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Abstract

For some modal fixed point logics, there are deductive systems
that enjoy syntactic cut-elimination. An early example is the system
in Pliuskevicius [15] for LTL. More recent examples are the systems
by the authors of this paper for the logic of common knowledge [5]
and by Hill and Poggiolesi for PDL [8], which are based on a form of
deep inference. These logics can be seen as fragments of the modal
mu-calculus. Here we are interested in how far this approach can be
pushed in general. To this end, we introduce a nested sequent system
with syntactic cut-elimination which is incomplete for the modal mu-
calculus, but complete with respect to a restricted language that allows
only fixed points of a certain form. This restricted language includes
the logic of common knowledge and PDL. There is also a traditional
sequent system for the modal mu-calculus by Jäger et al. [9], without a
syntactic cut-elimination procedure. We embed that system into ours
and vice versa, thus establishing cut-elimination also for the shallow
system, when only the restricted language is considered.

1 Introduction

Modal fixed point logics occur in many different forms. For instance, we
have temporal logics with an always operator, epistemic logics with a com-
mon knowledge operator, program logics with an iteration operator, and the
propositional modal µ-calculus with fixed points for arbitrary positive formu-
las.

While the model-theoretic side of modal fixed point logics is very well
investigated [3, 23], not much is known about their proof-theoretic aspects.
However, it is possible to obtain syntactic cut-elimination results for logics
of this kind through infinitary calculi that allow for deep applications of
inference rules.
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A deductive system is called infinitary if it includes inference rules with
infinitely many premises. In a temporal logic, for instance, we may consider
a rule like

A next A next next A · · ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

always A

that has for any natural number i a premise consisting of an i-fold nesting
of next operators applied to A.

We say that an inference rule applies deeply if it does not only apply to
an outermost connective but also, in a certain sense, deeply inside formulas.
Again for temporal logic, we may consider a conjunction rule that applies
inside an arbitrary nesting of next operators. An instance of a rule of this
kind is

next next A next next B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

next next (A ∧B)
.

Pliuskevicius [15] introduced an infinitary deep system for linear time tempo-
ral logic that features syntactic cut-elimination. Note that the case of linear
time logic is particularly simple since it is enough to consider nestings of
next operators only. The case of syntactic cut-elimination for modal fixed
point logics over arbitrary Kripke structures turned out to require more ma-
chinery. This case requires systems with some form of deep inference such
as nested sequents [4, 10] also called tree-hypersequents [16]. Brünnler and
Studer [5, 6] use them to present a calculus with syntactic cut-elimination
for the logic of common knowledge. Hill and Poggiolesi [8] use deep inference
to establish a cut-elimination result for propositional dynamic logic.

Each of the cut-elimination results mentioned above applies only to one
particular logic. In the present paper we try to identify the common core of
those results and establish a general cut-elimination theorem that subsumes
the previous ones. To do so, we base our results on a fairly small fragment
of the modal µ-calculus that is however large enough to embed common
knowledge operators as well as iteration operators from PDL. We then show
that we necessarily have to restrict ourselves to a fragment: our system is
incomplete for larger fragments. In particular, we cannot treat the whole
propositional modal µ-calculus, not even the one-variable fragment.

Another question is the relationship of traditional shallow systems for
modal fixed point logics and their deep counterparts. Brünnler and Studer [5]
examine this relationship for the logic of common knowledge. They present
embeddings of a shallow system into a deep system and vice versa. Again, so
far this relationship has not been studied from a general perspective. Now
we present embeddings of a shallow system for our fragment into the deep
system and vice versa. Note that the direction from shallow into deep is
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straightforward in the case of common knowledge but requires much more
work in our general setting. Moreover, the direction from deep into shallow
as presented in [5] contains a mistake (Lemma 12 does not hold) that is fixed
in the present paper.

Kozen [11] introduced the propositional modal µ-calculus together with
a Hilbert-style deductive system, for which Walukiewicz [24] was able to
establish completeness. This system includes an induction rule to guarantee
that a formula of the form µX.A denotes a least fixed point. This implies
that also some variant of a cut rule has to be present in the system in order
to make use of the power of the induction rule. Hence cut-elimination is not
possible for that system.

The situation is different if we replace the induction rule by an infinitary
rule that introduces greatest fixed points. Such a rule has been proposed by
Kozen [12] based on the finite model property of the µ-calculus. Jäger et
al. [9] later showed by semantic means that the cut rule is admissible in the
infinitary system. In the present paper, we study syntactic cut-elimination
for that system. However, we can only deal with a fragment where least
fixed point variables do not occur in the scope of 2 operators (and dually
greatest fixed point variables not in the scope of 3). Fontaine [7] showed
that this syntactic restriction of least fixed point formulas characterizes the
continuous fragment of the µ-calculus.

There are also syntactic cut-elimination results for the fixed point logics
µMALL= by Baelde and Miller [1] and Linc− by Tiu and Momigliano [21].
Since these systems are based on induction rules (and thus are finitary), cut-
elimination results in the loss of the subformula property. Still the cut-free
proofs do have some useful structure. In a different line of research, Mints
and Studer [13] were recently able to provide a syntactic transformation of
Hilbert-style proofs from Kozen’s original system to cut-free proofs in the
infinitary system.

Our paper is organized as follows. We first recall the infinitary shallow
system Gµ for the propositional modal µ-calculus introduced by Jäger et
al. in [9] and show the obstacles to cut-elimination. In Section 3 we introduce
our deep system Dµ for modal fixed point logic and establish syntactic cut-
elimination for that system. We observe that Dµ is not complete for the
modal µ-calculus. Thus we define a fragment of the µ-calculus in which
we can embed PDL and the logic of common knowledge, and for which Dµ is
complete. This is established in Section 4 by embedding System Gµ restricted
to our fragment into System Dµ. We also present the reverse embedding of
Dµ into Gµ.

Combining the embedding of Gµ into Dµ, cut-elimination of Dµ, and the
embedding of Dµ into Gµ provides syntactic cut-elimination for Gµ with re-
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spect to our fragment.

2 The Shallow System

Formulas. We start with a countable set P of atomic propositions and one
variable X. An operator form is given by the following grammar

O ::= X | p | p̄ | > | ⊥ | (O ∧O) | (O ∨O) |2O |3O | µX.O | νX.O

where p ∈ P . In case there is no danger of confusion, we will omit parenthe-
ses. A formula is an operator form in which every occurrence of X is in the
scope of a µ- or a ν-operator. That is a formula does not contain free occur-
rences of the variable X. Note that in other work on the µ-calculus formulas
are sometimes defined such that they may also contain free variables.

As usual, we define the negation Ā of operator forms and formulas A
inductively as follows:

1. ¯̄p := p, >̄ := ⊥, ⊥̄ := >, and X̄ := X,

2. A ∧B := Ā ∨ B̄ and A ∨B := Ā ∧ B̄,

3. 2A := 3Ā and 3A := 2Ā

4. µX.A := νX.Ā and νX.A := µX.Ā.

Implication is defined as usual by A→ B := Ā ∨B.
If B is an operator form and A a formula, then B(A) denotes the formula

which is given by substituting each free occurrence of X in B with A. This
allows us to syntactically define finite approximations of fixed points. We set
for n ≥ 0:

ν0X.B := > νn+1X.B := B(νnX.B)

µ0X.B := ⊥ µn+1X.B := B(µnX.B).

We consider a language with only one variable since this simplifies the
presentation and the proofs (see, for instance, Lemma 27). We remark that
Theorem 6 holds for an arbitrary number of variables and we believe that
our approach can be extended to the general case. Note, however, that the
variable hierarchy of the µ-calculus is strict [2].

Later we have to restrict ourselves to a fragment that includes, for in-
stance, PDL and the logic of common knowledge. These logics can easily be
embedded using one variable only, see Remark 21.
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Definition 1 (rank). We now define the rank rk(A) of an operator form A
inductively by:

1. rk(>) := rk(⊥) := rk(p) := rk(p̄) := rk(X) := 1 for p ∈ P

2. rk(A ∧B) := rk(A ∨B) := max(rk(A), rk(B)) + 1

3. rk(2A) := rk(3A) := rk(A) + 1

4. rk(µX.A) := rk(νX.A) := rk(A) + ω

Lemma 2. Let A be a formula, let B be an operator form and let n < ω. We
have:

1. rk(A) = rk(Ā) .

2. rk(A) < ω2 .

3. If rk(B) ≤ rk(A) then rk(B(A)) < rk(A) + ω .

4. rk(νnX.A) < rk(νX.A) .

Proof. The first two statements are immediate. The third one follows from
a straightforward induction on B. The fourth statement we now prove by
induction on n. The case n = 0 is trivial. So, given n > 0 and A, we need to
show that

rk(νnX.A) = rk(A(νn−1X.A)) < rk(A) + ω .

By 3. we have an m1 such that

rk(A(νn−1X.A)) < rk(νn−1X.A) +m1 .

By induction hypothesis we have an m2 such that

rk(νn−1X.A) < rk(A) +m2 .

So we have

rk(A(νn−1X.A)) < rk(A) +m1 +m2 < rk(A) + ω .

A sequent is a finite multiset of formulas. We employ Γ,∆, ... to denote
sequents. If ∆ is a sequent, then 3∆ is obtained from ∆ by prefixing the
connective 3 to each formula occurrence in ∆.
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id −−−−−−−
Γ, p, p̄

> −−−−−
Γ,>

Γ, A,B
∨ −−−−−−−−−−

Γ, A ∨B

Γ, A Γ, B
∧ −−−−−−−−−−−−−

Γ, A ∧B

Γ, A
2 −−−−−−−−−−−−−
3Γ,2A,∆

Γ, A(µX.A)
µ −−−−−−−−−−−−−−

Γ, µX.A

Γ, νkX.B for all k ≥ 0
ν −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, νX.B

Figure 1: The Shallow System Gµ

Γ, A Γ, Ā
cut −−−−−−−−−−−−−

Γ

Γ
wk −−−−−

Γ, A

Γ, A,A
ctr −−−−−−−−

Γ, A

Figure 2: Admissible Rules

Inference rules. In an instance of the inference rule ρ

Γ1 Γ2 . . .
ρ −−−−−−−−−−−−−−−−

∆

the sequents Γ1,Γ2, . . . are its premises and the sequent ∆ is its conclusion.
An axiom is a rule without premises. We will not distinguish between an
axiom and its conclusion. A system, denoted by S, is a set of rules. The
system Gµ is defined in Figure 1. Notice that the ν-rule has infinitely many
premises.

The cut rule, weakening, and contraction are shown in Figure 2. In an
instance of cut, the formula A is called the cut formula.

Derivations and proofs. In the following, a tree is a tree in the graph-
theoretic sense, and may be infinite. A tree is well-founded if it does not have
an infinite path. A derivation in a system S is a directed, rooted, ordered
and well-founded tree whose nodes are labeled with sequents and which is
built according to the inference rules from S. Derivations are visualised as
upward-growing trees, so the root is at the bottom. The sequent at the
root is the conclusion and the sequents at the leaves are the premises of the
derivation. A proof of a sequent Γ in a system is a derivation in this system
with conclusion Γ where all leaves are axioms. We write S ` Γ if there is a
proof of Γ in system S. Notice that derivations here are in general infinitely
branching, thus their depth can be infinite even though each branch has to
be finite.

The derivability relation. The cut-rank of an instance of cut as shown in
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Figure 2 is the rank of its cut formula A. The µ-rank of an instance of the
µ-rule as shown in Figure 1 is the rank of the formula A(µX.A). The cut-rank
of a derivation is the supremum of the cut-ranks of its instances of cut, and
similarly for the µ-rank. For a system S and ordinals α, β, γ and a sequent
Γ we write S α

β,γ
Γ to say that there is a proof of Γ in system S + cut with

depth bounded by α, cut-rank strictly smaller than β, and µ-rank strictly
smaller than γ. We write S α

β
Γ if there exists a γ such that S α

β,γ
Γ and

we write S
β

Γ if there exists an α such that S α

β
Γ. Thus, S

0
Γ means

that Γ can be derived in S alone—which is cut-free.
Admissibility and invertibility. An inference rule ρ is depth- and cut-

rank-preserving admissible or, for short, perfectly admissible for a system S if
for each instance of ρ with premises Γ1,Γ2, . . . and conclusion ∆, whenever
S

α

β
Γi for each premise Γi, then S

α

β
∆. For each rule ρ, there is its inverse

ρ, which has the conclusion of ρ as its only premise and admits each premise
of ρ as its conclusion, i.e. both

Γ, A ∧B
∧ −−−−−−−−−−

Γ, A
and

Γ, A ∧B
∧ −−−−−−−−−−

Γ, B

are instances of the inverse of ∧ and if ρ is a rule without premises, then
it does not have an inverse. An inference rule ρ is perfectly invertible for a
system S if ρ is perfectly admissible for S.

We omit the proof of the following lemma, which is standard [19, 22].

Lemma 3. 1. The rules weakening and contraction are perfectly admissible
for Gµ.

2. All rules of Gµ except 2 are perfectly invertible for Gµ.

Definition 4 (Kripke structure). A Kripke structure K = (S,R, π) is a triple
where S is a non–empty set of states, R ⊆ S×S is the accessibility relation,
and π : P ∪ {X} → Pow(S) is the valuation function. Furthermore, given a
set T ⊆ S, we define the Kripke structure K[X := T ] as the triple (S,R, π′),
where π′(X) = T , and π′(p) = π(p) for all p ∈ P .

Assume we are given a Kripke structure K = (S,R, π) and a formula A.
We define the set of states ‖A‖K of S at which A holds by induction on the
structure of A.

Definition 5 (denotation). Let K = (S,R, π) be a Kripke structure. For every
operator form and every formula A we define the set ‖A‖K ⊆ S inductively
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as follows:

‖p‖K := π(p) for all p ∈ P ∪ {X},
‖p̄‖K := S \ π(p) for all p ∈ P ,
‖>‖K := S and ‖⊥‖K := ∅,
‖B ∧ C‖K := ‖B‖K ∩ ‖C‖K, ‖B ∨ C‖K := ‖B‖K ∪ ‖C‖K,
‖2B‖K := {w ∈ S : v ∈ ‖B‖K for all v such that wRv},
‖3B‖K := {w ∈ S : v ∈ ‖B‖K for some v such that wRv}.

For all formulas µX.A and νX.A we define

‖µX.A‖K :=
⋂
{T ⊆ S : T ⊇ FA,K(T )} and

‖νX.A‖K :=
⋃
{T ⊆ S : T ⊆ FA,K(T )}

where FA,K is the operator on Pow(S) given by FA,K(T ) := ‖A‖K[X:=T ] for
every subset T of S.

A formula A is called valid if for every Kripke structure K = (S,R, π) we
have ‖A‖K = S.

Making use of a canonical model construction, Jäger et al. [9] showed that
System Gµ (which is cut-free) is sound and complete.

Theorem 6. For all formulas A we have

Gµ 0
A if and only if A is valid.

2.1 The Problems for Cut-Elimination

Although System Gµ is complete even without cut, the usual cut-elimination
procedure does not work for Gµ. The problem is that the premises of the µ-
and ν-rules do not correspond to each other. Consider the following proof:

Γ, A(µX.A)
µ −−−−−−−−−−−−−−

Γ, µX.A

· · · Γ, νkX.Ā · · ·
ν −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, νX.Ā
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ

Here the typical transformation would push the cut above the µ- and ν-rules.
However, this is not possible since A(µX.A) is not the negation of any νkX.Ā.
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A first approach to solve this problem is to consider a system G′µ which is
defined like Gµ except that the µ-rule is replaced with infinitely many rules
(one for each natural number k)

Γ, µX.A, µkX.A
µk −−−−−−−−−−−−−−−−−−−−

Γ, µX.A
.

However, in System G′µ we cannot even derive the co-closure axiom

νX.2X →2νX.2X , (1)

which states that νX.2X is a post-fixed point of the operator given by
λX.2X. If we search for a proof of this formula, then we end up with the
following derivation:

µkX.3X, νlX.2X for all l ≥ 0
ν −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

µkX.3X, νX.2X
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
µX.3X,3µkX.3X,2νX.2X

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
µX.3X,µk+1X.3X,2νX.2X

µk+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
µX.3X,2νX.2X

∨ −−−−−−−−−−−−−−−−−−−−−−−−−
µX.3X ∨2νX.2X

Of the ω-many assumptions of this derivation only one, namely l = k, is
provable in G′µ. All the others cannot be proved. The problem with deriving
(1) in G′µ is that in a proof search procedure the rule µk has to be applied
before ν can be applied which means that we have to choose the iteration
number k too early.

This problem can be solved if we switch to nested sequents that allow the
deep application of rules. Then we can first apply the ν-rule deeply inside
the 2 modality and then in each premise apply µk choosing an appropri-
ate iteration number for that premise. This is presented in detail later in
Example 11.

3 The Deep System

Definition 7. We define nested sequents and boxed sequents inductively as
follows: 1) a nested sequent is a finite multiset of formulas and boxed sequents,
and 2) a boxed sequent is an expression of the form [Γ] where Γ is a nested
sequent.
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The letters Γ,∆, . . . from now on denote nested sequents and the word
sequent from now on refers to nested sequents, except when it is clear from the
context that a sequent is shallow, such as a sequent appearing in a derivation
in Gµ.

A sequent is always of the form

A1, . . . , Am, [∆1], . . . , [∆n]. (2)

As usual, the comma denotes multiset union and there is no distinction
between a singleton multiset and its element.

The corresponding formula of the sequent given in (2) is ⊥ if m = n = 0
and otherwise

A1 ∨ · · · ∨ Am ∨2D1 ∨ · · · ∨2Dn

where D1, . . . , Dn are the corresponding formulas of the sequents ∆1, . . .∆n.
We denote the corresponding formula of the sequent Γ by ΓF , but sometimes
we do not distinguish between the two.

We introduce the additional symbol { }, called the hole, to define sequent
contexts, or contexts, for short. They are denoted by Γ{ },∆{ },Σ{ }, and
so on, and they follow the same notational conventions as sequents.

Definition 8 (sequent context). Contexts are inductively defined as follows.

1. The singleton multiset containing the hole is a context, it is called the
empty context.

2. If Γ{ } is a context and Σ is a sequent, then the multiset union of Γ{ }
and Σ is a context.

3. If Γ{ } is a context, then the singleton multiset containing [Γ{ }] is a
context.

A context has exactly one occurrence of the symbol { }. We can substitute
sequents for this symbol as follows.

Definition 9. Let Γ{ } be a context and ∆ be a sequent. The sequent Γ{∆}
is given as follows.

1. If Γ{ } is the empty context, then Γ{∆} is ∆.

2. If Γ{ } is the multiset union of a context Γ′{ } and a sequent Σ, then
Γ{∆} is the multiset union of Γ′{∆} and Σ.

3. If Γ{ } is the singleton multiset containing [Γ′{ }], then Γ{∆} is the
singleton multiset containing [Γ′{∆}].
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id −−−−−−−−−
Γ{p, p̄}

> −−−−−−−
Γ{>}

Γ{A,B}
∨ −−−−−−−−−−−−

Γ{A ∨B}
Γ{A} Γ{B}

∧ −−−−−−−−−−−−−−−−−
Γ{A ∧B}

Γ{[A]}
2 −−−−−−−−−

Γ{2A}
Γ{3A, [A,∆]}

3 −−−−−−−−−−−−−−−−−−
Γ{3A, [∆]}

Γ{µX.A, µkX.A}
µk −−−−−−−−−−−−−−−−−−−−−−

Γ{µX.A}
Γ{νkX.B} for all k ≥ 0

ν −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{νX.B}

Figure 3: The Deep System Dµ

Γ{A} Γ{Ā}
cut −−−−−−−−−−−−−−−−−

Γ{∅}
∆

nec −−−−
[∆]

Γ{∅}
wk −−−−−−−

Γ{∆}
Γ{∆,∆}

ctr −−−−−−−−−−−
Γ{∆}

Figure 4: Admissible Rules

Definition 10 (formula context). A formula context C{ } is a formula with
exactly one occurrence of the special atom { } which may only occur in
the scope of ∨ and 2. If C{ } is a formula context and A is a formula,
then the formula C{A} is obtained by replacing { } in C{ } with A. The
corresponding formula context ΓF{ } of a given context Γ{ } is defined by
analogy with the notion of a corresponding formula.

The system Dµ is the set of axioms and inference rules in Figure 3. The
rules cut, necessitation, weakening, and contraction are shown in Figure 4.

Example 11. To see System Dµ at work we will show a derivation of the
co-closure axiom (1) in Dµ. Looking at it from a proof search perspective, we
see that we can first apply the ν rule deeply behind the 2, and then apply
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µk+1 with a different k in each branch.

· · ·

µX.3X,3µkX.3X, [µkX.3X, νkX.2X]
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

µX.3X,3µkX.3X, [νkX.2X]
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
µX.3X,µk+1X.3X, [νkX.2X]

µk+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
µX.3X, [νkX.2X] · · ·

ν −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
µX.3X, [νX.2X]

2 −−−−−−−−−−−−−−−−−−−−−−−
µX.3X,2νX.2X

∨ −−−−−−−−−−−−−−−−−−−−−−−−−
µX.3X ∨2νX.2X

The following lemma can be shown in the same way as the corresponding
lemma for the logic of common knowledge [5].

Lemma 12. 1. The rules necessitation, weakening, and contraction are
perfectly admissible for Dµ.

2. All rules of Dµ are perfectly invertible for Dµ.

3.1 Cut-Elimination

We will first give some ordinal theoretic preliminaries. For a detailed account
and formal definitions of the following concepts we refer to Schütte [20]. As
usual, α# β denotes the natural sum of α and β which, in contrast to the
ordinary ordinal sum, does not cancel additive components. The binary
Veblen function ϕ is generated inductively as follows:

1. ϕ0β := ωβ,

2. if α > 0, then ϕαβ denotes the βth common fixed point of the functions
λξ.ϕγξ for γ < α.

Lemma 13 (Reduction Lemma). For each context Γ{ } and each formula A
with rk(A) = β, we have: if (1) Dµ

α1

β
Γ{A} and (2) Dµ

α2

β
Γ{Ā}, then

Dµ
α1 #α2

β
Γ{∅}.

Proof. As usual, by induction on α1 #α2 and a case analysis on the two
lowermost rules in the given proofs. We only show one case, namely the
active case for A = νX.B. We have

Dµ
α1,k

β
Γ{νkX.B} for all k ≥ 0 (3)
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and
Dµ

α2,1

β
Γ{µX.B̄, µjX.B̄} for some j. (4)

By weakening we also have

Dµ
α1

β
Γ{νX.B, µjX.B̄}.

The induction hypothesis together with (4) yields Dµ
α1 #α2,1

β
Γ{µjX.B̄}.

Applying a cut with rank rk(νkX.B) < rk(A) to this sequent and (3) for

k = j results in Dµ
α1 #α2

β
Γ{∅}.

All other cases are similar to the ones found in Brünnler and Studer [5].

From the reduction lemma we obtain the first and the second elimination
theorem as usual, see for instance Pohlers [17, 18] or Schütte [20].

Theorem 14 (First Elimination Theorem).

If Dµ
α

β+1
Γ, then Dµ

2α

β
Γ.

Theorem 15 (Second Elimination Theorem).
If Dµ

α

β+ωγ
Γ, then Dµ

ϕγα

β
Γ.

Since all our cut ranks are below ω2, we finally obtain the following cut-
elimination result.

Theorem 16 (Cut-Elimination).
If Dµ

α

β
Γ, then Dµ

ϕ2α

0
Γ.

3.2 The System is Incomplete

We are going to show that System Dµ is not complete for (the standard
semantics of) the modal µ-calculus. In order to do so, we first introduce an
alternative notion of validity that is based on finite approximations instead
of least and greatest fixed points.

Given an operator F and an n ≥ 0 we define F n inductively as the identity
operator for n = 0 and as F ◦ F n−1 for n ≥ 1.

Definition 17. Let K = (S,R, π) be a Kripke structure. For every formula
A we define the set dAeK ⊆ S inductively like ‖A‖K except for the following
two cases:

dµX.AeK :=
⋃
n<ω

Gn
A,K(∅) and dνX.AeK :=

⋂
n<ω

Gn
A,K(S)

13



where GA,K is the operator on S given by GA,K(T ) := dAeK[X:=T ] for every
subset T of S.

A formula A is called valid for finite approximations if for every Kripke
structure K = (S,R, π) we have dAeK = S.

Soundness of Dµ with respect to finite approximations is shown as usual
by induction on the depth of the derivation.

Lemma 18 (Dµ is sound for finite approximations). For all formulas A and
all ordinals α, β we have that if Dµ

α

β
A, then A is valid for finite approxi-

mations.

Lemma 19. The formula 2(µX.2X) → µX.2X is not valid for finite ap-
proximations.

Proof. Consider some Kripke structure K = (ω + 1 = {ω, . . . , 2, 1, 0}, >, π).
Note that Gn

2X,K(∅) = {0, . . . , n− 1}. Expanding the definitions shows that
ω ∈ d2(µX.2X)eK = ω + 1 but ω /∈ dµX.2XeK = ω.

Theorem 20. System Dµ is not complete for (the standard semantics of) the
modal µ-calculus.

Proof. 2(µX.2X) → µX.2X is a valid formula. However, by the two pre-
vious lemmas, we see that it is not derivable in Dµ.

3.3 The System is Complete for a Fragment

We now define a restricted language for which System Dµ is complete as we
will show later in Theorem 32. The restricted language disallows a diamond
to occur between a ν and its bound variable and disallows a box to occur
between a µ and its bound variable. We simultaneously define µ-operator
forms M , ν-operator forms N , and restricted formulas F by the following
grammar

M ::= X | F | (M ∧M) | (M ∨M) |3M
N ::= X | F | (N ∧N) | (N ∨N) |2N
F ::= p | p̄ | > | ⊥ | (F ∧ F ) | (F ∨ F ) |2F |3F | µX.M | νX.N

where p ∈ P . Our definition of µ-operator form corresponds to the set
CF ({X}) that is given in [7, Def. 11] to syntactically capture the continuous
fragment of the µ-calculus

Note that negation is well-defined for the restricted language since the
negation of a µ-operator form is a ν-operator form and vice versa.

14



Remark 21. We can embed in the restricted language the iteration modality
from PDL and the common knowledge modality from epistemic logic. Namely,
for PDL we observe that [p∗]A corresponds to νX.(A ∧ [p]X) and for common
knowledge we observe that CA corresponds to νX.E(A ∧ X) where E is the
everybody knows modality. Of course, to really embed those logics we would
have to switch to a multi-modal language and maybe also include new rules for
the additional modalities. However, those rules would not affect the essence
of the cut-elimination procedure. Important for that are only the rules for
fixed points and those are all covered by our approach.

Note that it is not possible to embed in our restricted language all the
fixed point modalities occurring in CTL. In particular, until with universal
path quantifiers does not fit: ∀(AUB) corresponds to

µX.(B ∨ (A ∧2X ∧3>))

which is not a restricted formula.

4 Cut-Elimination for a Fragment of the Shallow

System

Definition 22. System Gµr is obtained from system Gµ by adding the following
proviso to the µ-rule as show in Figure 1: A is a µ-operator form.

Clearly, because of the subformula property, the provability of Gµ and Gµr

(without cut) on restricted formulas is the same.

Lemma 23. A restricted formula is provable in Gµr if and only if it is provable
in Gµ.

4.1 Embedding Shallow into Deep

Lemma 24. Let Γ{ } be a context and A,B be operator forms. We have that
for all natural numbers k

Dµ
α

β
Γ{B(νk+1X.A)} =⇒ Dµ

α

β
Γ{B(νkX.A)} .

Proof. The claim is established by an outer induction on k and an inner
induction on α. The case for k = 0 is routine. For k > 0 we distiguish the
following cases.

1. If Γ{B(νk+1X.A)} is an axiom, then so is Γ{B(νkX.A)}.

15



2. If Γ{B(νk+1X.A)} is the conclusion of a rule ρ where the main connec-
tive is in Γ or in B, then we apply the inner induction hypothesis to
the premises of that rule and the claim follows by an application of ρ.

3. If B = X, then Γ{B(νk+1X.A)}=Γ{A(νkX.A)}. By the outer induc-
tion hypothesis we obtain Dµ

α

β
Γ{A(νk−1X.A)}, which is

Dµ
α

β
Γ{B(νkX.A)}.

Definition 25 (len(A)). We define the length len(A) of an operator form A
inductively as follows.

1. len(>) := len(⊥) := len(p) := len(p̄) := 0 for p ∈ P

2. len(µX.A) := len(νX.A) := 0

3. len(X) := 1

4. len(A ∧B) := len(A ∨B) := len(A) + len(B) + 1

5. len(2A) := len(3A) := len(A) + 1

Remark 26. In the next lemma, the restriction of A and B to ν-operator
forms is essential. Clearly the sequent 3(νkX.3X), µX.2X is provable for
every k. So without the restriction, the lemma would allow us to prove the
sequent 3(νX.3X), µX.2X, and thus contradict the claim in the proof of
Theorem 20.

Also note that while Γ{ } is a context, Γ{B({})} is not a context meaning
we cannot directly apply the introduction rule for ν.

Lemma 27 (deep ν-rule). Let Γ{ } be a context and A,B be ν-operator forms.
Assume we have Dµ

α

β
Γ{B(νkX.A)} for all natural numbers k, then we have

Dµ
α+len(B)

β
Γ{B(νX.A)} .

Proof. By induction on the structure of B.

1. B = >, B = ⊥, B ∈ P , or B̄ ∈ P . These cases are trivial.

2. B = X. The claim follows by an application of ν.

16



3. B = B1 ∧B2. By invertibility of ∧ we obtain for all k

Dµ
α

β
Γ{B1(νkX.A)} and Dµ

α

β
Γ{B2(νkX.A)}.

The induction hypothesis yields

Dµ
α+len(B1)

β
Γ{B1(νX.A)} and Dµ

α+len(B2)

β
Γ{B2(νX.A)}.

Thus an application of ∧ yields the claim.

4. B = B1 ∨B2. By invertibility of ∨ we obtain

Dµ
α

β
Γ{B1(νkX.A), B2(νkX.A)} for all k.

Iterated applications of Lemma 24 yield

Dµ
α

β
Γ{B1(νk1X.A), B2(νk2X.A)} for all k1, k2.

We apply the induction hypothesis for each k2 to obtain

Dµ
α+len(B1)

β
Γ{B1(νX.A), B2(νk2X.A)} for all k2.

Applying the induction hypothesis again yields

Dµ
α+len(B1)+len(B2)

β
Γ{B1(νX.A), B2(νX.A)}.

Finally, the claim follows by an application of ∨.

5. B = 2B1. By invertibility of 2 we obtain for all k

Dµ
α

β
Γ{[B1(νkX.A)]}.

The induction hypothesis yields

Dµ
α+len(B1)

β
Γ{[B1(νX.A)]}.

Thus an application of 2 yields the claim.

6. B = 3B1. Since B is a ν-operator form, this implies that B does not
contain free occurrences of X. Therefore, B(νkX.A) = B(νX.A). Thus
the claim follows trivially.

7. B = µX.B1 or B = νX.B1. Trivial since B does not contain free
occurrences of X.
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Lemma 28 (general identity axiom). Let Γ{ } be a context and A be a formula.
We find that

Dµ
2·rk(A)

0
Γ{A, Ā}.

Proof. By induction on rk(A) and a case distinction on the main connective
of A. In all cases the claim follows from a simple derivation and the basic
properties of the rank function. We just show the case where A = µX.B:

· · ·

IH

Γ{µX.B, µkX.B, νkX.B̄}
µ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{µX.B, νkX.B̄} · · ·
ν −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{µX.B, νX.B̄}

Lemma 29. (restricted µ-unfolding) Let Γ{} be a context and A be a µ-
operator form. We have that

Dµ
α

β
Γ{A(µX.A)} =⇒ Dµ

max(α+1,ω2)

max(β,rk(A(µX.A))+1)
Γ{µX.A}.

Proof. Consider the following derivation where gid is the general identity
axiom and dν is the deep ν rule:

Γ{A(µX.A)}
wk −−−−−−−−−−−−−−−−−−−−−−−−−

Γ{µX.A,A(µX.A)}
· · ·

gid −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{µX.A, µk+1X.A, νk+1X.Ā}

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{µX.A, µk+1X.A, Ā(νkX.Ā)}

µ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{µX.A, Ā(νkX.Ā)} · · ·

dν −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{µX.A, Ā(νX.Ā)}

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ{µX.A}

where dν is admissible by Lemma 27 and gid is admissible by Lemma 28.
To obtain the bounds on the proof depth, we observe that Lemma 28 yields
Dµ

2·γ
0

Γ{µX.A, µk+1X.A, νk+1X.Ā} for some γ < rk(µX.A). The claim
follows then from 2 · rk(µX.A) + len(A) + 2 < ω2.

Lemma 30 (box-rule). Let Γ,∆ be sequents and A be a formula. There exists
a finite ordinal n such that

Dµ
α

β
Γ, A =⇒ Dµ

α+n

β
3Γ,2A,∆.
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Proof. Consider the following derivation:

Γ, A
nec −−−−−−−

[Γ, A]
wk −−−−−−−−−−−−

3Γ, [Γ, A]
3? −−−−−−−−−−−−

3Γ, [A]
2,wk −−−−−−−−−−−−−

3Γ,2A,∆

Theorem 31 (embedding shallow into deep). Let Γ be a sequent. We have
that

Gµr
α

β,γ
Γ =⇒ Dµ

ω2·α
max(β,γ)

Γ.

Proof. By induction on α and a case analysis of the last rule in the proof.
Each rule of Gµr, except for 2 and µ, is a special case of its respective rule
in Dµ. The case of 2 follows from Lemma 30. If for a µ-operator form A
the sequent Γ′, µX.A has been derived by an application of µ, then we have
α ≥ 1, rk(A(µX.A)) < γ, and

Gµ
α′

β,γ
Γ′, A(µX.A) for some α′ < α.

By the induction hypothesis we find

Dµ
ω2·α′

max(β,γ)
Γ′, A(µX.A).

Lemma 29 yields

Dµ
max(ω2·α′+1,ω2)

max(β,γ)
Γ′, µX.A.

The claim follows by max(ω2 · α′ + 1, ω2) ≤ max(ω2 · α, ω2) = ω2 · α.

Theorem 32. System Dµ is complete for restricted formulas.

Proof. By Lemma 23, we know that, with respect to restricted formulas,
completeness of Gµ (Theorem 6) implies completeness of Gµr. The embedding
of the previous theorem implies completeness of Dµ+cut and cut-elimination
for Dµ (Theorem 16) gives us completeness of Dµ with respect to restricted
formulas.
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4.2 Embedding Deep into Shallow

We first define a notion of saturation. Roughly, a sequent Γ is called locally
saturated if whenever Γ is the conclusion of a certain rule, then there is a
premise whose sequent is a subsequent of Γ. The rules we consider here
exclude the 2-rule (which in some sense changes to another world) so we call
them local.

Definition 33 (locally saturated). A shallow sequent Γ is locally saturated if
the following are true:

A ∨B ∈ Γ =⇒ A,B ∈ Γ

A ∧B ∈ Γ =⇒ A ∈ Γ or B ∈ Γ

µX.A ∈ Γ =⇒ A(µX.A) ∈ Γ

νX.A ∈ Γ =⇒ ∃k νkX.A ∈ Γ

Definition 34 (canonical 2-instance). An instance of the rule

Γ, A
2 −−−−−−−−−−−−−
3Γ,2A,∆

is canonical if ∆ does not contain formulas of the form 3B.

Lemma 35 (quasi-invertibility of the 2-rule). Let Γ be a locally saturated
sequent and let there be a cut-free proof of the sequent 2A,Γ in Gµ. Then
there is a cut-free proof of the same depth in Gµ either 1) of the sequent Γ or
2) of the sequent 2A,Γ where the last rule instance is a canonical instance
of the 2-rule where the main formula is the shown formula 2A.

Proof. By induction on the depth of the given proof and a case analysis on
the last rule. Most cases are trivial because of local saturation. The only
non-trivial case is the 2-rule. We distinguish two subcases. First, if 2A is the
active formula, then the second disjunct of our lemma is either immediate or
obtained via admissibility of weakening if the rule instance is not canonical.
Second, if 2A is not the active formula, then the proof has the form

Γ2, B
2 −−−−−−−−−−−−−−
2A,Γ1,2B

where 2A has been introduced inside ∆. Thus we also get a proof of Γ1,2B
which shows the first disjunct of our lemma.
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The following definition introduces a notion of deep inference in the shal-
low system Gµ.

Definition 36. Let C{ } be a formula context (see Definition 10). Given a
rule ρ we define a rule C{ρ} as follows: an instance of the rule ρ is shown on
the left iff an instance of the rule C{ρ} is shown on the right:

Γ, A1 · · · Γ, Ai · · ·
ρ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, A

Γ, C{A1} · · · Γ, C{Ai} · · ·
C{ρ} −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, C{A}

Given a rule ρ we define the rule ρ̌ as follows: its set of instances is the union
of all sets of instances of C{ρ} where C{ } ranges over formula contexts.

Definition 37 (admissible, finitely admissible). A rule ρ is admissible for Sys-
tem Gµ if for each instance of it with premises Γi and conclusion ∆ the
following holds: if Gµ 0

Γi for all i, then Gµ 0
∆. The rule ρ is called

finitely admissible if for each instance there exists a natural number n such
that Gµ

α

0
Γi for all i, then Gµ

α+n

0
∆.

Definition 38 (guarded formula). A formula A is called guarded if the follow-
ing holds: if σX.B(X) is a subformula of A where σ may be µ or ν, then
every free occurrence of X in B(X) is in the scope of a modality.

It is well-known that for any formula there is a semantically equivalent
one that is guarded [14]. Note also that the formulas introduced in Remark 21
for embedding PDL and the logic of common knowledge are guarded.

Lemma 39 (deep applicability preserves admissibility). Let C{ } be a formula
context.

(i) There is an n such that for all Γ we have Gµ
n

0
Γ, C{>}.

(ii) There is an n such that for all Γ we have Gµ
n

0
Γ, C{p ∨ p̄}.

(iii) If a rule ρ is admissible for Gµ, then C{ρ} is also admissible for Gµ. If
we consider guarded formulas only, then we have: if a rule ρ is finitely
admissible for Gµ, then C{ρ} is also finitely admissible for Gµ.

Proof. The three statements are shown by induction on the structure of C{ }.
Let us only show the case where C{ } = 2C1{ } in statement (iii). We have
the following situation:

· · · Γ,2C1{Ak} · · ·
2C1{ρ} −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,2C1{A}
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In order to apply Lemma 35, we first need to replace the shown instance of
the rule 2C1{ρ} by several instances of it which are applied in a context that
is locally saturated. We apply invertibility of ∧, ∨, µ, and ν such that for each
k there is a proof of the form

Γ1,2C1{Ak} · · · Γm,2C1{Ak}
∧,∨,µ,ν ===========================================

Γ,2C1{Ak}
(5)

where each Γj (for 1 ≤ j ≤ m) is locally saturated. Note that m only depends
on Γ.

Fix some Γj (where 1 ≤ j ≤ m). For all k apply Lemma 35 to the proof
of Γj,2C1{Ak}. Either this yields a proof of Γj or for each k it yields a proof
of some sequent Γ′j, C1{Ak}. Thus we can build either

Γj
wk −−−−−−−−−−−−−−−

Γj,2C1{A}
or

· · · Γ′j, C1{Ak} · · ·
C1{ρ} −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ′j, C1{A}
2 −−−−−−−−−−−−−−−

Γj,2C1{A}

where in the second case C1{ρ} is admissible by the induction hypothesis.
Repeat this argument for each j with 1 ≤ j ≤ m, which for each j yields
of proof of Γj,2C1{A} in Gµ. From those we can derive Γ,2C1{A} by a
derivation as in (5) where each Ak is replaced by A. This shows that 2C1{ρ}
is admissible.

To obtain the result about finite admissibility in the context of guarded
formulas we observe that the derivation in (5) has finite depth if guarded
formulas are considered only. The reason for this is that the length of the
process of locally saturating Γ does not depend on the iteration number k in
the case where a guarded νX.B is is treated.

Lemma 40. The following rules are finitely admissible for Gµ.

Γ, A ∨B
gc −−−−−−−−−−

Γ, B ∨ A

Γ, (A ∨B) ∨ C
ga −−−−−−−−−−−−−−−−−

Γ, A ∨ (B ∨ C)

Γ, A ∨ A
gctr −−−−−−−−−−

Γ, A

Γ,2(A ∨B)
g3 −−−−−−−−−−−−−−−

Γ,3A,2B

Proof. Finite admissibility of gc, ga, and gctr follows immediately by invert-
ibility of ∨. The rule g3 can easily be shown to be finitely admissible by
induction on the given proof of the premise.
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For our translation from deep into shallow we translate nested sequents
into formulas and thus fix an arbitrary order and association among elements
of a sequent. The arbitrariness of this translation gets in the way, and we
work around it as follows. We write

A
ac −−−
B

if the formula B can be derived from the formula A by the rules ǧc and ǧa.
Note that since ǧc and ǧa are admissible for Gµ, so is ac. It is even finitely
admissible if guarded formulas are considered only.

Lemma 41. Let Γ be a sequent, A(X) be µ-operator form, and B(X) be any
operator form. We have that

Gµ
α

0
Γ, B(µkX.A) =⇒ Gµ

2·α+1

0
Γ, B(µX.A).

Proof. By induction on α and a case analysis on the last rule.

1. Γ, B(µkX.A) is an axiom. If Γ or Γ, B(X) is an axiom, then the claim
trivially holds. Otherwise, we find B = X and A is an atomic propo-
sition, a negation of one, or >. Thus Γ, A(µX.A) is also an axiom and
the claim follows by an application of µ.

2. ∧-rule. We distinguish the cases for the position of the active conjunc-
tion.

(a) If the active operator is in Γ, then we have

Gµ
α′

0
Γ1, B(µkX.A) and Gµ

α′

0
Γ2, B(µkX.A)

for α′ < α. By the induction hypothesis we obtain

Gµ
2·α′+1

0
Γ1, B(µX.A) and Gµ

2·α′+1

0
Γ2, B(µX.A).

An application of ∧ yields Gµ
2·α+1

0
Γ, B(µX.A).

(b) The case where the active operator is in B(X) is analogous to the
previous case.

(c) B = X and Γ, µkX.A has been derived from

Gµ
α′

0
Γ, A1(µk−1X.A) and Gµ

α′

0
Γ, A2(µk−1X.A)
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for suitable A1, A2 and α′ < α. By the induction hypothesis we
obtain

Gµ
2·α′+1

0
Γ, A1(µX.A) and Gµ

2·α′+1

0
Γ, A2(µX.A).

An application of ∧ yields Gµ
2·α′+2

0
Γ, A(µX.A). Then,

Gµ
2·α+1

0
Γ, µX.A

follows from an application of µ and 2 · α′ + 3 ≤ 2 · α + 1.

3. ∨-rule. This case is similar to the case of ∧.

4. 2-rule. We distinguish:

(a) If B(µkX.A) has been introduced by the built-in weakening in 2,
then the claim trivially holds.

(b) Otherwise, if B 6= X, then we have Gµ
α′

0
Γ′, B′(µkX.A) for some

α′ < α. By the induction hypothesis we get

Gµ
2·α′+1

0
Γ′, B′(µX.A).

An application of 2 yields the claim.

(c) If B = X, similar to the previous case we have

Gµ
α′

0
Γ′, A′(µk−1X.A)

from which we get by the induction hypothesis and an application
of 2

Gµ
2·α′+2

0
Γ, A(µX.A)

for some α′ < α. Then, Gµ
2·α+1

0
Γ, µX.A follows from an appli-

cation of µ and 2 · α′ + 3 ≤ 2 · α + 1.

5. µ-rule. We distinguish the cases for the position of the active µ-
operator.

(a) If the active operator is in Γ, then the claim follows easily from
the induction hypothesis and an application of µ.

(b) If the active operator is in B, then X is not free in B and the
claim trivially holds.
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(c) If B = X and A(µk−1X.A) is the active formula, then A must
be of the form µX.C. Thus X is not free in A and we have
A(µk−1X.A) = A(µX.A). The claim follows immediately from an
application of µ.

6. ν-rule. We distinguish the cases for the position of the active ν-
operator.

(a) If the active operator is in Γ, then for all i < ω there are αi < α
with

Gµ
αi
0

Γi, B(µkX.A).

By the induction hypothesis we obtain for all i < ω

Gµ
2·αi+1

0
Γi, B(µX.A).

An application on ν yields Gµ
2·α+1

0
Γ, B(µX.A).

(b) If the active operator is in B, then X is not free in B and the
claim trivially holds.

(c) If B = X and A(µk−1X.A) is the active formula, then A must
be of the form νX.C. Thus X is not free in A and we have
A(µk−1X.A) = A(µX.A). The claim follows immediately from an
application of µ.

Theorem 42. Assume Dµ
α

0
Γ. We then have Gµ 0

ΓF . If we consider

guarded formulas only, then we have Gµ
ω·(α+1)

0
ΓF .

Proof. By induction on α and a case analysis on the last rule.

1. If the endsequent of the given proof is axiomatic, say it is of the form
Γ{p, p̄}, then for some n we have Gµ

n

0
ΓF{p ∨ p̄} by Lemma 39. Ad-

missibility of ac gives Gµ 0
Γ{p, p̄}

F
. If we consider guarded formulas

only, ac is finitely admissible which gives Gµ
n

0
Γ{p, p̄}

F
for some n.

The case where the endsequent is of the form Γ{>} is similar.

2. If the last rule is an instance of ∨, then an application of ac proves our
claim.

3. The case of the 2-rule is trivial since the corresponding formula for the
premise is the corresponding formula of the conclusion.
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4. For the ν-rule, we apply the following transformation:

· · · Γ{νkX.A} · · ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{νX.A}
 

· · ·
Γ{νkX.A}

F
ac −−−−−−−−−−−−−−−

ΓF{νkX.A} · · ·
ΓF {ν} −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ΓF{νX.A}
ac −−−−−−−−−−−−−

Γ{νX.A}
F

To obtain the claim about the case of guarded formulas, let the depth
of the proof on the left be α and the depth of the premises be αk. The
depths of the ac derivations are the same in all branches since they do
not depend on the iteration number k. Thus they are bounded by a
finite ordinal m. Then by finite admissibility of the rule ΓF{ν}, there
is a finite ordinal n such that the proof on the right has the depth

sup(ω · (αk + 1) +m+ 1) + n+m ≤ sup(ω · (αk + 1)) + ω

≤ ω · sup(αk + 1) + ω ≤ ω · α + ω = ω · (α + 1),

remember that αk is the depth of the derivation of Γ{νkX.A}.

5. The case for the ∧-rule is similar.

6. For the 3-rule, we apply the following transformation:

Γ{3A, [A,∆]}
−−−−−−−−−−−−−−−−−−

Γ{3A, [∆]}
 

Γ{3A, [A,∆]}
F

ac −−−−−−−−−−−−−−−−−−−−−−−−−−−
ΓF{3A ∨2(A ∨∆F )}

ΓF {3A∨g3} −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ΓF{3A ∨ (3A ∨2∆F )}

ac −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ΓF{(3A ∨3A) ∨2∆F}

ΓF {gctr∨2∆F } −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ΓF{3A ∨2∆F}

ac −−−−−−−−−−−−−−−−−−−−
Γ{3A, [∆]}

F

Note that here a rule like C{ρ ∨A} means rule ρ applied in the context
C{{ } ∨ A}.

7. For the µk-rule, we apply the following transformation, where Γ′{ } is
such that Γ′{µkX.A} = Γ{µX.A, µkX.A}:

Γ{µX.A, µkX.A}
−−−−−−−−−−−−−−−−−−−−−−

Γ{µX.A}
 

Γ{µX.A, µkX.A}
F

ac −−−−−−−−−−−−−−−−−−−−−−−
Γ′F{µkX.A}

L. 41 −−−−−−−−−−−−−−−
Γ′F{µX.A}

ac −−−−−−−−−−−−−−−−−−−−−−
ΓF{µX.A, µX.A}

ΓF {ctr} −−−−−−−−−−−−−−−−−−−−−−
ΓF{µX.A}

ac −−−−−−−−−−−−−
Γ{µX.A}

F
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To obtain the claim about guarded formulas, we let the depth of the
proof on the left be α and the depth of the premise be α′. Then there
are finite ordinals m,n such that the proof on the right has the depth

2 · (ω · (α′ + 1) +m) + 1 + n = 2 · (ω · (α′ + 1)) + 2m+ 1 + n

= (2 · ω) · (α′ + 1) + 2m+ 1 + n = ω · (α′ + 1) + 2m+ 1 + n

≤ ω · (α′ + 1) + ω ≤ ω · (α + 1).

Remember that ordinal multiplication is associative and that 2 ·ω = ω,
see, for instance, [17].

Combining the results about embedding the shallow system into the deep
system (with cut), cut-elimination for the deep system, and embedding the
deep system into the shallow system (without cut), we obtain the following
corollary about syntactic cut-elimination for the shallow system. Note that
by Lemma 2, we know that the rank of any formula is smaller than ω2. Hence
if Gµ

α

β,γ
Γ, then there is a natural number n such that β, γ ≤ ω · n.

Corollary 43. Let Γ be a sequent of restricted formulas. Assume we have
Gµ

α

ω·n,ω·n Γ. Then we have Gµ 0
Γ. If we consider guarded formulas only,

then we have Gµ
ω·(ϕn1 (ω2·α)+1)

0
Γ.

5 Conclusion

We looked at syntactic cut-elimination for modal fixed point logics from the
general perspective of the modal µ-calculus. We introduced a deep system
Dµ for a fragment of the µ-calculus that includes the logic of common knowl-
edge and PDL (modulo a multi-modal language, see Remark 21). We then
showed that Dµ enjoys syntactic cut-elimination. We also showed that Dµ is
not complete for the modal µ-calculus, which provides some evidence that
our method cannot be extended in a straightforward way to larger fragments
of the modal µ-calculus. Via embedding a traditional shallow system into Dµ

and vice versa, we obtain cut-elimination for a given traditional shallow sys-
tem. Thus our results subsume and extend previous cut-elimination results
for particular logics like PDL and the logic of common knowledge.

The main technical contribution of this paper are the embeddings of shal-
low into deep and vice versa. For PDL no such embeddings were available so
far and the embeddings for common knowledge are much simpler than those
for the general case. In particular, the embedding of shallow into deep is for
free in the case of common knowledge since the operator form for common
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knowledge corresponds almost directly to the structural connective [·] on the
level of nested sequents.

If we restrict ourselves to guarded formulas, we also obtain upper bounds
on the growth of the proof depth during cut-elimination. So we get an
upper bound on the depth of a cut-free proof given the depth of an original
proof with cut. Results of this kind were previously only known for common
knowledge. Our bounds match those results but apply also to other logics
like PDL.

Acknowledgements. We would like to thank the anonymous referees for
their very detailed and useful comments.

References

[1] David Baelde and Dale Miller. Least and greatest fixed points in lin-
ear logic. In Proceedings of the 14th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, volume 4790 of
LNCS, pages 92–106. Springer-Verlag, 2007.

[2] Dietmar Berwanger, Erich Gradel, and Giacomo Lenzi. The variable
hierarchy of the µ-calculus is strict. Theor. Comp. Sys., 40(4):437–466,
2007.

[3] Julian Bradfield and Colin Stirling. Modal mu-calculi. In P. Blackburn,
J. van Benthem, and F. Wolter, editors, The Handbook of Modal Logic,
pages 721–756. Elsevier, 2006.
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