2 7→ N)]∞ →
([E1f = 0]∞ → [(∃g ∈ (N 7→ N))(∀x ∈ N)(f(g(x′), g(x)) = 0)]∞).

Proof As in the proof of Theorem 19 we observe that [f ∈ (N2 7→ N)]∞

and [E1f = 0]∞ imply Fun1
∞[f] and PA[Ê1, f, 0, 0]. According to the previ-

ous lemma we therefore have ∃g(Fun1
∞[g] ∧ ∀x({g}∞(x+ 1) ≺∞f {g}∞(x))).

Clearly, this yields [(∃g ∈ (N 7→ N))(∀x ∈ N)(f(g(x′), g(x)) = 0)]∞. 2

Theorem 19 and Theorem 27 provide the translations of both directions
of axiom (E1.2) of the Suslin operator E1. Summing up, together with the
earlier Theorem 14 we have shown that all axioms of SUS can be modeled in
INAr.

5 Proof theoretic equivalences

We end this article by summing up what we can conclude about the proof-
theoretic strengths of the applicative theories SUS+(S-IN), SUS+(N-IN), and
SUS + (L-IN). Their lower bounds are provided by Theorem 2, their upper
bounds can be computed via INAr and two of its extensions and by what we
know about the bounds of those.

23

Theorem 28 For all L formulas A we have:

1. SUS + (S-IN) ` A =⇒ INAr ` [A]∞.

2. SUS + (N-IN) ` A =⇒ INAr + (ΣO-IN) ` [A]∞.

3. SUS + (L-IN) ` A =⇒ INAw ` [A]∞.

Proof For these embedding results it is sufficient to check that the trans-
lations of all axioms of SUS + (S-IN), SUS + (N-IN), and SUS + (L-IN) are
provable in INAr, INAr + (ΣO-IN), and INAw, respectively. Of course, Theo-
rem 14, Theorem 17, Theorem 19, and Theorem 27 tell us already that the
translations of all axioms of SUS are provable in INAr. Therefore, it only
remains to have a look at the respective induction principles.

Let us begin with (S-IN). It is easy to see that within INAr the formula
[f ∈ P(N)]∞ is equivalent to ∀x(PA[f, x, 0, 0] ∨ PA[f, x, 1, 0]). By the same
argument as in the proof of Lemma 7 we can thus conclude that there exists
a σ such that Fun1

σ[f] and ∀x(P<σ
A [f, x, 0, 0]∨P<σ

A [f, x, 1, 0]). Moreover, the
formula

[f0 = 0 ∧ (∀x ∈ N)(fx = 0→ f(x′) = 0)]∞

can be rewritten as

P<σ
A [f, 0, 0, 0] ∧ ∀x(P<σ

A [f, x, 0, 0]→ P<σ
A [f, x+ 1, 0, 0]).

Hence (∆O
0 -IN), which is available in INAr, yields ∀xP<σ

A [f, x, 0, 0] from which,
see Lemma 6, [(∀x ∈ N)(fx = 0)]∞ is an immediate consequence. So we have
established that the translation of (S-IN) is provable in INAr.

The translation of the premise of (N-IN) is the formula

[f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N→ f(x′) ∈ N)]∞

which is equivalent in INAr to

∃yPA[f, 0, y, 0] ∧ ∀x(∃yPA[f, x, y, 0] → ∃yPA[f, x+ 1, y, 0]).

Since ∃yPA[f, x, y, 0] is a ΣO formula, we can now apply (ΣO-IN) in order to
conclude ∀x∃yPA[f, x, y, 0], i.e. [(∀x ∈ N)(fx ∈ N)]∞. Therefore we know
that the translation of (N-IN) is provable in INAr + (ΣO-IN).

Ultimately, the translation of any instance of (L-IN) is clearly an instance
of (L?-IN) and therefore provable in INAw. 2

Before presenting the central result of this paper, we want to restate
an important result about the relationship between systems of second order

24

arithmetic and theories for admissible sets. In the following theorem ∆1
2-CA

is the usual system of second order arithmetic with the ∆1
2 comprehension

axioms, and ∆1
2-CR is the subsystem of ∆1

2-CA with the ∆1
2 comprehension

axioms replaced by ∆1
2 comprehension rules.

Theorem 29 We have the following proof-theoretic equivalences:

1. Π1
1-CA0 ≡ ∆1

2-CA0 ≡ KPi r.

2. Π1
1-CA<ωω ≡ ∆1

2-CR ≡ KPi r + (Σ-IN).

3. Π1
1-CA<ε0 ≡ ∆1

2-CA ≡ KPiw.

For the proofs of the first and third assertion of this theorem consult, e.g.,
Buchholz et al. [3] and Jäger [10, 11]. The second assertion is obtained by
making use of similar techniques.

Corollary 30 We have the following proof-theoretic equivalences:

1. SUS + (S-IN) ≡ Π1
1-CA0 ≡ ∆1

2-CA0 ≡ INAr ≡ KPi r.

2. SUS + (N-IN) ≡ Π1
1-CA<ωω ≡ ∆1

2-CR ≡ INAr + (ΣO-IN) ≡ KPi r + (Σ-IN).

3. SUS + (L-IN) ≡ Π1
1-CA<ε0 ≡ ∆1

2-CA ≡ INAw ≡ KPiw.

Proof According to Theorem 2, Theorem 3, and Theorem 28 we have the
following the inclusions:

Π1
1-CA0 ⊆ SUS + (S-IN) ⊆ INAr ⊆ KPi r,

Π1
1-CA<ωω ⊆ SUS + (N-IN) ⊆ INAr + (ΣO-IN) ⊆ KPi r + (Σ-IN),

Π1
1-CA<ε0 ⊆ SUS + (L-IN) ⊆ INAw ⊆ KPiw.

Therefore the claimed proof-theoretic equivalences are immediate from the
previous theorem. 2

This finishes the proof-theoretic analysis of the Suslin operator E1 in the
context of applicative theories. A next and very big step is to consider the
partial version E#

1 . Recursion-theoretic results indicate that a significant
increase in strength is to be expected.

25

References

[1] M. J. Beeson, Foundations of Constructive Mathematics: Metamath-
ematical Studies, Ergebnisse der Mathematik und ihrer Grenzgebiete,
Springer, 1985.

[2] , Proving programs and programming proofs, Logic, Methodology,
and Philosophy of Science VII (R. Barcan Marcus, G. J. W. Dorn, and
P. Weingartner, eds.), Studies in Logic and the Foundations of Mathe-
matics, vol. 114, North-Holland, 1986, pp. 51–82.

[3] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried
Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Re-
cent Proof-Theoretical Studies, Lecture Notes in Mathematics, vol. 897,
Springer, 1981.

[4] S. Feferman, A language and axioms for explicit mathematics, Algebra
and Logic (J.N. Crossley, ed.), Lecture Notes in Mathematics, vol. 450,
Springer, 1975, pp. 87–139.

[5] , Recursion theory and set theory: a marriage of convenience,
Generalized Recursion Theory II, Oslo 1977 (J.E. Fenstad, R.O. Gandy,
and G.E. Sacks, eds.), Studies in Logic and the Foundations of Mathe-
matics, vol. 94, North-Holland, 1978, pp. 55–98.

[6] , Constructive theories of functions and classes, Logic Collo-
quium ’78 (M. Boffa, D. van Dalen, and K. McAloon, eds.), Studies
in Logic and the Foundations of Mathematics, vol. 97, North-Holland,
1979, pp. 159–224.

[7] , Definedness, Erkenntnis 43 (1995), 295–320.

[8] S. Feferman and G. Jäger, Systems of explicit mathematics with non-
constructive µ-operator. Part I, Annals of Pure and Applied Logic 65
(1993), no. 3, 243–263.

[9] P.G. Hinman, Recursion-Theoretic Hierarchies, Perspectives in Mathe-
matical Logic, vol. 9, Springer, 1978.

[10] G. Jäger, Die konstruktible Hierarchie als Hilfsmittel zur beweistheo-
retischen Untersuchung von Teilsystemen der Mengenlehre und Analy-
sis, Ph.D. thesis, Mathematisches Institut, Univeristät München, 1979.

26

[11] , Iterating admissibility in proof theory, Logic Colloquium ’81.
Proceedings of the Herbrand Symposion (J. Stern, ed.), Studies in Logic
and the Foundations of Mathematics, vol. 107, North-Holland, 1982,
pp. 137–146.

[12] , Theories for Admissible Sets: A Unifying Approach to Proof
Theory, Studies in Proof Theory, Lecture Notes, vol. 2, Bibliopolis, 1986.

[13] , Fixed points in Peano arithmetic with ordinals, Annals of Pure
and Applied Logic 60 (1993), no. 2, 119–132.

[14] , First order theories for nonmonotone inductive definitions: re-
cursively inaccessible and Mahlo, The Journal of Symbolic Logic 66
(2001), no. 3, 1073–1089.

[15] G. Jäger, R. Kahle, and T. Strahm, On applicative theories, Logic and
Foundations of Mathematics (A. Cantini, E. Casari, and P. Minari, eds.),
Kluwer, 1999, pp. 83–92.

[16] G. Jäger and W. Pohlers, Eine beweistheoretische Untersuchung von
(∆1

2-CA) + (BI) und verwandter Systeme, Sitzungsberichte der Bayeri-
schen Akademie der Wissenschaften, Mathematisch-Naturwissenschaft-
liche Klasse 1 (1982), 1–28.

[17] G. Jäger and T. Strahm, Upper bounds for metapredicative Mahlo in
explicit mathematics and admissible set theory, The Journal of Symbolic
Logic 66 (2001), no. 2, 935–958.

[18] , The proof-theoretic strength of the Suslin operator in applica-
tive theories, Reflections on the Foundations of Mathematics: Essays in
Honor of Solomon Feferman (W. Sieg, R. Sommer, and C. Talcott, eds.),
Lecture Notes in Logic, vol. 15, Association for Symbolic Logic, 2002,
pp. 270–292.

[19] D. Probst, Suslin and FID[POS ,QF], 2008, Notes, Bern.

Addresses

Gerhard Jäger (jaeger@iam.unibe.ch)
Institut für Informatik und angewandte Mathematik, Universität Bern, Neu-
brückstrasse 10, CH-3012 Bern, Switzerland

Dieter Probst (Dieter.Probst@mathematik.uni-muenchen.de)
Mathematisches Institut, Ludwig-Maximilians-Universität München, There-
sienstrasse 39, D-80333 München, Germany

27

