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Abstract

The aim of this thesis is to show a few specific results about extensions of
Von Neumann—Bernays—Godel set theory NBG, by applying proof-theoretic
techniques. We get the main results in a uniform way, by using cut-elimination
and asymmetric interpretations. The same technique was applied a few
decades ago, to analogous systems of second order arithmetic, by Cantini [IJ.

We consider natural extensions of NBG by a few axiom schemes, i.e., choice
AC[X}], dependent choice DC[¥1], full induction TIc[L'], and iterated el-
ementary comprehension (CA[II}])<c.. And we are going to establish proof-
theoretic equivalences between these schemes, similar to the results for anal-
ogous systems of arithmetic. The equivalences proven in this thesis are

TUNBGUAC[®!] = T UNBG,
TUNBGUDC[ZY] = TUNBGU (CA[I]) <qe,
TUNBGUDC[EH U TIL[LY] = TUNBGU (CAILE))<g,,
TUNBGUAC[SHUTIL[LY] = TUNBGU (CA[II])< g,
TUNBGU (CA[I]) <, U TIL[LY] = TUNBGU (CA[IL])<E,.

where 7T is any set of axioms with logical complexity essentially ¥.3, and the
equivalence, =, means that any sentence essentially I1} is either provable in
both theories or in none of them.

The first equivalence has already been stated (without proof) by Feferman
and Sieg [4]. The last two equivalences are easy consequences, by using the
third one. The second last equivalence has already been shown in a slightly
weaker form by Jéger and Kréhenbiihl [10].
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Introduction

Von Neumann-Bernays-Gdodel set theory (NBG) is a conservative extension of
Zermelo—Fraenkel set theory (ZFC), see e.g. Levy [13]. NBG extends ZFC such
that, in addition to sets, we also have classes as individual objects. The two
sorts of variables z,y, z,... and X,Y, Z, ... for sets and classes, respectively,
make the language much more expressive, e.g., NBG is finitely axiomatizable.
NBG can be formulated in many different ways; in this thesis we define NBG
to consist of ZFC and the following (infinitely many) axioms

(Comprehension) IXVy(y € X <> Aly]) for any A € 11},
(Replacement) VF(Fun[F] — Vz3y(y = Flz])),
(Global Choice) IF(Fun[F]AVz(x =0V F(z) € x)).

All the theorems about sets in ZFC are exactly the same as in NBG, i.e., “pure
set theory” is not affected by the classes in NBG. Of course, the underlying
set theory can be easily made stronger, by adding appropriate class axioms to
NBG, e.g. this is the case for Morse—Kelly set theory (MK), which is just NBG
with comprehension allowed for any formula A. The increased expressiveness
and the conservation of common sense set theory ZFC within NBG, make
NBG to an interesting choice for logical investigations. Furthermore, on the
meta-level of logic, the extension of ZFC to NBG is similar to the shift from
Peano Arithmetic (PA) to Arithmetical Comprehension (ACAg), which is a
subsystem of Second Order Arithmetic (Z3) (MK corresponds to Z, in the
same way as NBG corresponds to ACAg). This logical analogy is the starting
point of this thesis. A huge amount of research in mathematical logic has
been done in the field of arithmetic, and the aim of this thesis is to get a
few specific results about set theory, by applying proof-theoretic techniques,
i.e. cut-elimination and asymmetric interpretation, analogously to the way
these techniques were applied to arithmetic.

We consider natural extensions of NBG by axiom schemes with classes in-
volved, i.e., choice AC[X}], dependent choice DC[X}], induction T [L'], and
iterated comprehension (CA[II}])<c. And we are going to establish proof-
theoretic equivalences between these schemes, similar to some results that
were achieved a few decades ago for analogous systems of arithmetic.

We observe that any class Y can be considered to be a collection of classes,
(Y)y, where (Y), is the class {z | (z,2) € Y}, or it can be considered to be
a function Y : z — (Y),, mapping sets to classes. In this context it makes
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sense to have the restriction (Y), i.e. the function Y restricted to z, where
(V)7 is the class {(z,5) € Y | y € z}, or more generally, (Y)=" is the class
{{z,y) € Y | y < z} for any relation <. Having this notation, the axiom
schemes of interest can now be formulated precisely as the following

e Choice AC[X1], means that for any A € X1 we have that
VeIY Alz, Y] — FYVz Az, (V)]

that is, if we have Vz3Y Az, Y] then there also exists a “choice function”
Y such that Alz, (Y),] for all z.

e Dependent Choice DC[X1], means that for any A € X1 we have that
VaVY3ZAlx,Y, Z] — 3ZVzAlz, (Z)",(Z).],

i.e., if we have VaVY3Z A[x,Y, Z] then there is a “choice function” Z such
that Az, (Z)",(Z),] for all z, hence (Z), depends on (Z)", that is, (Z),
depends on the choices made “previous” to x.

e Induction TI.[£'] means that for all formulas A we have
Vo ((Vy € 2)Aly] — Alz]) — VzAlx],

i.e., from the progressivity of the element relation € on Alx] we get A[x]
for all x.

e Iterated comprehension (CA[II}])<. means that for any A € II} we have
X (Vy < )(X)y = {z | Alz,y, (X)™]},

i.e., there exists a class hierarchy X, such that for all levels y “below” ¢ the
class (X), consists of the sets z with A[z,y, (X)=Y], hence (X), depends
on all levels of the hierarchy “previous” to y, that is (X)~Y

The main results of this thesis can now be stated as the following proof-
theoretic equivalences

TUNBGUAC[ZY] = T UNBG,
TUNBGUDC[E!] = TUNBGU (CA[})) <qw,
TUNBGUAC[E|UTI[LY) = TUNBGU (CA[IL])<E,.
TUNBGUDC[E U TIL[LY] = TUNBGU (CA[IL))<sm,,
TUNBG U (CA[I]) <, U TIL[LY] = T UNBGU (CA[I]) <,

where 7T is any set of axioms with logical complexity essentially ¥3, and the
equivalence, =, means that any sentence essentially I1} is either provable
in both theories or in none of them. We can see that the proof-theoretic



strength of these theories is essentially captured by the bounds Q“ and Ej
for iterated elementary comprehension.

To be able to explain what Q¥ and Ej are, we need to say a few words about
the uniform representation, i.e. notation, of ordinals in set theory; because
of the Cantor normal form for ordinals, we can write down any ordinal « by
just using brackets {, ), epsilon numbers eg < a, and ), where € enumerates
the class {7y | ¥ = w?}. The notation @ representing the ordinal « is built
according to the following recursion

N a a=wor a=10,
a =

<<’70aa§/;">> a=cnFw? + .+ wWir #wa.

E.g., if o = w4 w then @ = ((eg,0), (0)). We can recursively define
operations on these notations, reflecting addition, multiplication, exponen-
tiation and the ordering relation on ordinals, such that @ + 3, @ ° 8, and

~

a?, are the notations of a + 3, a - 8, and o, respectively, and a < 3 iff
a € B. We further extend this notation system by an additional “virtual”
epsilon number Q, with eg < Q for any eg, and we allow notations @[],
where @[] is just @ with all occurences of the biggest epsilon number €5 in
@ being replaced by Q. Ej is the collection of all notations @ and a[f?]. The
arithmetical operations and the relation < are easily adapted to include all
such notations, by treating ) just like a real epsilon number bigger than any
other epsilon number. In some way, (Fy, <1) can be seen as the analogue of
(€0, €), with the set of the natural numbers, i.e. the ordinal w, replaced by
the class of all ordinals, i.e. the notation €.

(CA[I}]))<qw and (CA[II}])<p, are the axioms of iterated comprehension
along <1 up to Q" and €, for any n, respectively, where Q"1 := Q" *
and Q41 = &2 (Q° := T and Qy := Q4 1). The ordering <1 on the
initial segments up to any ,,, is shown to be a provable well-founded class
relation in NBG, for any n, hence the class hierarchies defined by iterated
comprehension along <1 up to €2,, are well-defined in NBG.

One direction of the proof-theoretic equivalences of the main results is shown
with little effort, because the choice axioms already imply iterated compre-
hension, that is

NBG U DC[I}] F (CA[TL)) <o,
NBG U AC[IIA| U TI.[LY] F (CA[ITY]) <,

For the other direction we use asymmetric interpretations, similar to the
asymmetric interpretations used, e.g., by Cantini [1] for subsystems of second
order arithmetic, and by Jager[7, 8, 9] and Jager and Strahm [IT] for theories
of admissible sets, explicit mathematics and operational set theory. That is,
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for the other direction we reduce each of the systems with choice, T (i.e.,
CA[IJUACIILE], CAII{UDC o, [11}], and CA[IIF]UDC o, [I1§]U TI[L£Y]), to
the corresponding system with iterated comprehension, 7y (i.e., NBG, NBGU
(CA[IT}]) <qw, and NBG U (CA[II}])<k,), by an asymmetric interpretation,
that is, we interpret any formula A into a hierarchy of classes U, such that
(in a nutshell)

(1) After the asymmetric interpretation of the formula A into the hierar-
chy U, denoted by A(a, b>U, every quantified class variable of A ranges
over some specific level of the class hierarchy, i.e. generally all existen-
tial quantifiers range over some level (U), higher than the level of the
universal quantifiers (U), (hence the name asymmetric interpretation).

(2) All formulas provable in the system T, we want to reduce, hold true after
asymmetric interpretation into the class hierarchy U, i.e.,

T FA = Tit Clr, [U] — 36(A0,6)7).

This statement corresponds to the statements proved in Lemma [109
where we can see that the situation is actually a bit more complicated.
We write Clr, [U] to emphasize the dependence of the class hierarchy U
on the specific theory 7¢n,. Actually, the hierarchy U also depends on
the formula A, i.e. on the free class variables in A, and on the length of
the derivation of A in a particular proof system for T, (see the proof of

Lemma [110]).

(3) For any formula up to some logical complexity, i.e. essentially ¥1, the
asymmetric interpretation of the formula reflects the truth of the original
formula, that is,

A essentially X1 = Ty b Clz, [U] = (A{a,0)Y — A).

(4) The class hierarchy exists in the system 7; we want to reduce to, i.e.,

T F 3UCly, [U].

By putting (2) to (4) together, we have that if a formula A is essentially
¥} and Tep A then we also have Ti; - A, and hence the proof-theoretic
equivalences are fully established. Technically, the implication in (2) actually
consists of two steps; the implication is proved by induction on the length
of the cut-reduced proof of the formula A, that is, we need proofs of the
formulas A where only cut formulas of complexity at most X1 are used, i.e.,
we need partial cut-elimination. Hence we first show

TnEA = Tl A,



and having this simpler (but usually much longer) proofs, we are able to get
the desired implication by just showing

Tnlg A = Tut Clr,[U] — 36(A0,6)Y),

which is now proved by induction on the length of the cut-reduced proofs.

The reduction of the system 7¢, with full induction TI [L'] is actually a
bit more involved than described above. The reduction is more complicated
because of the intermediate step in (2), just described. The logical complexity
of the formulas in T1[£'] is unbounded, hence the complexity of cut formulas
gets far beyond ¥1. We are dealing with this situation in a standard way,
e.g., in the same way as in Jéger and Krahenbiihl [I0], that is, we change
over to an infinitary proof system with T1.[£'] already built in, such that
instances from TI-[L'] are derivable even without using any cut at all, and
such that we can still prove partial cut elimination for this system, too. The
proof system makes use of an infinitary rule for universal quantification over
sets, that is, the rule applies to infinitely many premises (one for each set).

For the asymmetric interpretation including TI-[£!'], the infinitary proof
system Prp, for 7¢, is formalized within the system 7. Here, we simply

write Prr, [T A7 for the complex formula EiZ(Prgit_ [ZINM"AT} € (Z)qimm)s

where {" A} € (Z)q15 . means that "A™ is derivable in at most + @ steps
with cut formulas of rank at most n, and where n, and hence Prr, , actually
depend on the derivation of A in a particular (finitary) proof system for 7ch
(see the proof of Lemma . To accomplish the asymmetric interpretation,
we use Godelization of formulas and an appropriate definition of truth for
the codes of formulas, " A7, where truth is such that the class quantifiers in A
range over some specified class universe U. Truth of the code of A is denoted
by TA7[f, g]Z (where f and g take account of the free set and class variables

in A, respectively). Property (2) and (3) now essentially become

(27)
Ti b Prr, [TA7] — (Clr, [U] — El[)('—A—'<C@,Cb>[f, g]&))v

(3") If A is essentially ¥} then

T b Cly,[U] = (TA™(Ca, Co) [, 9]5% — "AT[f, 9]%)-

Furthermore, the proof system Pry, and the truth definition are such that
the following properties hold

TobFA = Tik Pro,[TA7),

Aessentially 3] = Ti - £alf. g, U] = (TA7[f, gl — A),
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where the formula #4 stands for the proper assignment of sets and classes
to the free variables in A (through f and g). Hence, together with (4) and
because of Ty b Clr, [U] — 3f3g(8alf, g,U]), we have that if a formula A is
essentially 1 and T, - A then we also have T F A, and finally we have
established the proof-theoretic equivalence in the more complicated cases,
too.



1. Logic for Theories of Sets and
Classes

In this section we define the language and the logic for theories of sets and
classes, as we use it throughout this text. We work in classical logic with two
sorts of variables x, vy, z..., and X, Y, Z..., for sets and classes, respectively. We
follow the style of Tait, that is, the logic is defined analogous to Tait-language
and Tait-calculus, e.g. as the language and logic for second order arithmetic
is defined by Pohlers [I5]. Our language of set theory is very simple, because
it only has the element relation symbol €, and no other relation or function
symbols. Actually, for technical reasons, there are two relation symbols €°
and €', i.e. €% and 2€'Y, because we syntactically distinguish between
sets and classes. Equality will be defined in terms of €, hence we have logic
without equality. See, e.g., Mendelson [14] for axiomatic set theory in pure
first-order logic with just one sort of variables and one single relation symbol,
and consider Appendix [B| for the exact relationship between these different
formalizations of axiomatic set theory.

The very heart of this section is the definition of the notion of formal proof
in the form of a provability relation, and some theorems about important
structural properties thereof, i.e. like partial cut elimination.

We write N for the collection of all (standard) natural numbers 0,1,2, ... and
we use the letters i, j, k, [, m,n (with subscripts) to denote natural numbers.

Definition 1. (Language £°, £!)
The language L' of Von Neumann-Bernays—Gddel set theory consists of
the following
(1) The logical symbols of L are
a) the free set variables v;, for all i € N,
b) the bound set variables u;, for all i € N,
c) the free class variables V; for all © € N,

e

)
)
d) the bound class variables U; for all i € N|
) the propositional connectives A, V, ~,
)

f) the quantifiers ¥V, 3,
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g) and the auziliary symbols (, ).

We use the letters f, g, h, u, v, w, z, y, z (with subscripts) to denote
free or bound set variables, and we use the letters F', G, H, U, V,
W, X, Y, Z (with subscripts) to denote free or bound class variables.
The mapping § on variables is defined such that fv; := §V; := fu; :=
fU; := i for i € N.

(2) The non logical symbols of L' are the element relation symbols €°
and €l.

(3) The atomic L'-formulas are v;€%;, ~v;€%, v;€'V;, ~v;€V;, for
alli,j EN. Wewritex €y, z €y, x €Y, 2 &Y, for €%, ~zey,
z€'Y, ~x€lY, respectively.

(4) The L'-formulas are inductively defined, such that,
a) all atomic £1-formulas are £!-formulas,

b) if A and B are L!'-formulas then (A A B) and (AV B) are L!-
formulas,

c) and if A is a Ll-formula, and u, V are free variables, and the
bound variables z, Y do not occur in A (and hence z, Y are free
for u, V in A), then Ve Alzx/u], 3z Alz/u], VY A[Y/V], Y A[Y/V]
are L'-formulas. A[z/u] and A[Y/V] stand for the expressions
that are obtained from A by replacing all occurrences of u and V'
by x and Y, respectively.

We use the letters A, B, C, D, E (with subscripts), to denote L£!-
formulas. The mapping # on £'-formulas is some fixed injective map-
ping to N, that is, if fA = 4B then A = B.

The language L° of Zermelo—Fraenkel set theory is defined analogous to
L', by omitting the relation symbol €', and all class variables V;, Uy, for
all 4,j € N, in the definition of £!.

If x and u are sequences of variables xg, ..., xx, and ug, ..., ux, respectively,
and if the variables in u are pairwise distinct, then A[z/u] stands for the
expression that is obtained from A by replacing all occurrences of u; by
x;, simultaneously for all ¢ < k. We may write A[z] instead of Alx/u]
whenever the variables in u are unimportant or u is determined by context.
Analogously A[X] for A[X /U], and the same for sequences of variables of
mixed type, e.g. Alz,y, Z] or A[X,y, z].

For any language £, we write A € L, if A is a L-formula, and we write
C C L, if C is a set of L-formulas. We write x € A if the free or bound
variable x occurs in A, otherwise we write x ¢ A. Analogously X € A
or X ¢ A. Formulas with no free variables are called sentences or closed



formulas. A set of formulas C C £! is closed under substitution if for
all A € C and all free variables w,v,U, V', we have that A[v/u] € C and
AlV/U] eC.

Because of the simplicity of the language £! we need a lot of syntactic ab-
breviations. That is, we define short notations for (sometimes very long)
formulas, and we extensively use such expressions.

Definition 2. (Abbreviations)
For A € £! we define =4 € £! such that

~A A atomic, A # ~B,
B A=~B,
(-Bv-C) A=(BAC
A - (-BA-C) A= (BVC(C),
. Vz— Bz A = F2B[z],
J2-Blz] A = VaBlz],
VX-B[X] A=3XB[X],
3IX-B[X] A=VXB[X].

);
)

For A,B,C € L' (with 2,y € C,  # y) and free variables u,v we define
abbreviations for the following formulas,

(A= B) = (-AVB),
(A< B) = ((A—= B)A(B— A)),
(Ve € u)C[z] = Va(ze€u— Clz]),
(Fr e w)Clz] = Fz(ze€uAnClx]),
uCov = (Voe€u)z €,
(u=v) = (uCvAvCu),
WMxClz] = FaClx]) AVaVy(Clz] A Cly] = = = y),
1 = Ve(zezAz ),
T = -l

(Ve e U)Clz], 3z €e U)Clz], and 2 CY, X CY, X Cy,and z =Y,
X =Y, X =y are defined analogously.

If C C L' then we write C~ for the set {B | 3A (A — B) € C}.

The logical complexity of formulas is an important measure, because a lot
of theorems in logic, e.g. the main Theorem of this thesis, only hold for
a specific level of formula complexity. In the following we define classes of
formulas that correspond to the number of the nesting of alternating class
quantifiers.
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Definition 3. (X}, II}, X!, II')
For sets of formulas C C £! we define
(1) L) = CU{3XA[X]eL'|AecC},
ITL (C) CU{VXA[X]eL'| AecC}.

(2) X}(C) and IT*(C) are inductively defined, such that both contain all
formulas in C, and if A,B € X(C) then the L£!-formulas VaA[x],
JrAlz], IXA[X], (AAB), (AV B) are in $1(C), and if A, B € II'(C)
then the L£'-formulas Vz A[z], JzAlz], VX A[X], (AA B), (AV B) are
in I1*(C).

(3) -C = {-A|AecC}.

Lemma 4.

For any A € £' and C C L' we have that
(1) A=A, ie. -—=C=C.
(2) ~L(C) = L (~0).
(3) ~x1(C) = 11H(—0).

Proof.

(1) By induction on the structure of the formula A, we show =——A = A.

(2)
-2 (C)=-Cu{vX-A[X]eL'|AeC}
=-CU{VXB[X] e L' | Be~C}=TI(=C).

(3) We show -X1(C) C I1}(=C), by induction on the structure of the formulas
in ©1(C). Eg. if B = 3XA[X] € £ with A € X1(C) then ~B = ¥X—=A[X]
with =4 € =%1(C), and —=A € II*(—=C) by i.h., hence =B € II' (=C). We prove
I (=C) € =X1(C), by induction on the structure of the formulas in IT' (=C).
E.g. if B=VXA[X] € II'(=C) with A € I'(—=C), hence A € =X!(C) by i.h.,
then ~3X-A[X] = VX-—A[X] = B € =X!(C) by Part 1. O

Definition 5. (Formula Classes X}, IT} C £1)

(1) ¥} := I}, where II} is inductively defined, such that II} contains all
atomic L'-formulas, and if A, B € I} then the £!-formulas VaAlx],
JzAlz], (AA B), (AV B) are in II}. The formulas in II} are called
elementary formulas.

@) Sk, = i),
1_[n—i-l = H-i—(zn)

10



Lemma 6.

(1) -3} =TI,
(2) pUILL =%L NI,

Proof.

(1) We prove —II} C I}, by induction on the structure of the formulas in IT},
hence IT} = —~—1II} C —II} = =%} C II}. By induction on n and by Lemma
we get <51, = ~2L (ITh) = T} (<11) = ITL (24) =TT},

(2) By definition we have SUITj C SiNIT{. We prove X, UILL € 37 NI
by induction on n. By definition we have IT} C X1 1 and by i.h. we get
¥l C ¥l hence I} = II! (E,ll ) C L (2L) =11}, 4, analogously ) C
ElﬂﬂH s To show En+1 NI, C XL UH1 we assume A € ¥1 ﬁHnH
and A ¢ X}, and we show A € II}. Because of Aell} ,and A¢Z Y}, w
have A = VXB[X] € L for some B € X}, and because of A € X}, and

n’

A=VXB[X]#3YC[Y] € L for all C € 11}, we get A € IIL. O

The rank rke(A) with respect to C C L1 of a formula A is defined such that
rke(A) =0 iff A € CU=C, and rke(A) = rke(—A) for every A.

Definition 7. (Formula Rank rk¢)

For sets of formulas C C £! and formulas A € £! we define

rke(A) := 0if A€ CU-C, and otherwise

1 A atomic,
ke (A) max{rkc(B),rke(C)}+1 A=(BAC),(BV(C),
rKe =

tke(B) + 1 JxB[z], Va B[z,

IXB[X]|,VXB[X].
We write rk for rkg.
We observe that by definition we have rke = rkey—c.

Lemma 8.

(1) If C C D then rkp(A) < rkc(A).
(2) I’kc(A) = I’kc(ﬁA).

Proof. By induction on the structure of the formula A. O

11
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For the sake of completeness, and because of some logical considerations in
Appendix [A| and [B| we give a formal definition of the semantics of £'. As
we work in proof theory, which by its nature mostly deals with pure syntax
(except for completeness results), we are not going to use semantics any
further in this thesis. Clearly, we inherently use semantics whenever we give
just an informal proof for some statement within a specific set theory. But,
of course, any of this informal proofs could also be replaced by a formal proof,
as we know by invoking the completeness theorem, cf. Theorem

Definition 9. (Semantics)

(1)

(2)
3)

()

A L'-structure is a tuple M = (JIM|, | M|, €%, €},) with non-empty
domains [M], ||M]], and relations €%, €}, such that €5, C |[M| x
M|, and €} C [M] x [M]].

A L'-valuation is a tuple V := ((V), f,g) such that (V) is a LI-
structure, and f: N — |(V)|, and g : N = ||(V)].

Given a function f with domain N, the mapping f[a/n] is such that
fla/n](n) := a and fla/n](i) := f(i) for i # n. For £L!-valuations V =
(M, f,g) and free variables z,Y we define V[a/z] := (M, fla/tz], g)
and V[b/Y] := (M, f,g[b/tY]). V[] is V. If a and n are the sequences
ag, ---, ax and ng, ..., ng, resp., then fla/n] stands for flag/no)...[ar/nk],
and analogously V]a/z], V[b/Y].

V = A holds iff V = (M, f,g) is a L'-valuation, A € £ and one of
the following holds:

A=zey and  f(fz)el f(ty),
A=ze€Y and  f(fz)el, (1Y),
A=~B and V£ B, (not V = B)
A=BAC and (VEBandV [ C),

(
A=BvC and (WEBorVECQ),
A=VzB[z/u] and (VYa € |M]) V]a/u]E B,
A=3zB[z/u] and (Ja € |M]) V]a/u] E B,
A=VXB[X/U] and (Vbe |M]) V]b/U]E B,
A=3XB[X/U] and (3be |M]|)V[b/U]E B.

VE Fholdsiff F C L' and V = A for all A€ F. T E F holds iff
T,FCLYand (VT =V E F) for all L1-valuations V. We write
TE Afor T = {A}, and A = F for {A} E F, that is, A = B for
{A} E{B}. | F stands for 0 = F.

M E Ala/z][b/Y] holds iff M is a L1-structure and all £!-valuations
V with (V) = M are such that V[a/z][b/Y] E A. M = Ais M = A[].
M T holds iff T C L' and M = Aforall AeT.

To simplify notation we use the same symbol, |=, for distinct relations in
(4) and (5).

12



The following lemma shows that logical implication, A — B, exactly corre-
sponds to logical consequence, A = B. The situation is different for prov-
ability, cf. Definition [I2] for which we have that + A — B implies A F B,
but the other direction only holds for closed formulas A.

Lemma 10.

For A,B € L! we have = A — B iff A = B.

Proof. By the definition of . O

The only part of the logic for £! still missing, is the notion of formal proof.
By formal proofs we derive finite sets of formulas I', and the existence of such
a derivation means that the disjunction over all formulas in T holds (with
respect to the specific axioms).

Definition 11.

Finite (possibly empty) sets of formulas are denoted by the greek letters
I, A, ©, ® (with subscripts). If T' = {Ay, ..., A,} and A ={By,..., B}
then I, C, A stands for {Ay, ..., Ay, C, Bo, ..., By }. We write u ¢ T for the
variable u, if u ¢ A; for all i < n, and otherwise u € I" (analogously U ¢ T’
or U €T), further

-I' = {-Ao,....,m4,},
v = ((LVA)..VA,), (#A; < #A; for i < j)
rk(T') := max{rk(4)| A€}, (max{}=0)
Clu/v] = {Aolu/v],...,An[u/v]}. (analogously T'[U/V])

The inference rules for formal proofs consist of the common rules for classical
logic, and the rules for the axioms 7 C L', and additional inference rules
specified by some set R C £!. The rules can be depicted as follows

I'’A,—-A with A atomic,

r A I, B
I Av B’ I Av B’
r'A T.B
IAAB ’
T, Alv/u) A .
Bl e /0 ST S h T
I, 3zAlz/u]’ I, VzAlz/u] with u ¢ I,

13
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L, A[V/U]
T, 3XA[X/U]’
A Ir,—-A
F )
I'N'A withAeT,
I,B .
T A with (B — A)

9

In the following we define the provability relation 7 [R]Ilélj I', which captures
provability by formal proofs. In addition to the axioms 7 and the additional
inference rules R, the relation also has control parameters n, j, C, and [, such

T, A

rvxapD] VU EL

eR.

that 7 [R]llglj I" essentially means that

(1) there is a derivation of the finite set of formulas I', which possibly uses

axioms in 7 and additional inference rules from R,

this derivation takes at most n steps (by definition we will have n > 0),
any formula A occurring in this derivation has rank rk(A4) at most j,

the rank of any cut in this derivation is at most [ with respect to C,
that is, any cut-formula A is such that rke(A4) < . If | = 0 then only

cut-formulas in C U —C are used.

Definition 12. (Formal Proof)

T [RIig] @ holds iff 7,R,C,® C L' (® finite or empty), and j,I,n € N,
and there are A, B € L', and i,k,m € N with m <n, and k <[, and
max{i, rk(®)} < j, and there is I' C £!, and free variables u,U ¢ ® and

v,w, V, W, such that one of the following cases holds

d=T,A4-A and
d=T1,4 and
d=T A and
d=T,AVEB and
d=T,ANB and
® =T,3zA[x/v] and
& =T,3XA[X/V] and
O =T, Ve Alx/ul and
®=T,VXA[X/U] and

T R @, Aand T [R]

14

A is atomic,

AeT,

T [RI{g'} T, B and (B — A) € R,
(T [RIgZ T, Aor T [RIE T, B),
T [RI} T, Aand T [R]E'}; T, B,

T Rl T, Alw/v],

T [RI5 T, AW/ V],
T [RIE} T, A,

T [RIE T, A,

7 ®,—A and rke(A) <1



If T,[R] or C is omitted in the notation 7 [R]IlcnkZ ® then 7 =0, R = 0,
C = ), respectively. If m, 1, k is omitted then this means that there is some
unspecified m, 7, k.

If ® = {A} then we may write T [T\’,}Iicnkl Afor T [T\’,}Iicnkl ®. And if F C !
and T [R]F A holds for every A € F, then we may ambiguously write
T [R]F F, but the meaning will always be clear from context, e.g., because
F is an infinite set of formulas.

Clearly we want the provability relation to be adequate to the semantics of
L. The following theorem states soundness and completeness of provability.

Theorem 13. (Adequacy)

If T C L' is a set of sentences then T+ A iff T = A.

Proof. See Theorem [I34] in the Appendix. O

For the manipulation of proofs we have the following two lemmas about
structural properties. There are a few unusual properties of our peculiar
provability relation, i.e. parts 3, 4, and 8, of the next lemma, but all other
properties are very common, like, weakening, substitution, the deduction
theorem, i.e. compactness, and inversion.

Lemma 14. (Structural Properties)

(1) If To € Ti, Ro € R1, Co € C1, m < n, max{i,rk(A)} < j, k <, and
To [Ro]}m’z I, then 77 [Rl]}ﬂ’] AT,

(2) If T,R, C C L' are closed under substitution and T [R]¥7 T’ then
T [RIZ7 Ty/2] and T [R]E2] i T[Y/Z] for all free variables y, z,Y,Z.

3

[RIE] ¢, T iff T [RIfG] T

)

3T

(4) If T [R }IICLZJ I then 7 [R }%” r.

(5) k5 A4, A.

(6) If F is a set of sentences and F U T [R]iz; T then there is a finite set
A C F such that T [R]fz; A, T

(7) If TU{VaAlz]} 1, T then TU{A}BI' T, and if TU{A} T and
VzAlz] € £ then TU {VzAlz]} - T (same for VXA[X] € L1).

(8) If T[QURI®T then (TUQ)[RIFT, and if (TUQ) [R],; ' and
QC{(A—=B)|ABeL'} then T[QUR|z, T.

15
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Proof.
(1) By induction on m, considering all cases in Definition

If 7o [RO] mo’“’ I'A, and 7o [RO] m‘”o I',—~A where mg <m, ko <k, and
rke, (4) < k and max{zo, rk(I)} < z then by i.h. for jo = max{ig, rk(A)} we
have that _

Ti [RAE Y AT, A and Ty [Raligiih O AT, —A.

Because of mg < m <n, and kg < k <, and

max{jo, rk(A,T)} = max{ig, rk(T), rk(A)} < max{s, rk(A)} < 7,
and rke, (A) < rke,(A) <k <lby Lemma we get Tq [Rl]lgljl AT.
Similarly for the other cases.

(2) By induction on n, considering all cases in Definition
If I' = Ty, JzAlz/v] and T [R]ig'} ' To, Alw/v] with m <n, and k <[, and

7

max{i, rk(T')} < 7, then T [R]Z" Toly/z], A[w/v][y/2] by i.h., and we may

)

assume v € {y, z,w}, because for any free variable u ¢ A and B := Afu/v]
we have that xAlx/v] = JxBlz/u] and Alw/v] = Blw/u]. We further have
JzAlz/v][y/z] = xAly/z][x/v] because of y # v # z, and

(AR w==,
Alw/vlly/z] = {A[y/z][w/v] w # z,

i.e. there is some u € {y,w} such that T [R]%n,; Toly/z], Aly/#][u/v], hence
T [Rltei] Toly/2, 3xAly/2][z/v], ie. T [Rligy Tly/z].

IfT = Ty, VeA[z/u] with w ¢ T, and T [R ]%"kz Ty, A with m <n, k<,
max{i,rk(I")} < j, then we choose some free variable v ¢ {y, 2} with v ¢ T".
For B := Alv/u] we get T [R]Ig"} ' T, B by i.h., and T [R]2% Toly/z], Bly/?]
by i.h., and further o

VaBly/z][z/v] = VaBlx/v][y/z] = Ve Alx/ully/z].
We get T [R]7 7] Tly/z] because of v & To[y/2], Vo Bly/z][z/v].

If 7 [R]ig T, A, and T [R]ig'} T',=A, and rke(A) < I, k < I, m <n, and
max{i, rk(I')} < j, then by i.h. we have that 7 [’R]Ilcnkz I'[y/z], Aly/z] and
T [R]%"kl [[y/z]),—Aly/z]. And because of rke(Dly/z]) = rke(D) for every
formula D, and rk(T'[y/z]) = rk(T"), we get T [R }llg’l] Ty/z].

Similarly for the other cases.

16



(3) The claim holds trivially, because of rke = rkey-c.-

(4) By induction on n, considering all cases in Definition

If 7[RI T, A, and T [R]ig'} T',—A with rke(A) < I, k < 1, m <n, and
max{i,rk(I')} < j, then we get T [RJf"y' T, A and T [RJif' T', ~A by ih.,
hence rk(T', A) <4 and rk(A4) < < j, hence T [R]f] 17,

Similarly for the other cases.

(5) By induction on the structure of the formula A.

If A= BV C then tj—B,B and lj =C,C by ih., further tj =B, B,C and
g -C, B,C by Part 1 Hence kg -BA-C,B,C and fg—-BA-C,BVC,
i.e. }T) ﬁA, A.

If A = JzB[z/u] then kj—-B,B by ih., hence tj3zB[z/u],~B,B, and
ts =B, 3z Blx/u], and 5 Ve—Bx/u], Jx B[z /u] because of u ¢ —A, A, that is
5 —A, A.

Similarly for the other cases.

(6) By induction on n, considering all cases in Definition

IfI' = TI'g,A for some A € F, then by Part 5 we have A, A, hence
T [Rlte,; ~A, A, T by Part 1., ie. T [R]z; A, T.

If ' = T, AN B, and FUT [R]i¢"y To, A, and FUT [R]i¢"), T, B, with
m < n, k <1, then there are Ag C F, Ay C F with T [R ]Ck—'AmFo,Aand
T [Rlle., 7A1,To, B by ih., hence if A := Ag, Ay then T [R]ie ;, A, To, A
andT[R] cx A, To, B by Part 1, therefore 7 [R]fz ; ~A, T

If T =To,VeAlr/u], and FUT [R]E" To, A, with m <n, k <[, and u ¢ T,
then for some A C F we get T [R]tz , =A, T, Abyih., hence’T[ e, ~A,T
because —A is a set of sentences and u € A, T

Similarly for the other cases.

(7) By induction on n, considering all cases in Definition The only inter-
esting case is when the axiom VzA[z/u] or A is used.

If T U{VzAlz/ul} ¢, T, Yo Alz/u] then we also have T U {A} f¢; A, and hence
TU{A} %LJ{I VxA[a:/u}, that is 7 U {4} Iﬂ+1 I, VaxAlx/u] by Part 1.

If TU{A} " T, A then we use Part 5 to get y A, —A, hence t A, =VxA[z],
and because of TU {VaxAlz]} F A,VzAlzr] we have T U {VzA[z]} F A, that is
T U{VzAlz]} F T, A by Part 1.

17
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(8) By induction on n, considering all cases in Definition The only inter-
esting case is when -AV B € Q is used as an axiom or inference rule.

FT[QURIFT,Band T [QURI™ T, A with m < n then by i.h. and Part 1
we have (T U Q) [RIFT, A, B. We get (T U Q) [R]FT,—B, B by Parts 1 and
5, hence (T U Q) [R|F T, AA =B, B, and clearly (T U Q) [RIF T',-~AV B, B,
that is (T U Q) [R]F T, B.

If (TUQ)I[RIE,T,~AV B then we get T [QUR]G,; T,-A, A by Parts 1

1
and 5, hence 7 [QU Rz, T',-A, B, that is T [QUR]fz; T',~AV B. O

)

Lemma 15. (Inversion)
If T,R,C C L' are closed under substitution and 7 [R]iz; T, C with C ¢
R~ UT then we have that
(1) C = AV B then T [R]E2, T, A, B.
(2) TC = AAB then T [R]%, T, A and T [RJ2, T, B.
(3) If C =VzAlz/u] and B = Afv/u] € L then T [R]iE, I, B.
(4) Tf C = VX A[X/U] and B = A[V/U] € £! then T [R]Z, T, B.

Proof.
(1) By induction on n, considering all cases in Definition

IfI',Av B=Ty,D,-D and D is atomic, then I' =T, D, =D, hence we get
T [R]i¢, ', A, B by Lemma (1)

IfT,AV B =To,DoV Dy, and T [R]ig"; T'o, D; with m < n, k <1 then we
have the following: If AV B = DoV D; then T [R]i¢'y T'o, A, B, and by i.h. we
may assume AV B ¢ Ty, hence I'o C T'and 7 [R]fz; T', A, B. Otherwise there
is Ty such that To =T, AVB and T' =T, DV E, and T [R]E", T, A, B, D;
by i.h., hence T [R]iz, T, A, B.

If AV B = To,3xD[x/u] and T [R]ig'; To, D[v/u] with m < n, k <1
then there is I'j such that I’y = I'j,AV B and I' = I'\,3zD|z/u], and
T [RIE': T4, A, B, D[v/u] by i.h., hence T [R]iz, T, A, B.

Similarly for the other cases.

(2) Analogous to Part 1.

(3) By induction on n, considering all cases in Definition

If T,VxAlz/u] = Lo, YyDly/w] and T [R]i¢'y To, D with m < n, k <[ and

w ¢ I',VxA[x/u] then we have the following: If VxAlx/u] = VyD[y/w]
then A = D[u/w], and B = A[v/u] = D[u/w]lv/u] = D[v/w] because

18



u ¢ D, hence T [R]i¢"; T'o, B by Lemma [14(2). By i.h. we may assume
VxA[a:/u} ¢ Tg, hence Tg C T' and T [R]fZ; T, B. Otherwise there is T,
sucht that 'y = T'j, Ve A[z/u] and T =T VyD[y/ w], and some free varlable
z ¢ D and z ¢ ', B, such that T [R ]Ck [y, D[z/w] by Lemma [14}(2), and
T [RIIE' T, B, D[z/w] by i.h., hence because of YyD[y/w] = YyD[z/w]|[y/z]
we get T [R]Ig; Ff],B,VyD[y/w], that is 7 [R]f¢, T, B.

Similarly for the other cases (analogous to Part 1).
(4) Analogous to Part 3. O

Another very important property of our provability relation is partial cut
elimination, meaning that, if we have 7 [R]F ' (with some slight restrictions
on 7 and R), then we also have T [R]lz o I for C =R~ UT, i.e., there is a
derivation of I' with all cut-formulas in R~ UT. In the following we give a
proof of syntactic cut reduction.

Theorem 16. (Cut-Reduction)

If T,R,C are closed under substitution, and C O R~ U 7T, then we have
(1) ¥T[RIgrT,A and T [R|ig"s A,—A and 0 < rke(A) < &+ 1 then
T [RIE" T, A

n

(2) T [RIf kHFthenT[ }%kr

)

Proof.
(1) By induction on n 4+ m, considering all cases in Definition

First we observe that the statement is symmetric in A and —A, because if
B = —A then =B = A and rke(B) = rke(A).

IfT',A=T¢y,~D,D and D is atomic, then either A ¢ {—=D, D} C I, hence
T [RIE3™ T, A, or otherwise w.lo.g. A = D, hence =4 € T, i.e. A=A C
T, AandT[ Jlet" T, A

If T,A =Ty,B and B € T, then we have B € T because of 0 < rke(A),
ie. Ag{CD’T hence T [R]i;™ T, A.

If TA =Ty,ByV By and T [R]ig°, T'o, B; with ng < n then we have the
following: If A # By V By then there is T, such that Tg = T{, A and T =
Iy, BoV By, ie. TR ]"0 Iy, A, B, and T [R }Z“,:rm Iy, Bi, A by i.h., hence
T [RIE." o, BoV B, A, that is T [RIIg5™ I, A If A= BoV By, ie. 7A =
~BoA—By, then we have T [R]Ig9, ', A, B; because of ', A = Ty, A, and hence
T [R] Zok'"m [, A, B; by i.h.. Further we may assume 7 [R]i¢"y A, By and
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T [R]tg", A, —~B; for some my < m, because any other case is treated else-

where by symmetry. Finally 7 [R]fe 124" T A because of T [R Jie'y Iy A, =B,
and rke(B;) < k.

IfI', A =Ty, VaB[z/u] and T [R|iZ°% T'o, B with ng < n and u ¢ I', A then we
have the following: If A # VB [:r/ u] then there is 'y and some free variable
v & T, A, A such that Ty =T, A, and T = I‘()N:CB[x/u] and VzBlx/u] =
VaBlv/ul[z/v]. By Lemma (2) we have T [R|iZ°% T'y, A, Blv/ul], and we
get T [RIE%™ T4, Blv/ul, A by ih., hence T [R ]"H" Ty, Yz Blv/u][z/v], A
because v ¢ T', A, that is T [R ]g‘sz A. If A =VeB[z/u] , ie. A =
Jz—Blz/u], then we have T [R ]"0 I', A, B because of I'A = T'g, A. Fur-
ther we may assume 7 [R]ig") A ﬁB[w/u] for some my < m, because any
other case is treated elsewhere by symmetry. We get T [R Jie% I's A, Blw/u]

by Lemma ( ), hence T [R ]go,jm I' A, Blw/u] by i.h.. Finally we get
T [Rlfe 121" T, A because T [R Jie's T A, = Blw/u] and rke(Blw/u]) < k.

If7T[R ] w Iy A, B and T [R]ig9, I', A, =B with ng < n and rke(B) < k then
we cangetT[ ]l@k A, -A, Band'T[ Jie'x A, A, —~B by Lemma. ), and
T [RIE™T,A, B and T [R]g%™ I', A, =B by ih., hence T [R ]“*mr A
because of rke(B) < k.

Similarly for the other cases.

(2) By induction on n, considering all cases in Definition

If7T [R ] ckr1 Dy Aand T [R]ig 1 T, A with m < nand rke(A) < k+1 then
T [RIZ, T, A and T [REZ, T,-A by i.h; if rkC(A) =0 then 7 [R], ' T,
othemlse T [RI,,7" T,T by Part 1, hence 7 [R] T.

T = FO,VxA[x/u] and T [R }Ck“ Iy, A with m < n and v € T then
T [RIEx To, A by ih., hence T [R]iZ kF

Similarly for the other cases. O

Corollary 17. (Partial Cut-Elimination)

If T,R,C are closed under substitution, and C 2 R7UT, and T [R]i¢ ;, T,
then T [72]%20 I, where 2§ =n and 27, ,, = 2%m.
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2. Standard Theories of Sets and
Classes

Having established the formal setting of the language and the logic for set the-
ory in Section [1} we are now able to formulate the axioms of Von Neumann-—
Bernays—Godel set theory (see e.g. Mendelson [I4] for more detailed infor-
mation about NBG set theory).

We first need to define a lot of syntactic abbreviations, because our language
of set theory is very simple. As far as we can, we use common notation
from standard set theory for these abbreviations, such that, e.g. Zermelo-
Fraenkel set theory, which is also introduced below, can be defined as usual
(see e.g. Takeuti [I8] for more detailed information about ZFC set theory).

We present an infinite axiomatization of NBG, that is, we extend ZFC by
the axiom schema of class comprehension, and by the axiom of replacement
(formulated for class functions), and by the axiom of global choice, to get
NBG. We show that the axiom of separation (also called axiom of subsets),
and the extensionality axiom for classes are both derivable in NBG. We
further show the existence of a global wellordering in NBG, and later, in
Section 4] we also prove the foundation axiom for classes in NBG.

Definition 18. (Abbreviations)

We define expressions o of the form Uz, Nz, (x,y), z\y, 2/, {z1,....,2n},
and abbreviations o € z, 0 € 0, and z € ¢, for formulas, such that o € z :=
(Fuez)Vv(veuveo),ando € 0:=(Ju € o)Vo(v €Eu+ v € o), and

z€Uzr = (Jwex)zecw,
zene = (Vwex)z €w,
ze{xy,,ant = (LVz=a1)...Vz=u1x,),
z€(x,y) = z={a}Vvz={zy},
zex\y = z€xNzdy,
z€x = z€eaxVz=u.

We write z Uy for U{z,y}, and x Ny for N{x,y}, and we write 0 and ) for
{},and n+ 1 for nU {m} (n € N).

We also use all abbreviations with set variables replaced by class variables,
whenever the resulting expressions translate into proper £!-formulas. If
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A € L' and o is some expression of the form Uz, Nz, (z,y), x\y, 2/,
{1,...;xn}, or of the same form but with class variables, then Ao /u]
stands for A with all subformulas z € u, u € z, u € Z with z # u,
replaced by the formulas z € o, 0 € 2z, 0 € Z, respectively, and with
u € u replaced by o € o, where all bound variables in z € o, 0 € o,
o €z, 0 € Z,do not occur in A. Analogously Alo/V] for class variables
V. We write Alz Uy/ul, i.e. AlU{x,y}/u], for A[Uv/u][{z,y}/v] (where
v is some fresh variable). Analogously we write A[o/u] and A[o/V] for
other composed expressions o, e.g. we write A[n + 1/u] for the formula
AlJvy Ju)[{ve, v3}/v1][{va}/vs][/v2] (where vy, v, vs are some fresh vari-
ables).

Definition 19. (Abbreviations)

We define the expressions (z)y, (@)uv, f(z), flz], dom(f), ran(f), flz,
=1 (x1,...,7,), (analogous Deﬁnition such that

z€(x)y = (29 €u,
2 € (B)uo = {((z,v),u) €,
z€ f(z) = Fw(z,w) e fAzew),
zeflz] = (Cuwer)flw) =z
sedom(f) = (Gu)zw)ef,
zeran(f) = (Fw){w,z) € f,
z€ flz = z€ fA(GFwex)Iyw,y) =z
z e f_l = Hxﬂy(ziz <l‘,y> A <y,$> € f)a
z € (xoy.sxn) = ((z={(0,20) V...)Vz=(T,2,)).
Rellz] = (Vu € z)TFviw(u = (v,w)),
Fun[z] := Rel[z] A Vu € dom(x))3lv(u,v) € z.

Definition 20. Zermelo-Fraenkel Set Theory ZFC C £°
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(Extensionality) VaVy(z =y — Vz(z € z ¢ y € 2)),

(Pair) VaVy3z(z = {z,y}),

(Union) Vady(y = Uz),

(Powerset) VeIyVz(z € y > 2z C o),

(Infinity) @ exn (Vy €x)(yU{y} € x),
(Foundation) Ve(x =0V (Jy € 2)(Vz € y)z € x),
(Replacement) (V) (VaVyVz(Alz,y] A Alx, 2] >y = 2) —

YuIuVy(y € v > (Fz € u)Alx,y]))
for any A € £° and distinct z,y, z,u,v € A,
where (V)B stands for the universal closure of B,
(Choice) Va3 f(Fun[f] A (Vy € x)(y =0V f(y) € y)).



Definition 21. Von Neumann-Bernays—-Godel Set Theory NBG C £!

(ZFQ) all axioms of ZFC,

(Comprehension) IXVy(y € X <> Aly]) for any A € I1}, X,y & A,
(Replacement) VF(Fun[F] — Ya23y(y = F[z])),

(Global Choice)  IF(Fun[F)AVz(x =0V F(z) € z)).

According to a well-known result, see, e.g., Levy [I3], NBG is a conservative
extension of ZFC.

Theorem 22. (Conservative Extension)
For A € £° we have NBG I~ A if and only if ZFC I- A.

The following theorem, showing that separation holds in NBG, is proved
mainly by using the replacement axiom. The subsequent corollary is im-
portant because it guarantees extensionality for NBG set theory (see also
Appendix |Al).

Theorem 23. (Separation)
NBGF VavVY3z (z =Y Na).

Proof. If Alv,U] = (3z € U)(v = (z, z)) then by logic we get
Vae(z € V < Alx,U)) = Fun[V] A dom(V) =UA (Vz € U)(V(z) = 2).
By the axiom of replacement we have
Ve(z € V & Alx,U)) = VaIy(y = {V(z) | z € dom(V) Nzx}),
and because of dom(V) =U and (Vz € U)(V(z) = z) we get
VY (Ve(x € Y « Alz,U]) = VaIy(y = U Na)), ie.

WVe(z €Y + Alz,U]) = VaTy(ly = U Nx).
We have elementary comprehension, hence finally Vz3y(y = U Nx). O

Corollary 24. (Extensionality)
NBGFVaVy(e =y = VZ(x € Z <y € Z)).

Proof. Assume there are z, y, Z, such that t =y, and ¢ € Z, and y ¢ Z.
By separation we have that ZN{z} isaset withz € ZN{x} and y & ZN{z},
that is in contradiction to the extensionality axiom in ZFC. O

Besides the expressions, as, e.g., in Definition which we use as syntac-
tic abbreviations, we also want to use shorthand notation for some specific
classes. The following definition is about the definability of classes, e.g.,
about elementarily definable classes. For a few definable classes we are going
to introduce some sort of constants in the meta-language.
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2. Standard Theories of Sets and Classes

Definition 25. (Definable Classes)

We write Def[X, Afy]] for Vy(y € X < Afy]) if y ¢ A € £! and if A
has only one free variable. If the name of the variable y is not important
then we just write Def[X, A]. The collection C C | M| is called definable
by Aif C = {a € IM| | M | Ala/z]} and x is the only free variable in
A. The class b € || M]| is called definable by A if M | Def[X, A][b/X].
b € ||[M]| is called definable in T C L' by A, if b is definable by A and
T + 3X Def[X, A]. Further, if A € £° then b and C are called elementarily
definable (in 7).

By the comprehension axiom in NBG, we have the following elementarily
definable classes.

Lemma 26.

The following classes are elementarily definable in NBG,

V = {z|z=uz},
On = {z|UzCaxAVyex)(UyCy},
€ = {o|JyIz(z=(y,2) Ay € 2)},
P o= {z|y3z(z=(y,2) AVu(u € z = u Cy))},

V,On, €,P are the class of all sets, the class of all ordinals, the element
relation on sets, and the powerset function, respectively. (We already used
the symbol V to denote £!'-valuations; it will always be clear from context
whether V is the class of all sets or a valuation.)

In the following we use the expressions V, On, €, P, denoting the definable
classes in the previous lemma, analogous to the way we use the expressions
o in Definition [I8

By having the class of all ordinals On defined, we are now going to use special
letters to denote variables ranging over the ordinals.

Definition 27. (Ordinals)

We use the greek letters a, 8,7, 4, £ (with subscripts) to denote ordinals.
We write VaA[a] and JaAdla] for (Vo € On)Afz] and (3z € On)Alx],
respectively.

For putting the axiom of global choice to work, in most situations, it is very
useful to have a global wellordering at hand. We define the formula GI such
that GI[F] means that F' is a bijection F' : V — On. The following lemma
shows that NBG proves the existence of such global wellorderings F'.
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Definition 28. (Global Wellordering)
GI[F]) := Rel[F]AVzIlalz,a) € F AVaIlx(z,a) € F.

Lemma 29. (Global Wellordering)
NBG  3X GI[X].

Proof. We show that there is a bijective function W : On — V in NBG. By
the recursion principle (definition by transfinite induction, see e.g. Mendelson
[14]) we have the following two class functions

Vie) = U{PV(B))I|B<al,
R(x) = U{R(y) +1]|ye€ax}

We write p(x) for R(z) + 1, and by transfinite induction we get
plz) <a<+zeV(a).

We extend some global choice function to get C, with C(#) = 0, and by
comprehension we have the following class functions

F(z) = Up(y) |y € ran(z)},
C(V(F(x))\ ran(x)) V(F(x))\ ran(z) # 0,
C(V(F(x) + 1)\ ran(z)) otherwise.

We define the function W by the recursion principle, such that

If W(a) = W(B) for a < § then W(B) € ran(W|[B) in contradiction to
W(B) = G(W]B), hence W is one-one. For any set x and any cardinal x >
[V (p(x))| we have that | ran(W k)| = k because W is one-one, hence there is
some «a < k with p(W(a)) > p(z), because otherwise ran(W k) C V(p(x)) in
contradiction to | ran(W k)| > |V (p(x))|. If 8 := min{«a | p(W(a)) > p(z)}
and v := F(W[f) then

v < px) < p(W(B)),

and we have V(v)\ ran(W[3) = 0 because otherwise we get a contradiction
by the definition of W, i.e. W(53) € V(v) and p(W(8)) < ~. By the definition
of W we have W(8) € V(v + 1), that is p(W(8)) < v+ 1, hence p(z) = v
and x € V() C ran(W1p), i.e. any set z is in the range of W. O
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3. Choice Schemes

In this section we define the axiom schemata AC and DC (see e.g. Feferman
and Sieg [3], Simpson [I7]) for choice and dependent choice, respectively, and
we show that a bunch of slightly different formulations of the schemata of
dependent choice are all equivalent over NBG. By definition, we will have
that dependent choice implies choice, and by a standard argument we further
get that choice, AC, implies class comprehension CA for some formulas.

Many results of this section about AC and DC' are well-established in sec-
ond order arithmetic (see Feferman and Sieg [3], Simpson [I7]), and all the
arguments from arithmetic are easily translated into set theory, nevertheless
we are going to give proves for all statements.

We further define the collection principle Col, which is shown to be equiva-
lent to choice AC over NBG extended by class comprehension CA for appro-
priate formulas. The collection principle Col was introduced in Jager and
Kréhenbiihl [10] to deal with the asymmetric interpretation, i.e. to make the
interpretation simpler. In this thesis we are not going to use the collection
principle Col any further, because we directly deal with choice instead of
collection in the asymmetric interpretations in Section

Definition 30. (Abbreviations)

We define the expressions (z)” and (x)? (analogous Definition such
that

ze((@)? = zexzA(Bwey)Ivw) =z,

z € (z)Y (Fw € y)(z,w) € .

Most of the choice schemes defined below are analogous to the choice schemes
in second order arithmetic, as for example in Simpson [I7].

Definition 31. (Choice Schemes)

For z,y,2,Y,Z,a ¢ A€ L' with x # 2z, Y # Z we define

CA[A[z],Y] = 3FYVz(z €Y «+ Alz)),
C’ol[ [, Y],2] = Va3dYAlz,Y]— IYVaIzA[z, (V).],
AC[A[z, Y]] = VzIYA[z,Y]— IYVzAlz, (V)]
ACou[Ale,Y]] = VadYAla,Y] — FYVad|a, (Y)al,
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DCA[z,Y, Z])] = YaVY3ZAz,Y,Z] — 3Z¥z Az, (Z)",(Z).),
DCPA[x,Y, Z])] = VaVY3ZA[x,Y,Z) — 3Z¥z Az, (Z)*,(Z).),
DC[A[Y, Z]] = YY3ZA[Y,Z] — 3Z2VzA((Z)",(Z).),
DCY[A]Y,Z]] = VY3ZA[Y,Z] - 32¥zA[(2)",(Z).],
DConlAla, Y, Z]] YavY3ZA[a,Y, Z] — 3ZVaAla, (2)%,(Z)a),
DCY [Ala,Y, Z]] = VYaVY3IZAle,Y,Z] — IZVaAle, (2)%,(Z)al,
DC,|A[Y, Z]] = VY3ZA[Y,Z] — 3ZYaA[(Z2)*,(Z)a),
DCS (ALY, Z)| VY 3ZA[Y, Z) = AZVaA[Z)", (Z)a).

Q

If 7 C L' then Col[F] :={Col[Alz,Y],z] € L} |z, Y, 2 ¢ A€ F, x # z},
analogously CA[F], AC[F], DC[F], etc..

We need to say a few words about the notation we just used, e.g. about
the arguments Afz], Y in the construction of CA[A[x],Y]. We already know
that A[x] stands for A[z/u| for some variable u. If u is a free variable with
u€ A€ L and v € A is a bound variable, then A[x] ¢ £'. Even though
Alx] is not a formula, the expression A[z] holds essential information for the
construction of CA[A[x],Y]; that’s why we write CA[A[z], Y] instead of, e.g.,
CA[A,z,Y].

The next two lemmas show that II} and X! are essentially closed under
the logical connectors A, V, and the set quantifiers Vx, 3z, i.e. closed modulo
equivalence of formulas. The choice principle AC' is needed to have closure for
the set quantifiers, e.g. if A, B € IIL and C is one of the formulas AAB, AV B,
VzAlx], or 3xAlz], then there is some D € II! such that NBG U AC[I}_,]
proves C <> D. This closure property is repeatedly used throughout this
section.

Lemma 32.

If F € {II}, 2L} and A, B € F then there are C, D € F such that
(1) NBGF C & (A A B),
(2) NBGF D < (AV B).

Proof. By induction on n. If n = 0 then AA B and AV B are in F. If
F = El_H and A = 3X Ap[X] and B = IY By[Y] with A, By € II} then by
i.h. there is some Dy[U] € IT} such that

NBG = Do[U]  (Ao[(U)g] v Bo[(U)1])-
For D :=3ZDy[Z] € XL, we get NBG F D « (A V B) because of
NBG F 3Z(A0[(Z)5] V Bol(Z)1]) «+ (AV B).
Analogously for A A B and all other cases of A, B and F. O

27



3. Choice Schemes

Lemma 33.

If F € {II}, 21} and = € A € F then there are C, D € F such that
(1) NBGU AC[IL. ] F C < VA,
(2) NBGU AC[II. ] F D ¢ 3z Ala],

where II},_; = () for n = 0.

Proof. By induction on n. If n = 0 then VxA[zr| and Iz Alx] are in F. If
F =1, and A =VY Ay[Y] with Ay € X}, then ~FzAlz] = VzIY =4[z, Y]
with —Ag € IIL. We have Va3Y —Ag[z, Y] <> IYVaz—Ag[z, (V).] by AC[ILL],
and by i.h. there is some Dy[U] € T} such that Dy[U] « Va—Agz, (U),],
hence for D := =3Y Dg[Y] € I}, | we have D <> JzA[z]. By i.h. there is
Co[U] € =1 such that Co[U] > VaAg[z, U], hence for C := VY Cy[Y] € I}, 4
we have C' <> VzA[z], because of VYV Ag[z,Y] <> VaVY Ag[z,Y].

Analogously for all other cases of A and F. O

The following lemma shows that if we have choice or dependent choice for
IT}, formulas then we also get it for X}, formulas.

Lemma 34.
(1) NBGU AC[IIL] - ACEL, 4],
(2) NBGU DCO[IIL] F DCO[=) 4]

Proof.

(1) If A € B}, then A € II} or A = 3ZB[Z] for some B € II}, such
that A[z,Y] = 3ZBlz,Y,Z]. If Clx,Y] = Blx,(Y)o,(Y)1] € II, then
VeIY Az, Y] +» V2IY Clz, Y], and we have that the following are equivalent
(a) IYVzAlz, (Y),] = IYV2IZB[z, (Y),, Z],

[

(b) Y3ZVaBlx, (V) s, (Z)s],

(¢) IYvaBlz, (Y)g)e, (Y)1)a],
(d) 3YvaBlz, (Y)2)g, (V)a)1] = I VaCla, (V)q],
that is (a) <> (b) by AC[IL], and (b) <+ (c), (c) <> (d) by elementary compre-

hension. Hence we have NBGU AC[IIL] - AC[C[x,Y]] — AC[A[x, Y]], that
is NBG U AC[IIL] - AC[A[z, Y]).

(2) If Alz, X,Y] = 3ZB[z, X, Y, Z] € ., with B € I} and Clz, X, Y] :=
Blz, (X)o, (Y)o, (Y)1] € ITL, then we have that

VaVX3Y Az, X,Y] < V2¥X3Y Clz, X, Y],

and the following are equivalent
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(a) FYVzA[z, (V)" (V)] = IYV2IZBlz, V), (V). Z),
(b) IY3IZVa B[z, V)", (V)a, (Z)a],
(

(¢) YVaB[z, (Y)5)", (Y)g)e, (V)1)al;
(d) 3YVaB[z, (V)5 (V)a)g, (V)e)7] = I VaCla, V), (V)al,
that is, (a) < (b) by AC[II}] (we have DCP[IIL] + ACIIIL]), and (b) < (c),

n

(c <—>( ) by comprehension, that is if Z := {((z,2),y) | {{z,v),z) € Y} then
((Z)y)z = ((Y)a)y and ((2)")s = ((V)a)".

Hence we have that NBG U DCC[IL] - DC?[C[z, Y]] = DC°[A[z, Y]], and
finally NBG U DCO[IIL] - DCO[Alz, Y]). O

The next theorem shows that we get class comprehension from choice. And
together with the previous lemma we get that choice for II} formulas implies
comprehension for all IT}, and . formulas (because IT} UZl CIL 4 NEpLq).

Theorem 35.
For A € ¥ and B € II}, we have

NBG U AC[XL] - Va(Alz] <> Blz]) — Y Vz(z € Y + Alz)).

Proof. By Lemma [32] there is some C[u, U] € X such that
Clu, U] < (A[u] AD € U) V (=Blu] A € U)).
We have Va(A[z] < Blz]) = Vz3Y Clx, Y], hence by AC[EL] we get
Va(Alz] ¢ Blz]) = IYVaClz, (Y).].

If we define Dy :=Va() € (Z), + Alz]), D1 :=3YVa(z €Y < 0 € (Z),),
and Dy := JYVz(x € Y <> A[z]), then we have that

Va(Alz] + Blz]) AVzClz, (Z).] — Do,
and further Dy — (D1 — Ds), hence Dy — D3 by elementary comprehen-

sion, i.e.

Va(Alz] «» Blz]) A IYVaClz, (V)] — Do,
and finally Va(A[z] < Blz]) — Da. O

Corollary 36.
NBGU AC[IIL] F CA[IIL U XL].

29



3. Choice Schemes

Proof. By Lemma [34] and Theorem O

The next lemma is the main lemma to get the equivalence between the col-
lection principle Col and choice AC. The lemma makes essential use of the
existence of a global wellordering in NBG.

Lemma 37.

For A € II}, we have that

NBG U CA[IIL] F 3YVa3zAlx, (V),] — IYVaAlx, (V).].

Proof. We assume that Vaz3yA[z, (Z),] for Z, and W : On — V is such that
GUW 1] (see Lemma. By CA[Hl] we get the classes

X = A a) [ Alr, (Dwo])

F = {{z,0)]|{(z,a)€ X/\(Vﬁ<oz)<x a) € X},

Y o= {{z2) ] z€(Dwre)t
such that F' : V — On and VzAlz, (Z)w r())] by the definition of F', and
hence Yz Alz, (Y),]. O
Corollary 38.

NBG U CA[TIL] U Col[ITX] - AC[ITL).

Corollary 39.
For Fy, F1 € {I},, X} 1} we have that

NBG U AC[Fo] - A iff NBGU CA[IL]U Col[Fy] + A.

We have formulated the choice principles AC and DC for sets and also for
ordinals, i.e. AC o, and DC@,. The following two theorems show that these
two formulations are essentially the same over NBG.

Theorem 40.

For F € {II},¥1} we have that
(1) NBGU AC[F] F ACon|F],
(2) NBGU ACo,[F] F AC[F].
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Proof.
(1) If Afu,V] € F then by Lemma [32] there is Blu, V] € F such that
Blu,V] < (u € On — Alu, V),

further if Va3Y Ala, Y] then Va23Y B[z, Y], hence 3YVa Bz, (Y),] by AC[F],
that is Y VaA|a, (Y)a]-

(2) f W : On — Vis such that GI[W '] by Lemma[29| and Afu, V] € F then
Blu,V] := AW (u),V] € F, and if V23Y A[z, Y] then clearly Va3Y Bla, Y],
and there is Y such that YaB[a, (Y)s] by ACou[F], i.e. Ve Alz, (Y)w-1(2)],
and for Z := {(z,2) | 2 € (Y)w-1(s)} we have VzA[z, (Z),]. O
Theorem 41.

For F € {II}, %1} we have that

(1) NBG U DCT]—'] - DC on|F),
(2) NBGU DCo,|F] - DC[F].

Proof.

(1) Analogous to Theorem [40](1).

(2) By recursion we get p: V — On, such that p(z) := J{p(y) + 1| y € z}.
If Blu,U,V] = Alu, {(z,y) |y € u A {z,9),p(y)) € U}, V] with A € F then
Blu,U,V] € F, and if VaVX3Y Az, X, Y] then

VaVeVX3Y (o = p(z) — Blz, X,Y)).

We trivially have NBG U DC o, [F] = ACo,[F], hence by Theorem [40| and
Lemma and by using AC[F], we get

VavVX3YVr(a = p(x) — Bz, X, (Y)z]),
and by DC o, [F] there is a class Y such that
vava(a = p(z) = Blz, (V) (Y)a)z])-
If Z:={{z,y) | {{z,),p(y)) € Y} and a = p(z) then we have that
(Z2)2 = ((Y)a)z
(2)" ={(zv) [y ez A ((z9),p(y)) € (Y)}.

Hence we get VaVz(a = p(x) = Alz, (Z2)*,(Z).]), and this is equivalent to
va(3a(a = p(x) — Alz, (2)F,(2).)), ie. VoA[z, (2)%, (Z)a]. O

The next lemma is an intermediate step for the proofs of the two theorems
that follow. The lemma shows that choice, AC, is a (not so obvious) impli-
cation of some ”"weak” forms of dependent choice.
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3. Choice Schemes

Lemma 42.

For F € {II},£1} we have that
(1) NBGU DCY[F| + AC[F],
(2) NBGU DO, [F] - AC o[ F).

Proof.

(1) If BlU,V] :=Vz((U)o =2 — (V)o = {z} A Alz, (V)1]) with A € F then
B[U, V] is equivalent to some formula in F by Lemma [32| and because

BlU,V] < (Jz(z = (U)o) = (Vo € (V)o)(z = (U)o) A A[(U)o, (V)1]).
If V23Y Az, Y] then YX3Y B[X, Y] and by DC®[F] there is Y such that
Vyva(((Y)")o =z = (Y)y)o = {z} A Alz, (V)y)1])-

By induction on z we get ((Y)%)o = z, because ((Y)?)g = 0 and for z # 0
and z € x we have ((Y),)o = {z} by ih., hence ((Y)")o =x. We have
VeAlz, (Y)z)1]), and for Z := {(z,z) | z € ((Y)z)1} we get Ve A[z, (Z),]).

(2) Analogous to Part 1. O

The following two theorems together with Theorem yields that all the
variants of the dependent choice schemata are equivalent over NBG.

Theorem 43.

For F € {II},¥1} we have that
(1) NBGU DC[F] + DC[F],
(2) NBGU DC"[F]+ DCY[F],
(3) NBGU DCY[F| + DCC[F],
(4) NBGU DCP[F] + DC[F].

Proof.
(1) Trivial.

(2) U B[U,V] = Al{y | 3z(y,2) € U}, V] with A € F then B[U,V] € F. and
if VX3Y A[X,Y] then VX3V B[X,Y], and by DC"[F] there is some Y such
that VzB[(Y)", (Y).]. We have that

{y|32(y,2) € (V) ={y| Gz € 2){y,2) € Y} = V)",

hence Yz A[{Y )", (Y).].
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(3) If B[U,V] = VzA[z,(U)",(V),] with A € F then B is equivalent to
some formula in F by Lemma and Lemma If VavVX3Y Alx, X, Y] then
VavVX3IY Alx, (X)*,Y], and we get VXIYVrA[z, (X)",(Y),] by Lemma
and AC[F] , hence VX3V B[X,Y]. By DC®[F] we get some Y such that
V2B[(Y)?,(Y).], i.e. VaVaAlz, (YY), (Y)2)e]) U Z := {{y,2) | {y,2),2) €
Y} then we have that

(Z)2 = ((V)a)z and (2)" = ((V)*)",
hence VrAlz, (Z)",(Z).].
(4) If Blz,U,V] := Alz,U, (V)] A (U)" = U — (V2 € V)Iyly,z) = 2)
with A € F then B is equivalent to some formula in F by Lemma If
VoV X3Y Alz, X, Y] then V2¥X3Y Bz, X, Y], and by DC®[F] we get some Y
such that Yz B[z, (Y)", (Y),], hence we have that VzA[z, (Y)*, ((Y).).] and
Vo (YY) = (V)" — (Vz € (YV).)Iyly,z) = z). By induction on x we get
(V2 € (V) Iyl 2) = 2, and it Z = {(y,) | {{3,),) € Y} then

(Z)e = ((Y)a)o and (2)" = (Y)",

hence Yz Alz, (2)",(2).]. O

Theorem 44.

For F € {II},,£!} we have that
(1) NBGU DC | F] + DC,[F,
(2) NBGU DC, [F] - DC, [F,
(3) NBGU DC, [F]+ DCY,[F,
(4) NBGU DCY, [F] + DC o[ F).

Proof. Analogous to Theorem [43] O

We can state the following corollary by collecting together all the results
about choice principles we got so far.

Corollary 45.
For Cy,Cq € {H,ll, Z,ll_,'_l} and
T e { DCIC;], DC7[Ci], DC[Ci], DCO[Cy), }

DCo,[Ci], DCw,[Ci], DCE, [Ci], DCS, [Ci]
Fi e {AC[C],AColCi]},

we have that
(1) NBGUTo - T U Fq,
(2) NBGU Fy = F; U CA[ITL U XL].
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4. Well-founded Class Relations

Wellfoundedness and transfinite induction are two well-known and closely re-
lated concepts, see e.g. Forster [5]. In this section we give a general definition
of the two concepts within theories of sets and classes, and we prove some
familiar statements about wellfoundedness of the element relation € in NBG.
Further, the definitions are such that we can easily state some theorems about
the exact relationship of the two notions.

Definition 46. (Wellfoundedness)

Y is well-founded on Z for C[z] in T, if Y, Z are definable in T by A, B,
respectively, and

T = Def[Y, A A Def|Z, B] — Wf{ [Clx]]
where WfZ[C|z]] is the formula
(Fz € Z2)Clz] = (Fz € 2)(Cla] A (Vy € Z)(Cly] = (y,2) €Y)),
ie. TF Wf¥[Clx]] where WfF[Cz]] is
J(Blz] A Cla]) = Fa(Blz] A Clz] AVy(Bly] A Cly] = —A[(y, 2)]))-

If D C L' then we write WfY[D] for { Wf¥[C[z]] € £' | C € D}.
In ZFC set theory, i.e. by the axiom of foundation, we have that € is well-
founded on sets. In NBG we get that € is well-founded on all classes, by
using the axiom of global choice. Further, because of class comprehension in
NBG, we have that € is wellfounded for all formulas in IT}.

Theorem 47. (Class Foundation)

If A and B are the formulas VZ(Z # 0 — (3x € Z)(Vy € Z) (y,z) € Y)
and Vz(z # 0 — (3z € 2)(Vy € 2) (y,z) € Y), respectively, then

NBGHF A« B.
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Proof. We have A — B because of NBG F V23X (z = X). And we show the
contrapositive of B — A. Let Z # () such that (Vz € Z)(3y € Z)(y,x) € Y.
We define the elementary class G such that

G :={f | Fun[f] A dom(f) =w A flw] € Z AVP(f(p'), f(p)) €Y}

For any f € G and z = f[w] # 0 we have that (Vz € 2)(Jy € 2){y,z) € Y.
We need to show G # 0. Let W be a global wellordering (see Definition
Lemma and let C[x,y] be an elementary formula expressing that
“x,y € Z, and (y,x) € Y, and y is the least such set with respect to W”.
For any ¢ € Z and for the elementary class F' with

F:={(p, f) | Fun[f] A dom(f) =p" A f(D) = zo A (Vg € p)C[f(d), f(@)]},

we have that dom(F) = wA Fun[F]AVp(F(p) C F(p')) and U(Fw]) € G. O

Corollary 48. (II} Foundation)
(1) NBG FV2(Wfl [z € 2]) <+ VZ(Wfl [z € Z)),
(2) NBG + W [rg],
(3) NBG F WfZ[IT)).

Proof.

(1) For A, B as in Theorem 47| (and € as in Lemma we have that

NBG F A[€/Y] <> VZ(WfY [z € Z]),
NBG F Ble/Y] ¢ Vz(Wf [z € 2]).

(2) We have NBG F Vz( WfY [z € 2]) because of the axiom of foundation, and
we have NBG U {VZ(WfY [z € Z])} F WfX [11}] because of the comprehension
axiom.

(3) For C € 1§ we have NBG - WfY[y € X A C[y]] by (2). Hence the claim
holds because of WfY[y € X A Cly]] — WfX[Cly]]. O

We define the schemata for transfinite induction analogously to the schemata
for wellfoundedness. The subsequent lemma shows that transfinite induction
is the dual of wellfoundedness, and that under appropriate assumptions the
two concepts become essentially the same.
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4. Well-founded Class Relations

Definition 49. (Transfinite Induction)

Transfinite induction along Y on Z for C[z] in T holds, if Y, Z are definable
in T by A, B, respectively, and

T & Def[Y, A] A Def [ Z, B] — TIZ[C|x]]
where TIZ[C[z]] is the formula
(Ve € Z)((Vy € Z)((y,z) € Y — Cly]) — Cla]) = (V& € Z)Clax],
i.e. T+ TI}[Cx]] where
TIZ[Clx]] == Progf [Clz]] = Va(Bla] = Cla]),
Progy [Cla]] == Va(Blz] A Vy(Bly) A Ally, x)] = Cly]) = Cla)).

If D C £ then we write TI¥[D] for {TIZ[C[z]] € £} | C € D}, and for
technical reasons we further define TI.[D] C L' to be the set containing
all formulas Vz((Vy € x)Afy] — Alz]) — VaAx] for every A € D.

Clearly we have TI_[D] # TIY[D], but the two sets are semantically equiva-
lent, i.e., TI_[D] - TIY[D] and TIY[D]+ TI.[D].

Lemma 50. (Duality)
(1) + WfE[=Cla]] & TIZ[Cla]],
(2) If =D C D C L' then T + WfE[D]iff T+ TIF[D),
3) If C:=VY3IZVx(xr € Z <> ¢Y) then

FC— (YWYW(WfEz e Y]) « VY (TIZ [z e Y)])).

Proof.
(1) The contrapositive of WfZ[~C|x]] is
~(3z € 2)(=Cla] A (Vy € Z)(~Cly] > (4,2) ¢ Y)) = ~(3x € Z)~Cla]
and this formula is logically equivalent to
(Ve e 2)((Vy € Z)((y,2) €Y = Cly]) = Cla]) = (Vo € Z2)Clal,
i.e. equivalent to TIZ[C[z]].
(2) Follows directly from (1).

(3) Assume VY (WfZ[z € Y]) and let U be any class. According to 7 there
is a class Z such that # € U « = ¢ Z. We have Wf5[z € Z], hence
TIZ [z & Z], i.e. TIY[x € U], by Part 1. O
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5. Notation System for Ordinals

In this section we define a notation system for ordinals, which is later used in
a generic way in Section [f] to define the well-founded linear ordering (Ep, <1),
going far beyond the ordinals. In Jager and Kréhenbiihl [I0], a very sim-
ilar notation system for Ejy has already been defined without detour over
notations for ordinals; the aim of this section is to emphasize the tight con-
nection between the notation system for ordinals and FEy, e.g., the arithmetic
operations defined on the ordinal notations can later be easily lifted to the
notations in Ey (again in a generic way). That is, we can get a good un-
derstanding of addition, multiplication, and exponentiation, in Fy, by just
coping with common ordinal arithmetic (i.e., by coping with the operations
on ordinals in Cantor normal form).

By a notation system we mean that each ordinal can be represented in a
uniform way by an object which essentially consists only of finitely many
basic symbols, i.e. in our system the notations consist of hereditarily finite
sequences of basic symbols. In addition to the finite presentabiltity of the
notations, the notation system must be such that the basic operations on the
ordinals, e.g. ordinal arithmetic, are also achieved by uniform operations on
the notations.

The definition of the notation system is inspired by the Cantor normal form of
ordinals, and it is a slight generalisation of the standard notation system for
the ordinal £, as e.g. in Pohlers [I5] or Schiitte [16]. (In Appendix [C]we also
use a construction very similar to the one in this section, to define a notation
system based on the binary Veblen function, leading to a generalisation of
the standard notation system for the ordinal I'y, as e.g. in Pohlers [15].)

First, we define the notation system by a top-down approach, that is, we use
the ordinals themselves, and the Cantor normal form, to recursively define
the notation @ for each ordinal «, such that

-~ « a=wora=10,
a = N R
(70, ) @ =cnF W 4 W F W

Clearly, we need a proper class of basic symbols to represent all the ordinals,
and as we can see, all ordinals o with @ = w® and ) are the basic symbols.

Secondly, and more important, we define the same notations by a bottom-up
approach, that is we give an inductive definition of the notations by just using
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5. Notation System for Ordinals

hereditarily finite sequences and the basic symbols, without recourse to the
ordinals. This definition will be given in a generic way (i.e., with two class
parameters involved), such that it is easily adapted to other classes of basic
symbols, e.g. leading to notation systems that go beyond the ordinals, like
the notations in Ey, in Section[6] In addition to the notations we also define
operations on these notations, i.e. arithmetical operations and an ordering
relation, which correspond to the original arithmetic operations on ordinals
and the element relation € on ordinals.

In the following definitions we ezplicitly show, i.e., by just using elementary
formulas, that the ordinal notation system, and the operations and the or-
dering relation on notations, are elementarily definable (in both cases, the
top-down and the bottom-up approach). The definability of the notation
system by elementary formulas is important later on, because we are going
to give proofs by induction for statments where these notations are involved;
e.g. in NBG, where we have induction for elementary formulas only.

E.g. addition a+ 3 can be defined by a+ 8 := F,, () where the class function
Fo : On — On is such that Fo() := o and Fu(8) = U, -4 Fa(y) for
B # 0. Analogously, multiplication « - 3 is defined by « - 8 := G,(8) where
Ga(B) == U,<5(Ga(7)+a), and exponentiation a? is such that o := H,(B)
where Hy (0) := 1 and Ho(8) := U, .5(Ha(7) - @) for 8 # 0. By using the
class functions F,, G, and H,, we can explain the meaning of the elementary
formulas Add, Mult, and Fzp, in the following definition, that is, Add[f, ]
is equivalent to 33(0 € B8 A f = F,|8), and analogously for Mult and Fzp.
Further, the general sum X, f is defined such that X, f := U7<a(27f+f(fy));
the formula Sum[f, g, @], which is used for the definition of ¥, f, means that
the function g is such that g(@) = f(0), and for any 7 with ) < v < a we

have g(v) = Ug, 9(8) + f(8'), that is, o f = U, ., 9(7)-

Definition 51. (Ordinal Arithmetic)

We define the expressions a + 3, a - 3, and o, (analogous Definition
such that

z€a+f = 3f(Add[f,a] NS € dom(f) Az € f(B)),
z€a-fB = If(Mult[f,a] NS € dom(f) Az € f(B)),
seaP = 3f(Eaplf,al A B € dom(f) Az e [(5))
z€Unf = (pe€a)ze f(P),
z€3af = 3Fg(Sum[f,g,a] Az € Uyg),
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Add[f, o] = PFun[f]AD e dom(f) A f(0)=aA
3B3y(dom(f) = B A ran(f) Q A (V51 € B\{0})(
Va(z € f(B1) + (360 € B)z € f(Bo)));

Mult[f, o] = Fun[f]AD e dom(f)N f(0)=0A
3B3v(dom(f) = B A ran(f) Q A (VB1 € B\{D})(
Va(z € f(B1) < (360 € Br)z € f(Bo) + @))),
Explf,a] = Fun[f]AD € dom(f)Af(D)=1A
3BFy(dom(f) = B A ran(f) C v A (V81 € B\{0})(
Va(z € f(B1) <> (3o € Br)x € f(Bo) - @))),
Sum|[f,g,a] = Fun[f] A Fun[g] AND € aAaC dom(f)N dom(g) A

IB(ran(f) € B) A g(0) = f(0) A (Vou € a\{0})(
Va(z € g(ar) < (Jag € ar)z € glag) + f(a'))).

(See e.g. Takeuti [I8] for the properties of a + 3, o - 3, and af.)

Lemma 52. (Ordinal Arithmetic)

(1) NBGFVYavp(a+b=anra+pf =(a+p) A

a-0=0Aa-f'=(a-B)+aA
o =Tra? =af - a),
(2) NBG FVavpYf(Fun[f] A B C dom(f)ANB #0
(Vyep)(f(y) =a+y )—>Uaf—a+5)A
(VyeB)(f(v) =a- 7)—>Uﬁf—a B) A
(Vy € B)(f(y) =) = Usf = o).
Proof. By Definition (i.e. by induction on the ordinals). O

The following definition (see Takeuti [18]) is about the least infinite ordinal
w, i.e., the least nonempty ordinal not being a successor of any ordinal.

Definition 53.

We define the expression w (analogous Definition such that
zEw = Vz(zxeZ = z=0VIalx=1da)).
(See e.g. Takeuti [I8] for the properties of w.)

We use the letters p, q,r, s, ¢ (with subscripts) to denote ordinals in w. We
write VpA[p] and JpA[p] for (Vz € w)A[z] and (Iz € w)A[z], respectively.
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5. Notation System for Ordinals

To be able to deal with the Cantor normal form in the language £°, we define
the formula CNF, such that CNF[f,p, o] holds if the sequence f of ordinals,
Y1, -+, Vp, 18 such that o = w7 4 ... +w?? with v; > ... > 7. The subsequent
theorem is the Cantor normal form theorem, which states that this normal
form exists for any ordinal « # () and really is unique.

Definition 54. (Cantor Normal Form)

CNF[f,p,a] = Fun[f] A\ dom(f)=pA3h(Vp: € p)(
3B(f(p1) = BAh(p1) = wP) A
(Vpo € p1)h(p1) € h(po)' Ao = Eph).

Theorem 55. (Cantor Normal Form)

(1) NBG F Va(a = 0 v 3 fIpCNF[f, p, o)),
(2) NBG F YV fVp(CNF[f,p,a] = a =0V a=w®V f(0) € a).

Proof.  See e.g. Pohlers [15] or Jech [12]. O

Having at hand all the ingredients for the formal definition of the notation
system, i.e., ordinal arithmetic and the formula CNF, we are now ready
to state the elementary formula which characterizes the notations & as we
described it at the beginning of this section. And we finish the first part
of this section, i.e. the top-down approach to the notations, by stating the
subsequent lemma about the defining recursion of the notation system.

The formula OT. in the following definition is such that OT¢[f] holds if the
domain of f is some ordinal o and f(y) =7 for all v € .

Definition 56. (Ordinal Notation System)
We define the expression a@ (analogous Definition such that

zea = 3f(OT|f]Na € dom(f)Aze€ f(a)),

OT.[f] = PFun[f] AJa(dom(f) =a A (Vagy € a)(
(g =0 A flao) = ag) V (ag =w* A flag) = ag) V
(g # 0 A ag # w* A Fun|[f(ag)] A IgTp(CNF[g, p, ] A
dom(f(ao)) =p A (Ypo € p) f(ao)(po) = f(9(po))))-

We simply write 7 for 7.

Lemma 57. (Ordinal Notation System)

NBG - YoV f¥p(a # O A o # w® A CNF[f, p, 0] — -
Fun[a] A dom(a) = p A (Vp1 € p)a(p1) = f(p1)).
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Proof. By Definition (i.e. by induction on the ordinals). O

The formula Lin in the following definition is such that Lin[U, V] means that
the relation V is a strict linear ordering on U.

Definition 58. (Strict Total Order)

Lin[U V] = (NVxeU)(VyeU)VzeU)lz,z) ¢V A
({x,y) e VA(y,z) €V = (x,2) € V) A
(x,y) eVVe=yV(yz)eV).

The following definitions are heading towards the inductive definition of our
generic notation system, based on hereditarily finite sequences only, i.e. the
bottom-up approach to the notation.

We first define a somewhat cryptic ordering relation ?X on the hereditarily
finite sequences H x of basic symbols in X, such that any strict linear ordering
relation Y on )i is extended to the strict linear ordering Yx on Hx UX. The
inspiration for Yy comes from the inherited ordering relation on the notations
a, corresponding to the ordering of the ordinals, i.e. the definition of Yx is
similar to the definition of the ordering relation on the standard notation
system for g, see e.g. Pohlers [15].

The formula Hed in the following definition is such that Hed[X,y] holds if
the set y consists of hereditarily finite sequences, such that for any f € y we
have f(p) € yUX for all p € dom(f). By induction on the set-theoretic rank
we can easily see that y consists of nothing but hereditarily finite sequences,
because the rank of f(p) is smaller than the rank of f for all f, f(p) € .

Definition 59. (Hereditarily finite Sequences)
We define the expression Hx (analogous Definition such that

z€Hx = y(Hed[X,y| Az €Evy),

Hed[X,y] = (Vf €y)(Fun[f] A3p(dom(f) =pA
(Vpo € p)f(po) € yU X)).

The previous definition can be easily translated into an inductive definition
of the class Hx (induction on the set-theoretic rank), i.e., § € Hx, and every
function f with finite domain p, such that f(py) € Hx U X for all pg € p, is
in Hx.

The expression H x is defined for arbitrary X, but in the following we always
assume Hx N X =0 .

The formula Ez in the following definition is such that Fz[X,Y,y] holds if
y C Yx and if for any pair (f,g) € y the set y contains all relevant pairs
(h1, ha) € Yx, which are used to decide whether (f,g) belongs to Yx.
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5. Notation System for Ordinals

Definition 60. (Ordering Relation)
We define the expression ?X (analogous Definition such that
ze¥x = Iy(Ez[X,Y,y|Azcy),

Ez[X,Y,y]

(Vo € y)3f3g(x = (f,9) N{fi 9} SHxUXA
(feXNngeXN{f,ggeY)V
(feXNggXNg#ON((f,9(0)) €yV f=g0)V
(fEXNgeXAN(f= ®V<f(®),g> y) vV

(f &€ X Ngg XA Lexly, f,9])),

Lezly, f,g] = 3p3q(dom(f) =p A dom(g) =qA
((p € gN (¥po € p)f(po) = g(po)) V (3p1 € pNg)(
(f(p1),9(p1)) € y A (Ypo € p1) f(po) = g(po))-

The previous definition can be easily translated into an inductive definition
of the binary relation Yx, i.e., Yx consists of pairs (f, g) with f,g € HxUX,
such that one of the following is the case

feXNgeXN(f g €y, R
feXNgEXNg#ON((f,9(0) €YxV f=g0)),
FEXNge XN(f=0V(f(0),9) €Yk,
fE€XANg¢ XA Lex[Yx, f,qg]

Lemma 61. (Strict Total Order)

NBG F Lin[X, Y] AHx N X =0 — Lin[Hx UX,Yx].

Proof. The proof is similar to the purely combinatorial proof (i.e. without
using the set theoretic background) for the standard notation system of &
(cf. Remark 3.3.19 in Pohlers [15]) The most difficult part of the proof is
transitivity, (z,y) € Yy A (y,2z) € Yy — (x,z2) € YX, and this is proved by
induction on the sum of depths of x, y and z. The tedious technical details
are left to the reader. O

Now we use the relation Z\X, ie. Y := Z\X, to define the class of all notations
@X,y C Hx U X (actually, we define @t\(;(7y C Hx such that @X,y =
Z/)t\(;(,y U X). Further, to get the arithmetic operations on notations, we first
define @;Y = @;Y U{(w) | w € X} C Hx and arithmetic operations
on (/’)t\; v, that is, +3, %y and /A\)l( y (see definitions below). After that,

—~1 —
we use mappings Tx : OtX y — OtX y and 7% : Oty y — Olx y, to get the
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arithmetic operations on Ot x,v- At the end of this section, we will see that
by putting X := {a | @« = w*}, and Z = {{z, y) |z €y}, and Y := Zx, we
get the notations @, that is, {a | @ € On} = (’)tX y- In the previous lemma,

we have already seen that Z x is a strict linear ordering on Ot x,y for any X
and Z with Lin[X, Z], hence the ordering relation on the notations will be

Zx.

The notation system Ot x,y is defined similarly to the standard notation
system for g, see e.g. Pohlers [I5].

Definition 62. (Generic Notation System)

We define the expressions OtX v OtX y Otx v, Tx, ™% (analogous Defi-
nition such that

z€0xy = Hy(dT[X Y,y Az €y),

1
z€0lyy = z€ (’)tXY\/(Hw € X)z = (w),
2€O0lxy = ze(’)tXY\/zEX

w
m
I
>

Il

: 3y((y€XAZ—<y,<< MWV eEXAz=(y,y))),
zemy = zemy AWy € X)z# ((y), (),

OT[X,Y,y] = (Vfey)feHxA(¥pedom(f)(f(p)€yUX A
(Vg € p)(f(d) = f(@)V (f(d), f(q)) €Y)) A
((dom(f) #1V f(0) ¢ X)).
Again, the previous definition can be easily translated into a proper inductive

—~0
definition of Of y y- (analogous to the preceding definitions).

There are purely combinatorial operations on the notations of ordinals in
Cantor normal form, which represent the arithmetic operations on ordinals,
see e.g. Takeuti [I8] for a detailed account. E.g. if o =cnr w? and 8 =cng
w4 ..+ w’ then

ot f= wlo 4 . 4 won v < b,
CNF WY + w4 4w v > do,

Boa= who 4wl oy =1,
@ =CNF w50+7 ¥ > @7

wh + Wl =0,

wloe v > 0,60 >0,

B =cnr { W’ v > 0,60 =0,n=0,
w@ ™ w>y>0,60=0,n>0,
w® v >w,00=0,n>0,
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5. Notation System for Ordinals

and if a has a more complex form, i.e. a =cyf W + ... + w?™, then we can
use this operations, to find the Cantor normal form of w + (... 4 (W™ + 3)),
and 8- w™ + ...+ - wr, and B« . ... B@"™) that is, the normal forms
of o+ B, and B - a, and 3%, respectively.

In the following three definitions we capture theses operations for addition,
multiplication and exponentiation in context of the generic notation system
Ot x 7z, which is also based on the Cantor normal form.

Definition 63. (Addition)

We define the expressions f~g and f —T—XY g (analogous Definition )
such that
2€frg = zEfV (Ip € dom(g))z = (dom(f) + p, 9(p)),
zex 4y g = ((2,90) €Y Ag#DNzEg)V

g(0
) (z,9(0)) €Y Vg =0) Az € (x)"g,
ze€f+y g = Hpﬂh( dom(f) A dom(h) =p' Ah(p) =

) z € h(0) A (Vg € p)h(q) = f(q) +¥ h(q’))
2€ [ty 9 = zemy(nx(f) +y mx(9)).

Definition 64. (Multiplication)

We define the expression f * |, g (analogous Definition D such that

zefRyr = (f£DAz=0nz€Ef)V
(f#OAz# DAz e (F0) 4y, 2)),

z€f%yg = 3p3h(p=dom(g) Adom(h)=p' Ah(D)=0A
z € h(p) A (Vg € p)h(q') = h q) v (f "%y 9(2)),
Zeftx’yg = ZEWZ)?(WX(JC) XYﬂ-X( ))

Definition 65. (Exponentiation)
We define the expression f /A\X v  (analogous Definition such that

zefm = ((0,0) € fAIpP' € dom(f) Nz=(p, ')V
A (0.0) ¢ FAze f)
zef/\)()(,ya: = (z=0Azef)V(f=0nz€f)V
(x#ONFO)=0A((dom(f)=1TAzeE f)V

(dom(f) €21z € (mx((2~))))) v
(@ AOAFO) # 0Nz e (F0) y (D)),

zef/A\)lQYg :=  FpIh(p = dom(g) A dom h):p /\h( ):<<@>>/\
A z € h(p) A (Vg € p)h(q) = h(a) %y (f F "%y 9(0)),
zef/\xvyg = Zewl)"fu(ﬂX(f) XYTrX( ))7
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We end this section with the next theorem, which brings together the two
approaches to our notation system for ordinals. We connect Ofx z to the
notations @, by taking the appropriate instance of the generic system Ot X,Z,
i.e. by putting X := {a | @ =w®} and Z := Yx where Y := {(z,y) | z € y}.
The theorem also shows that the arithmetic operations and the ordering re-

lation on Ot x,z correspond to ordinal arithmetic and to the element relation
on ordinals, respectively.

Theorem 66. (Ordinal Notation System)

Let (7)71, On. and <. be elementarily definable classes in NBG, such that

o~

On = {z]|3a(z=a)},
On. = {z]3Ja(z=anha=w)},
< = IE\(Q,LE,

where €¢,. is as in Deﬁnition with € as in Lemma If we write +,
‘e, N for —T—Oﬂ€»<€’ ?On5,<5’ None. <. respectively, then we have that

(1) NBG+VavB(a € B+ a <. ),

(2) NBG FVa(a € Olon.nar <. );

(3) NBG - On = Oton, <.,

(4) NBGFVaVA(a+B=a+.BAa-B=a--BAaP =anr. p).

1

Proof. (1) is proved by induction on the natural sum (Hessenberg sum) of
a and 3. (2) is proved by induction on a. (3) follows by induction on the
depth of x for = € (/’)t\onEKE, and by (2). The proof of (4) goes along the
line of combinatorial properties of ordinal arithmetic that is captured in the
Definitions (see Takeuti [I8] for an account of ordinal arithmetic for
ordinals in Cantor normal form). We leave the tedious technical details of
this proof to the reader. O
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6. Wellorderings beyond the
Ordinals

We are now going to define the linear ordering (Ey, <), by using the generic
notation system from Section In some way, (Ep,<1) can be seen as the
analogue of (g9, €), with the set of the natural numbers, i.e. the ordinal w,
replaced by the class of all ordinals, i.e. the notation 2. The ordering is
shown to have well-founded initial segments up to the specific bounds €2,, for
any n, and this sequence of initial segments, i.e., iterated class comprehen-
sion along this segments, is later used in Section for the proof-theoretic
characterization of the choice principles AC and DC over NBG with full
induction.

In the following definition, we extend the class of all epsilon numbers On.
with a new “virtual” epsilon number ) on top of all others, to get Ongq, i.e.,
Ong has a top element 2, in contrast to On.. Based on the symbols in Ong
and the ordering on Ong we build the notation system Ejy and the ordering
relation < according to the construction of the generic notation system in
the previous section. From this construction, we also get the operations +, *,
and A, on the notations in Ej, corresponding to addition, multiplication and
exponentiation, respectively.

Clearly, Ey extends the class of all notations @ of the ordinals, because of
On. C Ong. Actually, the class Ey consists exactly of the notations a and
a[Q] for all ordinals «, where @[Q] is just @ with all the occurrences of the
biggest epsilon number eg in @ being replaced by €.

For any a € Ej we either have a = a for some «, or we have plenty of ordinals
« such that a = @[Q]. We can use this fact to simulate the operations +, *,
7\, by the operations +, -, Ac (from Theorem , respectively. If we write
emax (@) for the biggest epsilon number in @, and gnax(a@) = @ for o < e,
then, e.g., for any a,b € Fy we have that

&~53 a=aAb :B,
Wb R a = a2 Ab = B A emax(@) = emax(B) > BV
(@8 a=anb=p[QAemx(A) < emax(8) V
a= @[Q} ANb = B\/\ 5ma><(a) > €max(3),

and analogously we can compute addition and exponentiation on Fj.
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For the ordering relation <1 we can use exactly the same trick, that is, we
have a < b iff there are a, 8, which represent a and b, like in one of the four
cases above, and @ <. /3. Because of this very correspondence between +, *,
K, <, and +¢, ¢, /s, <, and because of Theorem we also may transfer
all the usual inequalities and equalities about ordinal arithmetic, from the
ordinals to the notations in Ej.

Definition 67.

We define the expressions 2, Ey, <0 (analogous Definition such that

2€Q = ze(0,0),
2€0ng = z2z€0n.Vz=1,
ze€< = Jadp((z=(a,f)NaeB)Vz={(a,Q)),
z€=q = 2€ =20,
ze by = ze@o,m,«],
z€Q = z€=<q A3z € Ey)(3y € Eo)z={(x,y),
zed = zedV(Ix € Ey)z = (z,x).

We use the letters a,b,c,0,¢,u,0,10 to denote elements in Fy. We write
VaA[a] and JaA[a] for (Va € Ep)Alx] and (Fx € Ey)Alz], respectively.
Sometimes we drop the universal quantifier Va in front of Afa]. In this
case Ala] stands for © € Fy — A[z], e.g. we may write T F Afa] instead of
T FVaAlq].

We write 4_’ ?’ A for —T_Onn,-<9’ f(97LQ,-<Q’ ;\OnQ,-<Q’
for a A b, and z <y and 2 < y for (z,y) €< and (z,y) € <, respectively.
Furter we write (3z < y)A[z] and (Vz < y)Alx] for Jz(x < y A Afz]) and
Ve(r <y — Alz]), respectively.

respectively. We write a®

And finally, we write Qg for Q 4 1, and Q. for @n.

The following lemma states some simple properties about 2, i.e. part 1 is
used for part 2 of the subsequent theorem, about the linear ordering (Fy, <),
which is a direct consequence of Lemma

Lemma 68.

(1) NBGF Q& OnAQ & Hy AHy NOn = {0},
(2) NBGF Qo = (Q,0) A Qna1 = ()

Proof. By definition, by computation, and by induction on n. O
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6. Wellorderings beyond the Ordinals

Theorem 69. (Linear Ordering)

(1) Ep and < are elementarily definable classes in NBG,
(2) NBG F Lin[Ey, <.

Proof. By definition and by Lemma [61] O

In the following we write TIS[C[z]] for TIZ%[C[z]], and analogously we
write Wf5[Clz]] and Progd[Clz]].

The formula Prog5[C[z]] is a subformula, i.e. the premise, of the formula
TI5[Clx]]. We show that Prog5[Clz]] can be replaced by the stronger state-
ment Prog5°[Clx]], without changing the meaning of TI%[C[z]]. Clearly, this
is the case, because (Ey, <) is a linear ordering.

Lemma 70.

NBG - TI%[Clz]] ¢+ (Progh°[Clz]] — (Vz < a)C[z]).

Proof. We assume ProgZ°[C[z]] — (VY < a)Clz], i.e. its contrapositive
Bz < a)=Cla] = Bz € Eo)(=Clz] A (Vy € Eo)(=Cly] =y #A ),

and we show TIZ[Clz]]. If there is some b such that b < a A =C[b] then
by assumption we find 9 such that =C[0] and Vy € Eo(-Cly] — y 4 ),
ie. b 4 0. We get 0 < b because of totality, and ? < a because of tran-
sitivity. Hence (3z < a)(=C[z] A (Vy < a)(=C[y] = y 4 x), i.e. we have
shown the contrapositive of T75[C[z]]. The other direction follows because of
Progi[Cz]] — Prog&[Clz]); for any b with b < a and (Ve <t a)c < b — C/c]
we get (Ve € Ep)c < b — C[c] by totality, i.e. (V¢ € Ep)c < aVa < ¢, and
because of a < ¢ — ¢ #4 b, by transitivity. Hence C[b] by ProgZ°[C[z]], that
is Prog4[Clz]]. O

The following two lemmas and the subsequent theorem are in complete anal-
ogy to the standard wellordering proof for the common notation system for
€0, see e.g. Pohlers [15].

Lemma 71.

(1) NBGFa+ (b+¢)=

b)
(2) NBGFc¢#£DAa<b & p.

(a+0b)+r,
T = (Fa)(Fpcw aab+®p
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Proof. The proof is in analogy to the standard notation system for (g9, <),
where the notations are also based on the Cantor normal form of ordinals.
The tedious combinatorial arguments are left to the reader. O

Definition 72. (Abbreviations)

acCly = (Yy<a)Cly, )
Clly] = (Vb<a)(bC Clz/z] = b+ &Y CClz/z]).

Lemma 73.

For F € {1}, £'} and C € F we have that
(1) NBGU Wf[F] F Prog®" [Cly/x]] — Prog&™[C%" [y]],

(2) NBGU WfE[F] - TISICY [y]] — TIS" [Cly/]).
We have NBG + WFZ[I1}] by Corollary [48
elto

Proof. In the following we use the shorthand Cf[y] for C[y/x].
(1) For any a with
(a) Prog®"[Cly]], i-e. (Vb <1 @%)(b C C[z] — Clo]),
and for any b, ¢, with
(b)y b<a+1AbcC?y,
() e AcC Clel,

we show that ¢ + &° C C[z], i.e. C¥"[b] and hence Progg{ﬁ[C’f“[y]].
If a = () then ¢ + @° = 1, and C[@] by (a) because of § C C[z].
If ) < aand e < ¢ + @° and if b = @ then ¢ < ¢, hence C[e] by
(¢)+(a), otherwise ) <0 b and by Lemma [71| there are o < b, 9; < a
and pg,p; € w such that ¢ < ¢ + @° ° py and ¢ < @°* * p;. We have
ci—@afﬁﬁﬁal py 4+ @° 2 p <@ for any p € w because of 9 < a, and
further C%"[9] by (b), hence Vp(c + @° * p C C[z]) by induction on p,
which is available because of WfZ'[F], and finally Cle].

(2) We assume
(d) Progd[CT [yl = a € CF" [y,
(e) Prog3”[Clyll,

and we show @® C Cly]. We have Progg,q'T[Cfn[y]] by (e)+(1), hence

a C C2°[y] by (d), and CZ°[a] by Prog*'[C°[y]]. Finally &® C Cy]
by C%"[a] and because of §} C C[y].

O
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6. Wellorderings beyond the Ordinals

Finally, by using the previous main lemma, we can show transfinite induction
along <1 up to any €2,, in NBG, for any elementary formula. And if we add
full induction to NBG then we even get transfinite induction along <1 up to
any (2, for all formulas.

Theorem 74.
(1) NBG F TIS"[11],
(2) NBGU WfY[£Y + T2 (LY.

Proof.

(1) We have NBG F WfE™[IT}] by Corollary 48] hence NBG - WfS[II}] by
Theorem (66| and because of On = {a | a < Q}. We get NBG + TIZ[IT]
by Lemma To show NBG + TIS°[IT}], i.e. NBG F TISJFT[HM, we assume
Proggﬁ[C[yH, and we get Q C C[y] by TIS[II}]. To show Q + 1 c C[y],
we need C[Q2]. But C[f2] holds because of Proggﬁ[C’[y]] and Q C Clyl.
Finally, NBG + TIS" [[1§] is shown by induction on n, by applying Lemma
ie. ng"‘l[Cg?" [yl = TI2"[Cly/x]], where we use that Cn[z] € TI} for
C[z] € I1}.

(2) Analogous to (1). O
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7. lterated Class Comprehension

In this section we define the schemata of iterated class comprehension, which
is used to inductively define hierarchies of classes. We show that the choice
schemes AC and DC can be used to prove the existence of such class hier-
archies defined by iterated class comprehension along initial segments of the
linear ordering (Eo, <) from Section [6]

Iterated class comprehension is later used in Section [§] to define truth and
proof predicates in NBG and extensions thereof, and it is used in Section [g] to
define cumulative hierarchies of classes for the asymmetric interpretations.

The following definition is a generalization of the expressions (X)Y and (X)Y
from Deﬁnition such that, e.g., (X)? now also becomes (X)<?, and such
that (X)?" is defined for arbitrary binary relations Z.

Definition 75. (Abbreviations)

We define the expressions (X)?¥ and (X)?? (analogous Definition
such that

z e (X)%Y z€ X AFww(z = (v,w) A{w,y) € Z),
ze(X)PY = Fu((z,w) e X A{w,y) € Z).

Iterated comprehension essentially allows us to build hierarchies of classes
U, such that (U), depends on the levels (U). where z is any predecessor
of y, i.e. a predecessor with respect to some fixed binary relation Z. On
the level y in the hierarchy we have that (U), = {z | Cl(U)?Y, x,y]} for
some fixed formula C|, such that C' and the relation Z actually determine the
whole hierarchy, and if Z is well-founded then the hierarchy is even uniquely
determined.

Definition 76. (Iterated Comprehension)

For A, B € L' with one free set variable and no other free variables, and
D C L', we define

Hier) [C[U,z,y]] = (¥y €Y Va(z € (U), < C[(U)*Y, z,y),
Hierf[CIU,z,y]] = Vy(Bly] = Va(z € (U), < C[(U)",x,1))),
I Hier}[D] := {3U(Hierf[C[U,z,y]]) | C € D}.

In the following we write Hier[C[U, z,y]] for Hier *[C[U, z,y]].
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7. Iterated Class Comprehension

The following lemma shows the essential uniqueness of class hierarchies built
by iterated comprehension along well-founded class relations.

Lemma 77.

If A,B,C € £' and D := VaVy(A[(y,z)] A Blz] — Bly]), and NBG C T,
and T F TIF[T1}], then

T b HierF[C[U, 2,y A HierE[CIV. 2, y] A D = Yy(Bly] — (U), = (V),):

Proof. If we assume Hiery[C[U, z,y]] and Hier§ [C[V,z,y]], and if E[y] :=
(U)y = (V)y, then for any x with B[z] we have Vy(A[(y, z)] — Bly]) and

Vy(Bly] A Ally, )] — Ely]) — (U)"" = (V)"
Hence Prog?[E[y]], and the claim follows by TIF[E[y]]. O

The previous lemma can be easily applied to well-founded relations in NBG.
Corollary 78.

For all C € L' we have that
(1) NBG F Hier®"[C[U, z,y]] A HierE™[C[V, z,y]] = Va((U)a = (V)a),
(2) NBG F Hier?" [C[U,z,y]] A Hier" [C[V,z,y]] =
(Va < Q") (U)a = (V)a,
(3) NBG F Hier?"[C[U, z,y]] A Hier$" [C[V, x,y]] —
(Va <1 2,) (U)g = (V)a.

The following theorem shows that if we add appropriate choice schemes and
induction to NBG, then we can prove the existence of class hierarchies de-
fined by iterated comprehension along initial segments of the linear ordering
(Eo,<1). The argument for the proof is similar to that for analogous state-
ments in second order arithmetic, see e.g. Cantini [I], and Feferman and
Sieg [4].

Theorem 79.
(1) NBGU CA[ITL] 3 HierI [IT}],
(2) NBGU DC[IL] - 3 Hier™ [ITL],
(3) NBGU AC[IIL] U WFY[LY] F 3 HierSm[ITL].
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Proof.

(1) We trivially have 3 Hierg[l_[,ll], and for any C € I} we show that
HierZ[C1V,2,y]] = 3U (HierZ ' C[U, 2, 4]]),

hence we get 3U(Hier”'[C[U, z,y]] by induction on m. If HierZ'[C[V,z,y]],
then by CA[IIl] we get some W such that

Va(z € W & C[(V)™, z,m)),
and by comprehension we get U such that Hierg’ﬁ[C[U, z,y]], ie.

U = {{zip|pemn(z,p)eV)V(p=mAzeW)}

(2) Proof by induction on m. Q0 =T, hence 3 Hiergo [II1] by CA[IL}] which
we have by Corollary Let Ela, U] := Hier$[A[U,z,y]] for some A € IT},,
that is, E[a,U] is equivalent to formulas in II},,; and X!, ,. We assume
3 Hier" [111] and we show (3Z)E[Q2"F1, Z]; by case distinction on a, i.e. a =
(), or « is a successor, or « is a limit, we get

YaVY3Z((VB € a)E[Q™ B,Y] — E[Q™ &, Z)). *)

Le. if a = () then Q™ * @ = () and E[), Z] holds trivially. If « is a successor,
o = , then we may assume E[Q™ * E, Y], and by using Y and because of
3 Hier" [11}] we can build Z such that E[Q™ * B+ Q™ Z]. If o # 0 is a limit
ordinal then for any a << Q™ * & there is some 8 € « such that a < Q™ * B,
hence we have (V8 € o) E[Q™ * 3,Y] — E[Q™*Q,Y]. We have DC, [21. ]
by Corollary and we get AZVaB[Z, o] with

B[Z,a] = (VBE€)EQ™: B, (2)%] > E[Q™ "4, (Z)a]

by DCY, [Sh 1] and (*). If we define

C1Z,9] = (Vae)(VBeaEQ™ 5, (2)"]»
(VB ENEIQ™ B, (Z)g),
D[ZA] = (Ya€)(VB€a)EQ™?5,(2)"] -

(V8 € 1) EQ™ 3,(2)"].

then we have (Vo € v)B[Z,a] — C[Z,~], i.e. YaB[Z,a] — ¥YyC[Z,~], and
further we have C[Z,~] — D[Z,~]. By Theorem [35| we have comprehension
for the formula E, hence because of TIE™[I1}] we get

VyD[Z,~] = ¥y(VB € 7)EIQ™ * 5, (2)"].
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7. Iterated Class Comprehension

We get 3ZVaB|Z, o] — 3ZYy(VB € v)E[Q2™ * B, (Z)"] by the three preceding
implications. We have that 3ZVaB[Z, o], hence there is some Z such that
VBE[Q™ : B, (Z)7], i.e. we get U := {z | Ja(z,a) € Z} by comprehension,
such that E[Q™+1 U], because there is some 8 with a < Q™ ? 3 for any
a< QT
(3) Let Ela,U] := HierS[A[U, z,y]] for some A € II}. If we show

(Vb < a)3Y Eb,Y] — IYE[a,Y] for any a < Q1

then because of TIS’"+1 [£1] we get (Vb <1 Q,,41)3Y E[b,Y], i.e. Y E[Q,,, Y].
If a = () then E[a, Y] holds trivially. If a = ¢ 4 1 then we may assume V such
that E[c, V]. By Corollary [36| we have CA[IT}], hence we get Y such that

Y = {{z,b) | (b=cAA[(V)  z,])V(b<acAze (V)p)},

and (V)" = (V)% and (V). = {z | A[(Y)",z,¢]}, ie., Ela,Y]. If a < Qppyq is
a limit, that is (Vb <t a)b + 1 < a, and if we assume that (Vb <1 a)3Y E[b, Y],
then there is V such that (Vb <1 a)E[b, (V)s] by AC[IIL]. By elementary
comprehension we get

Vo= {{z,b) |[b<an(z,b) € (V) 1}

and we show that E[a,Y]. For b <t a we have E[b 4 1, (V)pi1), and for ¢ <1 b
we further get Elc + 1, (V)y17] and Efc + 1, (V) ;5] hence (V) ;7)" =

((V)HT)C%T by Lemma and (Vb < a)(Y)° ((V)y37)", because for
¢ < b < a we have that

(V)" = (V)ezt)e = (V)gi1)e =

oF

(V)o31)")e-

—~

For b <1 a we have E[b + 1, (V)p17l, hence for any x we finally get
A[Y)®,2,6] i A((V)g37)" 2, 6] if (2,6) € (V)7 it 2 € (V)

that is Efa,Y]. O
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8. Godelization, Formalized Truth
and Proof

In this section we introduce formalized versions of the notions of formula,
truth, and proof, in complete analogy to the notions defined in Section
The formalized version G, of the language L', and the predicates for truth
and proof are defined within NBG (the predicates usually only exist as classes
in extensions of NBG). In contrast to £, we will now also have constants for
classes and constants for all sets in the formalized language G 1 And the
formalized proof system will have an additional infinitary inference rule for
the universal set quantifier.

The aim of introducing predicates for truth and proofs is twofold; for the
asymmetric interpretation in Section we use a cumulative hierarchy of
classes, which resembles the constructible hierarchy in set theory, that is, any
level of the class hierarchy contains all classes that can be built by elementary
comprehension with class parameters from lower levels of the hierarchy (see
Section@. Clearly, for the definition of this hierarchy we need an appropriate
truth predicate within NBG, which at least reflects the truth of elementary
formulas. And further, we need a formalized proof predicate, because an
infinitary proof system is used to deal with full induction TI.[L'] in the
asymmetric interpretation (as described in the Introduction).

But, first of all we want to represent formulas as sets in NBG. This is achieved
by the following Gédelization. Analogous to the language £! we have codes
for free and bound set variables v,,u;, and free and bound class variables
V., Uy, and further we have set constants ¢,, and class constants C,. And in
analogy to the logical connectives in L', we have operations on codes, i.e.,
L€ VLA Y.

Definition 80. (Gddelization)

We define the following expressions (for variables z, y)

Vo = (0,2), ~ro= (6, ),

<::oc = <<17 ), T E Yy = «va’y»a
Vr = <<gv z), x \/ y = (@,x,y)},
Cm - <<§7 :C>>7 J}./\ Yy = <<97,$,y>>,
uT = <<é7 :C>>7 El'y = «vaay>>a
U, = {(5,x), Vay (11, 2,y).
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8. Godelization, Formalized Truth and Proof

We write 2, that is ¥,, and 1, for ¥7 and a5, respectively, and analogously
Y for class variables Y. For formulas C € £' we inductively define the
expression " C™" such that

[ Eg: = f”?% Fedlefu]? = Ja(CA[e/d)),
o Lt rAlr/u]? = Vai(TATE/d)),
r 7 : Fay et AXARX/UT = 3X(TATX/U)),
(AVB)T = rATVTB, _ . R S s
(ANB) = rATArEe YXAX/UD = VX (CATX/U)),

where " A7[i: /4] and "A7[X /U] stand for the expressions that are obtained
from " A7 by replacing all occurrences of @ and U by & and X, respectively.
We use the shorthand notation "T'" for {"A7| A e T'}.

Having defined the particular sets representing the formulas in £!, we further
define the whole class of Godel-codes G.;, e.g., which additionally contains
the codes of formulas where variables are replaced by constants. We fur-
ther define some useful operations on these codes ¢ € G .., like substitution
of “variables”, ¢[v,/V.], d[iy,/Val, O[¢y/Vz], OV, /Val, B[U,/Va], G[Cy/Val,
complementation —¢, a rank function 7kx(¢), and a function term(¢) to
unveil all variables and constants in ¢, i.e., term(¢) is the set of all codes,
Vy, Uy, éy,Vy7I:Ty, Cy, occurring in ¢. All operations on G, are in complete
analogy to the operations on £!.

The formula Sub[f, z,y] in the following definition is just a compact form to
write that f is a function such that f(¢) = (¢[x/y]) for any ¢ € dom(f), and
if ¢ € G,1 N dom(f) then any “subformula” (involved in the construction)
of ¢ is in dom(f) and term(¢) C dom(f). Similarly Ter[f] means that f
is a function such that f(¢) = term(¢p) for any ¢ € dom(f), and if ¢ €
G N dom(f) then any “subformula” (involved in the construction) of ¢ is
in dom(f) and term(¢) C dom(f). And the formula Goe[x] means that
x C G, and if ¢ € o then any “subformula” (involved in the construction)
of ¢ is in x; see Lemma for the contents of G ;.

Definition 81. (Abbreviations)

We define the expressions u[x/y], term(u), G,, (analogous Definition
such that

zeu[z/y] = If(Sublf,z,y] Au € dom(f) Az e f(u)),
z € term(u) = 3If(Ter[f]Au € dom(f) Az € f(u)),
z2€G, = 3Jw(Goelx] Az € x),
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Sub[f,z,y] Fun[f] A (Vg € dom(f))3p(

Ju(g = (p,v) ApeBA
((g=yAflg)=2)V(g#yn[flg)=9))V
(391 € dom(f))(3g2 € dom(f))(p
((g=(6,91) A f(g) = (6, f(g1)))

(9= A(p,g1,92) A f(g) = (p, f(g1), f(g2))))),

Ter(f] := Fun[f] A (Vg € dom(f))Ip(

F(g={(p,v) ApebAflg)={g})V
(391 € dom(f))(3g2 € dom(f))(p € 12\7 A
((9={(6,91) A f(g9) = f(q1)) V
(9= (p,91.92) A f(g) = flg1) U f(92)))),
Goe[z] = (Vf € z)( B
(Fp € 2)(3q € 4)3uv((f = (7, {(p,u), (g, v)) V
F=(6,(7, (p,u), {g: I A (p#OVu€Ew)A
(¢ ¢ 10, 2}ver))\/
(3fi € 2)(3f2 € )Fp € 10\8) f = (p, f1, fo) V
(3f1 € x)(Ip € 12\10) Jq3rJudv(
(

(u=t,ANv="%)V(u=U,Av=V,.))A
u & term(f1) A f = (p,v, f1[u/v])))-

We use the letters ¢,1,6,§ to denote elements in G,,. We write VpA[¢]
and 3pA[¢] for (Vo € G,,)A[z] and (3z € G,.)A[x], respectively.

For the following expressions we just give an informal description; the
formal definitions would be similar to the previous ones:

We define the expressions QH}L, gzl(nh), etc., in analogy to G,,. E.g. Q’H}L
is the class of Godel codes representing the set of formulas I1%, in the same
way as G, represents L) that is, we have A € IT}, iff TA7 € G - Further,
if ¢ € Gy then ¢[¢, /), ¢[Co/Vp] € Gy for any z and p € w 7(Li.e. G s
closed under substitution with constantg).

For the formalized proof predicate the Godel-codes without class constants
will play an important role, hence we define the expression G, such that

G ={0 € G, | Va(C, & term(9))}.

For functions f, g, we define the expression ¢[f, g|, such that ¢[f, g]., €
Gp1 is just ¢ with all "free variables” ¥p,V, € term(¢) replaced by the
constants ¢ (,), Cy(q), respectively, i.e., if Vs, Vs & term(¢) for every s > r
then

Olf, 9loe = DlEf(0) /0] [€£(r) /91][Cg(0) / Vo] [C iy / V).
Analogously we define ¢[f].,, where only ”free set variables” v, € term(¢)
are replaced by the specified constants.
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8. Godelization, Formalized Truth and Proof

The rank rkx(¢) is defined analogous to the formula rank, rke, e.g., such
that rkg, ("A7) = rkc(A). We write 7k for rky.

The complement —¢ is defined in analogy to the complementation of for-
mulas, e.g., such that ="A7="-A4"

We use the shorthand ¢ - v for (—¢) V¢, and ¢ <> 1) for (¢ > 1)) A (1 = @),
and for sets u C G, we write u[x/y] for {¢[z/y] | ¢ € u}, and analogously
we write u[f, g] ., and u[f] .

The previous cryptic definition of G.,, which explicitly shows that G,, is
elementarily definable, does not really reveal the content of G,,. Therefore
we state the following lemma, which unfolds the recursive definition of the
class of Godel-codes.

Lemma 82.

NBG I Vz(z € G,1 > A[z]), where

Al = FpIgeTyFuIeI(z € {(6V ), (6 A )}V
(l:lp ¢ term(d) Nz € {Elup((b[up/vq]),Vup(qb[up/vq])}) v
(Uy & term(9) A z € {3Up(0[U,/Vy)), VUL ([Up/Vg])}) V
(z € {u,~up A (ue{¥, €7V, € ¢y, ¢y € Vg, Cp € YLV
u € {¥, EVy,7p € Cy, &p € Vg, &0 € Cy})).

Proof. By the definition of G, . O

We define truth predicates that cover formulas up to some specified formula
rank, that is, we can gradually increase the rank for which the formulas are
properly reflected by the truth predicate. Further, truth is defined such that
class quantifiers range over all classes (U), of some class universe U, and
such that the class constant C, stands for the corresponding class (U),. In
contrast to the class quantifiers, the set quantifiers range over the universe
of all sets, as usual, and any set constant ¢, stands for the set z itself.

The formula Tr[a, U, V] in the following definition means that V is a truth
predicate containing all “true” closed Godel-codes ¢ € G, with rank rk(¢) <
o', and with all class quantifiers and class constants in ¢ interpreted with
respect to the class universe U.

Definition 83. (Formalized Truth)

We define Tr[a, U, V] to be the formula,

VN2 yYpVq(rk(¢) € o' ATk () € o/ — A),
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where A is the conjunction of the following formulas

€c¢
Ec

y
~ y

(o

(¢
(¢ €
(¢

v €
(¢V
(¢ A

~

¢

E.lup(qﬁ[up/v
p(¢[up/v
p(0[Up/ Vg
p(S[U

Up/ V4

) €

) €
Cy) €
y) €
w)
Y) € V
q)) €
ql) €

]) €

]) €

Yu
30
YU

rrrrrrrer e

T ey,

z &y,

z € (U)y,

z ¢ (U)y,

peVVvyeV,

peVAYeV,

F2(glez/Vq) € V) N1y & term ()

Vz(9[e: /g ANy, & term(g),

Jz(¢[C. /V /\U & term(o)
(8[C=/Vq (9).

eV)
leV)
Vz ] €V)AU, & term

The following technical lemma shows that the formalized notion of truth is

properly defined, i.e.,

if Tr[a,U, V] holds then V is essentially unique with

respect to a and U. Clearly, the truth predicates also perfectly reflect the

complementation of formulas.

Lemma 84.

(1) NBGFVa(V8 € a)(Tr[a, U, X] — Tr|p,U, X)),

(2) NBGFVo(Trirk(¢),U, X A Tr|rk(s),

UY|—
(olf, 9l
VY] —

]
€ X < of, 9l
(3) NBG (V6 € Gy ) (Tr[rk(¢), U, X] A Tr[rk(¢),

€Y)),

(ﬁ[¢7f0a907f17gla (]7 V] —

(¢[f07go]oo

€ X < dlf1.91]00

where #[, fo, 9o, f1, 91, U, V] is the formula

(4) NBG F Tr[rk(¢),U, Y]

Proof.

(V2)((C; € term(¢) — (V)

= (
(V, € term(¢) — (U) goc z)

(Ve € term (o) — fo(x) =

= (6lf, 9l

€Y & (-

V)z) A
=V)gi(@) A
fi(z))),

NS 9loc €Y)-

€Y)),

(1) By the definition of Tra,U, X], i.e. because of the transitivity of € on

ordinals.

(2) By induction on p we get

(Vp € w)Trp, U, X| A Trp,U, Y] —

Vo(rk(¢) € p' — (91f, 9l

€ X < 9lf, gl

€Y)).
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8. Godelization, Formalized Truth and Proof

(3) Analogous to (2).
(4) Analogous to (2). O

Truth predicates for formulas, up to some fixed maximum formula rank, are
shown to exist in NBG. If we want to have a truth predicate for all formulas,
i.e. if we want the truth predicate to exist as a class, then NBG needs to be
extended by iterated elementary comprehension up to w.

Lemma 85.
(1) NBGU 3 Hier? [I1}] - VX3Y Trlw, X, Y],
(2) NBGFVXIY Trin, X,Y].

Proof.

(1) If we define A[V,z,r, U] := 3¢FYIxIy3Ip3q(z € G, A 1k(2) = r A B),
where B is the disjunction of the following formulas

z2= (& €¢y) ANz €Y,
Zz&(c':xé'(:y)/\xgy,

z= (¢ €Cy) ANz € (U)y,

z=r~(C €Cy) A & (U)y,

2= (p V) A (s € (V) Ve (V)),
z=(pAY)NGE(V) Ny e(V),

z= gﬁp(ﬂﬁp/{’q]) A Ju(leu/tq) € (V)") Ay & term(s),
== ¥y (0l /14]) A Vu(0few/3a] € (V)) Ay & term(9),
£ = 3%(@5[%/%]) A Hu(¢[cu/vq] e (V) A [.Ip ¢ term(o),
2 =YUy(o[Up/Vy]) A Vu(B[Cu/Vy] € (V)) AU, & term(d),

then by 3 Hier? [I1}] there is some V such that
(Vr e w)Vz(z € (V) < A[(V)", 2,7, U]).

By induction on r we get (Vr € w)Tr[r,U,(V)"], hence Tr[w,U, (V)“]. See
e.g. Jager and Krahenbiihl [T0] for a similar construction.

(2) Analogous to (1). We use that NBG I 3 HierZ [I13] by Theorem O

In Section [10] we extensively use truth predicates, hence the following handy
notation will be of great use.

Definition 86.
We define the following abbreviations for formulas,
True[o, U] = 3IY(Tr[rk(¢), U, YINPEY),
#f, 9% = True[glf,glo. U

The following two lemmas are just restating some facts in the context of the
new notation, i.e. by using ¢[f, g]%.
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Lemma 87.

(1) NBG k- Vo(3Y Tr[rk(¢), U, Y] — (¢[f, gl% < ~((=9)[f, 915))),
(2) NBG U 3 Hierg [I] = Vo(8[f, gl5, < ~((=9)[f, 91%));
(3) NBG F"AMf,g]5, < =(TA7[f, 4]5).

Proof.

(1) I 6[f,g1Y and & = 6[f, gl then IV(Trrk(v),U,Y] At € ¥), and
VY (Tr[rk(),U,Y] — ¢ € Y) by Lemma [84)(2), hence because of 7k () =
rk(—)) and by Lemma [84(4) we get VY (Tr[rk(—¢), U, Y] — (—¢) € Y),
that is =((=¢)[f,g]). On the other hand, if ~((—=¢)[f,9]Z) then we have
VY (Trirk(—¢),U,Y] — () ¢ Y). And because of IY Tr[rk(¢),U,Y]
we get Y (Tr[rk(¢), U, Y] A (—¢) ¢ Y), hence by Lemma [84[(4) we get
Y (Trirk(v), U, Y] A € Y), that is ¢[f, g].

(2) By Part 1 and Lemma [85(1).

(3) By Part 1 and Lemma [85(2). O

Lemma 88.
NBG F VoVipVpVq(A),

where A is the conjunction of the following formulas

(cx €¢)lf, 9% & wmey,

~(Ey ch)[ Lads & zdy,

(¢z €Cy)lf 9% < z€(U)y,

(e €CYIf )% & x & (U)y,

OV f, 9% < olf, 9% VIS, 9%,
(@AY & olf g% AYf g%
30, (80, /v, 9% = 32(0lex /T[S, 9l5) Ay & term(9),
Vi (@l /T])f,gl5 ¢ Va(8lea/Yllf, 9)5) Ay & term(d),
30 ([0 / Vo)) [f. 9l ¢ F2(D[C. V][, gl5) AU, & term (o),
VUL (o0 /V IS 91% & V2(0[C /YIS, 91%) AT, & term(s).

Proof. By the definition of ¢[f, g]., and ¢[f,g]Z, and because if we have
any Y with Tr[rk(¢), U, Y] then we get Z with Tr[rk(¢)', U, Z] by elementary
comprehension. O
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8. Godelization, Formalized Truth and Proof

Corollary 89.

(1) NBG F VoVpVq (Vi (¢[a,/¥4))f, 9% — ¢lf: 915,
(2) NBG I VovpVq(iy, & term(d) A @Lf, 9% — Fip(dla, /7)) f, 91%,),
(3) NBG - VoVpVq(V U, ([0, / V]IS, 9% — 61f.91%).
(4) NBG - VoVpVq(U, ¢ term(s) A ¢Lf, g% — FU,(8[0,/ Vo)) 91%,).
Proof.
(1) I we have ¥y (9[d,/7,))[,g]5; then ¥=(o[e=/7,)If. g]i) by Lemma 3§
h??ce]dcﬂq)/vqnf, 9%, and because of ¢[f, g, = B[¢1(q)/Tqllf glos We get
7900

(2) If we have oLf, 9%, then ¢[cry) /Vollf, 9]%, that is Fz(de./vq][f, g]%),
and hence 3, ([, /%,])[f, 9]% by Lemma

(3) Analogous to (1).
(4) Analogous to (2). O

The most important property of the formalized truth predicate is that it
reflects the truth of the original formulas, at least for an appropriate class of
formulas.

Lemma 90. (Truth Reflection)

Let #p[f, g, U] be the conjunction of T, and of all formulas f(fz) = x, and
(U)g(ﬁT’) =Y, for all free variables z,Y € D.

(1) If A € X1(T1}) then NBG k- #4[f, 9, U] — (TAT[f, g]L — A).
(2) If B € I(2}) then NBG F #5[f, 9, U] — (B — "B7[f, g]¥.).
(3) If C € I} then NBG F #¢[f, g, U] — (C & "CT[f, g]2).

For the reverse implications A — "A7[f,g]Y and "B7[f,g]Y — B there
are easy counter-examples, i.e., for A := IXVy(y € X) and U = () we have
NBGF A A —JzVy(y € (0),), and for B := VXVy(y € X) and U = V we
have NBG F VaVy(y € (V),) A —B.

Proof.

(1) By induction on the structure of A. If A is an atomic formula then the
claim follows directly by Lemma If A = 3XB[X/V] then by i.h. we
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have "B7[f, 9], Atg[f,9,U] — B, and each of the following statements is a
consequence of the preceding one

"Bf,9l5% A (U) @) =V Atalf,9.U] = B,

"B f, 9% Ag(8V) =a A (U)r =V Atalf,9,U] = B,
"Bf, 9% Ag(BV) =2 ATY((U), = Y) Atalf,9,U] = A,
"B7(f, )% A g(8V) :L tiA[f,g, Ul — 4,
3h(32("B7C./V][f, h]éé A (tiV) = 2) Atalf,h,U]) = A,
3h(HZ(rBWC [V RS Atalf, b, U]) — A,

TAf, g% Adalf, 9. U] — A.

If A= VmB[m/v} then we have "B7[f, g]L A #5[f,9,U] — B by i.h., hence
"Bf, gl5 Aalf.g. Ul = Vz(f(3v) = 2 —> B[Z/U])a that is YA("A7[A, g]5 A
falh,9,U] — B[h (ﬁv)/v]) by Corollary . If we assume there is some f
such that "A7[f, g]L A tiA[f,g, U] then for any fo with ¥p(p = fv V fo(p) =
f(p)) we have that "A7[fo, 9] Atalfo,g,U], hence B[fo(%)/v]) And be-
cause fo(§v) can be any set, we have shown 3h(TA7[h, g]L Afalh, g,U]) — A,
that is "A7[f, 9] A ﬂA[f,g, U] — A. Other cases of A are shown similarly
and mainly by using Lemma

(2) By (1) and Lemma [87|(3), and because 3! (I1}) = —IT*(3}).
(3) By (1) and (2), and because IT§ C LH(II5) NI (SY). O

The definition of the infinitary proof system and the corresponding proof
predicate (within NBG) is in analogy to the formal proofs on the meta-level,
i.e., Definition[I2] We formalize Definition[I12|within NBG, in almost complete
analogy, except for the infinitary rule for the universal set quantifiers. By
infinitary proofs we derive finite sets of Godel-codes z C ggl. The inference
rules for infinitary proofs consist of the common rules for classical logic, and
the rules for some axioms X C G, and additional inference rules specified
by some class Y C g;l. The rules can be depicted as follows (where z C g;l
is any finite set)

zU{¢,~¢} ¢ € G, atomic,

_2Uf{g} LU
2U{pV )’ zU{pVy}’
zU{¢t zU{y}

zU{pAy} 7

2 U{o[ve/Vq)} zU{¢} . erm
2 U {31, (B[a,/74))} 2 U{V i, (o, /¥,))} qggeuzt N
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8. Godelization, Formalized Truth and Proof

2 U{o[Ve/Vy]} zU{¢} :
2 U 30, ([0,/V,)} SO0 gU rermie):
2U{o}  2U{nd}
zU{¢p} with ¢ € X,
<0 {0} with (¢ = ¢) €Y,
zU{e, € ¢y} withuewv, zU{~(¢, €¢,)} withu g,
U {9[ew/¥y]} 2 U {9[éw/y]} for all sets w
2U {Fiy([ap/vq])} 2 UA{V i, (gl /7)) }

In the following, i.e., by the formula Prgn [U,X,Y, Z], we define the prov-
ability relation U, which captures provability by such infinitary proofs. In
addition to the axioms X C G 1 and the additional inference rules Y C G 1
the relation also has control parameters a and r, such that z € (U)q,, essen-
tially means that

(1) there is a derivation of the finite set z C QZI, which possibly uses axioms
in X and additional inference rules from Y,

(2) this derivation takes at most a <1 £, steps (by definition we have § < a),

(3) the rank of any cut in this derivation is at most r with respect to Z C G ..,
that is, any “cut-formula” ¢ is such that rkz(¢) <r. Ilf r = @ then ¢ € Z
or ~¢ € Z.

The elementary formulas A and AT in the following definition, are such
that Pré, [U,X,Y,Z] = HierS"[A*[U,x,b,X,Y, Z]] and Prq,[U,X,Y, Z] =
Hier2"[A[U, 2,6, X, Y, Z]], where Prq, is just Pr{, without the common
inference rules for set quantifiers, e.g., in Prq_ only the infinitary rule for
the universal set quantifers is included. E.g., if Pro [U, X,Y, Z] then for any
b < Q, we have

(U)p = {z | A[(U)®°, 2,6, X,Y, Z]}.

Pr%n U], Prgf[U], and Pr?ﬂ U], Prgnch[U], in the following definition, are
instances of Prq, and Prgn, respectively, with specified classes X, Y, Z.

Definition 91. (Formalized Proof)

Let A[U,z,b,X,Y, Z] be the formula

b # 0 A JpFpIyTzTuTvIp3qIrds3it(y Ss G Ar € 8" ANa = (y,s) A B),
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where y C¢ V means that y is a finite subset of V', i.e., y C¢ V stands for
y C VA3g(Funlg] A dom(g) € wAran(g) = y), and where B is the formula

{¢,~d} Cyv

(peynope X))V

(y=2U{o} A0 eY AN([EFa<ab)zU{} € (U)ar)V

(y=2U{oVeY}A(Fa<b)(zU{s} € (U)arVzU{y} € (U)as)) V

(y= 2016 AG}AGa )z U {6} € (D)ar A 2U {0} € (D)ar) V

(y = = U {30, (6[0,/T,])} A (Ga < 6)z U {0lis/V,]} € (U)ar) v

(y = 2U{VUL(d[Up/Vg])} A (V€ € 2)Vq & term(§) A
(Ja<b)zU{s} €

(B0 < B)(y U {8} € (U)ar Ay U {6} € (U)ar) A rkz(0)

((¢y €Cy) EYyAu€ED)V

(~(cy €&y) EYyAugo)V

(

(

U)ar)V

(U)a,
€s’)

y =2 U {38,(d[ap/7)} A 3w(EBa < 0)2 U {g[ew/7g]} € (U)ayr) V
y =2 U{Vu,(0fap/vg])} AVw(3a < b)zU{dw/Vl} € (U)ar)-

We define the formula Prq [U, X,Y, Z] = Hierg" [A[U,z,b,X,Y, Z]], and
we define P?“?)n, and Prgnc, with specific X, Y, Z, such that

Prd [U] = Pro, [U,0,0,0],

D - —
Pro, Ul = Pro,lU.Gcamy Ipce,my Yoamy Y 9o, my)
where the expression G is defined (analogous Definition such that
z€ Gy = Fo((p>2) € Ge).
We define AT to be the formula A, with B replaced by

BV

y =2 U{30,(¢[0,/¥))} A (Fa <)z U{[¥1/¥,]} € (U)ar V

y=zU{Vu,(dlup/v4])} A (VE € 2)v, & term(§) A
(Fa<b)zU{¢} € (U)a,-

Finally, the formulas Pr¢, | Pr?;;, Pri©*, are defined analogous to Prq,,,
Pr%n’, and Prgnc, respectively, with A replaced by A¥.

The proof for the existence of such proof predicates is straight forward, be-
cause of the inductive definition of the predicates.

Lemma 92.

If A is the formula Prq, or Prggn then

NBG U 3 Hier$"[I1§] + U A[U, X, Y, Z].
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8. Godelization, Formalized Truth and Proof

Clearly, the proof predicates Pr?{: and Pr£f+ are extensions of Pr%n and

Prgnc, respectively, because we just added the common finitary versions of
the quantifier rules for sets to the infinitary versions. The following lemma
also shows that these extensions prove essentially the same as the basic sys-
tems, i.e. with respect to set-closed formulas.

Lemma 93.

If A and B are the formulas Pr?)n and Pr?;g7 or Pr{{f and Prgnc+, re-
spectively, then

(1) NBG F A[U] A B[V] = (Va < Q) (U)a € (V)a,

(2) NBGF B[UIANA[V] = (Va < Qu)Vr(y € (U)ar = Y[l € V)ar)-

Proof.

(1) The statement follows by induction on @, i.e. we use TI2"[I13] by The-
orem [74] For the induction we distinguish the cases of y in Definition
ie. y € (U)g,r. The “embedding” is trivial because all cases of y in Pr",
Prgnc, also occur in Pr?{:, Prgnch, respectively.

(2) Analogous to Part 1, but here we need to “embed” Pr?;;, Préi?*7 into
Pr?zn, Prgnc, respectively. The only nontrivial cases are the “quantifier rules”
for “set variables”. E.g. if we have y = z U {V1u,(¢[1,/%,])} and z U {¢} €
(U)p,s with b < a and s € v’ and v, & ¢ for all ¢ € z then by i.h. we
have that z[g] . U {#[gloc} € (V)e,s for all g with t # g — f(t) = g(¢),
hence z[f] o U{®[Cg(q)/Tql[f]oc} € (V)b,s for any such g, that is Vw(z[f] U
{9lew/T][flos} € (V)b,s), and finally we have y[f]_ € (V)a,- O

Structural properties analogous to the properties of formal proofs in Lemma
can be formalized for the proof predicates in NBG, as it is shown in the
next lemma.

Lemma 94. (Structural Properties)

(1) If Ais the formula Pro, or Pré, then

NBG F (Va < Qn)VT(X() CXiNYyCY1TANZyCZ1 A
AlU, X0, Yo, Zo] N AV, X1, Y1, Z1] A
bdanser AyCrGau Az e (U)ps »xUy e (V)ay),

(2) If A is the formula Pr%n, Pr%t, Prgf or PrgncJr then

NBG - (Va <1 Q,,)VpVeVr(A[U] ANz € (D)o —
{alvp /], 2V V], 22 /¥q], 2[f] 0} € (U)a,r)-
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Proof. The proofs of the two parts of this lemma are by induction on a,
i.e. we use TIZ"[II}] by Theorem The proofs are analogous to formal
versions of the proofs of Lemma [14{1) and [14)2). O

For the proof predicates we also have the complete analogon of Theorem
about partial cut-elimination.

Theorem 95. (Partial Cut-Elimination)

. ~E
If A is the formula Pr%wrm or Prg,im, and wg, wi,, stand for z, W¥%,
respectively, then

NBG I A[U] — (Va <9 Q) (0 )am € (U)we 0.

Proof. The statement is proved analogous to Corollary [I7 i.e. by a formal
“infinitary” version of the proof of Corollary [[7] We need appropriate ver-
sions of Theorem [16] and of some parts of Lemma [14] for this proof, too, but
the proofs for these statements are in complete analogy to the ones already
given for Theorem [16| and Lemma The infinitary rule for quantification
over sets is handled as usual for such infinitary systems. The tedious technical
details are left to the reader. O

The following lemma shows that full induction TI.[£'] is provable without
using any cuts in the infinitary system, that is, the Gédel-codes of all formulas
in TI_[L'] are derivable in Pr%”.

Lemma 96.
NBG - Prl [U] — (Yo € G, )Vvr(
Y= (\_'elﬁp(\'e/ﬁq € ﬁp)(b[ﬁq/‘-’r] _.>¢[up/‘.’r]) -
{ﬁw7Vﬁp¢[ﬁp/vr]} € (U)Q,®>

Proof. We assume PTQ [U] and ¢ = Vu,(Va, € 0,)é[a,/v,] > ¢,/ 7]
and we show Vz{—), qﬁ[cz/vr]} e (U) w0 by set induction on z, where
p(z) is the same set-theoretic rank as in the proof of Lemma We have
{=¢[¢./V,], p[e./Vr]} € (U)az,p for any z, and for any z # () we have that

(¥ € 2) {0l ], bles 1) € (U)o by i,
(¥ € 2){h (0 € )V ol /i) 0len /1) € (U), —

(Vo & 2){-, ~(&q € €2), 9lez/T]} € (U)gy,

(Vo & 2){=), ~(Cx € C2) V Plés/Vr], [CZ/VT]} eU )z,wa

{—v, (qu € ¢.)olug /¥ ], dle. /v ]} € (U )w )0

{0, (Vg € &)elug/v,] A=gle. /v,), ¢le-/v]} € (U) ——~

w-p(2)+1,0’

{=v, ¢le./v,]} € (U)

wp(+20°
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8. Godelization, Formalized Truth and Proof

A similar argument works for z = () because of
Va{—,~ (& € &p), dlep/vr]} € (U)g .
Finally we get {—t,Vu,6[4,/%,]} € (U)q.p because of & < Q for any . [

We end this section by showing that the defined proof predicates really cor-
respond to the formal proofs on the meta-level, i.e. we show that the formal
proofs are easily embedded into the proof predicates. The next lemma is
used in the proof of the subsequent theorem; together with Lemma the
next lemma shows that all Gédel-codes of sentences in £° that are provable
in NBG, are also derivable in Pr?{;, e.g. all axioms of ZFC.

Lemma 97.

NBG - Prd [U] — (Yo € Go)Vp(rk(9) € p A ¢[f, gl¥. —
{olf]c} € U)50)-

Proof. The claim is proved by induction on p. By considering all different
cases of ¢, we have that the base cases of the induction and the induction
step follow almost immediately by applying Lemma 8§ and the induction hy-

pothesis. E.g. if ¢ = Vu,(¥[a,/v,]) and ¢[f, g]¥ then Vz(y[c./v.][f,g]L) by
Lemma 88] hence we get Vz{¥[¢./V|[floo} € (U)o o0 p Py ih., and further

{8[floc} € (U)pop- O

Theorem 98.
(1) If ZFC "™ T then NBG - Prif[U] — T € (U) =, ;-
(2) If CA[ITY] U TI_[LY] [DC o [TI]]E T then

NBG F ProCt U] = T e (U)gimry s

Proof.

(1) By induction on n, considering all cases in Definition We have that
prit directly implements all cases from Definition hence the proof by
Qp,

induction is straightforward. The only nontrivial case is I' = I'g, A with A €
ZFC C £°. In this case we have rk(A) < m, and "A7[f],, = " A because A4 is

a closed formula, and "A7[f, g]¥. by Lemma 3 hence {FA e (U)m 0
by Lemma that is """ € (U),;75, ; by Lemma [94(1) because of n > 0.

(2) Analogously to Part 1. The only nontrivial case here is I' = 'y, A with
A € TI_[£Y]. In this case we have {TA7} € (Daizg by Lemma that is
¢ (U)QJrnJrl - by Lemma ( ) because of n > 0. O
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9. Cumulative Hierarchies of
Classes

In this section we introduce the cumulative hierarchy of classes which is used
for the asymmetric interpretation in Section The hierarchy is defined
by induction, and any level of the hierarchy contains all classes that can
be built by elementary comprehension from classes of lower levels of the
hierarchy. Further, any level of the hierarchy contains all previous stages of
the hierarchy as classes, i.e. the cumulative hierarchy of classes is some sort
of constructible universe.

Definition 99. (Abbreviations)
We define the following shorthand notations

XeEY = FuX=(Y)),
XCYy Vu((X), €Y).

We write (VX € Y)A[X] and (3X € Y)A[X] for VX (X € Y — A[X]) and
X (X €Y A A[X]), respectively.

The class hierarchy U, e.g., defined by the formula Clg, [U,V, W] below, is
such that (U)g = W, and for all levels (U)q, (U)s, of the hierarchy, with b <
a < Q,, we have that, (U)y € (U)q (i.e., (U)e = (U)a)s ), and (U) € (U)4
(ie., (U)p)z = ((U)a)(o,))- That is, all classes contained in lower levels of
the hierarchy can be accessed in a uniform way in higher levels of the hier-

archy. Further, we have {z | ¢[¢./V,][f, g}(og)“} € (U)q for every p € w, f,
g, and Godel-code ¢ € G (ice., {z | 0[e2/3p)[£. 915" } = (U)y37) (oo s))-
Clearly, to be able to inductively build such a hierarchy U, we need to simul-
taneously build some truth predicates (V') with respect to the class universes
(U)p, that is, U and V are such that Tr[w, (U)e, (V)s] for all b < £,,. For
the construction of the level (U), of the hierarchy we actually use & ° (2 a)
stages (see the proof of Lemma 7 because we need at least w extra steps
for the construction of each truth predicate (V), with b < a. In case of
Cl,[m,U,V, W], we restrict the truth predicates to Goédel-codes with rank
at most m, hence we only need m + 1 extra steps for the construction of
each truth predicate, and in this case the existence of the hierarchy U can
be proved in NBG (by Theorem .
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9. Cumulative Hierarchies of Classes

The formula A in the following definition is such that for the class hierarchy
U with Clg, [U,V,W], and for all b <1 Q,,, we have that

(@) = {z | A[(U)*°, 2,6, V, W]},
where (V)p is the truth predicate with respect to the class universe (U)p.
Definition 100.
Let A[U,x,b,V, W] be the formula

(b=0AzeW)V
(Ja<b)Iz(z € (U)g Az ={(z,a)) V
(3a < b)3y3=2((2,9) ( ) ANz =(z(a,y))) v

S
Ja323f3gTpTp(a +1 =
T = < <<¢7paf7g>>>/\¢[CZ/VP][f7g}oo € (V)Cl)7
and let B[U,z,r,V, W] be the formula A with a,b,<,a + 1, replaced by

q,7, €,q , respectively. We define the formulas Cl,,, Clg» and Clg, such
that

Clple, U, V,W] = HierZ[B[U,z,r,V,W]] A
(Vr € ﬁ) Trle, (U)r, (V)r],

Clon U, V, W] = Hzerq [A[U x, b, V,W]] A
(Vb < Q) Trlw a(U)lu (Ve

Clo, [U,V,W]| = HierS"[A[U,z,b,V,W]] A

(Vb < Qn) TT[(U, (U)fn (V)b]

By the following lemma we get the existence of such class hierarchies in the
appropriate set theory, i.e. in NBG extended by iterated comprehension.

Lemma 101.
(1) NBG F 3X3Y Cl,[m, X, Y, W],
(2) NBG U 3 Hier?' [II}] - 3X3Y Clg [X, Y, W],
(3) NBG U 3 Hier$"[IT}] F 3X3Y Clg, [X, Y, W].

Proof.

(1) We use that NBG - 3 Hier! [T1}] for any k by Theoremﬂ and we proceed
analogous to Part 3, taking into account that the truth predicates (V),, in
(Vr € m)Trim, (U),, (V),], are for formulas of rank at most m, hence the
construction of any (V), takes only m + 1 stages.

(2) Analogous to Part 3.
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(3) To get U, V with Clq, [U,V, W], the simultaneous inductive definition of
U and V is replaced by the construction of a single class Z such that for

U = {{z,0)]|caQ, ANz € (2)
V = {{z,0)|e<Qunze(Z)

we get that Clg, [U, V, W]. We build Z such that Hier$"[A[Z, x, b, W]] where
A[Z,x,b,W] is the disjunction of the following formulas (i.e., A is a modifi-
cation of the formula A in Definition and the formula A in the proof of

Lemma

Je(b=a"(27¢)A(
c=0AzeWV

(Ja < ¢)32(2 € (Z) o320 N2 = (2,0)) V
(3a < ¢)3y3((2, >§( Jor@a) A& = (2 (a,9)) V
Eaﬂzﬂfﬂgﬂqﬁp( T1=cA

= (2:(: 0, [,9)) N 0LE= /0] 9lo € (D) @ain))))s

JeTIr(b=0"(2¢) F7A

3¢ Iy32TpIqAs3t(x € G ANrk(z) =1 ATk(P) = s ATk(Y) =T A(
r= (¢, €C)NyezV

T=r~(Cy EC)NYE 2V

z=(&y €C)AY € (D)g@e),. V

x:N(CyEC )/\yg_i( )@(2Tc),zv

r=(oVi)A(pe(Z), (@ots V (NS (Z)@t(ﬁtc)_;_?) \

z=(0AY)NPE(D)n@ors NV € (Dm@oirrV

x = Hup( [0p/Vq]) A 3u(¢[cu/vq] € (D)z@ors) Nip € term(g) V
T = vup((ls[up/vq]) A Vu(gb[cu/vq] € (Z)QA@:C)J@) Aty & term () v
T = 3Up(¢[ p/Vq]) A Fu(B[Cu/Vy) € (Z)@t(§?c)4}§) AUy & term() v
r= VUP(¢[ p/V 1) A VU(¢[CU/V J € (Z)@t(§?c)-i-§) ATy & term(o)))),

o~ N

JIr(0=0° 2% c+ ) Az € (D) zgagin-

The stages (Z) 5 :(3:¢) all belong to the cumulative hierarchy of classes; the lev-

els between & * (2% ¢) and & * (2 ° ¢ 4 1) are used to build the truth predicate
with respect to the class universe (Z)a¢(§¢c); and the stages (Z)@¢(§¢c_ﬁ) are
truth predicates such that Trlw, (Z)5:@G:), (Z)g:@c41)) (see also Jiger and
Kréhenbiihl [10] for a similar construction). The levels between @ © (2% ¢ + 1)
and @ * (2 ¢ + 2) are not used. Finally, we get Z by 3 Hier2"[T1}], because
0f@7(2~)<an0ranyc<IQn. O

71



9. Cumulative Hierarchies of Classes

The following theorem and the subsequent corollary are formally stating the
properties of the hierarchy, i.e. they are a direct consequence of the definition

of the class hierarchy.
Theorem 102. (Class Hierarchy)
(1) NBG F VaV¢vr(Cl,[a, U, V, W] A rk(¢) € o/ — (¥p € 7)(Vq € p)
W= U)o A((U)p)g = U)g AV2((U)p)(q,2y = (U)g)= A
V2(z € (V) )gompay < 0le=/5]lF61%")),
(2) NBG F VoVr(Clogn [U, V, W] — (Va < Q%) (Vb < a)
W= (U)pA((U)a)e = (U)e AV2((U)a) o,y = (U)p) = A
V(2 € (U)o31)tmr.0 © Sle=/w1f,91)),
)

(3) NBG F Yo¥r(Clo, [U, V,W] — (Ya < Q,)(Vb < a
W= (U)oA((U)a)e = (U)e AV2((U)a)(o,2) = (U)p)=A

Va(z € (U)gi1)(omt.g) ¢ 0le=/T01F,g107)).

Proof.
(1) The formula @[¢,/v,][f, ] )7 i equivalent to the elementary formula
ol /7] [f, 9loe € (V)gq, because of Cl, [, U, V,W]. Hence the claim follows

directly by Definition [L00| and by elementary induction on p.
(2) Analogous to Part 1, using that Q7 < €, and TIZ*[IT}] by Theorem

3) Analogous to Part 2. O
(3) g

Corollary 103.

(1) NBG k- Yave¥r(Clzla, U, V, W] A k(¢

) € ’%(Vpeﬁ)(qup)
W e U)pAU)g€U)pAU), <

)g € (U)p A
(3X & (U)g)Va(z € X ¢ ple. /][ 91 ),
(2) NBG F Vo¥r(Clg-[U, V, W] — (Ya < Q%) (Vb < a)
W e (U)aAU)s € (U)aA(U)y € (U)aA

(X € (U)g30)V2(2 € X & ole./3,][f, 91 )),

]
(3) NBG F Vor(Clg, [U,V,W] = (Ya < ©,)(Vb < a)
W E (U)a A (U)s € (U)o A (U)o € (U)a A
(3X € (U)y17)V2(2 € X ¢ gle. /v,][f, 9] %))
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10. Reduction by Asymmetric
Interpretation

In contrast to Cantini [I], where the asymmetric interpretation is into hierar-
chies of sets of numbers, which are built by using fixed standard II}-complete
predicates, in this section, the asymmetric interpretation is into cumulative
hierarchies of classes, which are built by using truth predicates for each level
of the hierarchy, i.e., the truth predicates and the stages of the hierarchy
are built simultaneously (see Section [J). An asymmetric interpretation into
hierarchies of classes of this sort is also used in Jager and Krahenbiihl [I0].

The majorizing functions (see Cantini [I]) for the asymmetric interpretations
in this section are of common exponential form, see Lemma Clearly the
role of w, as e.g. in Cantini [I], is taken over by € (i.e., the class of all ordinals)
in context of this thesis.

As already described in the Introduction, the aim of the asymmetric interpre-
tation is the reduction of the systems with choice T¢, (i.e., CA[II§] U AC[IL}],
CA[I}] U DC o, [11§], and CA[IY]U DC o, [II§] U TI.[L£']), to the correspond-
ing systems with iterated comprehension 7y (i.e., NBG, NBG U (CA[II}])<qw,
and NBGU (CA[IT}]) <&, ). Roughly depicted and just in a nutshell, the asym-
metric interpretation is used in the following way

(1) After the asymmetric interpretation of the formula A into the hierar-
chy U, denoted by A(a, b>U, every quantified class variable of A ranges
over some specific level of the class hierarchy, i.e. generally all existen-
tial quantifiers range over some level (U)p higher than the level of the
universal quantifiers (U)q (see Definition [104)).

(2) All formulas provable (cut-reduced) in the system Tc, hold true after
asymmetric interpretation into the class hierarchy U, i.e.,

Tnlg A = Tut Clr,[U] — 36(A0,6)Y).

We write Clr, [U] to emphasize the dependence of the class hierarchy U
on the specific theory Tc, (actually, the hierarchy U also depends on the
formula A, see Lemma [109)).

(3) For any formula up to some logical complexity, i.e. essentially Y1, the
asymmetric interpretation of the formula reflects the truth of the original
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10. Reduction by Asymmetric Interpretation

formula, that is,
A essentially X1 = Ty b Cly, [U] — (Ala, b)Y — A)
(see Lemma [107)).

(4) The class hierarchy exists in the system Ty, that is, Ty = 3U Clr, [U] (see
Lemma [101]).

By putting (2) to (4) together, we have that if a formula A is essentially X1
and T¢n, F A then we also have T = A. For the system 7¢, with full induction,
we are going to use a formalized version of the asymmetric interpretation with
truth and proof predicates involved, such that steps (2) and (3) become

(27)
Tie - PT”Eh[rAj] - (Cchh[U] - Hb(rA—l<C®7Cb>[f7 g]U ))7

o0

where Pro, [TA7] stands for 3Z(Pr5°T[Z] A {TA7} € (Z)qimm) (n ac-

Qpys w,n

tually depends on the formula A, see Lemma [109)).

(3") If A is essentially ¥1 then
Tie b= Clz, [U] = (TA™(Ca, Co)[f, 915 — "AT(S, 915)
(see Lemma [107).

The proof predicate and the truth definition are such that
TwbFA = Tik Pre,[TA7),

Aessentially X1 = Ty F8a[f, 9, U] = (TA7[f, 9], — A)

(see Theorem [98 and Lemma, where ff 4 stands for the proper assignment
of sets and classes to the free variables in A. Together with (4), and because
of Tu b Clr, [U] — 3f3g(8alf, g,U]), we have that if a formula A is essentially
¥} and Ty F A then we also have Ty - A.

Finally, by using these reductions at the end of this section, we are able to
prove the desired proof-theoretic equivalences between choice schemes and
iterated comprehension.

First, we need to define the asymmetric translation of formulas and Godel-
codes, which is the basis for the asymmetric interpretation.

Definition 104.

(1) For variables v;, u;, V;, U; we define v;* := va,, w* := ug,, and
Vj* = Vg.j, Uj* = UQ.j, and V]'+ =V, Uj+ = U541
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(2) A* € L' is the formula A € £! with all symbols v;, u;, V;, U; in A
replaced by va.;, 2.4, Va.j, Ua.; respectively. For 7 C L' we define
T :={A* | AeT}.

(3) For A € L' we define

A A atomic,
(B(U,V)oC{U,V)) A= (Bo(),
AU, VY := < 0zB(U,V)|x] A = oz Blx],

VXT(BU,V)[(U)x+]) A=VXBX],
AXHBUV(V)x+]) A=3XB[X],

such that A(U, V) € £ for A€ L.

We write Az, y)" for A((U)., (U),).

(4) Analogously to Part 1 and 2 we define the expressions Vi, U, V;,
U* VJr U*7 and ¢*. And similar to Part 3 we define the expression
qb(Cm, C,) such that the following holds (in NBG)

¢ rk(¢) =1,
1/)<CT,Cy>O£<CI,Cy> ¢ = 7/“557
¢<Cxacy> = @*ﬁp(t/J(Cx,C >[ﬁp/‘.7qD ¢ = éup(w[ﬁp/‘.’q]%
VU7 ({Ca, C)(Ca)gs /Val) ¢ =V Up(4[0,/ V),
30 (€, CI(Cy)gs V))& = FU(0[0,/V,]),

where £[(C,)s, /V,] is € with all .“subformulas” (v, €V,) in ¢ replaced
by ("2 € (U)y [vr/2][¥/9][C2/U]). Analogously £[(C,)™ /V,].

The following lemma and its corollary are about some general technical prop-
erties of class constants within the class hierarchy.

Lemma 105.

(1) NBGF Clg, ,[U,V,W]A ((U)a,)z = (U)a,)y —

VOVa(B[C, VoL, 910 BlE, [Valf, gl ™),
(2) NBGF Clg, ., [U V., WA (((U)ay)z): = (U)a,)y —

VoVa(Dl(Co)e. /T)lf. 915%™ > BlC, /T IS 915 ™),
(3) NBG k- Cla, ,[U, VW] A (D)e)e)” = (T)ay)y —

VOVa(D[(Co ) /T)1F, 915 ™ & BlE, /TIf gl% ™).
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10. Reduction by Asymmetric Interpretation

Proof.

(1) Analogous to Part 2.
(2) We have that ¥[f, ]( o i equivalent to ¥[f, gl € (V)q,, hence the
claim can be proved by elementary induction on the rank 7% (¢). The only

difficult case is ¢ = (¢, €V,). All other cases are either trivial, or follow from
this case, or follow directly by the i.h. and Lemma By definition we have

(€0 €Vg)[(Co)e. /T = Tv € (X): (&0 /0][e2/2][C0 /X],
and by Lemma 3) we have that

FE) € (a3 1) © v € (X):T1f. gl ™,
hence we get v € (U)q, )a)s ¢ (0 €T)[(C2)e. [Val[f, 9159 . On the other
hand we have v € (U)q, )y <> (60 €Vy)[Cy/V]Ifr 9 ]Oo) , hence because of

(((U)Qk)w)z = ((U)Qk)y we get
(€0 EV(Ca)e. TS, 915 5 (€0 ETIE, /TS, 915
(3) Analogous to Part 2. O

Corollary 106.
(1) NBGF Clg, ., [U, V,W] = Vo(Va <1 Q) (Vb < a)Vg(

Bl a0 /Tallf 915 ™ G[C (001 /Tl 9150 ™),
(2) NBG + Clg, ., [U,V,W] — Vé(Ya < Q)Vq(

Sl(Ca)e, /Tallfs 91 o S[Ciam [Vllfr ) ™).

Proof.
(1) (Maw)a,e,2) = (U)a) o2y = (U)s)e = ((U)a,) 6,2y by Theorem [102
(2) (((U)Qk)a)z = ((U)a)x = ((U)Qk)<a$z> by Theorem (102 O

The following lemma covers Step 3 of the asymmetric interpretation, which
was described at the beginning of this section. It shows that validity of
formulas in X! (II}) is reflected by the asymmetric translation.

Lemma 107.
(1) If A € ©1(I1}) then NBG - A*(U, V) — A*,
(2) NBGF Clg, ,[UV,W] —
(V9 € Gys (up) (Y < Q) (& (€2, Ca)[f. 9)5 ™ — &7 (£, 9100 ™).
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Proof.

(1) By induction on the structure of the formula A. If A is atomic then
the claim follows trivially. If A = B o C then the claim follows by i.h.. If
A =VaB[z/u] then A* = Va* B*[z* /u*], and by i.h. we have B*(U,V) — B*,
hence we get Va*B*(U, V)[z*/u*] — Va*B*[z*/u*], that is A*(U,V) — A*
because of Va* (B*(U, V)[z*/u*]) = A*(U,V). Similar for A = JxB[z/u]. If
A =3XB[X/Y] then we have

Y= (V)z - (B* <U7 V>[(V)Z/Y*] - B*<U7 V>)
and because of B* — A* and B*(U,V) — B* by i..h., we get
Y*=(V), = (BYU,V)(V), /Y] = A").

We have NBG F 3Y*(Y* = (V),) hence B*(U,V)[(V)./Y*] — A*, that is
A*(U,V) — A* because of Jx(B*(U,V)[(V),/Y*]) = A*(U,V) for r = X*t

(2) We have that ¥[f, ]( o g equivalent to ¥[f, 9] € (V)q,, hence the
claim can be proved by elementary induction on the rank rk (). If 7k (¢) = 1

then ¢*(C,,Cq) = ¢*. If ¢ = V& and ¢*(Cy, Co)f, gloo ok then we get
D (Ea, Ca)lf g5 ™ V € (Eq, Ca)f, gls ™ by Lemma 88| and 4*[f, g5 ™ v
&, ] (D), by i.h., hence ¢*[f, gloo (e, by Lemma [88| again. Analogous for
d=VAE If g = vup( [i,/%4]) and if we assume ¢* (G, Ga)[f, 950" then

6 (€2, Ca) = V(U (€r, Calli /7)), hence Va(u* (€4, Ca) ./ 7 [ g)o ™)
by Lemma and because of ¥*(Cy, Cq ez /i) = v*le. /v 1(C4, Cq) we have

Va(*[e. /T[S ] “¥) by i.h., hence ¢*[f, gloo U)Q’“ by Lemma Similar

for ¢ = Hup( [4/7g]). If ¢ = ElUp( O p/Vq]) and ¢*(Cy, Ca)[f, g]oo o then
by Lemma [88| we get

32 (1" (Ea, Ca)[(Ca)e. /TN, )0 ™),

hence 3z(¢*[Ca 2y /V:](Ca, Ca) [, ]( *) by Corollary |106, and because of
T (Y[C a2y /V4)) eﬂg(qﬁ) and by i.h. we have 32 (1*[C(q ..y /V*][f, g% that
is 3z(*[C./ VS, ] )Q") and finally ¢*[f, g]eo (De by Lemma O

Upward and downward persistency of the asymmetric translation, with re-

spect to the cumulative class hierarchies, is essential in the proof of the
asymmetric interpretation following on the next page.
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10. Reduction by Asymmetric Interpretation

Lemma 108. (Persistency)
(1) NBG F Cly[a, U, V,W] — (Vs € k)(Vq € s')(¥p € ¢')(Vr € p')(
A (p, )V — A*(r,s)Y),
(2) NBG F Clo: [U, V, W] — (Vo <1 QF)(¥b < d)(Va < b)(Ve < a)(
A*(a,0)Y = A*(c,0)Y),
(3) NBG F Cla,,,[U,V, W] = (Yo <1 Q4)(Yb <1 0)(Va < b)(Ve < a)¥e(
" (Car Co)f, 915 ™ = 0" (Ce, Co)[f, )50 ™).

Proof.

(1) By induction on the structure of the formula A. If A is atomic then the
claim is trivial. If A =VXB[X/Z] and y = X** then

AU, p.q) = Yy(B*(p, )" [(U),)y/Z*]).

and we get Vy(B* (p, )" [(U),),/27]) = Vy(B*(r, 5)V [((U),)y/Z7]) by i.h..
Clearly Vy(B*(r,s)" [(U),)y/27]) = Vy(B*(r,8)" [(U)p)(ry)/Z7]), hence
A (p, )Y = A*(r,5)V because of (U)y)(y) = ((U)r)y by Theorem
or because of p = r. Analogous for A = IXB[X]. The other cases follow
directly by i.h. and logic.

(2) Analogous to Part 1.

(3) We have that ¢[f, g]g)n’“ is equivalent to ¥[f, gl € (V)q,, hence the
claim can be proved by elementary induction on the rank rk(¢). If rk(¢) = 1
then ¢*(C,,C,) = ¢*. If ¢ = 3U,(x[U,/V,]) then by i.h. we have

s s U . e U
'(/) [C(D’Z>/Vq] <Ca7 Cb> [fv g]<(>0 )Qk - w [C@,Z)/Vq](CC’ CO>[fa g]go )Qk .
And clearly we have

32 (6" (Car Co) Crou o, Vgl 915 ™) = T2 €0, Co) o,y V5] 1,915 ™),

hence by Corollary and by combining the two implications we get

32 (1% (Cas Co)[(Co)e. /TS, 9150 ™) = T2 (0™ (€ey Go) [(Go)e. IS, 9150 ™),

that is cfz*(Ca,Cb)[f, g]éff)“k — ¢*(Cc, Co)[f, g]g)ﬂ’“ by Lemma Analogous
for ¢ = VU, (¢[U,/V,]). The other cases follow directly by i.h. and Lemma
O

The next technical lemma is the main part of the reduction, i.e., the asym-
metric interpretation, and its proof spans over many pages. The proofs of
Part 1 to 3 are quite similar, e.g., the proof of Part 3 is more or less a
formalized version (within NBG) of the proof of Part 2.
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Lemma 109. (Asymmetric Interpretation)

For {V; | V; e TV} C {X, ..., X;} we have that
(1) If ¢ = AC[II}]” U CA[IIY] and CA[II}] [AC[II§]ig T then there is
some j such that
Clili +4,U, V, W] A GI{(W)o] —

NBG T . U
Vp(p+2" €ekAXEU), > TV (p,p+2") ),

(2) Tf D = DCo, T4~ U CA[IT}] and CA[TIY] [DC o, [TIA]J% o T then

Clor[U, VW] A GI[(W)g] —
NBG + . ~ >, " N s AU
Va(a+ QP < QFAX € (U)g =TV a,a + Q" +2) ),

Clﬂk+1 [U7 V. W] A Gl[(W)@] A Prgkc-i_[z} -
(3) NBGF Vavb(a+Q° <Qu Ay € (Z)pgAgla—

* /A - (U)
(36 € y)9"(Ca, Caznuia)lf gl ™).
where X € Y stands for Xo€EY A..AX; €Y, and g|a stands for the

formula Yp3y(3b < a)g(p) = (b, y).
Proof.

(1) Actually the claim is true for some constant number j. We define j :=
rk(Ao)+rk(A;)+rk(Az2)+8, where Ag := (z = (w, u)), and Ay := (w € (Z),),
and Ag 1= (VAV6((v,v) € Z A (w,d) € Z — v € §'), and we show the claim
for the constant j by induction on n, considering all cases in Definition
The proof is analogous to Part 2, and we show only the following two cases
(see Part 2 for all other cases):

IfT' = ® A and A € CA[IL}] then A* = 32Vy(y € Z < Bly/z]) for some
B € 1}, and the asymmetric interpretation of A* into the hierarchy U is
such that

A*(p,p +§H>U = Javy(y € ((U),,,57)= <> Bly/z]).

By Theorem and because of rk(B) < i, i.e. 7k("B™) € i, we can find a
class contained in the stage (U),s such that

2 € (U)p)rpmimray < "Ble AL 917,

and by Lemma [90] for the elementary formula B, we have that

ﬂB[fvgv (U)p] — (B Ane ,_B—I[fvg]go])p)a
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10. Reduction by Asymmetric Interpretation

hence because of "B7[f, 9], = rBj[éf(u?)/z] [f, ], and because of
16109, ()] = (CB7Le ) /AL 917 & TBTIE /A, 9187,

we get (45(f, 9, (U)p] = (2 € (U)p)rprjz. 1.9y ¢ B))- Becauseofp’ € p+2"
(i.e., n > 0 by definition) and by Theorem the class (U)p) (g 75, 1.9)

is contained in the stage (U) hence we have

p+27

t8(f,9,(U)p] = Bavy(y € (U),137)2 <> Bly/2])).

=m U = -
We finally get A*(p,p+2") because of X € (U),, i.e., because there exist
f7 g, such that nB[fmga (U)p}

Iflr'=®,Aand (B — A) € AC[II}] and T [R]Pcnoz ®, B for some m < n then
there is some C' € II}, such that the asymmetric interpretations of A* and
B* into the hierarchy U are

B pp+2") = YudoClu, (U),,5)al;

App+2" = Cl, (), 5yl

[N

W.lo.g., we may assume m + 1 = n. By i.h. we have
U )
o (pp+2") VB (pp+2")
and we need to show

e U N U

i
We assume —(®V " (p,p+2") ),
U

7 e U
we have =(®V*(p,p+2") ), hence by i.h. we get B*(p,p+2") , ie.,

because otherwise we are done. By Lemma

VuTuClu, ((U)p+§m)v].

We fix ¢ :== p+ 2" and we use the global wellordering (W)p (we have
GI[(W)g]) to define C; € TI}, such that

FClu, (U)g)o] < FCi[u, v, (U)g, (W)al,
that is, we define

Clu, (Z1)y] ANVw(Clu, (Z1)w] —

Cilu,v, 21, 2] VAV8((0,7) € Zo A (w,8) € Zy = v € &).
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Because of VuvClu, ((U),,, 5m)v] we get VudlwCi[u, v, (U)q, (W)y), and based
on C7 we can now define the class function

F = {<U, U> | Gy [U, U, (U)Qa (W)@}}
We define Cs € TI} such that
Col(w, u), (U)g, (W)o] < Cilu, F(u), (U)g, W)o] Aw € (U)g) Fuys
that is, we define
Colx, Z1,Z5) = FJwuIv(z = (w,u) A Cilu,v, Z1, Zs) ANw € (Z1)y),

and we define 05 € gné such that Gg[i:,Zl,Zg] = "Cslx, Z1,Z5)". Clearly,

we can fix two functions f, g, such that #c[f, g, (U)y], because of X & )y
and p € ¢’. Having 65, and f, g, we now define the class

Z = (U)y27) (0, 0.60.6.00.0 ) 55 120)

hence by Theorem because of rk(Cs) < i+j, and ¢ +1=p+2", we get

Lo U)y

v € Z o O3, o, Cop )L g1

and by Lemma [8§] and and Theorem we have
x €L OQ[Iv (U)(Ia (W)@L

w € (Z)u < F0(Cilu, v, (U)g, (W)l Aw € (U)g));

€ (Z)u & w € ((U)g)Fu)-
We have Cy[u, F(u), (U)q7 (W)g] by definition of F, and by definition of C;

we get
Vu(Clu, (U)g) Fw)),
hence Yu(Clu, (Z),]) because of (Z), = ((U)q)p(u)- Finally, because of the

—, U
definition of Z, we get JyvuClu, (((U)p+§w)y)u}, that is, A*(p,p+2") .

(2) By induction on n, considering all cases in Definition
a) T =®, A, -A and A is atomic, then we have (A V —A)* and because
of (AV-A)* = (AV-A)*(a,a + Q" + §>U we get I'V™(a,a + Q" + §>U.

b) IfI' = &, Aand A € CA[II}] then A* = 3ZVy(y € Z «+» Bly/z]) for some
B € 11}, and the asymmetric interpretation of A* into the hierarchy U
is such that

A a,a + Q" +2) =3aVy(y € (U)y10n19)e < Bly/2)).
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By Theorem we can find a class contained in the stage (U) such

that

at1

z € ((U)aJ}T)((rBﬂ,rTz,f,g» < "B /AL, g0,
and by Lemma we have for the elementary formula B that
1B1f,9. (U)a] = (B "B7[f,g]0),
hence because of "B(f, gl = "B7[¢}3)/2][f, 9], and because of

t6l0,9, ©)al = (OB 1) 21,9187 0 "B/ AF 010),

we get (ﬁB[f,g7( Jal = (2 € (U)a37)(rB 5.1,y < B))- By Theorem
2 the class ((U)o17)(rpjz.7.q) 15 contained in the stage (U),1qn 13,
nce we have

18(f,9,(U)a] = FaVy(y € (U)a10713)= < Bly/z])),

and we finally get A*(a,a + Q" F §>U because of X & (U)aq, i-€., because
there exist f, g, such that t5[f, g, (U)d]-

IfI' = ® A and (B — A) € DCo,[I§] and T [R]If o @, B for some
m < n then there is some C € II} such that the asymmetric interpreta-
tions of A* and B* into the hierarchy U are
A s A AU
B*(a,a 4+ Q™ + 2>U = VaYu3vCla, (U)a)u, (U) g10m13)0)s
Aa,a + Q" +2) = IyVaCla, (V)a10543))* (U)ai0n12)y)al-

By i.h. we have that

Va(a + Q7 < QF A X € (U)g —
®V*(a,a + Q™ —T—Q)U V B*(a,a + Q™ £2)7),
and we need to show
Va(a + Q
®V*{a,a + Q"

OF A X & (U)
Vv A (a0 +

+
) A

We fix some a and we assume a + Q7 < QF, and X & € (U)q, and
~(@ (a0 + Q7 £2)),

because otherwise we are done. For any 0 with a Fo+Qm"<at Q"
we get a + 0 + Q" < QF, and X € (U)(a10) by Theorem Hence
by i.h. we have

~ ~ ~ ~ ~U
B*ato,afof0™ i),



* ~ ~ ~ ~ .~ ~U .
because otherwise we must have ®V*(a +0,a + 09+ Q™ 4+ 2) , and in

~

. W s AU
contradiction to our assumption we get @V (a,a + Q" + 2) by Lemma
108] Hence for any 8 and 0 = Q™ 3 +5 (ie., a +0 + Q™ < a + Q7),

R N n e a AU
we have B*(a + 0,a + 0 + Q™ + 2) | that is,

VavavudvCla, ((U)a4gﬁ:§4g)u7 ((U)a$gﬁf(§4i)4§)v]~
We fix ¢ := a + Q" and we define C; € II} such that

Cl [O[, 57 u, v, (U>9] <

Cle, ((U) ((U)

arom:gis)w (U)agoms@inyiae)

that is, we define
Cl [057 ﬂv u, v, Zl] = C[Oé, (Zl)(aq_gﬁfa_]_gvuy (Zl)(a-FQmA(B\—PT)—T-iv)]
(e.g., ((U)e)<a_mmfg_;g7u> = ((U)a-mﬁfﬁ%g)u by Theorem . We fur-

ther use the global wellordering (W)g (we have GI[(W)y]) to define
Cy € H(l) such that

FC[a, B, u, v, (U).] < IvCs|a, B,u,v, (U)e, (W)g],
that is, we define
02[a7 ﬁa u,v, Zla Z2] =

01[0[767’“’/0’ Zl] /\VW(Cl[Ol7B,U,’lU, Zl] -

VAo ((v,v) € Za N {w,0) € Zy — vy € ).
In the following we also need C3 € II} such that

C3[<w7’y>aﬁa h’) ZS] S we (Z?’)(a-i-ﬂ;"\?(;y\q-/l\)-i-a,h(’y)) Ny € 57

that is, we define

Cslz,B,h, Z3) = Fw(@y € f)(z :T<w,7> A

w € (Z3) (a3 0m:(531)12.0(1))-

Based on C5 and C3 we now define a formula Cj € H(l) such that, for
the class function

F = {<Oé,h> | C4[O[,h, (U)za(W)@}h

and for the class Z = {(z, a) | # € (U)e) (q10m:@31)43,F(a) (o)) > WE CaL

show that Yoa(Cla, (2)*,(Z)a]) and Z € (U) 1gn 13- For the definition
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84

of Cy we fix two arbitrary sets fo, go, and we define 63 € G}, such that
. . . 0
03[z, B, h, Z3] := "Cslx, B, h, Z3] [¢a/d], and finally we define

04[04, h7 Z17 ZQ] =
Fun[h] A dom(h) = MVB €a’)(
02[57 Ba «93[$7 éﬂa éhf,37 Cu%ﬂm?B\%g]’ ﬁLU, f0790>>7 h(6>’ Zl’ Z2])

Hence we have Cyla, h, (U)e, W)p] = (Vy € a)Culy, R, (U)e, (W)gl,
and by elementary induction on a we get

VaAhCyla, b, (U)e, (W)g].
We define the class function
F o= {<Oé, h> | 04[017 ha (U)ea (W)@]}a

hence Vo (VB3 € a)F(a)(B) = F(B)(3). We further define Cs € TI} such
that

Cs[{w, a), (U)e, W)o] > w € (U)e) (q10m7a17)43,F (a) ()
that is, we define

JaFwIh(z = (w, a) A Cala, h, Z1, Zo] A

C IaZ 7Z =
5[, Z1, Za) W € (21) (giami@iD)is,na));

and 95[1’, Zl, ZQ] = rC’5 [:L‘, Zl, ZQ]T[(':a/C.l][(':fo/fo][(':go/‘g;()]. Clearly we
can find f1, g1, such that fc[f1, 91, (U) because of X € (U),. Based
on 05, f1, g1, we define the class

cjrf]?

Z = ((U)a10n 1) (0506 60,0y 57, F101)

hence by Theorem we get © € Z + 05[, Ce, C@,@)][fl,gl]g)eﬁ, and
by Lemma [88] and [90] and Theorem [I02] we have

x € Z <+ Cslx, (U)e, (W)yl,

that is, we have (Z)a = ((U)e)qiam:(ai1)33,F(a)(a)) fOF any o. By
definition of F' we have Cy[a, F(«), (U)., (W)y] for any «, that is,

02 [OZ, «, <<93 [:E7 éou CF(a) fevs Ca$Qﬁ?a4_§]7ﬂ7x7 f07 gO>>a F(a) (Oé), (U)27 (W)@L
hence by definition of Cy and by Theorem [I02] we get

Va(Cla, (Y)a, (Z)al)



for any Y such that

(Y)Ot = ((U)e)<a$mea$g,«93 [i,éa,ép(a)ra,éu;nmfa;g],%,fo,go»w
and for such Y we further have by Theorem [102] and Lemma [88] that

.. . . U) s10m-512
S (Y)cx Axd 93[Cm; Ca; CF(a)[a7Ca§LQWL?a}§] [f0790]00 e +47

€ (Y)a ¢ Cs[z,a, F(a)la, (U) 1 gmeg13)5
z € (Y)a ¢ Jw(Fy € a)(z = (w,7)Aw € ((U)e),

(3 11) 12, (0) (1)) )1

atQ
that is, (Y)a = (Z2)*. Hence we have Va(Cla, (2)%,(Z)a]), and by
definition of Z we finally get

FyvaCla, (V) g10733)0)" (U)g10752)y)als

that is A*(a,a + Q? —T—§>U
d) T =®,AANBand T [R]f o @, A and T [R]if5 o @, B for some m < n,
then by i.h. and logic we have

ie. IV™a,a + Q™ + §>U, and TV (a,a 4 Q" | §>U by Lemma@

e) T =@, AV B, and T [Rlf5( @, A or T [R]ff5 o @, B for some m < n,
then we proceed analogously to the previous case.

f) ' = &, 3zA[z/v] and T [R]ip o @, Alw/v] for some m < n, then we
proceed analogously to the next case.

g) ' = &, VoxAlz/u] and T [R]Fp o @, A for some m < n and u € T then
by i.h. we have

V" (a,a - Q™ —F§>U vV A*(a,a + Q™ —T—§>U,

and by Lemma [108] and because of u &€ " we get

~ AU

) v y(At(a,a + 07 £2)7 [y/ur),

®V (a,a + Q" +2
. NEPEN
that is TV (a,a + Q" + 2) .
h) fI' = ®,3XA[X/Y] and T [R]If; o @, A[Z/Y] for some m < n then by
i.h. we have

~N A~

Z5 & (U)a — (@ a,a + Q™ 197 v A[Z/Y] (0,0 L Q7 3 )7

)
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10. Reduction by Asymmetric Interpretation

hence by Lemma and Theorem and by logic we get

that is Z* € (U)gy — I'V'{a, a—T—Q”—i—Q} . We either have Z* €
{Xo,..., X}, or Z* ¢TV" and 3Z(Z € (U),), hence in both cases

= . . A AU
XEW) =T {a,a+ Q" +2) .

i) fT = &, VXA[X/Z] and T [R]fp, @, A for some m < n and Z ¢ T
then by i.h. we have

Z* & (U)g — (V" (a,a + Q™ 4—§>U VA (a0 + Q™ +2)7),

and by Lemma and because of Z ¢ I' we get

PV (a, a—f-Qﬁ—T—@U\/

VWYY € (U)g — A*(a,a + Q" +2) [Y/Z¥]),
hence by logic we have
U
)

oV (a0 + Q™ 19 vy(A*(a,a 07 3 DV [(U)a),/27),

that is TV (a,a + Q" + §>U
j) BT [RFpo T, Aand T [R]Fp o ', ~A for some m < n and A € D, then
A =3XB[X/Y] for some B € II}. We define ag := a + Q™ F 2, hence

by i.h. we get
IV *(a, a0)” v A*(a, a0)”

and
. C s AU . o AU
rv <a0,a0+Qm+2> \/(—|A )(uo,ao-i-Q +2> ,

hence by Lemma we get
a0+ 0" +2)”
W a AU
(A*<a7 a0>U A (_‘A*)<a0a ap + am + 2> )7

that is

}.</\
C
=\
_
—
—
S
=
\
~
K
=

Bz(B*[((U)a )/

and we finally have IV*(a,a + Q7 +2) .
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(3) We have that ¢[f, ] D i equivalent to ¥[f, gl € (V)q,, hence the
claim can be proved by elementary induction on b, considering all cases
(i-e. disjuncts) in Definition [91}
a) If {ip,~} C y then (~¢)* = =(¢b*) and rk(1p*) = 1 and because of
U U
Cloy.,, [U, V, W] we have 47 [f, 6]V % v/ (=(*)[f, 92 by Lemmals7]
b) If ¢ € y for some ¥ € G then ¥ = 30, Vi, (3, €U, < 0[a,/v,])
for some 0 € in, and by Theorem I@I we have

T e (((U)Qk)a.l,_Q)((G rf.g) < 0lc. /v lf, ]((U)Qk)n+1

Because of g|a we have

0[¢. /%7 ][f, gl

((Day,) Uy,

R 0[c. /¥ ]f gl ",

hence ©)a,
T € ((U)n) ai3,(0.m, 1.9y ¢ OlCa/Vr][f, gloo

for any z. By Lemma [87) and [88| we get

L Y U)
(CI € C(a%?,((@,r,f,g))))[fa g] Qk A G[Cz/vr] [fa ] o )

Lo . .. (U)a
V(€2 €C a1, (0.m 1.9 < OLCa/ TS gl00 ™)

g1,

)

Vi (i, € C<a+2 (0. 1.0y € Olg /]IS,
By Corollary [106| and for V; with V; & term(6) we have

Ty(V ity (g &V, < Ofig /5:])[(Cor g 12)e, V) Fr g0 %)

because there is some y such that

Y

((U)Qk)<ajr/2\,(<0,r,f,g))> = (U)o azqv 13)v-

Hence by Lemma [88| we finally get 1/*(Cq, Cu+m+2>[f, ](U)Q’“

c) fy=zU{¢} and ((>v) € QDCO"[H%)], and z U {{} € (Z),p for some
¢ < b then there is some 6 € gn(l) such that

¢ = Viy(Tw e Ony,/i] VU, 30,0[4,,0,,0,]),
¢ = 30,V (" € OnTfa, /] < 0y, (U,)", (Ur)s,))-
By i.h. we have

Va(a + Q° <1 Q. Agla —
(3¢ € 2 U {E1)0* (Car Corqea) [Fr 010,
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88

and we need to show
Va(a + Q° <1 Qp Agla —
U
(36 € 2U {¥})6" (Car Cagn 130l 915 ™).

We fix some a, f, g with a + Q° <€, and g|a, and we assume
)
(vqb e Z)_‘(QS <CCH Cu+Qb+2>[f7 ] Qk))

because otherwise (3¢ € 2)¢*(Cq, Ca+Q[,+2>[f, ]( o , and we are done.
If 9 is such that a + 0 + Q° < a + Q° thena+DJArQ‘<1§2k, and
g|(a +0), and by i.h. we get

« )
f <Cu+D’Ca+D+Q‘+2>[‘f’ } Qk?

U
because otherwise ¢*(C u+D7Ca+D+Q w)f, ] % for some ¢ € z, that

is ¢*(Cy, Ca%m ) }go])“" by Lemma in contradiction to our as-
sumption. Hence by Lemma and Corollary we have

)
VOKVUE’U(G [Ca,C<a+a u)? C(a+D+Q‘+2 U)][fa ] Qk)7

and hence, because of a + Q3 + 5 + Q° < a + Q° for any 3, we get

wr - . . (U Q
YavgYu3v(6 [ca,C<a4Qc¢g;g’u>,C<a+Qc (Bi1)132,0) 11fsgloc” ).
We fix ¢ := a + Q° and we define 6; € G such that
0
U
91[Ca, €B, Cus Cv][f7 ]( o A
9*[¢avc<a$ﬂtfﬁ;g,u> C<a+Qc BID+20) I[f;glee™

that is, we define

. V27.0\'5/2'1(’_50:< "}\QAB\{'\B\ > [Cu/a][cc/c]/\
Orfc, B0, 0) == Ty = (a Q7 (B 1) F 2,0) [ea/ale/E]
v, (C Co)zl

hence 6 has the desired property, by Lemma [88] . 90| and Corollary
We further use the global wellordering ((U)a, )0y = (W)g (we have
GI[(W)g]) to define 05 € G, such that

0

Fv(01[¢as €8, Cu, €[S ](U)Qk) (U)Qk)

b

~ H'U(GQ[CQ, Ca, Cu,s Cv][fa }



that is, we define

e "(0,7) € X A (w,8) € X — 7y € §'[Cp,0)/X]).

Based on 6, we now define 0 € G 1 (and 03,6y, 605 € G as parts of 0s)
0 0
such that, for the class function

F = {<Oé,h> | 06[éayéh][fa g]oo € (V)Qk}7

and for the class Z = {(z, ) | € (U)e) (a1 0::a17)43,F(a)(a)) }> W€ CaN
show that there is some y such that Z = ((U)q,) 430013, and

V(0" 6a, Catan 15.)"" Clarar g ellf gl ™).
We define
: B X 3w 35Ty € BAT = (w,7)TA
93[33, B, h, X] Tw € (X)(“4—9‘7@43)4-5,}1('\,»)—l[éa/d] [éc/éL
- A T “fo(88) = B A fo(Bh) = hIBTA .
04 fo,B8,h] = p(p = BBV p = TV folp) = £0) e /),
Osldo, ] = Tgo(iX) = a + Q2 5 + 37 eq/al[ec/E] A

"Vp(p = EX V g0(p) = 9(p))[eq/ 3],
T Fun[h] A dom(h) = o' TAY BY a0 fo ¥ go(
Bolo h] = "B € o/ VA b4l fo, B, 1] ABs[go, B] A .
6, : “u = (uo, u1, fo,go) kgg{ﬂjﬁﬁ)){ Jio][Egz/uir] A
v =h(B)"=6:(8, B, 1u,1]).

In a first step we show the following equivalence for 6,

Os[ca, enllfs 919 ™ <+ Fun[h] A dom(h) = o/ A
L )
(VB € &) (02[€8, €85 € g, 10.c5,60, .0 S sa Sh@ L glee ™).

afQegi3h

If fo,g0 are such that fo(43) = 3, and fo(ﬁjh) hiB, and fo(p) = f(p)
B+

+ 3, and go(p) = g(p) for

for p ¢ {§B,8h}, and go(fX) = a + Q° *
p # £X, then we have that

93[¢7 67 ha X] [f07 go}oo = HS[jv C57 éhFﬁ? Caq,Qc‘B;g][f? g]ooa
hence for such fy, go, and any 3, and ag = a + Q° * B\, we have that

. A (U)agia L. : (@) ayia
QS[C:E»ﬁvth][angO}OO 0+4<_>93[CI7CB7ChTB7CuOJ}’3\][f7g]OO 0+4a
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90

and by Theorem [102| we get

((U)Qk)(u
((U)Qk>(a F

(01,8, X] Bz, fo,90)) —
(93[56,65,éhm,cuo;g]aﬁ;,fﬂ)}) )

=~

15,
5,

=~

and because of this equality and by Lemma we finally have

Os[Cas nllf, ] Dok o Fun[h] A dom(h) = o’ A
U)a
(VB € o/)(021¢5, 85, ¢y 32,0, 5z pa) Ch@IlS glea ).

B Ca+szf B+3

Having this equivalence we get

O [Cas Enlf, 9150 ™ = (V7 € a)(Bs[ey, eyl 9150 ™),

and by elementary induction on « (because 6g[¢q, ¢r][f, g]g Jon i equiv-

alent to the elementary formula 6s[¢q, ¢n][f, 9] € (V)a,) we get
U
VaTth(Bs[ea, enllf, g% ™).
We define the class function
F o= {{a,h) | bs[ca, Crllf 9l € (V)i

hence Yo (V8 € a)F(a)(8) = F(5)(5). We further define 07 € gné such
that

. (U)
O1(¢w,mlf, gloo ™™ ¢ w € ((U)e) atae:(a47) 13, () (a))
that is, we define
JaIFwIh(Ta € On Az = (w,a) Abgla, h] A
"w € (X) (a1aes@in)i2.m() 1€ a/aH </¢][Ce/X]),

and based on 67 we define the class

97[:[] =

Z = ((U)aw) ai0v 13,005 [#],F5.1.9)) "

We have 07[¢;][f, g]((,g)‘%T > O7[¢5][f, g](()g)n’“ because of gla, and w Je
for all C,, € term(07[¢,]), hence by Theorem we get

v € Z o 070e,f, g1,

that is, we have (Z)a = (U)e) (q10¢:(a11)33, F(a)(a)) fOT a0y @, and we
further have that

z € (Z)" & Jw@Fy € a)(@ = (w,7) Aw € (U)e) (a10:341) 43, F(a)(1)))>



hence by Theorem [102| we get

U)ajacata
re(2)" & QS[szcach(a) las a+Q‘ a+3][fv gloo e,

and (2)* = ((U)e )(aJch a45, (05, chF(w) watoea sl TS 00" By defini-

tion of F' we have 0g[¢q, Cp(a)][f; } Do for any a, hence

Ma
Va (QQ[CD" Cas € (8s[d,¢a e r(a)tasCatneaisl bz frg)” CF(O‘)(O‘)]U’ g]oo )

and by Lemmam7 because of (Z)a = (U)e) (a10c:a11)33, F(a) (o)) 20D

(2)* = ((U)°)<uﬁrﬂcfa$3,<<93[¢,éa,ém>[mcumcmg],u?,f,g»w we get

. : Ca /4 (U)
Jyva(0 [Caa(c<aﬁrQbJ}§,y)) (C(a+gb+2y)ca][f’ gloo Qk)

Y

hence we finally have 1*(Cq, Ca+ﬂ"+2>[f’ Jloo (Do,

d) Ify = 2U{¢bg V1 } and (2U{¢o} € (Z)c9V2zU{th1} € (Z).p) for some
¢ <1 b then by i.h. we have

(3p € zU {th})o <Cu7Ca+Qv )fs g5 v
(36 € 2 U {1 6" (Cas Cap ezl 910

hence by logic we get

)

(o € z)qb*(ca, u+9c+2>[f) ]U)Qk v )
(¢0< as u+Q‘+2>[fa ] )Q’“\/w1< Cas a+§2f+2>[f7 ]( )Qk),

and by Lemma |88 and Lemma [108| we have

U)Qk

(H(b €zU {iﬁo \/'(/Jl})(b <Ca>Cu+Qb+2>[f7 ]

e) Ify =zU{o A1} and (zU{o} € (Z2)c g AzU{tp1} € (Z),p) for some
¢ < b, then we proceed analogously to the previous case.

£) If y = 2 U {30, (4[0,/V,])} and 2 U {3[V;/V,]} € (Z)c g for some ¢ <1 b
then by i.h. and Lemma [I08] we have

(36 € 2)¢" (Car Caraoialf, g]ffizjk v
(w*[v;/vz}xca, Cﬂer"J}Q) [/, g]( ey,

)

that is o o
(3¢ € 2)¢*(Ca, Cop e 12 lf g “:J Y,
(" (Car Cye 13)) Comay /VEILS 9150

)
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10. Reduction by Asymmetric Interpretation

hence because of g|la and Corollary we get

(36 € 2)¢"(Ca, Cag o2/, g]g)gkUv
(V" (Cas Copn 12)[(Ca)e, /T3] F gl ™),

. U
and finally (3¢ € y)¢*(Ca, C 1o 13) [/ g]go)ﬂ"’ by Lemma

g) Ity = 2U{V U, (4[U,/Vy])} and (V€ € 2)Vy & term(€) and 2U{ep} € (Z)c g
for some ¢ <0 b then for any go and x such that go(2-¢) = (a,z) and
go(r) = g(r) for r # 2 - ¢, i.e. gola, we have

wia (v)
(3¢ € Z)d) <Cﬂ’ a+Q“+§>[f’( ]) Qk \
’lp <Ca) CG+Q[’+2>['f’ gO] o
by i.h. and Lemma hence

% /7 . U
(3¢ € z)QI) <Caa a+Q“+2>[f’ ] o )\/
o . U
VCBW <Cavcu_j_Qh_§_2>[ (a,z) /V ][fa } Qk)
and by Corollary and Lemma [88] we finally get

(3¢ € y)¢ <ca7cu+Qb+2>[f7 ] U)Qk

h) f yU {¢} € (Z)ep ANy U {0} € (Z)p for some ¢ < b and some
(NS QCA[H})] U QBCO”[H})] then ¢ = 30, (0[0,/V,]) for some 6 € gHé. We

fix some g such that g|a, and we define ap := a + Q° + 2, hence we have
glag, and by i.h. we get

(3¢ € y)¢*(Ca, Cu0>[f,U] LRV
W (Car Can) L, 950

and

(36 € Y)6" (Cags Cay 1aera) 291%™ V
M)y,

(_‘1/)) <Ca07 q0+Qc+2>[f7 ] i
hence by Lemma [108| we get

(3¢€y{)f¢*< o a+Qb+§>[f; }(U)Qk V )
(4" (Car Can) 1 915%™ A (516)" (Cay, Gy 10330 9150 ™),

and by Lemma [88] and Corollary we have

<a¢ey>¢;<ca, Carnin)lf, gl v Y
32(0%[C (0o /TS 91507 ) AV ((—0)* [C o /T2 91505,
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By Lemma [87] we get

(07 [ a0 /YIS 91505 ) 4 (=0)* [Eap ) /TS ) ),

hence we finally have (3¢ € y)¢*(Cq, Cu+Qb+2>[f, Jloo (Do

i) If (¢u € &) € y Au € v then (& € &y)*(Ca,Coigoia)lf, } D2 follows
directly by Lemma [88]

j) I ~(&y € ¢&) € yAu & v then ~(&, € &,)* <Ca,cu+Qb+2>[f’ ]( o
follows directly by Lemma

k) If y = 2 U {3, ([a,/%,])} and Jw(z U {1b[cy/74]} € (Z)cp) for some
¢ <1 b then by i.h. and Lemma [LO§| we have
(36 € 2)6" Car Cope )l gl ™ ¥
H’U)(/(p[cw/vq] <Ca7 Ca+le+2>[f7 gO]( )Qk )a

hence (3¢ € y)¢*(Ca, Ca;m;ﬁ[f, g]ffo])“’“ by Lemma
1) Ify = 2U{Va,(y[a,/v,])} and Yw(3e < b)2 U {[éw/,]} € (Z)¢,p then
by i.h. we have

Y (3e <) (3¢ € 2)67 (Ca, amwgy, g @y
Plew /e Car Gy e i) [Fr g0] D ™),

and by Lemma [108| we get

(3¢ € 2)6" (Ca Caraoia)lf- 915 ™ v
Vo (e /Fa]* (Cas Cat o 13) s g0]50 ),

. . U
hence (3¢ € 1)6* (Ga, Gy 13)1f> g) ™ by Lemma

m) If y = 2 U {31, (4[0,/%,])} and 2 U {¢[4:/¥,]} € (Z).g for some ¢ < b
then we proceed analogous to Case f.

n) If y = 2 U {Vu,([a,/v,])} and (V€ € 2)v, & term(€) and 2z U {9} €
(Z)p,p for some ¢ <1 b then we proceed analogous to Case g.

O
By putting together the pieces and by cancelling out all the irrelevant parts

in the statements of the previous lemma (the parts were essential for the
proof by induction), we easily get the desired reductions.
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10. Reduction by Asymmetric Interpretation

Lemma 110. (Reduction)
For T' C $1(I1}) we have that
(1) If ¢ = AC[II§]” U CA[IL}] and CA[ILG] [AC[II]Jlz o T then

NBG - T.

(2) I D = DCou[II}]” U CA[TTY] and CA[I1}] [DC o [TI]JE o T then
NBG U 3 Hier®" " [II}] - T.

(3) If CA[IIY| U TI.[£'] [DCon [T} T then

NBG U 3 Hierg"*[I13] I

Proof.

(1) If CA[IL}] [AC[H%)]]I%:(% I and {V; |V; € TV*} C {Xo,..., X;}, and 2™ < k,
then by Lemma there is some m such that we have

-2 . % 7 U
NBG F Cli[m, U, V,W| A GI[(W)g] A X & (U)y — TV (0,27,

and because of (U)y = W by Theorem and by Lemma we get
NBG F Cly,[m, U, V, W] A GI[(W)g] A X €W — TV,

We have NBG - GI[(W)y] A X € W — V" by Lemma and further by
Lemma [29) and comprehension we get NBG - 3Z(GI[(Z)g] A X € Z), hence
NBG - I'V" i.e. NBG - I'V, and finally NBG I I" because of NBG - —~(I'V), T

(2) Analogous to Part 1.

(3) If CAIY) U TI[LY] [DCou[IT§]];, T then by applying the disjunction
rule we easily get CA[II] U TI:[LY] [DC o, (1)), TV, and by Theorem
and Lemma (94| we have NBG Prgft [Z] = {"TV"} € (Z2)q157 » hence by
Lemma eorem and Lemma [02] we get

NBG U 3 Hiery™ " [I3] - 3U (PryCt U AVF({TTV [ f]o} € (U) jasa )

Q1

for m > n. For k = n + 3 we have QR 4 Q. because of

Qta@ O, T D O, QFe o Qte R
O%n = WQ Wn < wQ Wni2 — g¥nt2 an+2 — Qn+3;
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and by Lemma we get

Cle+1 [Ua v, W] N Gl[(W)@] A
NBGE PrECHZIA TV i) € (2) g0 4 Agld -

VI(TTY ()" 0,6 e ) A,

hence we have

Cllye, [U.V.W] A GII(W)g] A gl0 —

YRV ((TTY[R] L )*(Cy, € C i ;L§>[f’ ](U)nk )

NBG U 3 Hier$*[T1}] -

that is

Clo, ., [U V. W] A GI(W)g] A gl0 —

NBG U 3 Hier$*[I1}] VTV (G, Cpia I g @y,
) W_;_A » 9
And by Lemma we get

Cle+1 [U7 V, W] A Gl[(W)@} A 9\@ —
VIV gl ™).

For {V; |V; e TV"} C {Xo,..., X, } and v+ (as in Lemma [90)) we have

NBG U 3 HierS*[T1}]

Clog  [U, V, W] A GUW)g AX €W —

NBG U 3 HierS*[IT§] “ U
T (gol0 Atrv-[for g0, (D)a] = TV (fo, gl ™),
hence by Lemma [90] we get

Cloy,, [U,V, W] A GUW)gl A X EW —

s S2k [TTL
NBGUEHZ@TQ [HO] F (go|®/\ﬁFV*[fo,go,(U)Qk] _>F\/*)7

If X; = (W), and go(i) = (0, 2) then ((U)q,)y, G = Xi by Theorem [102
that is

NBG F Clg, ., [U,V, W] AX EW — 3fo390(g0l0 A trv=[fo. 90, (U)e,])s
and hence we have
NBG U 4 Hierg"‘ [T13) = Cla,  [U,V,W] A GI[(W)g] A Xew - rve,

and we finally get NBG U 3 Hierg"“ [II{] F T analogous to Part 1. O

Finally, we are able to state the proof-theoretic equivalences.
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10. Reduction by Asymmetric Interpretation

Definition 111.

Cof
(CAY)) <qw = Upen(3 HZ@QZ [115)),
(CA[]) <, = Upen(3 Hierg® [IT5)).
We observe that (CA[II§])<qe and (CA[ITj])<g, in the proofs given below,
can not be replaced by 3 Hiergw [I1}] and 3 Hierfo [I1{], respectively.

Definition 112.
For F, 7o, 71 C L', and if we have Ty - T iff 7; - T for all T C F, then we
write Tg Z 75
Theorem 113.
If T C{=(V)A| A€ XN (IT})} and F = (1)) then
(1) TUNBGU AC[sH Z T UNBG,
(2) TUNBGU DC[EY] Z 7 UNBG U (CA[IIL]) <o,
(3) TUNBGU DC[SH U WYL £ T UNBG U (CAII)) < g, -

Proof.

(1) T C F and TUNBGU AC[Z1] FT then by Corollary we have
TUNBGU AC[I] F T, and by Lemma [14] there is A C ZFC, and there
are Ag, ..., A, € X1(I1}) (with pairwise disjoint free variables) such that

CA[ILY] [ACIY]- (V) Ao, .., (V) Ap, =A, ~VF(B[F]), ~3F(C[F]),T

where VF(BI[F]),3F(C[F]) € NBG are the axiom of replacement and the
axiom of global choice, respectively. By Lemma [15[ and Corollary [17| we get

CA[I] [ACIIAI o Ao, o) Ap, =, ~YF(B[F]), ~C[X],T
for C = AC[II}]” U CA[IL}], hence by Lemma we have
NBG F Ao, ..., A, ~A, -VF(B[F]), ~C[X], T,
and finally 7 U NBG - I'. The other direction is trivial.

(2) T C F and T UNBGU DC[X1] F T then analogously to Part 1 we get
TUNBGU (CA[I}]) <o~ F T, and there is A C {(V)A | A € (CA[I}])<qw}
such that 7 UNBGF I', -A by Lemma For any B € A we further have
that 7T UNBGU DC[¥1] F B by Theore hence T UNBGU DC[%}] - T.

(3) We have T UNBG U DC[S} U TI[£Y] £ T UNBG U DC[S} U WrY[L}]
by Lemma The claim follows analogous to Part 1 and 2. O
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Corollary 114.
If 7T C{~(V)A|Ae X))} and F = X}(T1}) then
(1) TUNBGU AC[S U WFY[£Y £ T UNBG U (CAIIY)) <
(2) TUNBG U (CA[IT)) <5, U WFY[LY] £ T UNBG U (CA[IT]) < s,

Proof.

(1) fT C F and TUNBGU AC[ZH U WYL F T then by Corollary
we have 7 UNBGU DC[%1]U WfY[£'] F T, and hence by Theorem we
get TUNBGU (CA[IT)) <, F T. If TUNBGU (CA[II}]) <k, T then there
is some A C {(V)A | A € (CA[I1{])<g, } such that we have T UNBG F T, =A
by Lemma For any B € A we have TUNBGU AC[SH U WYL - B

by Theorem hence we finally get 7 UNBG U AC[Z} U ng (LY FT.
(2) If T C F and T UNBG U (CA[II}]) < g, U WFY[£Y] T then analogous to
Part 1 we get 7 UNBGU AC[S U WYL F T, hence by Part 1 we have
T UNBGU (CA[IT}]) < g, F T. The other direction is trivial. O
Corollary 115.
If 7 and F are any sets of sentences in ¥} and I3, respectively, then
1) TUNBGU AC[EY £ T UNBG,
2) TUNBGU DC[S}] £ 7 UNBG U (CAITE)) <qe,

(

(2)

(3) TUNBGU AC[S} U TI.[£Y] £ T UNBG U (CA[IIY)) < .
(4) TUNBGU DC[EH U TI[£Y] £ T UNBG U (CA[II]) < 5,
(5)

5) T UNBGU (CA[IIA))< g, U TI.[£'] Z T UNBG U (CAIT})) < g,
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Conclusion

In this thesis we have considered extensions of Von Neumann-Bernays—
Godel set theory NBG by axiom schemes, i.e., choice AC[¥1], dependent
choice DC[X1], full induction TI.[£'], and iterated elementary comprehen-
sion (CA[I}])<c. We have established proof-theoretic equivalences between
these schemes, similar to the results for analogous systems of arithmetic. The
equivalences are

TUNBGUAC[Z}] = T UNBG,
TUNBGUDC[E!] = TUNBGU (CA[ITY]) <o
TUNBGUDC[SUTI[L'] = T UNBGU (CA))<E,,
TUNBGU AC[SH U TIL[LY] = TUNBGU (CA[I])<g,,
TUNBGU (CA[IY)) <, U TIL[LY] = T UNBGU (CA[IY)) <,

where T is any set of axioms with logical complexity essentially X3, and the
equivalence, =, means that any sentence essentially I1} is either provable in
both theories or in none of them. The first equivalence has also been stated
(without proof) by Feferman and Sieg [4]. The second last equivalence has
been shown in a slightly weaker form by Jéger and Kréhenbiihl [10].

The main achievements of this thesis are the first three equivalences (the oth-
ers are easy consequences). The bulk of work was in the reduction of the sys-
tems with choice to the systems with iterated comprehension. The reductions
are achieved in a uniform way, by using cut-elimination and asymmetric inter-
pretations (Section [10]), see also Cantini [1], and Jéger and Kréihenbiihl [10],
for similar reductions. The three different asymmetric interpretations are
presented in one sweep to emphasize commonality and genericity of this
technique. In contrast to Cantini [I], where the asymmetric interpretation is
into hierarchies of sets of numbers, which are built by using fixed standard
IT!-complete predicates, in this thesis, the asymmetric interpretation is into
cumulative hierarchies of classes (Section |§[)7 which are built by using truth
predicates for each level of the hierarchy, i.e., the truth predicates and the
stages of the hierarchy are built simultaneously. Hierarchies of classes of this
sort are also used in Jéger and Krahenbiihl [10].

We can easily come up with further interesting questions in the proof theory
of NBG by just translating results from second order arithmetic, and by
asking whether these results also hold in the context of NBG, or whether
even the same proof-theoretic techniques from arithmetic can be adapted to
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set theory, e.g., as it is the case for this thesis. An immediate such question
with respect to the results of this thesis is whether the following equivalences
also hold for n > 0, that is,

NBGUAC[ZL,,] = NBGU CA[IL}],

NBGUDC[E}H] = NBGU (CA[IL]) cqe,
NBG U DC[% nH]UTl[ 1l = NBGU (CA[L)) g,
NBGU AC[SL JU TIL[LY] = NBGU (CA[IL)) <,

It was shown by Friedman [6], Feferman and Sieg [4], and Cantini [I], that
analogous statements hold in the context of arithmetic. A first approach
to prove these equivalences for NBG could follow the proofs of Cantini [,
again by using asymmetric interpretations, but now with some kind of con-
structibility hypothesis for classes involved (see also Feferman and Sieg [4] for
a similar argument).

Another line of questions arises by considering extensions of NBG by re-
stricted forms of choice, AC,, and DC\,, i.e.,

(Va € w)IY Ale, Y] — FY (Va € w)Ala, (YV)al,

(Vo € w)\VY3IZA[,Y, Z]) = IZ(Va € w)Ala, (2),(2)a),

for formulas A. By Theorem and [40] we already know that the first of the
following equivalences holds. And it would be interesting to know whether
it is possible to find ¢y, ¢, c2, such that

NBG U AC,,[%
NBG U DC,[2
NBGU DC,[EH U TIE[L
NBGU AC,[E1 U TIE (L

NBG,

NBG U (CA[IIj)) <co
NBG U (CA[IIj)) <c, ,
NBG U (CA[II]) <, .

1
1
1
1
1

]
]
]
']
E.g., by adapting the proof of Theorem [79] we can get some possible lower
bounds for ¢y, co.

We have seen that (Ey, <), which corresponds to the wellordering (eo, €),
plays an important role in the characterisation of the choice principles with
full induction over NBG. By using the notation system in Appendix [C]
and an analogous construction as for Ey in Section [6] we can easily build a
linear ordering (Gy, <1) corresponding to (I'g, €), in the same way as (Ey, <)
corresponds to (g9, €). The ordering (G, <1) is expected to play an important
role if we consider to get analogous results as in Feferman and Jager [2],
where choice principles in presence of the Bar Rule are characterised by
autonomously iterated comprehension in second order arithmetic.
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A. Normality and Extensionality

Originally, set theory deals with collections of sets, where sets are themselves
collections of sets, and if two sets or classes contain the same sets then the
two are equal, i.e. sets and classes are extensional. We show that the notions
of normality and extensionality for L£l-structures essentially capture these
properties, at least as good as it can be captured in the logic defined in
Section [1} that is, modulo isomorphisms between £!-structures.

Definition 116. (Normal Structures)
Let M be a £!'-structure.
(1) We define the extensions of a € | M|, b € || M]|, such that

Eq(a)
Ej(b)

{c| cepqal,
{c|cel, b}

(2) We define =,C [M| x M| and =},C || M| x || M|, such that

‘IM & E;AA(a):EiMb%
mb e EM(a):EM(b).

S
I

(3) M is called normal, cf. Mendelson [I4], if we have for all a, b that

a:%bora:}wb = a=>.

(4) M is called natural, if we have for all a € |[M|, b € || M]|, that
a = E%(a) and b = Eh(b),

Clearly, all natural £!-structures are also normal structures, but generally
not the other way around. The following theorem shows that at least we can
find isomorphic natural structures for a whole class of normal structures.

Theorem 117.

If the £!-structure M is normal, and if we can recursively build the sets
E(a) == {E(c) | c€ya} for any a € |M], e.g. if €}, is well-founded,
then there is a natural £!-structure N isomorphic to M, i.e. such that EJO\/
and €}, are the restrictions of € to |N| x [N] and |N| x [NV, respectively.
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Proof. The isomorphism is
a— Exy(a), for a € |[M],
b {E%(a) | a€l,b}, for b e |M]. O

Definition 118. (Extensionality)

The L£'-structure M is called extensional if it satisfies the two extensional-
ity axioms (also called equality axioms or Leibniz’s law), i.e. if the following
holds

MEVVYWVz(r =yANz €2z — y € 2),
MEVIVZVy(z =yAxz € Z >y € Z).

Lemma 119.
For any L!-structure M we have

a=%b e Mk (x=1y)ab/z,y,
a=yb e MEX=Y)ab/X,Y].

Proof. By the definition of :9\4, :}W z=y, X =Y, and . O

Lemma 120.
For any L'-structure M we have

MEVYaVyYVz(z =yAz €z — 2 €Y),
MEVXVYVz(X =Y AzeX —z€Y).

Proof. By the definition of x =y, X =Y, and . O

Lemma 121.

For any L'-structure M we have

(1) =}, is a congruence relation for €}, i.e. for all a,b, ¢ we have
a =5\ bAcEla = cej,b.
(2) M is extensional iff =0, is a congruence relation for €, and €},
i.e. iff for all a, b, c we have that
a =% bAaclc = beje,
a=% bAaclc = bel e,
a=%bAcela = celyb.
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A. Normality and Extensionality

Proof. By Lemma and and by the definition of |=. O

Clearly, extensionality does not imply normality for £!-structures, but we
get the following theorem about the relation between extensionality and nor-
mality.

Theorem 122.

If T C L' is a set of sentences and T contains the extensionality arioms,
then 7 = A depends on normal £!-structures only, i.e. we have T = A iff
(VT =V E A) for all valuations V with normal £!-structure (V).

Proof. If T [~ A then there is some V' such that V' =T and V' j£ A. The
Ll-structure M := (V') is extensional, hence by Lemma we can build
the quotient structure M /= with respect to =9, and =}, such that M /=
is normal, and for all B € £! we get that M = B iff M/= | B. We have
M £ A, hence M /= £ A, i.e. there is some V := (M/=, f, g) such that
V = A. We have M |= T, hence M/= =T, and therefore V |= T. O
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B. Another Language for Theories
of Sets and Classes

In the literature, there exist different formalizations for theories of sets and
classes in classical logic. E.g. Mendelson [I4] is using some common formu-
lation of NBG set theory, with just one sort of variables, hence the language
is different from the one we use in this thesis. In this section, we want to
investigate the exact relationship between such formalizations, that is, in ad-
dition to the language £' we define the language £, and in Theorem [132
and Theorem [139| we get some very general conditions, such that formula-
tions of set theories in £! and £2 are equivalent, i.e. the theories prove the
same theorems up to some fixed translation from one language to the other.

The language £2 extends the language £° of ZFC by two unary relation
symbols S and C for sets and classes, respectively, and for technical reasons
we also include a second binary relation symbol €.

Definition 123. (Language £2)

The language £2 extends £° and consists of the following
(1) The logical symbols of L2 are the same as for £C.

(2) The non logical symbols of L2 are the element relation symbols €°
and €!, and the unary relation symbols S and C.

(3) The atomic L2-formulas are v;€%;, ~v;€%, v;€lv;, ~v;€lv;, and
S(v;), ~S(v;), C(v;), ~C(v;), for any 4,5 € N.

(4) The LZ-formulas are defined analogous to the £°-formulas.
We use notational conventions analogous to the language £°.

L2 is a language of pure first order logic, hence its semantic and the adequate
notion of formal proof are defined according to common first order logic.

Definition 124. (Semantics and Formal Proof)

(1) A L2-structure is a tuple M = (JM|, S, Ca, €%y, €Ly) with non-
empty domain |[M|, and relations Spq,Cpq C [M|, and €%, €}, C
(M| x [M].

(2) A L2-valuation is a tuple V := ((V), f) such that (V) is a L2-structure
and f: N —= [(V)].
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B. Another Language for Theories of Sets and Classes

(3) V = A is defined analogous to Definition (9} For atomic £2-formulas
A we have V = A iff V = (M, f) is a L-valuation and one of the
following holds:

A=S(x) and f(fz) €Sm,
A=C(z) and f[f(#zr) € Cn,
A=ae% and (k)€ (ty),
A=ze'y and f(in)ehf(ty).
A=~B and V I} B.

(4) All other semantic notations are analogous to Definition [9]
5) T [R]I—Zf T for T,R,C,T C L2 is defined analogous to Definition

For the translation of formulas we define two mappings; the first, A — A isa
direct translation of £! to the proper two sorted first order language £2. The
second mapping, A — A®, is such that we also get rid of the relation symbols
C and €°, hence the formulas A% have the form that is most commonly used
for theories of sets and classes, i.e. by using just one relation symbol € and
the predicate S for sets.

Definition 125. (Translations)
For formulas A € £1" we define A°, A5 € L2 such that

x€ly A = z20%,
zely ™t A = zely,
~B° A=~B,
(BCACF) A= (BAC),
A = (B vV C°) A=(BV(O),
EIQ:(S( ) A B¢[z]) A = JzBlz],
Va(S(x) — Blal) A =VaBa),
IXT(C(XT)ABXT/UY]) A=3XB[X/U],
VXH(C(XT)— B (XT/U']) A=VXB[X/U],
xely A =260,
zely+ A =zxely,
~Bs A= ~B,
(B®AC®) A=(BAC),
A = (B Vv C*) A= (BvVC),

Jx(S(x) A B%[z]) A = 3xBlz],
Vz(S(z) — B%[z]) A =VzB|x],
AX*tB[X+/UT] A=3XB[X/U],
VXTBS[XT/U'] A=VXB[X/U].
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We observe that A € £2 contains only the relation symbols €' and S.
For 7 C L' we define 7 := {A° | A € T}, and analogously 7°.

What we are actually looking for, are minimal sets of axioms A C L2, such
that any set theory 7 C L£! corresponds to the set theory 7¢U A in £, or
TSUAin L2 (in case of T° we will need to put some restriction on 7). As
we show in the theorems below, the following definition is a first step in the
right direction.

Definition 126. (Ac, AL C £2)
(1) Ac C E‘é consists of the formulas

FzS(x) A FzC(x),

Va(S(x) Vv C(z)),

Vay(z€y — S(x) AS(y)),
Vavy(ze'y — S(z) A C(y)).

(2) A C L2 extends Ac by the formulas

VaC(z),
Vavy(S(z) A S(y) — (2€% « zely)).

Almost any argument in this section is purely semantic, hence the following
four lemmas and one further definition mainly consist of statements about
L2-structures and L£!-structures. The following technical lemmas are essen-
tial steps towards the proof of Theorem The next lemma is trivial, but
it brings out the role of Ac on L2-structures.

Lemma 127.

If Visa £g—structure then we have

N EJzS(x) AFzC(z) & Sy #DOANCy #0,
N EVz(S(z)vC(z) < |N|=SxyUCyu,
N EVavy(zey — S(x) AS(y)) < €3 CSa x Sw,
N EVavy(rely = S(x) AC(y)) <« €5 C Sy x Cu
Proof. By the definition of . O
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B. Another Language for Theories of Sets and Classes

Definition 128.

For £l-structures M and C%—structures N we define

ME = (|M|U||M||»\M|7HM||»€9\47€}\AO)’ . )

ME = (MU ML M MU ML, €45 €34 U €

NE = (S/\/UCN‘,S/\/,C/\/,ER{Q(SNXSN),E}\/Q(SNXCN)),
N* = (IN],Sas IV €5 N (S X Swv), €0)s

NP = (S x {0}, Cr {1}’6?\[b7€}\/b)3

where 69\/,, :={((a,0), (b,0)) | a€¥b}, Ejl\[b :={((a,0), (b,1)) | acpb}.
Lemma 129.

The mapping M — M° is a bijection onto {N | N |= Ac}.
Proof. M°® = Ac by definition. If ' |= Ac then M = (Spr, Cr, €%/, €5/) is
the L!-structure with M = N. O

Lemma 130.

If M is a Ll-structure and A € £ with all free variables in z,Y, and
a € [M|, b e ||M] then we have

M= Ala/zb/Y] & M= A%a/z]b/YT].

Proof. By induction on A. O

Lemma 131.

If NV is a L2-structure with N |= 32S(z) A JxC(z) then we have
(1) N¢ = Ac.
(2) If Ae L' with all free variables in z,Y, and a € Spr, b € Cyr then

N A%/z]b/YF] & N A%a/z]b/YT].

Proof.
(1) By the definition of N and because of N |= 3xS(z) A FzC(x).
(2) By induction on A, using Syr = Spe and Cpr = Cpe. O

The following theorem shows that the set of axioms {3zS(x),3zC(x)}, and
the set Ac, qualify as additional axioms for the theory 7°¢, to make T°¢
equivalent to 7 with respect to the mapping A — A°€.
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Theorem 132.

If T C £ is aset of sentences and A € L1 is a sentence then the following
are equivalent:

(1) TEA
(2) TCUAc A,
(3) T<U{32S(z),3zC(x)} E A°.

Proof. (2)—(1) If M = T then M |= T°U Ac by Lemmas and
hence M€ |= A° by (2), and M = A by Lemmal[I30} (1)—(2) If N |= TUAc
then there is M with M® = A by Lemma[129] hence M = T by Lemmal[130]
and M [= A by (1), and M® = A° by Lemma [130] that is A" |= A°. (3)—(2)
is trivial. (2)—(3) f N | T U {32S(z),3xC(z)} then N¢ = T U Ac by
Lemma and V¢ |= A€ by (2), hence N = A° by Lemma [131] O

We use Theorem to prove completeness of the logic defined in Section
that is, for theories 7 C £! we show 7 |= A = T I A by applying complete-
ness of pure first order predicate logic. For this task, we need a transformation
of proofs in £2 to proofs in £, and by the following lemma this can be done
even recursively for proofs without cuts.

Lemma 133.

If T C £, and S(x),C(Y+) € A for all free variables z,Y € T, and if A
contains only formulas of the form S(y), C(y), then we have that

BoATE = T

Proof. By induction on n, considering all cases in Definition [[2 We use
(~A)e = ~(A°) and ANTC = @ for the base case, and Lemma [15] (V, A-
inversion) in case of the quantifier rules. O

Theorem 134. (Adequacy for £')
If T C L' is a set of sentences then T = A iff T+ A.

Proof. For T' C L' we show TH T = T E I'V by induction on n. For
the other direction w.l.o.g. A is a closed formula. We assume 7 = A, hence
T* = A*. By Theorem we have 7* U {32S(z),3zC(z)} E A*, and
by completeness of first order logic we get 7* U {3xS(x), JzC(z)} F A*. By
Lemma(T4] and LemmalT5] and Corollary [I7] there is some I' C 7* such that
tg ~S(u), ~C(v), (-I')¢, A*¢, hence F —-I', A* by Lemma ie. T*H A"
By induction on n we get 7** A* = T I A for A C L', hence T - A. O
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B. Another Language for Theories of Sets and Classes

For the rest of this section we are heading towards an analogue of Theo-
rem [I32] for the translation A — AS, i.e. we show that there is a set of axioms
A C L2, such that any set theory 7 U {Vz3Y (z =Y)} C L' corresponds to
the set theory 7°U A in £2. We need the following four technical lemmas
for the proof of this claim.

Lemma 135.

If M is a Ll-structure with M = Vz3Y (z =Y) and |[M|N || M| = 0 then
we have that

(1) There is a mapping f : |[M| — || M|| such that for all a € | M|
M (z =Y)[a/z][f(a)/Y].

(2) For any f in (1) and A € £ with all free variables in z,Y, Z, and
a € |M| be|M|U|M], ¢ € |M| we have

M | Afa/z)[b, /YT, Z7] & M® = Affa/z][b, f(e) /Y, Z7).

(3) If A € £'" with all free variables in z,Y, and a € |[M|, b € || M|| then

ME Ala/alb/Y] & M = Aa/allb/Y].

Proof.

(1) By the definition of |=.

(2) By induction on A, using Part 1.
(

3) By induction on A. |[M|N||M] = 0 is used in case A = z€'Y, i.e. for
b € ||M]| we have a€l,b < (a€Qyb or acl,b). Part 2 is used in case A =
JXB[X] or A =VXBI[X], e.g. if M* | A%a/z][b,c/Y T, Z "] for all ¢ € | M]]
then this also holds for all ¢ € | M| U || M]| by Part 2. O
Lemma 136.

(1) If M is a Ll-structure with [M| N M| = @ then M* = AL,

(2) If N is a L-structure with V' = A, and A € L' with all free
variables in 7,Y, and a € Syr, b € [N then

N Ala/ab/YT] & N Aa/z][b/Y].

(3) For sentences A € L1 we have AL | A® «» A°.
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Proof.
(1) By the definition of Ms.
(2) By induction on A.

(3) By Part 2. O

Lemma 137.

If NV is a L2-structure with N = A¢ then we have that
(1) IN?|N|N?|| =0 and N? = V2IY (z =Y).
(2) If A € £'" with all free variables in z,Y, and a € Syr, b € Cpr then

N Al(a,0)/2][(0,1)/Y] & N A%a/z][b/Y)

(3) If A € L' is a sentence then

NP = A & N A

Proof.
(1) By the definition of N”.
(2) By induction on A.

(3) By using Parts 142 and Lemma [135](3). O

Lemma 138.

If N is a L-structure with N | 32S(z) A VaVy(zely — S(z)) then we
have that

(1) N* = AL,
(2) If A € £ with all free variables in z,Y, and a € Sy, b € || then

N Ala/2)b/YT] & N Aa/z][b/YT].

Proof.
(1) By the definition of N* and because N | JzS(z) A VaVy(xely — S(z)).

(2) By induction on A, using that S and €° do not occur in AS. O
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B. Another Language for Theories of Sets and Classes

Theorem 139.

If 7 C £ is a set of sentencesand A € L£1" is a sentence then the following
are equivalent:

(1) Tu{vzTY (z =Y)} E 4,
(2) TCUAL | A,
(3) T° U {3F2S(x),VaVy(xzely — S(z))} E As.

Proof. ()—(2) f N | T U Af then N* | T U {V23Y(z = Y)} by
Lemma 137} (1+2), hence N” = A by (1), and (N”)® |= A° by Lemmaﬁ(l)
and (3), and N |= A° by Lemma [137/(3). (2)—(1) To show C = D
for sets of sentences C,D C L', we may consider £!'-structures M with

IMIN M| =0 only. EMET VxEIY } and (M| N [M]| =0
then M® | T¢U Al by Lemma 1 and (1), and M® | A° by
(2), hence M = A by Lemma 135) If N E T¢U AL then

N | T° by Lemma [136](2), and )= AS by hence N = A° by
Lemma @(2) (2)—(3) IfN E 7° U {32S(x), VxVy(xE y — S(z))} then
N = AL and N = T° by Lemma hence N*® |= 7€ by Lemma (2)7
and N'® |= A by (2), that is N® |= A® by Lemmal[136] (2), and finally N = A°
by Lemma |138 O
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C. Another Notation System for
Ordinals

This section is in complete analogy to Section Instead of building the
notation system on the Cantor normal form of ordinals, we now use the binary
Veblen function and the Veblen normal form, i.e. we use that each ordinal
« # () can be uniquely represented in the form a = ¢g, (1) + ... + ¢, (7p)
with g, (v4) < @8, () for r < ¢, and 74 < g, (7,) for ¢ < p. The resulting
notation system is similar to the standard notation system for the ordinal 'y,
see e.g. Pohlers [I5]. The notation & for the ordinal « is defined recursively

s {aN N a = p(0) or a =10,
' (4B A1), - (B o)) @ = @5, (11) + -+ 908, (1) # Pal(D).

Once again, we are going to define this notation system in a generic way
without refering to ordinals, hence we can easily get notation systems going
beyond the ordinals analogously to Section [6]

Definition 140. (Binary Veblen Function)

We define the expression ¢, () (analogous Definition such that

z € po(B) = 3Ff(Veb[f]Na € dom(f) A
p € dom(f(a)) Az € f(a)(B)),
Veb[f] := Fun[f] AJa3B(dom(f) =a A (Vaq € a)(VP1 € B)(

Fun[f(a1)] A dom(f(ar)) = B A ran(f(a1)) € B A

(VBo € B1)f(a1)(Bo) € flaa)(B1) A

(a1 =0ABL#DAN (Vv € B1) (V1 € Bi)vo+7 € B1) V
(a1 # DA (Vag € a1)f(ao)(B1) = B1)) <

(3Bo € B) f(a1)(Bo) = B1))).

Definition 141. (Veblen Normal Form)

VNF[f,p, ] Fun[f] A dom(f) =
IBFy(f(p1) = (B,
ch

(Vpo € p1)h(po)

p/\EIh(Vpl Ep)(
»AMM) p(v) Ay € hp1))A
(p1) N a=3,h).
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C. Another Notation System for Ordinals

Theorem 142. (Veblen Normal Form)

(1) NBG FVa(a =0V 3 fIpVNFE[f,p,al),
(2) NBG VoV fVp(VNF[f,p,a] > a =0V a = p.,(0)V f(0)(0) € a).

Proof. See e.g. Pohlers [15]. O

Definition 143. (Ordinal Notation System)
We define the expression & (analogous Definition such that

z€a := 3If(OTr[f]Na € dom(f) Az eE fla)),

OTr[f] = PFun[f] A3a(dom(f) =a A (Vay € a)(
(a0 =0 A f(ao) = o) V (a0 = ¢a, (D)
(a0 # DA ao # a,(0) A Fun[f(ao)] A
Jg3p(VNF g, p, ao] A dom(f(ao)) = p A

(Vpo € p).f(a0)(po) = (f(9(po) (D)), f(g(po)(1)))))-

A flao) = ag) V

Lemma 144. (Ordinal Notation System)
NBG i VaVfvp(a # O Ao # ¢a(0) A VNF[fipa] =
Fun[a] A dom(&) = p A (Vpy € p)a(pr) = (f(p1)(D), f(p1)(1))).

Proof. By Definition (i.e. by induction on the ordinals). O

Definition 145. (Ordering Relation)

We define the expressions y¥ and }N/X (analogous Definition such that

zey? = 3f9(z=(f,9) A (

(£(0),9(0) € y A (f(1), {g)) € y) V
(f(0) = g(@) A (f(1), 9(T)) € y) v
- ((g(D), £(0)) € y A ((f)>9(1)) € v))),
ze€Yx = Fy(Ez?[X,Y,y|Nz€Ey),
Ex?[X,Y,y]l = (Ve €y)3figle = (f,9) AN{f,9} CHx UXA

(feEXNgeXN{f,geY)V
(fEXNgEXNgH#DA

(£, 0),9(0)) € y? Vv (f,0) = g(0))) v
(fEXNge XN (f=0V(f(0),(g,0)) €y®)V
(fE€ X Ng& XA Lex[y?, f,9]))-

See Definition [60| for Lez[y¥, f, g].
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Definition 146. (Generic Notation System)

—0 —1 —
We define the expressions Oty y-, Oty y Ofxy, Nlx (analogous Definition

such that

—~0 ~
z€0xy = OTX,Y,y[AzeEy),
—~1

z € ngY = 2z € g;))(7y V (Fw e X)z = {({w,0)),

z€0ixy = 2€0xyVzelX,
zenx = (eXAz=(((y,00)))Vy&XAz={yy))),
zeny = zenx A(Vye X)z# (((y0)), ((v ),

OTIX,Y,y] = (Vfe€y)feHxA(Vpe dom(f))Ig3h(

(Vg € p)(f(d') = f(q
((dom(f) # 1V f(0)

Lemma 147. (Strict Total Order)

NBG - Lin[X,Y] AHx N X =0 — Lin[Oty 3, Yx].

Definition 148. (Addition)
We define the expression f + - g (analogous Definition ) such that

zex+y g = ((z,90) €EYPAg#DANzEG)V
B ((z,9(0)) € Y?Vg=0)Aze (z)g,
z€ f+i g = 3FpIh(p= dom(f) A dom(h) =p' ANh(p) =gA
i z € h(D) A (Vg € p)h(q) = f(q) T3 h(d")),
z€f+yy g = zenx(x(f) +3 1x(9))-

Definition 149. (Multiplication)
We define the expression f = ;. g (analogous Definition [18) such that

zel(f) = (f=(0,fM)nrze f(Q)V
(f £ (0, F)) Az € (f)),
ze(f) = ((dom(f)#1V f0)0)=0)Aze (0 f))V
(dom(f) =1A f(0)(0) #0 Az e (D)),
zefPr = (fA0ANz=(0,0)Az€ [f)V )
(F#A DNz #(0,0) Az e (TUFO) +5 L)),
z€fg = Fp3h(lp=dom(g9) A dom(h)=p ANR(D)=0A
z € h(p) A (Yg € p)h(¢) = h(q) + (7 9())),
S f TX,Y g = zE€ n;év(nX(f) 7}1/ nX(g)
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C. Another Notation System for Ordinals

Definition 150. (Exponentiation)

We define the expression f /~\X7Y x (analogous Definition such that

ze [T = (f(0)=(0,0) A3pp' € dom(f) N z=(p, f(p')))V
(f0) # (0,00 "z € f),
zef* = (=0, @) nze (0, D))V
i (f# (0 fDYyArzef),
zefriya = (w=(0,0)Vf=0)Azef)V(x#(D0)A
((dom(f) =TA f(0)=(0,0) Az€ f)V
(dom(f) €2 A f(0) = (0,0) Az € (P((z™N)) v
) (f(0) # (0,0) Az € (TUF@) 7y (2)N)),
ze fAyg = 3p3h(p = dom(g) A dom(h) = p' A h(0) = ({0, 0))A
i z € h(p) A (Vg € p)h(q) = h(a) % (f Ay 9(a))),
2€f vy g = zeng(x(f) Ny 1x(9)),

Theorem 151. (Ordinal Notation System)

Let (’371, Onr and <r be elementarily definable classes in NBG, such that

On = {z]3a(z=a)},
Onp = {z|3a(z=ara=q¢.0)},
<r = €0nr7

where €p,,. as in Definition with € as in Lemma If we write +r,

I i B A i
r, r for Fonr.<r? Onp.crr Onp.<r respectively, then we have that

(1) NBG +VavB(a < 8+ a <r f),

(2) NBG F V(@ € Otonprar,<r)s

(3) NBG + On = Otonp,<rs

(4) NBGFVaVA(a+B=a+rBAa-B=a-rBAal =aAr B).
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