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Abstract

The aim of this thesis is to show a few specific results about extensions of
Von Neumann–Bernays–Gödel set theory NBG, by applying proof-theoretic
techniques. We get the main results in a uniform way, by using cut-elimination
and asymmetric interpretations. The same technique was applied a few
decades ago, to analogous systems of second order arithmetic, by Cantini [1].

We consider natural extensions of NBG by a few axiom schemes, i.e., choice
AC [Σ1

1], dependent choice DC [Σ1
1], full induction TI∈[L1], and iterated el-

ementary comprehension (CA[Π1
0])<c. And we are going to establish proof-

theoretic equivalences between these schemes, similar to the results for anal-
ogous systems of arithmetic. The equivalences proven in this thesis are

T ∪ NBG ∪AC [Σ1
1] ≡ T ∪ NBG,

T ∪ NBG ∪DC [Σ1
1] ≡ T ∪ NBG ∪ (CA[Π1

0])<Ωω ,
T ∪ NBG ∪DC [Σ1

1] ∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1
0])<E0

,
T ∪ NBG ∪AC [Σ1

1] ∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1
0])<E0

,
T ∪ NBG ∪ (CA[Π1

0])<E0
∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1

0])<E0
,

where T is any set of axioms with logical complexity essentially Σ1
2, and the

equivalence, ≡, means that any sentence essentially Π1
2 is either provable in

both theories or in none of them.

The first equivalence has already been stated (without proof) by Feferman
and Sieg [4]. The last two equivalences are easy consequences, by using the
third one. The second last equivalence has already been shown in a slightly
weaker form by Jäger and Krähenbühl [10].
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Introduction

Von Neumann–Bernays–Gödel set theory (NBG) is a conservative extension of
Zermelo–Fraenkel set theory (ZFC), see e.g. Levy [13]. NBG extends ZFC such
that, in addition to sets, we also have classes as individual objects. The two
sorts of variables x, y, z, ... and X,Y, Z, ... for sets and classes, respectively,
make the language much more expressive, e.g., NBG is finitely axiomatizable.
NBG can be formulated in many different ways; in this thesis we define NBG
to consist of ZFC and the following (infinitely many) axioms

(Comprehension) ∃X∀y(y ∈ X ↔ A[y]) for any A ∈ Π1
0,

(Replacement) ∀F (Fun[F ]→ ∀x∃y(y = F [x])),
(Global Choice) ∃F (Fun[F ] ∧ ∀x(x = ∅ ∨ F (x) ∈ x)).

All the theorems about sets in ZFC are exactly the same as in NBG, i.e., “pure
set theory” is not affected by the classes in NBG. Of course, the underlying
set theory can be easily made stronger, by adding appropriate class axioms to
NBG, e.g. this is the case for Morse–Kelly set theory (MK), which is just NBG
with comprehension allowed for any formula A. The increased expressiveness
and the conservation of common sense set theory ZFC within NBG, make
NBG to an interesting choice for logical investigations. Furthermore, on the
meta-level of logic, the extension of ZFC to NBG is similar to the shift from
Peano Arithmetic (PA) to Arithmetical Comprehension (ACA0), which is a
subsystem of Second Order Arithmetic (Z2) (MK corresponds to Z2, in the
same way as NBG corresponds to ACA0). This logical analogy is the starting
point of this thesis. A huge amount of research in mathematical logic has
been done in the field of arithmetic, and the aim of this thesis is to get a
few specific results about set theory, by applying proof-theoretic techniques,
i.e. cut-elimination and asymmetric interpretation, analogously to the way
these techniques were applied to arithmetic.

We consider natural extensions of NBG by axiom schemes with classes in-
volved, i.e., choice AC [Σ1

1], dependent choice DC [Σ1
1], induction TI∈[L1], and

iterated comprehension (CA[Π1
0])<c. And we are going to establish proof-

theoretic equivalences between these schemes, similar to some results that
were achieved a few decades ago for analogous systems of arithmetic.

We observe that any class Y can be considered to be a collection of classes,
(Y )x, where (Y )x is the class {z | 〈z, x〉 ∈ Y }, or it can be considered to be
a function Y : x 7→ (Y )x, mapping sets to classes. In this context it makes
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Introduction

sense to have the restriction (Y )
x
, i.e. the function Y restricted to x, where

(Y )
x

is the class {〈z, y〉 ∈ Y | y ∈ x}, or more generally, (Y )
<x

is the class
{〈z, y〉 ∈ Y | y < x} for any relation <. Having this notation, the axiom
schemes of interest can now be formulated precisely as the following

• Choice AC [Σ1
1], means that for any A ∈ Σ1

1 we have that

∀x∃Y A[x, Y ]→ ∃Y ∀xA[x, (Y )x],

that is, if we have ∀x∃Y A[x, Y ] then there also exists a “choice function”
Y such that A[x, (Y )x] for all x.

• Dependent Choice DC [Σ1
1], means that for any A ∈ Σ1

1 we have that

∀x∀Y ∃ZA[x, Y, Z]→ ∃Z∀xA[x, (Z)
x
, (Z)x],

i.e., if we have ∀x∀Y ∃ZA[x, Y, Z] then there is a “choice function” Z such
that A[x, (Z)

x
, (Z)x] for all x, hence (Z)x depends on (Z)

x
, that is, (Z)x

depends on the choices made “previous” to x.

• Induction TI∈[L1] means that for all formulas A we have

∀x((∀y ∈ x)A[y]→ A[x])→ ∀xA[x],

i.e., from the progressivity of the element relation ∈ on A[x] we get A[x]
for all x.

• Iterated comprehension (CA[Π1
0])<c means that for any A ∈ Π1

0 we have

∃X(∀y < c)(X)y = {z | A[z, y, (X)
<y

]},

i.e., there exists a class hierarchy X, such that for all levels y “below” c the
class (X)y consists of the sets z with A[z, y, (X)

<y
], hence (X)y depends

on all levels of the hierarchy “previous” to y, that is (X)
<y

.

The main results of this thesis can now be stated as the following proof-
theoretic equivalences

T ∪ NBG ∪AC [Σ1
1] ≡ T ∪ NBG,

T ∪ NBG ∪DC [Σ1
1] ≡ T ∪ NBG ∪ (CA[Π1

0])<Ωω ,
T ∪ NBG ∪AC [Σ1

1] ∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1
0])<E0

,
T ∪ NBG ∪DC [Σ1

1] ∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1
0])<E0

,
T ∪ NBG ∪ (CA[Π1

0])<E0 ∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1
0])<E0 ,

where T is any set of axioms with logical complexity essentially Σ1
2, and the

equivalence, ≡, means that any sentence essentially Π1
2 is either provable

in both theories or in none of them. We can see that the proof-theoretic
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strength of these theories is essentially captured by the bounds Ωω and E0

for iterated elementary comprehension.

To be able to explain what Ωω and E0 are, we need to say a few words about
the uniform representation, i.e. notation, of ordinals in set theory; because
of the Cantor normal form for ordinals, we can write down any ordinal α by
just using brackets 〈〈, 〉〉, epsilon numbers εβ ≤ α, and ∅, where ε enumerates
the class {γ | γ = ωγ}. The notation α̂ representing the ordinal α is built
according to the following recursion

α̂ :=

{
α α = ωα or α = ∅,
〈〈γ̂0, ..., γ̂r〉〉 α =CNF ω

γ0 + ...+ ωγr 6= ωα.

E.g., if α = ωεβ+1 + ω then α̂ = 〈〈〈〈εβ , ∅〉〉, 〈〈∅〉〉〉〉. We can recursively define
operations on these notations, reflecting addition, multiplication, exponen-
tiation and the ordering relation on ordinals, such that α̂ +̂ β̂, α̂ ·̂ β̂, and

α̂β̂ , are the notations of α + β, α · β, and αβ , respectively, and α̂ C β̂ iff
α ∈ β. We further extend this notation system by an additional “virtual”
epsilon number Ω, with εβ C Ω for any εβ , and we allow notations α̂[Ω],
where α̂[Ω] is just α̂ with all occurences of the biggest epsilon number εβ in
α̂ being replaced by Ω. E0 is the collection of all notations α̂ and α̂[Ω]. The
arithmetical operations and the relation C are easily adapted to include all
such notations, by treating Ω just like a real epsilon number bigger than any
other epsilon number. In some way, (E0,C) can be seen as the analogue of
(ε0,∈), with the set of the natural numbers, i.e. the ordinal ω, replaced by
the class of all ordinals, i.e. the notation Ω.

(CA[Π1
0])<Ωω and (CA[Π1

0])<E0
are the axioms of iterated comprehension

along C up to Ωn and Ωn for any n, respectively, where Ωn+1 := Ωn ·̂ Ω
and Ωn+1 := ω̂Ωn (Ω0 := 1̂ and Ω0 := Ω + 1̂). The ordering C on the
initial segments up to any Ωn, is shown to be a provable well-founded class
relation in NBG, for any n, hence the class hierarchies defined by iterated
comprehension along C up to Ωn are well-defined in NBG.

One direction of the proof-theoretic equivalences of the main results is shown
with little effort, because the choice axioms already imply iterated compre-
hension, that is

NBG ∪DC [Π1
0] ` (CA[Π1

0])<Ωω ,
NBG ∪AC [Π1

0] ∪ TI∈[L1] ` (CA[Π1
0])<E0 .

For the other direction we use asymmetric interpretations, similar to the
asymmetric interpretations used, e.g., by Cantini [1] for subsystems of second
order arithmetic, and by Jäger[7, 8, 9] and Jäger and Strahm [11] for theories
of admissible sets, explicit mathematics and operational set theory. That is,
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Introduction

for the other direction we reduce each of the systems with choice, Tch (i.e.,
CA[Π1

0]∪AC [Π1
0], CA[Π1

0]∪DCOn [Π1
0], and CA[Π1

0]∪DCOn [Π1
0]∪TI∈[L1]), to

the corresponding system with iterated comprehension, Tit (i.e., NBG, NBG∪
(CA[Π1

0])<Ωω , and NBG ∪ (CA[Π1
0])<E0

), by an asymmetric interpretation,
that is, we interpret any formula A into a hierarchy of classes U , such that
(in a nutshell)

(1) After the asymmetric interpretation of the formula A into the hierar-

chy U , denoted by A〈a, b〉U , every quantified class variable of A ranges
over some specific level of the class hierarchy, i.e. generally all existen-
tial quantifiers range over some level (U)b higher than the level of the
universal quantifiers (U)a (hence the name asymmetric interpretation).

(2) All formulas provable in the system Tch we want to reduce, hold true after
asymmetric interpretation into the class hierarchy U , i.e.,

Tch ` A ⇒ Tit ` ClTch [U ]→ ∃b(A〈∅, b〉U ).

This statement corresponds to the statements proved in Lemma 109,
where we can see that the situation is actually a bit more complicated.
We write ClTch [U ] to emphasize the dependence of the class hierarchy U
on the specific theory Tch. Actually, the hierarchy U also depends on
the formula A, i.e. on the free class variables in A, and on the length of
the derivation of A in a particular proof system for Tch (see the proof of
Lemma 110).

(3) For any formula up to some logical complexity, i.e. essentially Σ1
1, the

asymmetric interpretation of the formula reflects the truth of the original
formula, that is,

A essentially Σ1
1 ⇒ Tit ` ClTch [U ]→ (A〈a, b〉U → A).

(4) The class hierarchy exists in the system Tit we want to reduce to, i.e.,

Tit ` ∃UClTch [U ].

By putting (2) to (4) together, we have that if a formula A is essentially
Σ1

1 and Tch ` A then we also have Tit ` A, and hence the proof-theoretic
equivalences are fully established. Technically, the implication in (2) actually
consists of two steps; the implication is proved by induction on the length
of the cut-reduced proof of the formula A, that is, we need proofs of the
formulas A where only cut formulas of complexity at most Σ1

1 are used, i.e.,
we need partial cut-elimination. Hence we first show

Tch ` A ⇒ Tch 0̀ A,

4



and having this simpler (but usually much longer) proofs, we are able to get
the desired implication by just showing

Tch 0̀ A ⇒ Tit ` ClTch [U ]→ ∃b(A〈∅, b〉U ),

which is now proved by induction on the length of the cut-reduced proofs.

The reduction of the system Tch with full induction TI∈[L1] is actually a
bit more involved than described above. The reduction is more complicated
because of the intermediate step in (2), just described. The logical complexity
of the formulas in TI∈[L1] is unbounded, hence the complexity of cut formulas
gets far beyond Σ1

1. We are dealing with this situation in a standard way,
e.g., in the same way as in Jäger and Krähenbühl [10], that is, we change
over to an infinitary proof system with TI∈[L1] already built in, such that
instances from TI∈[L1] are derivable even without using any cut at all, and
such that we can still prove partial cut elimination for this system, too. The
proof system makes use of an infinitary rule for universal quantification over
sets, that is, the rule applies to infinitely many premises (one for each set).

For the asymmetric interpretation including TI∈[L1], the infinitary proof
system PrTch for Tch is formalized within the system Tit. Here, we simply
write PrTch [pAq] for the complex formula ∃Z(PrDC+

Ωn+3
[Z]∧{pAq} ∈ (Z)Ω+̂ω̂,n),

where {pAq} ∈ (Z)Ω+̂ω̂,n means that pAq is derivable in at most Ω +̂ ω̂ steps
with cut formulas of rank at most n, and where n, and hence PrTch , actually
depend on the derivation of A in a particular (finitary) proof system for Tch
(see the proof of Lemma 110). To accomplish the asymmetric interpretation,
we use Gödelization of formulas and an appropriate definition of truth for
the codes of formulas, pAq, where truth is such that the class quantifiers in A
range over some specified class universe U . Truth of the code of A is denoted
by pAq[f, g]U∞ (where f and g take account of the free set and class variables
in A, respectively). Property (2) and (3) now essentially become

(2’)
Tit ` PrTch [pAq]→ (ClTch [U ]→ ∃b(pAq〈Ċ∅, Ċb〉[f, g]U∞)),

(3’) If A is essentially Σ1
1 then

Tit ` ClTch [U ]→ (pAq〈Ċa, Ċb〉[f, g]U∞ → pAq[f, g]U∞).

Furthermore, the proof system PrTch and the truth definition are such that
the following properties hold

Tch ` A ⇒ Tit ` PrTch [pAq],

A essentially Σ1
1 ⇒ Tit ` ]A[f, g, U ]→ (pAq[f, g]U∞ → A),

5



Introduction

where the formula ]A stands for the proper assignment of sets and classes
to the free variables in A (through f and g). Hence, together with (4) and
because of Tit ` ClTch [U ]→ ∃f∃g(]A[f, g, U ]), we have that if a formula A is
essentially Σ1

1 and Tch ` A then we also have Tit ` A, and finally we have
established the proof-theoretic equivalence in the more complicated cases,
too.
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1. Logic for Theories of Sets and
Classes

In this section we define the language and the logic for theories of sets and
classes, as we use it throughout this text. We work in classical logic with two
sorts of variables x, y, z..., and X,Y, Z..., for sets and classes, respectively. We
follow the style of Tait, that is, the logic is defined analogous to Tait-language
and Tait-calculus, e.g. as the language and logic for second order arithmetic
is defined by Pohlers [15]. Our language of set theory is very simple, because
it only has the element relation symbol ∈, and no other relation or function
symbols. Actually, for technical reasons, there are two relation symbols ∈0

and ∈1, i.e. x∈0y and x∈1Y , because we syntactically distinguish between
sets and classes. Equality will be defined in terms of ∈, hence we have logic
without equality. See, e.g., Mendelson [14] for axiomatic set theory in pure
first-order logic with just one sort of variables and one single relation symbol,
and consider Appendix B for the exact relationship between these different
formalizations of axiomatic set theory.

The very heart of this section is the definition of the notion of formal proof
in the form of a provability relation, and some theorems about important
structural properties thereof, i.e. like partial cut elimination.

We write N for the collection of all (standard) natural numbers 0, 1, 2, ... and
we use the letters i, j, k, l,m, n (with subscripts) to denote natural numbers.

Definition 1. (Language L0, L1)

The language L1 of Von Neumann–Bernays–Gödel set theory consists of
the following

(1) The logical symbols of L1 are

a) the free set variables vi, for all i ∈ N,

b) the bound set variables ui, for all i ∈ N,

c) the free class variables Vi for all i ∈ N,

d) the bound class variables Ui for all i ∈ N,

e) the propositional connectives ∧, ∨, ∼,

f) the quantifiers ∀, ∃,

7



1. Logic for Theories of Sets and Classes

g) and the auxiliary symbols (, ).

We use the letters f , g, h, u, v, w, x, y, z (with subscripts) to denote
free or bound set variables, and we use the letters F , G, H, U , V ,
W , X, Y , Z (with subscripts) to denote free or bound class variables.
The mapping ] on variables is defined such that ]vi := ]Vi := ]ui :=
]Ui := i for i ∈ N.

(2) The non logical symbols of L1 are the element relation symbols ∈0

and ∈1.

(3) The atomic L1-formulas are vi∈0vj , ∼vi∈0vj , vi∈1Vj , ∼vi∈1Vj , for
all i, j ∈ N. We write x ∈ y, x 6∈ y, x ∈ Y , x 6∈ Y , for x∈0y, ∼x∈0y,
x∈1Y , ∼x∈1Y , respectively.

(4) The L1-formulas are inductively defined, such that,

a) all atomic L1-formulas are L1-formulas,

b) if A and B are L1-formulas then (A ∧B) and (A ∨B) are L1-
formulas,

c) and if A is a L1-formula, and u, V are free variables, and the
bound variables x, Y do not occur in A (and hence x, Y are free
for u, V in A), then ∀xA[x/u], ∃xA[x/u], ∀Y A[Y/V ], ∃Y A[Y/V ]
are L1-formulas. A[x/u] and A[Y/V ] stand for the expressions
that are obtained from A by replacing all occurrences of u and V
by x and Y , respectively.

We use the letters A, B, C, D, E (with subscripts), to denote L1-
formulas. The mapping ] on L1-formulas is some fixed injective map-
ping to N, that is, if ]A = ]B then A = B.

The language L0 of Zermelo–Fraenkel set theory is defined analogous to
L1, by omitting the relation symbol ∈1, and all class variables Vi, Uj , for
all i, j ∈ N, in the definition of L1.

If x and u are sequences of variables x0, ..., xk, and u0, ..., uk, respectively,
and if the variables in u are pairwise distinct, then A[x/u] stands for the
expression that is obtained from A by replacing all occurrences of ui by
xi, simultaneously for all i ≤ k. We may write A[x] instead of A[x/u]
whenever the variables in u are unimportant or u is determined by context.
Analogously A[X] for A[X/U ], and the same for sequences of variables of
mixed type, e.g. A[x, y, Z] or A[X, y, z].

For any language L, we write A ∈ L, if A is a L-formula, and we write
C ⊆ L, if C is a set of L-formulas. We write x ∈ A if the free or bound
variable x occurs in A, otherwise we write x 6∈ A. Analogously X ∈ A
or X 6∈ A. Formulas with no free variables are called sentences or closed

8



formulas. A set of formulas C ⊆ L1 is closed under substitution if for
all A ∈ C and all free variables u, v, U, V , we have that A[v/u] ∈ C and
A[V/U ] ∈ C.

Because of the simplicity of the language L1 we need a lot of syntactic ab-
breviations. That is, we define short notations for (sometimes very long)
formulas, and we extensively use such expressions.

Definition 2. (Abbreviations)

For A ∈ L1 we define ¬A ∈ L1 such that

¬A :=



∼A A atomic, A 6= ∼B,
B A = ∼B,
(¬B ∨ ¬C) A = (B ∧ C),

(¬B ∧ ¬C) A = (B ∨ C),

∀x¬B[x] A = ∃xB[x],

∃x¬B[x] A = ∀xB[x],

∀X¬B[X] A = ∃XB[X],

∃X¬B[X] A = ∀XB[X].

For A,B,C ∈ L1 (with x, y 6∈ C, x 6= y) and free variables u, v we define
abbreviations for the following formulas,

(A→ B) := (¬A ∨B),
(A↔ B) := ((A→ B) ∧ (B → A)),

(∀x ∈ u)C[x] := ∀x(x ∈ u→ C[x]),
(∃x ∈ u)C[x] := ∃x(x ∈ u ∧ C[x]),

u ⊆ v := (∀x ∈ u)x ∈ v,
(u = v) := (u ⊆ v ∧ v ⊆ u),
∃!xC[x] := ∃xC[x] ∧ ∀x∀y(C[x] ∧ C[y]→ x = y),

⊥ := ∀x(x ∈ x ∧ x 6∈ x),
> := ¬⊥.

(∀x ∈ U)C[x], (∃x ∈ U)C[x], and x ⊆ Y , X ⊆ Y , X ⊆ y, and x = Y ,
X = Y , X = y are defined analogously.

If C ⊆ L1 then we write C→ for the set {B | ∃A (A→ B) ∈ C}.

The logical complexity of formulas is an important measure, because a lot
of theorems in logic, e.g. the main Theorem 113 of this thesis, only hold for
a specific level of formula complexity. In the following we define classes of
formulas that correspond to the number of the nesting of alternating class
quantifiers.

9



1. Logic for Theories of Sets and Classes

Definition 3. (Σ1
+, Π1

+, Σ1, Π1)

For sets of formulas C ⊆ L1 we define

(1) Σ1
+(C) := C ∪ {∃XA[X] ∈ L1 | A ∈ C},

Π1
+(C) := C ∪ {∀XA[X] ∈ L1 | A ∈ C}.

(2) Σ1(C) and Π1(C) are inductively defined, such that both contain all
formulas in C, and if A,B ∈ Σ1(C) then the L1-formulas ∀xA[x],
∃xA[x], ∃XA[X], (A∧B), (A∨B) are in Σ1(C), and if A,B ∈ Π1(C)
then the L1-formulas ∀xA[x], ∃xA[x], ∀XA[X], (A∧B), (A∨B) are
in Π1(C).

(3) ¬C := {¬A | A ∈ C}.

Lemma 4.

For any A ∈ L1 and C ⊆ L1 we have that

(1) ¬¬A = A, i.e. ¬¬C = C.
(2) ¬Σ1

+(C) = Π1
+(¬C).

(3) ¬Σ1(C) = Π1(¬C).

Proof.

(1) By induction on the structure of the formula A, we show ¬¬A = A.

(2)

¬Σ1
+(C) = ¬C ∪ {∀X¬A[X] ∈ L1 | A ∈ C}

= ¬C ∪ {∀XB[X] ∈ L1 | B ∈ ¬C} = Π1
+(¬C).

(3) We show ¬Σ1(C) ⊆ Π1(¬C), by induction on the structure of the formulas
in Σ1(C). E.g. if B = ∃XA[X] ∈ L1 with A ∈ Σ1(C) then ¬B = ∀X¬A[X]
with ¬A ∈ ¬Σ1(C), and ¬A ∈ Π1(¬C) by i.h., hence ¬B ∈ Π1(¬C). We prove
Π1(¬C) ⊆ ¬Σ1(C), by induction on the structure of the formulas in Π1(¬C).
E.g. if B = ∀XA[X] ∈ Π1(¬C) with A ∈ Π1(¬C), hence A ∈ ¬Σ1(C) by i.h.,
then ¬∃X¬A[X] = ∀X¬¬A[X] = B ∈ ¬Σ1(C) by Part 1.

Definition 5. (Formula Classes Σ1
n, Π1

n ⊆ L1)

(1) Σ1
0 := Π1

0, where Π1
0 is inductively defined, such that Π1

0 contains all
atomic L1-formulas, and if A,B ∈ Π1

0 then the L1-formulas ∀xA[x],
∃xA[x], (A ∧ B), (A ∨ B) are in Π1

0. The formulas in Π1
0 are called

elementary formulas.

(2) Σ1
n+1 := Σ1

+(Π1
n),

Π1
n+1 := Π1

+(Σ1
n).

10



Lemma 6.

(1) ¬Σ1
n = Π1

n.

(2) Σ1
n ∪Π1

n = Σ1
n+1 ∩Π1

n+1.

Proof.

(1) We prove ¬Π1
0 ⊆ Π1

0, by induction on the structure of the formulas in Π1
0,

hence Π1
0 = ¬¬Π1

0 ⊆ ¬Π1
0 = ¬Σ1

0 ⊆ Π1
0. By induction on n and by Lemma 4

we get ¬Σ1
n+1 = ¬Σ1

+(Π1
n) = Π1

+(¬Π1
n) = Π1

+(Σ1
n) = Π1

n+1.

(2) By definition we have Σ1
0∪Π1

0 ⊆ Σ1
1∩Π1

1. We prove Σ1
n∪Π1

n ⊆ Σ1
n+1∩Π1

n+1

by induction on n. By definition we have Π1
n ⊆ Σ1

n+1, and by i.h. we get
Σ1
n−1 ⊆ Σ1

n, hence Π1
n = Π1

+(Σ1
n−1) ⊆ Π1

+(Σ1
n) = Π1

n+1, analogously Σ1
n ⊆

Σ1
n+1∩Π1

n+1. To show Σ1
n+1∩Π1

n+1 ⊆ Σ1
n∪Π1

n, we assume A ∈ Σ1
n+1∩Π1

n+1

and A 6∈ Σ1
n, and we show A ∈ Π1

n. Because of A ∈ Π1
n+1 and A 6∈ Σ1

n, we
have A = ∀XB[X] ∈ L1 for some B ∈ Σ1

n, and because of A ∈ Σ1
n+1 and

A = ∀XB[X] 6= ∃Y C[Y ] ∈ L1 for all C ∈ Π1
n, we get A ∈ Π1

n.

The rank rkC(A) with respect to C ⊆ L1 of a formula A is defined such that
rkC(A) = 0 iff A ∈ C ∪ ¬C, and rkC(A) = rkC(¬A) for every A.

Definition 7. (Formula Rank rkC)

For sets of formulas C ⊆ L1 and formulas A ∈ L1 we define

rkC(A) := 0 if A ∈ C ∪ ¬C, and otherwise

rkC(A) :=


1 A atomic,

max{rkC(B), rkC(C)}+ 1 A = (B ∧ C), (B ∨ C),

rkC(B) + 1 A =

{
∃xB[x],∀xB[x],

∃XB[X],∀XB[X].

We write rk for rk∅.

We observe that by definition we have rkC = rkC∪¬C .

Lemma 8.

(1) If C ⊆ D then rkD(A) ≤ rkC(A).

(2) rkC(A) = rkC(¬A).

Proof. By induction on the structure of the formula A.

11



1. Logic for Theories of Sets and Classes

For the sake of completeness, and because of some logical considerations in
Appendix A and B, we give a formal definition of the semantics of L1. As
we work in proof theory, which by its nature mostly deals with pure syntax
(except for completeness results), we are not going to use semantics any
further in this thesis. Clearly, we inherently use semantics whenever we give
just an informal proof for some statement within a specific set theory. But,
of course, any of this informal proofs could also be replaced by a formal proof,
as we know by invoking the completeness theorem, cf. Theorem 13.

Definition 9. (Semantics)

(1) A L1-structure is a tupleM := (|M|, ‖M‖,∈0
M,∈1

M) with non-empty
domains |M|, ‖M‖, and relations ∈0

M,∈1
M such that ∈0

M ⊆ |M| ×
|M|, and ∈1

M ⊆ |M| × ‖M‖.
(2) A L1-valuation is a tuple V := (〈V〉, f, g) such that 〈V〉 is a L1-

structure, and f : N→ |〈V〉|, and g : N→ ‖〈V〉‖.
(3) Given a function f with domain N, the mapping f [a/n] is such that

f [a/n](n) := a and f [a/n](i) := f(i) for i 6= n. For L1-valuations V =
(M, f, g) and free variables x, Y we define V[a/x] := (M, f [a/]x], g)
and V[b/Y ] := (M, f, g[b/]Y ]). V[ ] is V. If a and n are the sequences
a0, ..., ak and n0, ..., nk, resp., then f [a/n] stands for f [a0/n0]...[ak/nk],
and analogously V[a/x], V[b/Y ].

(4) V |= A holds iff V = (M, f, g) is a L1-valuation, A ∈ L1 and one of
the following holds:

A = x ∈ y and f(]x)∈0
Mf(]y),

A = x ∈ Y and f(]x)∈1
Mg(]Y ),

A = ∼B and V 6|= B, (not V |= B)
A = B ∧ C and (V |= B and V |= C),
A = B ∨ C and (V |= B or V |= C),
A = ∀xB[x/u] and (∀a ∈ |M|) V[a/u] |= B,
A = ∃xB[x/u] and (∃a ∈ |M|) V[a/u] |= B,
A = ∀XB[X/U ] and (∀b ∈ ‖M‖) V[b/U ] |= B,
A = ∃XB[X/U ] and (∃b ∈ ‖M‖) V[b/U ] |= B.

V |= F holds iff F ⊆ L1 and V |= A for all A ∈ F . T |= F holds iff
T ,F ⊆ L1 and (V |= T ⇒ V |= F) for all L1-valuations V. We write
T |= A for T |= {A}, and A |= F for {A} |= F , that is, A |= B for
{A} |= {B}. |= F stands for ∅ |= F .

(5) M |= A[a/x][b/Y ] holds iffM is a L1-structure and all L1-valuations
V with 〈V〉 =M are such that V[a/x][b/Y ] |= A. M |= A isM |= A[ ].
M |= T holds iff T ⊆ L1 and M |= A for all A ∈ T .

To simplify notation we use the same symbol, |=, for distinct relations in
(4) and (5).
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The following lemma shows that logical implication, A → B, exactly corre-
sponds to logical consequence, A |= B. The situation is different for prov-
ability, cf. Definition 12, for which we have that ` A→ B implies A ` B,
but the other direction only holds for closed formulas A.

Lemma 10.

For A,B ∈ L1 we have |= A→ B iff A |= B.

Proof. By the definition of |=.

The only part of the logic for L1 still missing, is the notion of formal proof.
By formal proofs we derive finite sets of formulas Γ, and the existence of such
a derivation means that the disjunction over all formulas in Γ holds (with
respect to the specific axioms).

Definition 11.

Finite (possibly empty) sets of formulas are denoted by the greek letters
Γ, ∆, Θ, Φ (with subscripts). If Γ = {A0, ..., An} and ∆ = {B0, ..., Bm}
then Γ, C,∆ stands for {A0, ..., An, C,B0, ..., Bm}. We write u 6∈ Γ for the
variable u, if u 6∈ Ai for all i ≤ n, and otherwise u ∈ Γ (analogously U 6∈ Γ
or U ∈ Γ), further

¬Γ := {¬A0, ...,¬An},
Γ∨ := ((⊥ ∨A0)... ∨An), (]Ai < ]Aj for i < j)

rk(Γ) := max{rk(A) | A ∈ Γ}, (max{} = 0)
Γ[u/v] := {A0[u/v], ..., An[u/v]}. (analogously Γ[U/V ])

The inference rules for formal proofs consist of the common rules for classical
logic, and the rules for the axioms T ⊆ L1, and additional inference rules
specified by some set R ⊆ L1. The rules can be depicted as follows

Γ, A,¬A with A atomic,

Γ, A

Γ, A ∨B
,

Γ, B

Γ, A ∨B
,

Γ, A Γ, B

Γ, A ∧B
,

Γ, A[v/u]

Γ,∃xA[x/u]
,

Γ, A

Γ,∀xA[x/u]
with u 6∈ Γ,

13



1. Logic for Theories of Sets and Classes

Γ, A[V/U ]

Γ,∃XA[X/U ]
,

Γ, A

Γ,∀XA[X/U ]
with U 6∈ Γ,

Γ, A Γ,¬A
Γ

,

Γ, A with A ∈ T ,
Γ, B

Γ, A
with (B → A) ∈ R.

In the following we define the provability relation T [R]`n,jC,l Γ, which captures
provability by formal proofs. In addition to the axioms T and the additional
inference rules R, the relation also has control parameters n, j, C, and l, such
that T [R]`n,jC,l Γ essentially means that

(1) there is a derivation of the finite set of formulas Γ, which possibly uses
axioms in T and additional inference rules from R,

(2) this derivation takes at most n steps (by definition we will have n > 0),

(3) any formula A occurring in this derivation has rank rk(A) at most j,

(4) the rank of any cut in this derivation is at most l with respect to C,
that is, any cut-formula A is such that rkC(A) ≤ l. If l = 0 then only
cut-formulas in C ∪ ¬C are used.

Definition 12. (Formal Proof)

T [R]`n,jC,l Φ holds iff T ,R, C,Φ ⊆ L1 (Φ finite or empty), and j, l, n ∈ N,

and there are A,B ∈ L1, and i, k,m ∈ N with m < n, and k ≤ l, and
max{i, rk(Φ)} ≤ j, and there is Γ ⊆ L1, and free variables u, U 6∈ Φ and
v, w, V,W , such that one of the following cases holds

Φ = Γ, A,¬A and A is atomic,
Φ = Γ, A and A ∈ T ,
Φ = Γ, A and T [R]`m,iC,k Γ, B and (B → A) ∈ R,
Φ = Γ, A ∨B and (T [R]`m,iC,k Γ, A or T [R]`m,iC,k Γ, B),

Φ = Γ, A ∧B and T [R]`m,iC,k Γ, A and T [R]`m,iC,k Γ, B,

Φ = Γ,∃xA[x/v] and T [R]`m,iC,k Γ, A[w/v],

Φ = Γ,∃XA[X/V ] and T [R]`m,iC,k Γ, A[W/V ],

Φ = Γ,∀xA[x/u] and T [R]`m,iC,k Γ, A,

Φ = Γ,∀XA[X/U ] and T [R]`m,iC,k Γ, A,

T [R]`m,iC,k Φ, A and T [R]`m,iC,k Φ,¬A and rkC(A) ≤ l.

14



If T , [R] or C is omitted in the notation T [R]`m,iC,k Φ then T = ∅, R = ∅,
C = ∅, respectively. If m, i, k is omitted then this means that there is some
unspecified m, i, k.

If Φ = {A} then we may write T [R]`m,iC,k A for T [R]`m,iC,k Φ. And if F ⊆ L1

and T [R]` A holds for every A ∈ F , then we may ambiguously write
T [R]` F , but the meaning will always be clear from context, e.g., because
F is an infinite set of formulas.

Clearly we want the provability relation to be adequate to the semantics of
L1. The following theorem states soundness and completeness of provability.

Theorem 13. (Adequacy)

If T ⊆ L1 is a set of sentences then T ` A iff T |= A.

Proof. See Theorem 134 in the Appendix.

For the manipulation of proofs we have the following two lemmas about
structural properties. There are a few unusual properties of our peculiar
provability relation, i.e. parts 3, 4, and 8, of the next lemma, but all other
properties are very common, like, weakening, substitution, the deduction
theorem, i.e. compactness, and inversion.

Lemma 14. (Structural Properties)

(1) If T0 ⊆ T1, R0 ⊆ R1, C0 ⊆ C1, m ≤ n, max{i, rk(∆)} ≤ j, k ≤ l, and
T0 [R0]`m,iC0,k Γ, then T1 [R1]`n,jC1,l ∆,Γ.

(2) If T ,R, C ⊆ L1 are closed under substitution and T [R]`n,jC,l Γ then

T [R]`n,jC,l Γ[y/z] and T [R]`n,jC,l Γ[Y/Z] for all free variables y, z, Y, Z.

(3) T [R]`n,jC∪¬C,l Γ iff T [R]`n,jC,l Γ.

(4) If T [R]`n,jC,l Γ then T [R]`n,jj Γ.

(5) 0̀ ¬A,A.

(6) If F is a set of sentences and F ∪ T [R]`nC,l Γ then there is a finite set
∆ ⊆ F such that T [R] C̀,l ¬∆,Γ.

(7) If T ∪ {∀xA[x]} `nC,l Γ then T ∪ {A} `n+1
C,l Γ, and if T ∪ {A} `n Γ and

∀xA[x] ∈ L1 then T ∪ {∀xA[x]} ` Γ (same for ∀XA[X] ∈ L1).

(8) If T [Q∪R]`n Γ then (T ∪ Q) [R]` Γ, and if (T ∪ Q) [R]`nC,l Γ and
Q ⊆ {(A→ B) | A,B ∈ L1} then T [Q∪R] C̀,l Γ.
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1. Logic for Theories of Sets and Classes

Proof.

(1) By induction on m, considering all cases in Definition 12.

If T0 [R0]`m0,i0
C0,k0

Γ, A, and T0 [R0]`m0,i0
C0,k0

Γ,¬A where m0 < m, k0 ≤ k, and
rkC0(A) ≤ k, and max{i0, rk(Γ)} ≤ i, then by i.h. for j0 = max{i0, rk(∆)} we
have that

T1 [R1]`m0,j0
C1,k0

∆,Γ, A and T1 [R1]`m0,j0
C1,k0

∆,Γ,¬A.

Because of m0 < m ≤ n, and k0 ≤ k ≤ l, and

max{j0, rk(∆,Γ)} = max{i0, rk(Γ), rk(∆)} ≤ max{i, rk(∆)} ≤ j,

and rkC1(A) ≤ rkC0(A) ≤ k ≤ l by Lemma 8, we get T1 [R1]`n,jC1,l ∆,Γ.

Similarly for the other cases.

(2) By induction on n, considering all cases in Definition 12.

If Γ = Γ0,∃xA[x/v] and T [R]`m,iC,k Γ0, A[w/v] with m < n, and k ≤ l, and

max{i, rk(Γ)} ≤ j, then T [R]`m,iC,k Γ0[y/z], A[w/v][y/z] by i.h., and we may
assume v 6∈ {y, z, w}, because for any free variable u 6∈ A and B := A[u/v]
we have that ∃xA[x/v] = ∃xB[x/u] and A[w/v] = B[w/u]. We further have
∃xA[x/v][y/z] = ∃xA[y/z][x/v] because of y 6= v 6= z, and

A[w/v][y/z] =

{
A[y/z][y/v] w = z,

A[y/z][w/v] w 6= z,

i.e. there is some u ∈ {y, w} such that T [R]`m,iC,k Γ0[y/z], A[y/z][u/v], hence

T [R]`n,jC,l Γ0[y/z],∃xA[y/z][x/v], i.e. T [R]`n,jC,l Γ[y/z].

If Γ = Γ0,∀xA[x/u] with u 6∈ Γ, and T [R]`m,iC,k Γ0, A with m < n, k ≤ l,
max{i, rk(Γ)} ≤ j, then we choose some free variable v 6∈ {y, z} with v 6∈ Γ.
For B := A[v/u] we get T [R]`m,iC,k Γ0, B by i.h., and T [R]`m,iC,k Γ0[y/z], B[y/z]
by i.h., and further

∀xB[y/z][x/v] = ∀xB[x/v][y/z] = ∀xA[x/u][y/z].

We get T [R]`n,jC,l Γ[y/z] because of v 6∈ Γ0[y/z],∀xB[y/z][x/v].

If T [R]`m,iC,k Γ, A, and T [R]`m,iC,k Γ,¬A, and rkC(A) ≤ l, k ≤ l, m < n, and

max{i, rk(Γ)} ≤ j, then by i.h. we have that T [R]`m,iC,k Γ[y/z], A[y/z] and

T [R]`m,iC,k Γ[y/z],¬A[y/z]. And because of rkC(D[y/z]) = rkC(D) for every

formula D, and rk(Γ[y/z]) = rk(Γ), we get T [R]`n,jC,l Γ[y/z].

Similarly for the other cases.
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(3) The claim holds trivially, because of rkC = rkC∪¬C .

(4) By induction on n, considering all cases in Definition 12.

If T [R]`m,iC,k Γ, A, and T [R]`m,iC,k Γ,¬A with rkC(A) ≤ l, k ≤ l, m < n, and

max{i, rk(Γ)} ≤ j, then we get T [R]`m,i∅,i Γ, A and T [R]`m,i∅,i Γ,¬A by i.h.,

hence rk(Γ, A) ≤ i and rk(A) ≤ i ≤ j, hence T [R]`n,j∅,j Γ.

Similarly for the other cases.

(5) By induction on the structure of the formula A.

If A = B ∨ C then 0̀ ¬B,B and 0̀ ¬C,C by i.h., further 0̀ ¬B,B,C and

0̀ ¬C,B,C by Part 1. Hence 0̀ ¬B ∧ ¬C,B,C and 0̀ ¬B ∧ ¬C,B ∨ C,
i.e. 0̀ ¬A,A.

If A = ∃xB[x/u] then 0̀ ¬B,B by i.h., hence 0̀ ∃xB[x/u],¬B,B, and

0̀ ¬B, ∃xB[x/u], and 0̀ ∀x¬B[x/u],∃xB[x/u] because of u 6∈ ¬A,A, that is

0̀ ¬A,A.

Similarly for the other cases.

(6) By induction on n, considering all cases in Definition 12.

If Γ = Γ0, A for some A ∈ F , then by Part 5 we have 0̀ ¬A,A, hence
T [R] C̀,l ¬A,A,Γ0 by Part 1., i.e. T [R] C̀,l ¬A,Γ.

If Γ = Γ0, A ∧ B, and F ∪ T [R]`mC,k Γ0, A, and F ∪ T [R]`mC,k Γ0, B, with
m < n, k ≤ l, then there are ∆0 ⊆ F , ∆1 ⊆ F with T [R] C̀,k ¬∆0,Γ0, A and
T [R] C̀,k ¬∆1,Γ0, B by i.h., hence if ∆ := ∆0,∆1 then T [R] C̀,k ¬∆,Γ0, A
and T [R] C̀,k ¬∆,Γ0, B by Part 1, therefore T [R] C̀,l ¬∆,Γ.

If Γ = Γ0,∀xA[x/u], and F ∪ T [R]`mC,k Γ0, A, with m < n, k ≤ l, and u 6∈ Γ,
then for some ∆ ⊆ F we get T [R] C̀,k ¬∆,Γ0, A by i.h., hence T [R] C̀,l ¬∆,Γ
because ¬∆ is a set of sentences and u 6∈ ¬∆,Γ.

Similarly for the other cases.

(7) By induction on n, considering all cases in Definition 12. The only inter-
esting case is when the axiom ∀xA[x/u] or A is used.

If T ∪ {∀xA[x/u]} `nC,l Γ,∀xA[x/u] then we also have T ∪ {A} `nC,l A, and hence

T ∪ {A} `n+1
C,l ∀xA[x/u], that is T ∪ {A} `n+1

C,l Γ,∀xA[x/u] by Part 1.

If T ∪ {A} `n Γ, A then we use Part 5 to get 0̀ A,¬A, hence 0̀ A,¬∀xA[x],
and because of T ∪ {∀xA[x]} ` A,∀xA[x] we have T ∪ {∀xA[x]} ` A, that is
T ∪ {∀xA[x]} ` Γ, A by Part 1.
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(8) By induction on n, considering all cases in Definition 12. The only inter-
esting case is when ¬A ∨B ∈ Q is used as an axiom or inference rule.

If T [Q∪R]`n Γ, B and T [Q∪R]`m Γ, A with m < n then by i.h. and Part 1
we have (T ∪ Q) [R]` Γ, A,B. We get (T ∪ Q) [R]` Γ,¬B,B by Parts 1 and
5, hence (T ∪ Q) [R]` Γ, A ∧ ¬B,B, and clearly (T ∪ Q) [R]`1 Γ,¬A ∨B,B,
that is (T ∪ Q) [R]` Γ, B.

If (T ∪ Q) [R]`nC,l Γ,¬A ∨B then we get T [Q∪R] C̀,l Γ,¬A,A by Parts 1
and 5, hence T [Q∪R] C̀,l Γ,¬A,B, that is T [Q∪R] C̀,l Γ,¬A ∨B.

Lemma 15. (Inversion)

If T ,R, C ⊆ L1 are closed under substitution and T [R]`nC,l Γ, C with C 6∈
R→ ∪ T then we have that

(1) If C = A ∨B then T [R]`nC,l Γ, A,B.

(2) If C = A ∧B then T [R]`nC,l Γ, A and T [R]`nC,l Γ, B.

(3) If C = ∀xA[x/u] and B = A[v/u] ∈ L1 then T [R]`nC,l Γ, B.

(4) If C = ∀XA[X/U ] and B = A[V/U ] ∈ L1 then T [R]`nC,l Γ, B.

Proof.

(1) By induction on n, considering all cases in Definition 12.

If Γ, A ∨ B = Γ0, D,¬D and D is atomic, then Γ = Γ, D,¬D, hence we get
T [R]`nC,l Γ, A,B by Lemma 14.(1).

If Γ, A ∨ B = Γ0, D0 ∨D1, and T [R]`mC,k Γ0, Di with m < n, k ≤ l then we
have the following: If A∨B = D0∨D1 then T [R]`mC,k Γ0, A,B, and by i.h. we
may assume A∨B 6∈ Γ0, hence Γ0 ⊆ Γ and T [R]`nC,l Γ, A,B. Otherwise there
is Γ′0 such that Γ0 = Γ′0, A∨B and Γ = Γ′0, D∨E, and T [R]`mC,k Γ′0, A,B,Di

by i.h., hence T [R]`nC,l Γ, A,B.

If Γ, A ∨ B = Γ0,∃xD[x/u] and T [R]`mC,k Γ0, D[v/u] with m < n, k ≤ l
then there is Γ′0 such that Γ0 = Γ′0, A ∨ B and Γ = Γ′0,∃xD[x/u], and
T [R]`mC,k Γ′0, A,B,D[v/u] by i.h., hence T [R]`nC,l Γ, A,B.

Similarly for the other cases.

(2) Analogous to Part 1.

(3) By induction on n, considering all cases in Definition 12.

If Γ,∀xA[x/u] = Γ0,∀yD[y/w] and T [R]`mC,k Γ0, D with m < n, k ≤ l and
w 6∈ Γ,∀xA[x/u] then we have the following: If ∀xA[x/u] = ∀yD[y/w]
then A = D[u/w], and B = A[v/u] = D[u/w][v/u] = D[v/w] because
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u 6∈ D, hence T [R]`mC,k Γ0, B by Lemma 14.(2). By i.h. we may assume
∀xA[x/u] 6∈ Γ0, hence Γ0 ⊆ Γ and T [R]`nC,l Γ, B. Otherwise there is Γ′0
sucht that Γ0 = Γ′0,∀xA[x/u] and Γ = Γ′0,∀yD[y/w], and some free variable
z 6∈ D and z 6∈ Γ, B, such that T [R]`mC,k Γ0, D[z/w] by Lemma 14.(2), and
T [R]`mC,k Γ′0, B,D[z/w] by i.h., hence because of ∀yD[y/w] = ∀yD[z/w][y/z]
we get T [R]`nC,l Γ′0, B,∀yD[y/w], that is T [R]`nC,l Γ, B.

Similarly for the other cases (analogous to Part 1).

(4) Analogous to Part 3.

Another very important property of our provability relation is partial cut
elimination, meaning that, if we have T [R]` Γ (with some slight restrictions
on T and R), then we also have T [R] C̀,0 Γ for C = R→ ∪ T , i.e., there is a
derivation of Γ with all cut-formulas in R→ ∪ T . In the following we give a
proof of syntactic cut reduction.

Theorem 16. (Cut-Reduction)

If T ,R, C are closed under substitution, and C ⊇ R→ ∪ T , then we have

(1) If T [R]`nC,k Γ, A and T [R]`mC,k ∆,¬A and 0 < rkC(A) ≤ k + 1 then

T [R]`n+m
C,k Γ,∆.

(2) If T [R]`nC,k+1 Γ then T [R]`2
n

C,k Γ.

Proof.

(1) By induction on n+m, considering all cases in Definition 12.

First we observe that the statement is symmetric in A and ¬A, because if
B = ¬A then ¬B = A and rkC(B) = rkC(A).

If Γ, A = Γ0,¬D,D and D is atomic, then either A 6∈ {¬D,D} ⊆ Γ, hence
T [R]`n+m

C,k Γ,∆, or otherwise w.l.o.g. A = D, hence ¬A ∈ Γ, i.e. ∆,¬A ⊆
Γ,∆ and T [R]`n+m

C,k Γ,∆.

If Γ, A = Γ0, B and B ∈ T , then we have B ∈ Γ because of 0 < rkC(A),
i.e. A 6∈ C ⊇ T , hence T [R]`n+m

C,k Γ,∆.

If Γ, A = Γ0, B0 ∨ B1 and T [R]`n0

C,k Γ0, Bi with n0 < n then we have the
following: If A 6= B0 ∨ B1 then there is Γ′0 such that Γ0 = Γ′0, A and Γ =
Γ′0, B0 ∨ B1, i.e. T [R]`n0

C,k Γ′0, A,Bi, and T [R]`n0+m
C,k Γ′0, Bi,∆ by i.h., hence

T [R]`n+m
C,k Γ′0, B0 ∨B1,∆, that is T [R]`n+m

C,k Γ,∆. If A = B0∨B1, i.e. ¬A =
¬B0∧¬B1, then we have T [R]`n0

C,k Γ, A,Bi because of Γ, A = Γ0, A, and hence

T [R]`n0+m
C,k Γ,∆, Bi by i.h.. Further we may assume T [R]`m0

C,k ∆,¬B0 and
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T [R]`m0

C,k ∆,¬B1 for some m0 < m, because any other case is treated else-

where by symmetry. Finally T [R]`n+m
C,k Γ,∆ because of T [R]`m0

C,k Γ,∆,¬Bi
and rkC(Bi) ≤ k.

If Γ, A = Γ0,∀xB[x/u] and T [R]`n0

C,k Γ0, B with n0 < n and u 6∈ Γ, A then we
have the following: If A 6= ∀xB[x/u] then there is Γ′0 and some free variable
v 6∈ Γ, A,∆ such that Γ0 = Γ′0, A, and Γ = Γ′0,∀xB[x/u], and ∀xB[x/u] =
∀xB[v/u][x/v]. By Lemma 14.(2) we have T [R]`n0

C,k Γ′0, A,B[v/u], and we

get T [R]`n0+m
C,k Γ′0, B[v/u],∆ by i.h., hence T [R]`n+m

C,k Γ′0,∀xB[v/u][x/v],∆

because v 6∈ Γ,∆, that is T [R]`n+m
C,k Γ,∆. If A = ∀xB[x/u] , i.e. ¬A =

∃x¬B[x/u], then we have T [R]`n0

C,k Γ, A,B because of Γ, A = Γ0, A. Fur-
ther we may assume T [R]`m0

C,k ∆,¬B[w/u] for some m0 < m, because any
other case is treated elsewhere by symmetry. We get T [R]`n0

C,k Γ, A,B[w/u]

by Lemma 14.(2), hence T [R]`n0+m
C,k Γ,∆, B[w/u] by i.h.. Finally we get

T [R]`n+m
C,k Γ,∆ because T [R]`m0

C,k Γ,∆,¬B[w/u] and rkC(B[w/u]) ≤ k.

If T [R]`n0

C,k Γ, A,B and T [R]`n0

C,k Γ, A,¬B with n0 < n and rkC(B) ≤ k then
we can get T [R]`mC,k ∆,¬A,B and T [R]`mC,k ∆,¬A,¬B by Lemma 14.(1), and

T [R]`n0+m
C,k Γ,∆, B and T [R]`n0+m

C,k Γ,∆,¬B by i.h., hence T [R]`n+m
C,k Γ,∆

because of rkC(B) ≤ k.

Similarly for the other cases.

(2) By induction on n, considering all cases in Definition 12.

If T [R]`mC,k+1 Γ, A and T [R]`mC,k+1 Γ,¬A with m < n and rkC(A) ≤ k+1 then

T [R]`2
m

C,k Γ, A and T [R]`2
m

C,k Γ,¬A by i.h.; if rkC(A) = 0 then T [R]`2
m+1
C,k Γ,

otherwise T [R]`2
m+2m

C,k Γ,Γ by Part 1, hence T [R]`2
n

C,k Γ.

If Γ = Γ0,∀xA[x/u] and T [R]`mC,k+1 Γ0, A with m < n and u 6∈ Γ then

T [R]`2
m

C,k Γ0, A by i.h., hence T [R]`2
n

C,k Γ.

Similarly for the other cases.

Corollary 17. (Partial Cut-Elimination)

If T ,R, C are closed under substitution, and C ⊇ R→ ∪T , and T [R]`nC,k Γ,

then T [R]`2
n
k

C,0 Γ, where 2n0 = n and 2nm+1 = 22nm .
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2. Standard Theories of Sets and
Classes

Having established the formal setting of the language and the logic for set the-
ory in Section 1, we are now able to formulate the axioms of Von Neumann–
Bernays–Gödel set theory (see e.g. Mendelson [14] for more detailed infor-
mation about NBG set theory).

We first need to define a lot of syntactic abbreviations, because our language
of set theory is very simple. As far as we can, we use common notation
from standard set theory for these abbreviations, such that, e.g. Zermelo-
Fraenkel set theory, which is also introduced below, can be defined as usual
(see e.g. Takeuti [18] for more detailed information about ZFC set theory).

We present an infinite axiomatization of NBG, that is, we extend ZFC by
the axiom schema of class comprehension, and by the axiom of replacement
(formulated for class functions), and by the axiom of global choice, to get
NBG. We show that the axiom of separation (also called axiom of subsets),
and the extensionality axiom for classes are both derivable in NBG. We
further show the existence of a global wellordering in NBG, and later, in
Section 4, we also prove the foundation axiom for classes in NBG.

Definition 18. (Abbreviations)

We define expressions σ of the form ∪x, ∩x, 〈x, y〉, x\y, x′, {x1, ..., xn},
and abbreviations σ ∈ z, σ ∈ σ, and z ∈ σ, for formulas, such that σ ∈ z :=
(∃u ∈ z)∀v(v ∈ u↔ v ∈ σ), and σ ∈ σ := (∃u ∈ σ)∀v(v ∈ u↔ v ∈ σ), and

z ∈ ∪x := (∃w ∈ x)z ∈ w,
z ∈ ∩x := (∀w ∈ x)z ∈ w,

z ∈ {x1, ..., xn} := ((⊥ ∨ z = x1)... ∨ z = xn),
z ∈ 〈x, y〉 := z = {x} ∨ z = {x, y},
z ∈ x\y := z ∈ x ∧ z 6∈ y,
z ∈ x′ := z ∈ x ∨ z = x.

We write x∪ y for ∪{x, y}, and x∩ y for ∩{x, y}, and we write 0 and ∅ for
{}, and n+ 1 for n ∪ {n} (n ∈ N).

We also use all abbreviations with set variables replaced by class variables,
whenever the resulting expressions translate into proper L1-formulas. If
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2. Standard Theories of Sets and Classes

A ∈ L1 and σ is some expression of the form ∪x, ∩x, 〈x, y〉, x\y, x′,
{x1, ..., xn}, or of the same form but with class variables, then A[σ/u]
stands for A with all subformulas z ∈ u, u ∈ z, u ∈ Z with z 6= u,
replaced by the formulas z ∈ σ, σ ∈ z, σ ∈ Z, respectively, and with
u ∈ u replaced by σ ∈ σ, where all bound variables in z ∈ σ, σ ∈ σ,
σ ∈ z, σ ∈ Z, do not occur in A. Analogously A[σ/V ] for class variables
V . We write A[x ∪ y/u], i.e. A[∪{x, y}/u], for A[∪v/u][{x, y}/v] (where
v is some fresh variable). Analogously we write A[σ/u] and A[σ/V ] for
other composed expressions σ, e.g. we write A[n+ 1/u] for the formula
A[∪v1/u][{v2, v3}/v1][{v2}/v3][n/v2] (where v1, v2, v3 are some fresh vari-
ables).

Definition 19. (Abbreviations)

We define the expressions (x)y, (x)u,v, f(x), f [x], dom(f), ran(f), f�x,
f−1, 〈〈x1, ..., xn〉〉, (analogous Definition 18) such that

z ∈ (x)y := 〈z, y〉 ∈ x,
z ∈ (x)u,v := 〈〈z, v〉, u〉 ∈ x,
z ∈ f(x) := ∃w(〈x,w〉 ∈ f ∧ z ∈ w),
z ∈ f [x] := (∃w ∈ x)f(w) = z,

z ∈ dom(f) := (∃w)〈z, w〉 ∈ f,
z ∈ ran(f) := (∃w)〈w, z〉 ∈ f,

z ∈ f�x := z ∈ f ∧ (∃w ∈ x)∃y〈w, y〉 = z,
z ∈ f−1 := ∃x∃y(z = 〈x, y〉 ∧ 〈y, x〉 ∈ f),

z ∈ 〈〈x0, ..., xn〉〉 := ((z = 〈0, x0〉 ∨ ...) ∨ z = 〈n, xn〉).

Rel [x] := (∀u ∈ x)∃v∃w(u = 〈v, w〉),
Fun[x] := Rel [x] ∧ (∀u ∈ dom(x))∃!v〈u, v〉 ∈ x.

Definition 20. Zermelo–Fraenkel Set Theory ZFC ⊆ L0

(Extensionality) ∀x∀y(x = y → ∀z(x ∈ z ↔ y ∈ z)),
(Pair) ∀x∀y∃z(z = {x, y}),
(Union) ∀x∃y(y = ∪x),
(Powerset) ∀x∃y∀z(z ∈ y ↔ z ⊆ x),
(Infinity) ∃x(∅ ∈ x ∧ (∀y ∈ x)(y ∪ {y} ∈ x),
(Foundation) ∀x(x = ∅ ∨ (∃y ∈ x)(∀z ∈ y)z 6∈ x),
(Replacement) (∀)(∀x∀y∀z(A[x, y] ∧A[x, z]→ y = z)→

∀u∃v∀y(y ∈ v ↔ (∃x ∈ u)A[x, y]))
for any A ∈ L0 and distinct x, y, z, u, v 6∈ A,
where (∀)B stands for the universal closure of B,

(Choice) ∀x∃f(Fun[f ] ∧ (∀y ∈ x)(y = ∅ ∨ f(y) ∈ y)).
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Definition 21. Von Neumann–Bernays–Gödel Set Theory NBG ⊆ L1

(ZFC) all axioms of ZFC,
(Comprehension) ∃X∀y(y ∈ X ↔ A[y]) for any A ∈ Π1

0, X, y 6∈ A,
(Replacement) ∀F (Fun[F ]→ ∀x∃y(y = F [x])),
(Global Choice) ∃F (Fun[F ] ∧ ∀x(x = ∅ ∨ F (x) ∈ x)).

According to a well-known result, see, e.g., Levy [13], NBG is a conservative
extension of ZFC.

Theorem 22. (Conservative Extension)

For A ∈ L0 we have NBG ` A if and only if ZFC ` A.

The following theorem, showing that separation holds in NBG, is proved
mainly by using the replacement axiom. The subsequent corollary is im-
portant because it guarantees extensionality for NBG set theory (see also
Appendix A).

Theorem 23. (Separation)

NBG ` ∀x∀Y ∃z (z = Y ∩ x).

Proof. If A[v, U ] = (∃z ∈ U)(v = 〈z, z〉) then by logic we get

∀x(x ∈ V ↔ A[x, U ])→ Fun[V ] ∧ dom(V ) = U ∧ (∀z ∈ U)(V (z) = z).

By the axiom of replacement we have

∀x(x ∈ V ↔ A[x, U ])→ ∀x∃y(y = {V (z) | z ∈ dom(V ) ∩ x}),

and because of dom(V ) = U and (∀z ∈ U)(V (z) = z) we get

∀Y (∀x(x ∈ Y ↔ A[x, U ])→ ∀x∃y(y = U ∩ x)), i.e.

∃Y ∀x(x ∈ Y ↔ A[x, U ])→ ∀x∃y(y = U ∩ x).

We have elementary comprehension, hence finally ∀x∃y(y = U ∩ x).

Corollary 24. (Extensionality)

NBG ` ∀x∀y(x = y → ∀Z(x ∈ Z ↔ y ∈ Z)).

Proof. Assume there are x, y, Z, such that x = y, and x ∈ Z, and y 6∈ Z.
By separation we have that Z∩{x} is a set with x ∈ Z∩{x} and y 6∈ Z∩{x},
that is in contradiction to the extensionality axiom in ZFC.

Besides the expressions, as, e.g., in Definition 18, which we use as syntac-
tic abbreviations, we also want to use shorthand notation for some specific
classes. The following definition is about the definability of classes, e.g.,
about elementarily definable classes. For a few definable classes we are going
to introduce some sort of constants in the meta-language.
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2. Standard Theories of Sets and Classes

Definition 25. (Definable Classes)

We write Def [X,A[y]] for ∀y(y ∈ X ↔ A[y]) if y 6∈ A ∈ L1 and if A
has only one free variable. If the name of the variable y is not important
then we just write Def [X,A]. The collection C ⊆ |M| is called definable
by A if C = {a ∈ |M| | M |= A[a/x]} and x is the only free variable in
A. The class b ∈ ‖M‖ is called definable by A if M |= Def [X,A][b/X].
b ∈ ‖M‖ is called definable in T ⊆ L1 by A, if b is definable by A and
T ` ∃X Def [X,A]. Further, if A ∈ L0 then b and C are called elementarily
definable (in T ).

By the comprehension axiom in NBG, we have the following elementarily
definable classes.

Lemma 26.

The following classes are elementarily definable in NBG,

V := {x | x = x},
On := {x | ∪x ⊆ x ∧ (∀y ∈ x)(∪y ⊆ y)},
∈ := {x | ∃y∃z(x = 〈y, z〉 ∧ y ∈ z)},
P := {x | ∃y∃z(x = 〈y, z〉 ∧ ∀u(u ∈ z ↔ u ⊆ y))},

V,On,∈,P are the class of all sets, the class of all ordinals, the element
relation on sets, and the powerset function, respectively. (We already used
the symbol V to denote L1-valuations; it will always be clear from context
whether V is the class of all sets or a valuation.)

In the following we use the expressions V, On, ∈, P, denoting the definable
classes in the previous lemma, analogous to the way we use the expressions
σ in Definition 18.

By having the class of all ordinals On defined, we are now going to use special
letters to denote variables ranging over the ordinals.

Definition 27. (Ordinals)

We use the greek letters α, β, γ, δ, κ (with subscripts) to denote ordinals.
We write ∀αA[α] and ∃αA[α] for (∀x ∈ On)A[x] and (∃x ∈ On)A[x],
respectively.

For putting the axiom of global choice to work, in most situations, it is very
useful to have a global wellordering at hand. We define the formula Gl such
that Gl [F ] means that F is a bijection F : V → On. The following lemma
shows that NBG proves the existence of such global wellorderings F .
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Definition 28. (Global Wellordering)

Gl [F ] := Rel [F ] ∧ ∀x∃!α〈x, α〉 ∈ F ∧ ∀α∃!x〈x, α〉 ∈ F.

Lemma 29. (Global Wellordering)

NBG ` ∃XGl [X].

Proof. We show that there is a bijective function W : On → V in NBG. By
the recursion principle (definition by transfinite induction, see e.g. Mendelson
[14]) we have the following two class functions

V (α) :=
⋃
{P(V (β)) | β < α},

R(x) :=
⋃
{R(y) + 1 | y ∈ x}.

We write ρ(x) for R(x) + 1, and by transfinite induction we get

ρ(x) ≤ α↔ x ∈ V (α).

We extend some global choice function to get C, with C(∅) = ∅, and by
comprehension we have the following class functions

F (x) :=
⋃
{ρ(y) | y ∈ ran(x)},

G(x) :=

{
C(V (F (x))\ ran(x)) V (F (x))\ ran(x) 6= ∅,
C(V (F (x) + 1)\ ran(x)) otherwise.

We define the function W by the recursion principle, such that

W (α) = G(W �α).

If W (α) = W (β) for α < β then W (β) ∈ ran(W �β) in contradiction to
W (β) = G(W �β), hence W is one-one. For any set x and any cardinal κ >
|V (ρ(x))| we have that | ran(W �κ)| = κ because W is one-one, hence there is
some α < κ with ρ(W (α)) > ρ(x), because otherwise ran(W �κ) ⊆ V (ρ(x)) in
contradiction to | ran(W �κ)| > |V (ρ(x))|. If β := min{α | ρ(W (α)) > ρ(x)}
and γ := F (W �β) then

γ ≤ ρ(x) < ρ(W (β)),

and we have V (γ)\ ran(W �β) = ∅ because otherwise we get a contradiction
by the definition of W , i.e. W (β) ∈ V (γ) and ρ(W (β)) ≤ γ. By the definition
of W we have W (β) ∈ V (γ + 1), that is ρ(W (β)) ≤ γ + 1, hence ρ(x) = γ
and x ∈ V (γ) ⊆ ran(W �β), i.e. any set x is in the range of W .
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3. Choice Schemes

In this section we define the axiom schemata AC and DC (see e.g. Feferman
and Sieg [3], Simpson [17]) for choice and dependent choice, respectively, and
we show that a bunch of slightly different formulations of the schemata of
dependent choice are all equivalent over NBG. By definition, we will have
that dependent choice implies choice, and by a standard argument we further
get that choice, AC , implies class comprehension CA for some formulas.

Many results of this section about AC and DC are well-established in sec-
ond order arithmetic (see Feferman and Sieg [3], Simpson [17]), and all the
arguments from arithmetic are easily translated into set theory, nevertheless
we are going to give proves for all statements.

We further define the collection principle Col , which is shown to be equiva-
lent to choice AC over NBG extended by class comprehension CA for appro-
priate formulas. The collection principle Col was introduced in Jäger and
Krähenbühl [10] to deal with the asymmetric interpretation, i.e. to make the
interpretation simpler. In this thesis we are not going to use the collection
principle Col any further, because we directly deal with choice instead of
collection in the asymmetric interpretations in Section 10.

Definition 30. (Abbreviations)

We define the expressions (x)
y

and 〈x〉y (analogous Definition 18) such
that

z ∈ (x)
y

:= z ∈ x ∧ (∃w ∈ y)∃v〈v, w〉 = z,
z ∈ 〈x〉y := (∃w ∈ y)〈z, w〉 ∈ x.

Most of the choice schemes defined below are analogous to the choice schemes
in second order arithmetic, as for example in Simpson [17].

Definition 31. (Choice Schemes)

For x, y, z, Y, Z, α 6∈ A ∈ L1 with x 6= z, Y 6= Z we define

CA[A[x], Y ] := ∃Y ∀x(x ∈ Y ↔ A[x]),
Col [A[x, Y ], z] := ∀x∃Y A[x, Y ]→ ∃Y ∀x∃zA[x, (Y )z],

AC [A[x, Y ]] := ∀x∃Y A[x, Y ]→ ∃Y ∀xA[x, (Y )x],
ACOn [A[α, Y ]] := ∀α∃Y A[α, Y ]→ ∃Y ∀αA[α, (Y )α],
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DC [A[x, Y, Z]] := ∀x∀Y ∃ZA[x, Y, Z]→ ∃Z∀xA[x, (Z)
x
, (Z)x],

DC♦[A[x, Y, Z]] := ∀x∀Y ∃ZA[x, Y, Z]→ ∃Z∀xA[x, 〈Z〉x, (Z)x],
DC -[A[Y, Z]] := ∀Y ∃ZA[Y,Z]→ ∃Z∀xA[(Z)

x
, (Z)x],

DC♦-[A[Y, Z]] := ∀Y ∃ZA[Y,Z]→ ∃Z∀xA[〈Z〉x, (Z)x],

DCOn [A[α, Y, Z]] := ∀α∀Y ∃ZA[α, Y, Z]→ ∃Z∀αA[α, (Z)
α
, (Z)α],

DC♦On [A[α, Y, Z]] := ∀α∀Y ∃ZA[α, Y, Z]→ ∃Z∀αA[α, 〈Z〉α, (Z)α],
DC -

On [A[Y,Z]] := ∀Y ∃ZA[Y,Z]→ ∃Z∀αA[(Z)
α
, (Z)α],

DC♦-
On [A[Y,Z]] := ∀Y ∃ZA[Y,Z]→ ∃Z∀αA[〈Z〉α, (Z)α].

If F ⊆ L1 then Col [F ] := {Col [A[x, Y ], z] ∈ L1 | x, Y, z 6∈ A ∈ F , x 6= z},
analogously CA[F ], AC [F ], DC [F ], etc..

We need to say a few words about the notation we just used, e.g. about
the arguments A[x], Y in the construction of CA[A[x], Y ]. We already know
that A[x] stands for A[x/u] for some variable u. If u is a free variable with
u ∈ A ∈ L1, and x 6∈ A is a bound variable, then A[x] 6∈ L1. Even though
A[x] is not a formula, the expression A[x] holds essential information for the
construction of CA[A[x], Y ]; that’s why we write CA[A[x], Y ] instead of, e.g.,
CA[A, x, Y ].

The next two lemmas show that Π1
n and Σ1

n are essentially closed under
the logical connectors ∧, ∨, and the set quantifiers ∀x, ∃x, i.e. closed modulo
equivalence of formulas. The choice principle AC is needed to have closure for
the set quantifiers, e.g. if A,B ∈ Π1

n and C is one of the formulas A∧B, A∨B,
∀xA[x], or ∃xA[x], then there is some D ∈ Π1

n such that NBG ∪ AC [Π1
n−1]

proves C ↔ D. This closure property is repeatedly used throughout this
section.

Lemma 32.

If F ∈ {Π1
n,Σ

1
n} and A,B ∈ F then there are C,D ∈ F such that

(1) NBG ` C ↔ (A ∧B),

(2) NBG ` D ↔ (A ∨B).

Proof. By induction on n. If n = 0 then A ∧ B and A ∨ B are in F . If
F = Σ1

n+1 and A = ∃XA0[X] and B = ∃Y B0[Y ] with A0, B0 ∈ Π1
n then by

i.h. there is some D0[U ] ∈ Π1
n such that

NBG ` D0[U ]↔ (A0[(U)0] ∨B0[(U)1]).

For D := ∃ZD0[Z] ∈ Σ1
n+1 we get NBG ` D ↔ (A ∨B) because of

NBG ` ∃Z(A0[(Z)0] ∨B0[(Z)1])↔ (A ∨B).

Analogously for A ∧B and all other cases of A,B and F .
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3. Choice Schemes

Lemma 33.

If F ∈ {Π1
n,Σ

1
n} and x 6∈ A ∈ F then there are C,D ∈ F such that

(1) NBG ∪AC [Π1
n−1] ` C ↔ ∀xA[x],

(2) NBG ∪AC [Π1
n−1] ` D ↔ ∃xA[x],

where Π1
n−1 = ∅ for n = 0.

Proof. By induction on n. If n = 0 then ∀xA[x] and ∃xA[x] are in F . If
F = Π1

n+1 and A = ∀Y A0[Y ] with A0 ∈ Σ1
n then ¬∃xA[x] = ∀x∃Y ¬A0[x, Y ]

with ¬A0 ∈ Π1
n. We have ∀x∃Y ¬A0[x, Y ]↔ ∃Y ∀x¬A0[x, (Y )x] by AC [Π1

n],
and by i.h. there is some D0[U ] ∈ Π1

n such that D0[U ] ↔ ∀x¬A0[x, (U)x],
hence for D := ¬∃Y D0[Y ] ∈ Π1

n+1 we have D ↔ ∃xA[x]. By i.h. there is
C0[U ] ∈ Σ1

n such that C0[U ]↔ ∀xA0[x, U ], hence for C := ∀Y C0[Y ] ∈ Π1
n+1

we have C ↔ ∀xA[x], because of ∀Y ∀xA0[x, Y ]↔ ∀x∀Y A0[x, Y ].

Analogously for all other cases of A and F .

The following lemma shows that if we have choice or dependent choice for
Π1
n formulas then we also get it for Σ1

n+1 formulas.

Lemma 34.

(1) NBG ∪AC [Π1
n] ` AC [Σ1

n+1],

(2) NBG ∪DC♦[Π1
n] ` DC♦[Σ1

n+1].

Proof.

(1) If A ∈ Σ1
n+1 then A ∈ Π1

n or A = ∃ZB[Z] for some B ∈ Π1
n, such

that A[x, Y ] = ∃ZB[x, Y, Z]. If C[x, Y ] := B[x, (Y )0, (Y )1] ∈ Π1
n, then

∀x∃Y A[x, Y ]↔ ∀x∃Y C[x, Y ], and we have that the following are equivalent

(a) ∃Y ∀xA[x, (Y )x] = ∃Y ∀x∃ZB[x, (Y )x, Z],

(b) ∃Y ∃Z∀xB[x, (Y )x, (Z)x],

(c) ∃Y ∀xB[x, ((Y )0)x, ((Y )1)x],

(d) ∃Y ∀xB[x, ((Y )x)0, ((Y )x)1] = ∃Y ∀xC[x, (Y )x],

that is (a)↔ (b) by AC [Π1
n], and (b)↔ (c), (c)↔ (d) by elementary compre-

hension. Hence we have NBG ∪AC [Π1
n] ` AC [C[x, Y ]]→ AC [A[x, Y ]], that

is NBG ∪AC [Π1
n] ` AC [A[x, Y ]].

(2) If A[x,X, Y ] = ∃ZB[x,X, Y, Z] ∈ Σ1
n+1 with B ∈ Π1

n and C[x,X, Y ] :=
B[x, (X)0, (Y )0, (Y )1] ∈ Π1

n, then we have that

∀x∀X∃Y A[x,X, Y ]↔ ∀x∀X∃Y C[x,X, Y ],

and the following are equivalent
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(a) ∃Y ∀xA[x, 〈Y 〉x, (Y )x] = ∃Y ∀x∃ZB[x, 〈Y 〉x, (Y )x, Z],

(b) ∃Y ∃Z∀xB[x, 〈Y 〉x, (Y )x, (Z)x],

(c) ∃Y ∀xB[x, 〈(Y )0〉
x
, ((Y )0)x, ((Y )1)x],

(d) ∃Y ∀xB[x, (〈Y 〉x)0, ((Y )x)0, ((Y )x)1] = ∃Y ∀xC[x, 〈Y 〉x, (Y )x],

that is, (a)↔ (b) by AC [Π1
n] (we have DC♦[Π1

n] ` AC [Π1
n]), and (b)↔ (c),

(c)↔ (d) by comprehension, that is if Z := {〈〈z, x〉, y〉 | 〈〈z, y〉, x〉 ∈ Y } then

((Z)y)x = ((Y )x)y and (〈Z〉y)x = 〈(Y )x〉y.

Hence we have that NBG ∪DC♦[Π1
n] ` DC♦[C[x, Y ]]→ DC♦[A[x, Y ]], and

finally NBG ∪DC♦[Π1
n] ` DC♦[A[x, Y ]].

The next theorem shows that we get class comprehension from choice. And
together with the previous lemma we get that choice for Π1

n formulas implies
comprehension for all Π1

n and Σ1
n formulas (because Π1

n∪Σ1
n ⊆ Π1

n+1∩Σ1
n+1).

Theorem 35.

For A ∈ Σ1
n and B ∈ Π1

n we have

NBG ∪AC [Σ1
n] ` ∀x(A[x]↔ B[x])→ ∃Y ∀x(x ∈ Y ↔ A[x]).

Proof. By Lemma 32 there is some C[u, U ] ∈ Σ1
n such that

C[u, U ]↔ ((A[u] ∧ ∅ ∈ U) ∨ (¬B[u] ∧ ∅ 6∈ U)).

We have ∀x(A[x]↔ B[x])→ ∀x∃Y C[x, Y ], hence by AC [Σ1
n] we get

∀x(A[x]↔ B[x])→ ∃Y ∀xC[x, (Y )x].

If we define D0 := ∀x(∅ ∈ (Z)x ↔ A[x]), D1 := ∃Y ∀x(x ∈ Y ↔ ∅ ∈ (Z)x),
and D2 := ∃Y ∀x(x ∈ Y ↔ A[x]), then we have that

∀x(A[x]↔ B[x]) ∧ ∀xC[x, (Z)x]→ D0,

and further D0 → (D1 → D2), hence D0 → D2 by elementary comprehen-
sion, i.e.

∀x(A[x]↔ B[x]) ∧ ∃Y ∀xC[x, (Y )x]→ D2,

and finally ∀x(A[x]↔ B[x])→ D2.

Corollary 36.

NBG ∪AC [Π1
n] ` CA[Π1

n ∪ Σ1
n].
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3. Choice Schemes

Proof. By Lemma 34 and Theorem 35.

The next lemma is the main lemma to get the equivalence between the col-
lection principle Col and choice AC . The lemma makes essential use of the
existence of a global wellordering in NBG.

Lemma 37.

For A ∈ Π1
n we have that

NBG ∪ CA[Π1
n] ` ∃Y ∀x∃zA[x, (Y )z]→ ∃Y ∀xA[x, (Y )x].

Proof. We assume that ∀x∃yA[x, (Z)y] for Z, and W : On → V is such that
Gl [W−1] (see Lemma 29). By CA[Π1

n] we get the classes

X := {〈x, α〉 | A[x, (Z)W (α)]},
F := {〈x, α〉 | 〈x, α〉 ∈ X ∧ (∀β < α)〈x, α〉 6∈ X},
Y := {〈z, x〉 | z ∈ (Z)W (F (x))},

such that F : V → On and ∀xA[x, (Z)W (F (x))] by the definition of F , and
hence ∀xA[x, (Y )x].

Corollary 38.

NBG ∪ CA[Π1
n] ∪ Col [Π1

n] ` AC [Π1
n].

Corollary 39.

For F0,F1 ∈ {Π1
n,Σ

1
n+1} we have that

NBG ∪AC [F0] ` A iff NBG ∪ CA[Π1
n] ∪ Col [F1] ` A.

We have formulated the choice principles AC and DC for sets and also for
ordinals, i.e. ACOn and DCOn . The following two theorems show that these
two formulations are essentially the same over NBG.

Theorem 40.

For F ∈ {Π1
n,Σ

1
n} we have that

(1) NBG ∪AC [F ] ` ACOn [F ],

(2) NBG ∪ACOn [F ] ` AC [F ].

30



Proof.

(1) If A[u, V ] ∈ F then by Lemma 32 there is B[u, V ] ∈ F such that

B[u, V ]↔ (u ∈ On → A[u, V ]),

further if ∀α∃Y A[α, Y ] then ∀x∃Y B[x, Y ], hence ∃Y ∀xB[x, (Y )x] by AC [F ],
that is ∃Y ∀αA[α, (Y )α].

(2) If W : On → V is such that Gl [W−1] by Lemma 29, and A[u, V ] ∈ F then
B[u, V ] := A[W (u), V ] ∈ F , and if ∀x∃Y A[x, Y ] then clearly ∀α∃Y B[α, Y ],
and there is Y such that ∀αB[α, (Y )α] by ACOn [F ], i.e. ∀xA[x, (Y )W−1(x)],
and for Z := {〈z, x〉 | z ∈ (Y )W−1(x)} we have ∀xA[x, (Z)x].

Theorem 41.

For F ∈ {Π1
n,Σ

1
n} we have that

(1) NBG ∪DC [F ] ` DCOn [F ],

(2) NBG ∪DCOn [F ] ` DC [F ].

Proof.

(1) Analogous to Theorem 40(1).

(2) By recursion we get ρ : V → On, such that ρ(x) :=
⋃
{ρ(y) + 1 | y ∈ x}.

If B[u, U, V ] := A[u, {〈z, y〉 | y ∈ u ∧ 〈〈z, y〉, ρ(y)〉 ∈ U}, V ] with A ∈ F then
B[u, U, V ] ∈ F , and if ∀x∀X∃Y A[x,X, Y ] then

∀α∀x∀X∃Y (α = ρ(x)→ B[x,X, Y ]).

We trivially have NBG ∪DCOn [F ] ` ACOn [F ], hence by Theorem 40 and
Lemma 32, and by using AC [F ], we get

∀α∀X∃Y ∀x(α = ρ(x)→ B[x,X, (Y )x]),

and by DCOn [F ] there is a class Y such that

∀α∀x(α = ρ(x)→ B[x, (Y )α, ((Y )α)x]).

If Z := {〈z, y〉 | 〈〈z, y〉, ρ(y)〉 ∈ Y } and α = ρ(x) then we have that

(Z)x = ((Y )α)x,

(Z)x = {〈z, y〉 | y ∈ x ∧ 〈〈z, y〉, ρ(y)〉 ∈ (Y )α}.

Hence we get ∀α∀x(α = ρ(x) → A[x, (Z)x, (Z)x]), and this is equivalent to
∀x(∃α(α = ρ(x))→ A[x, (Z)x, (Z)x]), i.e. ∀xA[x, (Z)x, (Z)x].

The next lemma is an intermediate step for the proofs of the two theorems
that follow. The lemma shows that choice, AC , is a (not so obvious) impli-
cation of some ”weak” forms of dependent choice.
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3. Choice Schemes

Lemma 42.

For F ∈ {Π1
n,Σ

1
n} we have that

(1) NBG ∪DC♦-[F ] ` AC [F ],

(2) NBG ∪DC♦-
On [F ] ` ACOn [F ].

Proof.

(1) If B[U, V ] := ∀x((U)0 = x→ (V )0 = {x} ∧ A[x, (V )1]) with A ∈ F then
B[U, V ] is equivalent to some formula in F by Lemma 32 and because

B[U, V ]↔ (∃x(x = (U)0)→ (∀x ∈ (V )0)(x = (U)0) ∧A[(U)0, (V )1]).

If ∀x∃Y A[x, Y ] then ∀X∃Y B[X,Y ] and by DC♦-[F ] there is Y such that

∀y∀x((〈Y 〉y)0 = x→ ((Y )y)0 = {x} ∧A[x, ((Y )y)1]).

By induction on x we get (〈Y 〉x)0 = x, because (〈Y 〉∅)0 = ∅ and for x 6= ∅
and z ∈ x we have ((Y )z)0 = {z} by i.h., hence (〈Y 〉x)0 = x. We have
∀xA[x, ((Y )x)1]), and for Z := {〈z, x〉 | z ∈ ((Y )x)1} we get ∀xA[x, (Z)x]).

(2) Analogous to Part 1.

The following two theorems together with Theorem 41 yields that all the
variants of the dependent choice schemata are equivalent over NBG.

Theorem 43.

For F ∈ {Π1
n,Σ

1
n} we have that

(1) NBG ∪DC [F ] ` DC -[F ],

(2) NBG ∪DC -[F ] ` DC♦-[F ],

(3) NBG ∪DC♦-[F ] ` DC♦[F ],

(4) NBG ∪DC♦[F ] ` DC [F ].

Proof.

(1) Trivial.

(2) If B[U, V ] := A[{y | ∃z〈y, z〉 ∈ U}, V ] with A ∈ F then B[U, V ] ∈ F . and
if ∀X∃Y A[X,Y ] then ∀X∃Y B[X,Y ], and by DC -[F ] there is some Y such
that ∀xB[(Y )

x
, (Y )x]. We have that

{y | ∃z〈y, z〉 ∈ (Y )
x} = {y | (∃z ∈ x)〈y, z〉 ∈ Y } = 〈Y 〉x,

hence ∀xA[〈Y 〉x, (Y )x].
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(3) If B[U, V ] := ∀xA[x, 〈U〉x, (V )x] with A ∈ F then B is equivalent to
some formula in F by Lemma 42 and Lemma 33. If ∀x∀X∃Y A[x,X, Y ] then
∀x∀X∃Y A[x, 〈X〉x, Y ], and we get ∀X∃Y ∀xA[x, 〈X〉x, (Y )x] by Lemma 42
and AC [F ] , hence ∀X∃Y B[X,Y ]. By DC♦-[F ] we get some Y such that
∀zB[〈Y 〉z, (Y )z], i.e. ∀z∀xA[x, 〈〈Y 〉z〉x, ((Y )z)x]. If Z := {〈y, x〉 | 〈〈y, x〉, x〉 ∈
Y } then we have that

(Z)x = ((Y )x)x and 〈Z〉x = 〈〈Y 〉x〉x,

hence ∀xA[x, 〈Z〉x, (Z)x].

(4) If B[x, U, V ] := A[x, U, (V )x] ∧ ((U)
x

= U → (∀z ∈ V )∃y〈y, x〉 = z)
with A ∈ F then B is equivalent to some formula in F by Lemma 32. If
∀x∀X∃Y A[x,X, Y ] then ∀x∀X∃Y B[x,X, Y ], and by DC♦[F ] we get some Y
such that ∀xB[x, 〈Y 〉x, (Y )x], hence we have that ∀xA[x, 〈Y 〉x, ((Y )x)x] and
∀x((〈Y 〉x)

x
= 〈Y 〉x → (∀z ∈ (Y )x)∃y〈y, x〉 = z). By induction on x we get

(∀z ∈ (Y )x)∃y〈y, x〉 = z, and if Z := {〈y, x〉 | 〈〈y, x〉, x〉 ∈ Y } then

(Z)x = ((Y )x)x and (Z)
x

= 〈Y 〉x,

hence ∀xA[x, (Z)
x
, (Z)x].

Theorem 44.

For F ∈ {Π1
n,Σ

1
n} we have that

(1) NBG ∪DCOn [F ] ` DC -
On [F ],

(2) NBG ∪DC -
On [F ] ` DC♦-

On [F ],

(3) NBG ∪DC♦-
On [F ] ` DC♦On [F ],

(4) NBG ∪DC♦On [F ] ` DCOn [F ].

Proof. Analogous to Theorem 43.

We can state the following corollary by collecting together all the results
about choice principles we got so far.

Corollary 45.

For C0, C1 ∈ {Π1
n,Σ

1
n+1} and

Ti ∈
{

DC [Ci],DC -[Ci],DC♦-[Ci],DC♦[Ci],
DCOn [Ci],DC -

On [Ci],DC♦-
On [Ci],DC♦On [Ci]

}
,

Fi ∈ {AC [Ci],ACOn [Ci]},

we have that

(1) NBG ∪ T0 ` T1 ∪ F1,

(2) NBG ∪ F0 ` F1 ∪ CA[Π1
n ∪ Σ1

n].
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4. Well-founded Class Relations

Wellfoundedness and transfinite induction are two well-known and closely re-
lated concepts, see e.g. Forster [5]. In this section we give a general definition
of the two concepts within theories of sets and classes, and we prove some
familiar statements about wellfoundedness of the element relation ∈ in NBG.
Further, the definitions are such that we can easily state some theorems about
the exact relationship of the two notions.

Definition 46. (Wellfoundedness)

Y is well-founded on Z for C[x] in T , if Y,Z are definable in T by A,B,
respectively, and

T ` Def [Y,A] ∧Def [Z,B]→Wf ZY [C[x]]

where Wf ZY [C[x]] is the formula

(∃x ∈ Z)C[x]→ (∃x ∈ Z)(C[x] ∧ (∀y ∈ Z)(C[y]→ 〈y, x〉 6∈ Y )),

i.e. T `Wf BA [C[x]] where Wf BA [C[x]] is

∃x(B[x] ∧ C[x])→ ∃x(B[x] ∧ C[x] ∧ ∀y(B[y] ∧ C[y]→ ¬A[〈y, x〉])).

If D ⊆ L1 then we write Wf BA [D] for {Wf BA [C[x]] ∈ L1 | C ∈ D}.

In ZFC set theory, i.e. by the axiom of foundation, we have that ∈ is well-
founded on sets. In NBG we get that ∈ is well-founded on all classes, by
using the axiom of global choice. Further, because of class comprehension in
NBG, we have that ∈ is wellfounded for all formulas in Π1

0.

Theorem 47. (Class Foundation)

If A and B are the formulas ∀Z(Z 6= ∅ → (∃x ∈ Z)(∀y ∈ Z) 〈y, x〉 6∈ Y )
and ∀z(z 6= ∅ → (∃x ∈ z)(∀y ∈ z) 〈y, x〉 6∈ Y ), respectively, then

NBG ` A↔ B.
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Proof. We have A→ B because of NBG ` ∀z∃X(z = X). And we show the
contrapositive of B → A. Let Z 6= ∅ such that (∀x ∈ Z)(∃y ∈ Z)〈y, x〉 ∈ Y .
We define the elementary class G such that

G := {f | Fun[f ] ∧ dom(f) = ω ∧ f [ω] ⊆ Z ∧ ∀p〈f(p′), f(p)〉 ∈ Y }.

For any f ∈ G and z = f [ω] 6= ∅ we have that (∀x ∈ z)(∃y ∈ z)〈y, x〉 ∈ Y .
We need to show G 6= ∅. Let W be a global wellordering (see Definition
28, Lemma 29) and let C[x, y] be an elementary formula expressing that
“x, y ∈ Z, and 〈y, x〉 ∈ Y , and y is the least such set with respect to W”.
For any x0 ∈ Z and for the elementary class F with

F := {〈p, f〉 | Fun[f ] ∧ dom(f) = p′ ∧ f(∅) = x0 ∧ (∀q ∈ p)C[f(q′), f(q)]},

we have that dom(F ) = ω∧Fun[F ]∧∀p(F (p) ⊆ F (p′)) and ∪(F [ω]) ∈ G.

Corollary 48. (Π1
0 Foundation)

(1) NBG ` ∀z(Wf V∈ [x ∈ z])↔ ∀Z(Wf V∈ [x ∈ Z]),

(2) NBG `Wf V∈ [Π1
0],

(3) NBG `Wf X∈ [Π1
0].

Proof.

(1) For A, B as in Theorem 47 (and ∈ as in Lemma 26) we have that

NBG ` A[∈/Y ]↔ ∀Z(Wf V∈ [x ∈ Z]),

NBG ` B[∈/Y ]↔ ∀z(Wf V∈ [x ∈ z]).

(2) We have NBG ` ∀z(Wf V∈ [x ∈ z]) because of the axiom of foundation, and

we have NBG ∪ {∀Z(Wf V∈ [x ∈ Z])} `Wf V∈ [Π1
0] because of the comprehension

axiom.

(3) For C ∈ Π1
0 we have NBG `Wf V∈ [y ∈ X ∧ C[y]] by (2). Hence the claim

holds because of Wf V∈ [y ∈ X ∧ C[y]]→Wf X∈ [C[y]].

We define the schemata for transfinite induction analogously to the schemata
for wellfoundedness. The subsequent lemma shows that transfinite induction
is the dual of wellfoundedness, and that under appropriate assumptions the
two concepts become essentially the same.
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4. Well-founded Class Relations

Definition 49. (Transfinite Induction)

Transfinite induction along Y on Z for C[x] in T holds, if Y,Z are definable
in T by A,B, respectively, and

T ` Def [Y,A] ∧Def [Z,B]→ TIZY [C[x]]

where TIZY [C[x]] is the formula

(∀x ∈ Z)((∀y ∈ Z)(〈y, x〉 ∈ Y → C[y])→ C[x])→ (∀x ∈ Z)C[x],

i.e. T ` TIBA [C[x]] where

TIBA [C[x]] := ProgBA [C[x]]→ ∀x(B[x]→ C[x]),

ProgBA [C[x]] := ∀x(B[x] ∧ ∀y(B[y] ∧A[〈y, x〉]→ C[y])→ C[x]).

If D ⊆ L1 then we write TIBA [D] for {TIBA [C[x]] ∈ L1 | C ∈ D}, and for
technical reasons we further define TI∈[D] ⊆ L1 to be the set containing
all formulas ∀x((∀y ∈ x)A[y]→ A[x])→ ∀xA[x] for every A ∈ D.

Clearly we have TI∈[D] 6= TI V∈ [D], but the two sets are semantically equiva-

lent, i.e., TI∈[D] ` TI V∈ [D] and TI V∈ [D] ` TI∈[D].

Lemma 50. (Duality)

(1) `Wf BA [¬C[x]]↔ TIBA [C[x]],

(2) If ¬D ⊆ D ⊆ L1 then T `Wf BA [D] iff T ` TIBA [D],

(3) If C := ∀Y ∃Z∀x(x ∈ Z ↔ x 6∈ Y ) then

` C → (∀Y (Wf BA [x ∈ Y ])↔ ∀Y (TIBA [x ∈ Y ])).

Proof.

(1) The contrapositive of Wf ZY [¬C[x]] is

¬(∃x ∈ Z)(¬C[x] ∧ (∀y ∈ Z)(¬C[y]→ 〈y, x〉 6∈ Y ))→ ¬(∃x ∈ Z)¬C[x]

and this formula is logically equivalent to

(∀x ∈ Z)((∀y ∈ Z)(〈y, x〉 ∈ Y → C[y])→ C[x])→ (∀x ∈ Z)C[x],

i.e. equivalent to TIZY [C[x]].

(2) Follows directly from (1).

(3) Assume ∀Y (Wf BA [x ∈ Y ]) and let U be any class. According to T there
is a class Z such that x ∈ U ↔ x 6∈ Z. We have Wf BA [x ∈ Z], hence
TIBA [x 6∈ Z], i.e. TIBA [x ∈ U ], by Part 1.
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5. Notation System for Ordinals

In this section we define a notation system for ordinals, which is later used in
a generic way in Section 6 to define the well-founded linear ordering (E0,C),
going far beyond the ordinals. In Jäger and Krähenbühl [10], a very sim-
ilar notation system for E0 has already been defined without detour over
notations for ordinals; the aim of this section is to emphasize the tight con-
nection between the notation system for ordinals and E0, e.g., the arithmetic
operations defined on the ordinal notations can later be easily lifted to the
notations in E0 (again in a generic way). That is, we can get a good un-
derstanding of addition, multiplication, and exponentiation, in E0, by just
coping with common ordinal arithmetic (i.e., by coping with the operations
on ordinals in Cantor normal form).

By a notation system we mean that each ordinal can be represented in a
uniform way by an object which essentially consists only of finitely many
basic symbols, i.e. in our system the notations consist of hereditarily finite
sequences of basic symbols. In addition to the finite presentabiltity of the
notations, the notation system must be such that the basic operations on the
ordinals, e.g. ordinal arithmetic, are also achieved by uniform operations on
the notations.

The definition of the notation system is inspired by the Cantor normal form of
ordinals, and it is a slight generalisation of the standard notation system for
the ordinal ε0, as e.g. in Pohlers [15] or Schütte [16]. (In Appendix C we also
use a construction very similar to the one in this section, to define a notation
system based on the binary Veblen function, leading to a generalisation of
the standard notation system for the ordinal Γ0, as e.g. in Pohlers [15].)

First, we define the notation system by a top-down approach, that is, we use
the ordinals themselves, and the Cantor normal form, to recursively define
the notation α̂ for each ordinal α, such that

α̂ :=

{
α α = ωα or α = ∅,
〈〈γ̂0, ..., γ̂r〉〉 α =CNF ω

γ0 + ...+ ωγr 6= ωα.

Clearly, we need a proper class of basic symbols to represent all the ordinals,
and as we can see, all ordinals α with α = ωα and ∅ are the basic symbols.

Secondly, and more important, we define the same notations by a bottom-up
approach, that is we give an inductive definition of the notations by just using
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5. Notation System for Ordinals

hereditarily finite sequences and the basic symbols, without recourse to the
ordinals. This definition will be given in a generic way (i.e., with two class
parameters involved), such that it is easily adapted to other classes of basic
symbols, e.g. leading to notation systems that go beyond the ordinals, like
the notations in E0, in Section 6. In addition to the notations we also define
operations on these notations, i.e. arithmetical operations and an ordering
relation, which correspond to the original arithmetic operations on ordinals
and the element relation ∈ on ordinals.

In the following definitions we explicitly show, i.e., by just using elementary
formulas, that the ordinal notation system, and the operations and the or-
dering relation on notations, are elementarily definable (in both cases, the
top-down and the bottom-up approach). The definability of the notation
system by elementary formulas is important later on, because we are going
to give proofs by induction for statments where these notations are involved;
e.g. in NBG, where we have induction for elementary formulas only.

E.g. addition α+β can be defined by α+β := Fα(β) where the class function
Fα : On → On is such that Fα(∅) := α and Fα(β) :=

⋃
γ<β Fα(γ)

′
for

β 6= ∅. Analogously, multiplication α · β is defined by α · β := Gα(β) where
Gα(β) :=

⋃
γ<β(Gα(γ)+α), and exponentiation αβ is such that αβ := Hα(β)

where Hα(∅) := 1 and Hα(β) :=
⋃
γ<β(Hα(γ) · α) for β 6= ∅. By using the

class functions Fα, Gα, and Hα, we can explain the meaning of the elementary
formulas Add ,Mult , and Exp, in the following definition, that is, Add [f, α]
is equivalent to ∃β(∅ ∈ β ∧ f = Fα�β), and analogously for Mult and Exp.
Further, the general sum Σαf is defined such that Σαf :=

⋃
γ<α(Σγf+f(γ));

the formula Sum[f, g, α], which is used for the definition of Σαf , means that
the function g is such that g(∅) = f(∅), and for any γ with ∅ < γ < α we
have g(γ) =

⋃
β<γ g(β) + f(β′), that is, Σαf =

⋃
γ<α g(γ).

Definition 51. (Ordinal Arithmetic)

We define the expressions α + β, α · β, and αβ , (analogous Definition 18)
such that

z ∈ α+ β := ∃f(Add [f, α] ∧ β ∈ dom(f) ∧ z ∈ f(β)),
z ∈ α · β := ∃f(Mult [f, α] ∧ β ∈ dom(f) ∧ z ∈ f(β)),
z ∈ αβ := ∃f(Exp[f, α] ∧ β ∈ dom(f) ∧ z ∈ f(β)),
z ∈ ∪αf := (∃β ∈ α)z ∈ f(β),
z ∈ Σαf := ∃g(Sum[f, g, α] ∧ z ∈ ∪αg),
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Add [f, α] := Fun[f ] ∧ ∅ ∈ dom(f) ∧ f(∅) = α ∧
∃β∃γ(dom(f) = β ∧ ran(f) ⊆ γ ∧ (∀β1 ∈ β\{∅})(
∀x(x ∈ f(β1)↔ (∃β0 ∈ β1)x ∈ f(β0)

′
))),

Mult [f, α] := Fun[f ] ∧ ∅ ∈ dom(f) ∧ f(∅) = ∅ ∧
∃β∃γ(dom(f) = β ∧ ran(f) ⊆ γ ∧ (∀β1 ∈ β\{∅})(
∀x(x ∈ f(β1)↔ (∃β0 ∈ β1)x ∈ f(β0) + α))),

Exp[f, α] := Fun[f ] ∧ ∅ ∈ dom(f) ∧ f(∅) = 1 ∧
∃β∃γ(dom(f) = β ∧ ran(f) ⊆ γ ∧ (∀β1 ∈ β\{∅})(
∀x(x ∈ f(β1)↔ (∃β0 ∈ β1)x ∈ f(β0) · α))),

Sum[f, g, α] := Fun[f ] ∧ Fun[g] ∧ ∅ ∈ α ∧ α ⊆ dom(f) ∩ dom(g) ∧
∃β(ran(f) ⊆ β) ∧ g(∅) = f(∅) ∧ (∀α1 ∈ α\{∅})(
∀x(x ∈ g(α1)↔ (∃α0 ∈ α1)x ∈ g(α0) + f(α0

′))).

(See e.g. Takeuti [18] for the properties of α+ β, α · β, and αβ .)

Lemma 52. (Ordinal Arithmetic)

(1) NBG ` ∀α∀β(α+ ∅ = α ∧ α+ β′ = (α+ β)
′ ∧

α · ∅ = ∅ ∧ α · β′ = (α · β) + α ∧
α∅ = 1 ∧ αβ′ = αβ · α),

(2) NBG ` ∀α∀β∀f(Fun[f ] ∧ β ⊆ dom(f) ∧ β 6= ∅ →
((∀γ ∈ β)(f(γ) = α+ γ′)→ ∪βf = α+ β) ∧
((∀γ ∈ β)(f(γ) = α · γ′)→ ∪βf = α · β) ∧
((∀γ ∈ β)(f(γ) = αγ

′
)→ ∪βf = αβ).

Proof. By Definition (i.e. by induction on the ordinals).

The following definition (see Takeuti [18]) is about the least infinite ordinal
ω, i.e., the least nonempty ordinal not being a successor of any ordinal.

Definition 53.

We define the expression ω (analogous Definition 18) such that

z ∈ ω := ∀x(x ∈ z′ → x = ∅ ∨ ∃α(x = α′)).

(See e.g. Takeuti [18] for the properties of ω.)

We use the letters p, q, r, s, t (with subscripts) to denote ordinals in ω. We
write ∀pA[p] and ∃pA[p] for (∀x ∈ ω)A[x] and (∃x ∈ ω)A[x], respectively.
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5. Notation System for Ordinals

To be able to deal with the Cantor normal form in the language L0, we define
the formula CNF , such that CNF [f, p, α] holds if the sequence f of ordinals,
γ1, ..., γp, is such that α = ωγ1 + ...+ωγp with γ1 ≥ ... ≥ γp. The subsequent
theorem is the Cantor normal form theorem, which states that this normal
form exists for any ordinal α 6= ∅ and really is unique.

Definition 54. (Cantor Normal Form)

CNF [f, p, α] := Fun[f ] ∧ dom(f) = p ∧ ∃h(∀p1 ∈ p)(
∃β(f(p1) = β ∧ h(p1) = ωβ) ∧
(∀p0 ∈ p1)h(p1) ∈ h(p0)

′ ∧ α = Σph).

Theorem 55. (Cantor Normal Form)

(1) NBG ` ∀α(α = ∅ ∨ ∃!f∃pCNF [f, p, α]),

(2) NBG ` ∀α∀f∀p(CNF [f, p, α]→ α = ∅ ∨ α = ωα ∨ f(∅) ∈ α).

Proof. See e.g. Pohlers [15] or Jech [12].

Having at hand all the ingredients for the formal definition of the notation
system, i.e., ordinal arithmetic and the formula CNF , we are now ready
to state the elementary formula which characterizes the notations α̂ as we
described it at the beginning of this section. And we finish the first part
of this section, i.e. the top-down approach to the notations, by stating the
subsequent lemma about the defining recursion of the notation system.

The formula OT ε in the following definition is such that OT ε[f ] holds if the
domain of f is some ordinal α and f(γ) = γ̂ for all γ ∈ α.

Definition 56. (Ordinal Notation System)

We define the expression α̂ (analogous Definition 18) such that

z ∈ α̂ := ∃f(OT ε[f ] ∧ α ∈ dom(f) ∧ z ∈ f(α)),

OT ε[f ] := Fun[f ] ∧ ∃α(dom(f) = α ∧ (∀α0 ∈ α)(
(α0 = ∅ ∧ f(α0) = α0) ∨ (α0 = ωα0 ∧ f(α0) = α0) ∨
(α0 6= ∅ ∧ α0 6= ωα0 ∧ Fun[f(α0)] ∧ ∃g∃p(CNF [g, p, α0] ∧
dom(f(α0)) = p ∧ (∀p0 ∈ p)f(α0)(p0) = f(g(p0)))).

We simply write n̂ for n̂.

Lemma 57. (Ordinal Notation System)

NBG ` ∀α∀f∀p(α 6= ∅ ∧ α 6= ωα ∧ CNF [f, p, α]→
Fun[α̂] ∧ dom(α̂) = p ∧ (∀p1 ∈ p)α̂(p1) = f̂(p1)).
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Proof. By Definition (i.e. by induction on the ordinals).

The formula Lin in the following definition is such that Lin[U, V ] means that
the relation V is a strict linear ordering on U .

Definition 58. (Strict Total Order)

Lin[U, V ] := (∀x ∈ U)(∀y ∈ U)(∀z ∈ U)〈x, x〉 6∈ V ∧
(〈x, y〉 ∈ V ∧ 〈y, z〉 ∈ V → 〈x, z〉 ∈ V ) ∧
(〈x, y〉 ∈ V ∨ x = y ∨ 〈y, x〉 ∈ V ).

The following definitions are heading towards the inductive definition of our
generic notation system, based on hereditarily finite sequences only, i.e. the
bottom-up approach to the notation.

We first define a somewhat cryptic ordering relation ŶX on the hereditarily
finite sequencesHX of basic symbols in X, such that any strict linear ordering
relation Y on X is extended to the strict linear ordering ŶX on HX ∪X. The
inspiration for ŶX comes from the inherited ordering relation on the notations
α̂, corresponding to the ordering of the ordinals, i.e. the definition of ŶX is
similar to the definition of the ordering relation on the standard notation
system for ε0, see e.g. Pohlers [15].

The formula Hed in the following definition is such that Hed [X, y] holds if
the set y consists of hereditarily finite sequences, such that for any f ∈ y we
have f(p) ∈ y∪X for all p ∈ dom(f). By induction on the set-theoretic rank
we can easily see that y consists of nothing but hereditarily finite sequences,
because the rank of f(p) is smaller than the rank of f for all f, f(p) ∈ y.

Definition 59. (Hereditarily finite Sequences)

We define the expression HX (analogous Definition 18) such that

z ∈ HX := ∃y(Hed [X, y] ∧ z ∈ y),

Hed [X, y] := (∀f ∈ y)(Fun[f ] ∧ ∃p(dom(f) = p ∧
(∀p0 ∈ p)f(p0) ∈ y ∪X)).

The previous definition can be easily translated into an inductive definition
of the class HX (induction on the set-theoretic rank), i.e., ∅ ∈ HX , and every
function f with finite domain p, such that f(p0) ∈ HX ∪X for all p0 ∈ p, is
in HX .

The expression HX is defined for arbitrary X, but in the following we always
assume HX ∩X = ∅ .

The formula Ex in the following definition is such that Ex [X,Y, y] holds if

y ⊆ ŶX and if for any pair 〈f, g〉 ∈ y the set y contains all relevant pairs

〈h1, h2〉 ∈ ŶX , which are used to decide whether 〈f, g〉 belongs to ŶX .
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5. Notation System for Ordinals

Definition 60. (Ordering Relation)

We define the expression ŶX (analogous Definition 18) such that

z ∈ ŶX := ∃y(Ex [X,Y, y] ∧ z ∈ y),

Ex [X,Y, y] := (∀x ∈ y)∃f∃g(x = 〈f, g〉 ∧ {f, g} ⊆ HX ∪X ∧
(f ∈ X ∧ g ∈ X ∧ 〈f, g〉 ∈ Y ) ∨
(f ∈ X ∧ g 6∈ X ∧ g 6= ∅ ∧ (〈f, g(∅)〉 ∈ y ∨ f = g(∅)))∨
(f 6∈ X ∧ g ∈ X ∧ (f = ∅ ∨ 〈f(∅), g〉 ∈ y) ∨
(f 6∈ X ∧ g 6∈ X ∧ Lex [y, f, g])),

Lex [y, f, g] := ∃p∃q(dom(f) = p ∧ dom(g) = q ∧
((p ∈ q ∧ (∀p0 ∈ p)f(p0) = g(p0)) ∨ (∃p1 ∈ p ∩ q)(
〈f(p1), g(p1)〉 ∈ y ∧ (∀p0 ∈ p1)f(p0) = g(p0)).

The previous definition can be easily translated into an inductive definition
of the binary relation ŶX , i.e., ŶX consists of pairs 〈f, g〉 with f, g ∈ HX ∪X,
such that one of the following is the case

f ∈ X ∧ g ∈ X ∧ 〈f, g〉 ∈ Y,
f ∈ X ∧ g 6∈ X ∧ g 6= ∅ ∧ (〈f, g(∅)〉 ∈ ŶX ∨ f = g(∅)),
f 6∈ X ∧ g ∈ X ∧ (f = ∅ ∨ 〈f(∅), g〉 ∈ ŶX ,
f 6∈ X ∧ g 6∈ X ∧ Lex [ŶX , f, g].

Lemma 61. (Strict Total Order)

NBG ` Lin[X,Y ] ∧HX ∩X = ∅ → Lin[HX ∪X, ŶX ].

Proof. The proof is similar to the purely combinatorial proof (i.e. without
using the set theoretic background) for the standard notation system of ε0

(cf. Remark 3.3.19 in Pohlers [15]). The most difficult part of the proof is

transitivity, 〈x, y〉 ∈ ŶX ∧ 〈y, z〉 ∈ ŶX → 〈x, z〉 ∈ ŶX , and this is proved by
induction on the sum of depths of x, y and z. The tedious technical details
are left to the reader.

Now we use the relation ẐX , i.e. Y := ẐX , to define the class of all notations

ÔtX,Y ⊆ HX ∪ X (actually, we define Ôt
0

X,Y ⊆ HX such that ÔtX,Y =

Ôt
0

X,Y ∪X). Further, to get the arithmetic operations on notations, we first

define Ôt
1

X,Y := Ôt
0

X,Y ∪ {〈〈w〉〉 | w ∈ X} ⊆ HX and arithmetic operations

on Ôt
1

X,Y , that is, +̂1
Y , ·̂ 1X,Y , and ∧̂ 1

X,Y (see definitions below). After that,

we use mappings πX : ÔtX,Y → Ôt
1

X,Y and πinv

X : Ôt
1

X,Y → ÔtX,Y , to get the
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arithmetic operations on ÔtX,Y . At the end of this section, we will see that

by putting X := {α | α = ωα}, and Z = {〈x, y〉 | x ∈ y}, and Y := ẐX , we

get the notations α̂, that is, {α̂ | α ∈ On} = ÔtX,Y . In the previous lemma,

we have already seen that ẐX is a strict linear ordering on ÔtX,Y for any X
and Z with Lin[X,Z], hence the ordering relation on the notations will be

ẐX .

The notation system ÔtX,Y is defined similarly to the standard notation
system for ε0, see e.g. Pohlers [15].

Definition 62. (Generic Notation System)

We define the expressions Ôt
0

X,Y , Ôt
1

X,Y ÔtX,Y , πX , πinv

X (analogous Defi-
nition 18) such that

z ∈ Ôt
0

X,Y := ∃y(ÔT [X,Y, y] ∧ z ∈ y),

z ∈ Ôt
1

X,Y := z ∈ Ôt
0

X,Y ∨ (∃w ∈ X)z = 〈〈w〉〉,
z ∈ ÔtX,Y := z ∈ Ôt

0

X,Y ∨ z ∈ X,
z ∈ πX := ∃y((y ∈ X ∧ z = 〈y, 〈〈y〉〉〉) ∨ (y 6∈ X ∧ z = 〈y, y〉)),
z ∈ πinv

X := z ∈ π−1
X ∧(∀y ∈ X)z 6= 〈〈〈y〉〉, 〈〈y〉〉〉,

ÔT [X,Y, y] := (∀f ∈ y)f ∈ HX ∧ (∀p ∈ dom(f))(f(p) ∈ y ∪X ∧
(∀q ∈ p)(f(q′) = f(q) ∨ 〈f(q′), f(q)〉 ∈ Y )) ∧
((dom(f) 6= 1 ∨ f(∅) 6∈ X)).

Again, the previous definition can be easily translated into a proper inductive

definition of Ôt
0

X,Y (analogous to the preceding definitions).

There are purely combinatorial operations on the notations of ordinals in
Cantor normal form, which represent the arithmetic operations on ordinals,
see e.g. Takeuti [18] for a detailed account. E.g. if α =CNF ω

γ and β =CNF

ωδ0 + ...+ ωδn then

α+ β =CNF

{
ωδ0 + ...+ ωδn γ < δ0,

ωγ + ωδ0 + ...+ ωδn γ ≥ δ0,

β · α =CNF

{
ωδ0 + ...+ ωδn γ = ∅,
ωδ0+γ γ > ∅,

βα =CNF



ωδ0 + ...+ ωδn γ = ∅,
ωδ0·α γ > ∅, δ0 > ∅,
ω∅ γ > ∅, δ0 = ∅, n = 0,

ω(ωγ−1) ω > γ > ∅, δ0 = ∅, n > 0,

ωα γ ≥ ω, δ0 = ∅, n > 0,
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5. Notation System for Ordinals

and if α has a more complex form, i.e. α =CNF ω
γ0 + ...+ ωγm , then we can

use this operations, to find the Cantor normal form of ωγ0 +(...+(ωγm +β)),
and β · ωγ0 + ...+ β · ωγm , and β(ωγ0 ) · ... · β(ωγm ), that is, the normal forms
of α+ β, and β · α, and βα, respectively.

In the following three definitions we capture theses operations for addition,
multiplication and exponentiation in context of the generic notation system
ÔtX,Z , which is also based on the Cantor normal form.

Definition 63. (Addition)

We define the expressions fag and f +̂
X,Y

g (analogous Definition 18)

such that

z ∈ fag := z ∈ f ∨ (∃p ∈ dom(g))z = 〈dom(f) + p, g(p)〉,
z ∈ x +̂0

Y g := (〈x, g(∅)〉 ∈ Y ∧ g 6= ∅ ∧ z ∈ g) ∨
(〈x, g(∅)〉 6∈ Y ∨ g = ∅) ∧ z ∈ 〈〈x〉〉ag,

z ∈ f +̂1
Y g := ∃p∃h(p = dom(f) ∧ dom(h) = p′ ∧ h(p) = g ∧

z ∈ h(∅) ∧ (∀q ∈ p)h(q) = f(q) +̂0
Y h(q′)),

z ∈ f +̂
X,Y

g := z ∈ πinv

X (πX(f) +̂1
Y πX(g)).

Definition 64. (Multiplication)

We define the expression f ·̂
X,Y

g (analogous Definition 18) such that

z ∈ f ·̂ 0X,Y x := (f 6= ∅ ∧ x = ∅ ∧ z ∈ f) ∨
(f 6= ∅ ∧ x 6= ∅ ∧ z ∈ 〈〈f(∅) +̂

X,Y
x〉〉),

z ∈ f ·̂ 1X,Y g := ∃p∃h(p = dom(g) ∧ dom(h) = p′ ∧ h(∅) = ∅ ∧
z ∈ h(p) ∧ (∀q ∈ p)h(q′) = h(q) +̂1

Y (f ·̂ 0X,Y g(q))),

z ∈ f ·̂
X,Y

g := z ∈ πinv

X (πX(f) ·̂ 1X,Y πX(g)).

Definition 65. (Exponentiation)

We define the expression f ∧̂
X,Y

x (analogous Definition 18) such that

z ∈ f− := (〈∅, ∅〉 ∈ f ∧ ∃p(p′ ∈ dom(f) ∧ z = 〈p, f(p′)〉)) ∨
(〈∅, ∅〉 6∈ f ∧ z ∈ f),

z ∈ f ∧̂ 0
X,Y x := (x = ∅ ∧ z ∈ f) ∨ (f = ∅ ∧ z ∈ f) ∨

(x 6= ∅ ∧ f(∅) = ∅ ∧ ((dom(f) = 1 ∧ z ∈ f) ∨
(dom(f) 6∈ 2 ∧ z ∈ 〈〈πX(〈〈x−〉〉)〉〉)) ∨

(x 6= ∅ ∧ f(∅) 6= ∅ ∧ z ∈ 〈〈f(∅) ·̂
X,Y
〈〈x〉〉〉〉),

z ∈ f ∧̂ 1
X,Y g := ∃p∃h(p = dom(g) ∧ dom(h) = p′ ∧ h(∅) = 〈〈∅〉〉 ∧

z ∈ h(p) ∧ (∀q ∈ p)h(q′) = h(q) ·̂1X,Y (f ∧̂ 0
X,Y g(q))),

z ∈ f ∧̂
X,Y

g := z ∈ πinv

X (πX(f) ∧̂ 1
X,Y πX(g)),
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We end this section with the next theorem, which brings together the two
approaches to our notation system for ordinals. We connect ÔtX,Z to the

notations α̂, by taking the appropriate instance of the generic system ÔtX,Z ,

i.e. by putting X := {α | α = ωα} and Z := ŶX where Y := {〈x, y〉 | x ∈ y}.
The theorem also shows that the arithmetic operations and the ordering re-
lation on ÔtX,Z correspond to ordinal arithmetic and to the element relation
on ordinals, respectively.

Theorem 66. (Ordinal Notation System)

Let Ôn, Onε and <ε be elementarily definable classes in NBG, such that

Ôn := {x | ∃α(x = α̂)},
Onε := {x | ∃α(x = α ∧ α = ωα)},
<ε := ∈̂Onε ,

where ∈̂Onε is as in Definition 60 with ∈ as in Lemma 26. If we write +ε,

·ε, ∧ε for +̂Onε,<ε , ·̂Onε,<ε , ∧̂Onε,<ε , respectively, then we have that

(1) NBG ` ∀α∀β(α ∈ β ↔ α̂ <ε β̂),

(2) NBG ` ∀α(α̂ ∈ ÔtOnε∩α′,<ε),

(3) NBG ` Ôn = ÔtOnε,<ε ,

(4) NBG ` ∀α∀β(α̂+ β = α̂+ε β̂ ∧ α̂ · β = α̂ ·ε β̂ ∧ α̂β = α̂ ∧ε β̂).

Proof. (1) is proved by induction on the natural sum (Hessenberg sum) of
α and β. (2) is proved by induction on α. (3) follows by induction on the

depth of x for x ∈ ÔtOnε,<ε , and by (2). The proof of (4) goes along the
line of combinatorial properties of ordinal arithmetic that is captured in the
Definitions 63–65 (see Takeuti [18] for an account of ordinal arithmetic for
ordinals in Cantor normal form). We leave the tedious technical details of
this proof to the reader.
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6. Wellorderings beyond the
Ordinals

We are now going to define the linear ordering (E0,C), by using the generic
notation system from Section 5. In some way, (E0,C) can be seen as the
analogue of (ε0,∈), with the set of the natural numbers, i.e. the ordinal ω,
replaced by the class of all ordinals, i.e. the notation Ω. The ordering is
shown to have well-founded initial segments up to the specific bounds Ωn for
any n, and this sequence of initial segments, i.e., iterated class comprehen-
sion along this segments, is later used in Section 10 for the proof-theoretic
characterization of the choice principles AC and DC over NBG with full
induction.

In the following definition, we extend the class of all epsilon numbers Onε
with a new “virtual” epsilon number Ω on top of all others, to get OnΩ, i.e.,
OnΩ has a top element Ω, in contrast to Onε. Based on the symbols in OnΩ

and the ordering on OnΩ we build the notation system E0 and the ordering
relation C according to the construction of the generic notation system in
the previous section. From this construction, we also get the operations +̂, ·̂,
and ∧̂, on the notations in E0, corresponding to addition, multiplication and
exponentiation, respectively.

Clearly, E0 extends the class of all notations α̂ of the ordinals, because of
Onε ⊆ OnΩ. Actually, the class E0 consists exactly of the notations α̂ and
α̂[Ω] for all ordinals α, where α̂[Ω] is just α̂ with all the occurrences of the
biggest epsilon number εβ in α̂ being replaced by Ω.

For any a ∈ E0 we either have a = α̂ for some α, or we have plenty of ordinals
α such that a = α̂[Ω]. We can use this fact to simulate the operations +̂, ·̂,
∧̂, by the operations +ε, ·ε, ∧ε (from Theorem 66), respectively. If we write
εmax(α̂) for the biggest epsilon number in α̂, and εmax(α̂) = ∅ for α < ε0,
then, e.g., for any a, b ∈ E0 we have that

a ·̂ b =


α̂ ·ε β̂ a = α̂ ∧ b = β̂,

(α̂ ·ε β̂)[Ω]

a = α̂[Ω] ∧ b = β̂[Ω] ∧ εmax(α̂) = εmax(β̂) > ∅ ∨
a = α̂ ∧ b = β̂[Ω] ∧ εmax(α̂) < εmax(β̂) ∨
a = α̂[Ω] ∧ b = β̂ ∧ εmax(α̂) > εmax(β̂),

and analogously we can compute addition and exponentiation on E0.
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For the ordering relation C we can use exactly the same trick, that is, we
have a C b iff there are α, β, which represent a and b, like in one of the four
cases above, and α̂ <ε β̂. Because of this very correspondence between +̂, ·̂,
∧̂, C, and +ε, ·ε, ∧ε, <ε, and because of Theorem 66, we also may transfer
all the usual inequalities and equalities about ordinal arithmetic, from the
ordinals to the notations in E0.

Definition 67.

We define the expressions Ω, E0, C (analogous Definition 18) such that

z ∈ Ω := z ∈ 〈∅, ∅〉,
z ∈ OnΩ := z ∈ Onε ∨ z = Ω,
z ∈≺ := ∃α∃β((z = 〈α, β〉 ∧ α ∈ β) ∨ z = 〈α,Ω〉),
z ∈≺Ω := z ∈ ≺̂OnΩ

,

z ∈ E0 := z ∈ ÔtOnΩ,≺Ω
,

z ∈C := z ∈≺Ω ∧(∃x ∈ E0)(∃y ∈ E0)z = 〈x, y〉,
z ∈E := z ∈C ∨(∃x ∈ E0)z = 〈x, x〉.

We use the letters a, b, c, d, e, u, v,w to denote elements in E0. We write
∀aA[a] and ∃aA[a] for (∀x ∈ E0)A[x] and (∃x ∈ E0)A[x], respectively.
Sometimes we drop the universal quantifier ∀a in front of A[a]. In this
case A[a] stands for x ∈ E0 → A[x], e.g. we may write T ` A[a] instead of
T ` ∀aA[a].

We write +̂, ·̂, ∧̂ for +̂OnΩ,≺Ω
, ·̂OnΩ,≺Ω

, ∧̂OnΩ,≺Ω
, respectively. We write ab

for a ∧̂ b, and x C y and x E y for 〈x, y〉 ∈C and 〈x, y〉 ∈E, respectively.
Furter we write (∃x C y)A[x] and (∀x C y)A[x] for ∃x(x C y ∧ A[x]) and
∀x(x C y → A[x]), respectively.

And finally, we write Ω0 for Ω +̂ 1̂, and Ωn+1 for ω̂Ωn .

The following lemma states some simple properties about Ω, i.e. part 1 is
used for part 2 of the subsequent theorem, about the linear ordering (E0,C),
which is a direct consequence of Lemma 61.

Lemma 68.

(1) NBG ` Ω 6∈ On ∧ Ω 6∈ HX ∧HX ∩ On = {∅},
(2) NBG ` Ω0 = 〈〈Ω, ∅〉〉 ∧ Ωn+1 = 〈〈Ωn〉〉

Proof. By definition, by computation, and by induction on n.
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6. Wellorderings beyond the Ordinals

Theorem 69. (Linear Ordering)

(1) E0 and C are elementarily definable classes in NBG,

(2) NBG ` Lin[E0,C].

Proof. By definition and by Lemma 61.

In the following we write TI a
C[C[x]] for TI xCaC [C[x]], and analogously we

write Wf a
C[C[x]] and Proga

C[C[x]].

The formula Proga
C[C[x]] is a subformula, i.e. the premise, of the formula

TI a
C[C[x]]. We show that Proga

C[C[x]] can be replaced by the stronger state-

ment ProgE0
C [C[x]], without changing the meaning of TI a

C[C[x]]. Clearly, this
is the case, because (E0,C) is a linear ordering.

Lemma 70.

NBG ` TI a
C[C[x]]↔ (ProgE0

C [C[x]]→ (∀x C a)C[x]).

Proof. We assume ProgE0
C [C[x]]→ (∀x C a)C[x], i.e. its contrapositive

(∃x C a)¬C[x]→ (∃x ∈ E0)(¬C[x] ∧ (∀y ∈ E0)(¬C[y]→ y 6C x),

and we show TI a
C[C[x]]. If there is some b such that b C a ∧ ¬C[b] then

by assumption we find d such that ¬C[d] and ∀y ∈ E0(¬C[y] → y 6C d),
i.e. b 6C d. We get d E b because of totality, and d C a because of tran-
sitivity. Hence (∃x C a)(¬C[x] ∧ (∀y C a)(¬C[y] → y 6C x), i.e. we have
shown the contrapositive of TI a

C[C[x]]. The other direction follows because of

ProgE0
C [C[x]]→ Proga

C[C[x]]; for any b with b C a and (∀c C a)c C b→ C[c]
we get (∀c ∈ E0)c C b → C[c] by totality, i.e. (∀c ∈ E0)c C a ∨ a E c, and
because of a E c → c 6C b, by transitivity. Hence C[b] by ProgE0

C [C[x]], that
is Proga

C[C[x]].

The following two lemmas and the subsequent theorem are in complete anal-
ogy to the standard wellordering proof for the common notation system for
ε0, see e.g. Pohlers [15].

Lemma 71.

(1) NBG ` a +̂ (b +̂ c) = (a +̂ b) +̂ c,

(2) NBG ` c 6= ∅ ∧ a C b +̂ ω̂c → (∃d C c)(∃p ∈ ω) a C b +̂ ω̂d ·̂ p̂.
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Proof. The proof is in analogy to the standard notation system for (ε0, <),
where the notations are also based on the Cantor normal form of ordinals.
The tedious combinatorial arguments are left to the reader.

Definition 72. (Abbreviations)

a ⊂ C[y] := (∀y C a)C[y],
Ca
x [y] := (∀b C a)(b ⊂ C[z/x]→ b +̂ ω̂y ⊂ C[z/x]).

Lemma 73.

For F ∈ {Π1
0,L1} and C ∈ F we have that

(1) NBG ∪Wf ω∈ [F ] ` Prog ω̂
a

C [C[y/x]]→ Proga+̂1̂
C [Cω̂

a

x [y]],

(2) NBG ∪Wf ω∈ [F ] ` TI a
C[Cω̂

a

x [y]]→ TI ω̂
a

C [C[y/x]].

(We have NBG `Wf ω∈ [Π1
0] by Corollary 48.)

Proof. In the following we use the shorthand C[y] for C[y/x].

(1) For any a with

(a) Prog ω̂
a

C [C[y]], i.e. (∀b C ω̂a)(b ⊂ C[z]→ C[b]),

and for any b, c, with

(b) b C a +̂ 1̂ ∧ b ⊂ Cω̂a

x [y],

(c) c C ω̂a ∧ c ⊂ C[z],

we show that c +̂ ω̂b ⊂ C[z], i.e. Cω̂
a

x [b] and hence Proga+̂1̂
C [Cω̂

a

x [y]].

If a = ∅ then c +̂ ω̂b = 1̂, and C[∅] by (a) because of ∅ ⊂ C[z].
If ∅ C a and e C c +̂ ω̂b, and if b = ∅ then e E c, hence C[e] by
(c)+(a), otherwise ∅ C b and by Lemma 71 there are d C b, d1 C a
and p0, p1 ∈ ω such that e C c +̂ ω̂d ·̂ p̂0 and c C ω̂d1 ·̂ p̂1. We have
c +̂ ω̂d ·̂ p̂ C ω̂d1 ·̂ p̂1 +̂ ω̂d ·̂ p̂ C ω̂a for any p ∈ ω because of d C a, and
further Cω̂

a

x [d] by (b), hence ∀p(c +̂ ω̂d ·̂ p̂ ⊂ C[z]) by induction on p,
which is available because of Wf ω∈ [F ], and finally C[e].

(2) We assume

(d) Proga
C[Cω̂

a

x [y]]→ a ⊂ Cω̂a

x [y],

(e) Prog ω̂
a

C [C[y]],

and we show ω̂a ⊂ C[y]. We have Proga+̂1̂
C [Cω̂

a

x [y]] by (e)+(1), hence

a ⊂ Cω̂
a

x [y] by (d), and Cω̂
a

x [a] by Proga+̂1̂
C [Cω̂

a

x [y]]. Finally ω̂a ⊂ C[y]

by Cω̂
a

x [a] and because of ∅ ⊂ C[y].
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6. Wellorderings beyond the Ordinals

Finally, by using the previous main lemma, we can show transfinite induction
along C up to any Ωn, in NBG, for any elementary formula. And if we add
full induction to NBG then we even get transfinite induction along C up to
any Ωn for all formulas.

Theorem 74.

(1) NBG ` TI Ωn
C [Π1

0],

(2) NBG ∪Wf V∈ [L1] ` TI Ωn
C [L1].

Proof.

(1) We have NBG `Wf On∈ [Π1
0] by Corollary 48, hence NBG `Wf Ω

C [Π1
0] by

Theorem 66 and because of Ôn = {a | a C Ω}. We get NBG ` TI Ω
C [Π1

0]

by Lemma 50. To show NBG ` TI Ω0
C [Π1

0], i.e. NBG ` TI Ω+̂1̂
C [Π1

0], we assume

ProgΩ+̂1̂
C [C[y]], and we get Ω ⊂ C[y] by TI Ω

C [Π1
0]. To show Ω +̂ 1̂ ⊂ C[y],

we need C[Ω]. But C[Ω] holds because of ProgΩ+̂1̂
C [C[y]] and Ω ⊂ C[y].

Finally, NBG ` TI Ωn
C [Π1

0] is shown by induction on n, by applying Lemma 73,

i.e. TI
Ωn−1

C [CΩn
x [y]] → TI Ωn

C [C[y/x]], where we use that CΩn
x [z] ∈ Π1

0 for
C[z] ∈ Π1

0.

(2) Analogous to (1).
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7. Iterated Class Comprehension

In this section we define the schemata of iterated class comprehension, which
is used to inductively define hierarchies of classes. We show that the choice
schemes AC and DC can be used to prove the existence of such class hier-
archies defined by iterated class comprehension along initial segments of the
linear ordering (E0,C) from Section 6.

Iterated class comprehension is later used in Section 8 to define truth and
proof predicates in NBG and extensions thereof, and it is used in Section 9 to
define cumulative hierarchies of classes for the asymmetric interpretations.

The following definition is a generalization of the expressions (X)
y

and 〈X〉y
from Definition 30, such that, e.g., (X)

y
now also becomes (X)

∈,y
, and such

that (X)
Z,y

is defined for arbitrary binary relations Z.

Definition 75. (Abbreviations)

We define the expressions (X)
Z,y

and 〈X〉Z,y (analogous Definition 18)
such that

z ∈ (X)
Z,y

:= z ∈ X ∧ ∃v∃w(z = 〈v, w〉 ∧ 〈w, y〉 ∈ Z),

z ∈ 〈X〉Z,y := ∃w(〈z, w〉 ∈ X ∧ 〈w, y〉 ∈ Z).

Iterated comprehension essentially allows us to build hierarchies of classes
U , such that (U)y depends on the levels (U)z where z is any predecessor
of y, i.e. a predecessor with respect to some fixed binary relation Z. On
the level y in the hierarchy we have that (U)y = {x | C[(U)

Z,y
, x, y]} for

some fixed formula C, such that C and the relation Z actually determine the
whole hierarchy, and if Z is well-founded then the hierarchy is even uniquely
determined.

Definition 76. (Iterated Comprehension)

For A,B ∈ L1 with one free set variable and no other free variables, and
D ⊆ L1, we define

HierYZ [C[U, x, y]] := (∀y ∈ Y )∀x(x ∈ (U)y ↔ C[(U)
Z,y
, x, y]),

HierBA [C[U, x, y]] := ∀y(B[y]→ ∀x(x ∈ (U)y ↔ C[(U)
A,y

, x, y])),

∃HierBA [D] := {∃U(HierBA [C[U, x, y]]) | C ∈ D}.

In the following we write Hiera
C[C[U, x, y]] for HieryCaC [C[U, x, y]].
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7. Iterated Class Comprehension

The following lemma shows the essential uniqueness of class hierarchies built
by iterated comprehension along well-founded class relations.

Lemma 77.

If A,B,C ∈ L1 and D := ∀x∀y(A[〈y, x〉] ∧ B[x] → B[y]), and NBG ⊆ T ,
and T ` TIBA [Π1

0], then

T ` HierBA [C[U, x, y]] ∧HierBA [C[V, x, y]] ∧D → ∀y(B[y]→ (U)y = (V )y).

Proof. If we assume HierBA [C[U, x, y]] and HierBA [C[V, x, y]], and if E[y] :=
(U)y = (V )y, then for any x with B[x] we have ∀y(A[〈y, x〉]→ B[y]) and

∀y(B[y] ∧A[〈y, x〉]→ E[y])→ (U)
A,x

= (V )
A,x

.

Hence ProgBA [E[y]], and the claim follows by TIBA [E[y]].

The previous lemma can be easily applied to well-founded relations in NBG.

Corollary 78.

For all C ∈ L1 we have that

(1) NBG ` HierOn∈ [C[U, x, y]] ∧HierOn∈ [C[V, x, y]]→ ∀α((U)α = (V )α),

(2) NBG ` HierΩn̂

C [C[U, x, y]] ∧HierΩn̂

C [C[V, x, y]]→
(∀a C Ωn̂) (U)a = (V )a,

(3) NBG ` HierΩn
C [C[U, x, y]] ∧HierΩn

C [C[V, x, y]]→
(∀a C Ωn) (U)a = (V )a.

The following theorem shows that if we add appropriate choice schemes and
induction to NBG, then we can prove the existence of class hierarchies de-
fined by iterated comprehension along initial segments of the linear ordering
(E0,C). The argument for the proof is similar to that for analogous state-
ments in second order arithmetic, see e.g. Cantini [1], and Feferman and
Sieg [4].

Theorem 79.

(1) NBG ∪ CA[Π1
n] ` ∃Hierm∈ [Π1

n],

(2) NBG ∪DC [Π1
n] ` ∃HierΩm̂

C [Π1
n],

(3) NBG ∪AC [Π1
n] ∪Wf V∈ [L1] ` ∃HierΩm

C [Π1
n].
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Proof.

(1) We trivially have ∃Hier0
∈[Π1

n], and for any C ∈ Π1
n we show that

Hierm∈ [C[V, x, y]]→ ∃U(Hierm+1
∈ [C[U, x, y]]),

hence we get ∃U(Hierm∈ [C[U, x, y]] by induction on m. If Hierm∈ [C[V, x, y]],
then by CA[Π1

n] we get some W such that

∀z(z ∈W ↔ C[(V )
m
, z,m]),

and by comprehension we get U such that Hierm+1
∈ [C[U, x, y]], i.e.

U := {〈z, p〉 | (p ∈ m ∧ 〈z, p〉 ∈ V ) ∨ (p = m ∧ z ∈W )}.

(2) Proof by induction on m. Ω0̂ = 1̂, hence ∃HierΩ0̂

C [Π1
n] by CA[Π1

n] which
we have by Corollary 36. Let E[a, U ] := Hiera

C[A[U, x, y]] for some A ∈ Π1
n,

that is, E[a, U ] is equivalent to formulas in Π1
n+1 and Σ1

n+1. We assume

∃HierΩm̂

C [Π1
n] and we show (∃Z)E[Ωm̂+1, Z]; by case distinction on α, i.e. α =

∅, or α is a successor, or α is a limit, we get

∀α∀Y ∃Z((∀β ∈ α)E[Ωm̂ ·̂ β̂, Y ]→ E[Ωm̂ ·̂ α̂, Z]). (*)

I.e. if α = ∅ then Ωm̂ ·̂ α̂ = ∅ and E[∅, Z] holds trivially. If α is a successor,

α = β′, then we may assume E[Ωm̂ ·̂ β̂, Y ], and by using Y and because of

∃HierΩm̂

C [Π1
n] we can build Z such that E[Ωm̂ ·̂ β̂ +̂ Ωm̂, Z]. If α 6= ∅ is a limit

ordinal then for any a C Ωm̂ ·̂ α̂ there is some β ∈ α such that a C Ωm̂ ·̂ β̂,
hence we have (∀β ∈ α)E[Ωm̂ ·̂ β̂, Y ]→ E[Ωm̂ ·̂ α̂, Y ]. We have DC♦On [Σ1

n+1]
by Corollary 45, and we get ∃Z∀αB[Z,α] with

B[Z,α] := (∀β ∈ α)E[Ωm̂ ·̂ β̂, 〈Z〉α]→ E[Ωm̂ ·̂ α̂, (Z)α]

by DC♦On [Σ1
n+1] and (*). If we define

C[Z, γ] := (∀α ∈ γ)(∀β ∈ α)E[Ωm̂ ·̂ β̂, 〈Z〉α]→
(∀β ∈ γ)E[Ωm̂ ·̂ β̂, (Z)β ],

D[Z, γ] := (∀α ∈ γ)(∀β ∈ α)E[Ωm̂ ·̂ β̂, 〈Z〉α]→
(∀β ∈ γ)E[Ωm̂ ·̂ β̂, 〈Z〉γ ].

then we have (∀α ∈ γ)B[Z,α] → C[Z, γ], i.e. ∀αB[Z,α] → ∀γC[Z, γ], and
further we have C[Z, γ] → D[Z, γ]. By Theorem 35 we have comprehension
for the formula E, hence because of TIOn∈ [Π1

0] we get

∀γD[Z, γ]→ ∀γ(∀β ∈ γ)E[Ωm̂ ·̂ β̂, (Z)γ ].
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7. Iterated Class Comprehension

We get ∃Z∀αB[Z,α]→ ∃Z∀γ(∀β ∈ γ)E[Ωm̂ ·̂ β̂, (Z)γ ] by the three preceding
implications. We have that ∃Z∀αB[Z,α], hence there is some Z such that

∀βE[Ωm̂ ·̂ β̂, (Z)β
′
], i.e. we get U := {z | ∃α〈z, α〉 ∈ Z} by comprehension,

such that E[Ωm̂+1, U ], because there is some β with a C Ωm̂ ·̂ β̂ for any

a C Ωm̂+1.

(3) Let E[a, U ] := Hiera
C[A[U, x, y]] for some A ∈ Π1

n. If we show

(∀b C a)∃Y E[b, Y ]→ ∃Y E[a, Y ] for any a C Ωm+1,

then because of TI
Ωm+1

C [L1] we get (∀b C Ωm+1)∃Y E[b, Y ], i.e. ∃Y E[Ωm, Y ].

If a = ∅ then E[a, Y ] holds trivially. If a = c +̂ 1̂ then we may assume V such
that E[c, V ]. By Corollary 36 we have CA[Π1

n], hence we get Y such that

Y := {〈x, b〉 | (b = c ∧A[(V )
c
, x, c]) ∨ (b C c ∧ x ∈ (V )b)},

and (Y )
c

= (V )
c
, and (Y )c = {x | A[(Y )

c
, x, c]}, i.e., E[a, Y ]. If a C Ωm+1 is

a limit, that is (∀b C a)b +̂ 1̂ C a, and if we assume that (∀b C a)∃Y E[b, Y ],
then there is V such that (∀b C a)E[b, (V )b] by AC [Π1

n]. By elementary
comprehension we get

Y := {〈x, b〉 | b C a ∧ 〈x, b〉 ∈ (V )b+̂1̂}

and we show that E[a, Y ]. For b C a we have E[b +̂ 1̂, (V )b+̂1̂], and for c C b

we further get E[c +̂ 1̂, (V )b+̂1̂] and E[c +̂ 1̂, (V )c+̂1̂], hence ((V )c+̂1̂)
c+̂1̂

=

((V )b+̂1̂)
c+̂1̂

by Lemma 77, and (∀b C a) (Y )b = ((V )b+̂1̂)b, because for
c C b C a we have that

((Y )
b
)c = ((V )c+̂1̂)c = ((V )b+̂1̂)c = (((V )b+̂1̂)

b
)c.

For b C a we have E[b +̂ 1̂, (V )b+̂1̂], hence for any x we finally get

A[(Y )
b
, x, b] iff A[((V )b+̂1̂)

b
, x, b] iff 〈x, b〉 ∈ (V )b+̂1̂ iff x ∈ (Y )b,

that is E[a, Y ].
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8. Gödelization, Formalized Truth
and Proof

In this section we introduce formalized versions of the notions of formula,
truth, and proof, in complete analogy to the notions defined in Section 1.
The formalized version GL1 of the language L1, and the predicates for truth
and proof are defined within NBG (the predicates usually only exist as classes
in extensions of NBG). In contrast to L1, we will now also have constants for
classes and constants for all sets in the formalized language GL1 . And the
formalized proof system will have an additional infinitary inference rule for
the universal set quantifier.

The aim of introducing predicates for truth and proofs is twofold; for the
asymmetric interpretation in Section 10 we use a cumulative hierarchy of
classes, which resembles the constructible hierarchy in set theory, that is, any
level of the class hierarchy contains all classes that can be built by elementary
comprehension with class parameters from lower levels of the hierarchy (see
Section 9). Clearly, for the definition of this hierarchy we need an appropriate
truth predicate within NBG, which at least reflects the truth of elementary
formulas. And further, we need a formalized proof predicate, because an
infinitary proof system is used to deal with full induction TI∈[L1] in the
asymmetric interpretation (as described in the Introduction).

But, first of all we want to represent formulas as sets in NBG. This is achieved
by the following Gödelization. Analogous to the language L1 we have codes
for free and bound set variables v̇x, u̇x, and free and bound class variables
V̇x, U̇x, and further we have set constants ċx, and class constants Ċx. And in
analogy to the logical connectives in L1, we have operations on codes, i.e.,
∼̇, ∈̇, ∨̇, ∧̇, ∃̇, ∀̇.

Definition 80. (Gödelization)

We define the following expressions (for variables x, y)

v̇x := 〈〈0, x〉〉,
ċx := 〈〈1, x〉〉,
V̇x := 〈〈2, x〉〉,
Ċx := 〈〈3, x〉〉,
u̇x := 〈〈4, x〉〉,
U̇x := 〈〈5, x〉〉,

∼̇x := 〈〈6, x〉〉,
x ∈̇ y := 〈〈7, x, y〉〉,
x ∨̇ y := 〈〈8, x, y〉〉,
x ∧̇ y := 〈〈9, x, y〉〉,
∃̇x y := 〈〈10, x, y〉〉,
∀̇x y := 〈〈11, x, y〉〉.

55



8. Gödelization, Formalized Truth and Proof

We write ẋ, that is v̇n and u̇n, for v̇n and u̇n, respectively, and analogously
Ẏ for class variables Y. For formulas C ∈ L1 we inductively define the
expression pCq such that

px ∈ yq := ẋ ∈̇ ẏ,
px ∈ Y q := ẋ ∈̇ Ẏ ,
p∼Aq := ∼̇ pAq,

p(A ∨B)q := pAq ∨̇ pBq,
p(A ∧B)q := pAq ∧̇ pBq,

p∃xA[x/u]q := ∃̇ ẋ(pAq[ẋ/u̇]),

p∀xA[x/u]q := ∀̇ ẋ(pAq[ẋ/u̇]),

p∃XA[X/U ]q := ∃̇ Ẋ(pAq[Ẋ/U̇ ]),

p∀XA[X/U ]q := ∀̇ Ẋ(pAq[Ẋ/U̇ ]),

where pAq[ẋ/u̇] and pAq[Ẋ/U̇ ] stand for the expressions that are obtained
from pAq by replacing all occurrences of u̇ and U̇ by ẋ and Ẋ, respectively.
We use the shorthand notation pΓq for {pAq | A ∈ Γ}.

Having defined the particular sets representing the formulas in L1, we further
define the whole class of Gödel-codes GL1 , e.g., which additionally contains
the codes of formulas where variables are replaced by constants. We fur-
ther define some useful operations on these codes φ ∈ GL1 , like substitution
of “variables”, φ[v̇y/v̇x], φ[u̇y/v̇x], φ[ċy/v̇x], φ[V̇y/V̇x], φ[U̇y/V̇x], φ[Ċy/V̇x],
complementation ¬φ, a rank function rkX(φ), and a function term(φ) to
unveil all variables and constants in φ, i.e., term(φ) is the set of all codes,
v̇y, u̇y, ċy, V̇y, U̇y, Ċy, occurring in φ. All operations on GL1 are in complete
analogy to the operations on L1.

The formula Sub[f, x, y] in the following definition is just a compact form to
write that f is a function such that f(φ) = (φ[x/y]) for any φ ∈ dom(f), and
if φ ∈ GL1 ∩ dom(f) then any “subformula” (involved in the construction)
of φ is in dom(f) and term(φ) ⊆ dom(f). Similarly Ter [f ] means that f
is a function such that f(φ) = term(φ) for any φ ∈ dom(f), and if φ ∈
GL1 ∩ dom(f) then any “subformula” (involved in the construction) of φ is
in dom(f) and term(φ) ⊆ dom(f). And the formula Goe[x] means that
x ⊆ GL1 , and if φ ∈ x then any “subformula” (involved in the construction)
of φ is in x; see Lemma 82 for the contents of GL1 .

Definition 81. (Abbreviations)

We define the expressions u[x/y], term(u), GL1 (analogous Definition 18)
such that

z ∈ u[x/y] := ∃f(Sub[f, x, y] ∧ u ∈ dom(f) ∧ z ∈ f(u)),
z ∈ term(u) := ∃f(Ter [f ] ∧ u ∈ dom(f) ∧ z ∈ f(u)),

z ∈ GL1 := ∃x(Goe[x] ∧ z ∈ x),
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Sub[f, x, y] := Fun[f ] ∧ (∀g ∈ dom(f))∃p(
∃v(g = 〈〈p, v〉〉 ∧ p ∈ 6 ∧
((g = y ∧ f(g) = x) ∨ (g 6= y ∧ f(g) = g))) ∨
(∃g1 ∈ dom(f))(∃g2 ∈ dom(f))(p ∈ 12\7 ∧
((g = 〈〈6, g1〉〉 ∧ f(g) = 〈〈6, f(g1)〉〉) ∨
(g = 〈〈p, g1, g2〉〉 ∧ f(g) = 〈〈p, f(g1), f(g2)〉〉))),

Ter [f ] := Fun[f ] ∧ (∀g ∈ dom(f))∃p(
∃v(g = 〈〈p, v〉〉 ∧ p ∈ 6 ∧ f(g) = {g}) ∨
(∃g1 ∈ dom(f))(∃g2 ∈ dom(f))(p ∈ 12\7 ∧
((g = 〈〈6, g1〉〉 ∧ f(g) = f(g1)) ∨
(g = 〈〈p, g1, g2〉〉 ∧ f(g) = f(g1) ∪ f(g2)))),

Goe[x] := (∀f ∈ x)(
(∃p ∈ 2)(∃q ∈ 4)∃u∃v((f = 〈〈7, 〈〈p, u〉〉, 〈〈q, v〉〉〉〉 ∨
f = 〈〈6, 〈〈7, 〈〈p, u〉〉, 〈〈q, v〉〉〉〉〉〉) ∧ (p 6= 0 ∨ u ∈ ω) ∧
(q 6∈ {0, 2} ∨ v ∈ ω)) ∨
(∃f1 ∈ x)(∃f2 ∈ x)(∃p ∈ 10\8)f = 〈〈p, f1, f2〉〉 ∨
(∃f1 ∈ x)(∃p ∈ 12\10)∃q∃r∃u∃v(
((u = u̇q ∧ v = v̇r) ∨ (u = U̇q ∧ v = V̇r)) ∧
u 6∈ term(f1) ∧ f = 〈〈p, v, f1[u/v]〉〉)).

We use the letters φ, ψ, θ, ξ to denote elements in GL1 . We write ∀φA[φ]
and ∃φA[φ] for (∀x ∈ GL1)A[x] and (∃x ∈ GL1)A[x], respectively.

For the following expressions we just give an informal description; the
formal definitions would be similar to the previous ones:

We define the expressions GΠ1
n
, GΣ1(Π1

n), etc., in analogy to GL1 . E.g. GΠ1
n

is the class of Gödel codes representing the set of formulas Π1
n, in the same

way as GL1 represents L1, that is, we have A ∈ Π1
n iff pAq ∈ GΠ1

n
. Further,

if φ ∈ GΠ1
n

then φ[ċx/v̇p], φ[Ċx/V̇p] ∈ GΠ1
n

for any x and p ∈ ω (i.e. GΠ1
n

is

closed under substitution with constants).

For the formalized proof predicate the Gödel-codes without class constants
will play an important role, hence we define the expression G−L1 such that
G−L1 = {φ ∈ GL1 | ∀x(Ċx 6∈ term(φ))}.

For functions f , g, we define the expression φ[f, g]∞ such that φ[f, g]∞ ∈
GL1 is just φ with all ”free variables” v̇p, V̇q ∈ term(φ) replaced by the
constants ċf(p), Ċg(q), respectively, i.e., if v̇s, V̇s 6∈ term(φ) for every s > r
then

φ[f, g]∞ = φ[ċf(0)/v̇0]...[ċf(r)/v̇r][Ċg(0)/V̇0]...[Ċf(r)/V̇r].

Analogously we define φ[f ]∞, where only ”free set variables” v̇p ∈ term(φ)
are replaced by the specified constants.
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The rank rkX(φ) is defined analogous to the formula rank, rkC , e.g., such
that rkGC (pAq) = rkC(A). We write rk for rk∅.

The complement ¬φ is defined in analogy to the complementation of for-
mulas, e.g., such that ¬pAq = p¬Aq.

We use the shorthand φ →̇ψ for (¬φ) ∨̇ψ, and φ ↔̇ψ for (φ →̇ψ) ∧̇ (ψ →̇φ),
and for sets u ⊆ GL1 we write u[[x/y]] for {φ[x/y] | φ ∈ u}, and analogously
we write u[[f, g]]∞ and u[[f ]]∞.

The previous cryptic definition of GL1 , which explicitly shows that GL1 is
elementarily definable, does not really reveal the content of GL1 . Therefore
we state the following lemma, which unfolds the recursive definition of the
class of Gödel-codes.

Lemma 82.

NBG ` ∀z(z ∈ GL1 ↔ A[z]), where

A[z] := ∃p∃q∃x∃y∃u∃φ∃ψ(z ∈ {(φ ∨̇ ψ), (φ ∧̇ ψ)} ∨
(u̇p 6∈ term(φ) ∧ z ∈ {∃̇ u̇p(φ[u̇p/v̇q]), ∀̇ u̇p(φ[u̇p/v̇q])}) ∨
(U̇p 6∈ term(φ) ∧ z ∈ {∃̇ U̇p(φ[U̇p/V̇q]), ∀̇ U̇p(φ[U̇p/V̇q])}) ∨
(z ∈ {u, ∼̇u} ∧ (u ∈ {v̇p ∈̇ v̇q, v̇p ∈̇ ċy, ċx ∈̇ v̇q, ċx ∈̇ ċy} ∨

u ∈ {v̇p ∈̇ V̇q, v̇p ∈̇ Ċy, ċx ∈̇ V̇q, ċx ∈̇ Ċy})).

Proof. By the definition of GL1 .

We define truth predicates that cover formulas up to some specified formula
rank, that is, we can gradually increase the rank for which the formulas are
properly reflected by the truth predicate. Further, truth is defined such that
class quantifiers range over all classes (U)x of some class universe U , and
such that the class constant Ċx stands for the corresponding class (U)x. In
contrast to the class quantifiers, the set quantifiers range over the universe
of all sets, as usual, and any set constant ċx stands for the set x itself.

The formula Tr [α,U, V ] in the following definition means that V is a truth
predicate containing all “true” closed Gödel-codes φ ∈ GL1 with rank rk (φ) ≤
α′, and with all class quantifiers and class constants in φ interpreted with
respect to the class universe U .

Definition 83. (Formalized Truth)

We define Tr [α,U, V ] to be the formula,

∀φ∀ψ∀x∀y∀p∀q(rk (φ) ∈ α′ ∧ rk (ψ) ∈ α′ → A),
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where A is the conjunction of the following formulas

(ċx ∈̇ ċy) ∈ V ↔ x ∈ y,
∼̇(ċx ∈̇ ċy) ∈ V ↔ x 6∈ y,

(ċx ∈̇ Ċy) ∈ V ↔ x ∈ (U)y,
∼̇(ċx ∈̇ Ċy) ∈ V ↔ x 6∈ (U)y,

(φ ∨̇ ψ) ∈ V ↔ φ ∈ V ∨ ψ ∈ V,
(φ ∧̇ ψ) ∈ V ↔ φ ∈ V ∧ ψ ∈ V,

∃̇ u̇p(φ[u̇p/v̇q]) ∈ V ↔ ∃z(φ[ċz/v̇q] ∈ V ) ∧ u̇p 6∈ term(φ),

∀̇ u̇p(φ[u̇p/v̇q]) ∈ V ↔ ∀z(φ[ċz/v̇q] ∈ V ) ∧ u̇p 6∈ term(φ),

∃̇ U̇p(φ[U̇p/V̇q]) ∈ V ↔ ∃z(φ[Ċz/V̇q] ∈ V ) ∧ U̇p 6∈ term(φ),

∀̇ U̇p(φ[U̇p/V̇q]) ∈ V ↔ ∀z(φ[Ċz/V̇q] ∈ V ) ∧ U̇p 6∈ term(φ).

The following technical lemma shows that the formalized notion of truth is
properly defined, i.e., if Tr [α,U, V ] holds then V is essentially unique with
respect to α and U . Clearly, the truth predicates also perfectly reflect the
complementation of formulas.

Lemma 84.

(1) NBG ` ∀α(∀β ∈ α)(Tr [α,U,X]→ Tr [β, U,X]),

(2) NBG ` ∀φ(Tr [rk (φ), U,X] ∧ Tr [rk (φ), U, Y ]→
(φ[f, g]∞ ∈ X ↔ φ[f, g]∞ ∈ Y )),

(3) NBG ` (∀φ ∈ G
Π1

0
)(Tr [rk (φ), U,X] ∧ Tr [rk (φ), V, Y ]→

(][φ, f0, g0, f1, g1, U, V ]→ (φ[f0, g0]∞ ∈ X ↔ φ[f1, g1]∞ ∈ Y )),

where ][φ, f0, g0, f1, g1, U, V ] is the formula

(∀x)((Ċx ∈ term(φ)→ (U)x = (V )x) ∧
(V̇x ∈ term(φ)→ (U)g0(x) = (V )g1(x)) ∧
(v̇x ∈ term(φ)→ f0(x) = f1(x))),

(4) NBG ` Tr [rk (φ), U, Y ]→ (φ[f, g]∞ ∈ Y ↔ (¬φ)[f, g]∞ 6∈ Y ).

Proof.

(1) By the definition of Tr [α,U,X], i.e. because of the transitivity of ∈ on
ordinals.

(2) By induction on p we get

(∀p ∈ ω)Tr [p, U,X] ∧ Tr [p, U, Y ]→
∀φ(rk (φ) ∈ p′ → (φ[f, g]∞ ∈ X ↔ φ[f, g]∞ ∈ Y )).
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(3) Analogous to (2).

(4) Analogous to (2).

Truth predicates for formulas, up to some fixed maximum formula rank, are
shown to exist in NBG. If we want to have a truth predicate for all formulas,
i.e. if we want the truth predicate to exist as a class, then NBG needs to be
extended by iterated elementary comprehension up to ω.

Lemma 85.

(1) NBG ∪ ∃Hierω∈ [Π1
0] ` ∀X∃Y Tr [ω,X, Y ],

(2) NBG ` ∀X∃Y Tr [n,X, Y ].

Proof.

(1) If we define A[V, z, r, U ] := ∃φ∃ψ∃x∃y∃p∃q(z ∈ GL1 ∧ rk (z) = r ∧ B),
where B is the disjunction of the following formulas

z = (ċx ∈̇ ċy) ∧ x ∈ y,
z = ∼̇(ċx ∈̇ ċy) ∧ x 6∈ y,
z = (ċx ∈̇ Ċy) ∧ x ∈ (U)y,
z = ∼̇(ċx ∈̇ Ċy) ∧ x 6∈ (U)y,
z = (φ ∨̇ ψ) ∧ (φ ∈ 〈V 〉r ∨ ψ ∈ 〈V 〉r),
z = (φ ∧̇ ψ) ∧ φ ∈ 〈V 〉r ∧ ψ ∈ 〈V 〉r,
z = ∃̇ u̇p(φ[u̇p/v̇q]) ∧ ∃u(φ[ċu/v̇q] ∈ 〈V 〉r) ∧ u̇p 6∈ term(φ),

z = ∀̇ u̇p(φ[u̇p/v̇q]) ∧ ∀u(φ[ċu/v̇q] ∈ 〈V 〉r) ∧ u̇p 6∈ term(φ),

z = ∃̇ U̇p(φ[U̇p/V̇q]) ∧ ∃u(φ[Ċu/V̇q] ∈ 〈V 〉r) ∧ U̇p 6∈ term(φ),

z = ∀̇ U̇p(φ[U̇p/V̇q]) ∧ ∀u(φ[Ċu/V̇q] ∈ 〈V 〉r) ∧ U̇p 6∈ term(φ),

then by ∃Hierω∈ [Π1
0] there is some V such that

(∀r ∈ ω)∀z(z ∈ (V )r ↔ A[(V )
r
, z, r, U ]).

By induction on r we get (∀r ∈ ω)Tr [r, U, 〈V 〉ω], hence Tr [ω,U, 〈V 〉ω]. See
e.g. Jäger and Krähenbühl [10] for a similar construction.

(2) Analogous to (1). We use that NBG ` ∃Hiern∈ [Π1
0] by Theorem 79.

In Section 10 we extensively use truth predicates, hence the following handy
notation will be of great use.

Definition 86.

We define the following abbreviations for formulas,

True[φ,U ] := ∃Y (Tr [rk (φ), U, Y ] ∧ φ ∈ Y ),
φ[f, g]U∞ := True[φ[f, g]∞, U ].

The following two lemmas are just restating some facts in the context of the
new notation, i.e. by using φ[f, g]U∞.
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Lemma 87.

(1) NBG ` ∀φ(∃Y Tr [rk (φ), U, Y ]→ (φ[f, g]U∞ ↔ ¬((¬φ)[f, g]U∞))),

(2) NBG ∪ ∃Hierω∈ [Π1
0] ` ∀φ(φ[f, g]U∞ ↔ ¬((¬φ)[f, g]U∞)),

(3) NBG ` pAq[f, g]U∞ ↔ ¬(p¬Aq[f, g]U∞).

Proof.

(1) If φ[f, g]U∞ and ψ = φ[f, g]∞ then ∃Y (Tr [rk (ψ), U, Y ] ∧ ψ ∈ Y ), and
∀Y (Tr [rk (ψ), U, Y ] → ψ ∈ Y ) by Lemma 84(2), hence because of rk (ψ) =
rk (¬ψ) and by Lemma 84(4) we get ∀Y (Tr [rk (¬ψ), U, Y ] → (¬ψ) 6∈ Y ),
that is ¬((¬φ)[f, g]U∞). On the other hand, if ¬((¬φ)[f, g]U∞) then we have
∀Y (Tr [rk (¬ψ), U, Y ] → (¬ψ) 6∈ Y ). And because of ∃Y Tr [rk (φ), U, Y ]
we get ∃Y (Tr [rk (ψ), U, Y ] ∧ (¬ψ) 6∈ Y ), hence by Lemma 84(4) we get
∃Y (Tr [rk (ψ), U, Y ] ∧ ψ ∈ Y ), that is φ[f, g]U∞.

(2) By Part 1 and Lemma 85(1).

(3) By Part 1 and Lemma 85(2).

Lemma 88.

NBG ` ∀φ∀ψ∀p∀q(A),

where A is the conjunction of the following formulas

(ċx ∈̇ ċy)[f, g]U∞ ↔ x ∈ y,
∼̇(ċx ∈̇ ċy)[f, g]U∞ ↔ x 6∈ y,

(ċx ∈̇ Ċy)[f, g]U∞ ↔ x ∈ (U)y,
∼̇(ċx ∈̇ Ċy)[f, g]U∞ ↔ x 6∈ (U)y,

(φ ∨̇ ψ)[f, g]U∞ ↔ φ[f, g]U∞ ∨ ψ[f, g]U∞,
(φ ∧̇ ψ)[f, g]U∞ ↔ φ[f, g]U∞ ∧ ψ[f, g]U∞,

∃̇ u̇p(φ[u̇p/v̇q])[f, g]U∞ ↔ ∃z(φ[ċz/v̇q][f, g]U∞) ∧ u̇p 6∈ term(φ),

∀̇ u̇p(φ[u̇p/v̇q])[f, g]U∞ ↔ ∀z(φ[ċz/v̇q][f, g]U∞) ∧ u̇p 6∈ term(φ),

∃̇ U̇p(φ[U̇p/V̇q])[f, g]U∞ ↔ ∃z(φ[Ċz/V̇q][f, g]U∞) ∧ U̇p 6∈ term(φ),

∀̇ U̇p(φ[U̇p/V̇q])[f, g]U∞ ↔ ∀z(φ[Ċz/V̇q][f, g]U∞) ∧ U̇p 6∈ term(φ).

Proof. By the definition of φ[f, g]∞ and φ[f, g]U∞, and because if we have
any Y with Tr [rk (φ), U, Y ] then we get Z with Tr [rk (φ)

′
, U, Z] by elementary

comprehension.
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Corollary 89.

(1) NBG ` ∀φ∀p∀q(∀̇ u̇p(φ[u̇p/v̇q])[f, g]U∞ → φ[f, g]U∞),

(2) NBG ` ∀φ∀p∀q(u̇p 6∈ term(φ) ∧ φ[f, g]U∞ → ∃̇ u̇p(φ[u̇p/v̇q])[f, g]U∞),

(3) NBG ` ∀φ∀p∀q(∀̇ U̇p(φ[U̇p/V̇q])[f, g]U∞ → φ[f, g]U∞),

(4) NBG ` ∀φ∀p∀q(U̇p 6∈ term(φ) ∧ φ[f, g]U∞ → ∃̇ U̇p(φ[U̇p/V̇q])[f, g]U∞).

Proof.

(1) If we have ∀̇ u̇p(φ[u̇p/v̇q])[f, g]U∞ then ∀z(φ[ċz/v̇q][f, g]U∞) by Lemma 88,
hence φ[ċf(q)/v̇q][f, g]U∞, and because of φ[f, g]∞ = φ[ċf(q)/v̇q][f, g]∞ we get
φ[f, g]U∞.

(2) If we have φ[f, g]U∞ then φ[ċf(q)/v̇q][f, g]U∞, that is ∃z(φ[ċz/v̇q][f, g]U∞),

and hence ∃̇ u̇p(φ[u̇p/v̇q])[f, g]U∞ by Lemma 88.

(3) Analogous to (1).

(4) Analogous to (2).

The most important property of the formalized truth predicate is that it
reflects the truth of the original formulas, at least for an appropriate class of
formulas.

Lemma 90. (Truth Reflection)

Let ]D[f, g, U ] be the conjunction of >, and of all formulas f(]x) = x, and
(U)g(]Y ) = Y , for all free variables x, Y ∈ D.

(1) If A ∈ Σ1(Π1
0) then NBG ` ]A[f, g, U ]→ (pAq[f, g]U∞ → A).

(2) If B ∈ Π1(Σ1
0) then NBG ` ]B [f, g, U ]→ (B → pBq[f, g]U∞).

(3) If C ∈ Π1
0 then NBG ` ]C [f, g, U ]→ (C ↔ pCq[f, g]U∞).

For the reverse implications A → pAq[f, g]U∞ and pBq[f, g]U∞ → B there
are easy counter-examples, i.e., for A := ∃X∀y(y ∈ X) and U = ∅ we have
NBG ` A ∧ ¬∃x∀y(y ∈ (∅)x), and for B := ∀X∀y(y ∈ X) and U = V we
have NBG ` ∀x∀y(y ∈ (V)x) ∧ ¬B.

Proof.

(1) By induction on the structure of A. If A is an atomic formula then the
claim follows directly by Lemma 88. If A = ∃XB[X/V ] then by i.h. we
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have pBq[f, g]U∞ ∧ ]B [f, g, U ]→ B, and each of the following statements is a
consequence of the preceding one

pBq[f, g]U∞ ∧ (U)g(]V ) = V ∧ ]A[f, g, U ]→ B,

pBq[f, g]U∞ ∧ g(]V ) = x ∧ (U)x = V ∧ ]A[f, g, U ]→ B,

pBq[f, g]U∞ ∧ g(]V ) = x ∧ ∃Y ((U)x = Y ) ∧ ]A[f, g, U ]→ A,

pBq[f, g]U∞ ∧ g(]V ) = x ∧ ]A[f, g, U ]→ A,

pBq[Ċx/V̇ ][f, g]U∞ ∧ g(]V ) = x ∧ ]A[f, g, U ]→ A,

∃h(∃z(pBq[Ċz/V̇ ][f, h]U∞ ∧ h(]V ) = z) ∧ ]A[f, h, U ])→ A,

∃h(∃z(pBq[Ċz/V̇ ][f, h]U∞) ∧ ]A[f, h, U ])→ A,
pAq[f, g]U∞ ∧ ]A[f, g, U ]→ A.

If A = ∀xB[x/v] then we have pBq[f, g]U∞ ∧ ]B [f, g, U ] → B by i.h., hence
pBq[f, g]U∞ ∧ ]A[f, g, U ] → ∀z(f(]v) = z → B[z/v]), that is ∀h(pAq[h, g]U∞ ∧
]A[h, g, U ] → B[h(]v)/v]) by Corollary 89(1). If we assume there is some f
such that pAq[f, g]U∞ ∧ ]A[f, g, U ] then for any f0 with ∀p(p = ]v ∨ f0(p) =
f(p)) we have that pAq[f0, g]U∞ ∧ ]A[f0, g, U ], hence B[f0(]v)/v]). And be-
cause f0(]v) can be any set, we have shown ∃h(pAq[h, g]U∞∧]A[h, g, U ])→ A,
that is pAq[f, g]U∞ ∧ ]A[f, g, U ] → A. Other cases of A are shown similarly
and mainly by using Lemma 88.

(2) By (1) and Lemma 87(3), and because Σ1(Π1
0) = ¬Π1(Σ1

0).

(3) By (1) and (2), and because Π1
0 ⊆ Σ1(Π1

0) ∩Π1(Σ1
0).

The definition of the infinitary proof system and the corresponding proof
predicate (within NBG) is in analogy to the formal proofs on the meta-level,
i.e., Definition 12. We formalize Definition 12 within NBG, in almost complete
analogy, except for the infinitary rule for the universal set quantifiers. By
infinitary proofs we derive finite sets of Gödel-codes z ⊆ G−L1 . The inference
rules for infinitary proofs consist of the common rules for classical logic, and
the rules for some axioms X ⊆ G−L1 , and additional inference rules specified
by some class Y ⊆ G−L1 . The rules can be depicted as follows (where z ⊆ G−L1

is any finite set)

z ∪ {φ,¬φ} φ ∈ G−L1 atomic,

z ∪ {φ}
z ∪ {φ ∨̇ψ}

,
z ∪ {ψ}

z ∪ {φ ∨̇ψ}
,

z ∪ {φ} z ∪ {ψ}
z ∪ {φ ∧̇ψ}

,

z ∪ {φ[v̇t/v̇q]}
z ∪ {∃̇ u̇p(φ[u̇p/v̇q])}

,
z ∪ {φ}

z ∪ {∀̇ u̇p(φ[u̇p/v̇q])}
v̇q 6∈

⋃
ξ∈z

term(ξ),
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z ∪ {φ[V̇t/V̇q]}
z ∪ {∃̇ U̇p(φ[U̇p/V̇q])}

,
z ∪ {φ}

z ∪ {∀̇ U̇p(φ[U̇p/V̇q])}
V̇q 6∈

⋃
ξ∈z

term(ξ),

z ∪ {φ} z ∪ {¬φ}
z

,

z ∪ {φ} with φ ∈ X,
z ∪ {ψ}
z ∪ {φ}

with (ψ →̇ φ) ∈ Y,

z ∪ {ċu ∈̇ ċv} with u ∈ v, z ∪ {∼̇(ċu ∈̇ ċv)} with u 6∈ v,
z ∪ {φ[ċw/v̇q]}

z ∪ {∃̇ u̇p(φ[u̇p/v̇q])}
,

z ∪ {φ[ċw/v̇q]} for all sets w

z ∪ {∀̇ u̇p(φ[u̇p/v̇q])}
.

In the following, i.e., by the formula Pr+
Ωn

[U,X, Y, Z], we define the prov-
ability relation U , which captures provability by such infinitary proofs. In
addition to the axioms X ⊆ GL1 and the additional inference rules Y ⊆ GL1 ,
the relation also has control parameters a and r, such that z ∈ (U)a,r essen-
tially means that

(1) there is a derivation of the finite set z ⊆ G−L1 , which possibly uses axioms
in X and additional inference rules from Y ,

(2) this derivation takes at most a C Ωn steps (by definition we have ∅ C a),

(3) the rank of any cut in this derivation is at most r with respect to Z ⊆ GL1 ,
that is, any “cut-formula” φ is such that rkZ(φ) ≤ r. If r = ∅ then φ ∈ Z
or ¬φ ∈ Z.

The elementary formulas A and A+ in the following definition, are such
that Pr+

Ωn
[U,X, Y, Z] = HierΩn

C [A+[U, x, b, X, Y, Z]] and PrΩn [U,X, Y, Z] =

HierΩn
C [A[U, x, b, X, Y, Z]], where PrΩn is just Pr+

Ωn
without the common

inference rules for set quantifiers, e.g., in PrΩn only the infinitary rule for
the universal set quantifers is included. E.g., if PrΩn [U,X, Y, Z] then for any
b C Ωn we have

(U)b = {x | A[(U)C,b, x, b, X, Y, Z]}.

Pr∅Ωn [U ], PrDC
Ωn [U ], and Pr∅+Ωn

[U ], PrDC+
Ωn

[U ], in the following definition, are

instances of PrΩn and Pr+
Ωn

, respectively, with specified classes X,Y, Z.

Definition 91. (Formalized Proof)

Let A[U, x, b, X, Y, Z] be the formula

b 6= ∅ ∧ ∃φ∃ψ∃y∃z∃u∃v∃p∃q∃r∃s∃t(y ⊆f G−L1 ∧ r ∈ s′ ∧ x = 〈y, s〉 ∧B),
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where y ⊆f V means that y is a finite subset of V , i.e., y ⊆f V stands for
y ⊆ V ∧∃g(Fun[g]∧dom(g) ∈ ω∧ ran(g) = y), and where B is the formula

{φ, ∼̇φ} ⊆ y ∨
(φ ∈ y ∧ φ ∈ X) ∨
(y = z ∪ {φ} ∧ ψ →̇φ ∈ Y ∧ (∃a C b)z ∪ {ψ} ∈ (U)a,r) ∨
(y = z ∪ {φ ∨̇ψ} ∧ (∃a C b)(z ∪ {φ} ∈ (U)a,r ∨ z ∪ {ψ} ∈ (U)a,r)) ∨
(y = z ∪ {φ ∧̇ψ} ∧ (∃a C b)(z ∪ {φ} ∈ (U)a,r ∧ z ∪ {ψ} ∈ (U)a,r)) ∨
(y = z ∪ {∃̇ U̇p(φ[U̇p/V̇q])} ∧ (∃a C b)z ∪ {φ[V̇t/V̇q]} ∈ (U)a,r) ∨
(y = z ∪ {∀̇ U̇p(φ[U̇p/V̇q])} ∧ (∀ξ ∈ z)V̇q 6∈ term(ξ) ∧

(∃a C b)z ∪ {φ} ∈ (U)a,r) ∨
((∃a C b)(y ∪ {φ} ∈ (U)a,r ∧ y ∪ {¬φ} ∈ (U)a,r) ∧ rkZ(φ) ∈ s′) ∨
((ċu ∈̇ ċv) ∈ y ∧ u ∈ v) ∨
(∼̇(ċu ∈̇ ċv) ∈ y ∧ u 6∈ v) ∨
(y = z ∪ {∃̇ u̇p(φ[u̇p/v̇q])} ∧ ∃w(∃a C b)z ∪ {φ[ċw/v̇q]} ∈ (U)a,r) ∨
(y = z ∪ {∀̇ u̇p(φ[u̇p/v̇q])} ∧ ∀w(∃a C b)z ∪ {φ[ċw/v̇q]} ∈ (U)a,r).

We define the formula PrΩn [U,X, Y, Z] := HierΩn
C [A[U, x, b, X, Y, Z]], and

we define Pr∅Ωn , and PrDC
Ωn , with specific X, Y , Z, such that

Pr∅Ωn [U ] := PrΩn [U, ∅, ∅, ∅],
PrDC

Ωn [U ] := PrΩn [U,G
CA[Π1

0]
,G

DCOn [Π1
0]
,G

CA[Π1
0]
∪ G→

DCOn [Π1
0]

],

where the expression G→C is defined (analogous Definition 18) such that

z ∈ G→C := ∃φ((φ →̇ z) ∈ GC).

We define A+ to be the formula A, with B replaced by

B ∨
y = z ∪ {∃̇ u̇p(φ[u̇p/v̇q])} ∧ (∃a C b)z ∪ {φ[v̇t/v̇q]} ∈ (U)a,r ∨
y = z ∪ {∀̇ u̇p(φ[u̇p/v̇q])} ∧ (∀ξ ∈ z)v̇q 6∈ term(ξ) ∧

(∃a C b)z ∪ {φ} ∈ (U)a,r.

Finally, the formulas Pr+
Ωn

, Pr∅+Ωn
, PrDC+

Ωn
, are defined analogous to PrΩn ,

Pr∅Ωn , and PrDC
Ωn , respectively, with A replaced by A+.

The proof for the existence of such proof predicates is straight forward, be-
cause of the inductive definition of the predicates.

Lemma 92.

If A is the formula PrΩn or Pr+
Ωn

then

NBG ∪ ∃HierΩn
C [Π1

0] ` ∃UA[U,X, Y, Z].
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8. Gödelization, Formalized Truth and Proof

Clearly, the proof predicates Pr∅+Ωn
and PrDC+

Ωn
are extensions of Pr∅Ωn and

PrDC
Ωn , respectively, because we just added the common finitary versions of

the quantifier rules for sets to the infinitary versions. The following lemma
also shows that these extensions prove essentially the same as the basic sys-
tems, i.e. with respect to set-closed formulas.

Lemma 93.

If A and B are the formulas Pr∅Ωn and Pr∅+Ωn
, or PrDC

Ωn and PrDC+
Ωn

, re-
spectively, then

(1) NBG ` A[U ] ∧B[V ]→ (∀a C Ωn)(U)a ⊆ (V )a,

(2) NBG ` B[U ] ∧A[V ]→ (∀a C Ωn)∀r(y ∈ (U)a,r → y[[f ]]∞ ∈ (V )a,r).

Proof.

(1) The statement follows by induction on a, i.e. we use TI Ωn
C [Π1

0] by The-
orem 74. For the induction we distinguish the cases of y in Definition 91,
i.e. y ∈ (U)a,r. The “embedding” is trivial because all cases of y in Pr∅Ωn ,

PrDC
Ωn , also occur in Pr∅+Ωn

, PrDC+
Ωn

, respectively.

(2) Analogous to Part 1, but here we need to “embed” Pr∅+Ωn
, PrDC+

Ωn
, into

Pr∅Ωn , PrDC
Ωn , respectively. The only nontrivial cases are the “quantifier rules”

for “set variables”. E.g. if we have y = z ∪ {∀̇ u̇p(φ[u̇p/v̇q])} and z ∪ {φ} ∈
(U)b,s with b C a and s ∈ r′ and v̇q 6∈ ψ for all ψ ∈ z then by i.h. we
have that z[[g]]∞ ∪ {φ[g]∞} ∈ (V )b,s for all g with t 6= q → f(t) = g(t),
hence z[[f ]]∞∪{φ[ċg(q)/v̇q][f ]∞} ∈ (V )b,s for any such g, that is ∀w(z[[f ]]∞∪
{φ[ċw/v̇q][f ]∞} ∈ (V )b,s), and finally we have y[[f ]]∞ ∈ (V )a,r.

Structural properties analogous to the properties of formal proofs in Lemma
14 can be formalized for the proof predicates in NBG, as it is shown in the
next lemma.

Lemma 94. (Structural Properties)

(1) If A is the formula PrΩn or Pr+
Ωn

then

NBG ` (∀a C Ωn)∀r(X0 ⊆ X1 ∧ Y0 ⊆ Y1 ∧ Z0 ⊆ Z1 ∧
A[U,X0, Y0, Z0] ∧A[V,X1, Y1, Z1] ∧
b E a ∧ s ∈ r′ ∧ y ⊆f G−L1 ∧ x ∈ (U)b,s → x ∪ y ∈ (V )a,r),

(2) If A is the formula Pr∅Ωn , Pr∅+Ωn
, PrDC

Ωn or PrDC+
Ωn

then

NBG ` (∀a C Ωn)∀p∀q∀r(A[U ] ∧ x ∈ (U)a,r →
{x[[v̇p/v̇q]], x[[V̇p/V̇q]], x[[ċz/v̇q]], x[[f ]]∞} ⊆ (U)a,r).
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Proof. The proofs of the two parts of this lemma are by induction on a,
i.e. we use TI Ωn

C [Π1
0] by Theorem 74. The proofs are analogous to formal

versions of the proofs of Lemma 14(1) and 14(2).

For the proof predicates we also have the complete analogon of Theorem 16
about partial cut-elimination.

Theorem 95. (Partial Cut-Elimination)

If A is the formula Pr∅Ωn+m
or PrDC

Ωn+m
, and ωx0 , ωxk+1 stand for x, ω̂ω

x
k ,

respectively, then

NBG ` A[U ]→ (∀a C Ωn)(U)a,m ⊆ (U)ωa
m,∅.

Proof. The statement is proved analogous to Corollary 17, i.e. by a formal
“infinitary” version of the proof of Corollary 17. We need appropriate ver-
sions of Theorem 16 and of some parts of Lemma 14 for this proof, too, but
the proofs for these statements are in complete analogy to the ones already
given for Theorem 16 and Lemma 14. The infinitary rule for quantification
over sets is handled as usual for such infinitary systems. The tedious technical
details are left to the reader.

The following lemma shows that full induction TI∈[L1] is provable without
using any cuts in the infinitary system, that is, the Gödel-codes of all formulas
in TI∈[L1] are derivable in Pr∅Ωn .

Lemma 96.

NBG ` Pr∅Ωn [U ]→ (∀φ ∈ G−L1)∀ψ∀r(
ψ = (∀̇ u̇p(∀̇ u̇q ∈̇ u̇p)φ[u̇q/v̇r] →̇φ[u̇p/v̇r])→
{¬ψ, ∀̇ u̇pφ[u̇p/v̇r]} ∈ (U)Ω,∅).

Proof. We assume Pr∅Ωn [U ] and ψ = ∀̇ u̇p(∀̇ u̇q ∈̇ u̇p)φ[u̇q/v̇r] →̇φ[u̇p/v̇r]
and we show ∀z{¬ψ, φ[ċz/v̇r]} ∈ (U) ̂ω·ρ(z)+2,∅

by set induction on z, where

ρ(z) is the same set-theoretic rank as in the proof of Lemma 29. We have
{¬φ[ċz/v̇r], φ[ċz/v̇r]} ∈ (U)ω̂,∅ for any z, and for any z 6= ∅ we have that

(∀x ∈ z){¬ψ, φ[ċx/v̇r], φ[ċz/v̇r]} ∈ (U) ̂ω·ρ(x)+2,∅
, by i.h.

(∀x ∈ z){¬ψ, ∼̇(ċx ∈̇ ċz) ∨̇φ[ċx/v̇r], φ[ċz/v̇r]} ∈ (U) ̂ω·ρ(x)+3,∅
,

(∀x 6∈ z){¬ψ, ∼̇(ċx ∈̇ ċz), φ[ċz/v̇r]} ∈ (U)1̂,∅,

(∀x 6∈ z){¬ψ, ∼̇(ċx ∈̇ ċz) ∨̇φ[ċx/v̇r], φ[ċz/v̇r]} ∈ (U)2̂,∅,

{¬ψ, (∀̇ u̇q ∈̇ ċz)φ[u̇q/v̇r], φ[ċz/v̇r]} ∈ (U)
ω̂·ρ(z),∅,

{¬ψ, (∀̇ u̇q ∈̇ ċz)φ[u̇q/v̇r] ∧̇ ¬φ[ċz/v̇r], φ[ċz/v̇r]} ∈ (U) ̂ω·ρ(z)+1,∅
,

{¬ψ, φ[ċz/v̇r]} ∈ (U) ̂ω·ρ(z)+2,∅
.
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8. Gödelization, Formalized Truth and Proof

A similar argument works for z = ∅ because of

∀x{¬ψ, ∼̇(ċx ∈̇ ċ∅), φ[ċ∅/v̇r]} ∈ (U)1̂,∅.

Finally we get {¬ψ, ∀̇ u̇pφ[u̇p/v̇r]} ∈ (U)Ω,∅ because of α̂ C Ω for any α.

We end this section by showing that the defined proof predicates really cor-
respond to the formal proofs on the meta-level, i.e. we show that the formal
proofs are easily embedded into the proof predicates. The next lemma is
used in the proof of the subsequent theorem; together with Lemma 90, the
next lemma shows that all Gödel-codes of sentences in L0 that are provable
in NBG, are also derivable in Pr∅+Ωk

, e.g. all axioms of ZFC.

Lemma 97.

NBG ` Pr∅Ωn [U ]→ (∀φ ∈ GL0)∀p(rk (φ) ∈ p ∧ φ[f, g]V∞ →
{φ[f ]∞} ∈ (U)p̂,∅).

Proof. The claim is proved by induction on p. By considering all different
cases of φ, we have that the base cases of the induction and the induction
step follow almost immediately by applying Lemma 88 and the induction hy-
pothesis. E.g. if φ = ∀̇ u̇q(ψ[u̇q/v̇r]) and φ[f, g]V∞ then ∀z(ψ[ċz/v̇r][f, g]V∞) by
Lemma 88, hence we get ∀z{ψ[ċz/v̇r][f ]∞} ∈ (U)

r̂k (φ),∅ by i.h., and further

{φ[f ]∞} ∈ (U)p̂,∅.

Theorem 98.

(1) If ZFC `n,mi Γ then NBG ` Pr∅+Ωk
[U ]→ pΓq ∈ (U)n̂+m,i.

(2) If CA[Π1
0] ∪ TI∈[L1] [DCOn [Π1

0]]`ni Γ then

NBG ` PrDC+
Ωk+1

[U ]→ pΓq ∈ (U)
Ω+̂n̂+1,i

.

Proof.

(1) By induction on n, considering all cases in Definition 12. We have that

Pr∅+Ωk
directly implements all cases from Definition 12, hence the proof by

induction is straightforward. The only nontrivial case is Γ = Γ0, A with A ∈
ZFC ⊆ L0. In this case we have rk(A) ≤ m, and pAq[f ]∞ = pAq because A is
a closed formula, and pAq[f, g]V∞ by Lemma 90(3), hence {pAq} ∈ (U)

m̂+1,∅
by Lemma 97, that is pΓq ∈ (U)n̂+m,i by Lemma 94(1) because of n > 0.

(2) Analogously to Part 1. The only nontrivial case here is Γ = Γ0, A with
A ∈ TI∈[L1]. In this case we have {pAq} ∈ (U)Ω+̂2̂,∅ by Lemma 96, that is
pΓq ∈ (U)

Ω+̂n̂+1,i
by Lemma 94(1) because of n > 0.
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9. Cumulative Hierarchies of
Classes

In this section we introduce the cumulative hierarchy of classes which is used
for the asymmetric interpretation in Section 10. The hierarchy is defined
by induction, and any level of the hierarchy contains all classes that can
be built by elementary comprehension from classes of lower levels of the
hierarchy. Further, any level of the hierarchy contains all previous stages of
the hierarchy as classes, i.e. the cumulative hierarchy of classes is some sort
of constructible universe.

Definition 99. (Abbreviations)

We define the following shorthand notations

X ∈̊ Y := ∃u(X = (Y )u),

X ⊆̊ Y := ∀u((X)u ∈̊ Y ).

We write (∀X ∈̊ Y )A[X] and (∃X ∈̊ Y )A[X] for ∀X(X ∈̊ Y → A[X]) and
∃X(X ∈̊ Y ∧A[X]), respectively.

The class hierarchy U , e.g., defined by the formula ClΩn [U, V,W ] below, is
such that (U)∅ = W , and for all levels (U)a, (U)b, of the hierarchy, with b C
a C Ωn, we have that, (U)b ∈̊ (U)a (i.e., (U)b = ((U)a)b ), and (U)b ⊆̊ (U)a
(i.e., ((U)b)x = ((U)a)〈〈b,x〉〉). That is, all classes contained in lower levels of
the hierarchy can be accessed in a uniform way in higher levels of the hier-

archy. Further, we have {z | φ[ċz/v̇p][f, g]
(U)b
∞ } ∈̊ (U)a for every p ∈ ω, f ,

g, and Gödel-code φ ∈ GL1 (i.e., {z | φ[ċz/v̇p][f, g]
(U)b
∞ } = ((U)b+̂1̂)〈〈φ,p,f,g〉〉).

Clearly, to be able to inductively build such a hierarchy U , we need to simul-
taneously build some truth predicates (V )b with respect to the class universes
(U)b, that is, U and V are such that Tr [ω, (U)b, (V )b] for all b C Ωn. For
the construction of the level (U)a of the hierarchy we actually use ω̂ ·̂ (2̂ ·̂ a)
stages (see the proof of Lemma 101), because we need at least ω extra steps
for the construction of each truth predicate (V )b with b C a. In case of
Cln[m,U, V,W ], we restrict the truth predicates to Gödel-codes with rank
at most m, hence we only need m + 1 extra steps for the construction of
each truth predicate, and in this case the existence of the hierarchy U can
be proved in NBG (by Theorem 79).
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9. Cumulative Hierarchies of Classes

The formula A in the following definition is such that for the class hierarchy
U with ClΩn [U, V,W ], and for all b C Ωn, we have that

(U)b = {x | A[(U)C,b, x, b, V,W ]},

where (V )b is the truth predicate with respect to the class universe (U)b.

Definition 100.

Let A[U, x, b, V,W ] be the formula

(b = ∅ ∧ x ∈W ) ∨
(∃a C b)∃z(z ∈ (U)a ∧ x = 〈z, a〉) ∨
(∃a C b)∃y∃z(〈z, y〉 ∈ (U)a ∧ x = 〈z, 〈a, y〉〉) ∨
∃a∃z∃f∃g∃φ∃p(a +̂ 1̂ = b ∧

x = 〈z, 〈〈φ, p, f, g〉〉〉 ∧ φ[ċz/v̇p][f, g]∞ ∈ (V )a),

and let B[U, x, r, V,W ] be the formula A with a, b,C, a +̂ 1̂, replaced by
q, r,∈, q′, respectively. We define the formulas Cln, ClΩn and ClΩn such
that

Cln[α,U, V,W ] := Hiern∈ [B[U, x, r, V,W ]] ∧
(∀r ∈ n)Tr [α, (U)r, (V )r],

ClΩn [U, V,W ] := HierΩn̂

C [A[U, x, b, V,W ]] ∧
(∀b C Ωn̂)Tr [ω, (U)b, (V )b],

ClΩn [U, V,W ] := HierΩn
C [A[U, x, b, V,W ]] ∧

(∀b C Ωn)Tr [ω, (U)b, (V )b].

By the following lemma we get the existence of such class hierarchies in the
appropriate set theory, i.e. in NBG extended by iterated comprehension.

Lemma 101.

(1) NBG ` ∃X∃Y Cln[m,X, Y,W ],

(2) NBG ∪ ∃HierΩn̂

C [Π1
0] ` ∃X∃Y ClΩn [X,Y,W ],

(3) NBG ∪ ∃HierΩn
C [Π1

0] ` ∃X∃Y ClΩn [X,Y,W ].

Proof.

(1) We use that NBG ` ∃Hierk∈ [Π1
0] for any k by Theorem 79, and we proceed

analogous to Part 3, taking into account that the truth predicates (V )r, in
(∀r ∈ n)Tr [m, (U)r, (V )r], are for formulas of rank at most m, hence the
construction of any (V )r takes only m+ 1 stages.

(2) Analogous to Part 3.
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(3) To get U , V with ClΩn [U, V,W ], the simultaneous inductive definition of
U and V is replaced by the construction of a single class Z such that for

U = {〈x, c〉 | c C Ωn ∧ x ∈ (Z)ω̂·̂(2̂̂·c)},
V = {〈x, c〉 | c C Ωn ∧ x ∈ (Z)ω̂·̂(2̂̂·c+̂1̂)},

we get that ClΩn [U, V,W ]. We build Z such that HierΩn
C [A[Z, x, b,W ]] where

A[Z, x, b,W ] is the disjunction of the following formulas (i.e., A is a modifi-
cation of the formula A in Definition 100, and the formula A in the proof of
Lemma 85)

∃c(b = ω̂ ·̂ (2̂ ·̂ c) ∧ (
c = ∅ ∧ z ∈W ∨
(∃a C c)∃z(z ∈ (Z)ω̂·̂(2̂̂·a) ∧ x = 〈z, a〉) ∨
(∃a C c)∃y∃z(〈z, y〉 ∈ (Z)ω̂·̂(2̂̂·a) ∧ x = 〈z, 〈a, y〉〉) ∨
∃a∃z∃f∃g∃φ∃p(a +̂ 1̂ = c ∧

x = 〈z, 〈〈φ, p, f, g〉〉〉 ∧ φ[ċz/v̇p][f, g]∞ ∈ (Z)ω̂·̂(2̂̂·a+̂1̂)))),

∃c∃r(b = ω̂ ·̂ (2̂ ·̂ c) +̂ r̂ ∧
∃φ∃ψ∃y∃z∃p∃q∃s∃t(x ∈ GL1 ∧ rk (x) = r ∧ rk (φ) = s ∧ rk (ψ) = t ∧ (
x = (ċy ∈̇ ċz) ∧ y ∈ z ∨
x = ∼̇(ċy ∈̇ ċz) ∧ y 6∈ z ∨
x = (ċy ∈̇ Ċz) ∧ y ∈ (Z)ω̂·̂(2̂̂·c),z ∨
x = ∼̇(ċy ∈̇ Ċz) ∧ y 6∈ (Z)ω̂·̂(2̂̂·c),z ∨
x = (φ ∨̇ ψ) ∧ (φ ∈ (Z)ω̂·̂(2̂̂·c)+̂ŝ ∨ ψ ∈ (Z)ω̂·̂(2̂̂·c)+̂t̂) ∨
x = (φ ∧̇ ψ) ∧ φ ∈ (Z)ω̂·̂(2̂̂·c)+̂ŝ ∧ ψ ∈ (Z)ω̂·̂(2̂̂·c)+̂t̂ ∨
x = ∃̇ u̇p(φ[u̇p/v̇q]) ∧ ∃u(φ[ċu/v̇q] ∈ (Z)ω̂·̂(2̂̂·c)+̂ŝ) ∧ u̇p 6∈ term(φ) ∨
x = ∀̇ u̇p(φ[u̇p/v̇q]) ∧ ∀u(φ[ċu/v̇q] ∈ (Z)ω̂·̂(2̂̂·c)+̂ŝ) ∧ u̇p 6∈ term(φ) ∨
x = ∃̇ U̇p(φ[U̇p/V̇q]) ∧ ∃u(φ[Ċu/V̇q] ∈ (Z)ω̂·̂(2̂̂·c)+̂ŝ) ∧ U̇p 6∈ term(φ) ∨
x = ∀̇ U̇p(φ[U̇p/V̇q]) ∧ ∀u(φ[Ċu/V̇q] ∈ (Z)ω̂·̂(2̂̂·c)+̂ŝ) ∧ U̇p 6∈ term(φ)))),

∃c∃r(b = ω̂ ·̂ (2̂ ·̂ c +̂ 1̂) ∧ x ∈ (Z)ω̂·̂(2̂̂·c)+̂r̂).

The stages (Z)ω̂·̂(2̂̂·c) all belong to the cumulative hierarchy of classes; the lev-

els between ω̂ ·̂ (2̂ ·̂ c) and ω̂ ·̂ (2̂ ·̂ c +̂ 1̂) are used to build the truth predicate
with respect to the class universe (Z)ω̂·̂(2̂̂·c); and the stages (Z)ω̂·̂(2̂̂·c+̂1̂) are

truth predicates such that Tr [ω, (Z)ω̂·̂(2̂̂·c), (Z)ω̂·̂(2̂̂·c+̂1̂)] (see also Jäger and

Krähenbühl [10] for a similar construction). The levels between ω̂ ·̂ (2̂ ·̂ c +̂ 1̂)
and ω̂ ·̂ (2̂ ·̂ c +̂ 2̂) are not used. Finally, we get Z by ∃HierΩn

C [Π1
0], because

of ω̂ ·̂ (2̂ ·̂ c) C Ωn for any c C Ωn.
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9. Cumulative Hierarchies of Classes

The following theorem and the subsequent corollary are formally stating the
properties of the hierarchy, i.e. they are a direct consequence of the definition
of the class hierarchy.

Theorem 102. (Class Hierarchy)

(1) NBG ` ∀α∀φ∀r(Cln[α,U, V,W ] ∧ rk (φ) ∈ α′ → (∀p ∈ n)(∀q ∈ p)
W = (U)∅ ∧ ((U)p)q = (U)q ∧∀z((U)p)〈〈q,z〉〉 = ((U)q)z ∧
∀z(z ∈ ((U)q′)〈〈φ,r,f,g〉〉 ↔ φ[ċz/v̇r][f, g]

(U)q
∞ )),

(2) NBG ` ∀φ∀r(ClΩn [U, V,W ]→ (∀a C Ωn̂)(∀b C a)
W = (U)∅∧ ((U)a)b = (U)b∧∀z((U)a)〈〈b,z〉〉 = ((U)b)z ∧
∀z(z ∈ ((U)b+̂1̂)〈〈φ,r,f,g〉〉 ↔ φ[ċz/v̇r][f, g]

(U)b
∞ )),

(3) NBG ` ∀φ∀r(ClΩn [U, V,W ]→ (∀a C Ωn)(∀b C a)
W = (U)∅∧ ((U)a)b = (U)b∧∀z((U)a)〈〈b,z〉〉 = ((U)b)z ∧
∀z(z ∈ ((U)b+̂1̂)〈〈φ,r,f,g〉〉 ↔ φ[ċz/v̇r][f, g]

(U)b
∞ )).

Proof.

(1) The formula φ[ċz/v̇r][f, g]
(U)q
∞ is equivalent to the elementary formula

φ[ċz/v̇r][f, g]∞ ∈ (V )q, because of Cln[α,U, V,W ]. Hence the claim follows
directly by Definition 100 and by elementary induction on p.

(2) Analogous to Part 1, using that Ωn̂ C Ω1 and TI Ωk
C [Π1

0] by Theorem 74.

(3) Analogous to Part 2.

Corollary 103.

(1) NBG ` ∀α∀φ∀r(Cln[α,U, V,W ] ∧ rk (φ) ∈ α′ → (∀p ∈ n)(∀q ∈ p)
W ∈̊ (U)p ∧ (U)q ∈̊ (U)p ∧ (U)q ⊆̊ (U)p ∧
(∃X ∈̊ (U)q′)∀z(z ∈ X ↔ φ[ċz/v̇r][f, g]

(U)q
∞ )),

(2) NBG ` ∀φ∀r(ClΩn [U, V,W ]→ (∀a C Ωn̂)(∀b C a)
W ∈̊ (U)a ∧ (U)b ∈̊ (U)a ∧ (U)b ⊆̊ (U)a ∧
(∃X ∈̊ (U)b+̂1̂)∀z(z ∈ X ↔ φ[ċz/v̇r][f, g]

(U)b
∞ )),

(3) NBG ` ∀φ∀r(ClΩn [U, V,W ]→ (∀a C Ωn)(∀b C a)
W ∈̊ (U)a ∧ (U)b ∈̊ (U)a ∧ (U)b ⊆̊ (U)a ∧
(∃X ∈̊ (U)b+̂1̂)∀z(z ∈ X ↔ φ[ċz/v̇r][f, g]

(U)b
∞ )).

72



10. Reduction by Asymmetric
Interpretation

In contrast to Cantini [1], where the asymmetric interpretation is into hierar-
chies of sets of numbers, which are built by using fixed standard Π1

n-complete
predicates, in this section, the asymmetric interpretation is into cumulative
hierarchies of classes, which are built by using truth predicates for each level
of the hierarchy, i.e., the truth predicates and the stages of the hierarchy
are built simultaneously (see Section 9). An asymmetric interpretation into
hierarchies of classes of this sort is also used in Jäger and Krähenbühl [10].

The majorizing functions (see Cantini [1]) for the asymmetric interpretations
in this section are of common exponential form, see Lemma 109. Clearly the
role of ω, as e.g. in Cantini [1], is taken over by Ω (i.e., the class of all ordinals)
in context of this thesis.

As already described in the Introduction, the aim of the asymmetric interpre-
tation is the reduction of the systems with choice Tch (i.e., CA[Π1

0]∪AC [Π1
0],

CA[Π1
0]∪DCOn [Π1

0], and CA[Π1
0]∪DCOn [Π1

0]∪TI∈[L1]), to the correspond-
ing systems with iterated comprehension Tit (i.e., NBG, NBG∪ (CA[Π1

0])<Ωω ,
and NBG∪(CA[Π1

0])<E0). Roughly depicted and just in a nutshell, the asym-
metric interpretation is used in the following way

(1) After the asymmetric interpretation of the formula A into the hierar-

chy U , denoted by A〈a, b〉U , every quantified class variable of A ranges
over some specific level of the class hierarchy, i.e. generally all existen-
tial quantifiers range over some level (U)b higher than the level of the
universal quantifiers (U)a (see Definition 104).

(2) All formulas provable (cut-reduced) in the system Tch hold true after
asymmetric interpretation into the class hierarchy U , i.e.,

Tch 0̀ A ⇒ Tit ` ClTch [U ]→ ∃b(A〈∅, b〉U ).

We write ClTch [U ] to emphasize the dependence of the class hierarchy U
on the specific theory Tch (actually, the hierarchy U also depends on the
formula A, see Lemma 109).

(3) For any formula up to some logical complexity, i.e. essentially Σ1
1, the

asymmetric interpretation of the formula reflects the truth of the original
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10. Reduction by Asymmetric Interpretation

formula, that is,

A essentially Σ1
1 ⇒ Tit ` ClTch [U ]→ (A〈a, b〉U → A)

(see Lemma 107).

(4) The class hierarchy exists in the system Tit, that is, Tit ` ∃UClTch [U ] (see
Lemma 101).

By putting (2) to (4) together, we have that if a formula A is essentially Σ1
1

and Tch ` A then we also have Tit ` A. For the system Tch with full induction,
we are going to use a formalized version of the asymmetric interpretation with
truth and proof predicates involved, such that steps (2) and (3) become

(2’)
Tit ` PrTch [pAq]→ (ClTch [U ]→ ∃b(pAq〈Ċ∅, Ċb〉[f, g]U∞)),

where PrTch [pAq] stands for ∃Z(PrDC+
Ωn+3

[Z] ∧ {pAq} ∈ (Z)Ω+̂ω̂,n) (n ac-

tually depends on the formula A, see Lemma 109).

(3’) If A is essentially Σ1
1 then

Tit ` ClTch [U ]→ (pAq〈Ċa, Ċb〉[f, g]U∞ → pAq[f, g]U∞)

(see Lemma 107).

The proof predicate and the truth definition are such that

Tch ` A ⇒ Tit ` PrTch [pAq],

A essentially Σ1
1 ⇒ Tit ` ]A[f, g, U ]→ (pAq[f, g]U∞ → A)

(see Theorem 98 and Lemma 90), where ]A stands for the proper assignment
of sets and classes to the free variables in A. Together with (4), and because
of Tit ` ClTch [U ]→ ∃f∃g(]A[f, g, U ]), we have that if a formula A is essentially
Σ1

1 and Tch ` A then we also have Tit ` A.

Finally, by using these reductions at the end of this section, we are able to
prove the desired proof-theoretic equivalences between choice schemes and
iterated comprehension.

First, we need to define the asymmetric translation of formulas and Gödel-
codes, which is the basis for the asymmetric interpretation.

Definition 104.

(1) For variables vi, ui, Vj , Uj we define vi
∗ := v2·i, ui

∗ := u2·i, and
Vj
∗ := V2·j , Uj

∗ := U2·j , and Vj
+ := vj+1, Uj

+ := uj+1.
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(2) A∗ ∈ L1 is the formula A ∈ L1 with all symbols vi, ui, Vj , Uj in A
replaced by v2·i, u2·i, V2·j , U2·j respectively. For T ⊆ L1 we define
T ∗ := {A∗ | A ∈ T }.

(3) For A ∈ L1 we define

A〈U, V 〉 :=



A A atomic,

(B〈U, V 〉 ◦ C〈U, V 〉) A = (B ◦ C),

σxB〈U, V 〉[x] A = σxB[x],

∀X+(B〈U, V 〉[(U)X+ ]) A = ∀XB[X],

∃X+(B〈U, V 〉[(V )X+ ]) A = ∃XB[X],

such that A〈U, V 〉 ∈ L1 for A ∈ L1∗.

We write A〈x, y〉U for A〈(U)x, (U)y〉.

(4) Analogously to Part 1 and 2 we define the expressions v̇∗p, u̇∗p, V̇∗p,

U̇∗p, V̇
+
p , U̇+

p , and φ∗. And similar to Part 3 we define the expression

φ〈Ċx, Ċy〉 such that the following holds (in NBG)

φ〈Ċx, Ċy〉 =



φ rk (φ) = 1,

ψ〈Ċx, Ċy〉 ◦̇ ξ〈Ċx, Ċy〉 φ = ψ ◦̇ ξ,
σ̇ u̇p(ψ〈Ċx, Ċy〉[u̇p/v̇q]) φ = σ̇ u̇p(ψ[u̇p/v̇q]),

∀̇ U̇+
p (ψ〈Ċx, Ċy〉[(Ċx)U̇+

p
/V̇q]) φ = ∀̇ U̇p(ψ[U̇p/V̇q]),

∃̇ U̇+
p (ψ〈Ċx, Ċy〉[(Ċy)U̇+

p
/V̇q]) φ = ∃̇ U̇p(ψ[U̇p/V̇q]),

where ξ[(Ċx)v̇p/V̇q] is ξ with all “subformulas” (v̇r ∈̇ V̇q) in ξ replaced

by (pz ∈ (U)yq[v̇r/ż][v̇p/ẏ][Ċx/U̇ ]). Analogously ξ[(Ċx)v̇p/V̇q].

The following lemma and its corollary are about some general technical prop-
erties of class constants within the class hierarchy.

Lemma 105.

(1) NBG ` ClΩk+1
[U, V,W ] ∧ ((U)Ωk)x = ((U)Ωk)y →
∀φ∀q(φ[Ċx/V̇q][f, g]

(U)Ωk∞ ↔ φ[Ċy/V̇q][f, g]
(U)Ωk∞ ),

(2) NBG ` ClΩk+1
[U, V,W ] ∧ (((U)Ωk)x)z = ((U)Ωk)y →
∀φ∀q(φ[(Ċx)ċz/V̇q][f, g]

(U)Ωk∞ ↔ φ[Ċy/V̇q][f, g]
(U)Ωk∞ ),

(3) NBG ` ClΩk+1
[U, V,W ] ∧ (((U)Ωk)x)z = ((U)Ωk)y →
∀φ∀q(φ[(Ċx)ċz/V̇q][f, g]

(U)Ωk∞ ↔ φ[Ċy/V̇q][f, g]
(U)Ωk∞ ).
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10. Reduction by Asymmetric Interpretation

Proof.

(1) Analogous to Part 2.

(2) We have that ψ[f, g]
(U)Ωk∞ is equivalent to ψ[f, g]∞ ∈ (V )Ωk , hence the

claim can be proved by elementary induction on the rank rk (φ). The only
difficult case is φ = (ċv ∈̇ V̇q). All other cases are either trivial, or follow from
this case, or follow directly by the i.h. and Lemma 88. By definition we have

(ċv ∈̇ V̇q)[(Ċx)ċz/V̇q] = pv ∈ (X)zq[ċv/v̇][ċz/ż][Ċx/Ẋ],

and by Lemma 90(3) we have that

f(]v) ∈ (((U)Ωk)g(]X))f(]z) ↔ pv ∈ (X)zq[f, g]
(U)Ωk∞ ,

hence we get v ∈ (((U)Ωk)x)z ↔ (ċv ∈̇ V̇q)[(Ċx)ċz/V̇q][f, g]
(U)Ωk∞ . On the other

hand we have v ∈ ((U)Ωk)y ↔ (ċv ∈̇ V̇q)[Ċy/V̇q][f, g]
(U)Ωk∞ , hence because of

(((U)Ωk)x)z = ((U)Ωk)y we get

(ċv ∈̇ V̇q)[(Ċx)ċz/V̇q][f, g]
(U)Ωk∞ ↔ (ċv ∈̇ V̇q)[Ċy/V̇q][f, g]

(U)Ωk∞ .

(3) Analogous to Part 2.

Corollary 106.

(1) NBG ` ClΩk+1
[U, V,W ]→ ∀φ(∀a C Ωk)(∀b C a)∀q(
φ[Ċ〈a,〈b,x〉〉/V̇q][f, g]

(U)Ωk∞ ↔ φ[Ċ〈b,x〉/V̇q][f, g]
(U)Ωk∞ ),

(2) NBG ` ClΩk+1
[U, V,W ]→ ∀φ(∀a C Ωk)∀q(
φ[(Ċa)ċx/V̇q][f, g]

(U)Ωk∞ ↔ φ[Ċ〈a,x〉/V̇q][f, g]
(U)Ωk∞ ).

Proof.

(1) ((U)Ωk)〈a,〈b,x〉〉 = ((U)a)〈b,x〉 = ((U)b)x = ((U)Ωk)〈b,x〉 by Theorem 102.

(2) (((U)Ωk)a)x = ((U)a)x = ((U)Ωk)〈a,x〉 by Theorem 102.

The following lemma covers Step 3 of the asymmetric interpretation, which
was described at the beginning of this section. It shows that validity of
formulas in Σ1(Π1

0) is reflected by the asymmetric translation.

Lemma 107.

(1) If A ∈ Σ1(Π1
0) then NBG ` A∗〈U, V 〉 → A∗,

(2) NBG ` ClΩk+1
[U, V,W ]→

(∀φ ∈ G
Σ1(Π1

0)
)(∀a C Ωk)(φ∗〈Ċx, Ċa〉[f, g]

(U)Ωk∞ → φ∗[f, g]
(U)Ωk∞ ).
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Proof.

(1) By induction on the structure of the formula A. If A is atomic then
the claim follows trivially. If A = B ◦ C then the claim follows by i.h.. If
A = ∀xB[x/u] then A∗ = ∀x∗B∗[x∗/u∗], and by i.h. we have B∗〈U, V 〉 → B∗,
hence we get ∀x∗B∗〈U, V 〉[x∗/u∗] → ∀x∗B∗[x∗/u∗], that is A∗〈U, V 〉 → A∗

because of ∀x∗(B∗〈U, V 〉[x∗/u∗]) = A∗〈U, V 〉. Similar for A = ∃xB[x/u]. If
A = ∃XB[X/Y ] then we have

Y ∗ = (V )z → (B∗〈U, V 〉[(V )z/Y
∗]→ B∗〈U, V 〉)

and because of B∗ → A∗ and B∗〈U, V 〉 → B∗ by i..h., we get

Y ∗ = (V )z → (B∗〈U, V 〉[(V )z/Y
∗]→ A∗).

We have NBG ` ∃Y ∗(Y ∗ = (V )z) hence B∗〈U, V 〉[(V )z/Y
∗] → A∗, that is

A∗〈U, V 〉 → A∗ because of ∃x(B∗〈U, V 〉[(V )x/Y
∗]) = A∗〈U, V 〉 for x = X∗+.

(2) We have that ψ[f, g]
(U)Ωk∞ is equivalent to ψ[f, g]∞ ∈ (V )Ωk , hence the

claim can be proved by elementary induction on the rank rk (φ). If rk (φ) = 1

then φ∗〈Ċx, Ċa〉 = φ∗. If φ = ψ ∨̇ ξ and φ∗〈Ċx, Ċa〉[f, g]
(U)Ωk∞ then we get

ψ∗〈Ċx, Ċa〉[f, g]
(U)Ωk∞ ∨ ξ∗〈Ċx, Ċa〉[f, g]

(U)Ωk∞ by Lemma 88 and ψ∗[f, g]
(U)Ωk∞ ∨

ξ∗[f, g]
(U)Ωk∞ by i.h., hence φ∗[f, g]

(U)Ωk∞ by Lemma 88 again. Analogous for

φ = ψ ∧̇ ξ. If φ = ∀̇ u̇p(ψ[u̇p/v̇q]) and if we assume φ∗〈Ċx, Ċa〉[f, g]
(U)Ωk∞ then

φ∗〈Ċx, Ċa〉 = ∀̇ u̇∗p(ψ∗〈Ċx, Ċa〉[u̇∗p/v̇∗q ]), hence ∀z(ψ∗〈Ċx, Ċa〉[ċz/v̇∗q ][f, g]
(U)Ωk∞ )

by Lemma 88, and because of ψ∗〈Ċx, Ċa〉[ċz/v̇∗q ] = ψ∗[ċz/v̇
∗
q ]〈Ċx, Ċa〉 we have

∀z(ψ∗[ċz/v̇∗q ][f, g]
(U)Ωk∞ ) by i.h., hence φ∗[f, g]

(U)Ωk∞ by Lemma 88. Similar

for φ = ∃̇ u̇p(ψ[u̇p/v̇q]). If φ = ∃̇ U̇p(ψ[U̇p/V̇q]) and φ∗〈Ċx, Ċa〉[f, g]
(U)Ωk∞ then

by Lemma 88 we get

∃z(ψ∗〈Ċx, Ċa〉[(Ċa)ċz/V̇
∗
q ][f, g]

(U)Ωk∞ ),

hence ∃z(ψ∗[Ċ〈a,z〉/V̇∗q ]〈Ċx, Ċa〉[f, g]
(U)Ωk∞ ) by Corollary 106, and because of

rk (ψ[Ċ〈a,z〉/V̇q]) ∈ rk (φ) and by i.h. we have ∃z(ψ∗[Ċ〈a,z〉/V̇∗q ][f, g]
(U)Ωk∞ ), that

is ∃z(ψ∗[Ċz/V̇∗q ][f, g]
(U)Ωk∞ ), and finally φ∗[f, g]

(U)Ωk∞ by Lemma 88.

Upward and downward persistency of the asymmetric translation, with re-
spect to the cumulative class hierarchies, is essential in the proof of the
asymmetric interpretation following on the next page.

77



10. Reduction by Asymmetric Interpretation

Lemma 108. (Persistency)

(1) NBG ` Clk[α,U, V,W ]→ (∀s ∈ k)(∀q ∈ s′)(∀p ∈ q′)(∀r ∈ p′)(
A∗〈p, q〉U → A∗〈r, s〉U ),

(2) NBG ` ClΩk [U, V,W ]→ (∀d C Ωk̂)(∀b E d)(∀a E b)(∀c E a)(

A∗〈a, b〉U → A∗〈c, d〉U ),

(3) NBG ` ClΩk+1
[U, V,W ]→ (∀d C Ωk)(∀b E d)(∀a E b)(∀c E a)∀φ(

φ∗〈Ċa, Ċb〉[f, g]
(U)Ωk∞ → φ∗〈Ċc, Ċd〉[f, g]

(U)Ωk∞ ).

Proof.

(1) By induction on the structure of the formula A. If A is atomic then the
claim is trivial. If A = ∀XB[X/Z] and y = X∗+ then

A∗〈U, p, q〉 = ∀y(B∗〈p, q〉U [((U)p)y/Z
∗]),

and we get ∀y(B∗〈p, q〉U [((U)p)y/Z
∗]) → ∀y(B∗〈r, s〉U [((U)p)y/Z

∗]) by i.h..

Clearly ∀y(B∗〈r, s〉U [((U)p)y/Z
∗]) → ∀y(B∗〈r, s〉U [((U)p)〈r,y〉/Z

∗]), hence

A∗〈p, q〉U → A∗〈r, s〉U because of ((U)p)〈r,y〉 = ((U)r)y by Theorem 102,
or because of p = r. Analogous for A = ∃XB[X]. The other cases follow
directly by i.h. and logic.

(2) Analogous to Part 1.

(3) We have that ψ[f, g]
(U)Ωk∞ is equivalent to ψ[f, g]∞ ∈ (V )Ωk , hence the

claim can be proved by elementary induction on the rank rk (φ). If rk (φ) = 1
then φ∗〈Ċx, Ċy〉 = φ∗. If φ = ∃̇ U̇p(ψ[U̇p/V̇q]) then by i.h. we have

ψ∗[Ċ〈d,z〉/V̇
∗
q ]〈Ċa, Ċb〉[f, g]

(U)Ωk∞ → ψ∗[Ċ〈d,z〉/V̇
∗
q ]〈Ċc, Ċd〉[f, g]

(U)Ωk∞ .

And clearly we have

∃z(ψ∗〈Ċa, Ċb〉[Ċ〈d,〈b,z〉〉/V̇∗q ][f, g]
(U)Ωk∞ )→ ∃z(ψ∗〈Ċa, Ċb〉[Ċ〈d,z〉/V̇∗q ][f, g]

(U)Ωk∞ ),

hence by Corollary 106 and by combining the two implications we get

∃z(ψ∗〈Ċa, Ċb〉[(Ċb)ċz/V̇
∗
q ][f, g]

(U)Ωk∞ )→ ∃z(ψ∗〈Ċc, Ċd〉[(Ċd)ċz/V̇
∗
q ][f, g]

(U)Ωk∞ ),

that is φ∗〈Ċa, Ċb〉[f, g]
(U)Ωk∞ → φ∗〈Ċc, Ċd〉[f, g]

(U)Ωk∞ by Lemma 88. Analogous
for φ = ∀̇ U̇p(ψ[U̇p/V̇q]). The other cases follow directly by i.h. and Lemma 88.

The next technical lemma is the main part of the reduction, i.e., the asym-
metric interpretation, and its proof spans over many pages. The proofs of
Part 1 to 3 are quite similar, e.g., the proof of Part 3 is more or less a
formalized version (within NBG) of the proof of Part 2.
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Lemma 109. (Asymmetric Interpretation)

For {Vi | Vi ∈ Γ∨
∗} ⊆ {X0, ..., Xl} we have that

(1) If C = AC [Π1
0]
→ ∪ CA[Π1

0] and CA[Π1
0] [AC [Π1

0]]`n,iC,0 Γ then there is
some j such that

NBG `
Clk[i+ j, U, V,W ] ∧Gl [(W )∅]→

∀p(p+ 2
n ∈ k ∧ #—

X ∈̊ (U)p → Γ∨
∗〈p, p+ 2

n〉
U

),

(2) If D = DCOn [Π1
0]
→ ∪ CA[Π1

0] and CA[Π1
0] [DCOn [Π1

0]]`nD,0 Γ then

NBG `
ClΩk [U, V,W ] ∧Gl [(W )∅]→

∀a(a +̂ Ωn̂ C Ωk̂ ∧ #—

X ∈̊ (U)a → Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
),

(3) NBG `
ClΩk+1

[U, V,W ] ∧Gl [(W )∅] ∧ PrDC+
Ωk

[Z]→
∀a∀b(a +̂ Ωb C Ωk ∧ y ∈ (Z)b,∅ ∧ g|a→

(∃φ ∈ y)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ).

where
#—

X ∈̊ Y stands for X0 ∈̊ Y ∧ ... ∧Xl ∈̊ Y , and g|a stands for the
formula ∀p∃y(∃b E a)g(p) = 〈b, y〉.

Proof.

(1) Actually the claim is true for some constant number j. We define j :=
rk(A0)+rk(A1)+rk(A2)+8, where A0 := (x = 〈w, u〉), and A1 := (w ∈ (Z)v),
and A2 := (∀γ∀δ(〈v, γ〉 ∈ Z ∧ 〈w, δ〉 ∈ Z → γ ∈ δ′), and we show the claim
for the constant j by induction on n, considering all cases in Definition 12.
The proof is analogous to Part 2, and we show only the following two cases
(see Part 2 for all other cases):

If Γ = Φ, A and A ∈ CA[Π1
0] then A∗ = ∃Z∀y(y ∈ Z ↔ B[y/z]) for some

B ∈ Π1
0, and the asymmetric interpretation of A∗ into the hierarchy U is

such that

A∗〈p, p+ 2
n〉
U

= ∃x∀y(y ∈ ((U)
p+2

n)x ↔ B[y/z]).

By Theorem 102 and because of rk(B) < i, i.e. rk (pBq) ∈ i, we can find a
class contained in the stage (U)p′ such that

z ∈ ((U)p′)〈〈pBq,]z,f,g〉〉 ↔ pBq[ċz/ż][f, g](U)p
∞ ,

and by Lemma 90, for the elementary formula B, we have that

]B [f, g, (U)p]→ (B ↔ pBq[f, g](U)p
∞ ),
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10. Reduction by Asymmetric Interpretation

hence because of pBq[f, g]∞ = pBq[ċf(]z)/ż][f, g]∞, and because of

]B [f, g, (U)p]→ (pBq[ċf(]z)/ż][f, g](U)p
∞ ↔ pBq[ċz/ż][f, g](U)p

∞ ),

we get (]B [f, g, (U)p]→ (z ∈ ((U)p′)〈〈pBq,]z,f,g〉〉 ↔ B)). Because of p′ ∈ p+2
n

(i.e., n > 0 by definition) and by Theorem 102, the class ((U)p′)〈〈pBq,]z,f,g〉〉
is contained in the stage (U)

p+2
n , hence we have

]B [f, g, (U)p]→ (∃x∀y(y ∈ ((U)
p+2

n)x ↔ B[y/z])).

We finally get A∗〈p, p+ 2
n〉
U

because of
#—

X ∈̊ (U)p, i.e., because there exist
f , g, such that ]B [f, g, (U)p].

If Γ = Φ, A and (B → A) ∈ AC [Π1
0] and T [R]`m,iC,0 Φ, B for some m < n then

there is some C ∈ Π1
0, such that the asymmetric interpretations of A∗ and

B∗ into the hierarchy U are

B∗〈p, p+ 2
m〉

U
= ∀u∃vC[u, ((U)

p+2
m)v],

A∗〈p, p+ 2
n〉
U

= ∃y∀uC[u, (((U)
p+2

n)y)u].

W.l.o.g., we may assume m+ 1 = n. By i.h. we have

Φ∨
∗〈p, p+ 2

m〉
U
∨B∗〈p, p+ 2

m〉
U
,

and we need to show

Φ∨
∗〈p, p+ 2

n〉
U
∨A∗〈p, p+ 2

n〉
U

).

We assume ¬(Φ∨
∗〈p, p+ 2

n〉
U

), because otherwise we are done. By Lemma

108 we have ¬(Φ∨
∗〈p, p+ 2

m〉
U

), hence by i.h. we get B∗〈p, p+ 2
m〉

U
, i.e.,

∀u∃vC[u, ((U)
p+2

m)v].

We fix q := p + 2
m

and we use the global wellordering (W )∅ (we have
Gl [(W )∅]) to define C1 ∈ Π1

0, such that

∃vC[u, ((U)q)v]↔ ∃!vC1[u, v, (U)q, (W )∅],

that is, we define

C1[u, v, Z1, Z2] :=
C[u, (Z1)v] ∧ ∀w(C[u, (Z1)w]→

∀γ∀δ(〈v, γ〉 ∈ Z2 ∧ 〈w, δ〉 ∈ Z2 → γ ∈ δ′).
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Because of ∀u∃vC[u, ((U)
p+2

m)v] we get ∀u∃!vC1[u, v, (U)q, (W )∅], and based
on C1 we can now define the class function

F := {〈u, v〉 | C1[u, v, (U)q, (W )∅]}.

We define C2 ∈ Π1
0 such that

C2[〈w, u〉, (U)q, (W )∅]↔ C1[u, F (u), (U)q, (W )∅] ∧ w ∈ ((U)q)F (u),

that is, we define

C2[x, Z1, Z2] := ∃w∃u∃v(x = 〈w, u〉 ∧ C1[u, v, Z1, Z2] ∧ w ∈ (Z1)v),

and we define θ2 ∈ GΠ1
0

such that θ2[ẋ, Ż1, Ż2] := pC2[x, Z1, Z2]q. Clearly,

we can fix two functions f , g, such that ]C [f, g, (U)q′ ], because of
#—

X ∈̊ (U)p
and p ∈ q′. Having θ2, and f , g, we now define the class

Z := ((U)
p+2

n)〈〈θ2[ẋ,Ċq,Ċ〈∅,∅〉],]x,f,g〉〉,

hence by Theorem 102, because of rk(C2) < i+ j, and q′+ 1 = p+ 2
n
, we get

x ∈ Z ↔ θ2[ẋ, Ċq, Ċ〈∅,∅〉][f, g]
(U)q′
∞ ,

and by Lemma 88 and 90, and Theorem 102, we have

x ∈ Z ↔ C2[x, (U)q, (W )∅],

w ∈ (Z)u ↔ ∃v(C1[u, v, (U)q, (W )∅] ∧ w ∈ ((U)q)v),

w ∈ (Z)u ↔ w ∈ ((U)q)F (u).

We have C1[u, F (u), (U)q, (W )∅] by definition of F , and by definition of C1

we get
∀u(C[u, ((U)q)F (u)]),

hence ∀u(C[u, (Z)u]) because of (Z)u = ((U)q)F (u). Finally, because of the

definition of Z, we get ∃y∀uC[u, (((U)
p+2

n)y)u], that is, A∗〈p, p+ 2
n〉
U

.

(2) By induction on n, considering all cases in Definition 12.

a) If Γ = Φ, A,¬A and A is atomic, then we have (A ∨ ¬A)∗ and because

of (A∨¬A)∗ = (A∨¬A)∗〈a, a +̂ Ωn̂ +̂ 2̂〉
U

we get Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
.

b) If Γ = Φ, A and A ∈ CA[Π1
0] then A∗ = ∃Z∀y(y ∈ Z ↔ B[y/z]) for some

B ∈ Π1
0, and the asymmetric interpretation of A∗ into the hierarchy U

is such that

A∗〈a, a +̂ Ωn̂ +̂ 2̂〉
U

= ∃x∀y(y ∈ ((U)a+̂Ωn̂+̂2̂)x ↔ B[y/z]).
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10. Reduction by Asymmetric Interpretation

By Theorem 102 we can find a class contained in the stage (U)a+̂1̂, such
that

z ∈ ((U)a+̂1̂)〈〈pBq,]z,f,g〉〉 ↔ pBq[ċz/ż][f, g](U)a
∞ ,

and by Lemma 90, we have for the elementary formula B that

]B [f, g, (U)a]→ (B ↔ pBq[f, g](U)a
∞ ),

hence because of pBq[f, g]∞ = pBq[ċf(]z)/ż][f, g]∞, and because of

]B [f, g, (U)a]→ (pBq[ċf(]z)/ż][f, g](U)a
∞ ↔ pBq[ċz/ż][f, g](U)a

∞ ),

we get (]B [f, g, (U)a] → (z ∈ ((U)a+̂1̂)〈〈pBq,]z,f,g〉〉 ↔ B)). By Theorem

102 the class ((U)a+̂1̂)〈〈pBq,]z,f,g〉〉 is contained in the stage (U)a+̂Ωn̂+̂2̂,
hence we have

]B [f, g, (U)a]→ (∃x∀y(y ∈ ((U)a+̂Ωn̂+̂2̂)x ↔ B[y/z])),

and we finally get A∗〈a, a +̂ Ωn̂ +̂ 2̂〉
U

because of
#—

X ∈̊ (U)a, i.e., because
there exist f , g, such that ]B [f, g, (U)a].

c) If Γ = Φ, A and (B → A) ∈ DCOn [Π1
0] and T [R]`mD,0 Φ, B for some

m < n then there is some C ∈ Π1
0 such that the asymmetric interpreta-

tions of A∗ and B∗ into the hierarchy U are

B∗〈a, a +̂ Ωm̂ +̂ 2̂〉
U

= ∀α∀u∃vC[α, ((U)a)u, ((U)a+̂Ωm̂+̂2̂)v],

A∗〈a, a +̂ Ωn̂ +̂ 2̂〉
U

= ∃y∀αC[α, (((U)a+̂Ωn̂+̂2̂)y)α, (((U)a+̂Ωn̂+̂2̂)y)α].

By i.h. we have that

∀a(a +̂ Ωm̂ C Ωk̂ ∧ #—

X ∈̊ (U)a →
Φ∨
∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
∨B∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
),

and we need to show

∀a(a +̂ Ωn̂ C Ωk̂ ∧ #—

X ∈̊ (U)a →
Φ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
∨A∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
).

We fix some a and we assume a +̂ Ωn̂ C Ωk̂, and
#—

X ∈̊ (U)a, and

¬(Φ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
),

because otherwise we are done. For any d with a +̂ d +̂ Ωm̂ E a +̂ Ωn̂

we get a +̂ d +̂ Ωm̂ C Ωk̂, and
#—

X ∈̊ (U)(a+̂d) by Theorem 102. Hence
by i.h. we have

B∗〈a +̂ d, a +̂ d +̂ Ωm̂ +̂ 2̂〉
U
,
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because otherwise we must have Φ∨
∗〈a +̂ d, a +̂ d +̂ Ωm̂ +̂ 2̂〉

U
, and in

contradiction to our assumption we get Φ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
by Lemma

108. Hence for any β and d = Ωm̂ ·̂ β̂ +̂ 5̂ (i.e., a +̂ d +̂ Ωm̂ C a +̂ Ωn̂),

we have B∗〈a +̂ d, a +̂ d +̂ Ωm̂ +̂ 2̂〉
U

, that is,

∀α∀β∀u∃vC[α, ((U)a+̂Ωm̂ ·̂β̂+̂5̂)u, ((U)a+̂Ωm̂ ·̂(β̂+̂1̂)+̂2̂)v].

We fix e := a +̂ Ωn̂ and we define C1 ∈ Π1
0 such that

C1[α, β, u, v, (U)e]↔
C[α, ((U)a+̂Ωm̂ ·̂β̂+̂5̂)u, ((U)a+̂Ωm̂ ·̂(β̂+̂1̂)+̂2̂)v],

that is, we define

C1[α, β, u, v, Z1] := C[α, (Z1)〈a+̂Ωm̂ ·̂β̂+̂5̂,u〉, (Z1)〈a+̂Ωm̂ ·̂(β̂+̂1̂)+̂2̂,v〉]

(e.g., ((U)e)〈a+̂Ωm̂ ·̂β̂+̂5̂,u〉 = ((U)a+̂Ωm̂ ·̂β̂+̂5̂)u by Theorem 102). We fur-

ther use the global wellordering (W )∅ (we have Gl [(W )∅]) to define
C2 ∈ Π1

0 such that

∃vC1[α, β, u, v, (U)e]↔ ∃!vC2[α, β, u, v, (U)e, (W )∅],

that is, we define

C2[α, β, u, v, Z1, Z2] :=
C1[α, β, u, v, Z1] ∧ ∀w(C1[α, β, u, w, Z1]→
∀γ∀δ(〈v, γ〉 ∈ Z2 ∧ 〈w, δ〉 ∈ Z2 → γ ∈ δ′).

In the following we also need C3 ∈ Π1
0 such that

C3[〈w, γ〉, β, h, Z3]↔ w ∈ (Z3)〈a+̂Ωm̂ ·̂(γ̂+̂1̂)+̂2̂,h(γ)〉 ∧ γ ∈ β,

that is, we define

C3[x, β, h, Z3] :=
∃w(∃γ ∈ β)(x = 〈w, γ〉 ∧

w ∈ (Z3)〈a+̂Ωm̂ ·̂(γ̂+̂1̂)+̂2̂,h(γ)〉).

Based on C2 and C3 we now define a formula C4 ∈ Π1
0 such that, for

the class function

F = {〈α, h〉 | C4[α, h, (U)e, (W )∅]},

and for the class Z = {〈x, α〉 | x ∈ ((U)e)〈a+̂Ωm̂ ·̂(α̂+̂1̂)+̂2̂,F (α)(α)〉}, we can

show that ∀α(C[α, (Z)α, (Z)α]) and Z ∈̊ (U)a+̂Ωn̂+̂2̂. For the definition
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10. Reduction by Asymmetric Interpretation

of C4 we fix two arbitrary sets f0, g0, and we define θ3 ∈ GΠ1
0

such that

θ3[ẋ, β̇, ḣ, Ż3] := pC3[x, β, h, Z3]q[ċa/ȧ], and finally we define

C4[α, h, Z1, Z2] :=
Fun[h] ∧ dom(h) = α′ ∧ (∀β ∈ α′)(

C2[β, β, 〈〈θ3[ẋ, ċβ , ċh�β , Ċa+̂Ωm̂ ·̂β̂+̂3̂], ]x, f0, g0〉〉, h(β), Z1, Z2]).

Hence we have C4[α, h, (U)e, (W )∅] → (∀γ ∈ α)C4[γ, h�γ′, (U)e, (W )∅],
and by elementary induction on α we get

∀α∃!hC4[α, h, (U)e, (W )∅].

We define the class function

F := {〈α, h〉 | C4[α, h, (U)e, (W )∅]},

hence ∀α(∀β ∈ α)F (α)(β) = F (β)(β). We further define C5 ∈ Π1
0 such

that

C5[〈w,α〉, (U)e, (W )∅]↔ w ∈ ((U)e)〈a+̂Ωm̂ ·̂(α̂+̂1̂)+̂2̂,F (α)(α)〉,

that is, we define

C5[x, Z1, Z2] :=
∃α∃w∃h(x = 〈w,α〉 ∧ C4[α, h, Z1, Z2] ∧

w ∈ (Z1)〈a+̂Ωm̂ ·̂(α̂+̂1̂)+̂2̂,h(α)〉),

and θ5[ẋ, Ż1, Ż2] := pC5[x, Z1, Z2]q[ċa/ȧ][ċf0
/ḟ0][ċg0

/ġ0]. Clearly we

can find f1, g1, such that ]C [f1, g1, (U)e+̂1̂], because of
#—

X ∈̊ (U)a. Based
on θ5, f1, g1, we define the class

Z := ((U)a+̂Ωn̂+̂2̂)〈〈θ5[ẋ,Ċe,Ċ〈∅,∅〉],]x,f1,g1〉〉,

hence by Theorem 102 we get x ∈ Z ↔ θ5[ẋ, Ċe, Ċ〈∅,∅〉][f1, g1]
(U)e+̂1̂
∞ , and

by Lemma 88 and 90 and Theorem 102 we have

x ∈ Z ↔ C5[x, (U)e, (W )∅],

that is, we have (Z)α = ((U)e)〈a+̂Ωm̂ ·̂(α̂+̂1̂)+̂2̂,F (α)(α)〉 for any α. By

definition of F we have C4[α, F (α), (U)e, (W )∅] for any α, that is,

C2[α, α, 〈〈θ3[ẋ, ċα, ċF (α)�α, Ċa+̂Ωm̂ ·̂α̂+̂3̂], ]x, f0, g0〉〉, F (α)(α), (U)e, (W )∅],

hence by definition of C2 and by Theorem 102 we get

∀α(C[α, (Y )α, (Z)α])
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for any Y such that

(Y )α = ((U)e)〈a+̂Ωm̂ ·̂α̂+̂5̂,〈〈θ3[ẋ,ċα,ċF (α)�α,Ċa+̂Ωm̂ ·̂α̂+̂3̂
],]x,f0,g0〉〉〉,

and for such Y we further have by Theorem 102 and Lemma 88 that

x ∈ (Y )α ↔ θ3[ċx, ċα, ċF (α)�α, Ċa+̂Ωm̂ ·̂α̂+̂3̂][f0, g0]
(U)

a+̂Ωm̂ ·̂α̂+̂4̂
∞ ,

x ∈ (Y )α ↔ C3[x, α, F (α)�α, (U)a+̂Ωm̂ ·̂α̂+̂3̂],

x ∈ (Y )α ↔ ∃w(∃γ ∈ α)(x = 〈w, γ〉∧w ∈ ((U)e)〈a+̂Ωm̂ ·̂(γ̂+̂1̂)+̂2̂,F (α)(γ)〉),

that is, (Y )α = (Z)α. Hence we have ∀α(C[α, (Z)α, (Z)α]), and by
definition of Z we finally get

∃y∀αC[α, (((U)a+̂Ωn̂+̂2̂)y)α, (((U)a+̂Ωn̂+̂2̂)y)α],

that is A∗〈a, a +̂ Ωn̂ +̂ 2̂〉
U

.

d) If Γ = Φ, A∧B and T [R]`mD,0 Φ, A and T [R]`mD,0 Φ, B for some m < n,
then by i.h. and logic we have

Φ∨
∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
∨

(A∗〈a, a +̂ Ωm̂ +̂ 2̂〉
U
∧B∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
),

i.e. Γ∨
∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
, and Γ∨

∗〈a, a +̂ Ωn̂ +̂ 2̂〉
U

by Lemma 108.

e) If Γ = Φ, A ∨ B, and T [R]`mD,0 Φ, A or T [R]`mD,0 Φ, B for some m < n,
then we proceed analogously to the previous case.

f) If Γ = Φ,∃xA[x/v] and T [R]`mD,0 Φ, A[w/v] for some m < n, then we
proceed analogously to the next case.

g) If Γ = Φ,∀xA[x/u] and T [R]`mD,0 Φ, A for some m < n and u 6∈ Γ then
by i.h. we have

Φ∨
∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
∨A∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
,

and by Lemma 108 and because of u 6∈ Γ we get

Φ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
∨ ∀y(A∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
[y/u∗]),

that is Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
.

h) If Γ = Φ,∃XA[X/Y ] and T [R]`mD,0 Φ, A[Z/Y ] for some m < n then by
i.h. we have

Z∗ ∈̊ (U)a → (Φ∨
∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
∨A[Z/Y ]∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
),
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10. Reduction by Asymmetric Interpretation

hence by Lemma 108, and Theorem 102, and by logic we get

Z∗ ∈̊ (U)a → (Φ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
∨

∃z(A∗〈a, a +̂ Ωn̂ +̂ 2̂〉
U

[((U)a+̂Ωn̂+̂2̂)z/Y
∗])),

that is Z∗ ∈̊ (U)a → Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
. We either have Z∗ ∈

{X0, . . . , Xl}, or Z∗ 6∈ Γ∨
∗

and ∃Z(Z ∈̊ (U)a), hence in both cases

#—

X ∈̊ (U)a → Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
.

i) If Γ = Φ,∀XA[X/Z] and T [R]`mD,0 Φ, A for some m < n and Z 6∈ Γ
then by i.h. we have

Z∗ ∈̊ (U)a → (Φ∨
∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
∨A∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
),

and by Lemma 108 and because of Z 6∈ Γ we get

Φ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
∨

∀Y (Y ∈̊ (U)a → A∗〈a, a +̂ Ωn̂ +̂ 2̂〉
U

[Y/Z∗]),

hence by logic we have

Φ∨
∗〈a, a +̂ Ωm̂ +̂ 2̂〉

U
∨ ∀y(A∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
[((U)a)y/Z

∗]),

that is Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
.

j) If T [R]`mD,0 Γ, A and T [R]`mD,0 Γ,¬A for some m < n and A ∈ D, then

A = ∃XB[X/Y ] for some B ∈ Π1
0. We define a0 := a +̂ Ωm̂ +̂ 2̂, hence

by i.h. we get
Γ∨
∗〈a, a0〉U ∨A∗〈a, a0〉U

and
Γ∨
∗〈a0, a0 +̂ Ωm̂ +̂ 2̂〉

U
∨ (¬A∗)〈a0, a0 +̂ Ωm̂ +̂ 2̂〉

U
,

hence by Lemma 108 we get

Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
∨

(A∗〈a, a0〉U ∧ (¬A∗)〈a0, a0 +̂ Ωm̂ +̂ 2̂〉
U

),

that is

Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
∨

(∃x(B∗[((U)a0
)x/Y

∗]) ∧ ∀x((¬B∗)[((U)a0
)x/Y

∗])),

and we finally have Γ∨
∗〈a, a +̂ Ωn̂ +̂ 2̂〉

U
.
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(3) We have that ψ[f, g]
(U)Ωk∞ is equivalent to ψ[f, g]∞ ∈ (V )Ωk , hence the

claim can be proved by elementary induction on b, considering all cases
(i.e. disjuncts) in Definition 91.

a) If {ψ, ∼̇ψ} ⊆ y then (∼̇ψ)∗ = ¬(ψ∗) and rk (ψ∗) = 1 and because of

ClΩk+1
[U, V,W ] we have ψ∗[f, g]

(U)Ωk∞ ∨(¬(ψ∗))[f, g]
(U)Ωk∞ by Lemma 87.

b) If ψ ∈ y for some ψ ∈ G
CA[Π1

0]
then ψ∗ = ∃̇ U̇p ∀̇ u̇q(u̇q ∈̇ U̇p ↔̇ θ[u̇q/v̇r])

for some θ ∈ G
Π1

0
, and by Theorem 102 we have

x ∈ (((U)Ωk)a+̂2̂)〈〈θ,r,f,g〉〉 ↔ θ[ċx/v̇r][f, g]
((U)Ωk

)a+̂1̂
∞ .

Because of g|a we have

θ[ċx/v̇r][f, g]
((U)Ωk

)a+̂1̂
∞ ↔ θ[ċx/v̇r][f, g]

(U)Ωk∞ ,

hence
x ∈ ((U)Ωk)〈a+̂2̂,〈〈θ,r,f,g〉〉〉 ↔ θ[ċx/v̇r][f, g]

(U)Ωk∞

for any x. By Lemma 87 and 88 we get

(ċx ∈̇ Ċ〈a+̂2̂,〈〈θ,r,f,g〉〉〉)[f, g]
(U)Ωk∞ ↔ θ[ċx/v̇r][f, g]

(U)Ωk∞ ,

∀x((ċx ∈̇ Ċ〈a+̂2̂,〈〈θ,r,f,g〉〉〉 ↔̇ θ[ċx/v̇r])[f, g]
(U)Ωk∞ ),

∀̇ u̇q(u̇q ∈̇ Ċ〈a+̂2̂,〈〈θ,r,f,g〉〉〉 ↔̇ θ[u̇q/v̇r])[f, g]
(U)Ωk∞ .

By Corollary 106 and for V̇t with V̇t 6∈ term(θ) we have

∃y(∀̇ u̇q(u̇q ∈̇ V̇t ↔̇ θ[u̇q/v̇r])[(Ċa+̂Ωb+̂2̂)ċy/V̇t][f, g]
(U)Ωk∞ ),

because there is some y such that

((U)Ωk)〈a+̂2̂,〈〈θ,r,f,g〉〉〉 = (((U)Ωk)a+̂Ωb+̂2̂)y.

Hence by Lemma 88 we finally get ψ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ .

c) If y = z ∪ {ψ} and (ξ →̇ψ) ∈ G
DCOn [Π1

0]
, and z ∪ {ξ} ∈ (Z)c,∅ for some

c C b then there is some θ ∈ G
Π1

0
such that

ξ = ∀̇ u̇p(px ∈ Onq[u̇p/ẋ] →̇ ∀̇ U̇q ∃̇ U̇rθ[u̇p, U̇q, U̇r]),
ψ = ∃̇ U̇r ∀̇ u̇p(px ∈ Onq[u̇p/ẋ] →̇ θ[u̇p, (U̇r)

u̇p
, (U̇r)u̇p ]).

By i.h. we have

∀a(a +̂ Ωc C Ωk ∧ g|a→
(∃φ ∈ z ∪ {ξ})φ∗〈Ċa, Ċa+̂Ωc+̂2̂〉[f, g]

(U)Ωk∞ ),
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and we need to show

∀a(a +̂ Ωb C Ωk ∧ g|a→
(∃φ ∈ z ∪ {ψ})φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]

(U)Ωk∞ ).

We fix some a, f, g with a +̂ Ωb C Ωk and g|a, and we assume

(∀φ ∈ z)¬(φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ),

because otherwise (∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ , and we are done.

If d is such that a +̂ d +̂ Ωc E a +̂ Ωb then a +̂ d +̂ Ωc C Ωk, and
g|(a +̂ d), and by i.h. we get

ξ∗〈Ċa+̂d, Ċa+̂d+̂Ωc+̂2̂〉[f, g]
(U)Ωk∞ ,

because otherwise φ∗〈Ċa+̂d, Ċa+̂d+̂Ωc+̂2̂〉[f, g]
(U)Ωk∞ for some φ ∈ z, that

is φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ by Lemma 108, in contradiction to our as-

sumption. Hence by Lemma 88, 90 and Corollary 106 we have

∀α∀u∃v(θ∗[ċα, Ċ〈a+̂d,u〉, Ċ〈a+̂d+̂Ωc+̂2̂,v〉][f, g]
(U)Ωk∞ ),

and hence, because of a +̂ Ωc ·̂ β̂ +̂ 5̂ +̂ Ωc C a +̂ Ωb for any β, we get

∀α∀β∀u∃v(θ∗[ċα, Ċ〈a+̂Ωc ·̂β̂+̂5̂,u〉, Ċ〈a+̂Ωc ·̂(β̂+̂1̂)+̂2̂,v〉][f, g]
(U)Ωk∞ ).

We fix e := a +̂ Ωb and we define θ1 ∈ GΠ1
0

such that

θ1[ċα, ċβ , ċu, ċv][f, g]
(U)Ωk∞ ↔

θ∗[ċα, Ċ〈a+̂Ωc ·̂β̂+̂5̂,u〉, Ċ〈a+̂Ωc ·̂(β̂+̂1̂)+̂2̂,v〉][f, g]
(U)Ωk∞ ,

that is, we define

θ1[α̇, β̇, u̇, v̇] :=
∀̇ ż0 ∀̇ ż1(pz0 = 〈a +̂ Ωc ·̂ β̂ +̂ 5̂, u〉q[ċa/ȧ][ċc/ċ] ∧̇
pz1 = 〈a +̂ Ωc ·̂ (β̂ +̂ 1̂) +̂ 2̂, v〉q[ċa/ȧ][ċc/ċ] →̇

θ∗[α̇, (Ċe)ż0 , (Ċe)ż1 ]),

hence θ1 has the desired property, by Lemma 88, 90, and Corollary 106.
We further use the global wellordering ((U)Ωk)〈∅,∅〉 = (W )∅ (we have
Gl [(W )∅]) to define θ2 ∈ GΠ1

0
such that

∃v(θ1[ċα, ċβ , ċu, ċv][f, g]
(U)Ωk∞ )↔ ∃!v(θ2[ċα, ċβ , ċu, ċv][f, g]

(U)Ωk∞ ),
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that is, we define

θ2[α̇, β̇, u̇, v̇] :=
θ1[α̇, β̇, u̇, v̇] ∧̇ ∀̇ ẇ ∀̇ γ̇ ∀̇ δ̇(θ1[α̇, β̇, u̇, ẇ] →̇

p〈v, γ〉 ∈ X ∧ 〈w, δ〉 ∈ X → γ ∈ δ′q[Ċ〈∅,∅〉/Ẋ]).

Based on θ2 we now define θ6 ∈ GΠ1
0

(and θ3, θ4, θ5 ∈ GΠ1
0

as parts of θ6)

such that, for the class function

F = {〈α, h〉 | θ6[ċα, ċh][f, g]∞ ∈ (V )Ωk},

and for the class Z = {〈x, α〉 | x ∈ ((U)e)〈a+̂Ωc ·̂(α̂+̂1̂)+̂2̂,F (α)(α)〉}, we can

show that there is some y such that Z = ((U)Ωk)〈a+̂Ωb+̂2̂,y〉 and

∀α(θ∗[ċα, (Ċ〈a+̂Ωb+̂2̂,y〉)
ċα
, (Ċ〈a+̂Ωb+̂2̂,y〉)ċα ][f, g]

(U)Ωk∞ ).

We define

θ3[ẋ, β̇, ḣ, Ẋ] :=
∃̇ ẇ ∃̇ γ̇(pγ ∈ β ∧ x = 〈w, γ〉q ∧̇

pw ∈ (X)〈a+̂Ωc ·̂(γ̂+̂1̂)+̂2̂,h(γ)〉)q[ċa/ȧ][ċc/ċ],

θ4[ḟ0, β̇, ḣ] :=
pf0(]β) = β ∧ f0(]h) = h�βq ∧̇

p∀p(p = ]β ∨ p = ]h ∨ f0(p) = f(p))q[ċf/ḟ ],

θ5[ġ0, β̇] :=
pg0(]X) = a +̂ Ωc ·̂ β̂ +̂ 3̂q[ċa/ȧ][ċc/ċ] ∧̇
p∀p(p = ]X ∨ g0(p) = g(p))q[ċg/ġ],

θ6[α̇, ḣ] :=

pFun[h] ∧ dom(h) = α′q ∧̇ ∀̇ β̇ ∀̇ u̇ ∀̇ v̇ ∀̇ ḟ0 ∀̇ ġ0(

pβ ∈ α′q ∧̇ θ4[ḟ0, β̇, ḣ] ∧̇ θ5[ġ0, β̇] ∧̇
pu = 〈〈u0, u1, f0, g0〉〉q[ċθ3[ẋ,β̇,ḣ,Ẋ]/u̇0][ċ]x/u̇1] ∧̇

pv = h(β)q →̇ θ2[β̇, β̇, u̇, v̇]).

In a first step we show the following equivalence for θ6,

θ6[ċα, ċh][f, g]
(U)Ωk∞ ↔ Fun[h] ∧ dom(h) = α′ ∧

(∀β ∈ α′)(θ2[ċβ , ċβ , ċ〈〈θ3[ẋ,ċβ ,ċh�β ,Ċa+̂Ωc ·̂β̂+̂3̂
],]x,f,g〉〉, ċh(β)][f, g]

(U)Ωk∞ ).

If f0, g0 are such that f0(]β) = β, and f0(]h) = h�β, and f0(p) = f(p)

for p 6∈ {]β, ]h}, and g0(]X) = a +̂ Ωc ·̂ β̂ +̂ 3̂, and g0(p) = g(p) for
p 6= ]X, then we have that

θ3[ẋ, β̇, ḣ, Ẋ][f0, g0]∞ = θ3[ẋ, ċβ , ċh�β , Ċa+̂Ωc ·̂β̂+̂3̂][f, g]∞,

hence for such f0, g0, and any β, and a0 = a +̂ Ωc ·̂ β̂, we have that

θ3[ċx, β̇, ḣ, Ẋ][f0, g0]
(U)a0+̂4̂
∞ ↔ θ3[ċx, ċβ , ċh�β , Ċa0+̂3̂][f, g]

(U)a0+̂4̂
∞ ,
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and by Theorem 102 we get

((U)Ωk)〈a0+̂5̂,〈〈θ3[ẋ,β̇,ḣ,Ẋ],]x,f0,g0〉〉〉 =

((U)Ωk)〈a0+̂5̂,〈〈θ3[ẋ,ċβ ,ċh�β ,Ċa0+̂3̂],]x,f,g〉〉〉,

and because of this equality and by Lemma 105 we finally have

θ6[ċα, ċh][f, g]
(U)Ωk∞ ↔ Fun[h] ∧ dom(h) = α′ ∧

(∀β ∈ α′)(θ2[ċβ , ċβ , ċ〈〈θ3[ẋ,ċβ ,ċh�β ,Ċa+̂Ωc ·̂β̂+̂3̂
],]x,f,g〉〉, ċh(β)][f, g]

(U)Ωk∞ ).

Having this equivalence we get

θ6[ċα, ċh][f, g]
(U)Ωk∞ → (∀γ ∈ α)(θ6[ċγ , ċh�γ′ ][f, g]

(U)Ωk∞ ),

and by elementary induction on α (because θ6[ċα, ċh][f, g]
(U)Ωk∞ is equiv-

alent to the elementary formula θ6[ċα, ċh][f, g]∞ ∈ (V )Ωk) we get

∀α∃!h(θ6[ċα, ċh][f, g]
(U)Ωk∞ ).

We define the class function

F := {〈α, h〉 | θ6[ċα, ċh][f, g]∞ ∈ (V )Ωk},

hence ∀α(∀β ∈ α)F (α)(β) = F (β)(β). We further define θ7 ∈ GΠ1
0

such

that

θ7[ċ〈w,α〉][f, g]
(U)Ωk∞ ↔ w ∈ ((U)e)〈a+̂Ωc ·̂(α̂+̂1̂)+̂2̂,F (α)(α)〉,

that is, we define

θ7[ẋ] :=
∃̇ α̇ ∃̇ ẇ ∃̇ ḣ(pα ∈ On ∧ x = 〈w,α〉q ∧̇ θ6[α̇, ḣ] ∧̇
pw ∈ (X)〈a+̂Ωc ·̂(α̂+̂1̂)+̂2̂,h(α)〉q[ċa/ȧ][ċc/ċ][Ċe/Ẋ]),

and based on θ7 we define the class

Z := ((U)Ωk)〈a+̂Ωb+̂2̂,〈〈θ7[ẋ],]x,f,g〉〉〉.

We have θ7[ċx][f, g]
(U)e+̂1̂
∞ ↔ θ7[ċx][f, g]

(U)Ωk∞ because of g|a, and w E e
for all Ċw ∈ term(θ7[ċx]), hence by Theorem 102 we get

x ∈ Z ↔ θ7[ċx][f, g]
(U)Ωk∞ ,

that is, we have (Z)α = ((U)e)〈a+̂Ωc ·̂(α̂+̂1̂)+̂2̂,F (α)(α)〉 for any α, and we
further have that

x ∈ (Z)α ↔ ∃w(∃γ ∈ α)(x = 〈w, γ〉 ∧ w ∈ ((U)e)〈a+̂Ωc ·̂(γ̂+̂1̂)+̂2̂,F (α)(γ)〉),
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hence by Theorem 102 we get

x ∈ (Z)α ↔ θ3[ċx, ċα, ċF (α)�α, Ċa+̂Ωc ·̂α̂+̂3̂][f, g]
(U)a+̂Ωc ·̂α̂+̂4̂
∞ ,

and (Z)α = ((U)e)〈a+̂Ωc ·̂α̂+̂5̂,〈〈θ3[ẋ,ċα,ċF (α)�α,Ċa+̂Ωc ·̂α̂+̂3̂],]x,f,g〉〉〉. By defini-

tion of F we have θ6[ċα, ċF (α)][f, g]
(U)Ωk∞ for any α, hence

∀α(θ2[ċα, ċα, ċ〈〈θ3[ẋ,ċα,ċF (α)�α,Ċa+̂Ωc ·̂α̂+̂3̂],]x,f,g〉〉, ċF (α)(α)][f, g]
(U)Ωk∞ ),

and by Lemma 105, because of (Z)α = ((U)e)〈a+̂Ωc ·̂(α̂+̂1̂)+̂2̂,F (α)(α)〉, and

(Z)α = ((U)e)〈a+̂Ωc ·̂α̂+̂5̂,〈〈θ3[ẋ,ċα,ċF (α)�α,Ċa+̂Ωc ·̂α̂+̂3̂],]x,f,g〉〉〉, we get

∃y∀α(θ∗[ċα, (Ċ〈a+̂Ωb+̂2̂,y〉)
ċα
, (Ċ〈a+̂Ωb+̂2̂,y〉)ċα ][f, g]

(U)Ωk∞ ),

hence we finally have ψ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ .

d) If y = z∪{ψ0 ∨̇ψ1} and (z∪{ψ0} ∈ (Z)c,∅∨ z∪{ψ1} ∈ (Z)c,∅) for some
c C b then by i.h. we have

(∃φ ∈ z ∪ {ψ0})φ∗〈Ċa, Ċa+̂Ωc+̂2̂〉[f, g]
(U)Ωk∞ ∨

(∃φ ∈ z ∪ {ψ1})φ∗〈Ċa, Ċa+̂Ωc+̂2̂〉[f, g]
(U)Ωk∞ ,

hence by logic we get

(∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωc+̂2̂〉[f, g]
(U)Ωk∞ ∨

(ψ∗0〈Ċa, Ċa+̂Ωc+̂2̂〉[f, g]
(U)Ωk∞ ∨ ψ∗1〈Ċa, Ċa+̂Ωc+̂2̂〉[f, g]

(U)Ωk∞ ),

and by Lemma 88 and Lemma 108 we have

(∃φ ∈ z ∪ {ψ0 ∨̇ψ1})φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ .

e) If y = z∪{ψ0 ∧̇ψ1} and (z∪{ψ0} ∈ (Z)c,∅∧ z∪{ψ1} ∈ (Z)c,∅) for some
c C b, then we proceed analogously to the previous case.

f) If y = z ∪ {∃̇ U̇p(ψ[U̇p/V̇q])} and z ∪ {ψ[V̇t/V̇q]} ∈ (Z)c,∅ for some c C b
then by i.h. and Lemma 108 we have

(∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ∨

(ψ∗[V̇∗t /V̇
∗
q ])〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]

(U)Ωk∞ ,

that is
(∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]

(U)Ωk∞ ∨
(ψ∗〈Ċa, Ċa+̂Ωb+̂2̂〉)[Ċg(2·t)/V̇∗q ][f, g]

(U)Ωk∞ ,
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hence because of g|a and Corollary 106 we get

(∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ∨

∃x(ψ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[(Ċa)ċx/V̇
∗
q ][f, g]

(U)Ωk∞ ),

and finally (∃φ ∈ y)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ by Lemma 88.

g) If y = z∪{∀̇ U̇p(ψ[U̇p/V̇q])} and (∀ξ ∈ z)V̇q 6∈ term(ξ) and z∪{ψ} ∈ (Z)c,∅
for some c C b then for any g0 and x such that g0(2 · q) = 〈a, x〉 and
g0(r) = g(r) for r 6= 2 · q, i.e. g0|a, we have

(∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ∨

ψ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g0]
(U)Ωk∞

by i.h. and Lemma 108, hence

(∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ∨

∀x(ψ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[Ċ〈a,x〉/V̇∗q ][f, g]
(U)Ωk∞ ),

and by Corollary 106 and Lemma 88 we finally get

(∃φ ∈ y)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ .

h) If y ∪ {ψ} ∈ (Z)c,∅ ∧ y ∪ {¬ψ} ∈ (Z)c,∅ for some c C b and some

ψ ∈ G
CA[Π1

0]
∪ G→

DCOn [Π1
0]

then ψ = ∃̇ U̇p(θ[U̇p/V̇q]) for some θ ∈ G
Π1

0
. We

fix some g such that g|a, and we define a0 := a +̂ Ωc +̂ 2̂, hence we have
g|a0, and by i.h. we get

(∃φ ∈ y)φ∗〈Ċa, Ċa0
〉[f, g]

(U)Ωk∞ ∨
ψ∗〈Ċa, Ċa0〉[f, g]

(U)Ωk∞

and
(∃φ ∈ y)φ∗〈Ċa0

, Ċa0+̂Ωc+̂2̂〉[f, g]
(U)Ωk∞ ∨

(¬ψ)∗〈Ċa0
, Ċa0+̂Ωc+̂2̂〉[f, g]

(U)Ωk∞ ,

hence by Lemma 108 we get

(∃φ ∈ y)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ∨

(ψ∗〈Ċa, Ċa0〉[f, g]
(U)Ωk∞ ∧ (¬ψ)∗〈Ċa0 , Ċa0+̂Ωc+̂2̂〉[f, g]

(U)Ωk∞ ),

and by Lemma 88 and Corollary 106 we have

(∃φ ∈ y)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ∨

∃x(θ∗[Ċ〈a0,x〉/V̇
∗
q ][f, g]

(U)Ωk∞ ) ∧ ∀x((¬θ)∗[Ċ〈a0,x〉/V̇
∗
q ][f, g]

(U)Ωk∞ ).
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By Lemma 87 we get

¬(θ∗[Ċ〈a0,x〉/V̇
∗
q ][f, g]

(U)Ωk∞ )↔ ((¬θ)∗[Ċ〈a0,x〉/V̇
∗
q ][f, g]

(U)Ωk∞ ),

hence we finally have (∃φ ∈ y)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ .

i) If (ċu ∈̇ ċv) ∈ y ∧ u ∈ v then (ċu ∈̇ ċv)
∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]

(U)Ωk∞ follows
directly by Lemma 88.

j) If ∼̇(ċu ∈̇ ċv) ∈ y ∧ u 6∈ v then ∼̇(ċu ∈̇ ċv)
∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]

(U)Ωk∞
follows directly by Lemma 88.

k) If y = z ∪ {∃̇ u̇p(ψ[u̇p/v̇q])} and ∃w(z ∪ {ψ[ċw/v̇q]} ∈ (Z)c,∅) for some
c C b then by i.h. and Lemma 108 we have

(∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ∨

∃w(ψ[ċw/v̇q]
∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g0]

(U)Ωk∞ ),

hence (∃φ ∈ y)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ by Lemma 88.

l) If y = z ∪{∀̇ u̇p(ψ[u̇p/v̇q])} and ∀w(∃c C b)z ∪{ψ[ċw/v̇q]} ∈ (Z)c,∅ then
by i.h. we have

∀w(∃c C b)((∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωc+̂2̂〉[f, g]
(U)Ωk∞ ∨

ψ[ċw/v̇q]
∗〈Ċa, Ċa+̂Ωc+̂2̂〉[f, g0]

(U)Ωk∞ ),

and by Lemma 108 we get

(∃φ ∈ z)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ ∨

∀w(ψ[ċw/v̇q]
∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g0]

(U)Ωk∞ ),

hence (∃φ ∈ y)φ∗〈Ċa, Ċa+̂Ωb+̂2̂〉[f, g]
(U)Ωk∞ by Lemma 88.

m) If y = z ∪ {∃̇ u̇p(ψ[u̇p/v̇q])} and z ∪ {ψ[v̇t/v̇q]} ∈ (Z)c,∅ for some c C b
then we proceed analogous to Case f.

n) If y = z ∪ {∀̇ u̇p(ψ[u̇p/v̇q])} and (∀ξ ∈ z)v̇q 6∈ term(ξ) and z ∪ {ψ} ∈
(Z)b,∅ for some c C b then we proceed analogous to Case g.

By putting together the pieces and by cancelling out all the irrelevant parts
in the statements of the previous lemma (the parts were essential for the
proof by induction), we easily get the desired reductions.
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10. Reduction by Asymmetric Interpretation

Lemma 110. (Reduction)

For Γ ⊆ Σ1(Π1
0) we have that

(1) If C = AC [Π1
0]
→ ∪ CA[Π1

0] and CA[Π1
0] [AC [Π1

0]] C̀,0 Γ then

NBG ` Γ.

(2) If D = DCOn [Π1
0]
→ ∪ CA[Π1

0] and CA[Π1
0] [DCOn [Π1

0]]`nD,0 Γ then

NBG ∪ ∃HierΩn+1

C [Π1
0] ` Γ.

(3) If CA[Π1
0] ∪ TI∈[L1] [DCOn [Π1

0]] ǹ Γ then

NBG ∪ ∃Hier
Ωn+4

C [Π1
0] ` Γ.

Proof.

(1) If CA[Π1
0] [AC [Π1

0]]`n,iC,0 Γ, and {Vj | Vj ∈ Γ∨
∗} ⊆ {X0, ..., Xl}, and 2n < k,

then by Lemma 109 there is some m such that we have

NBG ` Clk[m,U, V,W ] ∧Gl [(W )∅] ∧
#—

X ∈̊ (U)∅ → Γ∨
∗〈∅, 2n〉

U
,

and because of (U)∅ = W by Theorem 102, and by Lemma 107 we get

NBG ` Clk[m,U, V,W ] ∧Gl [(W )∅] ∧
#—

X ∈̊W → Γ∨
∗
.

We have NBG ` Gl [(W )∅] ∧
#—

X ∈̊W → Γ∨
∗

by Lemma 101, and further by

Lemma 29 and comprehension we get NBG ` ∃Z(Gl [(Z)∅] ∧
#—

X ∈̊ Z), hence
NBG ` Γ∨

∗
, i.e. NBG ` Γ∨, and finally NBG ` Γ because of NBG ` ¬(Γ∨),Γ.

(2) Analogous to Part 1.

(3) If CA[Π1
0] ∪ TI∈[L1] [DCOn [Π1

0]] ǹ Γ then by applying the disjunction
rule we easily get CA[Π1

0] ∪ TI∈[L1] [DCOn [Π1
0]] ǹ Γ∨, and by Theorem 98

and Lemma 94 we have NBG ` PrDC+
Ωm+1

[Z]→ {pΓ∨q} ∈ (Z)Ω+̂ω̂,n , hence by
Lemma 93, Theorem 95, and Lemma 92, we get

NBG ∪ ∃Hier
Ωm+1

C [Π1
0] ` ∃U(PrDC+

Ωm+1
[U ] ∧ ∀f({pΓ∨q[f ]∞} ∈ (U)

ωΩ+̂ω̂
n ,∅))

for m > n. For k = n+ 3 we have Ωω
Ω+̂ω̂
n C Ωk because of

Ωω
Ω+̂ω̂
n = ω̂Ω·̂ωΩ+̂ω̂

n C ω̂Ω·̂ωΩ+̂ω̂
n+2 = ω̂ω

Ω+̂ω̂
n+2 C ω̂Ωn+2 = Ωn+3,
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and by Lemma 109 we get

NBG `
ClΩk+1

[U, V,W ] ∧Gl [(W )∅] ∧
PrDC+

Ωk
[Z] ∧ {pΓ∨q[h]∞} ∈ (Z)

ωΩ+̂ω̂
n ,∅ ∧ g|∅ →

∀f((pΓ∨q[h]∞)∗〈Ċ∅, Ċ
Ωω

Ω+̂ω̂
n +̂2̂

〉[f, g]
(U)Ωk∞ ),

hence we have

NBG ∪ ∃HierΩk
C [Π1

0] `
ClΩk+1

[U, V,W ] ∧Gl [(W )∅] ∧ g|∅ →
∀h∀f((pΓ∨q[h]∞)∗〈Ċ∅, Ċ

Ωω
Ω+̂ω̂
n +̂2̂

〉[f, g]
(U)Ωk∞ ),

that is

NBG ∪ ∃HierΩk
C [Π1

0] `
ClΩk+1

[U, V,W ] ∧Gl [(W )∅] ∧ g|∅ →
∀f(pΓ∨∗q〈Ċ∅, Ċ

Ωω
Ω+̂ω̂
n +̂2̂

〉[f, g]
(U)Ωk∞ ).

And by Lemma 107 we get

NBG ∪ ∃HierΩk
C [Π1

0] `
ClΩk+1

[U, V,W ] ∧Gl [(W )∅] ∧ g|∅ →
∀f(pΓ∨∗q[f, g]

(U)Ωk∞ ).

For {Vi | Vi ∈ Γ∨
∗} ⊆ {X0, ..., Xm} and ]Γ∨∗ (as in Lemma 90) we have

NBG ∪ ∃HierΩk
C [Π1

0] `
ClΩk+1

[U, V,W ] ∧Gl [(W )∅] ∧
#—

X ∈̊W →
(g0|∅ ∧ ]Γ∨∗ [f0, g0, (U)Ωk ]→ pΓ∨∗q[f0, g0]

(U)Ωk∞ ),

hence by Lemma 90 we get

NBG ∪ ∃HierΩk
C [Π1

0] ` ClΩk+1
[U, V,W ] ∧Gl [(W )∅] ∧

#—

X ∈̊W →
(g0|∅ ∧ ]Γ∨∗ [f0, g0, (U)Ωk ]→ Γ∨

∗
),

If Xi = (W )z and g0(i) = 〈∅, z〉 then ((U)Ωk)g0(i) = Xi by Theorem 102,
that is

NBG ` ClΩk+1
[U, V,W ] ∧ #—

X ∈̊W → ∃f0∃g0(g0|∅ ∧ ]Γ∨∗ [f0, g0, (U)Ωk ]),

and hence we have

NBG ∪ ∃HierΩk
C [Π1

0] ` ClΩk+1
[U, V,W ] ∧Gl [(W )∅] ∧

#—

X ∈̊W → Γ∨
∗
,

and we finally get NBG ∪ ∃Hier
Ωn+4

C [Π1
0] ` Γ analogous to Part 1.

Finally, we are able to state the proof-theoretic equivalences.
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10. Reduction by Asymmetric Interpretation

Definition 111.

(CA[Π1
0])<Ωω :=

⋃
k∈N(∃HierΩk̂

C [Π1
0]),

(CA[Π1
0])<E0

:=
⋃
k∈N(∃HierΩk

C [Π1
0]).

We observe that (CA[Π1
0])<Ωω and (CA[Π1

0])<E0
in the proofs given below,

can not be replaced by ∃HierΩω̂

C [Π1
0] and ∃HierE0

C [Π1
0], respectively.

Definition 112.

For F , T0, T1 ⊆ L1, and if we have T0 ` Γ iff T1 ` Γ for all Γ ⊆ F , then we

write T0
F≡ T1.

Theorem 113.

If T ⊆ {¬(∀)A | A ∈ Σ1(Π1
0)} and F = Σ1(Π1

0) then

(1) T ∪ NBG ∪AC [Σ1
1]
F≡ T ∪ NBG,

(2) T ∪ NBG ∪DC [Σ1
1]
F≡ T ∪ NBG ∪ (CA[Π1

0])<Ωω ,

(3) T ∪ NBG ∪DC [Σ1
1] ∪Wf V∈ [L1]

F≡ T ∪ NBG ∪ (CA[Π1
0])<E0

.

Proof.

(1) If Γ ⊆ F and T ∪ NBG ∪AC [Σ1
1] ` Γ then by Corollary 45 we have

T ∪ NBG ∪AC [Π1
0] ` Γ, and by Lemma 14 there is ∆ ⊆ ZFC, and there

are A0, ..., An ∈ Σ1(Π1
0) (with pairwise disjoint free variables) such that

CA[Π1
0] [AC [Π1

0]]` (∀)A0, ..., (∀)An,¬∆,¬∀F (B[F ]),¬∃F (C[F ]),Γ

where ∀F (B[F ]),∃F (C[F ]) ∈ NBG are the axiom of replacement and the
axiom of global choice, respectively. By Lemma 15 and Corollary 17 we get

CA[Π1
0] [AC [Π1

0]] C̀,0 A0, ..., An,¬∆,¬∀F (B[F ]),¬C[X],Γ

for C = AC [Π1
0]
→ ∪ CA[Π1

0], hence by Lemma 110 we have

NBG ` A0, ..., An,¬∆,¬∀F (B[F ]),¬C[X],Γ,

and finally T ∪ NBG ` Γ. The other direction is trivial.

(2) If Γ ⊆ F and T ∪ NBG ∪DC [Σ1
1] ` Γ then analogously to Part 1 we get

T ∪ NBG ∪ (CA[Π1
0])<Ωω ` Γ, and there is ∆ ⊆ {(∀)A | A ∈ (CA[Π1

0])<Ωω}
such that T ∪ NBG ` Γ,¬∆ by Lemma 14. For any B ∈ ∆ we further have
that T ∪ NBG ∪DC [Σ1

1] ` B by Theorem 79, hence T ∪ NBG ∪DC [Σ1
1] ` Γ.

(3) We have T ∪ NBG ∪DC [Σ1
1] ∪ TI∈[L1]

F≡ T ∪ NBG ∪DC [Σ1
1] ∪Wf V∈ [L1]

by Lemma 50. The claim follows analogous to Part 1 and 2.
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Corollary 114.

If T ⊆ {¬(∀)A | A ∈ Σ1(Π1
0)} and F = Σ1(Π1

0) then

(1) T ∪ NBG ∪AC [Σ1
1] ∪Wf V∈ [L1]

F≡ T ∪ NBG ∪ (CA[Π1
0])<E0

,

(2) T ∪ NBG ∪ (CA[Π1
0])<E0

∪Wf V∈ [L1]
F≡ T ∪ NBG ∪ (CA[Π1

0])<E0
.

Proof.

(1) If Γ ⊆ F and T ∪ NBG ∪AC [Σ1
1] ∪Wf V∈ [L1] ` Γ then by Corollary 45

we have T ∪ NBG ∪DC [Σ1
1] ∪Wf V∈ [L1] ` Γ, and hence by Theorem 113 we

get T ∪ NBG ∪ (CA[Π1
0])<E0

` Γ. If T ∪ NBG ∪ (CA[Π1
0])<E0

` Γ then there
is some ∆ ⊆ {(∀)A | A ∈ (CA[Π1

0])<E0
} such that we have T ∪ NBG ` Γ,¬∆

by Lemma 14. For any B ∈ ∆ we have T ∪ NBG ∪AC [Σ1
1] ∪Wf V∈ [L1] ` B

by Theorem 79, hence we finally get T ∪ NBG ∪AC [Σ1
1] ∪Wf V∈ [L1] ` Γ.

(2) If Γ ⊆ F and T ∪ NBG ∪ (CA[Π1
0])<E0

∪Wf V∈ [L1] ` Γ then analogous to

Part 1 we get T ∪ NBG ∪AC [Σ1
1] ∪Wf V∈ [L1] ` Γ, hence by Part 1 we have

T ∪ NBG ∪ (CA[Π1
0])<E0

` Γ. The other direction is trivial.

Corollary 115.

If T and F are any sets of sentences in Σ1
2 and Π1

2, respectively, then

(1) T ∪ NBG ∪AC [Σ1
1]
F≡ T ∪ NBG,

(2) T ∪ NBG ∪DC [Σ1
1]
F≡ T ∪ NBG ∪ (CA[Π1

0])<Ωω ,

(3) T ∪ NBG ∪AC [Σ1
1] ∪ TI∈[L1]

F≡ T ∪ NBG ∪ (CA[Π1
0])<E0 ,

(4) T ∪ NBG ∪DC [Σ1
1] ∪ TI∈[L1]

F≡ T ∪ NBG ∪ (CA[Π1
0])<E0

,

(5) T ∪ NBG ∪ (CA[Π1
0])<E0

∪ TI∈[L1]
F≡ T ∪ NBG ∪ (CA[Π1

0])<E0
.
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Conclusion

In this thesis we have considered extensions of Von Neumann–Bernays–
Gödel set theory NBG by axiom schemes, i.e., choice AC [Σ1

1], dependent
choice DC [Σ1

1], full induction TI∈[L1], and iterated elementary comprehen-
sion (CA[Π1

0])<c. We have established proof-theoretic equivalences between
these schemes, similar to the results for analogous systems of arithmetic. The
equivalences are

T ∪ NBG ∪AC [Σ1
1] ≡ T ∪ NBG,

T ∪ NBG ∪DC [Σ1
1] ≡ T ∪ NBG ∪ (CA[Π1

0])<Ωω ,
T ∪ NBG ∪DC [Σ1

1] ∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1
0])<E0

,
T ∪ NBG ∪AC [Σ1

1] ∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1
0])<E0

,
T ∪ NBG ∪ (CA[Π1

0])<E0 ∪ TI∈[L1] ≡ T ∪ NBG ∪ (CA[Π1
0])<E0 ,

where T is any set of axioms with logical complexity essentially Σ1
2, and the

equivalence, ≡, means that any sentence essentially Π1
2 is either provable in

both theories or in none of them. The first equivalence has also been stated
(without proof) by Feferman and Sieg [4]. The second last equivalence has
been shown in a slightly weaker form by Jäger and Krähenbühl [10].

The main achievements of this thesis are the first three equivalences (the oth-
ers are easy consequences). The bulk of work was in the reduction of the sys-
tems with choice to the systems with iterated comprehension. The reductions
are achieved in a uniform way, by using cut-elimination and asymmetric inter-
pretations (Section 10), see also Cantini [1], and Jäger and Krähenbühl [10],
for similar reductions. The three different asymmetric interpretations are
presented in one sweep to emphasize commonality and genericity of this
technique. In contrast to Cantini [1], where the asymmetric interpretation is
into hierarchies of sets of numbers, which are built by using fixed standard
Π1
n-complete predicates, in this thesis, the asymmetric interpretation is into

cumulative hierarchies of classes (Section 9), which are built by using truth
predicates for each level of the hierarchy, i.e., the truth predicates and the
stages of the hierarchy are built simultaneously. Hierarchies of classes of this
sort are also used in Jäger and Krähenbühl [10].

We can easily come up with further interesting questions in the proof theory
of NBG by just translating results from second order arithmetic, and by
asking whether these results also hold in the context of NBG, or whether
even the same proof-theoretic techniques from arithmetic can be adapted to
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set theory, e.g., as it is the case for this thesis. An immediate such question
with respect to the results of this thesis is whether the following equivalences
also hold for n > 0, that is,

NBG ∪AC [Σ1
n+1] ≡ NBG ∪ CA[Π1

n],
NBG ∪DC [Σ1

n+1] ≡ NBG ∪ (CA[Π1
n])<Ωω ,

NBG ∪DC [Σ1
n+1] ∪ TI∈[L1] ≡ NBG ∪ (CA[Π1

n])<E0 ,
NBG ∪AC [Σ1

n+1] ∪ TI∈[L1] ≡ NBG ∪ (CA[Π1
n])<E0

.

It was shown by Friedman [6], Feferman and Sieg [4], and Cantini [1], that
analogous statements hold in the context of arithmetic. A first approach
to prove these equivalences for NBG could follow the proofs of Cantini [1],
again by using asymmetric interpretations, but now with some kind of con-
structibility hypothesis for classes involved (see also Feferman and Sieg [4] for
a similar argument).

Another line of questions arises by considering extensions of NBG by re-
stricted forms of choice, ACω and DCω, i.e.,

(∀α ∈ ω)∃Y A[α, Y ]→ ∃Y (∀α ∈ ω)A[α, (Y )α],

(∀α ∈ ω)∀Y ∃ZA[α, Y, Z]→ ∃Z(∀α ∈ ω)A[α, (Z)
α
, (Z)α],

for formulas A. By Theorem 113 and 40 we already know that the first of the
following equivalences holds. And it would be interesting to know whether
it is possible to find c0, c1, c2, such that

NBG ∪ACω[Σ1
1] ≡ NBG,

NBG ∪DCω[Σ1
1] ≡ NBG ∪ (CA[Π1

0])<c0 ,
NBG ∪DCω[Σ1

1] ∪ TI ω∈ [L1] ≡ NBG ∪ (CA[Π1
0])<c1 ,

NBG ∪ACω[Σ1
1] ∪ TI ω∈ [L1] ≡ NBG ∪ (CA[Π1

0])<c2 .

E.g., by adapting the proof of Theorem 79 we can get some possible lower
bounds for c1, c2.

We have seen that (E0,C), which corresponds to the wellordering (ε0,∈),
plays an important role in the characterisation of the choice principles with
full induction over NBG. By using the notation system in Appendix C,
and an analogous construction as for E0 in Section 6, we can easily build a
linear ordering (G0,C) corresponding to (Γ0,∈), in the same way as (E0,C)
corresponds to (ε0,∈). The ordering (G0,C) is expected to play an important
role if we consider to get analogous results as in Feferman and Jäger [2],
where choice principles in presence of the Bar Rule are characterised by
autonomously iterated comprehension in second order arithmetic.
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A. Normality and Extensionality

Originally, set theory deals with collections of sets, where sets are themselves
collections of sets, and if two sets or classes contain the same sets then the
two are equal, i.e. sets and classes are extensional. We show that the notions
of normality and extensionality for L1-structures essentially capture these
properties, at least as good as it can be captured in the logic defined in
Section 1, that is, modulo isomorphisms between L1-structures.

Definition 116. (Normal Structures)

Let M be a L1-structure.

(1) We define the extensions of a ∈ |M|, b ∈ ‖M‖, such that

E0
M(a) := {c | c∈0

Ma},
E1
M(b) := {c | c∈1

Mb}.

(2) We define =0
M⊆ |M| × |M| and =1

M⊆ ‖M‖× ‖M‖, such that

a =0
M b :⇔ E0

M(a) = E0
M(b),

a =1
M b :⇔ E1

M(a) = E1
M(b).

(3) M is called normal, cf. Mendelson [14], if we have for all a, b that

a =0
M b or a =1

M b ⇒ a = b.

(4) M is called natural, if we have for all a ∈ |M|, b ∈ ‖M‖, that

a = E
0
M(a) and b = E

1
M(b),

Clearly, all natural L1-structures are also normal structures, but generally
not the other way around. The following theorem shows that at least we can
find isomorphic natural structures for a whole class of normal structures.

Theorem 117.

If the L1-structure M is normal, and if we can recursively build the sets

E∞M(a) := {E∞M(c) | c∈0
Ma} for any a ∈ |M|, e.g. if ∈0

M is well-founded,
then there is a natural L1-structure N isomorphic toM, i.e. such that ∈0

N
and ∈1

N are the restrictions of ∈ to |N |× |N | and |N |×‖N‖, respectively.
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Proof. The isomorphism is

a 7→ E
∞
M(a), for a ∈ |M|,

b 7→ {E∞M(a) | a∈1
Mb}, for b ∈ ‖M‖.

Definition 118. (Extensionality)

The L1-structureM is called extensional if it satisfies the two extensional-
ity axioms (also called equality axioms or Leibniz’s law), i.e. if the following
holds

M |= ∀x∀y∀z(x = y ∧ x ∈ z → y ∈ z),
M |= ∀Z∀x∀y(x = y ∧ x ∈ Z → y ∈ Z).

Lemma 119.

For any L1-structure M we have

a =0
M b ⇔ M |= (x = y)[a, b/x, y],

a =1
M b ⇔ M |= (X = Y )[a, b/X, Y ].

Proof. By the definition of =0
M, =1

M, x = y, X = Y , and |=.

Lemma 120.

For any L1-structure M we have

M |= ∀x∀y∀z(x = y ∧ z ∈ x→ z ∈ y),

M |= ∀X∀Y ∀z(X = Y ∧ z ∈ X → z ∈ Y ).

Proof. By the definition of x = y, X = Y , and |=.

Lemma 121.

For any L1-structure M we have

(1) =1
M is a congruence relation for ∈1

M, i.e. for all a, b, c we have

a =1
M b ∧ c∈1

Ma ⇒ c∈1
Mb.

(2) M is extensional iff =0
M is a congruence relation for ∈0

M and ∈1
M,

i.e. iff for all a, b, c we have that

a =0
M b ∧ a∈1

Mc ⇒ b∈1
Mc,

a =0
M b ∧ a∈0

Mc ⇒ b∈0
Mc,

a =0
M b ∧ c∈0

Ma ⇒ c∈0
Mb.
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A. Normality and Extensionality

Proof. By Lemma 119 and 120 and by the definition of |=.

Clearly, extensionality does not imply normality for L1-structures, but we
get the following theorem about the relation between extensionality and nor-
mality.

Theorem 122.

If T ⊆ L1 is a set of sentences and T contains the extensionality axioms,
then T |= A depends on normal L1-structures only, i.e. we have T |= A iff
(V |= T ⇒ V |= A) for all valuations V with normal L1-structure 〈V〉.

Proof. If T 6|= A then there is some V ′ such that V ′ |= T and V ′ 6|= A. The
L1-structure M := 〈V ′〉 is extensional, hence by Lemma 121 we can build
the quotient structure M/= with respect to =0

M and =1
M, such that M/=

is normal, and for all B ∈ L1 we get that M |= B iff M/= |= B. We have
M 6|= A, hence M/= 6|= A, i.e. there is some V := (M/=, f, g) such that
V 6|= A. We have M |= T , hence M/= |= T , and therefore V |= T .
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B. Another Language for Theories
of Sets and Classes

In the literature, there exist different formalizations for theories of sets and
classes in classical logic. E.g. Mendelson [14] is using some common formu-
lation of NBG set theory, with just one sort of variables, hence the language
is different from the one we use in this thesis. In this section, we want to
investigate the exact relationship between such formalizations, that is, in ad-
dition to the language L1 we define the language L0

C, and in Theorem 132
and Theorem 139 we get some very general conditions, such that formula-
tions of set theories in L1 and L0

C are equivalent, i.e. the theories prove the
same theorems up to some fixed translation from one language to the other.

The language L0
C extends the language L0 of ZFC by two unary relation

symbols S and C for sets and classes, respectively, and for technical reasons
we also include a second binary relation symbol ∈1.

Definition 123. (Language L0
C)

The language L0
C extends L0 and consists of the following

(1) The logical symbols of L0
C are the same as for L0.

(2) The non logical symbols of L0
C are the element relation symbols ∈0

and ∈1, and the unary relation symbols S and C.

(3) The atomic L0
C-formulas are vi∈0vj , ∼vi∈0vj , vi∈1vj , ∼vi∈1vj , and

S(vi), ∼S(vi), C(vi), ∼C(vi), for any i, j ∈ N.

(4) The L0
C-formulas are defined analogous to the L0-formulas.

We use notational conventions analogous to the language L0.

L0
C is a language of pure first order logic, hence its semantic and the adequate

notion of formal proof are defined according to common first order logic.

Definition 124. (Semantics and Formal Proof)

(1) A L0
C-structure is a tuple M := (|M|,SM,CM,∈0

M,∈1
M) with non-

empty domain |M|, and relations SM,CM ⊆ |M|, and ∈0
M,∈1

M ⊆
|M| × |M|.

(2) A L0
C-valuation is a tuple V := (〈V〉, f) such that 〈V〉 is a L0

C-structure
and f : N→ |〈V〉|.
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B. Another Language for Theories of Sets and Classes

(3) V |= A is defined analogous to Definition 9. For atomic L0
C-formulas

A we have V |= A iff V = (M, f) is a L0
C-valuation and one of the

following holds:

A = S(x) and f(]x) ∈ SM,
A = C(x) and f(]x) ∈ CM,
A = x∈0y and f(]x)∈0

Mf(]y),
A = x∈1y and f(]x)∈1

Mf(]y),
A = ∼B and V 6|= B.

(4) All other semantic notations are analogous to Definition 9.

(5) T [R]`n,jC,l Γ for T ,R, C,Γ ⊆ L0
C is defined analogous to Definition 12.

For the translation of formulas we define two mappings; the first, A 7→ Ac, is a
direct translation of L1 to the proper two sorted first order language L0

C. The
second mapping, A 7→ As, is such that we also get rid of the relation symbols
C and ∈0, hence the formulas As have the form that is most commonly used
for theories of sets and classes, i.e. by using just one relation symbol ∈ and
the predicate S for sets.

Definition 125. (Translations)

For formulas A ∈ L1∗ we define Ac, As ∈ L0
C such that

Ac :=



x∈0y A = x∈0y,

x∈1Y + A = x∈1Y,

∼Bc A = ∼B,
(Bc ∧ Cc) A = (B ∧ C),

(Bc ∨ Cc) A = (B ∨ C),

∃x(S(x) ∧Bc[x]) A = ∃xB[x],

∀x(S(x)→ Bc[x]) A = ∀xB[x],

∃X+(C(X+) ∧Bc[X+/U+]) A = ∃XB[X/U ],

∀X+(C(X+)→ Bc[X+/U+]) A = ∀XB[X/U ],

As :=



x∈1y A = x∈0y,

x∈1Y + A = x∈1Y,

∼Bs A = ∼B,
(Bs ∧ Cs) A = (B ∧ C),

(Bs ∨ Cs) A = (B ∨ C),

∃x(S(x) ∧Bs[x]) A = ∃xB[x],

∀x(S(x)→ Bs[x]) A = ∀xB[x],

∃X+Bs[X+/U+] A = ∃XB[X/U ],

∀X+Bs[X+/U+] A = ∀XB[X/U ].
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We observe that As ∈ L0
C contains only the relation symbols ∈1 and S.

For T ⊆ L1∗ we define T c := {Ac | A ∈ T }, and analogously T s.

What we are actually looking for, are minimal sets of axioms A ⊆ L0
C, such

that any set theory T ⊆ L1 corresponds to the set theory T c ∪ A in L0
C, or

T s ∪ A in L0
C (in case of T s we will need to put some restriction on T ). As

we show in the theorems below, the following definition is a first step in the
right direction.

Definition 126. (AC,A+
C ⊆ L0

C)

(1) AC ⊆ L0
C consists of the formulas

∃xS(x) ∧ ∃xC(x),
∀x(S(x) ∨ C(x)),
∀x∀y(x∈0y → S(x) ∧ S(y)),
∀x∀y(x∈1y → S(x) ∧ C(y)).

(2) A+
C ⊆ L0

C extends AC by the formulas

∀xC(x),
∀x∀y(S(x) ∧ S(y)→ (x∈0y ↔ x∈1y)).

Almost any argument in this section is purely semantic, hence the following
four lemmas and one further definition mainly consist of statements about
L0
C-structures and L1-structures. The following technical lemmas are essen-

tial steps towards the proof of Theorem 132. The next lemma is trivial, but
it brings out the role of AC on L0

C-structures.

Lemma 127.

If N is a L0
C-structure then we have

N |= ∃xS(x) ∧ ∃xC(x) ⇔ SN 6= ∅ ∧ CN 6= ∅,
N |= ∀x(S(x) ∨ C(x)) ⇔ |N| = SN ∪ CN ,

N |= ∀x∀y(x∈0y → S(x) ∧ S(y)) ⇔ ∈0
N ⊆ SN × SN ,

N |= ∀x∀y(x∈1y → S(x) ∧ C(y)) ⇔ ∈1
N ⊆ SN × CN .

Proof. By the definition of |=.
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B. Another Language for Theories of Sets and Classes

Definition 128.

For L1-structures M and L0
C-structures N we define

Mc := (|M| ∪ ‖M‖, |M|, ‖M‖,∈0
M,∈1

M),
Ms := (|M| ∪ ‖M‖, |M|, |M| ∪ ‖M‖,∈0

M,∈0
M ∪ ∈1

M),
N c := (SN ∪ CN ,SN ,CN ,∈0

N ∩ (SN × SN ),∈1
N ∩ (SN × CN )),

N s := (|N |,SN , |N |,∈1
N ∩ (SN × SN ),∈1

N ),
N [ := (SN × {0},CN × {1},∈0

N [ ,∈
1
N [),

where ∈0
N [ := {((a, 0), (b, 0)) | a∈0

N b}, ∈1
N [ := {((a, 0), (b, 1)) | a∈1

N b}.

Lemma 129.

The mapping M 7→Mc is a bijection onto {N | N |= AC}.

Proof. Mc |= AC by definition. If N |= AC then M = (SN ,CN ,∈0
N ,∈1

N ) is
the L1-structure with Mc = N .

Lemma 130.

If M is a L1-structure and A ∈ L1∗ with all free variables in x, Y , and
a ∈ |M|, b ∈ ‖M‖ then we have

M |= A[a/x][b/Y ] ⇔ Mc |= Ac[a/x][b/Y +].

Proof. By induction on A.

Lemma 131.

If N is a L0
C-structure with N |= ∃xS(x) ∧ ∃xC(x) then we have

(1) N c |= AC.

(2) If A ∈ L1∗ with all free variables in x, Y , and a ∈ SN , b ∈ CN then

N |= Ac[a/x][b/Y +] ⇔ N c |= Ac[a/x][b/Y +].

Proof.

(1) By the definition of N c and because of N |= ∃xS(x) ∧ ∃xC(x).

(2) By induction on A, using SN = SN c and CN = CN c .

The following theorem shows that the set of axioms {∃xS(x),∃xC(x)}, and
the set AC, qualify as additional axioms for the theory T c, to make T c

equivalent to T with respect to the mapping A 7→ Ac.
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Theorem 132.

If T ⊆ L1∗ is a set of sentences and A ∈ L1∗ is a sentence then the following
are equivalent:

(1) T |= A,

(2) T c ∪ AC |= Ac,

(3) T c ∪ {∃xS(x),∃xC(x)} |= Ac.

Proof. (2)→(1) If M |= T then Mc |= T c ∪ AC by Lemmas 130 and 129,
henceMc |= Ac by (2), andM |= A by Lemma 130. (1)→(2) If N |= T c∪AC

then there isM withMc = N by Lemma 129, henceM |= T by Lemma 130,
andM |= A by (1), andMc |= Ac by Lemma 130, that is N |= Ac. (3)→(2)
is trivial. (2)→(3) If N |= T c ∪ {∃xS(x),∃xC(x)} then N c |= T c ∪ AC by
Lemma 131, and N c |= Ac by (2), hence N |= Ac by Lemma 131.

We use Theorem 132 to prove completeness of the logic defined in Section 1,
that is, for theories T ⊆ L1 we show T |= A⇒ T ` A by applying complete-
ness of pure first order predicate logic. For this task, we need a transformation
of proofs in L0

C to proofs in L1, and by the following lemma this can be done
even recursively for proofs without cuts.

Lemma 133.

If Γ ⊆ L1∗, and S(x),C(Y +) ∈ ∆ for all free variables x, Y ∈ Γ, and if ∆
contains only formulas of the form S(y),C(y), then we have that

`n0 ¬∆,Γc ⇒ `n0 Γ.

Proof. By induction on n, considering all cases in Definition 12. We use
(∼A)c = ∼(Ac) and ∆ ∩ Γc = ∅ for the base case, and Lemma 15 (∨,∧-
inversion) in case of the quantifier rules.

Theorem 134. (Adequacy for L1)

If T ⊆ L1 is a set of sentences then T |= A iff T ` A.

Proof. For Γ ⊆ L1 we show T `n Γ ⇒ T |= Γ∨ by induction on n. For
the other direction w.l.o.g. A is a closed formula. We assume T |= A, hence
T ∗ |= A∗. By Theorem 132 we have T ∗c ∪ {∃xS(x),∃xC(x)} |= A∗c, and
by completeness of first order logic we get T ∗c ∪ {∃xS(x),∃xC(x)} ` A∗c. By
Lemma 14, and Lemma 15, and Corollary 17, there is some Γ ⊆ T ∗ such that

0̀ ∼S(u),∼C(v), (¬Γ)c, A∗c, hence ` ¬Γ, A∗ by Lemma 133, i.e. T ∗ ` A∗.
By induction on n we get T ∗ `n ∆∗ ⇒ T `n ∆ for ∆ ⊆ L1, hence T ` A.
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B. Another Language for Theories of Sets and Classes

For the rest of this section we are heading towards an analogue of Theo-
rem 132 for the translation A 7→ As, i.e. we show that there is a set of axioms
A ⊆ L0

C, such that any set theory T ∪ {∀x∃Y (x = Y )} ⊆ L1 corresponds to
the set theory T s ∪ A in L0

C. We need the following four technical lemmas
for the proof of this claim.

Lemma 135.

IfM is a L1-structure withM |= ∀x∃Y (x = Y ) and |M| ∩ ‖M‖ = ∅ then
we have that

(1) There is a mapping f : |M| → ‖M‖ such that for all a ∈ |M|

M |= (x = Y )[a/x][f(a)/Y ].

(2) For any f in (1) and A ∈ L1∗ with all free variables in x, Y , Z, and
a ∈ |M|, b ∈ |M| ∪ ‖M‖, c ∈ |M| we have

Ms |= Ac[a/x][b, c/Y +, Z+] ⇔ Ms |= Ac[a/x][b, f(c)/Y +, Z+].

(3) If A ∈ L1∗ with all free variables in x, Y , and a ∈ |M|, b ∈ ‖M‖ then

M |= A[a/x][b/Y ] ⇔ Ms |= Ac[a/x][b/Y +].

Proof.

(1) By the definition of |=.

(2) By induction on A, using Part 1.

(3) By induction on A. |M| ∩ ‖M‖ = ∅ is used in case A = x∈1Y , i.e. for
b ∈ ‖M‖ we have a∈1

Mb ⇔ (a∈0
Mb or a∈1

Mb). Part 2 is used in case A =
∃XB[X] or A = ∀XB[X], e.g. ifMs |= Ac[a/x][b, c/Y +, Z+] for all c ∈ ‖M‖
then this also holds for all c ∈ |M| ∪ ‖M‖ by Part 2.

Lemma 136.

(1) If M is a L1-structure with |M| ∩ ‖M‖ = ∅ then Ms |= A+
C .

(2) If N is a L0
C-structure with N |= A+

C , and A ∈ L1∗ with all free
variables in x, Y , and a ∈ SN , b ∈ |N | then

N |= Ac[a/x][b/Y +] ⇔ N |= As[a/x][b/Y +].

(3) For sentences A ∈ L1∗ we have A+
C |= Ac ↔ As.
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Proof.

(1) By the definition of Ms.

(2) By induction on A.

(3) By Part 2.

Lemma 137.

If N is a L0
C-structure with N |= A+

C then we have that

(1) |N [| ∩ ‖N [‖ = ∅ and N [ |= ∀x∃Y (x = Y ).

(2) If A ∈ L1∗ with all free variables in x, Y , and a ∈ SN , b ∈ CN then

N [ |= A[(a, 0)/x][(b, 1)/Y ] ⇔ N |= Ac[a/x][b/Y +]

(3) If A ∈ L1∗ is a sentence then

(N [)s |= Ac ⇔ N |= Ac.

Proof.

(1) By the definition of N [.

(2) By induction on A.

(3) By using Parts 1+2 and Lemma 135.(3).

Lemma 138.

If N is a L0
C-structure with N |= ∃xS(x) ∧ ∀x∀y(x∈1y → S(x)) then we

have that

(1) N s |= A+
C .

(2) If A ∈ L1∗ with all free variables in x, Y , and a ∈ SN , b ∈ |N | then

N |= As[a/x][b/Y +] ⇔ N s |= As[a/x][b/Y +].

Proof.

(1) By the definition of N s and because N |= ∃xS(x) ∧ ∀x∀y(x∈1y → S(x)).

(2) By induction on A, using that S and ∈0 do not occur in As.

109



B. Another Language for Theories of Sets and Classes

Theorem 139.

If T ⊆ L1∗ is a set of sentences and A ∈ L1∗ is a sentence then the following
are equivalent:

(1) T ∪ {∀x∃Y (x = Y )} |= A,

(2) T c ∪ A+
C |= Ac,

(3) T s ∪ {∃xS(x),∀x∀y(x∈1y → S(x))} |= As.

Proof. (1)→(2) If N |= T c ∪ A+
C then N [ |= T ∪ {∀x∃Y (x = Y )} by

Lemma 137.(1+2), hence N [ |= A by (1), and (N [)s |= Ac by Lemma 137.(1)
and 135.(3), and N |= Ac by Lemma 137.(3). (2)→(1) To show C |= D
for sets of sentences C,D ⊆ L1, we may consider L1-structures M with
|M| ∩ ‖M‖ = ∅ only. If M |= T ∪ {∀x∃Y (x = Y )} and |M| ∩ ‖M‖ = ∅
then Ms |= T c ∪ A+

C by Lemma 135.(3) and 136.(1), and Ms |= Ac by
(2), hence M |= A by Lemma 135.(3). (3)→(2) If N |= T c ∪ A+

C then
N |= T s by Lemma 136.(2), and N |= As by (3), hence N |= Ac by
Lemma 136.(2). (2)→(3) If N |= T s ∪ {∃xS(x),∀x∀y(x∈1y → S(x))} then
N s |= A+

C and N s |= T s by Lemma 138, hence N s |= T c by Lemma 136.(2),
and N s |= Ac by (2), that is N s |= As by Lemma 136.(2), and finally N |= As

by Lemma 138.
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C. Another Notation System for
Ordinals

This section is in complete analogy to Section 5. Instead of building the
notation system on the Cantor normal form of ordinals, we now use the binary
Veblen function and the Veblen normal form, i.e. we use that each ordinal
α 6= ∅ can be uniquely represented in the form α = ϕβ1

(γ1) + ... + ϕβp(γp)
with ϕβq (γq) ≤ ϕβr (γr) for r < q, and γq < ϕβq (γq) for q ≤ p. The resulting
notation system is similar to the standard notation system for the ordinal Γ0,
see e.g. Pohlers [15]. The notation α̃ for the ordinal α is defined recursively

α̃ :=

{
α α = ϕα(∅) or α = ∅,
〈〈〈〈β̃1, γ̃1〉〉, ..., 〈〈β̃p, γ̃p〉〉〉〉 α =VNF ϕβ1

(γ1) + ...+ ϕβp(γp) 6= ϕα(∅).

Once again, we are going to define this notation system in a generic way
without refering to ordinals, hence we can easily get notation systems going
beyond the ordinals analogously to Section 6.

Definition 140. (Binary Veblen Function)

We define the expression ϕα(β) (analogous Definition 18) such that

z ∈ ϕα(β) := ∃f(Veb[f ] ∧ α ∈ dom(f) ∧
β ∈ dom(f(α)) ∧ z ∈ f(α)(β)),

Veb[f ] := Fun[f ] ∧ ∃α∃β(dom(f) = α ∧ (∀α1 ∈ α)(∀β1 ∈ β)(
Fun[f(α1)] ∧ dom(f(α1)) = β ∧ ran(f(α1)) ⊆ β ∧
(∀β0 ∈ β1)f(α1)(β0) ∈ f(α1)(β1) ∧
(((α1 = ∅ ∧ β1 6= ∅ ∧ (∀γ0 ∈ β1)(∀γ1 ∈ β1)γ0 + γ1 ∈ β1) ∨
(α1 6= ∅ ∧ (∀α0 ∈ α1)f(α0)(β1) = β1))↔
(∃β0 ∈ β)f(α1)(β0) = β1))).

Definition 141. (Veblen Normal Form)

VNF [f, p, α] := Fun[f ] ∧ dom(f) = p ∧ ∃h(∀p1 ∈ p)(
∃β∃γ(f(p1) = 〈〈β, γ〉〉 ∧ h(p1) = ϕβ(γ) ∧ γ ∈ h(p1))∧
(∀p0 ∈ p1)h(p0) ∈ h(p1)

′ ∧ α = Σph).
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Theorem 142. (Veblen Normal Form)

(1) NBG ` ∀α(α = ∅ ∨ ∃!f∃pVNF [f, p, α]),

(2) NBG ` ∀α∀f∀p(VNF [f, p, α]→ α = ∅ ∨ α = ϕα(∅) ∨ f(∅)(∅) ∈ α).

Proof. See e.g. Pohlers [15].

Definition 143. (Ordinal Notation System)

We define the expression α̃ (analogous Definition 18) such that

z ∈ α̃ := ∃f(OT Γ[f ] ∧ α ∈ dom(f) ∧ z ∈ f(α)),

OT Γ[f ] := Fun[f ] ∧ ∃α(dom(f) = α ∧ (∀α0 ∈ α)(
(α0 = ∅ ∧ f(α0) = α0) ∨ (α0 = ϕα0

(∅) ∧ f(α0) = α0) ∨
(α0 6= ∅ ∧ α0 6= ϕα0(∅) ∧ Fun[f(α0)] ∧
∃g∃p(VNF [g, p, α0] ∧ dom(f(α0)) = p ∧
(∀p0 ∈ p)f(α0)(p0) = 〈〈f(g(p0)(∅)), f(g(p0)(1))〉〉)).

Lemma 144. (Ordinal Notation System)

NBG ` ∀α∀f∀p(α 6= ∅ ∧ α 6= ϕα(∅) ∧VNF [f, p, α]→
Fun[α̃] ∧ dom(α̃) = p ∧ (∀p1 ∈ p)α̃(p1) = 〈〈 ˜f(p1)(∅), ˜f(p1)(1)〉〉).

Proof. By Definition (i.e. by induction on the ordinals).

Definition 145. (Ordering Relation)

We define the expressions yϕ and ỸX (analogous Definition 18) such that

z ∈ yϕ := ∃f∃g(z = 〈f, g〉 ∧ (
(〈f(∅), g(∅)〉 ∈ y ∧ 〈f(1), 〈〈g〉〉〉 ∈ y) ∨
(f(∅) = g(∅) ∧ 〈f(1), g(1)〉 ∈ y) ∨
(〈g(∅), f(∅)〉 ∈ y ∧ 〈〈〈f〉〉, g(1)〉 ∈ y))),

z ∈ ỸX := ∃y(Exϕ[X,Y, y] ∧ z ∈ y),

Exϕ[X,Y, y] := (∀x ∈ y)∃f∃g(x = 〈f, g〉 ∧ {f, g} ⊆ HX ∪X ∧
(f ∈ X ∧ g ∈ X ∧ 〈f, g〉 ∈ Y ) ∨
(f ∈ X ∧ g 6∈ X ∧ g 6= ∅ ∧

(〈〈〈f, ∅〉〉, g(∅)〉 ∈ yϕ ∨ 〈〈f, ∅〉〉 = g(∅))) ∨
(f 6∈ X ∧ g ∈ X ∧ (f = ∅ ∨ 〈f(∅), 〈〈g, ∅〉〉〉 ∈ yϕ) ∨
(f 6∈ X ∧ g 6∈ X ∧ Lex [yϕ, f, g])).

See Definition 60 for Lex [yϕ, f, g].
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Definition 146. (Generic Notation System)

We define the expressions Õt
0

X,Y , Õt
1

X,Y ÕtX,Y , ηX (analogous Definition
18) such that

z ∈ Õt
0

X,Y := ∃y(ÕT [X,Y, y] ∧ z ∈ y),

z ∈ Õt
1

X,Y := z ∈ Õt
0

X,Y ∨ (∃w ∈ X)z = 〈〈〈〈w, ∅〉〉〉〉,
z ∈ ÕtX,Y := z ∈ Õt

0

X,Y ∨ z ∈ X,
z ∈ ηX := ∃y((y ∈ X ∧ z = 〈y, 〈〈〈〈y, ∅〉〉〉〉〉) ∨ (y 6∈ X ∧ z = 〈y, y〉)),
z ∈ ηinv

X := z ∈ η−1
X ∧(∀y ∈ X)z 6= 〈〈〈〈〈y, ∅〉〉〉〉, 〈〈〈〈y, ∅〉〉〉〉〉,

ÕT [X,Y, y] := (∀f ∈ y)f ∈ HX ∧ (∀p ∈ dom(f))∃g∃h(
{g, h} ⊆ y ∪X ∧ f(p) = 〈〈g, h〉〉 ∧ 〈h, 〈〈f(p)〉〉〉 ∈ Y ∧
(∀q ∈ p)(f(q′) = f(q) ∨ 〈f(q′), f(q)〉 ∈ Y ϕ)) ∧
((dom(f) 6= 1 ∨ f(∅)(∅) 6∈ X ∨ f(∅)(1) 6= ∅)).

Lemma 147. (Strict Total Order)

NBG ` Lin[X,Y ] ∧HX ∩X = ∅ → Lin[ÕtX,ỸX , ỸX ].

Definition 148. (Addition)

We define the expression f +̃
X,Y

g (analogous Definition 18) such that

z ∈ x +̃0
Y g := (〈x, g(∅)〉 ∈ Y ϕ ∧ g 6= ∅ ∧ z ∈ g) ∨

(〈x, g(∅)〉 6∈ Y ϕ ∨ g = ∅) ∧ z ∈ 〈〈x〉〉ag,
z ∈ f +̃1

Y g := ∃p∃h(p = dom(f) ∧ dom(h) = p′ ∧ h(p) = g ∧
z ∈ h(∅) ∧ (∀q ∈ p)h(q) = f(q) +̃0

Y h(q′)),
z ∈ f +̃

X,Y
g := z ∈ ηinv

X (ηX(f) +̃1
Y
ηX(g)).

Definition 149. (Multiplication)

We define the expression f ·̃
X,Y

g (analogous Definition 18) such that

z ∈ ↓(f) := (f = 〈〈∅, f(1)〉〉 ∧ z ∈ f(1)) ∨
(f 6= 〈〈∅, f(1)〉〉 ∧ z ∈ 〈〈f〉〉),

z ∈ ↑(f) := ((dom(f) 6= 1 ∨ f(∅)(∅) = ∅) ∧ z ∈ 〈〈∅, f〉〉) ∨
(dom(f) = 1 ∧ f(∅)(∅) 6= ∅ ∧ z ∈ f(∅)),

z ∈ f ·̃ 0Y x := (f 6= ∅ ∧ x = 〈〈∅, ∅〉〉 ∧ z ∈ f) ∨
(f 6= ∅ ∧ x 6= 〈〈∅, ∅〉〉 ∧ z ∈ 〈〈↑(↓(f(∅)) +̃1

Y ↓(x))〉〉),
z ∈ f ·̃ 1Y g := ∃p∃h(p = dom(g) ∧ dom(h) = p′ ∧ h(∅) = ∅ ∧

z ∈ h(p) ∧ (∀q ∈ p)h(q′) = h(q) +̂1
Y (f ·̃ 0Y g(q))),

z ∈ f ·̃
X,Y

g := z ∈ ηinv

X (ηX(f) ·̃ 1Y ηX(g)).
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C. Another Notation System for Ordinals

Definition 150. (Exponentiation)

We define the expression f ∧̃
X,Y

x (analogous Definition 18) such that

z ∈ fa := (f(∅) = 〈〈∅, ∅〉〉 ∧ ∃p(p′ ∈ dom(f) ∧ z = 〈p, f(p′)〉)) ∨
(f(∅) 6= 〈〈∅, ∅〉〉 ∧ z ∈ f),

z ∈ faa := (f = 〈〈∅, f(1)〉〉 ∧ z ∈ 〈〈∅, f(1)a〉〉) ∨
(f 6= 〈〈∅, f(1)〉〉 ∧ z ∈ f),

z ∈ f ∧̃ 0
Y x := ((x = 〈〈∅, ∅〉〉 ∨ f = ∅) ∧ z ∈ f) ∨ (x 6= 〈〈∅, ∅〉〉 ∧

((dom(f) = 1 ∧ f(∅) = 〈〈∅, ∅〉〉 ∧ z ∈ f) ∨
(dom(f) 6∈ 2 ∧ f(∅) = 〈〈∅, ∅〉〉 ∧ z ∈ 〈〈↑(〈〈xaa〉〉)〉〉) ∨
(f(∅) 6= 〈〈∅, ∅〉〉 ∧ z ∈ 〈〈↑(↓(f(∅)) ·̃ 1Y 〈〈x〉〉)〉〉))),

z ∈ f ∧̃ 1
Y g := ∃p∃h(p = dom(g) ∧ dom(h) = p′ ∧ h(∅) = 〈〈〈〈∅, ∅〉〉〉〉∧

z ∈ h(p) ∧ (∀q ∈ p)h(q′) = h(q) ·̃1Y (f ∧̃ 0
Y g(q))),

z ∈ f ∧̃
X,Y

g := z ∈ ηinv

X (ηX(f) ∧̃ 1
Y
ηX(g)),

Theorem 151. (Ordinal Notation System)

Let Õn, OnΓ and <Γ be elementarily definable classes in NBG, such that

Õn := {x | ∃α(x = α̃)},
OnΓ := {x | ∃α(x = α ∧ α = ϕα(∅))},
<Γ := ∈̃OnΓ

,

where ∈̃OnΓ as in Definition 145 with ∈ as in Lemma 26. If we write +Γ,

·Γ, ∧Γ for +̂OnΓ,<Γ
, ·̂OnΓ,<Γ

, ∧̂OnΓ,<Γ
, respectively, then we have that

(1) NBG ` ∀α∀β(α < β ↔ α̃ <Γ β̃),

(2) NBG ` ∀α(α̃ ∈ ÕtOnΓ∩α′,<Γ),

(3) NBG ` Õn = ÕtOnΓ,<Γ ,

(4) NBG ` ∀α∀β(α̃+ β = α̃+Γ β̃ ∧ α̃ · β = α̃ ·Γ β̃ ∧ α̃β = α̃ ∧Γ β̃).
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