
The provably terminating operations of the subsystem
PETJ of explicit mathematics

D. Probst1

Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstrasse 39,
D-80333 München, Germany

Abstract

In Spescha and Strahm [15], a system PET of explicit mathematics in the style
of Feferman [7, 8] is introduced, and in Spescha and Strahm [16] the addition
of the join principle to PET is studied. Changing to intuitionistic logic, it could
be shown that the provably terminating operations of PETJi are the polytime
functions on binary words. However, although strongly conjectured, it remained
open whether the same holds true for the corresponding theory PETJ with
classical logic. This note supplements a proof of this conjecture.

Keywords: Explicit mathematics, polytime functions, non-standard models

1. Introduction

In Spescha and Strahm [15], a system PET of explicit mathematics in the
style of Feferman [7, 8] is presented. PET, a natural extension of the first order
applicative theory PT introduced and analyzed by Strahm [17, 18], formalizes
a weak explicit type system with restricted elementary comprehension so that
its provably terminating operations coincide with the functions on binary words
that are computable in polynomial time. In Spescha [14] and Spescha and
Strahm [16] the addition of the join principle to PET is studied. Changing
to intuitionistic logic, it could be shown that the provably terminating opera-
tions of PETJi are the polytime functions on binary words. However, although
strongly conjectured, it remained open whether the same holds true for the cor-
responding theory PETJ with classical logic. This note supplements a proof of
this conjecture. More precisely, we show that for each term t,

PT ` t ∈ (Wn →W)⇐⇒ PETJ ` t ∈ (Wn →W),

where t ∈ (Wn → W) is short for (∀x1, . . . , xn ∈ W)(tx1 · · ·xn ∈ W). By
[17], we then know that PETJ ` t ∈ (Wn → W) iff there exists a polytime

Email address: Dieter.Probst@mathematik.uni-muenchen.de (D. Probst)
1Research supported by the Alexander von Humboldt Foundation.

Preprint submitted to Annals of Pure and Applied Logic September 17, 2010

function F : Wn → W on the standard words so that for all w1, . . . , wn ∈ W,
PT ` F(w1, . . . , wn) = tw1 · · ·wn.

PT is an applicative theory that formalizes a combinatory algebra featuring
the combinators k and s, and additionally describes the structure of binary words
(W, ε, 0, 1, S0, S1,+,×,v) equipped with the two successor functions Si(w) = wi
(i ∈ {0, 1}), word concatenation, word multiplication and an initial subword
relation. This is implemented by adding a unary relation symbol W to recognize
words, and terms to perform the indicated operation and to decide the subword
relation. Further, s ≤ t := 0× s v 0× t and s ≤W t := W(s) ∧ s ≤ t.

Further, the theory PT is equipped with the following induction principle:
If g ∈ (W→W), B is positive and W-free and X := {x : (∃y ≤W gx)B(g, x, y)},
then

(ΣbW-I) Prog@(X) → W ⊆ X,

where Prog@(X) := ε ∈ X ∧ (∀x ∈ W)(x ∈ X → s0x ∈ X ∧ s1x ∈ X).
This partly technically motivated induction principle allows to prove that each
polytime function can be represented by a term tF ∈ (Wn → W). We consider
it more convenient to work with the induction principle (S-I) instead, which
states induction for so-called simple formulas: If A is a positive formula that
does not contain the variable v, then Av is simple, where Av is obtained from
A by replacing each occurrence of W(s) by s ≤W v. Accordingly, for each word
b, the class X := {x : Ab(x)} is called simple. The word b is also referred to as
a bound for X. The theory PTS is obtained from PT by replacing its induction
principle by induction on notation for simple classes. We will see that PTS
proves each instance of the induction principle of PT and still has the same
provably terminating operations.

However, more importantly to the determination of the provably total op-
erations of PETJ is the observation that the provably terminating operations
of PTS are not affected by a further strengthening with the bounding principle
(BP) which asserts that each simple class X ⊆ W is bounded by some word w:
For each simple formula Av(u) of L,

(BP) (∀b ∈W)(∃c ∈W)[∀x(Ab(x)→ x ∈W)→ ∀x(Ab(x)→ x ≤ c)].

To formulate the theory PET, the language of PT is enriched by second order
variables intended to range over types, which are tied to the first order part
by a naming relation R(U, s), stating that s is a name of the type U . Further,
there are additional constants to generate names of types. The type existence
principles of PET are such that each simple class is a type. Therefore, it is
straightforward to extend a model of PTS to a model of PET where each type
is simple. However, if a is a name and (∀x ∈̇ a)∃XR(X, gx), then the additional
join principle of PETJ claims that X := {(x, y) : x ∈̇ a ∧ y ∈̇ gx} is a type. Now
each sequence (wx : x ∈̇ a) of bounds for the types (gx : x ∈̇ a) may be unbounded
in W and X may not be simple. Yet, as we shall show, for each model E′ of

2

PT+ (BP) there is an elementary equivalent model E that extends to a model of
PETJ where each type is simple. This validates the aforementioned conjecture.

The provably terminating operations of PT+ (BP) are determined consid-

ering the auxiliary theory PT†S+ I, which proves each instance of (BP) and

whose provably total functions coincide with those of PT. Thereby, PT†S ex-
tends PTS by asserting that exponentiation is not a total operation on words,
i.e. exp /∈ (W→W), where exp is a fixed term so that exp ε = 0 and exp(wi) =
expw+ expw for each word w and i ∈ {0, 1}. And the induction principle (I) ap-
plies also to classes that are defined by searching for a word in the downset X↓ of
some simple class X ⊆ W, where X↓ := {x : (∃y ∈ X)(x ≤W y)}. PT†S+ I then
entails (BP): The strengthening of PTS by the assertion exp /∈ (W→W) ensures
that W is not simple, for otherwise, also Y := {x : (∃y ∈W)(expx = y)} would
be simple, and exp ∈ (W → W) would follow by (S-I). And exp /∈ (W → W)
in conjunction with (I) ensures that no simple class X ⊆ W is unbounded, for
otherwise, X↓ = W and the progressivity of Y together with (I) would imply
W ⊆ Y .

We would like to point out that a similar strengthening for applicative theo-
ries is used in Probst [13] to prove the existence of pseudo-hierarchies in subsys-
tems of explicit mathematics. There, the subsystem EMA of explicit mathemat-
ics which formalizes a Mahlo universe is strengthened to EMA† by the assertion
¬TIC(|T|), stating that transfinite induction up to the proof-theoretic ordinal of
EMA fails (which by the way is ϕω00 as shown in Jäger and Strahm [12]). That
the provably total operations of PT and PT† coincide, can be seen as an ana-
logue to the observation that EMA and EMA† have still the same proof-theoretic
ordinal (cf. Jäger and Probst [11]).

The paper is organized as follows: Section 2 recalls the theory PT, section
3 takes a first glance at the theory PETJ, and in section 4 we present the
boundedness principle (BP) and the auxiliary theory PT†S+ I which proves each
instance of (BP). The interlude in section 5 elaborates on the observation that
PT0 and PT prove the same positive ∃-sequents (sequents without ∀-quantifiers),
where PT0 is PT with induction restricted to formulas without ∀-quantifiers. In
section 6, we show that PT†S+ I and PT+(UP) prove the same positive sequents,
where (UP) denotes Cantini’s uniformity principle (cf. [5]) that claims for each
positive formula A(u, v),

(UP) ∀x(∃y ∈W)A(x, y)→ (∃y ∈W)∀xA(x, y).

Further, we prove that PT†S+ I and PT0 derive the same positive ∃-sequents; in
particular they still have the same provably termination operations. In section
7 we then conclude with a transformation of a model of PT into a model of
PETJ which preserves the validity of first order formulas.

2. The theory PT

The theory PT is introduced and analyzed in Strahm [17]. Among other
things, it is shown there that each polytime function can be represented by

3

a term of PT, and further, by providing a realization interpretation of PT in
the open term model M(λη), that the provably total operations of PT are
the operation on words computable in polynomial time. As introduced in [17],
the underlying logic of PT is the logic of partial terms due to Beeson [1, 2].
From a conceptual point of view, it is natural to regard terms as possibly non-
terminating operations, yet from a technical viewpoint it is simpler to deal with
the extension PT+(tot) which claims that application is total (i.e. ∀x, y(x ·y)↓)
so that each term has a value. This allows to formulate a corresponding theory
that we also denoted by PT, but whose underlying logic is classical predicate
logic. The presentation of this theory is the purpose of this section.

The theory PT is an applicative theory that formalizes a combinatory alge-
bra featuring the combinators k and s, and in addition, specifies the structure
(W, ε, 0, 1, S0, S1,+,×,v), where W = {0, 1}∗ is the set of finite binary words,
ε is the empty word, S0(w) = w0 and S1(w) = w1 are the two successor func-
tions, v+w = vw is word concatenation and v×w is word multiplication which
concatenates v the length |w| of w times with itself. Further, v v w states that
v is an initial subword of w, that is, w is of the form vv′ for some word v′. PT is
formulated in the first order language L that contains the constants k, s (com-
binators), p, p0, p1 (pairing and projections) dW (definition by cases on binary
words), ε (empty word), s0, s1 (binary successors), pW (binary predecessor), +,
× (word concatenation and multiplication), and cv (initial subword relation).
Further, L is equipped with a unary relation symbol W (binary words), a bi-
nary relation symbol = (equality) and a binary function symbol · (application).
The lower case letters a, b, c, x, y, z, u, v, w, g, h, . . . (possibly with subscripts) are
used to denote variables. The terms of L, usually denoted by r, s, t, . . . are induc-
tively generated from the variables and the constants by means of application
·. We keep writing st or s(t) for ·(s, t), and similarly s+t and s×t for +st and
×st. The formulas A,B,C, . . . are build form the atoms s = t, W(s) and the
negated atoms ∼(s = t), ∼W(s) by closing under conjunction, disjunction and
quantification. Positive formulas are build from (positive) atoms only. ∼(s = t)
is usually written as s 6= t and negation is defined using de Morgan’s law and the
law of double negation. The connectives→ and↔ are defined in the usual way.
Formulas that do not contain the relation symbol W are called W-free. As usual,
we write t[~s/~u] and A[~s/~u] for the term and formula obtained from t and A by
substituting all occurrences of the terms ~s for the variables ~u. If a formula was
introduced as A(~u), then A(~s) is short for A[~s/~u]. Further, 0 := s0ε, 1 := s1ε,
(s, t) := pst, (s1, . . . , sn, sn+1) := (s1, (s2, . . . , sn+1)), (s)0 := p0s, (s)1 := p1s,
s v t := cvst = 0, s ≤ t := 0×s v 0×t, and W(t1, . . . , tn) and t1, . . . , tn ∈ W
are shorthand notations for W(t1), . . . ,W(tn). Finally, s ≤W t := W(s) ∧ s ≤ t.

The underlying logic of PT is classical logic. Following Strahm [17], we
formulate PT in Gentzen’s classical sequent calculus LK. We assume that the
reader is familiar with LK as it is presented, for example, in Girard [10]. Sequents
are formal expressions of the form Γ ⇒ ∆, where Γ,∆, . . . range over finite
sequences of formulas of L. As usual, the intended interpretation of a sequent
A1, . . . , Am ⇒ B1, . . . , Bn is that

∧
1≤i≤nAi entails

∨
1≤i≤mBi. Further, if Γ =

4

A1, . . . , An, then SET(Γ) = {A1, . . . , An}. Instead of ∅ ⇒ Γ and Γ⇒ ∅, we just
write Γ and Γ⇒, respectively. Also, we just mention the main formulas of the
axioms, that is, if Γ⇒ ∆ is a displayed sequent in a subsequent list of axioms,
then also Γ′ ⇒ ∆′ is an axiom if SET(Γ) ⊆ SET(Γ′) and SET(∆) ⊆ SET(∆′).
Similarly for rules: The inference

Γi ⇒ ∆i (i ∈ I)

Γ⇒ ∆
!u!

indicates that
Γ′i ⇒ ∆′i (i ∈ I)

Γ′ ⇒ ∆′

is a rule provided

(i) u /∈ FV(Γ′,∆′),

(ii) SET(Γi) ⊆ SET(Γ′i) and SET(∆i) ⊆ SET(∆′i) (i ∈ I),

(iii) SET(Γ) ∪
⋃
i∈I(SET(Γ′i)− SET(Γi)) ⊆ SET(Γ′),

(iv) SET(∆) ∪
⋃
i∈I(SET(∆′i)− SET(∆i)) ⊆ SET(∆′).

The logical rules of LK are listed below. t ranges over terms, A over atoms and
B,C range over formulas of L.

⇒
A⇒ A

⇒ B

¬B ⇒
(¬L)

B ⇒
⇒ ¬B

(¬R)
⇒ B B ⇒

⇒

⇒ B,C

⇒ B ∨ C
B,C ⇒
B ∧ C ⇒

⇒ B ⇒ C

⇒ B ∧ C
B ⇒ C ⇒
B ∨ C ⇒

⇒ B(t)

⇒ ∃xB(x)

⇒ B(u)

⇒ ∀xB(x)
!u!

B(u)⇒
∃xB(x)⇒

!u!
B(t)⇒
∀xB(x)⇒

⇒ B,C

⇒ C,B

B,C ⇒
C,B ⇒

⇒ B,B

⇒ B

B,B ⇒
B ⇒

Next, we present the non-logical axioms and rules of PT−, i.e. PT without
induction. Sequents are separated by “;” and r, s, t range over terms of L. The
theory PT− comprises the axioms the rules listed below.

(i) s = s; s = t⇒ t = s; s = t, t = r ⇒ s = r; s = t,W(s)⇒W(t).

(ii) kst = s; srst = (rt)(st); p0(s, t) = s; p1(s, t) = t.

(iii) W(r),W(s), r = s⇒ dWt1t2rs = t1; W(r),W(s)⇒ r = s, dWt1t2rs = t2.

(iv) W(ε); pWε = ε; W(s)⇒W(sis) (i ∈ {0, 1}); W(s)⇒W(pW(s)).

W(s)⇒ pW(sis) = s (i ∈ {0, 1}); W(s)⇒ ε = s, s0(pWs) = s, s1(pWs) = s.

W(s), s0s = s1s⇒; W(s), s0s = ε⇒; W(s), s1s = ε⇒.

(v) W(r),W(s)⇒ cvrs = 0, cvrs = 1; W(s), cvsε = 0⇒ s = ε and cvεε = 0.

W(r),W(s), cvrs = 0⇒ cvr(pWs) = 0, r = s.

W(r),W(s), cvr(pWs) = 0⇒ cvrs = 0.

5

(vi) W(r),W(s)⇒W(r+s),

W(s)⇒ s+ε = s; W(r),W(s)⇒ r+(sis) = si(r+s) (i ∈ {0, 1}).
(vii) W(r),W(s)⇒W(r×s),

W(s)⇒ s×ε = ε and W(r),W(s)⇒ r×(sis) = (r×s)+s (i ∈ {0, 1}).

We point out that the main formulas of all non-logical axioms and rules (includ-
ing equality) are positive, so that a standard partial cut-elimination argument
allows to restrict to derivation where all cut formulas are positive. If we are
only interested in positive sequents, then also both ¬-rules are admissible. We
write ∗ Γ⇒ ∆ to indicate that Γ⇒ ∆ is the end-sequent of a derivation where
all cut-formulas are positive and no ¬-rule is used.

Lemma 1 (Partial cut-elimination). If Γ ⇒ ∆ is a positive sequent of L for-
mulas, then PT ` Γ⇒ ∆ iff PT ∗ Γ⇒ ∆.

The following two lemmas are folklore, too.

Lemma 2 (λ-Abstraction). For each L term t and all variables u there is
an L term λx.t[x/u] with FV(λx.t[x/u]) = FV(t)−{u}, so that PT− proves
(λx.t[x/u])u = t.

Lemma 3 (Recursion). There exists a closed term rec of L so that PT− proves
recfx = f(recf)x.

One of the design goals of PT has been that the provably total functions on
words are exactly the polytime functions on words as characterized by Cobham
[6]. Depending on constants ~c = c1, . . . , cm, meant to denote words, we induc-
tively define a set PT~c of function symbols. In a second step, we assign to each
function symbol Fn ∈ PT~c (where the superscript n indicates that F is an nary
function symbol) a function F : Wn →W on the standard words and an L term
f ∈ (Wn →W) that represents F , i.e. for all ~w ∈W,

PT~c ` F(~w) = f(w1, . . . , wn),

where T~c denotes the theory T + W(~c), ε := ε, and wi := siw (i ∈ {0, 1}).
The set PT~c contains the 0ary function symbols ci (1 ≤ i ≤ m), function
symbols Pni (n > i) for projections, and binary function symbols for +, ×
and the characteristic function CHR2

v of v restricted to words. Further, if
Gm, Fn1 , . . . , F

n
m ∈ PT~c, then CMP(G,F1, . . . , Fm) is an nary function symbol

which is in PT~c, and if Fn+2
0 , Fn+2

1 , Gn, Bn+1 ∈ PT~c, then BRC(F,G,B) is an
n+1ary function symbol which is in PT~c. If ~c = ε, 0, 1, then we just write PT
for PT~c, and if ~c = ε, 0, 1, α, then we write PTα instead. In the sequel, α will
denote a non-standard word so that expα /∈W.

With each symbol Fn ∈ PT we associate a function fun(F) : Wn → W
in the expected way. If F,G,H are function symbols, then we simply write
F ,G,H instead of fun(F), fun(G), fun(H) for the corresponding functions. To
the constants ε, 0, 1 we assign ε, 0, 1 ∈W, Pi(w1, . . . , wn) := wi, CHRv(v, w) ∈

6

{0, 1} and CHRv(v, w) = 0 iff v v w, and + and × are word concatena-
tion and word multiplication. If Fn = CMP(Gm, Fn1 , . . . , F

n
m), then F :=

CMP(G,F1, . . . ,Fm) and if Hn+1 = BRC(Fn+2
0 , Fn+2

1 , Gn, Bn+1), then H :=
BRC(F0,F1,G,B). Thereby,

F(~x) := G(F1(~x), . . . ,Fm(~x)),

H(~x, ε) := G(~x), and

H(~x, yi) := Fi(~x, y,H(~x, y))|B(~x, y) for i ∈ {0, 1},

where x|z denotes the truncation of x to the length |z| of z. The set of polytime
functions on W is given by {F : F ∈ PT }.

To represent the polytime functions in PT~c, we assign to each function sym-
bol Fn ∈ PT~c a closed term f := Term(F) of L(~c). Again, we write f, g, h instead
of Term(F),Term(G),Term(H). For a constant ci, Term(ci) := ci, Term(Si) := si
(i ∈ {0, 1}) and chrv := λx.cv(x)0(x)1. Further,

Term(CMP(G,F1, . . . , Fn)) := cmp(g, f1, . . . , fn),

Term(BRC(F0, F1, G,B)) := brc(f0, f1, g, b),

where cmp, brc and Term(Pi) satisfy the expected equations. PT− proves that
such terms exist. Strahm [17] gives an explicit construction of these terms.
Induction on notations is required to show that for Fn+2

0 , Fn+2
1 , Gn, Bn+1 ∈

PT~c,

f0 ∈ (Wn+2 →W) ∧ f1 ∈ (Wn+2 →W) ∧ g ∈ (Wn →W) ∧ b ∈ (Wn+1 →W)

→ brc(f0, f1, g, b) ∈ (Wn+1 →W).

In particular, one has to prove that

(∀y ∈W)(∃z ≤W b(~x, y))(brc(f0, f1, g, b)(~x, y) = z).

Therefore, PT is equipped with the induction rule (ΣbW-I), which claims for each
formula A(u) := (∃y ≤W tu)B(t, u, y), y /∈ FV(t), B positive and W-free,

(ΣbW-I)
W(u)⇒W(tu) ⇒ A(ε) W(u), A(u)⇒ A(siu)

W(s)⇒ A(s)
!u!

It is detailed in [17] how this induction principle entails that f ∈ (Wn → W)
for each Fn ∈ PT . Analogously, PT~c proves f ∈ (Wn → W) for each Fn ∈
PT~c. Hence, we can assign to each such function symbol Fn and each model
E = (V,W, . . .) of PT~c a function F := fun(F,E) : Wn → W, F(w1, . . . , wn) :=
fE(w1, . . . , wn). Whether F is a function on the standard words W or the
words W of some non-standard model will be clear from the context or of no
importance.

7

3. The theories PETJ

As in Spescha and Strahm [15], and Spescha [14], the first order part of
PETJ is the applicative theory PT. Note, that the present version of PET also
contains a constant all that serves as dual to the type-forming operation dom .

The theory PETJ is formulated in the language L2 that extends L by second
order variables U, V,W . . .X, Y, Z, a binary relation s ∈ U (elementhood), a
binary relation R(U, s) (s is a name of the type U), and fresh constants id,
iw, dom , all , inv, un, int and j to generated names of types. The additional
atoms of L2 are the expressions of the form s ∈ U and R(U, s), where s is a
term of L. The formulas of L2 are then build from the atoms as before, but
additionally we close under second order quantification. The formula U = V is
an abbreviation for ∀x[x ∈ U ↔ x ∈ V]. Further, we write R(s) for ∃XR(X, s),
s =̇ Z for ∃X[R(X, s) ∧X = Z], s =̇ t for ∃X[R(X, s) ∧ R(X, t)], and s ∈̇ t for
∃X[R(X, t)∧s ∈ X]. The logical axioms and rules of PETJ are those for classical
second oder logic, and the non-logical axioms and rules of PETJ are those of PT
without induction, plus the following three groups of axioms concerning types.
PET is PETJ without the axioms for the constant j, and PET− and PETJ− are
PET and PETJ without type induction, respectively.

The ontological axioms of PETJ:

∃xR(U, x) and R(U, u) ∧ U = V → R(V, u) and R(U, u) ∧R(V, u)→ U = V.

The type forming axioms of PETJ:

(i) id =̇ {(x, x) : x = x}.
(ii) u ∈W→ iwu =̇ {x : x ≤W u}.
(iii) R(u)→ allu =̇ {x : ∀y[(x, y) ∈̇u]}.
(iv) R(u)→ domu =̇ {x : ∃y[(x, y) ∈̇u]}.
(v) R(u) ∧ R(v)→ int(u, v) =̇ {x : x ∈̇u ∧ x ∈̇ v}.

(vi) R(u) ∧ R(v)→ un(u, v) =̇ {x : x ∈̇u ∨ x ∈̇ v}.
(vii) R(u)→ inv(u, g)) =̇ {x : gx ∈̇u}.

(viii) R(u)∧g ∈ (u→ R)→ j(u, g) =̇ {(x, y) : x ∈̇u∧y ∈̇ gx}, where g ∈ (u→ R)
is short for (∀x ∈̇u)R(gx).

The induction axiom of PETJ:

(T-I) Prog@(U)→W ⊆ U,

where Prog@(U) := ε ∈ U ∧ (∀x ∈ W)(x ∈ U → s0x ∈ U ∧ s1x ∈ U) expresses
that U is progressive.

A structure M = (E,R, . . .) for L2 consists of a structure E = (VE,WE, . . .)
for L, an interpretationR ⊆ Pow(VE)×VE of the naming relation R and interpre-
tations id, iw, all , dom , inv, int, un, j of the constants id, iw, all , dom , inv, int, un, j.
Note that R also specifies the domain T = {X : ∃xR(X,x)} of the type vari-
ables. Then, ∈ is interpreted as the standard elementhood relation restricted
to VE × T . Occasionally, we identify R with its range, that is, x ∈ R is then
read as ∃XR(X,x). M is a model of PETJ if it satisfies all axioms and rules of
PETJ.

8

4. Extensions of PT and the bounding principle (BP)

The theory PTS is obtained from PT by replacing the induction rule (ΣbW-I)
by an induction rule (S-I) that claims induction on notation for so-called simple
formulas. If A is a positive formula of L and u does not occur in A, then
Au is obtained from A by replacing each occurrence of an expression W(s) by
s ≤W u. The formula B(u) := Au is then called simple w.r.t. u, and we
write B(u) ∈ S(u). The class S(u) of simple formulas w.r.t. u is closed under
conjunction, disjunction and quantification of variables different from u2. An
alternative definition of the class S(u) is given below.

Lemma 4. For each variable u, the class of simple formulas w.r.t. u, denoted
by S(u), is inductively defined as follows:

(i) If u /∈ FV(s = t) and u /∈ FV(r), then s = t and r ≤W u are in S(u).

(ii) If A and B are in S(u), then A ∧B and A ∨B are in S(u).

(iii) If A is in S(u), then ∀xA[x/v] and ∃xA[x/v] are in S(u).

The induction rule of PTS states that for each L formula A(u,w) ∈ S(w),

(S-I)
⇒ A(ε, w) A(u,w)⇒ A(siu,w) (i ∈ {0, 1})

W(w),W(s)⇒ A(s, w)
!u!

Further, we say that a class X is simple, if there is a formula A(u, v) ∈ S(v)
and a word a so that X = {x : A(x, a)}.

Lemma 5. PTS proves each instance of (ΣbW-I).

Proof. As shown in Spescha [14], there is a closed term sup of L so that PTS
proves

t ∈ (W→W)→ (∀x, y ∈W)[x v y → tx ≤W sup tx ≤W sup ty].

Let X := {x : (∃y ≤W tx)B(y, t, x)} and assume that y /∈ FV(t), B positive and
W-free, and Prog@(X). If s is a word, then

Y := {x : cvxs = 1 ∨ (x v s ∧ (∃y ≤W sup ts)(y ≤ tx)B(y, t, x))}

is also progressive and simple, thus s ∈ Y . But this implies s ∈ X.

Without affecting the provably total operations of PTS, we can extend PTS
by the bounding principle (BP) which asserts that each simple class X ⊆ W is
bounded by some word w: For each formula A(u, v) ∈ S(v), referred to below
as Av(u),

(BP) (∀b ∈W)(∃c ∈W)[∀x(Ab(x)→ x ∈W)→ ∀x(Ab(x)→ x ≤ c)].

2Simple formulas are essentially Σb
T formulas (cf. Spescha and Strahm [15]) with ∀-

quantifiers.

9

We shall see in section 7 that for each model E of PT+ (BP), there is an ele-
mentary equivalent model E′ ≡ E so that the simple classes of E′ are the types
of a model (E′,R) of PETJ.

To handle the theory PT+ (BP) we have a look at the extension PT†S+ I of
PTS which proves that each simple subclass of W is bounded in W, but cannot
prove more operations to be total than PTS. To introduce PT†S+ I, we fix an L
term exp so that, provably in PT−, exp ε = 0 and exp(wi) = expw+ expw for
each word w and i ∈ {0, 1}. Further, if T is an L theory, then T† is formulated
in the language L(α), comprises the axioms of T adjusted to the new language
L(α), and in addition,

¬(exp) ⇒W(α) and W(expα)⇒ .

PT†S+ I extends PT†S by the induction rule

(I)
A(u,w)⇒W(u) ⇒ C(ε, w) C(u,w)⇒ C(siu,w)

W(w),W(s)⇒ C(s, w)
!u!

where a A(u,w) ∈ S(w) and C(u,w) := ∃y[A(y, w)∧∃z(z ≤W y∧B(u,w, y, z))]
with B positive and W-free.

Lemma 6. PT†S+ I proves that each instance of (BP).

Proof. Suppose that X ⊆W is simple but unbounded. Then

Y := {x : ∃y(y ∈ X ∧ ∃z(z ≤W y ∧ z = expx))}

is progressive. Applying (I) yields exp ∈ (W→W). A contradiction!

5. Interlude: Positive theories and ∀-quantifiers

This section elaborates on the following observation made in Strahm [17].
For the theory PT, universal quantifiers do not play a role in the sense that the
only non-logical rule that may contain universal quantifiers, the induction rule
(ΣbW-I), can be restricted to formulas that do not contain universal quantifiers,
and the resulting theory still has the same provably total operations as PT. The
question suggests itself, whether a tailored fragment without universal quanti-
fiers of a theory whose non-logical axioms can be presented by positive sequents
still proves the same positive sequents without universal quantifiers as the full
theory.

Let L1 be a first order language, that besides other function and relation
symbols, contains constants (ei : i ∈ N). The idea is that in all theories under
consideration below, the constants ei are free: That is, if Γ ⇒ ∆ is an axiom,
then so is Γ[s/ei]⇒ ∆[s/ei], for each term s, and accordingly for rules. In other
words, when considering models, we are free to assign any value to a constant
ei. Positive formulas are build from (positive) atoms only, by closing under ∧,

10

∨ and quantifications. A sequent Γ ⇒ ∆ is positive if it contains only positive
formulas. Further, a ∃-sequent does not contain universal quantifiers, and a
sequent Γ ⇒ ∆ is good if it is positive and in addition, Γ does not contain
universal quantifiers. A theory T is good, if all its axioms and rules can be
presented by good sequents. Note that a good theory can comprise Cantini’s
uniformity principle (cf. [5]) if it is presented as a rule: for each positive formula
A(u, v),

Γ⇒ ∀x(∃y ∈W)A(x, y),∆

Γ⇒ (∃y ∈W)∀xA(x, y),∆
.

A restriction � is a substitution that replaces each universally bound variable in
a formula by a constant ei so that variables bound by the same ∀-quantifier are
replaced by the same constant. LKe is LK without both ¬-rules, and with all
logical axioms and rules restricted to positive ∃-sequents. As a substitute for
the left ∀-rule, we take all its restrictions,

(ei-left)
Γ, A(s)⇒ ∆

Γ, A(ei)⇒ ∆
, for each constant ei.

The right ∀-rule is dropped as all its restrictions are admissible. LK∃ is LKe

without the ei-rules.

To a positive theory T we assign a theory Te that derives positive ∃-sequents
as follows: The underlying logic of Te is LKe, and its non-logical axioms and
rules are all the restrictions of the non-logical axioms and rules of T. Further, T∃

is Te with the underlying logic LK∃. In this section, we will prove the following
theorem:

Theorem 7. Let T be a good L1 theory. If Γ⇒ ∆ is a positive ∃-sequent, then

T ` Γ⇒ ∆ =⇒ T∃ ` Γ⇒ ∆.

We start with the following observation.

Lemma 8. Let T be a positive theory and Γ ⇒ ∆ a positive sequent of L1
formulas. If T ` Γ⇒ ∆, then Te ` Γ�⇒ ∆� for all restrictions �.

Proof. By induction on the depth of the proof. In case of a left ∀-rule, the I.H.
and an application of a left e-rule yields the claim. In case of a right ∀-rule,
we have T

n
Γ ⇒ A(u),∆. Then, also T

n
Γ ⇒ A(ei),∆ for each i. By I.H.

Te n
Γ� ⇒ A(ei0)�,∆� for an i0 so that ∀xA(x)� = A(ei0)�. In case of the

other rules, the I.H. applies directly.

If T is a good theory, then the system Te
σ derives so-called annotated se-

quents. An annotated sequent Σ ⇒ ∆ is a sequent, where a natural number
is assigned to each occurrence of a constant ei in Σ. For instance, we write
A(eni)⇒ to indicate that the number n is assigned to the displayed occurrence
of ei. Further, we just write ei instead of e0i . A sequent Σ⇒ ∆ is an axiom of
Te
σ iff deleting all annotations yields an axiom of Te and each constant ei in Σ

11

is annotated by 0. Further, a rule is a rule of Te
σ iff the corresponding rule with

the annotations deleted is a rule of Te and the annotations remain unchanged
except for the following cases: The annotation of the constant ei introduced by
an ei-rule has to be bigger than all annotations in the term t that is substituted
by ei, i.e.

A(t(en1
i1
, . . . , enk

ik
))⇒

A(eni)⇒
where n > ni for 1 ≤ i ≤ k.

In case of contraction and a context sharing rule, the bigger annotation is kept,

A(en1
i1
, . . . , enk

ik
), A(em1

i1
, . . . , emk

ik
)⇒

A(el1i1 , . . . , e
lk
ik

)⇒
and

A(en), B ⇒ A(em), C ⇒
A(el), B ∨ C ⇒

,

where for 1 ≤ i ≤ k, li = max(ni,mi) and l = max(n,m). The weight of an
annotated formula is the sum of all its annotations. T

n

k Γ⇒ ∆ states that the
depth of the derivation is n and that the cut-rule is only applied if the weight
of the cut-formula is less than k or if no constant ei occurs in the cut-formula.

Lemma 9 (e-substitution). If Γ ⇒ ∆ is a positive ∃-sequent and t an e-free
term, then

Te
σ

n

k Γ⇒ ∆ =⇒ Te
σ k Γ[t/e0i]⇒ ∆[t/ei].

Proof. By induction on n. If for instance Σ, A(eni) ⇒ ∆ is obtained from
Σ, A(s) ⇒ ∆ by a left ei-rule, then the I.H. yields Σ[t/e0i], A(s[t/e0i])[t/e

0
i] ⇒

∆[t/ei], and now the left ei-rule yields Σ[t/e0i], A(eni)[t/e0i] ⇒ ∆[t/ei]. If Σ ⇒
B ∧ C,∆ is obtained from Σl ⇒ B,∆ and Σr ⇒ C,∆, where Σl and Σr differ
only w.r.t. the annotation, then the I.H. yields

Σl[t/e
0
i]⇒ B[t/ei],∆[t/ei] and Σr[t/e

0
i]⇒ C[t/ei],∆[t/ei].

Observe that a formula A(e0i) may be in Σl and A(e1i) may be the corresponding
formula in Σr. In this case, after applying the ∧-rule, A(t)[t/e0i], A(e1i)[t/e

0
i] are

side formulas in the conclusion of this rule. An application of the ei-rule and
contraction help to obtain the claim.

Lemma 10. Suppose that Te
σ

m

k Σ, A(eni) ⇒ ∆. Then there are e-free terms

t1, . . . , tl and n′ < n so that Te
σ k Σ, A(t1), . . . , A(tl), A(en

′

i)⇒ ∆.

Proof. A simple induction on the depth the derivation.

Lemma 11 (e-cut elimination). Suppose that Σ⇒ ∆ is an ∃-sequent which is
e-free.

Te
σ

n

k Σ⇒ ∆ =⇒ Te
σ 0 Σ⇒ ∆.

Proof. Main induction on the weight k, side induction on the depth n. The only
case where the I.H. does not apply directly is if

Te
σ

n

k′ Σ, A(em)⇒ ∆ Te
σ

n

k′ Σ⇒ A(e),∆

Te
σ

n+1

k Σ⇒ ∆
,

12

where we have picked an annotated constant em in A with m > 0. Then,
Lemma 10 yields Te

σ k Σ, A(t1), . . . , A(tl), A(em
′
) ⇒ ∆ and the I.H. and the

e-substitution lemma imply that Te
σ 0 Σ ⇒ A(s),∆ for each e-free term s. A

couple of cuts yield Te
σ m Σ ⇒ ∆. Since m < k, the claims follows by the

I.H.

The theorem follows: If T is good and Γ⇒ ∆ is a positive ∃-sequent so that
T ` Γ⇒ ∆, then Te

σ 0 Γ⇒ ∆. As Γ⇒ ∆ is e-free, no use of a left e-rule was
made. Therefore, T∃ ` Γ⇒ ∆.

Let us apply the theorem. PT0 is the theory PT with induction restricted
to formulas without universal quantifiers. Then, PT∃ is contained in PT0.

Corollary 12. If Γ⇒ ∆ is a positive ∃-sequent so that PT ` Γ⇒ ∆, then also
PT0 ` Γ⇒ ∆.

6. The provably terminating operations of PT†
S+ I

In this section, we show that the provably terminating operations of PT†S+ I
are still the polytime functions. Actually, we prove a bit more, namely that
PT0 and PT†S+ I prove the same positive ∃-sequents, and that PT + (UP) and

PT†S+ I + (UP) prove the same positive sequents, where (UP) is Cantini’s uni-
formity principle (cf. [5]) that claims for each positive formula A(u, v),

(UP) ∀x(∃y ∈W)A(x, y)⇒ (∃y ∈W)∀xA(x, y).

To obtain this result, we translate a sequent Γ⇒ ∆ which is provable in PT†S+ I
into a sequent which is provable in PT. This translation is inspired by a re-
alization interpretation in the style of Cantini [4] and Strahm [17]. However,
in contrast to the realization interpretation applied in [4],[17] our translation
does not depend on an open term model M(λη) of PT, and allows to han-
dle extensions of PT that are consistent but no longer true in M(λη), such as

PT†S+ I.

To define the realizability interpretation we fix closed L terms pair,wl,wr so
that (provably in PT) pair ∈ (W2 → W), and for s, t ∈ W, wl(pairst)) = s and
wr(pairst) = t. To be specific, we let pair be such that for all words w0, w1,
pairw0w1 = w∗000w∗1 , where ε∗ := ε and wi∗ := w∗1i for i ∈ {0, 1}.

Definition 13. To each positive L(α) formula A, we assign a positive and
W-free formula u r A with an additional fresh free variable u. To increase read-
ability, we write 〈s, t〉 for pairst, u = 〈w0, w1〉 ∧ A(w0, w1) for u = 〈wlu,wru〉 ∧
A(wlu,wru), and similarly, u = 〈i, w〉∧A(i, w) is to abbreviate u = 〈wlu,wru〉∧
wlu = i ∧A(wlu,wru).

(i) u r W(t) := u = t,

(ii) u r s = t := u = ε ∧ s = t,

(iii) u r A ∧B := u = 〈w0, w1〉 ∧ w0 r A ∧ w1 r B,

13

(iv) u r A ∨B := u = 〈i, w1〉 ∧ [(i = 0 ∧ w1 r A) ∨ (i = 1 ∧ w1 r B)],

(v) u r ∀xA(x) := ∀x(u r A(x)),

(vi) u r ∃xA(x) := ∃x(u r A(x)).

To a positive sequent Γ ⇒ ∆ with Γ = A0, . . . , Am−1 and ∆ = B0, . . . , Bn−1,
we then assign the sequent

u0 r A0, . . . , um−1 r Am−1 ⇒
∨

0≤i<n

[u = 〈base2(i), w1〉 ∧ w1 r Bi],

where base2(i) is w for w the binary representation of the number i. Moreover,
the variables u, u0, . . . , um−1 are pairwise different and do not occur free in Γ,∆.
The left hand part of the sequent displayed above is often abbreviated as ~u r Γ,
and the formula on the right as u r ∆.

By a simple induction on the build-up of positive formulas, the following
observation is made.

Lemma 14. If A is a positive L formula, then PT− ` (∃x ∈W)(x r A)→ A.

The converse direction fails: When trying to prove the claim by induc-
tion on the build-up of A, in case that A = ∀yB(y), the I.H. yields that
∀y(∃x ∈ W)(x r B(y)), yet we cannot infer (∃x ∈ W)∀y(x r B(y)), that is
(∃x ∈W)(x r ∀yB(y)), unless we employ (UP).

Lemma 15. PT− + (UP) ` A↔ (∃x ∈W)(x r A), for each positive L formula
A.

Recall that Tα extends a theory T by the assertion W(α). For instance, if

T is PTS, then Tα is PT†S without the axiom W(expα) ⇒. Because Tα only
states that α is a word, Tα ` Γ ⇒ ∆ implies T ` Γ[0/α] ⇒ ∆[0/α]. An
induction on the depth of the derivation also yields that T† ` Γ ⇒ ∆ implies
Tα ` Γ⇒ ∆,W(expα).

Theorem 16. Suppose that A0 . . . , Am−1 ⇒ B0, . . . , Bn−1 is a positive sequent
of L. If PT†S+ I+ (UP) ∗ A0 . . . , Am−1 ⇒ B0, . . . , Bn−1 and ~u = u0, . . . , um−1,
then there is an Fm ∈ PTα so that

PT† `W(u0), . . . ,W(um−1), ~u r A0, . . . , Am−1 =⇒ f(~u) r B0, . . . , Bn−1.

In the above theorem, we can replace PT†S and PT† by PTS,α and PTα, since
the axiom W(expα)⇒ is only need to derive the sequent W(u), u r W(expα)⇒.

Corollary 17. Let Γ⇒ ∆ be a positive and Γ′ ⇒ ∆′ a positive ∃-sequent of L.
Then

(i) PT†S+ I + (UP) ` Γ⇒ ∆ implies PT + (UP) ` Γ⇒ ∆.

(ii) PT†S+ I + (UP) ` Γ′ ⇒ ∆′ implies PT0 ` Γ′ ⇒ ∆′.

14

Proof. If PT†S+ I + (UP) ` Γ ⇒ ∆, then by the above Theorem there is an
F ∈ PTα so that PTα + (UP) ` W(~u), ~u r Γ ⇒ f(~u) r ∆. As Γ ⇒ ∆ is an L
sequent, there is also an F ∈ PT so that PT+ (UP) `W(~u), ~u r Γ⇒ f(~u) r ∆.
Since PT proves that f(~u) is a word, the claim follows by Lemma 15. For
the second claim, use the result form the interlude that PT0 ` Γ′ ⇒ ∆′ iff
PT ` Γ′ ⇒ ∆′.

Corollary 18. If t is a closed term of L (so it does not contain the constant

α) and PT†S+ I ` W(~v) ⇒ W(t(~v)), then there is a polytime function symbol
F ∈ PT so that for all ~w ∈W,

PT ` F(w1, . . . , wn) = t(w1, . . . , wn) = f(w1, . . . , wn).

Proof. Assume that t is a closed L term and PT†S+ I `W(~v)⇒W(t(~v)). Then,
PTS,α+ I ` W(~v) ⇒ W(t(~v)),W(expα). By Theorem 16, there are F,G,H ∈
PTα so that F(~w) = 〈G(~w),H(~w)〉, and

PTα `W(~u)⇒ g(~u) = 0 ∧ t(~u) = h(~u), g(~u) = 1 ∧ h(~u) = expα.

Suppose that for ~w ∈W, G(~w) = 1. Then, PTα `W(expα) which is impossible.
Hence, G(~w) = 0 for all ~w ∈ W, and thus for all ~w ∈ W, PTα ` C(t, ~w),
where C(t, ~w) := h(w1, . . . , wn) = t(w1, . . . , wn). Since t is an L term, PT `
C(t, ~w)[0/α], and there is a function symbol H ′ ∈ PT , so that h[0/α] = h′.

Definition 19. We assign to each formula A of L(α) a rank rk(A) ∈ 0 ×W.
The rank of a literal is 0, the rank of Aj B is 00 × (rk(A)+rk(B)+0) and the
rank of QxA is rk(A).

Lemma 20. Let A(v) ∈ S(v) and B positive and W-free.

(i) PT− ` w ∈W, u r A(w)⇒ u ≤ rk(A)×max(0, w).

(ii) PT− ` u r B ⇒ u ≤ rk(B).

Proof. Both claims are shown by induction on the build up of the formula.

Theorem16. The proof is by induction on the depth of the derivation. Note that
the handling of the ∀-right rule and the ∃-left rule are directly by the definition
of the translation and do not require a substitution lemma: For if v is different
from ~u and does not occur free in A0, . . . , Am−1,∀xB0(x), . . . , Bn−1, then

PT† `W(~u), ~u r A0, . . . , Am−1 =⇒ f(u0 · · ·um−1) r B0(v), . . . , Bn−1,

entails

PT† `W(~u), ~u r A0, . . . , Am−1 =⇒ f(u0 · · ·um−1) r ∀xB0(x), . . . , Bn−1.

Clearly, PT† proves the translation of the sequents ⇒ W(α) and W(expα) ⇒.
And the translation of (UP) trivially holds as u r ∀x(∃y ∈W)A(x, y) is logically
equivalent to u r (∃y ∈W)∀xA(x, y). The logical rules and (S-I) are essentially

15

handled as in the proof of the realization theorem in [17]. Therefore, we just
consider the case when the last rule applied is an instance of (I).

We work informally in PT† and tacitly use that f ∈ (Wn → W) for each
Fn ∈ PTα and that induction for W-free and positive formulas is available. In
addition, we commit a slight abuse of notation in that we write (f(~s))0 and
(f(~s))1 for wl(f(~s)) and wr(f(~s)) if F ∈ PTα.

Assume that last rule applied is an instance of (I). Then, the I.H. provides
polytime function symbols Fι, Fε, F0, F1 so that PT† proves the sequents

W(~a, b),~a, b r Γ, A(u,w) ⇒ fι(~a, b) r W(u),∆,

W(~a),~a r Γ ⇒ fε(~a) r C(ε),∆,

W(~a, b),~a, b r Γ, C(u,w) ⇒ fi(~a, u) r C(siu,w),∆ i ∈ {0, 1}

It is assumed that C(u,w) is of the form ∃y[A(y, w) ∧ ∃z(z ≤W y ∧ B(u, y, z))]
with A(u,w) ∈ S(w) and B positive and W-free. Further, we suppose that the
atom w ∈ W is an element of the sequence Γ. Our task is to find a function
symbol F so that

(∗) PT† `W(~a, b),~a r Γ⇒ f(~a, b) r C(b),∆.

Recall that f(~a, b) is of the form 〈i, w〉, where i tells us which formula in
the sequence on the right is realized. If i = 0, then w r C(b), hence w =
〈w0, 〈〈w1, ε〉, w2〉〉, and there is a y so that w0 r A(y), and further w1 ≤W y and
w2 r B(b, y, w1). By Lemma 20 we know that w0 ≤ rk(A) × max(0,~a). Fur-
ther, as shown e.g. in Cantini [3], if F ∈ PT , then there is a function symbol
F+ ∈ PT with the same ariety, and so that for all words ~w,~v, F (~w) ≤ F+(~v)
provided that vi ≤ wi. It is completely straightforward to generalize this
result to function symbols F ∈ PTα. Now, let H ∈ PTα be such that for
t(~a) := rk(A)×max(0,~a), PT† proves

h(~a, b) = fε(~a) + f+ι (~a, t(~a)) + 〈0, f+i (~a, 〈t(~a), 〈〈f+ι (~a, t(~a)), ε〉, rk(B)〉〉)〉.

Next, let F ∈ PTα be such that PT† proves F (~a, ε) = Fε(~a) and

f(~a, bi) =


f(~a, b)|h(~a, b) : (f(~a, b))0 6= 0,

fι(~a, (f(~a, b))1,0)|h(~a, b) : (f(~a, b))0 = 0, (fι(~a, (f(~a, b))1,0))0 6= 0,

fi(~a, (f(~a, b))1)|h(~a, b) : (f(~a, b))0 = 0, (fι(~a, (f(~a, b))1,0))0 = 0.

Assume that W(~a) and ~a r Γ. We show that for all words b, f(~a, b) r C(b),∆
and f(~a, b) < h(~a, b) by induction on b. For b = ε there is nothing to show.
That the claim for bi (i ∈ {0, 1}) follows provided the claim holds for b is shown
below, distinguishing the following two cases:

(i) (f(~a, b))0 6= 0. Then f(~a, b) is of the form 〈i, c〉, i > 0 and c r B for some
B in ∆. As f(~a, bi) = f(~a, b), also f(~a, bi) r C(bi),∆ and f(~a, bi) < h(~a, b)
by I.H.

16

(ii) (f(~a, b))0 = 0. By I.H. (f(~a, b))1 r C(b). So (f(~a, b))1 is of the form w =
〈w0, 〈〈w1, ε〉, w2〉〉, and there is a y so that w0 r A(y) and w1 ≤W y and
w2 r B(b, y, w1). As w0 < rk(A) × max(0,~a) = t(~a), fι(~a, (f(~a, b))1,0) ≤
f+ι (~a, t(~a)) < h(~a, b). In case (fι(~a, (f(~a, b))1,0))0 6= 0, f(~a, bi) < h(~a, b),
and (f(~a, bi))1 r B for some B in ∆.
If (fι(~a, (f(~a, b))1,0))0 = 0, then w1 ≤ y = fι(~a,w0). fi(~a, (f(~a, b))1) =
fi(~a, 〈w0, 〈〈w1, ε〉, w2〉〉) ≤ f+i (~a, 〈t(~a), 〈〈f+ι (~a, t(~a)), ε〉, rk(B)〉〉) < h(~a, b).
Thus, f(~a, bi) < h(~a, b), and (f(~a, bi))1 r C(bi).

7. From a model of PT + (BP) to a model of PETJ

In this section, we show that each model E′ = (VE′ ,WE′ , . . .) of PT+ (BP)
has an elementary extension E � E′ that expands to a modelM = (E,R, . . .) of
PETJ where each type is simple. Hence, PETJ does not prove more L formulas
than PT+ (BP), and the provably terminating operations of PETJ are still the
polytime functions. Recall that E � E′ if VE′ ⊆ VE, WE′ ⊆WE and RE�E′ = RE′

for each relation and function symbol R of L. In addition, each sentence A of
the language L(cv : v ∈ VE′) which extends L by constants for each element of
VE′ holds in E′ iff it holds in E.

There is a standard method introduced by Feferman in [9] to construct an
interpretation for the naming relation and the types over an applicative structure
such as PT+ (BP). Using this method, each model E′ = (WE′ ,VE′) of PT+ (BP)
is easily expanded to a model M = (E′,R, . . .) of PETJ−: As interpretations
for the additional constants id, iw, all , dom , inv, int, un and j, the values of
the following closed terms in the model E′ are chosen: id := ε, iw := λx.(ε, x),
all := λx.(0, x), dom := λx.(1, x), inv := λxy.(00, (x, y)), int := λxy.(01, (x, y)),
un := λxy.(10, (x, y)) and j := λxy.(11, (x, y)). Then, the naming relation R ⊆
Pow(VE′)×VE′ is build by a non-monotone inductive definition over the structure
E′, specified by the L(P) formula R(P, u, v, w) := R0(P, u, v, w) ∨ R1(P, u, v, w)
displayed below. The language L(P) extends L by a set constant P that serves
a placeholder and the elementhood relation s ∈ P. For an ordinal α ∈ ON, the
αth stage IE

′,A
α of the inductive definition over E′ specified by the L(P) formula

A(P, u1, . . . , un) is defined as follows:

IE
′,A

α := IE
′,A

<α ∪ {(u1, . . . , un) : A(IE
′,A

<α , u1, . . . , un)}, where IE
′,A

<α :=
⋃
β<α

IE
′,A

β ,

and the formula A is evaluated in the structure E′. More precisely, IE
′,A

α is the

union of IE
′,A

<α and {w ∈ VE′ : E′ |= ∃~x[w = (x1, . . . , xn)∧A(IE
′,A

<α , x1, . . . , xn)]}.
Further, IE

′,A :=
⋃
α∈ON I

E′,A
α . A simple cardinality argument yields that there

is a γ ∈ ON so that IE
′,A

γ = IE
′,A

<γ . It follows that IE
′,A = IE

′,A
<γ . Also,

if (x1, . . . , xn) ∈ IE
′,A, then there is a β so that (x1, . . . , xn) /∈ IE

′,A
<β and

A(IE
′,A

<β , ~x).

17

The two disjuncts of R have the forms R0(P, u, v, w) := v = w = 0 ∧R′0(P, u)
and R1(P, u, v, w) := w = 1 ∧ R′1(P, u, v). To keep the definitions readable,
we regard s = (x, y) ∧ A(x, y) as a shorthand notation for s = ((s)0, (s)1) ∧
A((s)0, (s)1). The idea is that a is a name iff (a, 0, 0) ∈ IE′,R, and that x ∈̇ a iff
(a, 0, 0), (a, x, 1) ∈ IE′,R. R′0(P, u) is the disjunction of the clauses

(i) u = ε,

(ii) u = (ε, x) ∧W(x),

(iii) u = (0, a) ∧ (a, 0, 0) ∈ P,

(iv) u = (1, a) ∧ (a, 0, 0) ∈ P,

(v) u = (00, (a, g)) ∧ (a, 0, 0) ∈ P,

(vi) u = (01, (a, b)) ∧ (a, 0, 0) ∈ P ∧ (b, 0, 0) ∈ P,

(vii) u = (10, (a, b)) ∧ (a, 0, 0) ∈ P ∧ (a, 0, 0) ∈ P,

(viii) u = (11, (a, g)) ∧ (a, 0, 0) ∈ P ∧ ∀x[(a, x, 1) ∈ P→ (gx, 0, 0) ∈ P],

and R′1(P, u, v), which contains P only positively, is the disjunction of the clauses

(i) u = ε ∧ v = (x, x),

(ii) u = (ε, x) ∧ v ≤W x,

(iii) u = (0, a) ∧ ∀y[(a, (v, y), 1) ∈ P],

(iv) u = (1, a) ∧ ∃y[(a, (v, y), 1) ∈ P],

(v) u = (00, (a, g)) ∧ (a, gv, 1) ∈ P,

(vi) u = (01, (a, b)) ∧ (a, v, 1) ∈ P ∧ (b, v, 1) ∈ P,

(vii) u = (10, (a, b)) ∧ [(a, v, 1) ∈ P ∨ (b, v, 1) ∈ P],

(viii) u = (11, (a, g)) ∧ v = (x, y) ∧ (a, x, 1) ∈ P ∧ (gx, y, 1) ∈ P.

The next lemma is immediate by induction on α and is used tacitly in the sequel.

Lemma 21. For all ordinals α, we have (a, x, 1) ∈ IE′,R
α iff (a, x, 1) ∈ IE′,R1

α .

Next, let RE′
:= {(X, a) : (a, 0, 0) ∈ IE

′,R ∧ X = {x : (a, x, 1) ∈ IE
′,R}}

and R′ := RE′
. Again, we write R′(a) for ∃XR′(X, a) which is equivalent to

(a, 0, 0) ∈ IE′,R, and thus letR′α(a) := (a, 0, 0) ∈ IE′,R
α andR′<α(a) := (a, 0, 0) ∈

IE
′,R

<α . Further, ext′(a) refers to the collection {x : (a, x, 1) ∈ IE′,R}; ext′α(a) and
ext′<α(a) are defined accordingly. Finally, x ∈̇ ′a is short for a ∈ R′∧x ∈ ext′(a),

and a ⊆̇′ X stands for a ∈ R′ ∧ ext′(a) ⊆ X.

Lemma 22. If a ∈ R′α, then x ∈ ext′(a) implies x ∈ ext′α(a).

Proof. By induction on α. Assume that the claim holds for all ordinals below

α and let a ∈ R′α. If x ∈ ext′(a), then R1(IE
′,R1

<β , a, x, 1) for some β, e.g. there
are b, g ∈WE′ so that B(β, a, b, g, x) holds, where B(β, a, b, g, x)) is

a = (11, (b, g)) ∧ x = ((x)0, (x)1) ∧ (b, (x)0, 1) ∈ IE
′,R

<β ∧ (g(x)0, (x)1, 1) ∈ IE
′,R

<β .

a ∈ R′α implies b ∈ R′<α and (∀z ∈ ext′<α(b))(gz ∈ R′<α). By I.H. (x)0 ∈
ext′<β(b) entails (x)0 ∈ ext′<α(b), which then implies that g(x)0 ∈ R′<α. Now
(x)1 ∈ ext′<β(g(x)0) and the I.H. yield (x)1 ∈ ext′<α(g(x)0). Therefore B(α).
Thus x ∈ ext′α(a).

18

Lemma 23. If E′ is a model of PTS, then (E′,R′, id, iw, . . .) is a model of

PETJ−.

Proof. We just check the axiom for join. If b ∈ R′ and (∀z ∈ ext′(b))(gz ∈ R′),
then R(IE

′,R, (j(b, g), 0, 0)), i.e. j(b, g) ∈ R′α for some α. Further, if (x, y) ∈
ext′(j(b, g)), then by Lemma 22, (x, y) ∈ ext′α(j(b, g)). By the definition of R1

and Lemma 22, this holds iff x ∈ ext′(b) and y ∈ ext′(gx).

Lemma 24. Each model E′ of PTS has an elementary extension E � E′ so that
IR,E<ω = IR,E.

Proof. Let E′ be a model of PTS. Below, we give a set T of formulas that are
finitely realizable, i.e. for each finite subset G ⊆ T , there is a model E0 of PTS
and w ∈ WE0

, F ⊆ VE0
, so that for each formula C(P, p) ∈ G, E0 |= C(F ,w).

For each n ∈ N, (Ai(u1, . . . , un) : i ∈ N) is an enumeration of the L(P, p)
formulas with free variables u1, . . . , un. Further, s ∈ (P)t abbreviates (s, t) ∈ P
and s ∈ (P)<Wt := (∃x <W t)(s ∈ (P)x). The set T comprises (i) and (ii), for
each i ∈ N the formula (iii) and the formula (iv).

(i) {w ≤W p : w ∈W} ∪ {W(p) },
(ii) {A : VE′ |= A, A an L(cv : v ∈ VE′) sentence.},
(iii) ∀x[(∃z ≤W p)Ai(x, z)→ (∃z ≤W p)(Ai(x, z) ∧ (∀y <W z)¬Ai(x, y))],

(iv) (∀z ≤W p)[(P)0×z = {(a, b, c) : (a, b, c) ∈ (P)<W0×z∨R((P)<W0×z, a, b, c)}],

Since T is finitely realizable, compactness provides a model E = (VE,WE) of
PTS and w ∈WE, F ⊆ VE so that E |= C(F ,w) for each C(P, p) ∈ T . By (i) we
have that w is non-standard, (ii) forces that E is an elementary extension of E′,
(iii) tells us that each non-empty subclass of {w : w ≤ w} which is L-definable
with parameters from VE ∪ {F} has a <-minimal element, and (iv) entails that
for each word b ∈WE of length n ∈ N, IE,Rn = (F)0×b, and so IE,Rn ⊆ (F)0×c for
each non-standard word c ≤W w.

It remains to show that IE,R<ω = IE,R. First, assume that R1(IE,R<ω , a, x, 1).
Since R1(P, u, v, w) contains P only positively, R1((F)<W0×b, a, x, 1) holds in
particular for each non-standard word b. There is no shortest non-standard
word. By (ii), there is a shortest word b0 so that R1((F)<W0×b0 , a, x, 1). So

b0 ∈W and R1((F)<W0×b0 , a, x, 1), thus (a, x, 1) ∈ (F)0×b0 ⊆ I
E,R
<ω .

Secondly, if R0(IE,R<ω , a, 0, 0), then we do a case distinction on the clauses of
R′0. We just consider the case where a = j(a′, g), 0, 0) for some a′, g ∈WE. Then
X with

∅ 6= X := {b ∈WE : (∀x ∈̇ a′)(gx, 0, 0) ∈ (F)<W0×b} ⊆ {b ≤ w : b /∈W}

has a ≤-minimal element which is in W. So (a, 0, 0) ∈ IE,R<ω .

For the rest of this section, E denotes a model of PT+ (BP) with IR,E<ω = IR,E.
We let R := RE and T := {X : ∃xR(X,x)}. It remains to show that each type
in T is simple.

19

Since {(a, x, 1) : (a, x, 1) ∈ IE,R} = IE,R1 = IE,R1
<ω , (a, x, 1) ∈ IE,Rn can

be expressed by a positive formula En(a, x), where E0(u, v) := R′1(∅, u, v) and
En+1(u, v) := R′1({(b, y) : En(b, y)}, u, v). As the extension of each type X ∈ T
is now of the form X = {x : En(a, x)}, it suffices to show that for each name
a, there is a word w so that X = {x : En(a, x)} = {x : Ewn (a, x)}, which
entails that X is simple. Since En is positive, we then also have X = {x :
En(a, x)} = {x : Evn(a, x)} for each word v > w. To flatten the notation, we set
En(u, v, w) := Ewn (u, v).

If a name a is obtained using at most n-times join, then a ∈ Jn. More pre-
cisely, the sets Jn (n ∈ N) are inductively defined below. Note that

⋃
n∈N Jn =

R.

(i) id ∈ J0 and iwa ∈ J0 for each a ∈WE.

(ii) If a, b ∈ Jn and x ∈ VE, then all a, dom a, inv(a, x), int(a, b), un(a, b) ∈ Jn.

(iii) If a ∈ Jn, then a ∈ Jn+1. And if b ∈ Jn and j(b, g) ∈ R, then j(b, g) ∈
Jn+1.

There is an element bdo ∈ VE, so that for each a ∈ J0, bdo a is a bound for the
type named a. Thereto, we choose bdo such that the following equations hold
in E.

(i) bdo id = ε and bdo (iwa) = 0× a.

(ii) bdo (all a) = bdo (dom a) = bdo (inv(a, x)) = bdo a.

(iii) bdo (int(a, b)) = bdo (un(a, b)) = max(bdo a, bdo b), where max ∈ VE is
such that for all x, y ∈ 0 × WE, max(x, y) returns y if x < y, and x
otherwise

Lemma 25. If a ∈ J0∩Rn, then a =̇ {x : En(a, x)} = {x : En(a, x, bdo a)}. In
particular, the extension of each type in J0 is simple, which implies that (E,R)
is a model of PET.

Proof. By induction on n. If e.g. un(a, b) ∈ Rn+1 and c := bdo (un(a, b))), then
by definition of En+1, En+1(un(a, b), x, c) iff En(a, x, c) ∧ En(b, x, c). The I.H.
yields that En(a, x) iff En(a, x, bdo a) iff En(a, x, c). The same holds for b. The
claim follows as En+1 is positive.

If a ∈ Rn is simple and g ∈ (a → J0), then {bdo (gx) : x ∈̇ a} ⊆ WE is
simple, and, due to Lemma 6, bounded by a word b. Hence, j(a, g) =̇ {(x, y) :
x ∈̇ a∧En(gx, y, b)} is simple as well. However, as the bound of the type j(a, g)
cannot be computed, the above trick only works if g ∈ (a → J0). Therefore,
we assign to each name a a name bd a ∈ J0 of a set of names of bounds. That
is, bd a ⊆̇ J0, and for each b ∈̇ bd a, either b = iww or b names a set of names
of bounds. The support of a name iww is given by supp(iww) := {w}, and if z
is a name of Z and Z is a set of names of bounds, then supp(z) := supp(Z) :=⋃
{supp(x) : x ∈ Z}. The name bd a will be such that supp(bd a) ⊆ WE and

in addition, supp(a) ≤ v ∈ W implies a =̇ {x : En(a, x, v)}. This procedure is
detailed below. Thereby, we let bd ∈ WE be such that the following equations
hold.

20

(i) bd id = inv(id, λx.(x, iwε)), i.e. a name of the type {iwε}.
(ii) bd (iwa) = inv(id, λx.(x, iwa)), i.e. a name of the type {iwa}.
(iii) bd (all a) = bd (dom a) = bd (inv(a, x)) = bd a.

(iv) bd (int(a, b)) = bd (un(a, b)) = un(bd a, bd b).

(v) bd (j(a, g)) is the name of the type {bd (gx) : x ∈̇ a} ∪ {bd a} given by

un(dom (int(inv(id(λx.(bd (g(x)1), (x)0)), inv(a, λx.(x)0)))), inv(id, λx.bd a)).

We say that lv(X) := 0 iff X ⊆ R ∧ (∀x ∈ X)((x)0 = ε) (i.e. X contains only
names of the form iww). lv(a) = n is short for ∃X[R(X, a) ∧ lv(X) = n], and
lv(X) = n+1 iff X ⊆ R ∧ (∀x ∈ X)(lv(x) ≤ n) ∧ (∃x ∈ X)(lv(x) = n). Note
that if lv(X) = n+1 and x ∈ X, then x names an initial segment of words, or
lv(x) ≤ n.

Lemma 26. If a ∈ Rn, then bd a ∈ J0 and bd a ⊆̇ J0 and lv(a) ≤ n.

Proof. By induction on n. We just consider the case where a = j(b, g) ∈ Rn+1.
Then, for each x ∈̇ b, gx ∈ Rn. Therefore {bd (gx) : x ∈ b} ⊆ J0 and
lv(bd (gx)) ≤ n by I.H. Now the claim follows by the definition of bd a and
lv(a).

Definition 27. For a ∈ Jm, let Xa,0 =̇ bd a. For 0 ≤ i ≤ m,

(i) Ya,i := {x ∈ Xa,i : (x)0 = ε}.
(ii) If i < m, Xa,i+1 := {y ∈̇x : x ∈ Xa,i ∧ (x)0 > ε}.
(iii) Ya :=

⋃
0≤i≤m{(x)1 : x ∈ Ya,i}.

As the next lemma entails, Xa,i contains only names, and thus, (x)0 > ε iff
(x)0 6= ε for each x ∈ Xa,i, so that Xa,i+1 = {y ∈̇x : x ∈ (Xa,i−Ya,i)}.

Lemma 28. If a ∈ Jm ∩Rn, then for 0 ≤ i ≤ m, lv(Xa,i) ≤ m− i, Xa,i ⊆ J0
and {(y)1 : y ∈ Ya,i} ⊆WE, Ya ⊆WE.

Proof. By main induction on m and side induction on n.

Lemma 29. For all names a, b ∈ Jm ∩ Rn and w ∈ WE and g ∈ VE, the
following holds:

(i) Yid = {iwε} and Yiww = {iww}.
(ii) Yall a = Ydom a = Yinv(a,g) = Ya.

(iii) Yint(a,b) = Yun(a,b) = Ya ∪ Yb.
(iv) Yj(a,g) = Ya ∪

⋃
x ∈̇ a Ygx.

Proof. By main induction on m and side induction on n. (i) – (iii) are immedi-
ate. For (iv), note that by definition of Xj(a,g),0, Xj(a,g),0 = Xa,0 ∪

⋃
x ∈̇ aXgx,0.

Further, if Xj(a,g),i = Xa,i ∪
⋃
x ∈̇ aXgx,i, then Yj(a,g),i = Ya,i ∪

⋃
x ∈̇ a Ygx,i and

Xj(a,g),i+1 = Xa,i+1 ∪
⋃
x ∈̇ aXgx,i, since

{y ∈̇ z : z ∈
⋃
x ∈̇ a

Xgx,i ∧ (z)0 > ε} =
⋃
x ∈̇ a

{y ∈̇ z : z ∈ Xgx,i ∧ (z)0 > ε}.

21

If follows that for 0 ≤ i ≤ m+1, Yj(a,g),i = Ya,i ∪
⋃
x ∈̇ a Ygx,i. Therefore,

Yj(a,g) =
⋃

0≤i≤m+1

{(y)1 : y ∈ Ya,i} ∪
⋃

0≤i≤m+1

{(y)1 : y ∈
⋃
x ∈̇ a

Ygx,i}

=
⋃

0≤i≤m+1

{(y)1 : y ∈ Ya,i} ∪
⋃
x ∈̇ a

⋃
0≤i≤m+1

{(y)1 : y ∈ Ygx,i}.

The claim follows.

Lemma 30. If a ∈ Rn and Ya ≤ w ∈WE, then a =̇ {x : En(a, x, w)}.

Proof. By induction on n. If a ∈ R0, then either a = id, in which case there
is nothing to show, or a = iww. In this case, Ya = {w}, and since (a)1 = w,
iww =̇ {x : E0(a, x)} = {x : E0(a, x, w)}. If e.g. a = j(b, g) ∈ Rn+1, then a =̇
{(y, z) : En(b, y)∧En(gy, z)}, so by I.H. a =̇ {(y, z) : En(b, y, w)∧En(gy, z, wy)},
for a word w ≥ Yb and words wy ≥ Ygy (y ∈̇ b). Since En is positive, we also
have a =̇ {(y, z) : En(b, y, v) ∧ En(gy, z, v)}, provided v ≥ Yb ∪

⋃
y ∈̇ b Ygy. The

claim follows by the definition of En+1.

Lemma 31. For each a ∈ Rn, a names a simple type.

Proof. If remains to show that Ya is simple. Since Ya ⊆ WE and E is a model
of PT+ (BP), Ya is bounded, and the claim follows by Lemma 30. We show
by induction on 0 ≤ i ≤ n, that there are L formulas Bi(u) and words wi so
that Xa,i = {x : Bi(x)} = {x : Bwi

i (x)}. Thus, Xa,i and Ya,i are simple, which
implies that Ya is simple. Since Xa,0 ∈ J0, B0(u) := En(bd a, x) and w0 :=
bdo (bd a) is a valid choice by Lemma 25, the definition of bd and Definition 27.
So assume that Xa,i = {x : Bwi

i (x)}. As Xa,i ⊆ J0, {bdox : x ∈ Xa,i} ⊆ WE
is simple and thus bounded by some wi+1 ∈ WE. We may assume that wi ≤W

wi+1. Then, Xa,i+1 is

{x : ∃z[Bwi+1

i (z) ∧ ε < (z)0 ∧ En(z, x, wi+1)]} =

{x : ∃z[Bi(z) ∧ ε < (z)0 ∧ En(z, x)]}.

Hence, Bi+1(u) := ∃z[B(z) ∧ ε < (z)0 ∧ En(z, x)] and wi+1 do the job.

Theorem 32. Let E′ be a model of PT+ (BP). Then, there is an elementary
extension E � E′ so that there is an expansion (E,R) which is a model of PETJ
whose types are exactly the simple classes of E.

Since PT0 and PT+ (BP) have the same provably terminating operations,
we also have the following.

Corollary 33. The theories PT0, PT†S+ I, PT+ (BP) and PETJ all have the
same provably terminating operations on words.

22

8. Concluding remarks

First, we have presented the theory PTS which is PT with the somewhat
technical induction schema (ΣbW-I) replaced by induction on notation for simple
formulas. Then, we have introduced the boundedness principle (BP) which
asserts that for each simple class X, X ⊆ W → (∃w ∈ W)(X ≤ w). We argued

the each instance of (BP) is provable in the auxiliary theory PT†S+ I that extends
PT by the assertion that exp /∈ (W → W) and an induction principle claiming
that if X ⊆ W is simple and Y = {y : (∃x ∈ X↓)A(x, y)} for some positive
and W-free formula A(u, v), then Prog@(Y) → W ⊆ Y . A translation in the
style of a realization interpretation enabled us to verify that the provably total
operation of PT†S+ I and PT coincide.

In a second step we employed a non-monotone inductive definition over a
structure for PT+ (BP) to define a naming relation which enabled us to expand
a model of PT+ (BP) to a model of PETJ−. Then, we proved that each model
of PT+ (BP) has an elementary extension above which the inductive definition
closes off already at stage ω. The corresponding model M was readily seen to
be a model of PET, as the extension of each type constructed without the use
of join is simple. In fact, given a name b of such a type X, we could compute a
word w so that X = {x : Aw(x)} for some A(u, v) ∈ S(v). A further argument
was required to see that M also satisfies the join principle. Although we could
not compute for each name b a word w so that b =̇ {x : Aw(x)} for some
A(u, v) ∈ S(v), we were able to prove the existence of such words: For a name
b of a type built using join, we have computed a name of a set bd b of names of
bounds so that all names x in the transitive closure of the type bd b are in J0. As
the bounding principle (BP) provides a simple definition of a type j(a, f) under
the premise that fx is a name in J0 for each x ∈̇ a, an iterative application of
(BP) allowed us to find a simple definition of the type j(a, f).

In Spescha and Strahm [15], a realization interpretation is performed to show
that the provably terminating operations of PETJi are the polytime functions on
words. In their proof, a word w realizing the formula R(b) corresponds in essence
to a word w so that b =̇ {x : Aw(x)} for some A(u, v) ∈ S(v). However, in order
to compute such a word, they had to change to intuitionistic logic. Whether a
realization interpretation is also possible for PETJ with classical logic is still an
open question.

References

[1] Beeson, M. J. Foundations of Constructive Mathematics: Metamathe-
matical Studies. Springer, Berlin, 1985.

[2] Beeson, M. J. Proving programs and programming proofs. In Logic,
Methodology and Philosophy of Science VII, Barcan Marcus et. al., Ed.
North Holland, Amsterdam, 1986, pp. 51–82.

23

[3] Cantini, A. Logical Frameworks for Truth and Abstraction. North-
Holland, Amsterdam, 1996.

[4] Cantini, A. Polytime, combinatory logic and positive safe induction.
Archive for Mathematical Logic 41, 2 (2002), 169–189.

[5] Cantini, A. Choice and uniformity in weak applicative theories. In Logic
Colloquium 2001 (Wien, 2005), M. B. et al., Ed., ASL Lecture Notes in
Logic 20, AK Peters Ltd, pp. 108 – 138.

[6] Cobham, A. The intrinsic computational difficulty of functions. In Logic,
Methodology and Philosophy of Science II. North Holland, Amsterdam,
1965, pp. 24–30.

[7] Feferman, S. A language and axioms for explicit mathematics. In Alge-
bra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathematics.
Springer, Berlin, 1975, pp. 87–139.

[8] Feferman, S. Recursion theory and set theory: a marriage of convenience.
In Generalized recursion theory II, Oslo 1977, J. E. Fenstad, R. O. Gandy,
and G. E. Sacks, Eds., vol. 94 of Stud. Logic Found. Math. North Holland,
Amsterdam, 1978, pp. 55–98.

[9] Feferman, S. Constructive theories of functions and classes. In Logic
Colloquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North
Holland, Amsterdam, 1979, pp. 159–224.

[10] Girard, J.-Y. Proof Theory and Logical Complexitiy. Bibliopolis, Napoli,
1987.

[11] Jäger, G., and Probst, D. Variation on a theme of Schütte. Mathe-
matical Logic Quarterly 50, 3 (2004), 258–264.

[12] Jäger, G., and Strahm, T. Upper bounds for metapredicative Mahlo in
explicit mathematics and admissible set theory. The Journal of Symbolic
Logic 66, 2 (2001), 935–958.

[13] Probst, D. Pseudo-Hierarchies in Admissible Set Theories without Foun-
dation and Explicit Mathematics. PhD thesis, Universität Bern, 2005.

[14] Spescha, D. Weak Systems of Explicit Mathematics. PhD thesis, Institut
für Informatik und angewandte Mathematik, Universität Bern, 2009.

[15] Spescha, D., and Strahm, T. Elementary explicit types and polynomial
time operations. Mathematical Logic Quarterly 55, 3 (2009), 245–258.

[16] Spescha, D., and Strahm, T. Realizability in weak systems of explicit
mathematics, 2010. Submitted for publication.

[17] Strahm, T. Theories with self-application and computational complexity.
Information and Computation 185, 3 (2003), 263–297.

24

[18] Strahm, T. A proof-theoretic characterization of the basic feasible func-
tionals. Theoretical Computer Science 329, 3 (2004), 159–176.

25

