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Abstract

We propose two admissible closures A(PTCA) and A(PHCA) of Fer-

reira’s system PTCA of polynomial time computable arithmetic and

of full bounded arithmetic (or polynomial hierarchy computable arith-

metic) PHCA. The main results obtained are: (i) A(PTCA) is conser-

vative over PTCA with respect to ∀∃Σb
1 sentences, and (ii) A(PHCA) is

conservative over full bounded arithmetic PHCA for ∀∃Σb
∞ sentences.

This yields that (i) the Σb
1 definable functions of A(PTCA) are the

polytime functions, and (ii) the Σb
∞ definable functions of A(PHCA)

are the functions in the polynomial time hierarchy.

1 Introduction

The theory of admissible sets, i.e. Kripke-Platek set theory, is one of the

most familiar subsystems of Zermelo-Fraenkel set theory. Apart from their
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significance for definability theory, theories for (iterated) admissible sets have

long been central to proof theory, see Jäger [12, 13] and Pohlers [14].

The paper is concerned with systems of Kripke-Platek set theory which are

proof-theoretically weak. It can be seen as a companion to Jäger’s KPur of

Kripke-Platek set theory with the natural numbers as urelements, which is

a conservative extension of Peano arithmetic PA, cf. Jäger [13]. Whereas in

KPur the axioms of admissible sets are stated above the ground theory PA,

this paper deals with similar theories above versions of bounded arithmetic,

namely Ferreira’s polynomial time computable arithmetic PTCA and the the-

ory PHCA of polynomial hierarchy computable arithmetic corresponding to

full bounded arithmetic Σb
∞-NIA, cf. Ferreira [8, 9].

In contrast to the theory KPur, we no longer claim that the collection of ure-

lements forms a set, since the presence of ∆0 separation would immediately

yield full unbounded quantification over the urelements. With respect to our

urelements W (the collection of binary words), we study two set existence

principles for collections of words, namely:

(W.0) The collection of all subwords of a given binary word forms a set;

(W.1) The collection of all words whose length is less than or equal to

the length of a given binary word forms a set.

Based on the two set existence principles (W.0) and (W.1), we study two ad-

missible closures of polynomial time computable arithmetic PTCA. The first

closure, A(PTCA), extends PTCA by (W.0) and the usual axioms of Kripke-

Platek set theory, namely pairing, union, ∆0 separation and ∆0 collection,

as well as foundation in the form of the regularity axiom and induction along

the binary words W for ∆0 formulas. The second closure, A(PHCA), is ob-

tained from A(PTCA) by replacing (W.0) by the stronger axiom (W.1). It

will be seen that A(PHCA) directly contains full bounded arithmetic PHCA.

In this paper we will establish that A(PTCA) is conservative over PTCA with

respect to ∀∃Σb
1 sentences and A(PHCA) is conservative over full bounded

arithmetic Σb
∞-NIA for ∀∃Σb

∞ sentences. This will yield, in particular, that

the Σb
1 definable functions of A(PTCA) are the polytime functions, and (ii)

2



the Σb
∞ definable functions of A(PHCA) are the functions in the polynomial

time hierarchy.

The plan of this paper is as follows. In Section 2 we give a detailed introduc-

tion to Ferreira’s language and systems of polynomial time and polynomial

hierarchy computable arithmetic. We further introduce (and analyze) two

well-known reflection principles in the context of bounded arithmetic which

will later be used in our analysis of weak set theories, namely sharp Σ re-

flection and bounded collection. In Section 3 we define the two admissible

closures A(PTCA) and A(PHCA) stipulated by the set existence axioms men-

tioned above. In Section 4 we show by a straightforward embedding argument

that A(PTCA) is contained in PTCA plus sharp Σ reflection. In Section 5

it is established via a two-step model-theoretic argument that A(PHCA) is

conservative over PHCA augmented by the schema of bounded collection. In

an intermediate step we will consider a second order arithmetical theory with

bounded comprehension and a finite axiom of choice. The paper ends in Sec-

tion 6 with conclusions and a short discussion of related work in Feferman’s

explicit mathematics, Sazonov’s bounded set theory, and Sato’s weak weak

set theories.

The results of this paper were first presented at the workshop Proof, Com-

putation, Complexity PPC ’07, 13–14 April 2007, Swansea, Wales.

2 Polynomial time computable arithmetic

The theory PTCA of polynomial time computable arithmetic over binary

strings was introduced by Ferreira [8, 9]. It provides an approach to weak

arithmetic which is similar in spirit to Buss’ Bounded Arithmetic (cf. Buss

[1]), but instead of natural numbers being grounded on a language of binary

words. PTCA can be viewed as a polynomial time analogue of Skolem’s sys-

tem of primitive recursive arithmetic PRA. The theory PTCA is formulated

in the first order language Lp, which is based on the elementary language L.

The latter language includes variables a, b, c, u, v, w, x, y, z, . . ., the constants

ε, 0, 1 (empty word, zero, one), the binary function symbols ∗ and × (word

concatenation and word multiplication) and the binary relation symbol v
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(initial subword relation). Here u× v denotes the word u concatenated with

itself length of v times; moreover, u v v holds iff v = u∗w for some word

w. We will often write uv for u∗v. The language L is characterized by the

following fourteen basic axioms:

uε = u u×ε = ε

u(v0) = (uv)0 u×(v0) = (u×v)u

u(v1) = (uv)1 u×(v1) = (u×v)u

u v ε↔ u = ε u0 = v0→ u = v

u v v0↔ u v v ∨ u = v0 u1 = v1→ u = v

u v v1↔ u v v ∨ u = v1 u0 6= v1 u0 6= ε u1 6= ε

The language Lp is obtained from L by adding a function symbol for each de-

scription of a polynomial time computable function, where the terms of L act

as bounding terms, similar to Cobham’s characterization of the polynomial

time computable functions (cf. [4]). More precisely, the polytime functions

can be generated inductively with the schemata of composition and bounded

iteration from a set of initial functions E, P n
i (1 ≤ i ≤ n), C0, C1, Q. The

initial functions are defined by

1. E(u) = ε;

2. P n
i (u1, . . . , un) = ui;

3. C0(u) = u0;

4. C1(u) = u1;

5. Q(u, v) = 1 if u v v and 0, otherwise.

f is defined by composition from g, h1, . . . hk if f satisfies

6. f(u1, . . . , un) = g(h1(u1, . . . , un), . . . , hk(u1, . . . , un)).

f is defined by bounded iteration from g, h0, h1 with bound t if

7.1 f(u1, . . . , un, ε) = g(u1, . . . , un);
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7.2 f(u1, . . . , un, vi) = hi(u1, . . . , un, v, f(u1, . . . , un, v)) | t(u1,...,un,v),

where i = 0, 1, t is an L term1 and u|w denotes the truncation of u to the

length of w. Observe that | is definable by a quantifier-free formula of L,

cf. [8, 9].

The terms (r, s, t, . . . ) of Lp are defined as usual. Atoms have the form t = s

or t v s. Literals are atoms or negated atoms. The formulas (A,B,C, . . . )

of Lp are generated from the literals by means of ∧, ∨, ∀, and ∃. We will use

the following abbreviations:

s v∗ t := ∃x(x v t ∧ xs v t), s ≤ t := 1× s v 1× t.

Hence, s v∗ t holds if s is a subword of t and s ≤ t means that the length

|s| of s is less than or equal than the length of t.

Suppose that the variable x does not appear in the term t and R =v∗,v,≤.

Then we use the shorthand notations

(∀x R t)A := ∀x(x R t→ A) and (∃x R t)A := ∃x(x R t ∧ A)

The quantifiers (∀x v∗ t) as well as (∃x v∗ t) are called subword quantifiers

or sharply bounded quantifiers; the quantifiers (∀x ≤ t) and (∃x ≤ t) are

called bounded quantifiers.

The class of ∆b
0 formulas is the smallest class of formulas of Lp that is gener-

ated from literals by means of conjunction, disjunction and sharply bounded

quantification. An Lp formula is called Σb
1 if it is of the form (∃x ≤ t)A(x)

with A a ∆b
0 formula. Moreover, a formula is called bounded or Σb

∞ if all its

quantifiers are bounded in the sense of ≤.

Ferreira’s system PTCA of polynomial time computable arithmetic is now

defined to be the first order theory based on classical logic with equality,

and comprising defining axioms for the function and relation symbols of the

language Lp. In addition, PTCA includes the schema of notation induction

on binary words for quantifier free formulas, i.e. it includes the axiom

A(ε) ∧ ∀x(A(x)→ A(x0) ∧ A(x1))→ ∀xA(x)

1Note that we interpret λx1 . . . xn+1.t(x1, . . . , xn+1) in the standard model.

5



for each quantifier-free formula A(u) of Lp. It is well-known that PTCA proves

notation induction for ∆b
0 formulas, because each ∆b

0 formula is provably

equivalent in PTCA to a quantifier-free formula (cf. [8, 9, 3]).

A well-studied expansion of PTCA is the theory PTCA+ (cf. [9]) which extends

PTCA by the schema of notation induction for Σb
1 formulas of Lp. It is well-

known that PTCA+ is a conservative extension of PTCA for ∀∃Σb
1 statements

and, hence, its provably total functions are the polytime functions. Moreover,

in PTCA+ one can dispense with the functions symbols for polytime functions

as these can be Σb
1 defined using Σb

1 induction in the restricted language L

(cf. [9]).

We will also be interested in the extension of PTCA+ where notation in-

duction is permitted for all bounded or Σb
∞ formulas of Lp. This system is

denoted by Σb
∞-NIA in [10]. The Σb

∞ definable functions of this theory are

exactly the functions in the Meyer Stockmeyer polynomial time hierarchy.

We will use the name PHCA (polynomial hierarchy computable arithmetic)

instead of Σb
∞-NIA in this paper.

Later we will also be interested in suitable extensions of PTCA and PHCA

by reflection principles. Thereby, PTCA] is PTCA strengthened by sharp Σ

reflection, and PHCA\ is PHCA plus bounded collection. Sharp Σ reflection

states that

(Σ-sRef) (∀x v∗ b)∃yA(x, y)→ ∃z(∀x v∗ b)(∃y v∗ z)A(x, y),

for each ∆b
0 formula A(u, v) of Lp, and bounded collection claims for each Σb

∞

formula A(u, v) of Lp

(Σ-bColl) (∀x ≤ b)∃yA(x, y)→ ∃z(∀x ≤ b)(∃y ≤ z)A(x, y).

The following lemma will be crucial in the upper bound computations of

A(PTCA) and A(PHCA).

Lemma 1 PTCA] proves the same ∀∃∆b
0 sentences as PTCA, and PHCA\

proves the same ∀∃Σb
∞ sentences as PHCA.

Proof This is a consequence of a stronger result by Cantini [3], cf. also

Buss [2] and Ferreira [11]. However, we provide a direct model theoretic
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argument that is similar in spirit to the proof of our main result (cf. Lemma

8). The contraposition of the non-trivial direction of the lemma is shown

by proving that if C := ∀x∃yA(x, y) is a ∀∃∆b
0 [∀∃Σb

∞] sentence of Lp and

¬C is consistent with PTCA [PHCA], then ¬C is also consistent with PTCA]

[PHCA\]. We just consider the case PTCA. The argument for PHCA runs

analogously but is simpler.

Below, (fi : i ∈ N) is an enumeration of the unary polytime function symbols

of Lp. Further, if f(w1, . . . , wn) is an n-ary polytime function on words,

then g(w) := Σ~yv∗wf(~y) denotes a fixed polytime function with the property

that (∀~v v∗ w)(f(~v) v∗ g(w)). It is a routine matter to check that such a

polytime function indeed exists.

Assume that A(u, v) is a ∆b
0 formula of Lp and that W0 = (W0, . . .) |= PTCA

so that W0 |= ∃x∀y¬A(x, y). Hence, W0 |= ∀y¬A(w, y) for some w ∈ W0
2.

We aim for a model W of PTCA] with W |= ∀y¬A(w, y). By compactness,

there is a model W ′ of PTCA that satisfies ∀y¬A(w, y) and contains a word

c so that for each n ∈ N, fW
′

0 (w)∗ · · · ∗fW ′n (w) v c. Then W , W ′ restricted

to the domain W := {v : (∃n ∈ N)(v v∗ c|fW′n (w)}, is the desired model

of PTCA]: By definition, v′ v∗ v and v ∈ W imply v′ ∈ W. If ~v ∈ W,

then there are i and j so that ~v v∗ fW ′0 (w)∗ · · · ∗fW ′i (w) = fW
′

j (w), and

if f is polytime, then Σ~yv∗fW′j (w)f
W ′(~y) = fW

′
n (w) for some n. Therefore,

fW
′
(~v) v∗ fW ′n (w) v∗ c|fW′0 (w)∗···∗fW′n (w). Hence, W is closed under polytime

functions. It remains to check that W satisfies (Σ-sRef). So suppose that

W |= (∀x v∗ b)∃yB(x, y) for some ∆b
0 formula B(u, v) of Lp. Let

∅ 6= X := {z v c :W ′ |= (∀x v∗ b)(∃y v∗ z)B(x, y)}

⊇ {v v c : v /∈ W} =: Y .

Since z0 := minv(X ) exists by ∆b
0 induction and z0 ∈ Y is impossible as Y

has no v-minimal element, z0 ∈ W, and W |= (∀x v∗ b)(∃y v∗ z0)B(x, y).

This concludes our proof. 2

2sans-serif letters denote elements of the domain of the model of discourse: for instance,

W0 |= A(w) is short for W[u=w] |= A(u).
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3 Two admissible closures

In the following we define two natural admissible closures A(PTCA) and

A(PHCA) of PTCA and PHCA, respectively. Later we will show that these

closures do not raise the proof-theoretic strength of PTCA and PHCA.

A(PTCA) and A(PHCA) are formulated in the extension L∗ = Lp(∈,W, S) of

Lp by the membership relation symbol ∈ and the unary relation symbols W

and S for the class of binary words and sets, respectively.

The terms (r, s, t, . . .) of L∗ are the terms of Lp. The formulas (A,B,C, . . .)

of L∗ as well as the ∆0 formulas of L∗ are defined as usual; i.e., an L∗ formula

is ∆0 if it is built from positive or negative literals by means of conjunction,

disjunction and the bounded quantifiers (∀x ∈ s) as well as (∃x ∈ s). The

notation ~s is shorthand for a finite string s1, . . . , sn whose length will be

specified by the context. Equality between objects is not represented by a

primitive symbol but defined by

(s =W,S t) :=

 (W(s) ∧ W(t) ∧ (s = t) ∨

(S(s) ∧ S(t) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s))

By slight abuse of notation, we will often write s = t instead of s =W,S t

when working in the language L∗. Moreover, we use the following shorthand

notation

s = {x : A(x)} := (∀x ∈ s)A(x) ∧ ∀x(A(x)→ x ∈ s)

For an Lp formula A we write AW for its relativization to the class W.

In the sequel we write t[~s/~u] and A[~s/~u] for the substitution of the terms ~s

for the variables ~u in t and A, respectively. If the variables ~u are clear from

the context, we sometimes write t(~s) and A(~s) instead of t[~s/~u] and A[~s/~u].

As usual, we let FV(t) and FV(A) stand for the set of free variables of t and

A, respectively.

Let us now first introduce the admissible closure A(PTCA). Its logical axioms

comprise the usual axioms of classical first order logic with equality. The

non-logical axioms of A(PTCA) can be divided into the following groups.

8



I. Ontological axioms, part A. We have for all function symbols h and relation

symbols R of the language Lp:

W(a) ↔ ¬S(a), W(~b) → W(h(~b)), R(~b) → W(~b), a ∈ b → S(b).

II. Ontological axioms, part B. Here we include the crucial axiom (W.0) which

claims that the collection of all subwords of a binary word forms a set:

(W.0) W(a) → ∃x(S(x) ∧ x = {y : W(y) ∧ y v∗ a}).

III. Axioms about W. We have for all axioms A(~u) of PTCA except induction,

with just the displayed variables free:

(W axioms) W(~a) → AW(~a).

IV. Kripke-Platek axioms. We have for all ∆0 formulas A(u) and B(u, v) of

the language L∗:

(Pair) ∃x(a ∈ x ∧ b ∈ x),

(Union) ∃x(∀y ∈ a)(∀z ∈ y)(z ∈ x),

(∆0-Sep) ∃x(S(x) ∧ x = {y ∈ a : A(y)}),

(∆0-Coll) (∀x ∈ a)∃yB(x, y) → ∃z(∀x ∈ a)(∃y ∈ z)B(x, y).

V. Foundation. Here we include the usual regularity axiom:

(Fund) S(a) ∧ a 6= ∅ → (∃x ∈ a)(∀y ∈ x)(y /∈ a).

VI. ∆0 induction on W. We have ∆0 notation induction on the class of binary

words W, i.e. for each ∆0 formula A(u) of L∗:

(∆0-IW) A(ε) ∧ (∀x ∈ W)[A(x) → A(x0) ∧ A(x1)] → (∀x ∈ W)A(x).

This concludes our description of A(PTCA). Whereas the crucial set existence

axiom with respect to the class W in A(PTCA) claims the existence of the

set of all subwords of a given word a, in the stronger closure A(PHCA) it is

claimed that for each word a we have the set of all words b whose length is

less than or equal to the length of a. More precisely, A(PHCA) is obtained

from A(PTCA) by replacing (W.0) by the stronger axiom (W.1):
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(W.1) W(a) → ∃x(S(x) ∧ x = {y : W(y) ∧ y ≤ a}).

Observe that A(PHCA) proves the weaker axiom (W.0). We further let

A(PTCA]) be defined as A(PTCA), but with PTCA replaced by PTCA] in

the definition of the axioms in group III. A(PHCA\) is defined accordingly.

Clearly, PTCA is contained in A(PTCA), since notation induction on W for

quantifier-free formulas of Lp follows from (∆0-IW). In order to see that

the stronger system PHCA is contained in the stronger admissible closure

A(PHCA) we need a little bit of elaboration.

Recall from Section 2 that by PHCA we denote the system PTCA with in-

duction extended to all Σb
∞ formulas, i.e., formulas all of whose quantifiers

are bounded with respect to the relation ≤. In order to verify induction for

all bounded formulas, let us recall that in the language of PTCA, each term

t of Lp with FV(t) = {~u} can be majorized by a term t′ of L, i.e.

PTCA ` ∀~x(t(~x) ≤ t′(~x)).

Moreover, terms of L are provably ≤ monotone in PTCA. These two facts

imply that terms of Lp are provably majorized by a ≤ monotone term of L.

The above observations readily entail that for each Σb
∞ formula A with

FV(A) = {~u}, there are terms t1, ..., tn with FV(ti) ⊆ {~u} and a quantifier-

free formula B with FV(B) ⊆ {~u, v1, ..., vn} so that (provably in PTCA) A is

equivalent to

(Q1y1 ≤ t1)(Q2y2 ≤ t2) . . . (Qnyn ≤ tn)B(~u, y1, y2, . . . , yn)

where Qi ∈ {∃,∀}. Hence, we can define A by a ∆0 formula in L∗ by using

(W.1) in order to define the sets

ai := {z ∈ W : z ≤ ti} (1 ≤ i ≤ n)

and then consider the ∆0 formula

(Q1y1 ∈ a1)(Q2y2 ∈ a2) . . . (Qnyn ∈ an)B(~u, y1, y2, . . . , yn).

Given these preparatory steps, induction for Σb
∞ formulas in PHCA follows

from (∆0-IW) in A(PHCA). To summarize, we can state the following embed-

ding results:
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Lemma 2 For each Lp formula A(~u) with just the displayed variables free

we have:

1. PTCA ` A(~u) =⇒ A(PTCA) ` ~u ∈ W→ AW(~u).

2. PHCA ` A(~u) =⇒ A(PHCA) ` ~u ∈ W→ AW(~u).

4 Embedding A(PTCA) into PTCA]

The idea is to embed A(PTCA) into PTCA] by representing sets as binary

words. This is possible because the initial sets {w : w v∗ a} of A(PTCA)

have only about |a|2 many elements and can be represented by a single word.

First, we introduce a couple of polytime functions and relations: To code

finite sequences of words, we let ε∗ := ε and (wi)∗ := w∗1i for i ∈ {0, 1},
and then 〈w0, . . . , wn〉seq := 00w∗000w∗100 · · · 00w∗n. The predicate seq(u) dis-

tinguishes words coding sequences, lh is a function so that lh(〈w0, . . . , wn〉seq)
returns a string of n zeros and π a function so that for each word b with

length i, π(〈w0, . . . , wn〉seq, b) = wi. Further, we agree that word(w) iff

w ∈ 10W, i.e. if w is of the form 10w′. The unary relation set(w) dis-

tinguishes words which code sets: 11 ∈ set is a code of the empty set, and if

w0 <lex . . . <lex wn
3 are elements of set∪word, then w = 〈w0, . . . , wn〉seq ∈ set

codes the set containing the sets or words coded by w0, . . . , wn. Finally,

obj(w) := word(w) ∨ set(w), el(a, b) iff set(b) and obj(a) and π(b, i) = a for

some i < lh(b), con(〈w0, . . . , wn〉seq) := w0w1 · · ·wn, and tail is such that for

all words w, tail(10w) := w. Note that el(a, b) implies a v∗ con(b).

Next, we assign to each term t of L∗ a term t◦ of Lp, and to each formula A of

L∗ a formula A◦ of Lp. For variables, u◦i := ui, c
◦ := 10c if c is a word constant

(there are no set constants!) and (f(t1 . . . , tn))◦ := 10f(tail(t◦1), . . . , tail(t
◦
n)).

If R is a relation symbol of Lp, then (R(~t))◦ := R(tail(~t◦)). W(t) translates to

word(t◦), S(t) to set(t◦) and s ∈ t to el(s◦, t◦). This translations canonically

extends to all formulas of L∗, applying (QxA(x))◦ := (Qx ∈ obj)A◦(x) for

unbounded quantifiers.

3Here <lex denotes the ordering according to which words are ordered by their length

and words of the same length are ordered lexicographically.
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Lemma 3 For each L∗ formula A(~u) with just the displayed variables free,

A(PTCA) ` A(~u) =⇒ PTCA] ` obj(~u)→ A◦(~u).

Proof It is easily checked that if A is a formula of Lp with FV(A) = {~u},
then, provably in PTCA], ∀~x(W(~x)→ AW)◦ is equivalent to ∀~xA. Extension-

ality follows by our coding of sets, i.e. PTCA proves

set(a) ∧ set(b) ∧ ∀x[el(x, a)↔ el(x, b)]→ a = b.

There are codes for sets of the form {w : w v∗ b}, and 11 is the unique

code of ∅. If a, b code objects and a <lex b, then el(x, 〈a, b〉seq) implies that

x = a ∨ x = b. If a = 〈b0 . . . bn〉seq codes a set x, then a code of
⋃
x is

computed from a in polynomial time: Just arrange the words c = π(bi, j)

(0 ≤ j < lh(bi)) occurring in those bi’s that code sequences in a <lex-ascending

sequence and remove doublets.

Since el(a, b) entails a v∗ con(b), the translation of a ∆0 formula A of L∗ is

equivalent to a ∆b
0 formula of Lp. This readily implies ∆0 separation. And if

A(u) is ∆0, then the translation of (∀x ∈ a)∃yA(x, y) is equivalent to

(∀x v∗ con(a))∃y[el(x, a)→ obj(y) ∧ A◦(x, y)].

Using sharp Σ reflection one obtains a code b ∈ set so that

(∀x v∗ con(a))(∃y v∗ b)[el(x, a)→ el(y, b) ∧ A◦(x, y)],

which validates the translation of ∃b(∀x ∈ a)(∃y ∈ b)A(x, y). 2

Lemma 1, Lemma 2, and Lemma 3 now yield the following theorem.

Theorem 4 PTCA and A(PTCA) prove the same ∀∃∆b
0 sentences.

5 Conservativity of A(PHCA) over PHCA\

Our strategy is to establish that PHCA\ and A(PHCA\) prove the same Lp

formulas by showing that any model W0 = (W0,vW0 , . . .) of PHCA\ can be

transformed into a model (W ,A) of A(PHCA\) that still satisfies the same
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Lp sentences. The predicate W(u) of L∗ is interpreted as the universe of W ,

and S(u) as u ∈ A, a suitable collection of sets with urelements from W. The

∈ relation is the restriction of the standard ∈ relation to W ∪ A × A. By

Lemma 1, PHCA and A(PHCA) prove the same ∀∃Σb
∞ sentences.

Our model construction depends on a coding of sets in the cumulative hi-

erarchy above the domain W of some model W of PHCA\ as subsets of W.

We define 〈u, v〉 := 00u00v∗ and let pair denote the polytime relation that

contains w := 〈u, v〉 iff u = 11 ∨ u ∈ 10W ∨ u ∈ pair. Note that w ∈ pairW

starts with an even number of zeros. By Rep we denote the subsets X of W

that are used to represent sets in the cumulative hierarchy above W.

X ∈ RepW :⇔ (∀x ∈ X )(x = 11 ∨ x ∈ 10W ∨ x ∈ pairW).

Henceforth we mostly drop the superscript W , but bear in mind that our

definitions are relative to some modelW of PHCA\. By the definition of pair,

X ∈ Rep implies that (X )w := {v : 〈v,w〉 ∈ X} ∈ Rep.

We say that w is a bound for the width of X , or synonymously, that the width

of X is bounded by w, if (∀x ∈ X )(x ≤ w). Accordingly, w is a bound for the

depth of X , if (∀x ∈ X )(00× w0 6v x). If <lex-least such bounds exist, they

are referred to as the width and the depth of X , respectively. Subsequently,

we abbreviate (∀x ∈ X )(x ≤ w) by wth(X ) ≤ w, and (∀x ∈ X )(00×w0 6v x)

by dth(X ) ≤ w. Note however, that in general X does not have a depth

or a width. Further, dth(X ,Y) ≤ w states that the depths of X and Y are

bounded by w, and wth(X ) ≤ W expresses that the width of X is bounded

by some w ∈ W. Moreover, X ∈ Rep�w iff X ∈ Rep and dth(X ) ≤ w, and

X ∈ Rep�W 4 iff X ∈ Rep and dth(X ) ≤ W, and X ∈ Rep∗ iff X ∈ Rep�W
and wth(X ) ≤ W. For X ∈ Rep�W, we can define the extension of the set

coded by X ,

ext(X ) := {w ∈ W : 10w ∈ X} ∪ {∅ : 11 ∈ X} ∪

{ext((X )w) : w ∈ W, (X )w 6= ∅}.

Further, X 'W Y iff X ,Y ∈ Rep�W ∧ ext(X ) = ext(Y).

4W = {0, 1}∗ denotes the set of finite binary words.
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Example 5 Subsets of 10W ∪ {11} have depth ε and code subsets of W ∪
{∅}. Further, if x ∈ 10W ∪ {11}, then w := 〈〈〈x, a〉, b〉, c〉 ∈ pair. This

word begins with 00′00′00′10v . . . or 00′00′00′11 . . . and ends with . . . 00c∗.

If w ∈ X ∈ Rep�W, then ext((X )c,b,a) ∈ ext((X )c,b) ∈ ext((X )c) ∈ ext(X ),

and ∅ ∈ ext((X )c,b,a) or v ∈ ext((X )c,b,a), depending on whether x = 11 or

x = 10v.

The main step in the construction of a model of A(PHCA) is to build a

suitable model (W ,S) of the arithmetical closure S(PHCA\) of PHCA\ from

a model W0 of PHCA\ that preserves the validity of Lp sentences. (W ,S)

will be such that for A := {ext(X ) : X ∈ S ∩ Rep∗}, (W ,A) is a model

of A(PHCA). The theory S(PHCA\) is formulated in the language L2p that

extends Lp by set terms S, T, . . . and the elementhood relation u ∈ S. Each

set variable U, V, . . . and ∅ are set terms, and with S, also (S)t and Ss,t are

set terms. (S)s,t is short for ((S)s)t. There will be axioms for set terms

stating that the set constant ∅ has no elements, s ∈ (S)t iff 〈s, t〉 ∈ S, and

that r ∈ Ss,t iff r ∈ S ∧ 00× s0 6v r∧ r ≤ t. Note that for v ∈ W and w ∈W,

dth(X w,v) ≤ w and wth(X w,v) ≤ v. Also note that wth((S)t) ≤ wth(S) and

wth(Ss,t) ≤ wth(S). The same holds true for the depth.

Subsequently, we often work with the language L2p(∼,W) whose additional

atoms are S ∼ T and W(s) (also written as s ∈W). The intended interpreta-

tion of ∼ is that S and T code sets with the same extension, and the relation

symbol W is interpreted by the standard words W. The Σb
∞ formulas of Lp

are lifted canonically to the Σ0,b
∞ formulas of L2p and L2p(∼,W): They are gen-

erated from the literals of L2p and L2p(∼,W), respectively, as before. Finally,

elementary formulas do not contain bound set variables, and Σ formulas do

not contain universally bound set variables.

To avoid confusion, we stress that the theory S(PHCA\) is formulated in the

language L2p. Yet, we often argue in structures (W ′,S ′,'′,W) for a language

L2p(∼,W). Thereby, W ′ = (W′, . . .) is a model of PHCA, and the relation

symbol W is always interpreted by the standard words, and thus henceforth

omitted. The second order variables range over S ′, a collection of subsets of

W′, and '′⊆ S ′×S ′ interprets ∼. Further, if an L2p(∼) structure is introduced

14



as (W0,S0,'), then we mean that ∼ is interpreted by the restriction of 'W0

to S0.

To study some general properties of our coding of sets and to prepare for the

subsequent model transformation, we introduce some notations.

(i) u ∈0 U := 10u ∈ U ,

(ii) V ∈1 U := (V = ∅ ∧ 11 ∈ U) ∨ ∃x((U)x 6= ∅ ∧ V ∼ (U)x),

(iii) U =0 V := ∀x[x ∈0 U ↔ x ∈0 V ],

(iv) (∀X ∈1 U)A(X) := (11 ∈ U → A(∅)) ∧ ∀x[(U)x 6= ∅ → A((U)x)],

(v) (∃X ∈1 U)A(X) := (11 ∈ U ∧ A(∅)) ∨ ∃x[(U)x 6= ∅ ∧ A((U)x)],

(vi) U =1 V := (∀X ∈1 U)(X ∈1 V ) ∧ (∀X ∈1 V )(X ∈1 U).

With the aim to turn elementary L2p(∼,W) formulas into Σ0,b
∞ formulas of

L2p(∼,W), we denote by Av the formula obtained from A by replacing each

unbounded word quantifier QxB by (Qx ≤ v)B. And to get rid of the rela-

tion symbol ∼, we say that for w ∈ W, Aw is obtained from A by replacing

each expression S ∼ T in A by Ew(S, T ), where Eε(U, V ) := U =0 V and

Ewi(U, V ) := (U =0 V ) ∧ (U =1 V )w (i ∈ {0, 1}). Moreover, Aw,v is ob-

tained from A by replacing S ∼ T by Ev
w(S, T )) (i.e. (Ew(S, T ))v). Also the

following abbreviations prove convenient:

(∀x ∈0 U)vA(x) := (∀x ≤ v)[10x ∈ U → A(x)]

(∀X ∈1 U)vA(X) := (11 ∈ U → A(∅)) ∧ (∀x ≤ v)[((U)x 6= ∅)v → A((U)x)];

(∃x ∈0 U)vA(x) and (∃X ∈1 U)vA(X) are defined analogously. The following

is now readily checked by induction on w ∈W:

Lemma 6 Let w ∈ W. For all X ,Y ∈ Rep�w, X ' Y iff Ew(X ,Y). If

in addition wth(X ,Y) ≤ v, then X ' Y iff Ev
w(X ,Y). Further, for each

elementary L2p(∼) formula A(~U), and all ~X ∈ Rep�w with wth( ~X ) ≤ v, we

have A( ~X )⇔ Aw,v( ~X ).

With regard to the definition of S(PHCA\) we state the following observation:

15



Lemma 7 If (W ,Rep�W,'′) |= ∀X, Y (X ∼ Y ↔ X =0 Y ∧X =1 Y ), then

'′ and ' coincide on Rep�W.

As a next step, we consider the L2p theory S(PHCA\) that comprises the

aforementioned axioms for set terms. Further, S(PHCA\) inherits all axioms

of PHCA\ with the exception of induction, features Σ0,b
∞ -comprehension, set

induction and bounded collection lifted to Σ0,b
∞ formulas, and comprises the

schema of finite Σ0,b
∞ choice, in symbols (Σ0,b

∞ -ACb): For each Σ0,b
∞ formula

A(U, u, v) of L2p,

(∀x ≤ t)∃X∃yA(X, x, y)→ ∃X∃y(∀x ≤ t)(∃z ≤ y)A((X)x, x, z).

That PHCA\ and S(PHCA\) prove the same Lp sentences follows by the next

lemma.

Lemma 8 Let W0 be a model of PHCA\. Then there is a model (W ,S) of

S(PHCA\) so that W � W0 is an elementary extension of W0 and further,

if B is a Σ formula of L2p(∼,W) that contains W only positively and has

the property that for each Z ⊆ W, (W ,S,') |= B[Z/W] iff (W ,S,'′) |=
B[Z/W] whenever '′ and ' agree on S ∩ RepW�W, then

(∗) (W ,S,') |= B → (∃b ∈W)B[{w : w ≤ b}/W].

Proof Assume thatW0 is a model of PHCA\. To obtain a suitable expansion

(W ,S ′,'′) of W0 that meets (∗), we let T be the union of the six sets

of formulas listed below. T is finitely realizable, i.e. for each finite subset

G ⊆ T , there is a structure (W ′,S ′,'′) and c ∈ W′, F ∈ S ′, so that for

each formula C(P, p) ∈ G, (W ′,S ′,'′) |= C(F , c). Below, (Ai(u, v) : i ∈ N)

is an enumeration of the formulas of Lp(∼,P, p) with free variables u, v, and

for each j ∈ N, (Bi,j(U, u1, . . . , uj, v) : i ∈ N) is an enumeration of the Σ0,b
∞

formulas of L2p with free variables U, u1, . . . , uj, v. Further, we let s ∈ (P)<t

be a shorthand for the formula (∃x, y ≤ s)(s = 〈x, y〉 ∧ y < t ∧ x ∈ (P)y).

(i) {w ≤ p : w ∈W}5 and {A :W0 |= A, A an Lp(cw : w ∈ W0) sentence},

(ii) {∀x[(∃z ≤ p)Ai(x, z)→ ∃z(Ai(x, z) ∧ (∀y < z)¬Ai(x, y))] : i ∈ N},
5For each w ∈W, we have that w is the canonical closed L term designating w.
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(iii) {(∀z ≤ p)∀x∃y[{w : Bi,2((P)<0×z, x, w)} = (P)0×z,y] : i ∈ N},

(iv) {(∀z ≤ p)∀b, c[(∀x ≤ b)∃yBi,3((P)<0×z, x, y, c)→

∃a(∀x ≤ b)(∃y ≤ a)Bi,3((P)<0×z, x, y, c)] : i ∈ N},

(v) ∀X, Y (dth(X, Y ) ≤ p→ (X ∼ Y ↔ X =0 Y ∧X =1 Y )),

(vi) ∀X[ε ∈ X ∧ ∀x(x ∈ X → x0 ∈ X ∧ x1 ∈ X)→ ∀x(x ∈ X)].

Since the theory T is finitely realizable, compactness provides a structure

(W ,S ′,'′) and c ∈ W, F ∈ S ′ so that (W ,S ′,'′) |= C(F , c) for each

C(P, p) ∈ T . By (i) we have that w is non-standard and that W0 ≺ W , (ii)

tells us that each non-empty subclass of {w : w ≤ c} which is Lp-definable

with parameters from W ∪ {F} has a <-minimal element, (iii) states that

(F)0×z contains in particular all the sets that are definable by a Σ0,b
∞ formula

of L2p with word parameters and set parameters from (F)<0×z, (iv) guarantees

bounded collection, (v) inductively defines the relation∼ for sets whose depth

is bounded by c and (vi) asserts set induction. We claim that for

S := {Z : Z = (F)0×b,e, b ∈W, e ∈ W},

(W ,S) is a model of S(PHCA\). Due to the definition of S, (W ,S) satisfies

Σ0,b
∞ -comprehension. It remains to show that (Σ0,b

∞ -ACb) is satisfied. Let

B(U, u, v) be Σ0,b
∞ , t ∈ W and assume that for each word w ≤ t, there are

Y ∈ S, y ∈ W so that (W ,S) |= B(Y ,w, y). Thus,

(W ,S ′) |= (∀w ≤ t)(∃b ∈W)∃e, yB((F)0×b,e, w, y).

By choice of F and c,

∅ 6= X := {b ≤W c : (W ,S ′) |= (∀w ≤ t)∃e, yB((F)0×b,e, w, y)}

has a ≤-minimal element of the form 0×b0. Because {w ≤W c : w /∈W} ⊆ X
has no ≤-minimal element, b0 ∈W. Bounded collection provides a word s so

that (∀w ≤ t)(∃e, y ≤ s)B((F)0×b0,e, w, y). Then,

Z := {〈z, w〉 : (∃e ≤ s)[(∃y ≤ s)B((F)0×b0,e, w, y)∧

(∀e′ ≤ s)(e′ <lex e→ (∀y ≤ s)¬B((F)0×b0,e′ , w, y)) ∧ z ∈ (F)0×b0,e]}
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is in S and (W ,S) |= (∀w ≤ t)(∃y ≤ s)B((Z)w, w, y).

To show (∗), assume that (W ,S,') |= B and that for each Z ⊆ W, the

truth of B[Z/W] only depends on the interpretation of ∼ on S ∩ RepW�W.

By (v) and Lemma 7 it follows that '′ and 'W agree on S ′ ∩ RepW�W.

Hence, (W ,S,'′) |= B. Let B′ be the formula obtained form B by replacing

each expression ∃Y A(Y ) by (∃b ∈ W)∃eA((F)0×b,e)). Then we have that

(W ,S ′,'′) |= B′. With B, also B′ contains W only positively, since B is Σ.

Arguing as before in (W ,S ′,'′) yields that

b0 := minv{0× b : b ≤W c ∧B′[{w : w ≤ b}/W]}

exists and is in W. By persistence, also (W ,S,'′) |= B[{w : w ≤ b0}/W].

By assumption, (W ,S,') |= B[{w : w ≤ b0}/W]. 2

The structure (W ,S) constructed in the previous proof gives rise to an L∗

structureM = (W ,A). We set A := {ext(X ) : X ∈ S∩Rep∗} and extend the

interpretation of the function and relation symbols of Lp to the new domain

W ∪ A as follows: If ~y ∈ W ∪ A is not a sequence of words, then fM(~y) := ε

and RM(~y) := ⊥.

Theorem 9 M := (W ,A) is a model of A(PHCA\). Further, PHCA\ and

A(PHCA\) prove the same Lp formulas.

The second claim is immediate from the fact that W |= PHCA\. To verify

thatM satisfies all axioms of A(PHCA\) we have to resort to the underlying

structure S := (W ,S,') constructed in the previous proof. Depending on

a function σ that maps a variable ui of L∗ either to the word variable ui

or the set variable Ui of L2p, we assign to each formula A of L∗ a formula

Aσ of the language L2p(∼,W). If FV(A) = {u1, . . . , un}, then FV(Aσ) ⊆
{σ(u1), . . . , σ(un), v1, . . . , vn}. The idea is that vi is a bound for the width of

σ(ui) = Ui. If ξ ∈ {u, U}, then σ[ξ](u) := ξ and σ[ξ](v) := σ(v).

(i) uσ := σ(u), and if t is an L∗ term other than a variable, then tσ := ε if

σ(u) = U for some u ∈ FV(t), and tσ := t otherwise.

(ii) If R is a relation symbol of Lp, then (R(t1, . . . , tm))σ := ⊥ if tσ1 , . . . , t
σ
m

contains a set variable, and R(tσ1 , . . . , t
σ
m) otherwise. (W(t))σ := > if tσ

is not a set variable, and ⊥ otherwise. (S(t))σ := ¬(W(t))σ.
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(iii) If tσ is not a set variable, then (s ∈ t)σ := ⊥. Otherwise, assume

tσ = Ui. If sσ is not a set variable, then (s ∈ Ui)σ := sσ ∈0 Ui, and if

sσ = Uj, then (s ∈ t)σ := (Uj ∈1 Ui)vi .

(iv) (¬A)σ := ¬Aσ and (A&B)σ := Aσ&Bσ, where & ∈ {∧,∨}.

(v) If tσ is not a set variable, then ((∃x ∈ t)A[x/u])σ := ⊥. And if tσ = Ui,

then

((∃x ∈ t)A[x/u])σ := (∃x ∈0 Ui)viAσ[u][x/u] ∨ (∃X ∈1 Ui)viAσ[U ][X/U ].

(vi) If tσ is not a set variable, then ((∀x ∈ t)A[x/u])σ := >. And if tσ = Ui,

then

((∀x ∈ t)A[x/u])σ := (∀x ∈0 Ui)viAσ[u][x/u] ∧ (∀X ∈1 Ui)viAσ[U ][X/U ].

(vii) Finally, (∃xA[x/u])σ and (∀xA[x/u])σ are defined as follows:

∃xAσ[u][x/u] ∨ ∃X∃y(∃b ∈W)Aσ[U ][Xb,y/U, y/v]),

∀xAσ[u][x/u] ∧ ∀X∀y(∀b ∈W)Aσ[U ][Xb,y/U, y/v]).

It is readily observed that this translation has the following properties.

Lemma 10 Suppose that σ(~u) = ~U , σ(~w) = ~w and that A(~u, ~w) is an L∗

formula with the displayed variables free. Then we have for all ~X ∈ Rep∗∩S,

~a := ext( ~X ), ~v, ~w ∈ W with wth( ~X ) ≤ ~v,

M |= A(~a, ~w) ⇐⇒ (W ,S,') |= Aσ( ~X , ~w,~v).

If A is ∆0, then Aσ is Σ0,b
∞ and W-free, and if A is Σ, then Aσ contains W

only positively.

Proof[Theorem] For notational convenience, it is henceforth assumed that

the displayed formulas do not contain additional set and number parameters.

The handling of parameters does not cause any additional problems. Only

when turning elementary formula A of L2p(∼) into Σ0,b
∞ formulas Ab,v of L2p,

we have to take care that b and v are also bounds for the depths and widths

of the set parameters. Below, we reason in the structure (W ,S,').
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That M |= ~x ∈ W → AW(~x) for each axiom A(~u) of PHCA\ is immediate

by the construction of M. The same holds for the regularity axiom. If w

is a word, then {10v : v ≤ w} represents the set claimed by (W.1). And

if A(u,w) is a ∆0 formula of L∗ (here and only once we exemplarily deal

with a set parameter u), a = ext(X ), dth(X ) ≤ b and wth(X ) ≤ v, then, for

B(U,w, v) := Aσ[U,w], Lemma 10 and Lemma 6 yield that

{w ∈ W : A(a,w)} = {w : B(X ,w, v)} = {w : Bb,v(X ,w, v)}.

As S(PHCA\) is equipped with Σ0,b
∞ -comprehension, ∆0-induction inM holds

since set induction holds in (W ,S).

The Kripke-Platek axioms are easily checked, too: If a = ext(X ) and b =

ext(Y), then ext(Z) = {a, b} for Z := {〈x, 0〉, 〈y, 1〉 : x ∈ X , y ∈ Y} ∪ Z ′,
where Z ′ = {11} if X or Y are empty and ∅ otherwise. And if e.g. w ∈ W

and b := ext(Y) 6= ∅, then ext(Z) = {w, b} for Z := {10w, 〈y, 1〉 : y ∈ Y}.
Further, if a = ext(X ) with wth(X ) ≤ v, then ext(Z) =

⋃
a for Z := {h(z, y) :

y ≤ v ∧ z ∈ (X )y)}, where h(z, y) = z if z /∈ pair, and h(z, y) = 〈z0, z∗100y∗〉
if z = 〈z0, z1〉.6 If A(u) is ∆0, a = ext(X ), dth(X ) ≤ b and wth(X ) ≤ v, then

let B0(u) := Aσ[u] and B1(U, v) := A
σ[U ]
b,v . Then the set {z ∈ a : A(z)} is now

represented by the set Z given as

{w : w ∈0 X ∧B0(w)} ∪ {〈w, x〉 ∈ X : B1((X )x, v)} ∪ {11 : B1(∅, v)}.

Finally, towards the verification of ∆0 collection, suppose that A(u0, u1) is a

∆0 formula of L∗ and that a = ext(X ), dth(X ) ≤ b, and wth(X ) ≤ v. By

Lemma 10, M |= (∀x ∈ a)∃bA(x, b) iff

(∀x ∈0 X )v(∃yAσ[u0,u1][x/u0, y/u1]∨
∃Y ∃z(∃b ∈W)Aσ[u0,U1][x/u0, Y

b,z/U1, z/v1]) and

(∀X ∈1 X )v(∃yAσ[U0,u1][X/U0, y/u1, v/v0]∨
∃Y ∃z(∃b ∈W)Aσ[U0,U1][X/U0, Y

b,z/U1, v/v0, z/v1]),

which is easily seen to be logically equivalent to

(∗) (∀x ≤ v)∃Y ∃z(∃b ∈W)∃yC(X , x, Y b,z, y),

6Concerning the role of the function h, observe that ext({〈〈100, 0〉, 0〉, 〈〈101, 0〉, 1〉}) =

{{{0}}, {{1}}}, but ext({〈100, 0〉, 〈101, 0〉}) = {{0, 1}}.
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for some Σ0,b
∞ formula C(U, u, V, v) of L2p(∼). Since (∗) is Σ, contains W only

positively and depends only on the interpretation of ∼ on S ∩ Rep∗, Lemma

8 provides a b0 ∈W with dth(X ) ≤ b0 so that, using Lemma 6,

(∀x ≤ v)∃Y (∃z ≥ v)∃yCb0,z(X , x, Y b0,z, y).

As Cb0,z is a Σ0,b
∞ formula of L2p, the finite choice axiom (Σ0,b

∞ -ACb) provides

Z ∈ S and z ∈ W so that

(∀x ≤ v)(∃y ≤ z)[wth((Z)x) ≤ z ∧ dth((Z)x) ≤ b0 ∧ Cb0,z(X , x, (Z)x, y)].

For each x ≤ v, the width and depth of (Z)x are bounded by z and b0,

respectively. Let z′ := 〈z, v〉 and Z ′ := Zb00,z′ . Then (∀x ≤ v)[(Z)x = (Z ′)x]
and Z ′ ∈ S ∩ Rep∗. Hence

(∀x ≤ v)(∃Y ∈1 Z ′ ∪ {11})(∃y ≤ z)Cb0,z(X , x, Y, y).

Using Lemma 10, it follows that for the set c := ext(Z ′∪{11}∪{10x : x ≤ z}),
M |= (∀x ∈ a)(∃b ∈ c)A(x, b). This concludes our proof. 2

The previous theorem together with Lemma 1 readily entails the main the-

orem of this section.

Theorem 11 PHCA and A(PHCA) prove the same ∀∃Σb
∞ sentences.

6 Concluding remarks

We have studied two natural weak admissible set theories over the two base

theories PTCA and PHCA, featuring that the collection of all subwords of a

given word forms a set, (W.0), and the collection of all words whose length

is less than or equal to the length of a given word forms a set, (W.1), respec-

tively. We have proved that the admissible closures A(PTCA) and A(PHCA)

are conservative over PTCA and PHCA for ∀∃Σb
1 and ∀∃Σb

∞ formulas, re-

spectively. Thus, the Σb
1 definable functions of A(PTCA) are the polytime

functions and the Σb
∞ definable functions of A(PHCA) are the functions in

the polynomial time hierarchy.
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A set existence axiom similar in spirit to the axiom (W.1) has recently been

proposed and studied in the context of Feferman’s explicit mathematics [6,

7], see Spescha [18], Spescha and Strahm [19, 20], and Probst [15]. The

systems of explicit mathematics based on (W.1) are based on purely positive

comprehension principles. This is in contrast to the set-theoretic framework

considered in this article, where our theories feature full ∆0 separation and

∆0 collection.

Let us conclude this article by mentioning two quite different approaches to

weak set theories due to Sazonov [17] and Sato [16].

In his program of Bounded Set Theory (BST), Sazonov [17] considers set

theories formulated on the basis of a so-called ∆ language, which extends

the pure language of set theory by further constructs such as, for example,

least fixed points and collapsing. Inspired by results from finite model theory,

specific ∆ languages correspond to various complexity classes defined over

the hereditarily finite sets.

In his very recent and extensive work on the role of extensionality in various

set theories, Sato [16] studies a rich family of finite set theories and their

relationship to classes of computational complexity. The characterization of

the latter is inspired by the Cook and Nguyen approach via a two-sorted

version of bounded arithmetic [5]. Sato’s set theories are urelement-free and

based on a core system including, for example, fibers, collapsing and a form

of ∆1 separation.

In contrast to these two settings, our approach starts off from well-known

systems of first-order bounded arithmetic considered as axioms about urele-

ments, and extends them by admissible closures in the usual language of set

theory with urelements, where various set forming principles for collections

of urelements are taken into account. Thus, our set up is more similar to the

one considered in Jäger [13].
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