
Justification Logic, Inference Tracking, and
Data Privacy

Thomas Studer

Abstract

Internalization is a key property of justification logics. It states
that justification logics internalize their own notion of proof which is
essential for the proof of the realization theorem. The aim of this note
is to show how to make use of internalization to track where an agent’s
knowledge comes from and how to apply this to the problem of data
privacy.

Keywords: justification logic, internalization, knowledge tracking, data pri-
vacy

1 Introduction

Justification logics [3] are epistemic logics that include explicit justifications
for an agent’s knowledge and they allow to reason with and about these justi-
fications. The first justification logic, the logic of proofs, has been developed
by Artemov [1, 2] to provide S4 with a provability semantics. Since then
justification logics have been applied to a variety of problems. For instance,
these logics have been used to create a new approach to the logical omni-
science problem [5], to study self-referential proofs [8], and to investigate the
role of the announcement as a justification in public announcement logics [7].

Instead of statements A is known, denoted by �A, justification logics
reason about justifications for knowledge by using constructs t :A that stand
for t is a justification for A. In those statements, the evidence term t can be
viewed as an informal justification for A or a formal mathematical proof of
A depending on the application.

The structure of terms in a given justification logic corresponds to the
axiomatization of that theory so as to guarantee the property of internaliza-
tion: for each derivation D of a theorem A of the logic in question, there is

1

a step-by-step construction that transforms D into a term tD in such a way
that tD :A is also a theorem of the logic. Therefore, the term tD, describes
the reasons, according to the logic, why A must hold. This suggests that we
can think of a term t in a formula t :A as an explicit reason that justifies the
assertion A.

The aim of the present note is to show how to make use of internalization
for inference tracking. Assume that a formula A is derivable from a theory
∆. Internalizing a derivation of A from ∆ gives a term tD which basically
is a blueprint of that derivation. In particular, we can read off from the
evidence term tD which axioms of ∆ have been used in the derivation of A.
Artemov [4] considers an example of evidence tracking where the structure
of evidence terms allows to discern factive and non-factive justifications.

We are going to use inference tracking to study certain data privacy issues.
A user of an information system usually has only limited access to the data
stored in the system. This is controlled by assigning to the user a view
definition which is a restricted set of queries that the user is allowed to issue.
The only way the user can get information about the data stored in the
system is via the queries provided by the view definition. There are two
problems that need to be addressed in this approach.

1. What can the user infer from the information he may gain by issuing
the queries? That means in particular, is privacy preserved or is it
possible to infer sensitive information from the answers to the queries?

2. If privacy is not preserved, that is if the view definition leaks sensitive
information, how can the user’s access rights be restricted in order to
keep the secrets.

We will see in this note that internalization and inference tracking provide
means to approach these two problems.

In the next section we introduce the justification logic J, which is the
justified counterpart of the modal logic K, and we recall the internalization
property for J. Section 3 presents our running example and illustrates how
inference tracking works. Then, in Section 4, we give a formal definition of
the problem of data privacy and study it from the point of view of justification
logic. We conclude the paper in Section 5.

2 Justification Logic and Internalization

Definition 1 (Language). We fix countable sets Cons = {c1, c2, . . .} of con-
stants, Vars = {x1, x2, . . .} of variables, and Prop of atomic propositions. The

2

language of J consists of the terms t ∈ Tm and the formulas A ∈ Fml formed
by the following grammar

t ::= x | c | (t · t) | !t

A ::= p | ¬A | (A→ A) | t :A

where x ∈ Vars, c ∈ Cons, p ∈ Prop. We define the connectives ∧ and ∨ as
usual. To say that a term t ∈ Tm is ground means that t does not contain
variables

Often the language of justification logic also includes a binary term oper-
ator +. However, for the purpose of this paper we do not need this operator
and, therefore, dispense with it.

Definition 2 (Deductive System). The axioms of J consist of all Fml-
instances of the following schemes.

1. All classical propositional tautologies

2. t : (A→ B)→ (s :A→ t · s :B) (application)

A constant specification CS is any subset

CS ⊆
⋃
{c :A | c ∈ Cons and A is an axiom of J}.

A constant specification CS is called axiomatically appropriate if for each
axiom A of J there is a constant c ∈ Cons such that c :A ∈ CS.

The deductive system J(CS) is the Hilbert system consisting of the above
axioms of J and the following rules of modus ponens (MP) and axiom neces-
sitation (AN):

A A→ B
B

,
c :A ∈ CS

!! . . .!︸ ︷︷ ︸
n

c : . . . : !c : c :A ,

where n ≥ 0 is an integer.

For an arbitrary CS we write ∆ `CS A to state that A is derivable from
∆ in J(CS).

Internalization is a crucial property of justification logics. It states that
the logic internalizes its own notion of proof which is a key ingredient in the
proof of the realization theorem [2].

3

Lemma 3 (Internalization). Let CS be an axiomatically appropriate constant
specification. If

B1, . . . , Bn `CS A
then there is a term t(x1, . . . , xn) ∈ Tm such that

x1 :B1, . . . , xn :Bn `CS t(x1, . . . , xn) :A.

Proof. The proof is by induction on the length of the derivation of A. We
distinguish the following cases.

1. A is an axiom of J. Since CS is axiomatically appropriate, there exists
a constant c such that `CS c :A.

2. A is one of the Bis. We have xi :Bi `CS xi :Bi.

3. A is the conclusion of B and B → A by modus ponens. By the induc-
tion hypothesis we find that there exist terms t1 and t2 such that

x1 :B1, . . . , xn :Bn `CS t1(x1, . . . , xn) :B

and
x1 :B1, . . . , xn :Bn `CS t2(x1, . . . , xn) :B → A.

By the application axiom and modus ponens we find

x1 :B1, . . . , xn :Bn `CS t2(x1, . . . , xn) · t1(x1, . . . , xn) :A.

4. A is the conclusion of axiom necessitation. Then there exists a ground
term t such that t :A also follows from axiom necessitation.

Remark 4. It is easy to see that the term t(x1, . . . , xn) constructed in the
proof of the internalization lemma directly corresponds to the original deriva-
tion of A from B1, . . . , Bn. In particular, we see that if a variable xi does
not occur in the constructed justification term for A, then the corresponding
assumption Bi has not been used to derive A. That is we have

B1, . . . , Bi−1, Bi+1, . . . , Bn `CS A.

3 Inference Tracking

For the rest of this paper, we assume that we have a fixed axiomatically
appropriate constant specification CS and we will write ` for `CS .

Let us now introduce our running example dealing with a set ∆ of med-
ical knowledge. Of course, this is only a toy example. For privacy issues
concerning similar real world data we refer to [9]. The set ∆ includes the
following facts:

4

1. Patient 1’s diagnosis is broken leg or cancer:

Patient1→ brokenLeg ∨ cancer. (A)

2. Patient 1 lives in city A:

Patient1→ cityA. (B)

3. Patient 1 receives a high cost treatment:

Patient1→ highCosts. (C)

4. A cancer diagnosis entails a high cost treatment:

cancer→ highCosts. (D)

5. A broken leg diagnosis entails a low cost treatment (i.e. not high cost):

brokenLeg→ ¬highCosts. (E)

We easily find A,B,C,D,E ` Patient1 → cancer. Let us now look at
an internalization of this fact. We first assume the following assignment of
variables to facts: Γ := x1 :A, x2 :B, x3 :C, x4 :D, x5 :E. Further we assume
that our constant specification CS contains the following, where we let the
constants justify axiom schemes.

c1 : (A→ ¬B)→ (B → ¬A)

c2 : (A→ B)→ ((B → C)→ (A→ C))

c3 : (A→ (B ∨ C))→ ((A→ ¬B)→ (A→ C))

Thus we obtain

Γ ` c1 · x5 : highCosts→ ¬brokenLeg
Γ ` c2 · x3 : (highCosts→ ¬brokenLeg)→ (Patient1→ ¬brokenLeg)

Γ ` (c2 · x3) · (c1 · x5) :Patient1→ ¬brokenLeg
Γ ` c3 · x1 : (Patient1→ ¬brokenLeg)→ (Patient1→ cancer)

Γ ` (c3 · x1) · ((c2 · x3) · (c1 · x5)) :Patient1→ cancer

We see that the last evidence term, which justifies Patient1 → cancer,
does not contain the variables x2 and x4. That means the statements B and
D have not been used in the derivation of Patient1→ cancer.

Moreover, if we assume that the constant specification is such that each
constant justifies at most one axiom scheme, i.e. it is schematically injective,
then we can read off from the term (c3 · x1) · ((c2 · x3) · (c1 · x5)) the concrete
reasoning process that led from the knowledge base to the conclusion.

5

4 Data Privacy

We start with defining the basic notions we need for a precise treatment of
the privacy problem.

1. A knowledge base KB is a deductively closed set of formulas, that is

KB ` A =⇒ A ∈ KB for all formulas A.

2. A query Q is a formula of Fml.

3. An knowledge base KB answers yes to a query Q if and only if Q ∈ KB.
Otherwise it answers no.

4. A view definition VD is a set of queries.

5. A view V of a knowledge base KB under a view definition VD is a subset
of VD consisting of those queries for which KB answers yes. Formally
we set V := VD ∩ KB.

6. A secret is a formula of Fml.

In a knowledge base system, privacy is ensured by restricting the set of
queries a user is allowed to issue. Usually he is granted only access to a given
view definition VD. That means he is only allowed to issue those queries that
are elements of VD. The system will then answer those queries which results
in a view V . The problem of data privacy is to decide whether it might be
possible for that user to infer from the knowledge of VD and V whether a
given secret S belongs to the underlying unknown knowledge base KB.

Assume that VD = {V1, . . . , Vn} is a view definition and S is a secret. In
the simple setting presented above, the more queries answer yes, the more a
user can infer. Thus to solve the problem of data privacy, we assume that all
queries of the view definition answer yes. We find that privacy is preserved
if VD 6` S and that the secret is revealed if VD ` S.

In the case of VD ` S we can apply internalization and obtain

x1 :V1, . . . , xn :Vn ` t :S

for some term t. Again, the variables occurring in t tell us which queries of VD

contributed to the derivation of S, i.e. are responsible for the privacy breach.
This information can be used to find a more restrictive view definition, which
is a subset of VD, that preserves privacy. Of course, simply removing one
of the queries that was involved in the derivation of S does not guarantee

6

privacy for there may be other derivations of S. Still, this approach provides
valuable information for finding a privacy preserving view definition.

Instead of altering the view definition, another approach to privacy [6]
suggest to alter the knowledge base (that is to make it lying) in order to
preserve privacy. In that approach we could use the information provided by
the justification terms to find a minimal change to the knowledge base that
makes it privacy preserving.

As an example, consider the formulas A,B,C,D,E from the previous
section. Assume that we are given an information system where a user is
granted access to the view definition VD = {A,B,C} and assume that D,E
are general background knowledge the user has without accessing the infor-
mation system. The confidential information that we want to keep secret
is

Patient1→ brokenLeg and Patient1→ cancer.

That is want to hide the actual diagnosis of Patient 1. If either of the above
statements were derivable, then we would know the diagnosis and privacy
would be violated.

Since we have

Γ ` (c3 · x1) · ((c2 · x3) · (c1 · x5)) :Patient1→ cancer, (1)

we know that privacy does not hold. Moreover, the justification term in (1)
tells us that only the queries A and C (but not B) have been used to derive
the secret. Thus, to make the view definition privacy preserving, we have to
remove either A or C from it (thereby restricting the user’s access rights).

The definitions and techniques introduced before refer to so-called incom-
plete information system. Let us now turn to complete information systems.
These systems work with a closed world assumption which in our setting
means that we have

A ∈ KB or ¬A ∈ KB for each formula A.

Thus if the answer of KB to a query Q is no, then ¬Q ∈ KB holds.
Consider again the view definition VD = {A,B,C} and assume that the

view V of KB under VD consists only of A. That means in particular that
the answer of KB to C is no. In the case where KB is incomplete, privacy is
preserved since we cannot infer the actual diagnosis of Patient 1. However,
if KB is complete, then we find that ¬C ∈ KB. Hence we get

KB ` Patient1→ brokenLeg.

Deciding whether privacy holds is more complex for complete knowledge
bases than it is for incomplete ones. As an example, we assume again that

7

VD = {V1, . . . , Vn} is a view definition and S is a secret. As seen before, for
incomplete knowledge bases we simply test VD ` S to decide privacy. For
complete knowledge bases, however, we also have to take into account the
possibility that a user may know ¬Vi for a Vi ∈ VD. Of course, we have

V1,¬V1, . . . , Vn,¬Vn ` A (2)

for any formula A. Thus simple logical consequence cannot be used as a test
for privacy (unlike in the case of incomplete systems).

Let us now study the internalized version of (2) which is

x1 :V1, x2 :¬V1, . . . , x2n−1 :Vn, x2n :¬Vn ` t :A (3)

for some term t. First we note that (3) does not hold for all terms t. Let t
be such that (3) holds, then again t carries information on the derivation of
A. We find that

1. if (3) holds for a term t that does not contain both x2i−1 and x2i for
all 1 ≤ i ≤ n, then the view leaks the secret.

2. if (3) only holds for terms t that for some 1 ≤ i ≤ n contain both x2i−1
and x2i, then privacy holds.

5 Conclusion

In this note we showed how to apply the internalization property of justifica-
tion logics to problems of data privacy. The key property is that if a secret
is derivable from a given view, then internalization allows us to reason about
what part of the view is responsible for the privacy breach.

On a technical level, the reason for this is that justification logics explicitly
include terms witnessing the reason why an agent knows something. In a
pure modal logic approach, the formula �A does not tell us why a secret A
is known to the agent. Thus we have no information about how to restrict
the agent’s access rights such that privacy is preserved. In justification logic
we have t :A and the term t includes the information which queries of the
view are responsible for leaking the secret.

For complete information systems we need justifications already to test
whether privacy holds or not. In the modal logic K

�V1,�¬V1, . . . ,�Vn,�¬Vn ` �A

holds for any formula A. Thus we cannot use modal logic to test whether a
secret A is revealed or not. In the justified version (3) of the above expression,

8

the conclusion contains more information. There it reads t :A, which is not
derivable for all terms t, and we can use the term t in (3) to check whether
the view reveals the secret.

Finally, we would like to mention that the approach presented in this
paper does not only work for propositional knowledge bases. It can be ex-
tended, for example, to deal also with the privacy problem for description
logic knowledge bases [10]. For this we need a justification logic that is
defined over a description logic, which recently has been developed in [11].

References

[1] Sergei N. Artemov. Operational modal logic. Technical Report MSI
95–29, Cornell University, December 1995.

[2] Sergei N. Artemov. Explicit provability and constructive semantics.
Bulletin of Symbolic Logic, 7(1):1–36, March 2001.

[3] Sergei [N.] Artemov. The logic of justification. The Review of Symbolic
Logic, 1(4):477–513, December 2008.

[4] Sergei [N.] Artemov. Tracking evidence. In Andreas Blass, Nachum Der-
showitz, and Wolfgang Reisig, editors, Fields of Logic and Computation,
Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birth-
day, volume 6300 of Lecture Notes in Computer Science, pages 61–74.
Springer, 2010.

[5] Sergei [N.] Artemov and Roman Kuznets. Logical omniscience as a
computational complexity problem. In Aviad Heifetz, editor, Theoret-
ical Aspects of Rationality and Knowledge, Proceedings of the Twelfth
Conference (TARK 2009), pages 14–23, Stanford University, California,
July 6–8, 2009. ACM.

[6] Joachim Biskup and Lena Wiese. Preprocessing for controlled query
evaluation with availability policy. Journal of Computer Security,
16(4):477–494, 2008.

[7] Samuel Bucheli, Roman Kuznets, Bryan Renne, Joshua Sacks, and
Thomas Studer. Justified belief change. In Proc. of LogKCA-10, 2010.

[8] Roman Kuznets. Self-referential justifications in epistemic logic. Theory
of Computing Systems, 46(4):636–661, May 2010.

9

[9] Kilian Stoffel and Thomas Studer. Provable data privacy. In K. Viborg,
J. Debenham, and R. Wagner, editors, DEXA 2005, volume 3588 of
LNCS, pages 324–332. Springer, 2005.

[10] Phiniki Stouppa and Thomas Studer. Data privacy for ALC knowledge
bases. In S. Artemov and A. Nerode, editors, LFCS 2009, volume 5407
of LNCS, pages 409–421. Springer, 2009.

[11] Thomas Studer. Justified terminological reasoning. In E. Clarke, I.
Virbitskaite, and A. Voronkov, editors, PSI 11. Proceedings of the 8th
Andrei Ershov Informatics Conference, LNCS. Springer, to appear.

Address
Thomas Studer
Institut für Informatik und angewandte Mathematik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland
tstuder@iam.unibe.ch

10

