
Realisability in weak systems

of explicit mathematics

Daria Spescha∗ Thomas Strahm∗∗

August 27, 2010

Abstract

This paper is a direct successor to Spescha and Strahm [12]. Its aim

is to introduce a new realisability interpretation for weak systems of

explicit mathematics and use it in order to analyze extensions of the

theory PET in [12] by the so-called join axiom of explicit mathematics.

1 Introduction

This paper continues the research on weak systems of explicit mathematics in

the sense of Feferman [6, 7, 8]. We are interested in a proof-theoretic approach

to abstract computations and, in particular, in expressively rich Feferman-

style systems which have a strong relationship to classes of computational

complexity.

∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrück-

strasse 10, CH-3012 Bern, Switzerland. Email: spescha@iam.unibe.ch. Research sup-

ported by the Swiss National Science Foundation.
∗∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrück-

strasse 10, CH-3012 Bern, Switzerland. Email: strahm@iam.unibe.ch. Homepage:

http://www.iam.unibe.ch/~strahm. The second author is grateful to the Department

of Computer Science of the University of Swansea for its hospitality while preparing the

final version of this paper.

1

The operational or applicative core of explicit mathematics includes forms

of combinatory logic and hence comprises a computationally complete func-

tional language with the full defining power of the untyped lambda calculus.

In this sense it is more expressive than standard arithmetical systems. Apart

from operations or rules, the second basic entity in explicit mathematics are

types, which can be thought of as successively generated collections of op-

erations. In addition, and this is essential in the explicit approach, exten-

sional types are represented (or named) by intensional operations, uniformly

in their parameters. This interplay of operations and types on the level of

representations makes explicit mathematics very powerful.

There are numerous previous contributions to weak first-order applicative

theories which are relevant to the full systems of explicit mathematics studied

in this article, cf. Cantini [4, 5, 3], Calamai [2] and Strahm [13, 14]. For a

survey of results, see Strahm [15].

The extension of weak first-order applicative theories to the full language

of explicit mathematics was initiated in Spescha and Strahm [12], where a

natural extension of the first order applicative theory PT (cf. Strahm [13])

was proposed. The corresponding system PET features a weak explicit type

system with restricted elementary comprehension; its provably total func-

tions on binary words are the functions which are computable in polynomial

time, FPtime. The upper bound computations for PET in [12] have been

obtained by a model-theoretic argument.

The present article is a direct successor to Spescha and Strahm [12]. Its aim is

twofold. Firstly, we study a new realisability interpretation for weak systems

of explicit mathematics. The realisability relation used in [13, 5] in the first-

order context is extended to the full language of types and names. Using

this new interpretation, one obtains a purely syntactical proof of the upper

bound for PET. Secondly, we use the interpretation in order to study the

extension of PET by the well-known join or disjoint union type constructor

J of explicit mathematics, resulting in the system PETJ. The main result

is that the provably terminating functions of the system PETJi, i.e. PETJ

with intuitionistic logic, are still the polynomial time computable ones. The

proof uses a combination of partial cut elimination and our new realisability

2

interpretation.

The plan of this paper is as follows. In section 2, we will recapitulate the

theory PT of [13] and the theory PET of [12], together with some of their

extensions. In section 3 we introduce the join axioms, resulting in the theory

PETJ. For later proof-theoretic analysis, we reformulate PETJ in a way which

avoids type variables. Further, we discuss sequent-style reformulations of our

systems and a preparatory partial cut elimination. In section 4, we define

a standard model of PETJ. Section 5 constitutes the core of this article. It

introduces our new realisability interpretation and contains a proof of the

main realisability theorem, revealing that the provably total functions of

PETJi are the ones computable in polynomial time. In section 6 we discuss

the realisability of some extensions of PETJi. Finally, we conclude the paper

by addressing the classical versions of our systems in section 7. In particular,

we mention some very recent work of Probst [10] in this respect.

This paper is based on the second part of Spescha’s PhD thesis [11].

2 Recapitulating the theories PT and PET

In this section we quickly sketch the (general) setting of explicit mathematics

and recapitulate two theories that play a crucial role in this paper. The

theory PT of polynomial time operations is an applicative theory introduced

in Strahm [13] where it is proved that its provably total functions are the

polynomial time computable ones. PT serves as the first order basis for

the second order theory PET introduced in Spescha and Strahm [12]. The

provably total functions of PET are still the polynomial time computable

ones as we proved in [12].

The language LW of PT is a language of partial terms with individual vari-

ables a, b, c, x, y, z, u, v, w, f, g, h, . . . (possibly with subscripts). LW includes

individual constants k, s (combinators), p, p0, p1 (pairing and unpairing), dW

(definition by cases on binary words), ε (empty word), s0, s1 (binary succes-

sors), pW (binary predecessor), c⊆ (initial subword relation), as well as the

two constants ∗ (word concatenation) and × (word multiplication). Finally,

3

LW has a binary function symbol · for (partial) term application, unary re-

lation symbols ↓ (defined) and W (binary words) as well as a binary relation

symbol = (equality).

The terms r, s, t, . . . of LW (possibly with subscripts) are inductively gen-

erated from the variables and constants by means of application ·. In the

following we usually abbreviate ·(s, t) simply as (st), st or sometimes also

s(t); the context will always ensure that no confusion arises. Further, we fol-

low the standard convention of association to the left when omitting brackets

in applicative terms. Finally, we will write s ∗ t and s× t instead of ∗st and

×st, respectively.

The formulas A,B,C, . . . of LW (possibly with subscripts) are built from the

atomic formulas (s = t), s↓ and W(s) by closing under negation, disjunction,

conjunction, implication, as well as existential and universal quantification

for individual variables. We use the following conventions concerning sub-

stitutions: As usual we write t[~s/~x] and A[~s/~x] for the substitution of the

terms ~s for the variables ~x in the term t and the formula A, respectively. In

this context we often write A[~x] instead of A and A[~s] instead of A[~s/~x].

Since our theories are based on the logic of partial terms LPT, term applica-

tion is only partial and t↓ signifies that the term t is defined or has a value.

To improve readability, we use the following abbreviations:

s ' t := (s↓ ∨ t↓)→ (s = t) lWs := 1× s

(s, t) := pst (t)i := pit (i = 0, 1)

0 := s0ε 1 := s1ε

s ⊆ t := c⊆st = 0 s ≤ t := lWs ⊆ lWt

Furthermore, the following shorthand notations are used with respect to the

predicate W where ~s = s1, . . . , sn:

~s ∈ W := W(s1) ∧ · · · ∧W(sn),

Wa(s) := (W(s) ∧ s ≤ a),

(∃x ∈ W)A := (∃x)(x ∈ W ∧ A),

(∀x ∈ W)A := (∀x)(x ∈ W→ A),

4

(∃x ≤ t)A := (∃x ∈ W)(x ≤ t ∧ A),

(∀x ≤ t)A := (∀x ∈ W)(x ≤ t→ A),

(t : W 7→ W) := (∀x ∈ W)(tx ∈ W),

(t : Wm+1 7→ W) := (∀x ∈ W)(tx : Wm 7→ W).

The underlying logic of PT is the classical logic of partial terms due to Beeson

[1]. It is based on common Hilbert calculus with equality, but quantifiers

range over defined objects only:

(Q1) ∀xA[x] ∧ t↓ → A[t]

(Q2) A[t] ∧ t↓ → ∃xA[x]

(D1) r↓ (r variable or individual constant)

(D2) (s· t)↓ → (s↓ ∧ t↓)

(D3) (s = t)→ (s↓ ∧ t↓)

(D4) W(t)→ t↓

(E1) r = r (r variable or constant)

(E2) (s = t) ∧ A[s]→ A[t] (A atomic formula)

We are now ready to recapitulate the basic theory B which is used as the

foundation for PT and PET. It consists of the following axiom groups defining

the behavior of the built-in operators and predicates:

I. Partial Combinatory Algebra and Pairing

(1) kxy = x,

(2) sxy↓ ∧ sxyz ' xz(yz),

(3) p0(x, y) = x ∧ p1(x, y) = y.

II. Definition by Cases on W

(4) a ∈ W ∧ b ∈ W ∧ a = b → dWxyab = x,

(5) a ∈ W ∧ b ∈ W ∧ a 6= b → dWxyab = y.

III. Closure, Binary Successors and Predecessor

(6) ε ∈ W ∧ (∀x ∈ W)(s0x ∈ W ∧ s1x ∈ W),

5

(7) s0x 6= s1y ∧ s0x 6= ε ∧ s1x 6= ε,

(8) pW : W 7→ W ∧ pWε = ε,

(9) x ∈ W → pW(s0x) = x ∧ pW(s1x) = x,

(10) x ∈ W ∧ x 6= ε → s0(pWx) = x ∨ s1(pWx) = x.

IV. Initial Subword Relation

(11) x ∈ W ∧ y ∈ W → c⊆xy = 0 ∨ c⊆xy = 1,

(12) x ∈ W → (x ⊆ ε↔ x = ε),

(13) x ∈ W ∧ y ∈ W ∧ y 6= ε → (x ⊆ y ↔ x ⊆ pWy ∨ x = y).

V. Word Concatenation

(14) ∗ : W2 7→ W,

(15) x ∈ W → x ∗ ε = x,

(16) x ∈ W ∧ y ∈ W → x ∗ (siy) = si(x ∗ y) (i = 0, 1).

VI. Word Multiplication

(17) × : W2 7→ W,

(18) x ∈ W → x× ε = ε,

(19) x ∈ W ∧ y ∈ W → x× (siy) = (x× y) ∗ x (i = 0, 1).

As usual, we can simulate λ abstraction in B as a consequence of the partial

combinatory algebra axioms (1) and (2).

Lemma 1 (λ Abstraction) For each term t and all variables x, there is

a term (λx.t) whose free variables are those of t except x and such that B

proves

(λx.t)↓ ∧ (λx.t)x ' t

We generalise λ abstraction to several arguments by writing (λx1 · · ·xn.t) for

(λx1. · · · (λxn.t)).

As a consequence of the enclosure of the partial combinatory algebra axioms,

the existence of a recursion or fixed point operator is also derivable in B.

6

Lemma 2 (Fixed point operator) There exists a closed term fix such that

B proves

fixf↓ ∧ fixfx ' f(fixf)x

Strahm’s theory PT is now defined as the theory B extended by induction

for the formula class Σb
W of formulas of the form A[x] ≡ (∃y ≤ fx)B[f, x, y]

where B is positive and does not contain the relation symbol W. Formally,

the induction schema is defined as follows:

(Σb
W-IW) f : W 7→ W ∧ A[ε] ∧ (∀x ∈ W)(A[pWx]→ A[x])

→ (∀x ∈ W)A[x]

In weak theories, the strength is usually measured in terms of the provably

total functions. Thus, we first formally define this concept. Below, W denotes

the set of finite binary words and for each w ∈ W, we let w denote the

canonical closed LW term designating w.

Definition 3 (Provably total function) A function F : Wn → W is

called provably total in an LW theory T iff there exists a closed term tF

such that

1) T ` tF : Wn 7→ W and

2) T ` tFw1 · · ·wn = F (w1 · · ·wn) for all w1, . . . , wn ∈W

Strahm [13] proved that the provably total functions of PT are the polynomial

time computable ones. In the proof of the upper bounds he employed a

realisability relation which we will extend later.

We are now proceeding to recapitulate the theory PET from Spescha and

Strahm [12]. PET stands for the theory of polynomial time operations with

explicit types. It is formulated by a finite axiomatisation similar to the

one given by Feferman and Jäger [9] for EET. It differs from the theory EET

mainly by excluding the complement type constructor and replacing the type

of natural numbers by initial segments of the binary words.

PET is formulated in the second order language L2
W which extends the lan-

guage LW of PT by type variables U, V,W,X, Y, Z, . . . , binary relation sym-

bols < (naming) and ∈ (elementhood), as well as (individual) constants w

7

(initial segment of W), id (identity), dom (domain), un (union), int (intersec-

tion), and inv (inverse image).

The individual terms r, s, t, . . . of L2
W are those of LW, but taking into account

the new constants, whereas the type terms consist of the type variables only.

The formulas A,B,C, . . . of L2
W (possibly with subscripts) are built from the

atomic formulas of LW as well as formulas of the form (s ∈ X), <(s,X) and

(X = Y), by closing under negation, disjunction, conjunction, implication,

as well as existential and universal quantification over individuals and types.

If A is an L2
W formula, we let FVI(A) and FVT (A) denote the set of its free

individual and type variables, respectively. Finally, we write FVI(t) for the

set of individual variables occurring in the term t.

Types are extensional and their names are intensional in character. As we

mostly refer to types by their names, we use the following abbreviations

(~s = s1, . . . , sn,
#”

X = X1, . . . , Xn):

<(~s,
#”

X) := <(s1, X1) ∧ · · · ∧ <(sn, Xn),

<(s) := ∃X<(s,X),

<(~s) := <(s1) ∧ · · · ∧ <(sn),

s
.∈ t := ∃X(<(t,X) ∧ s ∈ X).

The logical axioms of PT are extended by the obvious strictness axioms for

the new relation symbols of L2
W. In addition, the logic of the types is just the

usual predicate logic with equality. PET consists of the axioms of B plus the

following axiom groups about types. The axioms in group I. are the so-called

ontological axioms about the naming relation and extensionality. In group

II. we state the axioms about type existence and finally, we include the type

induction axiom in group III.

I. Explicit representation and extensionality

(O.1) ∃x<(x,X),

(O.2) <(a,X) ∧ <(a, Y)→ X = Y ,

(O.3) ∀z(z ∈ X ↔ z ∈ Y)→ X = Y .

II. Type existence axioms

8

(wa) a ∈ W→ <(w(a)) ∧ ∀x(x
.∈ w(a)↔ Wa(x)),

(id) <(id) ∧ ∀x(x
.∈ id↔ ∃y(x = (y, y))),

(un) <(a) ∧ <(b)→ <(un(a, b)) ∧ ∀x(x
.∈ un(a, b)↔ (x

.∈ a ∨ x .∈ b)),

(int) <(a) ∧ <(b)→ <(int(a, b)) ∧ ∀x(x
.∈ int(a, b)↔ (x

.∈ a ∧ x .∈ b)),

(dom)<(a)→ <(dom(a)) ∧ ∀x(x
.∈ dom(a)↔ ∃y((x, y)

.∈ a)),

(inv) <(a)→ <(inv(f, a)) ∧ ∀x(x
.∈ inv(f, a)↔ fx

.∈ a).

III. Type induction on W

(T-IW) ε ∈ X ∧ (∀x ∈ W)(pWx ∈ X → x ∈ X)→ (∀x ∈ W)(x ∈ X)

In [12], we established the proof-theoretic strength of PET as follows:

Theorem 4 (Strength of PET) The provably total functions of PET are

those computable in polynomial time.

In the course of proving this theorem, we also stated a comprehension scheme

for PET. Comprehension is available for the class of so-called Σb
T formulas.

As the name already suggests, they are not only a subset of the elementary

formulas, but also closely related to the class of Σb
W formulas used for the

induction scheme in PT. The relation symbol W is only allowed for bounded

terms t in the form of Wa(t) (as defined on page 5). Furthermore, we must

ensure that bounds of subformulas do not interfere with each other in com-

posed formulas. Therefore, simultaneously with the notion of Σb
T formulas,

we have to define a set of designated free individual variables FVW(A) which

shall be thought of as the binary words bounding existential quantifiers in

a Σb
T formula A. These variables act as parameters in the comprehension

schema below.

Definition 5 (Σb
T formulas) The class of Σb

T formulas of L2
W and the set

of variables FVW(A) are inductively defined as follows:

1) If A is an L2
W formula of the form (s = t), s↓ or (s ∈ X), then A is a

Σb
T formula and FVW(A) := ∅.

2) If A is the formula Wa(t) with a /∈ FVI(t), then A is a Σb
T formula and

FVW(A) := {a}.

9

3) If A is the formula (B ∧ C) or (B ∨ C) with B and C in Σb
T and, in

addition,

(FVI(B) \ FVW(B)) ∩ FVW(C) = ∅,

(FVI(C) \ FVW(C)) ∩ FVW(B) = ∅,

then A is a Σb
T formula and FVW(A) := FVW(B) ∪ FVW(C).

4) If A is the formula ∃xB with B ∈ Σb
T and x /∈ FVW(B), then A is a Σb

T

formula and FVW(A) := FVW(B).

In [12], we proved that the following comprehension scheme is available in

the system PET:

Theorem 6 (Restricted elementary comprehension) Assume that

A[x,~v, ~w, ~X] is a Σb
T formula with the following free variables:

FVT (A) = {X1, . . . , Xn},

FVW(A) = {w1, . . . , wm},

FVI(A) \ FVW(A) = {x, v1, . . . , vk}.

Then we can find a closed L2
W term cA such that PET proves:

1) W(~w) ∧ <(~z, ~X) → <(cA(~v, ~w, ~z)),

2) W(~w) ∧ <(~z, ~X) → (∀x)(x
.∈ cA(~v, ~w, ~z)↔ A[x,~v, ~w, ~X]).

Together with (T-IW), comprehension enables us to employ formula induction

for Σb
T formulas.

We now quickly mention some extensions for PET. Applicative theories are

based on the logic of partial terms where operations are partial and terms

may be undefined. However, sometimes systems with totality of application

are better suited. For this purpose, we introduce the totality axiom:

(Tot) ∀x∀y(xy↓)

In the presence of (Tot), every term is provably defined. Therefore, the

underlying logic of partial terms can be replaced by ordinary predicate logic.

10

Although applicative theories focus on the intensional aspect of operations,

extensionality for operations is sometimes desired. Therefore we can add an

axiom stating that two operations are equal if they produce the same result

for all arguments:

(Ext) ∀f∀g(∀x(fx ' gx)→ f = g)

Cantini [5] adds a uniformity principle for positive LW formulas to PT and

proves that this yields a theory whose provably total functions are still those

computable in polynomial time. Cantini formulates the uniformity principle

for a truth predicate defined for positive formulas. In our context, we can

state Cantini’s principle as follows. For each positive LW formula A[x, y]:

(UP) ∀x(∃y ∈ W)A[x, y]→ (∃y ∈ W)∀xA[x, y]

We exploit the fact that (∃y ≤ t)A ≡ (∃y ∈ W)(y ≤ t∧A) which is obviously

a positive formula. Therefore, we can specify the following form of bounded

uniformity for positive LW formulas A[x, y] which is readily entailed by (UP):

(UP’) ∀x(∃y ≤ t)A[x, y]→ (∃y ≤ t)∀xA[x, y]

The principle (UP’) leads to a very natural extension of PET by adding a

type existence axiom for universal quantification. This axiom is the natural

dual analogue of the domain type present in PET. We first add an additional

constant all to L2
W and spell out the axiom as follows:

(all) <(a)→ <(all(a)) ∧ ∀x(x
.∈ all(a)↔ ∀y((x, y)

.∈ a))

In [12] we proved that we can add this additional type constructor without

strengthening the theory:

Theorem 7 The provably total functions of PET augmented by any combina-

tions of (all), (Tot) and (Ext) coincide with the polynomial time computable

functions.

3 Adding join

In this section we are discussing the addition of disjoint unions to the theory

PET. We will first state the so-called join axioms and then reformulate the

11

theory as a first order theory where types are only available in the form of

names. Finally, we will give a sequent calculus reformulation of this theory.

In explicit mathematics, join is defined by the following two axioms, where j

is supposed to be a new constant of the underlying language:

(J.1) <(a) ∧ (∀x .∈ a)<(fx)→ <(j(a, f))

(J.2) <(a) ∧ (∀x .∈ a)<(fx)→ ∀x(x
.∈ j(a, f)↔

∃y∃z(x = (y, z) ∧ y .∈ a ∧ z .∈ fy))

Let PETJ stand for the theory PET augmented by the join axioms.

For our subsequent proof-theoretic analysis, it will be more convenient to

work with a first order version of PETJ. In this context, we only have names

representing types instead of (second order) types. Therefore, < is in this

context a unary relation symbol denoting the collection of names. The ele-

menthood relation is defined between two individuals where one of them is

expected to be a name. Furthermore, the axioms about extensionality are

dropped. This reformulation does not change the proof-theoretic strength as

we will prove later.

PETJ1 is formulated in the language LTW which extends LW by a unary re-

lation symbol <, binary relation symbol
.∈ and the (individual) constants w,

id, dom, un, int, inv, and j (disjoint union). The relation
.∈ connects a name

with the elements of its extension. In contrast to the previous section, it is

not an abbreviation, but a relation symbol of the language. Of course, the

semantics of this relation shall match those of the abbreviation.

Formally, the theory PETJ1 consists of the axioms of B plus axioms about

type construction and type induction. The axioms look the same as those of

PETJ, since we used the abbreviation
.∈ in the original formulation. In our

present setting, we only have names and therefore loose the extensionality of

types. Thus, we introduce a new abbreviation
.
= for stating that two names

are extensionally equal:

a
.
= b := ∀x(x

.∈ a↔ x
.∈ b)

12

Since our main target is the analysis of the proof-theoretic strength of adding

the join axioms to (the original formulation of) PET, we first have to trans-

late formulas from the original version into the first order version preserving

provability. In the following, L2
W is assumed to include the constant j.

Definition 8 (Translation from L2
W to LT

W) ·? translates any L2
W formu-

la A into a formula A? of LTW. First, we assume there is a new (individual)

variable aX for every type variable X. The translation is now defined by

induction on the construction of A:

A atomic:

A ≡ s = t | s↓ | W(s) =⇒ A? ≡ A

A ≡ X = Y =⇒ A? ≡ aX
.
= aY

A ≡ <(s,X) =⇒ A? ≡ <(s) ∧ s .
= aX

A ≡ s ∈ X =⇒ A? ≡ s
.∈ aX

A composite formula:

A ≡ B ⊗ C (⊗ = ∧,∨,→) =⇒ A? ≡ B? ⊗ C?

A ≡ ¬B =⇒ A? ≡ ¬B?

A ≡ QxB (Q = ∀,∃) =⇒ A? ≡ QxB?

A ≡ ∀XB =⇒ A? ≡ ∀x(<(x)→ B?[x/aX])

A ≡ ∃XB =⇒ A? ≡ ∃x(<(x) ∧B?[x/aX])

We are ready to state the equivalence of the two theories:

Lemma 9 For any L2
W formula A[

#”

X] where
#”

X is a conclusive enumeration

of FVT (A) we have:

PETJ ` A[
#”

X] =⇒ PETJ1 ` <(#”aX)→ A?[#”aX]

Proof The proof is by induction on the length of a proof of A in PETJ. It

is routine and spelled out in detail in [11]. 2

Below we will give a proof-theoretic analysis of PETJ on the basis of intu-

itionistic logic only. Accordingly, we let PETJi and PETJi1 denote the intu-

itionistic version of PETJ and PETJ1, respectively. In the following upper

13

bound computations we implicitly assume that our applicative axioms satisfy

the axioms of totality (Tot) and extensionality (Ext); in particular, we will

work in the framework of ordinary predicate logic in the sequel, cf. [13] for a

similar procedure.

We reformulate the theory PETJi1 in sequent calculus style where all the main

formulas are positive. We are working in the same language LTW as before

and make use of the same abbreviations.

The theory PETJiG1 is the reformulation of the theory PETJi1 in Gentzen style.

The axioms of the first order part are adopted from Strahm [13] and therefore

omitted. In the following, we will write Γ,∆, . . . for finite sequences of LTW
formulas.

PETJiG1 consists of the axioms and rules of intuitionistic sequent calculus, the

reformulation of B as well as the following axioms and rules:

I. Type existence axioms

(wa.1) Γ,W(s)⇒ <(w(s))

(wa.2) Γ,W(s),W(t), t ≤ s⇒ t
.∈ w(s)

(wa.3) Γ,W(s), t
.∈ w(s)⇒ W(t) ∧ t ≤ s

(id.1) Γ⇒ <(id)

(id.2) Γ,∃u(t = (u, u))⇒ t
.∈ id

(id.3) Γ, t
.∈ id⇒ ∃u(t = (u, u))

(inv.1) Γ,<(s)⇒ <(inv(r, s))

(inv.2) Γ,<(s), rt
.∈ s⇒ t

.∈ inv(r, s)

(inv.3) Γ,<(s), t
.∈ inv(r, s)⇒ rt

.∈ s

(dom.1) Γ,<(s)⇒ <(dom(s))

(dom.2) Γ,<(s),∃y((t, y)
.∈ s)⇒ t

.∈ dom(s)

(dom.3) Γ,<(s), t
.∈ dom(s)⇒ ∃y((t, y)

.∈ s)

(un.1) Γ,<(s0),<(s1)⇒ <(un(s0, s1))

(un.2) Γ,<(s0),<(s1), t
.∈ s0 ⇒ t

.∈ un(s0, s1)

(un.3) Γ,<(s0),<(s1), t
.∈ s1 ⇒ t

.∈ un(s0, s1)

(un.4) Γ,<(s0),<(s1), t
.∈ un(s0, s1)⇒ t

.∈ s0 ∨ t
.∈ s1

14

(int.1) Γ,<(s0),<(s1)⇒ <(int(s0, s1))

(int.2) Γ,<(s0),<(s1), t
.∈ s0, t

.∈ s1 ⇒ t
.∈ int(s0, s1)

(int.3) Γ,<(s0),<(s1), t
.∈ int(s0, s1)⇒ t

.∈ s0

(int.4) Γ,<(s0),<(s1), t
.∈ int(s0, s1)⇒ t

.∈ s1

II. Join Rules

Γ, x
.∈ s⇒ <(rx) Γ⇒ <(s)

(J.1) *
Γ⇒ <(j(s, r))

Γ, x
.∈ s⇒ <(rx) Γ⇒ <(s)

(J.2) *
Γ, t

.∈ j(s, r)⇒ t = ((t)0, (t)1) ∧ (t)0
.∈ s ∧ (t)1

.∈ r(t)0

Γ, x
.∈ s⇒ <(rx) Γ⇒ <(s)

(J.3) *
Γ, t = ((t)0, (t)1), (t)0

.∈ s, (t)1
.∈ r(t)0 ⇒ t

.∈ j(s, r)

III. Type Induction

Γ⇒ <(s) Γ⇒ ε
.∈ s Γ,W(x), x

.∈ s⇒ six
.∈ s

(T-IW) i=0,1 *
Γ,W(t)⇒ t

.∈ s

*: x not free in Γ

In the following, we let
∧

Γ abbreviate A0 ∧ · · · ∧An for Γ = A0, . . . An. We

now state that this sequent-style reformulation is indeed adequate:

Lemma 10 (Equivalence of PETJi1 and PETJiG1) For all formulas C and

all sequents Γ⇒ C we have

1) PETJi1 ` C =⇒ PETJiG1 ` ⇒ C

2) PETJiG1 ` Γ⇒ C =⇒ PETJi1 `
∧

Γ→ C

Proof Proof by induction on the proof height. The routine proof is given in

Spescha [11]. 2

15

For the realisability interpretation, we depend on partial cut elimination, i.e.

only cuts with positive formulas are allowed in our proofs. For non-positive

formulas, the rank is defined as usual as the maximum of the ranks of its

subformulas plus one and positive formulas have rank 0. Also PETJiG1 |
r

Γ⇒ C signifies as usual that PETJiG1 proves the sequent Γ⇒ C with a proof

where all cut-formulas have rank less than r. We can now state partial cut

reduction for non-positive formulas:

Lemma 11 (Partial Cut Reduction) If PETJiG1 |
r

Γ ⇒ A and

PETJiG1 |r Γ′, A⇒ C with rk(A) = r > 0, then PETJiG1 |r Γ,Γ′ ⇒ C.

Thus, each proof in PETJiG1 can be transformed into a proof which has only

positive cuts. By the subformula property, provable sequents of positive

formulas have proofs consisting entirely of positive formulas.

4 A model for PETJ1

In this section, we describe a model for PETJ1 based on the well-known term

model M(λη), cf. [13, 12]. The construction is similar to the one presented

in [12], but the stages for the construction of the interpretation of the names

now run over all ordinals instead of the natural numbers as before. First, we

give a definition of an LTW-structure.

Definition 12 (LT
W-Structure) An LTW-structure M? is a tuple

(M,R, E ,w, id, un, int, dom, inv, j)

meeting the following conditions:

(i) M is a LW-structure,

(ii) R is a non-empty subset of |M|,
(iii) E is a binary relation on |M| ×R, and

(iv) w, id, un, int, dom, inv, j are elements of |M|.

For the construction we take the model M = M(λη) of PT. We have

usual βη-reduction adapted to fit our axioms and |M| = {t : t LTW term}.

16

We write t
red
==⇒ s for reduction of terms and define the abbreviation t1

βη
=

t2 :⇐⇒ t1
red
==⇒ s and t2

red
==⇒ s for some term s.

Now we generate the model M? of PETJ1 by adding interpretations R and

E for < and
.∈ respectively while the constants are interpreted by themselves.

For the construction of R we introduce sets Rα ⊆ |M?| by induction on the

ordinal α and simultaneously establish a set Eα ⊆ |M|×Rα. For every ordinal

number α, Rα and Eα are constructed as follows where r, s, t ∈ |M(λη)|.

α = 0: R0 contains the names of the base types, i.e. formally s ∈ R0 iff

– s
βη
= id and (t, s) ∈ E0 iff t

βη
= (m,m) for some m ∈ |M|.

– s
βη
= wa with a ∈ WM and (t, s) ∈ E0 iff M |= t ∈ W ∧ t ≤ a.

α = β + 1 successor ordinal : Rβ ⊆ Rα and Eβ ⊆ Eα. In addition, for s0, s1 ∈
Rβ, s ∈ Rα iff

– s
βη
= un(s0, s1) and (t, s) ∈ Eα iff (t, s0) ∈ Eβ or (t, s1) ∈ Eβ.

– s
βη
= int(s0, s1) and (t, s) ∈ Eα iff (t, s0) ∈ Eβ and (t, s1) ∈ Eβ.

– s
βη
= dom(s0) and (t, s) ∈ Eα iff there is a m ∈ |M| such that

((t,m), s0) ∈ Eβ.

– s
βη
= inv(r, s0) and (t, s) ∈ Eα iff (rt, s0) ∈ Eβ

– s
βη
= j(s0, r) and rt ∈ Rβ for all t such that (t, s0) ∈ Eβ. Furthermore,

(t, s) ∈ Eα iff t
βη
= (m,n) such that (m, s0) ∈ Eβ and (n, rm) ∈ Eβ.

α = limit ordinal : Rα =
⋃
β<αRβ and Eα =

⋃
β<α Eβ.

Finally, we define R :=
⋃
α∈ΩRα and E :=

⋃
α∈Ω Eα where Ω stands for the

ordinals. Then our desired LTW structure is given by

M? := (M(λη),R, E ,w, id, un, int, dom, inv, j).

For any s ∈ Rα, we define ext(s) := {t ∈ |M?| : (t, s) ∈ Eα}. In the following,

we use the abbreviation t εα s := (t, s) ∈ Eα.

It immediately follows from our construction that M? indeed is a model for

PETJ1. When referencing M? from now on, we always refer to the specific

model of PETJ1 as constructed here, unless explicitly stated otherwise.

17

5 Realisability for positive formulas

In this section we define the notion of realisability for positive formulas of LTW.

Realisers are binary words and shall contain some computational information.

They can be seen as witnesses for the statement of the formula being realised.

The definition in this paper is an extension of the one introduced in Strahm

[13] for the first order language LW. A similar relation in the first-order

context of safe induction has been employed in Cantini [4].

In the sequel, we are mainly interested in statements concerning the predicate

W, as the realisability is a means to prove that the provably total functions

are the ones computable in polynomial time. In Theorem 17 we will show

that the conclusion of every provable sequent can be realised by a polynomial

time function from the realisers of the premise. The desired upper bounds

immediately follow from this fact.

Recall that for realising provable sequents, we work in the theory PETJiG1 in-

cluding the axioms for totality (Tot) and extensionality (Ext) as introduced

before. In this context, the relation symbol ↓ becomes superfluous and can

therefore be neglected.

Furthermore, the definition of the realisability depends on the model M?

presented in the previous section. We first define the notion of realisability

for formulas of the form t
.∈ s. Below 〈·, ·〉 abbreviates a polynomial time

pairing function (cf. e.g. [11]).

Definition 13 (Realisability: ρ ř t
.
∈ s) For any s ∈ R and ρ ∈ W, the

notion ρ řα t
.∈ s is defined by induction on the level α at which s was added

to R.

α = 0:

ρ ř0 t
.∈ id ⇐⇒ ρ = ε and M? |= t = (t0, t0) for some term t0

ρ ř0 t
.∈ w(s) ⇐⇒ M? |= t = ρ ∧ ρ ≤ s

α = β + 1 successor ordinal where s, s0, s1 ∈ Rβ:

ρ řα t
.∈ s ⇐⇒ ρ řβ t

.∈ s

ρ řα t
.∈ dom(s) ⇐⇒ ρ řβ (t, t0)

.∈ s for a term t0

18

ρ řα t
.∈ un(s0, s1) ⇐⇒ ρ = 〈i, ρ0〉 and either

i = 0 and ρ0 řβ t
.∈ s0 or

i = 1 and ρ0 řβ t
.∈ s1

ρ řα t
.∈ int(s0, s1) ⇐⇒ ρ = 〈ρ0, ρ1〉 and ρ0 řβ t

.∈ s0 and ρ1 řβ t
.∈ s1

ρ řα t
.∈ inv(r, s) ⇐⇒ ρ řβ rt

.∈ s

ρ řα t
.∈ j(s, r) ⇐⇒ ρ = 〈ρ0, ρ1〉 and M? |= t = ((t)0, (t)1) and

ρ0 řβ (t)0
.∈ s and ρ1 řβ (t)1

.∈ r(t)0

α limit ordinal :

ρ řα t
.∈ s ⇐⇒ ρ řβ t

.∈ s for some β < α

To improve readability in this definition, the name s is a placeholder for all

terms t such that t
βη
= s .

We will also write ρ ř t
.∈ s if ρ řα t

.∈ s for some ordinal α. We can now

define the actual realisability for positive formulas of LTW.

Definition 14 (Realisability: ρ r© A) The realisability relation for posi-

tive formulas r© ⊆W×Pos is defined by induction on the construction of the

formula:

Atomic formulas:

ρ r© W(t) ⇐⇒ M? |= ρ = t

ρ r© t0 = t1 ⇐⇒ ρ = ε and M? |= t0 = t1

ρ r© t
.∈ s ⇐⇒ s ∈ R and ρ řα t

.∈ s for some α

ρ r© <(s) ⇐⇒ s ∈ R and ∀σ, t : σ r© t
.∈ s =⇒ σ ≤ ρ

Composite formulas:

ρ r© A0 ∧ A1 ⇐⇒ ρ = 〈ρ0, ρ1〉 and ρ0
r© A0 and ρ1

r© A1

ρ r© A0 ∨ A1 ⇐⇒ ρ = 〈i, ρ0〉 (i ∈ {0, 1}) and ρ0
r© Ai

ρ r© ∀xA[x] ⇐⇒ ρ r© A[u] for a fresh variable u

ρ r© ∃xA[x] ⇐⇒ ρ r© A[t] for some term t

~ρ r© Γ for a sequence Γ = A0, . . . , An:

~ρ r© Γ ⇐⇒ ~ρ = ρ0, . . . , ρn and ρi r© Ai

19

As it will turn out in our realisability theorem below, the crucial clause in

the above definition is the one for formulas of the form <(s): A realiser ρ

of <(s) has the important property that it is a bound for any realisers of

statements of the form t
.∈ s. This property will be heavily used below in

realising the type induction and join rules by polynomial time computable

functions.

Before we can prove the main theorem of this section, we first need to state

two important properties of this realisability. First, the realiser of a for-

mula shall not be able to distinguish between two terms having a common

reduct. Furthermore, whenever we have a realiser for a formula containing

free variables, it realises all substitution instances.

Lemma 15 For positive formulas A and terms t, s, we have

1) If ρ r© A[t] and t
βη
= s, then ρ r© A[s]

2) If ρ r© A[u], then ρ r© A[t].

Proof This is obvious from the definition of realisability. 2

Further, we also require that we have realisers for all statements of the form

t
.∈ s modelled by M?.

Lemma 16 Assume that t and s are terms such that M? |= t
.∈ s. Then

there is a ρ ∈W such that ρ ř t
.∈ s.

Proof Assume thatM? |= t
.∈ s. This implies that s ∈ <M?

and t ∈ ext(s),

i.e. (t, s) ∈ E . Further, s ∈ <M?
iff s ∈ Rα for some α. The proof is by

induction on α. For details we refer to [11]. 2

We are now ready to state the realisability theorem. It claims that whenever

we can prove a (positive) sequent Γ ⇒ C in PETJiG1 , there is a polynomial

time computable function F constructing a realiser for C given realisers for

Γ. F may depend on the proof of the sequent and therefore the same sequent

can have various realising functions constructed from different deductions.

20

Theorem 17 (Realisability) For every positive sequent Γ[~x]⇒ C[~x] (with

Γ = A0[~x], . . . , An[~x]) provable in PETJiG1 , where ~x is a conclusive enumera-

tion of the free variables, there is a function F ∈ FPtime such that for all

terms ~t:

~ρ r© Γ[~t] =⇒ F (~ρ) r© C[~t]

Proof This proof is by induction on a quasi-cutfree derivation of Γ ⇒ C

(where Γ ≡ A0, . . . , An).

Derivation length 0, i.e. Γ⇒ C is an axiom. The proof for the axioms of B

is already spelled out by Strahm in [13] and therefore omitted here.

(wa.1) Assume ρn r© W(s), that is s
βη
= ρn. We now set F to be (λ~x.xn). Ob-

viously, w(s) ∈ R by model construction. Thus, only the last condition

remains to be shown: As σ r© t
.∈ w(s) ⇐⇒ M? |= σ = t ∧ σ ≤ s, we

know that σ ≤ s if σ r© t
.∈ w(s) for any t and therefore σ ≤ ρn = F (~ρ).

(wa.2) Assume (i) ρn−2
r© W(s), (ii) ρn−1

r© W(t) and (iii) ρn r© t ≤ s where

t ≤ s ≡ c⊆(lWt)(lWs) = 0. Choose F = (λ~x.xn−1). Then F (~ρ) = ρn−1

and ρn−1
r© t

.∈ w(s) sinceM? |= t = ρn−1 with (ii) andM? |= ρn−1 ≤ s

because of (iii).

(wa.3) Set F = (λ~x.〈xn, ε〉). Then F (~ρ) r© W(t) ∧ t ≤ s: ρn r© W(t) as

ρn r© t
.∈ w(s) and ε r© ρn ≤ s by assumption.

(id.1) F = (λ~x.ε).

(id.2) F = (λ~x.ε).

(id.3) F = (λ~x.ε).

(inv.1) F = (λ~x.xn).

(inv.2) F = (λ~x.xn).

(inv.3) F = (λ~x.xn).

(dom.1) F = (λ~x.xn).

(dom.2) F = (λ~x.xn).

21

(dom.3) F = (λ~x.xn).

(un.1) F = (λ~x.〈1, xn ∗ xn−1〉).

(un.2) F = (λ~x.〈0, xn〉).

(un.3) F = (λ~x.〈1, xn〉).

(un.4) F = (λ~x.xn).

(int.1) F = (λ~x.〈xn−1, xn〉).

(int.2) F = (λ~x.〈xn−1, xn〉).

(int.3) F = (λ~x.〈xn〉0).

(int.4) F = (λ~x.〈xn〉1).

Induction step:

(T-IW) Assume there are derivations for Γ ⇒ <(s), Γ ⇒ ε
.∈ s as well as

Γ,W(u), u
.∈ s ⇒ siu

.∈ s (i = 0, 1). By induction hypotheses there are

functions E,F,G0, G1 ∈ FPtime such that for all terms t and i = 0, 1:

~ρ r© Γ =⇒ E(~ρ) r© <(s) (1)

~ρ r© Γ =⇒ F (~ρ) r© ε
.∈ s (2)

~ρ r© Γ;σ r© W(t); τ r© t
.∈ s =⇒ Gi(~ρ, σ, τ) r© sit

.∈ s (3)

The required function H is now defined by recursion on notation:

H(~ρ, ε) = F (~ρ)

H(~ρ, siσ) = Gi(~ρ, σ,H(~ρ, σ))

Now we need to show that H(~ρ, σ) r© t
.∈ s. We prove this informally by

induction on σ. If σ = ε, F will construct a realiser for ε
.∈ s. Assuming

that H(~ρ, σ) is a realiser for σ
.∈ s, Gi(~ρ,H(~ρ, σ)) will construct a

realiser for siσ
.∈ s.

To prove that H is a polynomial time function, a bound is needed as H

is constructed from functions in FPtime. This bound is provided by E.

22

By induction hypothesis, E(~ρ) r© <(s). Thus s ∈ <M?
and σ ≤ E(~ρ) if

σ r© t
.∈ s for some t by Definition 14. Therefore, H(~ρ, σ) ≤ E(~ρ). Thus

indeed H is defined by bounded recursion on notation from F,G0, G1

and E. This shows that H is a polytime function.

(J.1) Assume we have derivations for Γ, x
.∈ s ⇒ <(rx) and Γ ⇒ <(s). By

induction hypothesis, there are functions F,G ∈ FPtime such that

~ρ, σ r© Γ, t
.∈ s =⇒ F (~ρ, σ) r© <(rt) (4)

~ρ r© Γ =⇒ G(~ρ) r© <(s) (5)

We now define the requested function H as

H(~ρ) = 〈G(~ρ), F ′(~ρ,G(~ρ))〉

where F ′ is a monotone polynomial function majorising F (the poly-

nomial limiting the growth of F).

In general, we know that if τ r© <(s) and τ < τ ′, then τ ′ r© <(s) by

Definition 14. Thus, F ′(~ρ, σ) r© <(rt) since F (~ρ, σ) ≤ F ′(~ρ, σ).

Now we need to show that H(~ρ) r© <(j(s, r)), assuming ~ρ r© Γ. To

obtain this, we have to prove j(s, r) ∈ R and τ ≤ H(~ρ) if τ r© t
.∈ j(s, r)

for some t.

We know that F (~ρ, σ) r© <(rt) provided σ r© t
.∈ s. This just guarantees

only for realisable elements t that rt indeed is a name. But because

of Lemma 16, every t
.∈ s has a realiser and (5) ensures that s ∈ R.

Thus F constructs a realiser for <(rt) for every t ∈ ext(s). Therefore

j(s, r) ∈ R by construction of M?.

It remains to be proved that realisers of elements of j(s, r) actually are

smaller than or equal to the candidate realiser produced by H. Assume

τ r© t
.∈ j(s, r). Then we have τ = 〈τ0, τ1〉 such that τ0

r© (t)0
.∈ s

and τ1
r© (t)1

.∈ r(t)0 by Definition 14. Therefore, τ0 ≤ G(~ρ) by (5).

Further, by (4), F (~ρ, τ0) r© <(r(t)0). Thus we have τ1 ≤ F (~ρ, τ0) ≤
F ′(~ρ,G(~ρ)) since F ′ is monotone. Because of the monotonicity of the

pairing function (see e.g. [11]), τ ≤ H(~ρ) as required.

23

(J.2) Define H by H(~ρ, τ) = 〈ε, τ〉.

(J.3) Define H by H(~ρ, σ, τ0, τ1) = 〈τ0, τ1〉.

Logical rules are treated in [13]. Although Strahm’s theory is based on

classical logic, the proof still works with little alteration. Our functions

need not choose which formula to realise in the absence of side formulas

on the right side. Hence the adjustment is straightforward and the

functions become simpler as we can omit most case distinctions. 2

The desired upper bounds for PETJi1 immediately follow from the previous

theorem. Assume that we have a provably total function G : Wn → W, i.e.

for some suitable term tG,

PETJi1 ` tG : Wn 7→ W (6)

PETJi1 ` tGw1 · · ·wn = G(w1 · · ·wn) (7)

Hence, PETJiG1 ` ⇒ tG : Wn 7→ W with Lemma 10. Unfolding abbrevi-

ations gives PETJiG1 `⇒ (∀x1, . . . , xn ∈ W)(tGx1 · · ·xn ∈ W). We get

PETJiG1 ` W(r1), . . . ,W(rn)⇒ W(tGr1 · · · rn) by applying logical rules. With

the realisability theorem, we know that there is a function F ∈ FPtime

such that F (σ1, . . . , σn) r© W(tGr1 · · · rn) if σi r© W(ri) (i = 1, . . . , n). By

Definition 14, F (~σ) r© W(tGr1 · · · rn) iff F (~σ)
βη
= tGr1 · · · rn. Furthermore,

σi r© W(ri) iff σi
βη
= ri. With (7) and equality we get F (~σ) = G(~σ).

Theorem 18 The provably total functions of PETJi1 coincide with the func-

tions computable in polynomial time.

6 Realising some extensions

When we studied the theory PET in [12], we also considered several exten-

sions not increasing its proof-theoretic strength. Of particular interest were

Cantini’s uniformity principle together with the type constructor for univer-

sal quantification recapitulated in section 2. We claim that we can also add

those two principles to PETJi1 and keep the upper bounds. To establish this

result, we extend the theorems proved in the previous section to include the

24

uniformity principle and the all constructor. We will mainly spell out the

extensions of the important proofs and definitions.

Definition 19 The theory PETJ1+∀iG is defined as the theory PETJiG1 plus

the following axioms:

(all.1) Γ,<(s)⇒ <(all(s))

(all.2) Γ,<(s),∀y((t, y)
.∈ s)⇒ t

.∈ all(s)

(all.3) Γ,<(s), t
.∈ all(s)⇒ ∀y((t, y)

.∈ s)

and the following rule for positive formulas A:

Γ⇒ ∀x(∃y ∈ W)A[x, y]
(UP)

Γ⇒ (∃y ∈ W)∀xA[x, y]

It is easy to extend the proof of Lemma 10 to include the additional axioms.

Thus, the axioms and the rule as stated above are adequate reformulations

of the axioms of section 2.

Before we can adjust the definition of the realisability, we add the following

case to the construction of the model M? at successor stages α = β + 1:

– s
βη
= all(s0) and (s, t) ∈ Eα iff ((t, y), s0) ∈ Eβ for all y ∈ |M?|

Consequently, we also expand Definition 13 by the following case for the

successor ordinal α = β + 1:

ρ řα t
.∈ all(s) ⇐⇒ ρ řβ (t, t0)

.∈ s for all terms t0

The properties stated in Lemma 15 and Lemma 16 can easily be checked for

the extended definitions. Thus, we can repeat Theorem 17 for PETJ1+∀iG:

Theorem 20 For every positive sequent Γ[~x]⇒ C[~x] provable in PETJ1+∀iG,

where ~x is a conclusive enumeration of the free variables, there is a function

F ∈ FPtime such that for all terms ~t:

~ρ r© Γ[~t] =⇒ F (~ρ) r© C[~t]

25

Proof Again, the proof is by induction on the length of the derivation. We

only need to consider the axioms (all.1-3) for the base case and the rule

(UP) in the induction step:

(all.1) F = (λ~x.xn).

(all.2) F = (λ~x.xn).

(all.3) F = (λ~x.xn).

(UP) By induction hypothesis, there is a function G such that

G(~ρ) r© ∀x(∃y ∈ W)A[x, y] if ~ρ r© Γ. By Definition 14, we know that

G(~ρ) = 〈ρ0, ρ1〉 such that ρ1
r© A[u, ρ0] for a fresh variable u. Therefore

ρ1
r© ∀xA[x, ρ0] which means 〈ρ0, ρ1〉 r© (∃y ∈ W)∀xA[x, y]. Hence, we

define F (~ρ) = G(~ρ). 2

Again, the desired upper bounds are immediately derived from this theorem.

7 Conclusion and further work

As already mentioned before, treating the constructor for disjoint union based

on weak theories is more delicate than for stronger theories. We are not able

to prove the upper bounds of PETJ (based on classical logic) employing the

same scheme as for the intuitionistic variant: the induction step fails for (J.1)

in the proof of Theorem 17. Since we have side formulas on the right side

for the classical sequent calculus reformulation, we cannot guarantee that F

always generates a realiser for <(rx), it could sometimes realise one of the side

formulas, depending on σ. Therefore it seems impossible to decide whether

to realise one of the side formulas or the main formula in the conclusion of

the rule (J.1).

However, the proof concept can be applied to classical PET without join, thus

providing a syntactical realisability argument for the model-theoretic proof

in Spescha and Strahm [12]. In a first step one reformulates PET in a classical

sequent calculus PETG, thus allowing side formulas on the right hand side of

sequents. Partial cut elimination works as before. In the definition of M?

26

we can restrict ourselves to finite stages, due to the absence of join. The

definition of realisability remains untouched.

As we have a sequence of formulas on the right side now, our realising function

has to specify which formula to realise. Therefore, for ∆ ≡ A0, . . . , An we

specify

ρ r©
∨

∆ ⇐⇒ ρ = 〈i, ρ0〉 and ρ0
r© Ai.

The realisability theorem now reads as follows:

Theorem 21 For every positive sequent Γ[~x] ⇒ ∆[~x] provable in PETG,

where ~x is a conclusive enumeration of the free variables, there is a function

F ∈ FPtime such that for all terms ~t:

~ρ r© Γ[~t] =⇒ F (~ρ) r©
∨

∆[~t]

The proof follows the same procedure as in the intuitionistic case. Due

to the presence of classical sequents, the treatment of the logical rules is

slightly more complicated and requires the definition of realising functions

by case distinction; similarly, in the treatment of the type induction rule,

one has to make a case distinction whether the functions given by induction

hypotheses realise the induction formula or one of the side formulas. Similar

case distinction techniques have been used in the treatment of PT in Strahm

[13].

Although it had been strongly conjectured in Spescha [11] that the provably

total functions of the classical system PETJ are still the polynomial time

computable ones, this problem was left open in [11]. Very recently, Probst

[10] was able to supplement a proof of this conjecture. Indeed, using a variety

of very advanced techniques he could determine the provably total operations

of classical PETJ to be the polynomial time computable functions. Probst’s

arguments include the treatment of a special boundedness principle with

respect to the predicate W, an extended realisability interpretation as well

as subtle reasoning with non-standard models and non-monotone inductive

definitions.

Let us conclude this paper by mentioning that it is possible to come up

with suitable variants of PETJ which characterize various other complexity

27

classes, including the functions computable in linear space and polynomial

space, as well as the functions computable simultaneously in polynomial time

and linear space. For details, see Spescha [11].

References

[1] M. J. Beeson. Foundations of Constructive Mathematics: Metamathe-

matical Studies. Springer, Berlin, 1985.

[2] G. Calamai. Proof-theoretic contributions to computational complexity.

PhD thesis, University of Siena, 2008.

[3] A. Cantini. A footnote on the Parsons-Mints-Takeuti theorem. Talk at

Recent Trends in Proof Theory, Bern, July 2008.

[4] A. Cantini. Polytime, combinatory logic and positive safe induction.

Archive for Mathematical Logic, 41(2):169–189, 2002.

[5] A. Cantini. Choice and uniformity in weak applicative theories. In

M. Baaz, S. Friedman, and J. Kraj́ıček, editors, Logic Colloquium ’01,

volume 20 of Lecture Notes in Logic. Association for Symbolic Logic,

2005.

[6] S. Feferman. A language and axioms for explicit mathematics. In

J. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in

Mathematics, pages 87–139. Springer, Berlin, 1975.

[7] S. Feferman. Recursion theory and set theory: a marriage of conve-

nience. In J. E. Fenstad, R. O. Gandy, and G. E. Sacks, editors, Gener-

alized recursion theory II, Oslo 1977, volume 94 of Stud. Logic Found.

Math, pages 55–98. North Holland, Amsterdam, 1978.

[8] S. Feferman. Constructive theories of functions and classes. In M. Boffa,

D. van Dalen, and K. McAloon, editors, Logic Colloquium ’78, pages

159–224. North Holland, Amsterdam, 1979.

28

[9] S. Feferman and G. Jäger. Systems of explicit mathematics with non-

constructive µ-operator. Part II. Annals of Pure and Applied Logic, 79

(1):37–52, 1996.

[10] D. Probst. The provably terminating operations of the subsystem PETJ

of explicit mathematics. Preprint, 2010.

[11] D. Spescha. Weak systems of explicit mathematics. PhD thesis, Univer-

sität Bern, 2009.

[12] D. Spescha and T. Strahm. Elementary explicit types and polynomial

time operations. Mathematical Logic Quarterly, 55(3):245–258, 2009.

[13] T. Strahm. Theories with self-application and computational complex-

ity. Information and Computation, 185:263–297, 2003.

[14] T. Strahm. A proof-theoretic characterization of the basic feasible func-

tionals. Theoretical Computer Science, 329:159–176, 2004.

[15] T. Strahm. Weak theories of operations and types. In R. Schindler,

editor, Ways of Proof Theory. Ontos Verlag, 2010.

29

