
Justification Logics
with Common Knowledge

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Samuel Bucheli

von Buttisholz und Malters LU

Leiter der Arbeit:
Prof. Dr. G. Jäger
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1. Introduction
‘Contrariwise,’ continued Tweedledee, ‘if it was so, it
might be; and if it were so, it would be; but as it isn’t, it
ain’t. That’s logic.’

Lewis Carroll, Through the Looking Glass [Car98]

Logic explores the rules of (sound) reasoning. Epistemic logic in-
vestigates the notions of knowledge and belief formally, often using
modal logic. An interesting case is the presence of several subjects of
knowledge, usually called agents. In these multi-agent systems, the
notion of common knowledge is crucial. Informally, a fact is common
knowledge if everyone knows the fact and everyone knows that everyone
knows the fact and everyone knows that everyone knows that everyone
knows the fact and so on, ad infinitum. Knowledge formalized using
modal logic could be described as implicit, as we can only state the fact
of knowledge, but not the reason for this knowledge. This is contrasted
by the situation in justification logic, where not only the fact of knowl-
edge is stated, but also a reason—or justification—for this knowledge
is given. There is a very close relationship between many modal logics
and justification logics, i.e., for a given modal logic we can often name
its justification counterpart. The aim of this thesis is to establish a
justification counterpart to modal multi-agent systems with commmon
knowledge.1

This thesis is organized as follows. In Chapter 2 we introduce the
basic notions for epistemic modal logic and in Chapter 3 we introduce
the concept of common knowledge, in particular we discuss several
proof systems for common knowledge. In Chapter 4, we present a co-
inductive proof system for common knowledge in detail. In Chapter 5,

1See the Chapters mentioned in the following paragraph for proper references to
the notions mentioned here.
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1. Introduction

we introduce the basic notions of justification logics. Chapters 6 and 7
are the core part of this thesis. Here, several justification logics with
common knowledge are introduced and their properties are investigated.
In Chapter 8, we discuss open problems and further research possibilities.
In Chapter A, we define the notion of filtration for justification logics, a
technical tool that was used in previous chapters. Chapter B introduces
justified public announcement logics, which are another interesting
research topic in epistemic justification logics, particularly if combined
with justification logics for common knowledge.

In order to keep the technical machinery lightweight, notations and
definitions are usually valid only within the scope of the chapter and
exceptions are usually marked with excplicit references to other chapters.
Where indicated, chapters are very closely based on the corresponding
publication.
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2. Epistemic Modal Logic
Three ladies, A, B, C in a railway carriage all have dirty
faces and are all laughing. It suddenly flashes on A:
Why doesn’t B realize C is laughing at her? —
Heavens! I must be laughable. (Formally: if I, A, am
not laughable, B will be arguing: if I, B, am not
laughable, C has nothing to laugh at. Since B does not
so argue, I, A, must be laughable.

John Littlewood, Littlewood’s Miscellany [Lit86]

Modalities are used to qualify the truth of a statement [FM98; Gar09].
Examples for modalities are:

Modal logic “it is necessary that. . . ” or “it is possible that. . . ”

Epistemic logic “it is known that. . . ”

Doxastic logic “it is believed that. . . ”

Provability logic “it is provable that. . . ”

Deontic logic “it is obligatory that. . . ”

Temporal logic “it has always been the case that. . . ” or “it will be the
case that. . . ”

In this thesis we will mainly consider epistemic logics, i.e. logics of
knowledge and belief [Hin62; HS09]. For a general overview of the
history of modal logics see [Gol03; Bal10], an excellent introduction to
modal logic can be found in [BRV02] and [BBW07] provides a survey of
current results.
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2. Epistemic Modal Logic

2.1. Syntax
Formulae of modal logic are given by the following grammar:

A ::= P | ¬A | A→ A | �A ,

where P is a proposition from a fixed, countable set of propositions
Prop. Furthermore, we define:

A ∨B := ¬A→ B

A ∧B := ¬(¬A ∨ ¬B)
⊥ := A ∧ ¬A

A↔ B := (A→ B) ∧ (B → A)
♦A := ¬�¬A

We will denote formulae by A,B,C, . . ..
The basic modal logic K is given by the following axioms:

A1 all propositional tautologies

(k) �(A→ B)→ (�A→ �B)

and rules
A A→ B

B
(MP) ,

` A
�A

(Nec) ,

We will consider extensions by the following axioms

(d) �⊥ → ⊥ (consistency)

(t) �A→ A (truth)

(4) �A→ ��A (positive introspection)

(5) ¬�A→ �¬�A (negative introspection)

See Table 2.1 for the modal logics we will consider in the following.
Note that the logics KT4 and KT45 are also often called S4 and S5,
respectively for historical reasons [Bal10].

Given the epistemic interpretation of �A as “A is known”, we read
the axioms as follows:

4



2.2. Semantics

A1 (k) (d) (t) (4) (5) (MP) (Nec)
K X X X X
KD X X X X X
KT X X X X X
K4 X X X X X
K5 X X X X X
KD4 X X X X X X
KD5 X X X X X X
KT4 X X X X X X
KT5 X X X X X X
K45 X X X X X X
KD45 X X X X X X X
KT45 X X X X X X X

Table 2.1.: Modal Logics

(k) knowledge is closed under logical consequences

(d) knowledge is consistent

(t) knowledge is true

(4) if A is known, then it is known that A is known

(5) if A is not known, then it is known that A is not known

Often (t) is used to distinguish knowledge and belief: without (t) we
speak about belief, with (t) we speak about knowledge. However, for
the sake of readability, we will always also mean belief when we say
knowledge, e.g. when we say common knowledge, we actually mean
common belief or common knowledge.

2.2. Semantics
To provide the logics defined above with semantics, we use so called
Kripke models [Kri59]. The idea here is to interpret “A is known” (or
“A is necesary”) by

5



2. Epistemic Modal Logic

A is true in all circumstances imaginable.

In order to formalize this, consider a non-empty set W where w ∈W is
called a possible world, a relation R ⊆ W ×W between these worlds
called accessibility relation and a function ν : Prop → P(W ) called
valuation, which assigns to each proposition P the worlds that it is valid
in. We call the triple M = (W,R, ν) a Kripke model.

For a Kripke model M = (W,R, ν) we define the ternary satisfaction
relation M, w 
 A between model, w ∈W and formulae by induction
on the formula A as follows:

• M, w 
 P if and only if w ∈ ν(P )

• M, w 
 ¬A if and only if M, w 6
 A

• M, w 
 A→ B if and only if M, w 
 B whenever M, w 
 A

• M, w 
 �A if and only if M, v 
 A for all v ∈ W such that
R(w, v).

We write M 
 A if M, w 
 A for all w ∈W .

Example 2.1. Consider the following example that illustrates knowledge
of the weather at your current location, but uncertainty about the
weather in other locations (assuming you do not have access to weather
forecasts or similar means). We look at two propositions “It is sunny in
Bern” and “It is sunny in Calgary” (and their negations). Assume it is
actually sunny in both Bern and Calgary and we are located in Bern.
Hence, we consider it possible that it is not sunny in Calgary. On the
other hand, we do not consider it possible that it is not sunny in Bern.
We get the following model M = (W,R, ν):

We have four worlds W = {a, b, c, d} which are related by R =
{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)} and the valuation is
given as follows:

ν(“It is sunny in Bern”) = {a, b}
ν(“It is sunny in Calgary”) = {a, d}

6



2.2. Semantics

Calgary not sunny
Bern sunny
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Calgary not sunny
Bern not sunny

Calgary sunny
Bern sunny
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Calgary sunny
Bern not sunny

Figure 2.1.: A simple example of a Kripke model

See Figure 2.1 for a graphical representation of this model. We have

M, a 
 �“It is sunny in Bern”
M, a 
 ¬�“It is sunny in Calgary”
M, a 
 ¬�¬“It is sunny in Calgary”

as can be easily seen.
The basic modal logic K is sound and complete with respect to

the class of all Kripke models. In order to establish soundness and
completeness of the axiomatic extensions defined previously, we have to
consider subclasses of the class of all Kripke models given by properties
of the accessibility relation. We have the following correspondence
between axioms and conditions on the accessibility relation

(d) R is serial, i.e., for all w ∈W there is a v ∈W such that R(w, v)

(t) R is reflexive, i.e., for all w ∈W we have R(w,w)

(4) R is transitive, i.e., for all u, v, w ∈W with R(w, v) and R(v, u) we
have R(w, u).

(5) R is Euclidean, i.e., for all u, v, w ∈ W with R(w, v) and R(w, u)
we have R(v, u).

Let L be any of the logics defined previously. We define the class of
all Kripke models for L, denoted CL, to be the class of all Kripke models
whose accessibility relation meets all conditions corresponding to the
axioms of the logic L, e.g. the class CKT4 of all Kripke models for KT4 is

7



2. Epistemic Modal Logic

the class of all Kripke models with reflexive and transitive accessibility
relations.

The following theorem is standard. Soundness is established by an
induction on the deriviation of the formula and completeness is obtained
by a canonical model construction.

Theorem 2.2 (Soundness and completeness). Any logic L is sound and
complete with respect to the class of its Kripke models, i.e.

L ` A if and only if M 
 A for all M∈ CL

This theorem can be strengthened and completeness with respect to
classes of finite Kripke models can be shown and thus decidability of
the logics is obtained.

2.3. Multi-Agent Systems
We obtain a variant of the systems presented above by using several
modal operators �1,�2, . . . ,�h instead of one. Such multi-modal logics
are also called a multi-agent systems, e.g. formulae �a�bA can then
be read as “agent a knows that agent b knows A”. Usually, all agents
will have the same modal strength, e.g. all �i will satisfy the axioms of
KT5. The notion of a model is also easily adapted to this case by using
several accessibility relations instead of one. Let us have a look at a
simple example of a multi-agent system.
Example 2.3. Consider a system of two agents. Agent 1 is located
in Bern, agent 2 is located in Calgary. Analogous to the model from
Example 2.1 we get the model displayed in Figure 2.2. The labels on
the arrows indicate to which agent the accessibility relation is assigned.
We now get e.g. that agent 1 knows that it is sunny in Bern, but also
that agent 1 knows that agent 2 does not know it is sunny in Bern.
Furthermore, agent 2 knows that agent 1 knows these facts, formally:

M, a 
 �1“It is sunny in Bern”
M, a 
 �1¬�2“It is sunny in Bern”
M, a 
 �2�1“It is sunny in Bern”
M, a 
 �2�1¬�2“It is sunny in Bern”

8



2.3. Multi-Agent Systems

Calgary not sunny
Bern sunny
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Figure 2.2.: A simple example of a Kripke model for two agents

We will give only this brief account of multi-agent systems here,
as multi-agent systems will be a simple subsystem of the multi-agent
systems with common knowledge introduced in the next chapter.

9





3. Common Knowledge
Two men, who pull the oars of a boat, do it by an
agreement or convention, though they have never given
promises to each other

David Hume, A Treatise of Human Nature [Hum39]

The notion of common knowledge is essential in the area of multi-agent
systems [SLB09], where coordination among a set of agents is a central
issue. Informally, common knowledge of a proposition A is defined as
the infinitary conjunction everybody knows A and everybody knows that
everybody knows A and so on.1 This is equivalent to saying that common
knowledge of A is the greatest fixed point of λX.(everybody knows A and
everybody knows X). The textbooks [Fag+95; MH95] provide excellent
introductions to epistemic logics in general and common knowledge in
particular. The standard approach to axiomatizing this property is
by means of a co-closure axiom (see Definition 3.1) and the following
induction rule (see, for instance, [Fag+95]):

A→ E(A ∧B)
A→ CB (I-R1)

For further views on common knowledge, see also [VS09] and [Bar88].
We now introduce syntax and semantics for common knowledge, the

latter based on Kripke models. Furthermore we present two different
Hilbert-style axiomatizations for common knowledge and investigate
their relationship as published in [BKS10b]. Finally, we present a selec-
tion of sequent-style proof systems for common knowledge and discuss
known restrictions.

1This view is attributed to Lewis [Lew69].
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3. Common Knowledge

3.1. Syntax and Semantics
We consider a language with h agents for some h > 0. This language
will be fixed throughout this chapter, and h will always denote the
number of agents. We are given a countable set Prop of propositional
variables P . Propositions P and their negations P are atoms.

To facilitate the proof-theoretic treatment, formulae are given in
negation normal form, i.e. negations only occur in front of atoms. We
denote formulae using A,B,C. They are defined by the following
grammar:

A ::= P | P | A ∧A | A ∨A | �iA | ♦iA | CA | C̃A ,

where 1 ≤ i ≤ h. The formula �iA is read as agent i knows A, and
the formula CA is read as A is common knowledge. The connectives �i
and C have ♦i and C̃ as their respective duals. The negation ¬A of a
formula A is defined in the usual way by using De Morgan’s laws, the
law of double negation, and the duality laws for modal operators, i.e.
we inductively define

¬P := P

¬P := P

¬A ∧B := ¬A ∨ ¬B
¬A ∨B := ¬A ∧ ¬B
¬�iA := ♦i¬A
¬♦iA := �i¬A
¬CA := C̃¬A
¬C̃A := C¬A

We also define

A→ B := ¬A ∨B
A↔ B := (A→ B) ∧ (B → A).

The formula EA is an abbreviation for everybody knows A:

EA := �1A ∧ · · · ∧�hA and ẼA := ♦1A ∨ · · · ∨ ♦hA .

12



3.2. Hilbert-Style Axiomatizations

A Kripke model M is a tuple (W,R1, . . . , Rh, ν), where W is a non-
empty set of worlds, each Ri is a binary relation on W , and ν : Prop→
P(W ) is a valuation function that assigns to each proposition a set of
worlds.

Let M = (W,R1 . . . , Rh, ν) be a Kripke model and v, w ∈ W
two worlds. We say that v is reachable from w in n steps, denoted
reach(w, v, n), if there exist worlds v0, . . . , vn such that v0 = w, vn = v,
and for all 0 ≤ j ≤ n− 1 there exists 1 ≤ i ≤ h with Ri(sj , sj+1). We
say v is reachable from w if there exists an n with reach(w, v, n).

Let M = (W,R1 . . . , Rh, ν) be a Kripke model and w ∈ S be a
world. We define the satisfaction relation M, w 
 A inductively on the
structure of the formula A:

M, w 
 P if w ∈ ν(P ),
M, w 
 P if w ∈W \ ν(P ),
M, w 
 A ∧B if M, w 
 A and M, w 
 B,

M, w 
 A ∨B if M, w 
 A or M, w 
 B,

M, w 
 �iA if M, v 
 A for all v such that Ri(w, v),
M, w 
 ♦iA if M, v 
 A for some v with Ri(w, v),
M, w 
 CA if M, v 
 A for all v such that

there is an n ≥ 1 with reach(w, v, n),
M, w 
 C̃A if M, v 
 A for some v with

reach(w, v, n) for some n ≥ 1.

We write M 
 A if M, w 
 A for all w ∈ W . A formula A is called
valid, denoted 
 A, if M 
 A for all Kripke models M. A formula A
is called satisfiable if M, w 
 A for some Kripke model M and some
world w.

3.2. Hilbert-Style Axiomatizations
We will now present two Hilbert-style axiomatizations and prove their
equivalence. The first axiomatization HR is based on an induction rule
and can be found in [Fag+95].

13



3. Common Knowledge

Definition 3.1 (The system HR). The Hilbert calculus HR for the logic
of common knowledge is defined by the following axioms and inference
rules:

Propositional axioms: All instances of propositional tautologies

Modus ponens: For all formulae A and B,
A A→ B

B
(MP)

Modal axioms: For all formulae A and B and all indices 1 ≤ i ≤ h,

�i(A→ B)→ (�iA→ �iB) (K)

Necessitation rule: For all formulae A and all indices 1 ≤ i ≤ h,
A

�iA
(Nec)

Co-closure axiom: For all formulae A,

CA→ E(A ∧ CA) (Co-Cl)

Induction rule: For all formulae A and B,

B → E(A ∧B)
B → CA (I-R1)

We have the following standard result using a canonical model con-
struction, see [Fag+95].

Theorem 3.2 (Soundness and completeness of HR). For any formula A,

HR ` A if and only if A is valid.

We now introduce a deductive system for common knowledge where
the induction rule is replaced by an induction axiom. The system is
based on the system presented in [MH95], where an induction axiom
is introduced as A ∧ C(A → EA) → CA. However, in our setting, the
axiom from [MH95] would not be sound since we do not define common
knowledge to be reflexive. To obtain a complete system, we also need
to include a normality axiom and a necessitation rule for the common
knowledge operator.

14



3.2. Hilbert-Style Axiomatizations

Definition 3.3 (The system HAx). The Hilbert calculus HAx consists of
the axioms and rules of HR whereby (I-R1) is replaced by the following
axioms and rule:

C-modal axiom: For all formulae A and B,

C(A→ B)→ (CA→ CB) (C-K)

C-necessitation rule: For all formulae A,

A

CA (C-Nec)

Induction axiom: For all formulae A,

EA ∧ C(A→ EA)→ CA (I-Ax)

The soundness of HAx is easily obtained.

Theorem 3.4 (Soundness). For any formula A, if HAx ` A, then A is
valid.

Proof. We show soundness as usual by induction on the length of the
derivation of HAx ` A. We only consider the case where A is the induc-
tion axiom. Let M be a Kripke model. We show by induction on n
that for all n ≥ 1, if M, w 
 EA ∧ C(A→ EA), then for all worlds v
with reach(w, v, n), we have M, v 
 A. If n = 1, then M, w 
 EA guar-
anteesM, v 
 A. For n = m+1, m ≥ 1, let w be such that reach(w, v, n).
Then there exists v′ such that

(1) reach(w, v′,m) and

(2) reach(v′, v, 1).

From (1) and M, w 
 C(A→ EA) we obtain M, v′ 
 A→ EA. By the
induction hypothesis, we get M, v′ 
 A. Therefore, M, v′ 
 EA. Thus,
by (2), we get M, v 
 A.

In order to establish the completeness of HAx, we introduce an in-
termediate system Hint. We first reduce HR to Hint and then reduce
Hint to HAx. The completeness of HR then implies the completeness
of HAx.

15



3. Common Knowledge

Definition 3.5 (The system Hint). Hint consists of the axioms and rules
of HR whereby (I-R1) is replaced by the following axiom and rule:
C-distributivity: For all formulae A and B,

C(A ∧B)→ (CA ∧ CB) (C-Dis)

Induction rule 2: For all formulae A,
A→ EA

EA→ CA (I-R2)

Lemma 3.6. For each formula A, we have that HR ` A implies Hint `
A.

Proof. It is sufficient to show that (I-R1) is derivable in Hint. Assume
Hint ` B → E(A ∧B) . (3.1)

Then Hint ` A ∧B → E(A ∧B). By (I-R2), we obtain that
Hint ` E(A ∧B)→ C(A ∧B) .

Using (C-Dis), we get Hint ` E(A ∧ B) → CA. Finally, (3.1) yields
Hint ` B → CA, which completes the proof.

Lemma 3.7. For each formula A, we have that Hint ` A implies
HAx ` A.
Proof. We first show that (C-Dis) is derivable in HAx. The following
formula is an instance of (C-K):

HAx ` C(A ∧B → B)→ (C(A ∧B)→ CB) . (3.2)
HAx ` A ∧ B → B is a propositional axiom. By (C-Nec), HAx `
C(A ∧ B → B). By (3.2), we have HAx ` C(A ∧ B) → CB. A similar
argument yields HAx ` C(A∧B)→ CA. The last two statements together
imply that (C-Dis) is derivable in HAx.

It remains to show that (I-R2) is derivable in HAx. Assume that
HAx ` A → EA. By (C-Nec), we get HAx ` C(A → EA). Thus, the
derivability of (I-R2) follows from (I-Ax).

These two lemmas, together with the completeness of HR, give us the
completeness of HAx.
Corollary 3.8 (Completeness of HAx). For all formulae A, if A is valid,
then HAx ` A.
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3.3. A Survey of Proof Systems
Besides the Hilbert-style axiomatizations from the previous section,
different sequent systems for common knowledge have been presented.
We are now giving a brief survey of existing sequent proof systems for
common knowledge. A main aim of the research presented below was to
find finitary, cut-free sequent systems that have desirable properties from
a proof-theoretic perspective. Even though big progress has been made,
no completely satisfactory solution has been found yet. As discussed
in the next section, it might even be impossible to find a solution with
all desired properties. We will only give a short description of the
systems; for full details refer to the publications mentioned throughout
this section.

A sequent is a finite set of formulae denoted by Γ,∆,Σ. For a sequent
∆ = {A1, . . . , An}, we denote the sequent {♦iA1, . . . ,♦iAn} by ♦i∆
and the sequent {ẼA1, . . . , ẼAn} by Ẽ∆. In addition, M, w 
 ∆ is
understood as M, w 
 A1 ∨ · · · ∨An.

In [AJ05], Alberruci and Jäger present a Tait-style system Kh(C):

Axioms and basic rules of inference

P, P ,Γ (ID) A,B,Γ
A ∨B,Γ (∨) A,Γ B,Γ

A ∧B,Γ (∧)

Individual agents
A,Γ, C̃∆

�iA,♦iΓ, C̃∆,Π
(�i)

Common knowledge

ẼA,Γ
C̃A,Γ

(C̃) EA, C̃∆
CA, C̃∆,Π

(C)

Induction rule
¬B,EA, C̃∆ ¬A,EB, C̃∆

¬A,CA, C̃∆,Π
(Ind)

Cut
A,Γ ¬A,Γ

Γ (Cut)

17



3. Common Knowledge

They prove the soundness and completeness of the system with respect
to standard Kripke-style semantics and furthermore show that the
formulae allowed in the (Cut)-rule can be restricted to a certain form,
namely disjunctive-conjunctive closure of the Fischer-Ladner closure of
the sequent to be proved. However, full cut elimination is not possible.

Furthermore, in [AJ05], an infinitary system Kω
h(C) using an ω-rule

for common knowledge is introduced, and soundness and completeness
are shown:

Axioms and basic rules of inference

P, P ,Γ (ID) A,B,Γ
A ∨B,Γ (∨) A,Γ B,Γ

A ∧B,Γ (∧)

Individual agents
A,Γ, C̃∆

�iA,♦iΓ, C̃∆,Π
(�i)

Common knowledge

ẼA,Γ
C̃A,Γ

(C̃) EmA,Γ for all m ≥ 1
CA,Γ (ωC)

The infinitary system Kω
h(C) can be finitized using the finite model

property of common knowledge, as shown in [JKS07]. In order to state
the finite model property we first need to define the length of a formula.

Definition 3.9 (length of a formula). Let A be a formula. Denote its
length `(A), given by:

• `(P ) := `(P ) := 1,

• `(B ∧ C) := `(B ∨ C) := `(B) + `(C),

• `(EB) := `(ẼB) := 1 + `(B),

• `(CB) := `(C̃B) := `(B) · h+ h+ 1.

The finite model property says that a satisfiable formula is satisfiable
in a finite model whose size is bound by the length of the formula. See
e.g. [Fag+95; JKS07] for a proof of this theorem.

18



3.3. A Survey of Proof Systems

Theorem 3.10 (finite model property). If A is satisfiable, then there
exists a model M and world w in that model, such that M, w 
 A and
card(M) ≤ 2`(A).

The following corollary is easy to see. Given a formula CA that is not
valid, we find a finite model as above witnessing this fact. Obviously
now, there must be a reachable world within the given boundaries
(depending on the size of the model and hence on the length of the
formula) in which it does not hold.

Corollary 3.11. If, for all 1 ≤ m ≤ 2`(CA)+`(B1)+...+`(Bn), we have


 EmA ∨B1 ∨ . . . ∨Bn

then also

 CA ∨B1 ∨ . . . ∨Bn

Based on this observation, the following finitized Tait-style system
K<ω
h (C) is introduced in [JKS07] and again soundness and completeness

are proved:

Axioms and basic rules of inference

P, P ,Γ (ID) A,B,Γ
A ∨B,Γ (∨) A,Γ B,Γ

A ∧B,Γ (∧)

Individual agents
A,Γ, C̃∆

�iA,♦iΓ, C̃∆,Π
(�i)

Common knowledge
ẼA,Γ
C̃A,Γ

(C̃)

EmA,Γ for all 1 ≤ m ≤ 2`(CA)+
∑

B∈Γ `(B)

CA,Γ,Π (< ωC)

Even though this system is finitary and cut-free, the authors describe it
as “somewhat unusual”, raising questions about structural properties
and syntactic cut-elimination.
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3. Common Knowledge

In [BS09], Brünnler and Studer introduce a nested sequent version
of Kω

h(C). Nested sequents have an additional structural connective
[.] corresponding to � in a similar manner that commas in sequents
correspond to disjunction. Roughly speaking, nested sequents allow
sequent rules to be applied within formulae:2

Axioms and basic rules of inference

Γ{P, P} Γ{A,B}
Γ{A ∨B} (∨) Γ{A} Γ{B}

Γ{A ∧B} (∧)

Individual agents

Γ{[A]i}
Γ{�iA}

(�i)
Γ{♦iA, [∆, A]i}

Γ{♦iA, [∆]i}
(♦i)

Common knowledge

Γ{C̃A, ẼkA}
Γ{C̃A}

(C̃) Γ{EmA} (for all m ≥ 1)
Γ{CA} (C)

Cut rule
Γ{A} Γ{¬A}

Γ{∅} (cut)

This system allows a syntactic cut-elimination procedure and there is
an embedding from DC into Kω

h(C) and vice versa, thus also yielding
cut-elimination for the latter system.

Furthermore, in [Weh10] an annotated sequent system, which is
an adpation of the system for temporal logics presented in [BL08] to
common knowledge, is introduced. This system seems to be a finitary
version of the system presented in the next chapter, but no formal
comparison has been presented yet.

Finally, we also mention [AGW07] where a cut-free tableaux system
is presented, which is mainly aimed towards implementations and thus
has a different focus than the systems presented above.

2We will not present all formalities necessary to introduce nested sequent systems
here. See [Brü10] for a survey of nested sequents in modal logic and the re-
cent [Fit12] that shows that nested sequents are notational variants of prefixed
tableaus in the same way that classical semantic tableaus are notational variants
of classical Gentzen sequent calculae.
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3.4. Known Restrictions
A reason why it might be hard to come up with a satisfactory proof
system for common knowledge was found by Studer in [Stu09]. Let X,Y
be propositional variables and A(~P ,X) a formula such that A contains
at most the displayed propositional variables ~P ,X = P1, . . . , Pn, X. A
logic has the Beth property (B1) [Bet53] if implicit definitions can be
made explicit, i.e. whenever


 A(~P ,X) ∧A(~P , Y )→ (X ↔ Y ),

then there exists a formula B(~P ) such that


 A(~P ,X)→ (X ↔ B(~P )).

The Beth property is implied by the Craig Interpolation Property
CIP [Cra57]. The latter can be stated as follows. Let A(~P , ~Q) and
B(~P , ~R) be formulae. If


 A(~P , ~Q)→ B(~P , ~R)

then there exists a formula C(~P ) that contains only common proposi-
tional variables of A(~P , ~Q) and B(~P , ~R) such that


 A(~P , ~Q)→ C(~P ) and C(~P )→ B(~P , ~R).

For many logics, Craig Interpolation is a consequence of cut elimination,
see e.g. [ST96]. In [Stu09], Studer shows that common knowledge (over
arbitrary frames or over transitive frames with at least two agents)
lacks the Beth property (B1) and hence also Craig interpolation (CIP).
This might indicate that a finitary, cut-free sequent system for common
knowledge with the usual desirable properties might not exist.

3.5. Variants and Axiomatic Extensions
We will now introduce variants and axiomatic extensions of the logic
of common knowledge presented above. These variants will be used in
Chapters 6 and 7. The first variant we present uses a stronger base
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3. Common Knowledge

logic, namely S4. The second variant allows us to speak about groups
of agents. The latter will also be presented with different base logics.

The first system we are presenting is S4C
h, a system of h agents, and

uses the same language as the system for common knowledge presented
previously. The Hilbert system S4C

h is given by the following axioms:

Propositional axioms All instances of propositional tautologies.

Modal axioms for agents For any agent i ∈ {1, . . . , h}

�i(A→ B)→ (�iA→ �iB),
�iA→ A, �iA→ �i�iA.

Axioms for common knowlege

C(A→ B)→ (CA→ CB),
A ∧ C(A→ EA)→ CA, CA→ E(A ∧ CA).

and rules:
A A→ B

B
(MP), A

�iA
(Nec), A

CA (C-Nec)

for all agents i ∈ {1, . . . , h}.
Soundness and completeness for this system with respect to the

usual Kripke-style semantics (with reflexive and transitive accessibility
relations for individual agents) is established as previously by induction
on the derivation and a canonical model construction, respectively,
see [Fag+95; MH95].

In order to deal with groups of agents, we need to extend our language.
By a group of agents G = 〈i1, . . . , ik〉 we mean a (non-empty) tuple
of ij ∈ {1, . . . , h} with i1 < i2 < . . . < ik.3 We will use set-notation
ij ∈ G and G ⊆ H to state that ij occurs in G and all ij ∈ G occur in H,
respectively.

Formulae in the language of common knowledge with groups of agents
are given by the following grammar:

A ::= Pj | ¬A | (A→ A) | �iA | CGA ,
3Using (ordered) tuples instead of sets is not necessary for the modal language but

will facilitate notations and technical details in the case of justification logic in
Chapter 7.
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3.5. Variants and Axiomatic Extensions

where Pj ∈ Prop and G is a group of agents.
Furthermore, for a group of agents G = 〈i1, . . . , ik〉, we define

EGA := �i1A ∧ . . . ∧�ikA .

The Hilbert system KC
h is given by the following axioms:

Propositional axioms All instances of propositional tautologies.

Modal axioms for agents For any agent i ∈ {1, . . . , h}

�i(A→ B)→ (�iA→ �iB). (k)

Modal axiom for common knowledge For any group of agents G

CG(A→ B)→ (CGA→ CGB). (C-k)

Group restriction axioms For any groups of agents G2 ⊆ G1

CG1A→ CG2A. (res)

Co-closure axioms For any group of agents G

CGA→ EG(A ∧ CGA). (ccl)

Induction axioms For any group of agents G

CG(A→ EGA)→ (EGA→ CGA). (ind)

and rules
A A→ B

B
(MP) A

�iA
(Nec) A

CHA
(C-Nec)

for all agents i ∈ {1, . . . , h} and for the group of all agents H =
〈1, . . . , h〉.

We will also consider several extensions of KC
h given in table 3.5 using

the axioms from table 3.5 for each agent i ∈ {1, . . . , h}.
Note that the rule (Nec) can be easily derived using (C-Nec), (ccl)

and propositional reasoning, but was included in order to keep the
presentation in line with the system from [MH95]. However, the sys-
tem from [MH95] does not use groups of agents, whereas the system
from [Fag+95] does and uses the induction rule instead of the axiom.
Hence, some remarks on the setup of the above logics are required. Note
first that C-necessitation for the group of all agents is sufficient:
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3. Common Knowledge

(d) �i⊥ → ⊥
(t) �iA→ A
(4) �iA→ �i�iA
(5) ¬�iA→ �i(¬�iA)

Table 3.1.: Additional Axioms

Lemma 3.12. In any of the logics LC
h defined above, C-necessitation

for arbitrary groups of agents is derivable.

Proof. Let H = 〈1, . . . , h〉 be the group of all agents and G ( H. Suppose
the formula A has already been derived. Then

1. CHA by (C-Nec)

2. CHA→ CGA by (res)

3. CGA by (MP)

On the other hand, we could also have included C-necessitation for
arbitrary groups and would thus have been able to omit the group
restriction axiom (res).

Lemma 3.13. The group restriction axiom (res) is derivable from the
C-necessitation rule for arbitrary groups.

Proof. Let G1 ⊆ G2 be two groups of agents.

1. CG2A→ EG2CG2A (ccl)

2. EG2CG2A→ EG1CG2A propositional reasoning

3. CG2A→ EG1CG2A propositional reasoning

4. CG1(CG2A→ EG1CG2A) C-necessitation

5. CG1(CG2A→ EG1CG2A)→ (EG1CG2A→ CG1CG2A) (ind)

6. EG1CG2A→ CG1CG2A (MP)
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7. CG2A→ CG1CG2A propositional reasoning

8. CG2A→ EG2A (ccl)

9. EG2A→ EG1A propositional reasoning

10. CG2A→ EG1A propositional reasoning

11. EG1A→ (A→ EG1A) propositional axiom

12. CG2A→ (A→ EG1A) propositional reasoning

13. CG1(CG2A→ (A→ EG1A)) C-necessitation

14. CG1(CG2A→ (A→ EG1A))
→ (CG1CG2A→ CG1(A→ EG1A)) (C-k)

15. CG1CG2A→ CG1(A→ EG1A) (MP)

16. CG2A→ CG1(A→ EG1A) propositional reasoning

17. CG1(A→ EG1A)→ (EG1A→ CG1A) (ind)

18. CG2A→ (EG1A→ CG1A) propositional reasoning

19. CG2A→ CG1A propositional reasoning

However, we can not omit both.

Lemma 3.14. The logic without the group restriction axiom (res) and
with C-necessitation restricted to the group H = 〈1, . . . , h〉 of all agents
is incomplete.

Proof. We define the following translation ◦:

P ◦ := P

(¬A)◦ := ¬(A◦)
(A→ B)◦ := A◦ → B◦

(�iA)◦ := �iA
◦

(CHA)◦ := CHA
◦

(CGA)◦ := ⊥, if G 6= H
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3.5. Variants and Axiomatic Extensions

Let LC
h be any of the logics defined above, but without the group

restriction axiom (res). If A is a theorem of LC
h, then so is A◦. We prove

this by induction on the derivation.

• If A is an instance of a propositional tautology or a modal axiom for
the agents (k), then so is A◦, as the common knowledge operator
is not explicitly mentioned here.

• IfA is an instance of the modal axiom for common knowledge (C-k),
then A◦ is either another instance of that axiom (if G = H) or
⊥ → (⊥ → ⊥), a propositional tautology.

• If A is an instance of the co-closure axiom (ccl), then A◦ is also
either another instance of that axiom (if G = H) or of the form
⊥ → EG(B◦ ∧ ⊥), a propositional tautology.

• If A is an instance of the induction axiom (ind), then again A◦ is
either another instance of that axiom (if G = H) or of the form
⊥ → EG(B◦ → ⊥), a propositional tautology.

• If A is derived by modus ponens (MP) or the necessitation
rule (Nec), then by induction hypothesis, we can also derive A◦
in the same way.

• If A is derived by common knowledge necessitation (C-Nec), then A
is of the form CHB and we can use the induction hypothesis to
derive B◦. Using (C-Nec) we obtain A◦ = CHB

◦, as we only have
necessitation for the group of all agents.

Now assume (towards a contradiction) the group restriction ax-
iom (res) was derivable in LC

h. Then in particular,

CHA→ CGA

for a group of agents G ( H would be derivable. But then also

(CHA→ CGA)◦ = CHA
◦ → ⊥

would be derivable. But the latter is in general not derivable and thus
we arrive at a contradiction. Hence the group restriction axiom (res) is
not derivable in LC

h.
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3.6. The Muddy Children Puzzle
Let us conclude this chapter with the famous Muddy Children Puzzle
(see [DHK07; Fag+95; MH95]) in order to illustrate common knowledge.
Suppose three children, let us call them 1, 2, and 3, are playing outside.
Whilst playing, some of the children get mud on their foreheads, say
child 1 and 3 get muddy, while child 2 remains clean. While they can
see perfectly well, whether another child is muddy, they do not know
whether they themselves are muddy, as they have no means of looking
at their foreheads. In order to formalize this, assume we have three
propositions muddy1, muddy2 and muddy3 in order to say child 1, 2, or
3, respectively, is muddy. Considering all possibilities, this gives rise to
eight possible worlds, which we will name by three-digit binary numbers,
e.g. 101, and thereby signal which propositions are evaluated to true
in which world. For example, in world 101, propositions muddy1 and
muddy3 evaluate to true, while muddy2 evaluates to false. This situation
is depicted in Figure 3.1, where the actual world 101 is highlighted. The
accessibility relations are labelled by the children they are assigned to
and for the sake of presentation, we omit the arrows for the reflexive
part of the accessibility relation (i.e. we have Ri(w,w) for each i = 1, 2, 3
and each world w even though this is not depicted) and the non-directed
arrow indicates accessibility in both directions. For example, we have
R2(101, 111) and R2(111, 101). Let us now look at some statements
about the actual world. It is easy to see that in this model each child
knows that at least one child is muddy. Furthermore, no child knows
about its own state of muddiness.

Now the father of the children enters the scene and announces to
the children, that at least one of the children is muddy. This leads to
the situation in Figure 3.2, where the world with no muddy children is
not considered possible anymore. Note that this public announcement
generated common knowledge of the fact that at least one child is muddy.
Also, compare this to the previous situation where we only had mutual
knowledge of this fact, wheras common knowledge failed, as, e.g. child 3
considered it possible that child 1 considers the possibility of no child
being muddy.

After his first announcement the father then asks the children whether
they know which of them is muddy. All children answer “no”, as they
all are not sure about their own state of muddiness. However, such

28



3.6. The Muddy Children Puzzle

GFED@ABC011

2
zzzzzzzzz

1

3

GFED@ABC111

2
zzzzzzzzz

3

GFED@ABC001

3

1 GFED@ABC?>=<89:;101

3

GFED@ABC010

2
zzzzzzzzz

1 GFED@ABC110

2
zzzzzzzzz

GFED@ABC000 1 GFED@ABC100

Figure 3.1.: Muddy Children Puzzle: Initial state
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Figure 3.2.: Muddy Children Puzzle: The father announces “At least
one child is muddy”.
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Figure 3.3.: Muddy Children Puzzle: Final state.

an announcement of non-knowledge also bears information. What can
the children derive from their statements? Child 3 still considers the
possibility of only child 1 being muddy. But if this was the case, then
child 1 would have answered “yes” to their father’s question, as it knew
that at least one child is muddy and could clearly see, that neither of the
other two children is muddy and hence must be muddy itself. As this did
not happen, child 3 deduces that not only child 1 is muddy. The other
children reason in a similar manner and we obtain the situation as given
in Figure 3.3. Now, when the father asks again whether the children
know who is muddy, child 1 and 3 can step forward and proclaim “yes”.

A notable fact about this puzzle is that the father did not announce
a new or unknown fact. Clearly, each child knew that at least one
child was muddy. However, the announcement made this fact common
knowledge and only thus led finally to the solution. See also Chapter B
for more information on public announcements and also [DHK07] where
more puzzles of this kind are treated.
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4. A Co-Inductive Proof System
for Common Knowledge

Σωκράτης

λέγει που ῾Ηράκλειτος ὅτι πάντα χωρεῖ καὶ οὐδὲν

μένει, καὶ ποταμοῦ ῥοῇ ἀπεικάζων τὰ ὄντα λέγει ὡς

δὶς ἐς τὸν αὐτὸν ποταμὸν οὐκ ἂν ἐμβαίης.
1

Plato, Cratylus 402 [Pla03]

We introduce a co-inductive system S for common knowledge. In
this formal system, proofs are finitely branching trees that may have
infinitely long branches. This contrasts the system Kω

h(C) from [AJ05],
which was presented in the previous chapters, where proofs are infinitely
branching trees (due to the ω-rule) but all the branches are finitely
long. Such systems have previously been studied, for example, for
the µ-calculus [NW96; Stu08] and the linear time µ-calculus [DHL06].
The underlying idea of this approach is based on the fundamental
semantic theorem of the modal µ-calculus [BS07] (due to Streett and
Emerson [SE89]). A similar result was also developed in [SW91]. Note
that for the modal µ-calculus also systems using an ω-rule are available,
see [JKS08].

We establish the soundness and completeness of the infinitary system S
along the lines of [NW96] by employing techniques from the proof of
the fundamental semantic theorem and utilizing the determinacy of
certain infinite games. Alternatively, we could use the completeness

1Socrates
Heracleitus says, you know, that all things move and nothing remains still, and
he likens the universe to the current of a river, saying that you cannot step twice
into the same stream.
Translation from [Pla21].
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of the common knowledge system with an ω-rule as in [AJ05]. The
transformation from ω-rules to infinite branches then would yield the
completeness of S (see [Stu08] for this approach in the context of the
µ-calculus).

We now introduce the infinitary system S for common knowledge
as published in [BKS10b]. As mentioned above, in this formal system,
proofs are finitely branching trees that may have infinitely long branches
while all finite branches must still end in an axiom. In order to obtain a
sound deductive system, we have to impose a global constraint on such
infinite branches. Roughly, we require that on every infinite branch in a
proof, there be a greatest fixed point, i.e. a common knowledge formula,
unfolded infinitely often.

Definition 4.1. A preproof for a sequent Γ is a possibly infinite tree
whose root is labeled with Γ and which is built according to the following
axioms and rules:

Axioms For all sequents Γ and all propositions P ,

Γ, P, P (ax)

Propositional rules For all sequents Γ and all formulae A and B,

Γ, A,B
Γ, A ∨B (∨) Γ, A Γ, B

Γ, A ∧B (∧)

Modal rules For all sequents Γ and Σ, all formulae A, and all indices 1 ≤
i ≤ h,

Γ, A
♦iΓ,�iA,Σ

(�)

Fixed point rules For all sequents Γ and all formulae A,

Γ, ẼA ∨ ẼC̃A
Γ, C̃A

(C̃) Γ,EA ∧ ECA
Γ,CA (C)

We now introduce the notion of a thread in a branch of a proof tree.

Definition 4.2. The principal formula of a rule is the formula that is
explicitly displayed in the conclusion of the rule. The active formulae of
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a rule are those formulae that are explicitly displayed in the premise(s)
of the rule. The formulae in Γ and Σ are called the side formulae of a
rule.

Definition 4.3. Consider a preproof for some sequent. For all rule ap-
plications r that occur in this tree, we define a connection relation Con(r)
on formulae as follows:

1. If r is not an application of (�), we define (A,B) ∈ Con(r) if
A = B and A is a side formula of r or if A is the principal formula
and B is an active formula of r.

2. If r is an application of (�), we define (�iA,A) ∈ Con(r) if �iA is
the principal formula of r and we define (♦iB,B) ∈ Con(r) if
♦iB ∈ ♦iΓ.

Definition 4.4. Consider a finite or infinite branch Γ0,Γ1, . . . in a
preproof. Let ri be the rule application where Γi is the conclusion
and Γi+1 is a premise. A thread in this branch is a sequence of formu-
lae A0, A1, . . . such that (Ai, Ai+1) ∈ Con(ri) and Ai ∈ Γi for every i.
Note that a thread in an infinite branch may be finite or infinite.

Definition 4.5. Consider an infinite branch of a preproof for a se-
quent Γ. An infinite thread in this branch is called a C-thread if
infinitely many of its formulae are the principal formulae of applications
of (C).

Definition 4.6. An S-proof for a sequent Γ is a preproof for Γ such
that every finite branch ends in an axiom and every infinite branch
contains a C-thread. We write S ` Γ if there exists an S-proof for Γ.

We will illustrate how S-proofs work by deriving three theorems in
the following example. In order to present this derivations in a compact
form, we need to state some properties of the system first. It should be
noted that the proof of Lemma 4.7(2) requires infinite derivations, e.g.,
in the case of A = CB.

Lemma 4.7. 1. For all formulae A and all sequents Γ and Σ, the
following analog of the (�)-rule is derivable in S:

Γ, A
ẼΓ,EA,Σ

(E)
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4. A Co-Inductive Proof System for Common Knowledge

2. For all formulae A and all sequents Γ, the following generalized
form of axioms (ax) is derivable:

S ` Γ, A,¬A (ax’)

Proof. 1. Using several applications of (∨) we can rewrite the sequent
ẼΓ,EA,Σ as

♦1Γ, . . . ,♦hΓ,�1A ∧ . . . ∧�hA,Σ

and we get the following proof tree

Γ, A
(�)

♦1Γ,�1A,Σ1

Γ, A
(�)

♦2Γ,�2A,Σ2

Γ, A
(�)

♦hΓ,�h,Σh
... (∗)

(∧)
♦1Γ, . . . ,♦hΓ,�2A ∧ . . . ∧ �hA,Σ (∧)

♦1Γ, . . . ,♦hΓ,�1A ∧ . . . ∧ �hA,Σ

where (∗) denotes further applications of (∧) and (�) in the same
manner as to deal with �1A and �2A.

2. The proof is by induction of the complexity of the formula A. If A
is a propositional variable then the claim is obviously an instance
of (ax). The cases where the main connective of A is ∧, ∨, �i or
♦i are straightforward. Let us therefore look at the case where A
is CB. Then ¬A is C̃¬B. We have

(IH)
C̃¬B,B,¬B

(E)
Γ,EB, Ẽ¬B, ẼC̃¬B

... (∗)
(C̃)

CB,¬B, C̃¬B
(E)

Γ,ECB, Ẽ¬B, ẼC̃¬B
(∧)

Γ,EB ∧ ECB, Ẽ¬B, ẼC̃¬B
(C)

Γ,CB, Ẽ¬B, ẼC̃¬B
(∨)

Γ,CB, Ẽ¬B ∨ ẼC̃¬B
(C̃)

Γ,CB, C̃¬B

On the left branch we can apply our induction hypothesis (IH) to
prove C̃¬B,B,¬B. The right branch (∗) is continued infinitely
long in the same manner as the part of the tree that is displayed
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starting with the sequent CB,¬B, C̃¬B instead of Γ,CB, C̃¬B.
The underlined formulae form a C-thread and thus the global
condition is met and we indeed have a proof tree.

The case where A is C̃B follows by symmetry.

As our proof system uses a non-local correctness criteria, some remarks
are due on the above derived rules. First, the notion of C-threads can
be easily extended to include the (E)-rule. Now assume we are given
a S-proof using (E) as an additional rule, in particular this means the
global correctness criteria is satisfied, i.e., every infinite branch contains
a C-thread. We can turn this proof into a proper S-proof, i.e., a proof
not using the (E)-rule by simply replacing each occurrence of the (E)-
rule by the proof tree given above (and the additional applications of
(∨) mentioned), thereby h-times copying the proof of Γ, A. Note that
the proof tree used to replace the (E)-rule only contains applications
of (∨), (∧) and (�). It can now be easily seen that any infinite branch
in the proof without the (E)-rule corresponds to an infinite branch in
the proof with the (E)-rule and the C-thread witnessing the correctness
of the proof with the (E)-rule for this branch can be transformed into a
C-thread witnessing the correctness of the proof without the (E)-rule by
taking into consideration the additional applications of (∨), (∧) and (�).

The case for (ax’) is equally simple, as it easily can be seen that
combining two S-proofs by (∧) or extending a S-proof by application
of any of the other rules yields another S-proof, i.e., application of the
rules preserves the global correctness criteria. This immediately justifies
the usage of (ax’) in proofs.

Example 4.8. We present three sample S-proofs. The topmost sequents
labeled (ax’) are derivable by Lemma 4.7(2). The only infinite branches
outside of (ax’)-derivations are marked (∗). They are built in the same
manner as the part of the proof tree displayed, i.e. by applying the same
rule again, which is possible, as they start with a sequent of the same
form as the one at the root of the tree. To show that these preproofs
are indeed S-proofs, it is sufficient to find a C-thread in these branches.
The C-threads are given by the underlined formulae.

1. Figure 4.1 contains the bottom part of an infinite S-proof for
CA→ CCA expressed in a sequent form as C̃¬A,CCA.
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4. A Co-Inductive Proof System for Common Knowledge

(ax’)

CA, C̃¬A
(E)

ECA,E¬A,EC̃¬A
(∨)

ECA, Ẽ¬A ∨ ẼC̃¬A
(C̃)

C̃¬A,ECA

... (∗)
CCA, C̃¬A

(E)
ECCA, ẼC̃¬A, Ẽ¬A

(∨)
ECCA, ẼC̃¬A ∨ Ẽ¬A

(C̃)
C̃¬A,ECCA

(∧)
C̃¬A,ECA ∧ ECCA

(C)
C̃¬A,CCA

Figure 4.1.: A sample S-proof for CA → CCA with a highlighted C-
thread.

2. Figure 4.2 contains the bottom part of an infinite S-proof for CA→
CEA expressed in a sequent form as C̃¬A,CEA.

3. Fig. 4.3 contains the bottom part of an infinite S-proof for the
induction axiom (I-Ax) expressed in a sequent form as Ẽ¬A, C̃(A∧
Ẽ¬A), CA.

4.1. Soundness
The soundness proof essentially uses the idea that underlies the funda-
mental semantic theorem of the modal µ-calculus.

Definition 4.9. δ(A) denotes the maximal number of nested C opera-
tors in the formula A

Example 4.10. For instance, we have δ(C(CP ∨ CQ)) = 2.

Definition 4.11. Let m ≥ 1 and σ = (σm, . . . , σ1) be a sequence of
ordinals with σi ≤ ω. For all formulae A such that δ(A) ≤ m, we define
the satisfaction relation 
σC in the same way as 
 except in the case of C,
where we set M, w 
σC CB if M, v 
σC B for all v with reach(w, v, n)
where n is a natural number with σδ(CB) ≥ n ≥ 1.

We immediately obtain the following simple facts

Lemma 4.12. 1. Let A be a formula and σ = (σm, . . . , σ1) with
m ≥ δ(A). Then M, w 
 A implies M, w 
σC A.
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(ax’)
A,¬A

(E)
EA, Ẽ¬A, ẼC̃¬A

(∨)
EA, Ẽ¬A ∨ ẼC̃¬A

(C̃)
EA, C̃¬A

(E)
EEA, Ẽ¬A, ẼC̃¬A

(∨)
EEA, Ẽ¬A ∨ ẼC̃¬A

(C̃)
C̃¬A,EEA

... (∗)
CEA, C̃¬A

(E)
ECEA, Ẽ¬A, ẼC̃¬A

(∨)
ECEA, Ẽ¬A ∨ ẼC̃¬A

(C̃)
C̃¬A,ECEA

(∧)
C̃¬A,ECEA ∧ EEA

(C)
C̃¬A,CEA

Figure 4.2.: A sample S-proof for CA → CEA with a highlighted C-
thread.

(ax’)
¬A,A

(E)
Ẽ¬A, C̃(A ∧ Ẽ¬A),EA

(ax’)

¬A,A, C̃(A ∧ Ẽ¬A),CA

... (∗)
(C)

¬A, Ẽ¬A, C̃(A ∧ Ẽ¬A),CA
(∧)

¬A,A ∧ Ẽ¬A, C̃(A ∧ Ẽ¬A),CA
(E)

Ẽ¬A, Ẽ(A ∧ Ẽ¬A), ẼC̃(A ∧ Ẽ¬A),ECA
(∨)

Ẽ¬A, Ẽ(A ∧ Ẽ¬A) ∨ ẼC̃(A ∧ Ẽ¬A),ECA
(C̃)

Ẽ¬A, C̃(A ∧ Ẽ¬A),ECA
(∧)

Ẽ¬A, C̃(A ∧ Ẽ¬A),EA ∧ ECA
(C)

Ẽ¬A, C̃(A ∧ Ẽ¬A),CA

Figure 4.3.: A sample S-proof for the induction axiom (I-Ax) with a
highlighted C-thread.
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4. A Co-Inductive Proof System for Common Knowledge

2. M, w 6
 A implies that there exists σ such that M, w 6
σC A.

3. Let σ = (σm, . . . , σδ(CB), . . . , σ1), σδ(CB) < ω and

σ′ = (σm, . . . , σδ(CB) + 1, . . . , σ1) .

We have M, w 
σ
′

C CB if and only if M, w 
σC EB ∧ ECB.

Proof. 1. This is immediate by the definition of 
σC.

2. We prove the contrapositive. If M, w 
σC A for all σ, then in
particular for σ = (ω, . . . , ω) , but then the definitions of 
σC and

 coincide. Note that this is the case where ω itself as a possible
element of a sequence σ is necessary, as we explain below.

3. We have M, w 
σC EB ∧ ECB if and only if for all v with
reach(w, v, 1) we have M, w 
σC B and M, w 
σC CB. This again
holds if and only if for all v with reach(w, v, 1) we haveM, v 
σC B
and for all v′ with reach(v, v′, n) where n ≤ σδ(CB) we have
M, v′ 
σC B. This is equivalent to saying that for all v with
reach(w, v, n) where n ≤ σδ(CB) + 1 we have M, v′ 
σC B. By
definition, this is M, w 
σ

′

C CB.

As stated above, ω is not only sufficient but also necessary as an
element in sequences σ. In order to see this, consider the following
example. Let M be given by

W := {w} ∪ {vk,l | k ∈ N, l ≤ k},
Ri := {(w, vk,1) | k ∈ N} ∪ {(vk,l, vk,l+1) | k ∈ N, l < k},

ν(P ) := {w} ∪ {vk,l | k ∈ N, k 6= l}.

Figure 4.4 depicts a part of this model. It is easy to see that we have
M, w 6
 ♦1CP , but M, w 
σC ♦1CP for any σ = (n) with n < ω.

Lemma 4.13. Let A be a formula, ∆ be a sequent, σ be a sequence
of ordinals, M = (W,R1, . . . , Rh, ν) be a Kripke structure, w ∈ W be
a world, and 1 ≤ i ≤ h. If M, w 6
 �iA,♦i∆ and M, w 6
σC �iA, then
there exists a world v ∈ W with Ri(w, v) such that M, v 6
 A,∆ and
M, v 6
σC A.
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v2,2 
 ¬P

v1,1 
 ¬P v2,1 
 P

77ooooooo

w 
 P

OO 77ooooooo
//

&&NNNNNNNN

��

v3,1 
 P // v3,2 
 P // v3,3 
 ¬P

... v4,1 
 P

&&NNNNNNNN

v4,2 
 P

''PPPPPPP

v4,3 
 P

''PPPPPPP

v4,4 
 ¬P

Figure 4.4.: A simple model showing the necessity of ω as an element
of sequents σ.

39



4. A Co-Inductive Proof System for Common Knowledge

Proof. Suppose (towards a contradiction) we have for all v ∈ W
with Ri(w, v), that at least one of the claimsM, v 
 A,∆ orM, v 
σC A
holds. We distinguish the following two cases:

1. M, v 
σC A holds for all v ∈ W with Ri(w, v). Then we have
M, w 
σC �iA. Contradiction.

2. There is at least one v ∈ W with Ri(w, v) such that M, v 6
σC
A. Then M, v 6
 A by Lemma 4.12(1). Hence, there must be
a formula B ∈ ∆ such that M, v 
 B. However, this means
M, w 
 ♦iB and, therefore, M, w 
 ♦i∆. Contradiction.

Definition 4.14. Given two sequences σ and τ of equal length m,
we say σ < τ if σ is smaller than τ with respect to the lexicographic
ordering.

Since we consider sequences of a fixed length, the relation < is a
well-ordering.

Theorem 4.15 (Soundness). For all formulae A, if A is not valid,
then S 6` A.

Proof. Suppose (towards a contradiction) A is not valid yet there is an
S-proof T for it. As A is not valid, there is a Kripke structureM and a
world w such thatM, w 6
 A. We will construct a branch Γ0,Γ1, . . . with
the corresponding inferences r0, r1, . . . in T and a sequence w0, w1, . . .
of worlds in M such that

(a) M, wi 6
 Γi and

(b) if (B,C) ∈ Con(ri), B ∈ Γi, C ∈ Γi+1, and M, wi 6
σC B,
then M, wi+1 6
σC C.

Let Γ0 := A and w0 := w. If Γi and wi are given, we construct Γi+1
and wi+1 according to the different cases for ri. Note that because of a,
Γi cannot be axiomatic and thus must have been inferred by some rule.

1. ri = (�): Let �iB ∈ Γi be the principal formula of ri. Let
σ be the least sequence such that M, wi 6
σC �iB. We apply
Lemma 4.13 for this σ to find a state wi+1 such that a and b hold.
We let Γi+1 be the unique premise of ri.
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2. ri = (∧): Let B1∧B2 ∈ Γi be the principal formula of ri. Let σ be
the least sequence such that M, wi 6
σC B1 ∧B2. Let Γi+1 be the
j-th premise of ri such thatM, wi 6
σC Bj . Further, set wi+1 := wi.
This construction guarantees a and b.

3. In all other cases, ri has a unique premise ∆. We set wi+1 := wi
and Γi+1 := ∆. Again a and b hold.

We have constructed an infinite branch in T . Since T is an S-proof, this
branch must contain a C-thread A0, A1, . . . . For each natural number j,
we define σj to be the least sequence such that M, wj 6
σ

j

C Aj . Note
that σj exists by Lemma 4.12(2). It follows from b that σj+1 ≤ σj for
all j. Moreover, because we consider a C-thread, there are infinitely
many applications of (C), which, according to Lemma 4.12(3),2 means
that there are infinitely many j’s with σj+1 < σj . This contradicts the
well-foundedness of <.

4.2. Completeness
The completeness proof for the infinitary system S is based on the similar
result for the modal µ-calculus from [NW96]. For a given formula A, we
define an infinite game such that player I has a winning strategy if and
only if there is an S-proof for A and player II has a winning strategy if
and only if there is a countermodel for A. It is possible to show that
this game is determined, i.e., one of the players has a winning strategy.
Hence, the completeness of S follows.

Definition 4.16. A sequent Γ is saturated if all of the following condi-
tions hold:

1. if A ∧B ∈ Γ, then A ∈ Γ or B ∈ Γ,

2. if A ∨B ∈ Γ, then A ∈ Γ and B ∈ Γ,

3. if CA ∈ Γ, then EA ∧ ECA ∈ Γ, and

4. if C̃A ∈ Γ, then ẼA ∨ ẼC̃A ∈ Γ.
2For σ minimal withM, w 6
σC CA, we have σδ(CA) < ω as a very simple consequence

of the definition of 
σC .
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4. A Co-Inductive Proof System for Common Knowledge

Definition 4.17. The system SGame consists of the rules of S with the
rule (�) being replaced by the rule (�′) in Figure 4.5:

An SGame-tree for a sequent Γ is built by iterating the following two
steps until one reaches a saturated sequent which is either axiomatic or
to which (�′) cannot be applied:

1. Apply the rules (∨), (∧), (C), and (C̃) backwards until a saturated
sequent is reached.3 While applying the rules, make sure that the
conclusion always remains a subset of the premise.4

2. Apply (�′) backwards, if possible.

Note that the rule (�′) explores all possible applications of (�).
We now introduce a system SDis for establishing unprovability. Ac-

cordingly, its rules should not be read as sound, i.e., preserving validity,
but rather as “dis-sound,” i.e., preserving invalidity.

Definition 4.18. The system SDis consists of the rules of SGame whereby
(∧) is replaced by the following two rules:

Alternative (∧): For all sequents Γ and all formulae A and B,

Γ, A
Γ, A ∧B (∧Dis1) Γ, B

Γ, A ∧B (∧Dis2)

An SDis-tree is built in the same way as an SGame-tree except that
(∧Dis1) and (∧Dis2) are used instead of (∧).

Note that an SDis-tree for a sequent Γ is not unique.
The notions of a thread and a C-thread are extended to SGame- and

SDis-trees. A C̃-thread is a thread that contains infinitely many principal
formulae of applications of (C̃). Note that any infinite thread is either a
C- or a C̃-thread but not both.

3As we explore all possible saturations of a given sequent, the order of application
of rules is not relevant. If a deterministic procedure is preferred, one could
simply fix an enumeration of all formulae in the language and then apply the
rules backwards to the formula with least index in the sequent that has not been
treated yet.

4As sequents are set of formulae, we have for example Γ, A ∨B = Γ, A ∨B,A ∨B.
Thus, we can get Γ, A∨B,A,B from Γ, A∨B by applying the (∨)-rule backwards.
We deal accordingly with the other rules.
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4. A Co-Inductive Proof System for Common Knowledge

Definition 4.19. We say that an SDis-tree T for a sequent Γ disproves Γ
if

1. no branch ends with an axiom and

2. any infinite thread in any branch is a C̃-thread.

Example 4.20. In order to disprove C̃P → C̃CP , we construct an SDis-
tree T for a corresponding sequent CP, C̃CP (see Fig. 4.6). In this tree,
♦1CP,♦1C̃CP,�1P,Σ is a saturation of the sequent

CP,EP ∧ ECP,EP, C̃CP, ẼCP ∨ ẼC̃CP, ẼCP, ẼC̃CP . (4.1)

The saturation process is abbreviated as (∗). It involves exactly 2h−
2 applications of (∨) to saturate the disjunctions ẼCP and ẼC̃CP . In
addition, the conjunction EP is saturated by at most h− 1 applications
of (∧Dis1) and (∧Dis2) in such a way that �1P is the only resulting
formula that starts with �i. Most formulae that result from this
saturation are disjunctions, conjunctions, or are already present in (4.1),
with the exception of

♦1CP, . . . ,♦hCP,♦1C̃CP, . . . ,♦hC̃CP, and �1P .

Thus, Σ contains neither formulae that start with �i nor formulae that
start with ♦1, which enables us to apply (�′). The tree T extends
upward indefinitely with infinitely many repetitions of the sequent
CP, C̃CP, P . This tree has only one branch, which is infinite. And this
branch contains only one infinite thread, the one that consists of the
underlined formulae in Fig. 4.6. And this thread is indeed a C̃-thread.

It may seem that this branch also contains a C-thread because there
are infinitely many applications of (C) in the branch. However, the
principal formulae of these (C)-rules do not belong to one thread. In
particular, the thread that starts from CP in the root sequent does
not pass through CP in the premise of the (�′)-rule shown in Fig. 4.6.
Instead, this thread passes through EP ∧ ECP , EP , . . . , �1P , and P
and eventually disappears after the next application of (�′).

Now we are going to show that any sequent Γ has either an S-tree
that proves it or an SDis-tree that disproves it.

Let T be an SGame-tree for Γ. We define an infinite game for two
players on T . Intuitively, player I will try to show that Γ is provable
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4.2. Completeness

... (C)
CP, C̃CP , P (�′)

♦1CP,♦1C̃CP ,�1P,Σ
... (∗)

CP,EP ∧ ECP,EP, C̃CP, ẼCP ∨ ẼC̃CP, ẼCP, ẼC̃CP (∨)
CP,EP ∧ ECP,EP, C̃CP, ẼCP ∨ ẼC̃CP

(C̃)
CP,EP ∧ ECP,EP, C̃CP (∧Dis1)

CP,EP ∧ ECP, C̃CP (C)
CP, C̃CP

Figure 4.6.: A sample SDis-disproof for C̃P → C̃CP with a highlighted
C̃-thread.

while player II will try to show the opposite. The game is played as
follows:

1. the game starts at the root of T ,

2. at any (�′) node, player I chooses one of the children,

3. at any (∧) node, player II chooses one of the children,

4. at all other non-leaf nodes, the only child is chosen by default.

Such a game results in a path in T . In the case of a finite path, player I
wins if the path ends in an axiom; otherwise, player II wins. In the
case of an infinite path, player I wins if the path contains a C-thread;
otherwise, player II wins.

Theorem 4.21. 1. There is a winning strategy for player I if and
only if there is an S-proof for Γ contained in T .

2. There is a winning strategy for player II if and only if there is an
SDis-disproof for Γ contained in T .

45



4. A Co-Inductive Proof System for Common Knowledge

Proof. For the first claim, if there is an S-proof for Γ contained in T ,
then the winning strategy for player I is to stay in the nodes that belong
to this proof. For the other direction, consider a winning strategy for
player I. It induces an S-proof for Γ as follows: the root of T is the
root of the proof; if a node is included in the proof and player I has
to perform the next move, then we select the child prescribed by the
winning strategy; if it is player II’s move, then we include all the children
in our proof. The proof of the second claim is similar.

With the help of

Theorem 4.22 (Martin’s theorem [Mar75]). All Borel games are de-
termined.

we can show that this game is determined, i.e., one of the players has
a winning strategy. For details of this argument, see [DHL06; NW96].
We obtain the following as a corollary:

Theorem 4.23. Let T be an SGame-tree for Γ. Then there exists either
an S-proof for Γ in T or an SDis-disproof for Γ in T .

It remains to show that from a given SDis-disproof for Γ, we can
construct a countermodel for Γ.

Definition 4.24. Consider an SDis-tree T disproving a sequent Γ. The
Kripke structureMT = (W T , RT1 , . . . , RTh , νT ) induced by T is defined
as follows:

1. W T consists of all occurrences of sequents in the conclusions of
applications of (�′) in T as well as of all occurrences of sequents
in the leaves of T ,

2. RTi (Γ,∆) holds if there is exactly one application of (�′) in be-
tween Γ and ∆ and if there is a thread through Γ and ∆ that
contains �iA ∈ Γ and A ∈ ∆ for some formula A,

3. νT (P ) := {Γ ∈W T : P /∈ Γ}.

We can assign to each sequent ∆ in T the corresponding world in W T

simply by finding the closest saturated descendant. We will denote this
world by sat(∆).
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...

♦1CP,♦1C̃CP,�1P,Σ, P •

1

OO

P

♦1CP,♦1C̃CP,�1P,Σ, P •

1

OO

P

♦1CP,♦1C̃CP,�1P,Σ •

1

OO

P

Figure 4.7.: The Kripke structure MT induced by the SDis-tree T from
Example 4.20.

Example 4.25. The SDis-tree T for C̃P → C̃CP constructed in Exam-
ple 4.20 induces a Kripke structure MT shown in Fig. 4.7. It is easy to
see that

MT , ♦1CP,♦1C̃CP,�1P,Σ 6
 C̃P → C̃CP .

Lemma 4.29 states that this is a general phenomenon: the root of the
Kripke structure induced by a given SDis-tree falsifies the sequent at the
root of the tree.

Definition 4.26. δ̃(A) denotes the maximal number of nested C̃ oper-
ators in A.

Definition 4.27. Let M be a Kripke structure, w a world in M, and
A a formula. We define the C̃-signature sigC̃(A,w) to be the least
sequence σ = (σδ̃(A), . . . , σ1) such that M, w 
σC̃ A

Here 
σC̃ is defined in the same way as 
 except in the case of C̃,
where we set M, w 
σC̃ C̃B if M, v 
σC̃ B for some w for which there
exists n with σδ̃(C̃B) ≥ n ≥ 1 and reach(w, v, n).

Remark 4.28. We have sigC̃(C̃A,w) > sigC̃(ẼA∨ ẼC̃A,w) as we can show

M, w 
σ
′

C̃ C̃A if and only if M, w 
σC̃ ẼA ∨ ẼC̃A
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for σ = (σm, . . . , σδ̃(A), . . . , σ1) and σ′ = (σm, . . . , σδ̃(A) + 1, . . . , σ1)
analogous to Lemma 4.12(3).

Lemma 4.29. Let T be an SDis-tree disproving the sequent Γ = {A}
for some formula A. Then MT , sat(Γ) 6
 A.

Proof. Suppose (towards a contradiction) that MT , sat(Γ) 
 A. We
show that we can construct a C-thread in some branch of T , which
contradicts the assumption that T disproves A. In order to do so, we will
simultaneously construct a branch Γ0,Γ1, . . . and a thread A0, A1, . . .
in T such that

MT , sat(Γn) 
 An for all n. (4.2)
We start with Γ0 := Γ and A0 := A. Now assume that we have
constructed the thread up to some element An ∈ Γn withMT , sat(Γn) 

An. The next element is selected as follows:

1. If a rule different from (�′) has been applied, then there is only
one child of Γn and we let Γn+1 be that child. We have sat(Γn) =
sat(Γn+1) and distinguish the following cases:

a) An is not the principal formula. We set An+1 := An.
b) An = B ∨ C is the principal formula. We set An+1 := B if

sigC̃(B ∨ C, sat(Γn)) = sigC̃(B, sat(Γn+1)) ;

otherwise, we set An+1 := C.
c) An = B ∧ C is the principal formula. We set An+1 := B if

B occurs in Γn+1; otherwise, we set An+1 := C.
d) An = CB is the principal formula. Let An+1 := EB ∧ ECB.
e) An = C̃B is the principal formula. Let An+1 := ẼB ∨ ẼC̃B.

2. If (�′) has been applied, then we have sat(Γn) = Γn. We distin-
guish the following cases:

a) An = �iB. There is a child where B is the active formula.
Let Γn+1 be that child and set An+1 := B.

b) An = ♦iB. Because of MT , sat(Γn) 
 An, there exists a
world w with

RTi (sat(Γn), w) and sigC̃(B,w) ≤ sigC̃(♦iB, sat(Γn)) .
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The definition of MT implies that there is a child Γ′ of Γn
with sat(Γ′) = t. We set Γn+1 := Γ′ and An+1 := B.

c) An is not of the form �iB or ♦iB. Then there exists A′n ∈ Γn
that is of this form such that MT ,Γn 
 A′n, as the rule has
been applied and thus there is another world accessible from
Γn. We drop the thread constructed so far and continue
instead with the thread from A to A′n.

If the constructed thread were finite, then the last element Γn of the
path would necessarily be a saturated sequent which would not contain
formulae of the form �iB. Then the definition of MT and an easy
induction on the structure of An would imply thatMT ,Γn 6
 An, which
would contradict (4.2). Hence, the constructed thread is infinite. By
construction we have

sigC̃(A0, sat(Γ0)) ≥ sigC̃(A1, sat(Γ1)) ≥ . . . .

Assuming that the constructed thread is a C̃-thread, we can use
Remark 4.28 (and hence an argument about signatures similar to the
one used in the proof of the soundness theorem 4.15 for S) to find a
contradiction to the wellfoundedness of the order on sequences of ordinals
of fixed length δ̃(A0). The constructed thread is thus a C-thread. This
contradicts the assumption that T disproves Γ.

Theorem 4.30 (Completeness of S). If A is a valid formula, then there
exists an S-proof for it.

Proof. Let A be a formula that is not provable in S. By Theorem 4.23,
there exists an SDis-tree T that disproves A. Thus, by Lemma 4.29,
there exists a countermodel MT for A . Hence, A is not valid.
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Θεαίτητος

ὅ γε ἐγώ, ὦ Σώκρατες, εἰπόντος του ἀκούσvας

ἐπελελήσvμην, νῦν δ’ ἐννοῶ· ἔφη δὲ τὴν μὲν μετὰ

λόγου.
1

Plato, Theaetetus 201 [Pla03]

Justification logics [AF11] are epistemic logics that explicitly include
justifications for an agent’s knowledge. Instead of a statement A is
known, denoted �A, justification logics reason about justifications
for knowledge by using the construct t : A to formalize statements
t is a justification for A, where, dependent on the application, the
evidence term t can be viewed as an informal justification or a formal
mathematical proof.

Evidence terms are built by means of operations that correspond to
the axioms of modal logics, e.g. the justification logic LP corresponds
to the modal logic S4, as is illustrated in Fig. 5.1.

Artemov [Art01] has shown that the Logic of Proofs LP is an explicit2

counterpart of the modal logic S4 in the following formal sense: each
theorem of LP becomes a theorem of S4 if all the terms are replaced with
the modality �; and, vice versa, each theorem of S4 can be transformed
into a theorem of LP if the occurrences of modality are replaced with
suitable evidence terms. The latter process is called realization, and the
statement of correspondence is called a realization theorem. Note that

1Theaetetus
Oh yes, I remember now, Socrates, having heard someone make the distinction,
but I had forgotten it. He said that knowledge was true opinion accompanied by
reason.
Translation from [Pla21].

2For other meanings of “explicit” see Sect. 6.8.
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the operation + introduced by the sum axiom in Fig. 5.1 does not have
a modal analog, but it is an essential part of the proof of the realization
theorem in [Art01]. Explicit counterparts for many normal modal logics
between K and S5 have been developed (see a recent survey in [Art08]
and a uniform proof of realization theorems for all justification logics
corresponding to logics in the modal cube in [BGK10]).

Historically, Artemov [Art95; Art01] developed the first of these logics,
the Logic of Proofs LP, to solve the problem of provability semantics
for S4, a longstanding open question by Gödel [Göd33]. Using the
realization theorem, theorems of S4 first are transformed into theorems
of LP. Formulae A of LP are then translated into formulae A∗ in the
language of arithmetic such that

LP ` A if and only if PA ` A∗ ,

where PA denotes Peano arithmetic. The general idea is to translate
formulae of the form t : B in such a way that

t : B 7→ Proof
(
t∗, dB∗e

)
where Proof is a proof predicate and t∗ is the code of a derivation of
the formula B∗ with code dB∗e, thus giving formal meaning to the
interpretation of t as a proof term.

Fitting’s model construction [Fit05] provides a natural epistemic
semantics for the Logic of Proofs, which can be generalized to the whole
family of justification logics. It augments Kripke models with a function
that specifies admissible evidence for each formula in a given world. A
formula of the form t : A is considered true in a given world w, if

1) A is true in all worlds accessible from w

2) t is admissible evidence for A in w

Single world Fitting models are called Mkrtychev models [Mkr97]. In
this special case due to the absence of accessibility relations, the validity
of formulae depends solely on the admissible evidence function and the
valuation function.

This novel approach has many applications in epistemic logic,
see [Art06; Art08; Art10] where amongst others, the famous Gettier
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example [Get63] is discussed. Furthermore, it makes it possible to tackle
the logical omniscience problem [AK09] and to deal with certain forms
of self-referentiality [Kuz10].

We will now briefly present some standard justification logics, prop-
erties and semantics. For the sake of brevity, only a small selection
of justification logics is presented, further logics will be mentioned in
Section 5.4

5.1. Syntax
Justification terms are built from constants ci and variables xi according
to the following grammar:

t ::= ci | xi | t · t | t+ t | !t .

We denote the set of terms by Tm. A term that does not contain
variables is called ground.

Formulae are built from atomic propositions pi according to the
following grammar:

F ::= pi | ¬F | (F → F ) | t : F .

Prop denotes the set of atomic propositions and Fm denotes the set of
formulae.

The axioms of J consist of all instances of the following schemes:

A1 finitely many schemes axiomatizing classical propositional logic

A2 t : (A→ B)→ (s : A→ t · s : B)

A3 t : A ∨ s : A→ t+ s : A

We will consider extensions of J by the following axiom schemes. We
denote the various extensions by L.

(d) t : ⊥ → ⊥

(t) t : A→ A

(4) t : A→!t : t : A
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A constant specification CS for a logic L is any subset

CS ⊆ {c : A | c is a constant and A is an axiom of L}.

A constant specification CS for a logic L is called

1. axiomatically appropriate if for each axiom A of L there is a
constant ci such that ci : A ∈ CS

2. schematic if for each constant ci the set {A | ci : A ∈ CS} consists
of instances of several (possible none) axiom schemes (as given
above), i.e. every constant justifies certain axiom schemes.

For a constant specification CS, the deductive system JCS is the
Hilbert system given by the axioms A1–A3 and by the rules modus
ponens and axiom necessitation:

A A→ B
B

(MP) ,

(AN!), where c : A ∈ CS .!! · · ·!︸ ︷︷ ︸
n

c : ! · · ·!︸︷︷︸
n−1

c : · · · :!!c :!c : c : A

In the presence of the (4) axiom, a simplified axiom necessitation rule
can be used:

c : A (AN), where c : A ∈ CS .

Table 5.1 defines the various logics we are going to consider, we will
use LCS to denote these logics.

5.2. Basic Properties
We will now illustrate the basic justification logic JCS using an often
cited example from [Art08] which gives a justification logic counterpart
to the modal theorem

�A ∨�B → �(A ∨B) .
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A1 A2 A3 (d) (t) (4) (MP) (AN!) (AN)
JCS X X X X X
JDCS X X X X X X
JTCS X X X X X X
JD4CS X X X X X X X
J4CS X X X X X X
LPCS X X X X X X X

Table 5.1.: Deductive Systems LCS .

Example 5.1. Assume we are given JCS with a : [A → (A ∨ B)] ∈ CS
and b : [B → (A ∨B)]. Then the following is a theorem of JCS

(x : A ∨ y : B)→ (a · x+ b · y) : (A ∨B) .

Proof. From (AN!) we get

a : [A→ (A ∨B)] and b : [B → (A ∨B)] .

Using A2 and (MP), we obtain

x : A→ (a · x) : (A ∨B) and y : B → (b · y) : (A ∨B)

Finally, from A3 we have

(a · x) : (A ∨B)→ (a · x+ b · y) : (A ∨B)]

and
(b · y) : (A ∨B)→ (a · x+ b · y) : (A ∨B)] .

Using propositional reasoning, we obtain the desired result.

Theorem 5.2 (Constructive necessitation). Let CS be an axiomati-
cally appropriate constant specification for L. Then LCS enjoys the
internalization property, i.e.

If ` A then there is a ground term t such that ` t : A .
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Justification logic Corresponding modal logic
JCS K

JDCS KD
JTCS KT

JD4CS KD4
J4CS K4
LPCS S4

Table 5.2.: Corresponding modal logics

Definition 5.3 (Forgetful projection, realization). Forgetful projection
.◦ is a mapping from formulae of justification logic to formulae of modal
logic, defined by

• P ◦ := P ,

• .◦ commutes with propositional connectives,

• (t : A)◦ := �A◦ .

A realization .r is a mapping from formulae of modal logic to formulae
of justification logic such that for all formulae A we have (Ar)◦ = A.

See [BGK10; GK12] for a uniform proof of the following theorem (and
more realization results).

Theorem 5.4 (Realization theorem). Let CS be axiomatially appropri-
ate. Then L◦CS is exactly the corresponding modal logic given in Table 5.2,
i.e., the forgetful projection of each theorem of LCS is a theorem of the
corresponding modal logic; and, vice-versa, for each theorem A of the
corresponding modal logic, there is a realization r such that Ar is a
theorem of LCS .

Note that while it is easy to prove that the forgetful projection of
the justification logic is included in the corresponding modal logic, the
reverse inclusion is much more involved and usually requires a cut-free
sequent system for the modal logic (see [BGK10; GK12] for a survey).
Notable exceptions to this can be found in [Fit05; Fit10] where a (non-
constructive) semantic method is used and [Fit11] where reduction to
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another logic is the main tool. A comparable reduction technique is
also used for the realization result presented in Chapter B, Section B.5.

5.3. Semantics
The semantics of our logics are given by so-called Fitting-models M =
(W,R, E , ν) where (W,R) is a usual Kripke-frame, i.e. W is a non-empty
set of possible worlds and R ⊂W ×W is an accessibility relation.

Definition 5.5 (Evidence relation). Let (W,R) be a Kripke frame and
CS a constant specification. An admissible evidence relation E for a logic
LCS is a subset of Tm× Fm×W that satisfies the closure conditions:

1. if (s,A,w) ∈ E or (t, A,w) ∈ E , then (s+ t, A,w) ∈ E ,

2. if (s,A→ B,w) ∈ E and (t, A,w) ∈ E , then (s · t, B,w) ∈ E .

Depending on whether the logic LCS contains the (4) axiom, the evidence
function has to satisfy one of the two following sets of closure conditions.
If LCS does not include the (4) axiom, then the additional requirement
is:

3. if c : A ∈ CS and w ∈W , then

(! · · ·!!︸ ︷︷ ︸
n

c, ! · · ·!!︸ ︷︷ ︸
n−1

c : · · · :!c : c : A,w) ∈ E .

If LCS includes the (4) axiom, then the additional requirement is:

4. if c : A ∈ CS and w ∈W , then (c, A,w) ∈ E ,

5. if (t, A,w) ∈ E , then (!t, t : A,w) ∈ E ,

6. if (t, A,w) ∈ E and wRv, then (t, A, v) ∈ E .

Sometimes we write E(s,A,w) for (s,A,w) ∈ E .

Remark 5.6. To facilitate notations in Chapter A we use an evidence
relation Er ⊆ Tm×Fm×W contrary to the usual approach of an evidence
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function Ef : W × Tm→ P(Fm). Obviously, these two approaches are
interchangeable:

Er(t, A,w) if and only if A ∈ Ef (w, t) .

On the other hand, in Chapters 6, 7 and B, logics will be presented
using the “traditional” form of evidence functions.

Definition 5.7 (Model). Let CS be a constant specification. A Fitting
model for a logic LCS is a quadruple M = (W,R, E , ν) where

• (W,R) is a Kripke frame such that
– if LCS includes the (4) axiom, then R is transitive,
– if LCS includes the (t) axiom, then R is reflexive,
– if LCS includes the (d) axiom, then R is serial

• E is an admissible evidence relation for LCS over the frame (W,R),

• ν : Prop→ P(W ) is a valuation function.

Definition 5.8 (Satisfaction relation). The relation of formula A being
satisfied in a Fitting model M = (W,R, E , ν) at a world w ∈ W is
defined by induction on the structure of A by

• M, w 
 pi if and only if w ∈ ν(pi)

• 
 commutes with Boolean connectives

• M, w 
 t : B if and only if
1) M, v 
 B for all v ∈W with wRv and
2) (t, B,w) ∈ E

We say a formula A is valid in a Fitting model M = (W,R, E , ν) if for
all w ∈W we have M, w 
 A. We say a formula A is valid for a logic
LCS if for all Fitting models M for LCS we have that A is valid in M.

Example 5.9. Let us also briefly consider an example of a Fitting model
given by the following situation: the meteorology textbooks tell us that
chinooks (the North American version of the foehn winds) lead to warm
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Calgary warm weather
Bern warm weather

?>=<89:;/.-,()*+a hh

E(satellite,Chinook, a)
E(textbook,Chinook→ Calgary warm weather, a)

Figure 5.2.: A simple example of a Fitting model.

weather in Calgary. As it happens, we have satellite evidence for a
chinook and we conclude that the weather is warm in Calgary. On
the other hand, while staring at the computer screen with the satellite
pictures, we neglected to have a look outside. So, even though we
are very certain that the weather in Bern is also warm (when we last
looked out the window the sun was shining and we can not imagine
the situation to have changed meanwhile), we have no evidence for this.
This very simple example is depicted in Figure 5.2.3 We can easily see
that

M, a 
 (textbook · satellite) : (Calgary warm weather),

butM, a 6
 t : (Bern warm weather) for any evidence term t. We might
also consider the situation depicted in Figure 5.3. Here the radio station
announced warm weather in Bern, but we also know that the radio
station has a particularly bad reputation when it comes to weather
forecasts. Again, we have M, a 6
 t : (Bern warm weather) for any
evidence term t, but this time for different reasons.

The logics defined above are sound and complete (with a restriction
in case of the logics containing the (d) axiom). See [Fit05; Pac05; Art08]
for the full proofs of the following results.

3The special case of single world Fitting models is called M-models, see Defini-
tion 6.19 in Chapter 6.
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Bern warm weather Bern not warm weather

?>=<89:;/.-,()*+a66 //?>=<89:;b

E(radio,Bern warm weather, a)

Figure 5.3.: Another simple example of a Fitting model.

Soundness can be obtained by an easy induction on the derivation of
the formula.

Theorem 5.10 (Soundness). Let CS be a constant specification. If a
formula A is derivable in a logic LCS , then A is valid for LCS .

For completeness, a canonical model construction is used. The ax-
iomatical appropriateness of the constant specification in case the logic
contains the (d) axiom is necessary to show the seriality condition on
the accessibility relation (see also the proof of Corollary 7.26).

Theorem 5.11 (Completeness).

1. Let CS be an arbitrary constant specification. If a formula A is
is not derivable in the logic LCS ∈ {JCS , JTCS , J4CS , LPCS}, then
there exists a Fitting model M for LCS with M, w 6
 A for some
world w in M.

2. Let CS be an axiomatically appropriate constant specification. If
a formula A is not derivable in LCS ∈ {JDCS , JD4CS}, then there
exists a Fitting model M for LCS with M, w 6
 A for some world
w in M.
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5.4. Further Justification Logics
A further axiomatic extension corresponding to the negative inspection
axiom (5) is

¬t : A→?t : (¬t : A)

introduced in [Pac05; Rub06]. In order to simplify this introduction, we
did not include this axiom yet, but we will use it in the logics presented
in Chapter 7, and thus refer there for further information.

In [AN05], modal and justification logics are combined, the connecting
princple being “what is known for a reason is known” or “whatever is
known explictly is known implicitly”, formally

t : A→ �A .

In [Art06], a variant of this is considered, namely a combination of
multi-modal and justification logic where “whatever is known for a
reason is known by each agent”

t : A→ �iA for all agents i .

Here the main interest lies in the forgetful projection of this logic, giving
rise to a modality J named “justified common knowledge”, which we
will discuss in the following chapter.

In [Yav08], a two-agent justification logic with certain communication
principles among agents is presented. We will also discuss this logic in
the following chapter where we will present a generalized (multi-agent)
version of it.

Furthermore, justification logics with quantifiers are available but we
will not discuss them here, as they are beyond the scope of this thesis
(see [Yav01] and [Fit08a]).

See [AF11] for an overview of justification logics so far, and the
extensive justification logic bibliography[Kuz12].
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Common Knowledge

Reconsider, v. To seek a justification for a decision
already made.

Ambrose Bierce, The Devil’s Dictonary [Bie11]

In this chapter, we develop a multi-agent justification logic with
evidence terms for individual agents as well as for common knowledge,
with the intention to provide an explicit counterpart of the h-agent modal
logic of traditional common knowledge S4C

h as presented in Chapter 3.
For the sake of compactness and readability, we will not yet treat groups
of agents and different base logics in this chapter, but postpone this to
Chapter 7.

Let us remember some basic concepts first and give a short survey of
related logics. We have already seen that common knowledge of A is
defined as the infinitary conjunction everybody knows A and everybody
knows that everybody knows A and so on. This is equivalent to saying
that common knowledge of A is the greatest fixed point of

λX.(everybody knows A and everybody knows X) . (6.1)

An explicit counterpart of McCarthy’s any fool knows common knowl-
edge modality [McC+78], where common knowledge of A is defined as
an arbitrary fixed point of (6.1), is presented in [Art06]. The relationship
between the traditional common knowledge as presented in [Fag+95;
MH95] and McCarthy’s version is studied in [Ant07].

Multi-agent justification logics with evidence terms for each agent
are considered in [Yav08; Ren09a; Art10], but common knowledge is
not present in any of them. Renne’s system combines features of modal
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and dynamic epistemic logics [Ren09a] and hence cannot be directly
compared to our system. Artemov’s interest lies mostly in exploring
a case of two agents with unequal epistemic powers: e.g., Artemov’s
Observer has sufficient evidence to reproduce the Object Agent’s think-
ing, but not vice versa [Art10]. Yavorskaya studies various operations
of evidence transfer between agents [Yav08]. Yavorskaya’s minimal1
two-agent justification logic LP2, which is an explicit counterpart of S42,
is the closest to our system. We will show that in the case of two agents
our system is a conservative extension of LP2.

On the semantic side we have Fittings F-models [Fit05] and Mkrty-
chev’s independently proved stronger completeness result for LP with
respect to singleton F-models [Mkr97], now known as M-models. Arte-
mov extends F-models to the language with both evidence terms for
McCarthy’s common knowledge modality and ordinary modalities for
the individual agents [Art06], creating the most general type of epis-
temic models, sometimes called AF-models, where common evidence
terms are given their own accessibility relation, which does not directly
depend on the accessibility relations for individual modalities. The
absence of ordinary modalities in Yavorskaya’s two-agent justification
systems provides for a stronger completeness result with respect to
M-models [Yav08].

This chapter is organized as follows. In Section 6.1, we introduce a
language and give an axiomatization of a family of multi-agent justifi-
cation logics with common knowledge. In Section 6.2, we prove their
basic properties including the internalization property, which is charac-
teristic of all justification logics. In Section 6.3, we develop an epistemic
semantics and prove soundness and completeness with respect to this
semantics as well as with respect to singleton models, thereby demon-
strating the finite model property. In Section 6.5, we show that for the
two-agent case, our logic is a conservative extension of Yavorskaya’s
minimal two-agent justification logic. In Section 6.6, we demonstrate
how our logic is related to the modal logic of traditional common knowl-
edge and discuss the problem of realization. In Section 6.7, we provide
an analysis of the coordinated attack problem in our logic. Finally,
in Section 6.8, we discuss how the newly introduced terms affect the
agents, including their ability to communicate information in various

1Minimality here is understood in the sense of the minimal transfer of evidence.
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communication modes.
The material in this chapter was published as [BKS10a; BKS11a].

6.1. Syntax
To create an explicit counterpart of the modal logic of common knowl-
edge S4C

h, we use its axiomatization via the induction axiom from [MH95]
rather than via the induction rule (see Chapter 3, Section 3.2) to facili-
tate proving the internalization property for the resulting justification
logic. We supply each agent with its own copy of terms from the Logic
of Proofs, while terms for common and mutual knowledge employ addi-
tional operations. The fact that each agent has its own set of operations
makes our framework more flexible. For instance, agents may be thought
of as representing different arithmetical proof systems that use different
encodings (cf. [Yav08]).

We also slightly change notation from t :x A from the previous chapter
to [t]xA in order to indicate that “t is evidence of type x for A”, but
this change is of purely cosmetic nature.

Motivated by the coinductive proof system S from Chapter 4, a proof
of CA can be viewed as an infinite list of proofs of the conjuncts EmA
from the representation of common knowledge through an infinite con-
junction. To generate a finite representation of this infinite list, we use
an explicit counterpart of the induction axiom (I-Ax)

[t]C(A→ [r]EA)→ ([s]EA→ [ind(t, s)]CA)

with a binary operation ind(·, ·). To facilitate access to the elements of
the list, explicit counterparts of the co-closure axiom (Co-Cl)provide
evidence terms that can be seen as splitting the infinite list into its head
and tail,

[t]CA→ [head(t)]EA , [t]CA→ [tail(t)]E [t]CA ,

by means of two unary co-closure operations head(·) and tail(·). One
might raise the question why the term r from the antecedent of the
induction rule does not appear in the conclusion, namely in the ind(t, s)
term. This design choice can be justified by noting that the term t in
the antecedent already encompasses the term r and can be seen like a
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function producing the term r for a given formula A. With the aim of
keeping the logic as simple as possible we therefore omit this term in the
conclusion (see also the discussion about operations in the introduction
to Chapter B).

Evidence terms for mutual knowledge are viewed as tuples of the
individual agents’ evidence terms. The standard tupling operation and
h unary projections are employed as means of translation between the
individual agents’ and mutual knowledge evidence. Note that, strictly
speaking, evidence terms for mutual knowledge are not necessary because
they could be defined, just like the modality for mutual knowledge can
be defined in the modal case. However, the resulting system would be
very cumbersome in notation and usage.

While only two of the three operations on LP terms (see Chapter 5,
Fig. 5.1) are adopted for common knowledge evidence and none is
adopted for mutual knowledge evidence, it will be shown in Section 6.2
that three out of the four remaining operations are definable, with a no-
table exception of inspection for mutual knowledge, as is to be expected.
While the usage of the application operation for common knowledge
evidence terms is justifiable on the grounds of the corresponding modal
(K) axiom for common knowledge (see 3), the necessity of the sum
operation for common knowledge evidence terms is less clear and can
only be shown once the realization theorem is proved (see Section 6.6
for details).

We consider a system of h agents. Throughout this chapter, i al-
ways denotes an element of {1, . . . , h}, ∗ always denotes an element of
{1, . . . , h,C}, and ~ always denotes an element of {1, . . . , h,E,C}.

Let Cons~ := {c~1 , c
~
2 , . . .} and Var~ := {x~1 , x

~
2 , . . .} be countable

sets of proof constants and proof variables, respectively, for each type
of knowledge ~. The sets Tm1, . . . ,Tmh, TmE, and TmC of evidence
terms for individual agents and for mutual and common knowledge
respectively are inductively defined as follows:

1. Cons~ ⊆ Tm~ and Var~ ⊆ Tm~;

2. !it ∈ Tmi for any t ∈ Tmi;

3. t+∗ s ∈ Tm∗ and t ·∗ s ∈ Tm∗ for any t, s ∈ Tm∗;

4. 〈t1, . . . , th〉 ∈ TmE for any t1 ∈ Tm1, . . . , th ∈ Tmh;
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5. πit ∈ Tmi for any t ∈ TmE;

6. head(t) ∈ TmE and tail(t) ∈ TmE for any t ∈ TmC;

7. ind(t, s) ∈ TmC for any t ∈ TmC and any s ∈ TmE.

Tm := Tm1 ∪ . . . ∪ Tmh ∪ TmE ∪ TmC denotes the set of all evidence
terms. The indices of the operations !, +, and · will most often be
omitted if they can be inferred from the context. A term is called ground
if no proof variables occur in it.

Let Prop := {P1, P2, . . .} be a countable set of propositional variables.
Formulae are denoted by A,B,C, . . . and are defined by the grammar

A ::= Pj | ¬A | (A→ A) | [t]~A ,

where t ∈ Tm~ and Pj ∈ Prop. The set of all formulae is denoted
by FmLPC

h
. Conjunction, disjunction and equivalence is defined as usual.

We adopt the following convention: whenever a formula [t]~A is used,
it is assumed to be well-formed: i.e., it is implicitly assumed that term
t ∈ Tm~. This enables us to omit the explicit typification of terms.

The axioms of LPC
h are given by:

1. all propositional tautologies

2. [t]∗(A→ B)→ ([s]∗A→ [t · s]∗B) (application)

3. [t]∗A ∨ [s]∗A→ [t+ s]∗A (sum)

4. [t]iA→ A (reflexivity)

5. [t]iA→ [!t]i [t]iA (inspection)

6. [t1]1A ∧ . . . ∧ [th]hA→ [〈t1, . . . , th〉]EA (tupling)

7. [t]EA→ [πit]iA (projection)

8. [t]CA→ [head(t)]EA, [t]CA→ [tail(t)]E [t]CA (co-closure)

9. [t]C(A→ [r]EA)→ ([s]EA→ [ind(t, s)]CA) (induction)
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A constant specification CS is any subset

CS ⊆
⋃

~∈{1,...,h,E,C}

{
[c]~A : c ∈ Cons~ and A is an axiom of LPC

h

}
.

A constant specification CS is called C-axiomatically appropriate if,
for each axiom A, there is a proof constant c ∈ ConsC such that
[c]CA ∈ CS. A constant specification CS is called homogeneous, if
CS ⊆ {[c]~A : c ∈ Cons~ and A is an axiom} for some fixed ~: i.e., if
for all [c]~A ∈ CS the constants c are of the same type.

For a constant specification CS, the deductive system LPC
h(CS) is

the Hilbert system given by the axioms of LPC
h above and by the rules

modus ponens and axiom necessitation:

A A→ B

B
(MP) , [c]~A

(AN) , where [c]~A ∈ CS.

By LPC
h we denote the system LPC

h(CS) with

CS =
{

[c]CA : c ∈ ConsC and A is an axiom of LPC
h

}
. (6.2)

As usual in Hilbert-style systems, we say a formula A is derivable
from a set of formulae ∆, if there is a proof of A using elements of ∆ as
additional axioms. However, note that constant specifications are not
extended in order to also include elements of ∆. For an arbitrary CS,
we write ∆ `CS A to state that A is derivable from a set of formulae ∆
in LPC

h(CS) and omit CS when working with the constant specification
from (6.2) by writing ∆ ` A. We also omit ∆ when ∆ = ∅ and write
`CS A or ` A, in which case A is called a theorem of LPC

h(CS) or
of LPC

h respectively. In order to emphasize this, we also sometimes write
LPC

h(CS) ` A and LPC
h ` A, repsectively. We use ∆, A to mean ∆∪{A}.

6.2. Basic Properties
In this section, we show that our logic possesses the standard properties
expected of any justification logic. In addition, we show that the
operations on terms introduced in the previous section are sufficient to
express the operations of sum and application for mutual knowledge

68



6.2. Basic Properties

evidence and the operation of inspection for common knowledge evidence.
This is the reason why +E, ·E, and !C are not primitive connectives
in the language. It should be noted that no inspection operation for
mutual evidence terms can be defined, which follows from Lemma 6.29
in Section 6.6 and the fact that EA→ EEA is not a valid modal formula.

Lemma 6.1. For any constant specification CS and any formulae A
and B:

1. `CS [t]EA→ A for all t ∈ TmE; (E-reflexivity)

2. for any t, s ∈ TmE, there is a term t ·E s ∈ TmE such that
`CS [t]E(A→ B)→ ([s]EA→ [t ·E s]EB); (E-application)

3. for any t, s ∈ TmE, there is a term t+E s ∈ TmE such that
`CS [t]EA ∨ [s]EA→ [t+E s]EA; (E-sum)

4. for any t ∈ TmC and any i ∈ {1, . . . , h}, there is a term ↓ it ∈ Tmi

such that
`CS [t]CA→ [↓ it]iA; (i-conversion)

5. `CS [t]CA→ A for all t ∈ TmC. (C-reflexivity)

Proof. 1. Immediate by the projection and reflexivity axioms.

2. Set t ·E s := 〈π1t ·1 π1s, . . . , πht ·h πhs〉.

3. Set t+E s := 〈π1t+1 π1s, . . . , πht+h πhs〉.

4. Set ↓ it := πihead(t).

5. Immediate by 4. and the reflexivity axiom.

Unlike Lemma 6.1, Lemma 6.2 requires that a constant specifica-
tion CS be C-axiomatically appropriate.

Lemma 6.2. Let CS be C-axiomatically appropriate and A be a formula.

1. For any t ∈ TmC, there is a term !Ct ∈ TmC such that
`CS [t]CA→ [!Ct]C [t]CA. (C-inspection)

2. For any t ∈ TmC, there is a term W t ∈ TmC such that
`CS [t]CA→ [W t]C [head(t)]EA. (C-shift)
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Proof. 1. As CS is C-axiomatically appropriate, there is a c such
that

[c]C([t]CA→ [tail(t)]E [t]CA) ∈ CS .

We then have [c]C([t]CA → [tail(t)]E [t]CA) by axiom necessita-
tion. From this, modus ponens and the following instance of the
induction axiom

[c]C([t]CA→ [tail(t)]E [t]CA)
→ ([head(t)]EA→ [ind(c, head(t))]CA)

we get [head(t)]EA → [ind(c, head(t))]CA. Furthermore, we have
the following instance of the co-closure axiom

[t]CA→ [head(t)]EA

and by propositional reasoning we finally get

[t]CA→ [ind(c, head(t))]CA .

We can thus set !Ct := ind(c, head(t)).

2. As in the previous case, the C-axiomatical appropriateness guar-
antees the existence of a c′ such that

[c′]C([t]CA→ [head(t)]EA) ∈ CS .

Using modus ponens and the following instance of the application
axiom

[c′]C([t]CA→ [head(t)]EA)
→ ([!Ct]C [t]CA→ [c′·!C]C [head(t)]EA)

we get
[!Ct]C [t]CA→ [c′·!C]C [head(t)]EA

Using propositional reasoning and [t]CA→ [!Ct]C [t]CA we obtain
the desired result and can thus set W t := c′ ·C (!Ct).

70



6.2. Basic Properties

The following two lemmas are standard in justification logics. Their
proofs can be taken almost word for word from [Art01] and are, therefore,
omitted here.

Lemma 6.3 (Deduction Theorem). Let CS be a constant specification
and ∆ ∪ {A,B} ⊆ FmLPC

h
. Then

∆, A `CS B if and only if ∆ `CS A→ B .

Lemma 6.4 (Substitution). For any constant specification CS, any
propositional variable P , any ∆ ∪ {A,B} ⊆ FmLPC

h
, any x ∈ Var~, and

any t ∈ Tm~,

if ∆ `CS A, then ∆(x/t, P/B) `CS(x/t,P/B) A(x/t, P/B) ,

where A(x/t, P/B) denotes the formula obtained by simultaneously re-
placing all occurrences of x in A with t and all occurrences of P in A
with B and ∆(x/t, P/B) and CS(x/t, P/B) are defined accordingly.

The following lemma states that our logic can internalize its own
proofs, which is an important property of justification logics.

Lemma 6.5 (C-lifting). Let CS be a homogeneous C-axiomatically
appropriate constant specification. For any formulae A, B1, . . . , Bn,
C1, . . . , Cm and any terms s1, . . . , sn ∈ TmC, if

[s1]CB1, . . . , [sn]CBn, C1, . . . , Cm `CS A ,

then for each ~ there is a term t~(xC
1 , . . . , x

C
n, y
~
1 , . . . , y

~
m) ∈ Tm~ such

that

[s1]CB1, . . . , [sn]CBn, [y1]~C1, . . . , [ym]~Cm
`CS [t~(s1, . . . , sn, y1, . . . , ym)]~A

for fresh variables x1, . . . , xn ∈ VarC and y1, . . . , ym ∈ Var~.

Proof. We proceed by induction on the derivation of A.
If A is an axiom, there is a constant c ∈ ConsC such that [c]CA ∈ CS

because CS is C-axiomatically appropriate. Then take

tC := c, ti :=↓ ic, tE := head(c)
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and use axiom necessitation, axiom necessitation and i-conversion, or
axiom necessitation and the co-closure axiom, respectively.

For A = [sj ]CBj , 1 ≤ j ≤ n, take

tC :=!Cxj , ti :=↓ i!Cxj , tE := tail(xj)

for a fresh variable xj ∈ VarC and, after xj is replaced with sj , use
C-inspection, C-inspection and i-conversion, or the co-closure axiom,
respectively.

For A = Cj , 1 ≤ j ≤ m, take t~ := yj for a fresh variable yj ∈ Var~.
For A derived by modus ponens from D → A and D, by induction

hypothesis there are terms r~, s~ ∈ Tm~ such that [r~]~(D → A) and
[s~]~D are derivable. Take t~ := r~ ·~ s~ and use ~-application, which
is an axiom for ~ = i and for ~ = C or follows from Lemma 6.1 for
~ = E.

For A = [c]CE ∈ CS derived by axiom necessitation, take

tC :=!Cc, ti :=↓ i!Cc, tE := tail(c)

and, as before, use C-inspection, C-inspection and i-conversion, or the co-
closure axiom respectively. No other instances of the axiom necessitation
rule are possible. Indeed, CS must contain formulae of the type [c]CE
because of C-axiomatic appropriateness. The homogeneity of CS then
means that formulae neither of type [c]iE nor of type [c]EE can occur
in CS.

Corollary 6.6 (Constructive necessitation). Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any formula A,
if `CS A, then for each ~ there is a ground term t ∈ Tm~ such that
`CS [t]~A.

The following two lemmas show that our system LPC
h can internalize

versions of the induction rule (I-R1) and (I-R2) used in axiomatizations
of S4C

h in Chapter 3, Section 3.2. We name them accordingly and first
give a proof of the analogue of the simpler (I-R2) which we then use to
prove the analogue of the general (I-R1).

Lemma 6.7 (Internalized induction rule 2). Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any term s ∈
TmE and any formula A, if `CS A→ [s]EA, there is t ∈ TmC such that
`CS A→ [ind(t, s)]CA.
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Proof. By constructive necessitation, `CS [t]C(A → [s]EA) for some
t ∈ TmC. We then can use the following instance of the induction axiom

[t]C(A→ [s]EA)→ ([s]EA→ [ind(t, s)]CA)

to obtain [s]EA → [ind(t, s)]CA . Using propositional reasoning and
A→ [s]EA again, we get A→ [ind(t, s)]CA .

Lemma 6.8 (Internalized induction rule 1). Let CS be a homogeneous
C-axiomatically appropriate constant specification. For any formulae A
and B and any term s ∈ TmE, if we have `CS B → [s]E(A ∧B), then
there exists t ∈ TmC and c ∈ ConsC such that `CS B → [c · ind(t, s)]CA,
where [c]C(A ∧B → A) ∈ CS.

Proof. Assume
`CS B → [s]E(A ∧B) . (6.3)

From this we immediately get `CS A ∧ B → [s]E(A ∧ B). Thus, by
Lemma 6.7, there is a t ∈ TmC with

`CS A ∧B → [ind(t, s)]C(A ∧B) . (6.4)

Since CS is C-axiomatically appropriate, there is a constant c ∈ ConsC
such that

`CS [c]C(A ∧B → A) . (6.5)

Making use of C-application, we find by (6.4) and (6.5) that

`CS A ∧B → [c · ind(t, s)]CA . (6.6)

From (6.3) we get by E-reflexivity that `CS B → A ∧B. This, together
with (6.6), finally yields `CS B → [c · ind(t, s)]CA.

6.3. Soundness and Completeness
Definition 6.9. An (epistemic) model meeting a constant specifica-
tion CS is a structure M = (W,R, E , ν), where (W,R, ν) is a Kripke
model for S4h with a set of possible worlds W 6= ∅, with a function
R : {1, . . . , h} → P(W ×W ) that assigns a reflexive and transitive ac-
cessibility relation on W to each agent i ∈ {1, . . . , h}, and with a truth
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valuation ν : Prop → P(W ). We always write Ri instead of R(i) and
define the accessibility relations for mutual and common knowledge in
the standard way: RE := R1 ∪ . . . ∪Rh and RC :=

⋃∞
n=1(RE)n.

An evidence function E : W × Tm → P
(

FmLPC
h

)
determines the

formulae evidenced by a term at a world. We define E~ := E � (W ×
Tm~). Note that whenever A ∈ E~(w, t), it follows that t ∈ Tm~. The
evidence function E must satisfy the following closure conditions: for
any worlds w, v ∈W ,

1. E∗(w, t) ⊆ E∗(v, t) whenever (w, v) ∈ R∗; (monotonicity)

2. if [c]~A ∈ CS, then A ∈ E~(w, c); (constant specification)

3. if (A→ B) ∈ E∗(w, t) and A ∈ E∗(w, s),
then B ∈ E∗(w, t · s); (application)

4. E∗(w, s) ∪ E∗(w, t) ⊆ E∗(w, s+ t); (sum)

5. if A ∈ Ei(w, t), then [t]iA ∈ Ei(w, !t); (inspection)

6. if A ∈ Ei(w, ti) for all 1 ≤ i ≤ h,
then A ∈ EE(w, 〈t1, . . . , th〉); (tupling)

7. if A ∈ EE(w, t), then A ∈ Ei(w, πit); (projection)

8. if A ∈ EC(w, t), then A ∈ EE(w, head(t))
and [t]CA ∈ EE(w, tail(t)); (co-closure)

9. if A ∈ EE(w, s) and (A→ [r]EA) ∈ EC(w, t),
then A ∈ EC(w, ind(t, s)). (induction)

When the model is clear from the context, we will directly refer to
R1, . . . , Rh, RE, RC, E1, . . . , Eh, EE, EC, W , and ν.

Definition 6.10. A ternary relation M, w 
 A for formula A being
satisfied at a world w ∈ W in a model M = (W,R, E , ν) is defined by
induction on the structure of the formula A:

1. M, w 
 Pn if and only if w ∈ ν(Pn);

2. 
 behaves classically with respect to the propositional connectives;
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3. M, w 
 [t]~A if and only if
1) A ∈ E~(w, t) and
2) M, v 
 A for all v ∈W with (w, v) ∈ R~.

We write M 
 A if M, w 
 A for all w ∈ W . We write M, w 
 ∆
for ∆ ⊆ FmLPC

h
if M, w 
 A for all A ∈ ∆. We write 
CS A and say

that formula A is valid with respect to CS if M 
 A for all epistemic
models M meeting CS.

Lemma 6.11 (Soundness). All theorems are valid, i.e., `CS A implies

CS A.

Proof. Let M = (W,R, E , ν) be a model meeting CS and let w ∈ W .
We show soundness by induction on the derivation of A. The cases
for propositional tautologies, for the application, sum, reflexivity, and
inspection axioms, and for the modus ponens rule are the same as for
the single-agent case in [Fit05] and are, therefore, omitted. We show
the remaining five cases:

(tupling) Assume M, w 
 [ti]iA for all 1 ≤ i ≤ h. Then for all
1 ≤ i ≤ h, we have 1) M, v 
 A whenever (w, v) ∈ Ri and
2) A ∈ Ei(w, ti). By the tupling closure condition, it follows
from 2) that A ∈ EE(w, 〈t1, . . . , th〉). Since RE =

⋃h
i=1Ri by

definition, it follows from 1) that M, v 
 A whenever (w, v) ∈ RE.
Hence, M, w 
 [〈t1, . . . , th〉]EA.

(projection) Assume M, w 
 [t]EA. Then 1) M, v 
 A whenever
(w, v) ∈ RE and 2) A ∈ EE(w, t). By the projection closure
condition, it follows from 2) that A ∈ Ei(w, πit). In addition,
since RE =

⋃h
i=1Ri, it follows from 1) that M, v 
 A whenever

(w, v) ∈ Ri. Thus, M, w 
 [πit]iA.

(co-closure) Assume M, w 
 [t]CA. Then 1) M, v 
 A whenever
(w, v) ∈ RC and 2) A ∈ EC(w, t). It follows from 1) that M, v′ 

A whenever (w, v′) ∈ RE since RE ⊆ RC; also, due to the
monotonicity closure condition, M, v′ 
 [t]CA since RE ◦ RC ⊆
RC. By the co-closure closure condition, it follows from 2) that
A ∈ EE(w, head(t)) and [t]CA ∈ EE(w, tail(t)). Hence, M, w 

[head(t)]EA and M, w 
 [tail(t)]E [t]CA.
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(induction) Assume M, w 
 [t]C(A → [r]EA). and M, w 
 [s]EA. So
A ∈ EE(w, s) and A→ [s]EA ∈ EC(w, t). By the induction closure
condition, we have A ∈ EC(w, ind(t, s)). To show that M, v 
 A
whenever (w, v) ∈ RC, we prove that M, v 
 A whenever (w, v) ∈
(RE)n by induction on the positive integer n.
The base case n = 1 immediately follows from M, w 
 [s]EA.
Induction step. If (w, v) ∈ (RE)n+1, there must exist v′ ∈
W such that (w, v′) ∈ (RE)n and (v′, v) ∈ RE. By induction
hypothesis, M, v′ 
 A. Since M, w 
 [t]C(A → [r]EA), we get
M, v′ 
 A→ [r]EA. Thus, M, v′ 
 [r]EA, which yields M, v 
 A.
Finally, we conclude that M, w 
 [ind(t, s)]CA.

(axiom necessitation) Let [c]~A ∈ CS. Since A must be an axiom,
M, w 
 A for all w ∈ W , as shown above. Since M is a model
meeting CS, we also have A ∈ E~(w, c) for all w ∈ W by the
constant specification closure condition. Thus, M, w 
 [c]~A for
all w ∈W .

Definition 6.12. Let CS be a constant specification. A set Φ of
formulae is called CS-consistent if Φ 0CS φ for some formula φ. A
set Φ is called maximal CS-consistent if it is CS-consistent and has no
CS-consistent proper extensions.

Whenever safe, we do not mention the constant specification and
only talk about consistent and maximal consistent sets. It can be easily
shown that maximal consistent sets contain all axioms of LPC

h and are
closed under modus ponens.

Definition 6.13. For a set Φ of formulae, we define

Φ/~ := {A : there is a t ∈ Tm~ such that [t]~A ∈ Φ} .

Definition 6.14. Let CS be a constant specification. The canonical
(epistemic) model M = (W,R, E , ν) meeting CS is defined as follows:

1. W := {w ⊆ FmLPC
h

: w is a maximal CS-consistent set};

2. Ri := {(w, v) ∈W ×W : w/i ⊆ v};
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3. E~(w, t) := {A ∈ FmLPC
h

: [t]~A ∈ w};

4. ν(Pn) := {w ∈W : Pn ∈ w}.

Lemma 6.15. Let CS be a constant specification. The canonical epis-
temic model meeting CS is an epistemic model meeting CS.

Proof. The proof of the reflexivity and transitivity of each Ri, as well
as the argument for the constant specification, application, sum, and
inspection closure conditions, is the same as in the single-agent case
(see [Fit05]). We show the remaining five closure conditions:

(tupling) Assume A ∈ Ei(w, ti) for all 1 ≤ i ≤ h. By definition of Ei,
we have [ti]iA ∈ w for all 1 ≤ i ≤ h. Therefore, by the tupling
axiom and maximal consistency, [〈t1, . . . , th〉]EA ∈ w. Thus, A ∈
EE(w, 〈t1, . . . , th〉).

(projection) Assume A ∈ EE(w, t). By definition of EE, we have [t]EA ∈
w. Therefore, by the projection axiom and maximal consistency,
[πit]iA ∈ w. Thus, A ∈ Ei(w, πit).

(co-closure) Assume A ∈ EC(w, t). By definition of EC, we have [t]CA ∈
w. Therefore, by the co-closure axioms and maximal consistency,
[head(t)]EA ∈ w and [tail(t)]E [t]CA ∈ w. Thus, A ∈ EE(w, head(t))
and [t]CA ∈ EE(w, tail(t)).

(induction) Assume A ∈ EE(w, s) and (A → [r]EA) ∈ EC(w, t). By
definition of EE and EC, we have [s]EA ∈ w and [t]C(A→ [r]EA) ∈
w. By the induction axiom, it follows by maximal consistency
that A ∈ EC(w, ind(t, s)).

(monotonicity) We show only the case of ∗ = C since the other cases
are the same as in [Fit05]. It is sufficient to prove by induction on
the positive integer n that

if [t]CA ∈ w and (w, v) ∈ (RE)n, then [t]CA ∈ v . (6.7)

Base case n = 1. Assume (w, v) ∈ RE: i.e., w/i ⊆ v for some i.
As [t]CA ∈ w, [πitail(t)]i [t]CA ∈ w by maximal consistency, and
hence [t]CA ∈ w/i ⊆ v. The argument for the induction step is
similar.
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Now assume (w, v) ∈ RC =
⋃∞
n=1(RE)n and A ∈ EC(w, t). By

definition of EC, we have [t]CA ∈ w. As shown above, [t]CA ∈ v.
Thus, A ∈ EC(v, t).

Remark 6.16. Let R′C denote the binary relation on W defined by

(w, v) ∈ R′C if and only if w/C ⊆ v .

An argument similar to the one just used for monotonicity shows that
RC ⊆ R′C. However, for h > 1 the converse does not hold for any
homogeneous C-axiomatically appropriate constant specification CS,
which we demonstrate by adapting an example from [MH95]. For a fixed
propositional variable P , let

Φ := {[sn]E . . . [s1]EP : n ≥ 1, s1, . . . , sn ∈ TmE}
∪ {¬ [t]CP : t ∈ TmC} .

This set is CS-consistent for any P ∈ Prop.
To prove this, let Φ′ ⊆ Φ be finite and let m denote the largest

nonnegative integer such that [sm]E . . . [s1]EP ∈ Φ′ for some s1, . . . , sm ∈
TmE (in particular, m = 0 if no such terms exist). Define the model
N :=

(
N, RN , EN , νN

)
by

• RNi := {(n, n+ 1) ∈ N2 : n mod h = i} ∪ {(n, n) : n ∈ N};

• EN (n, s) := FmLPC
h

for all n ∈ N and all terms s ∈ Tm;

• νN (Pj) := {1, 2, . . . ,m+ 1} for all Pj ∈ Prop.

Clearly, N meets any constant specification; in particular, it meets
the given CS. For h > 1, it can also be easily verified that N , 1 
 Φ′;
therefore, Φ′ is CS-consistent.

Since Φ is CS-consistent, there exists a maximal CS-consistent set
w ⊇ Φ. Let us show that the set Ψ := {¬P} ∪ (w/C) is also CS-
consistent. Indeed, if it were not the case, there would exist formulae
[t1]CB1, . . . , [tn]CBn ∈ w such that

`CS B1 → (B2 → . . .→ (Bn → P ) . . .) .

Then, by Corollary 6.6, there would exist a term s ∈ TmC such that

`CS [s]C(B1 → (B2 → . . .→ (Bn → P ) . . .)) .
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But this would imply [(. . . (s · t1) · · · tn−1) · tn]CP ∈ w—a contradiction
with the consistency of w.

Since Ψ is also CS-consistent, there exists a maximal CS-consistent
set v ⊇ Ψ. Clearly, w/C ⊆ v: i.e., (w, v) ∈ R′C. But (w, v) /∈ RC because
this would imply P ∈ v, which would contradict the consistency of v.
It follows that RC ( R′C. In accordance with the similiarities to the
situation for the iteration operator in dynamic logic [HKJ00], we will
refer to this as the non-standard behavior of the canonical model.

Similarly, we can define R′E by (w, v) ∈ R′E if and only if w/E ⊆
v. However, R′E = RE for any C-axiomatically appropriate constant
specification CS. Indeed, it is easy to show that RE ⊆ R′E. For the
converse direction, assume (w, v) /∈ RE, then (w, v) /∈ Ri for any 1 ≤
i ≤ h. So there are formulae A1, . . . , Ah such that [ti]iAi ∈ w for
some ti ∈ Tmi, but Ai /∈ v. Now let [ci]C(Ai → A1 ∨ . . . ∨ Ah) ∈ CS
for constants c1, . . . , ch. Then [↓ ici · ti]i(A1 ∨ . . . ∨ Ah) ∈ w for all
1 ≤ i ≤ h, so [〈↓1c1 · t1, . . . , ↓hch · th〉]E(A1 ∨ . . . ∨ Ah) ∈ w. However,
Ai /∈ v for any 1 ≤ i ≤ h; therefore, by the maximal consistency of v,
A1 ∨ . . . ∨Ah /∈ v either. Hence, w/E * v, so (w, v) /∈ R′E.

Lemma 6.17 (Truth Lemma). Let CS be a constant specification and
M be the canonical epistemic model meeting CS. For all formulae A
and all worlds w ∈W ,

A ∈ w if and only if M, w 
 A .

Proof. The proof is by induction on the structure of A. The cases for
propositional variables and propositional connectives are immediate by
definition of 
 and by the maximal consistency of w. We check the
remaining cases:
Case A is [t]iB. Assume A ∈ w. Then B ∈ w/i and B ∈ Ei(w, t).
Consider any v such that (w, v) ∈ Ri. Since w/i ⊆ v, it follows that
B ∈ v, and thus, by induction hypothesis, M, v 
 B. It immediately
follows that M, w 
 A.

For the converse, assume M, w 
 [t]iB. By definition of 
, we get
B ∈ Ei(w, t), from which [t]iB ∈ w immediately follows by definition
of Ei.
Case A is [t]EB. Assume A ∈ w and consider any v such that (w, v) ∈
RE. Then (w, v) ∈ Ri for some 1 ≤ i ≤ h: i.e., w/i ⊆ v. By definition
of EE, we have B ∈ EE(w, t). By the maximal consistency of w, it follows
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that [πit]iB ∈ w, and thus B ∈ w/i ⊆ v. Since by induction hypothesis,
M, v 
 B, we can conclude that M, w 
 A. The argument for the
converse repeats the one from the previous case.
Case A is [t]CB. Assume A ∈ w and consider any v such that (w, v) ∈
RC: i.e., (w, v) ∈ (RE)n for some n ≥ 1. As in the previous cases,
B ∈ EC(w, t) by definition of EC. It follows from (6.7) in the proof
of Lemma 6.15 that A ∈ v, and thus, by C-reflexivity and maximal
consistency, also B ∈ v. Hence, by induction hypothesis, M, v 
 B.
Now M, w 
 A immediately follows. The argument for the converse
repeats the one from the previous cases.

Note that, unlike the converse directions in the proof above, the
corresponding proofs in the modal case are far from trivial and require
additional work (see e.g. [MH95]). The last case, in particular, usually
requires more sophisticated methods that would guarantee the finiteness
of the model. This simplification of proofs in justification logics is yet
another benefit of using terms instead of modalities.

Theorem 6.18 (Completeness). LPC
h(CS) is sound and complete with

respect to the class of epistemic models meeting CS: i.e., for all formulae
A ∈ FmLPC

h
,

`CS A if and only if 
CS A .

Proof. Soundness was already shown in Lemma 6.11. For completeness,
let M be the canonical model meeting CS and assume 0CS A. Then
{¬A} is CS-consistent and hence is contained in some maximal CS-
consistent set w ∈W . So, by Lemma 6.17, M, w 
 ¬A, and hence, by
Lemma 6.15, 1CS A.

6.4. Finite Model Property and Decidability
In the case of LP, the finite model property can be demonstrated by
restricting the class of epistemic models to the so-called M-models,
introduced by Mkrtychev in [Mkr97]. We will now adapt M-models to
our logic and prove the finite model property for it.

Definition 6.19. An M-model is a singleton epistemic model.

Theorem 6.20 (Completeness w.r.t. M-models). LPC
h(CS) is also sound

and complete with respect to the class of M-models meeting CS.
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Proof. Soundness follows immediately from Lemma 6.11. Now assume
0CS A, then {¬A} is CS-consistent, and hence M, w0 
 ¬A for some
world w0 ∈ W in the canonical epistemic model M = (W,R, E , ν)
meeting CS.

Let M′ = (W ′, R′, E ′, ν′) be the restriction of M to {w0}: i.e.,

• W ′ := {w0},

• R′i := {(w0, w0)} for all i,

• E ′ := E � (W ′ × Tm),

• ν′(Pn) := ν(Pn) ∩W ′.

SinceM′ is clearly an M-model meeting CS, it only remains to demon-
strate thatM′, w0 
 B if and only ifM, w0 
 B for all formulae B. We
proceed by induction on the structure of B. The cases where either B is
a propositional variable or its primary connective is propositional are
trivial. Therefore, we only show the case of B = [t]~C. First, observe
that

M, w0 
 [t]~C if and only if C ∈ E ′~(w0, t) . (6.8)

Indeed, by Lemma 6.17, M, w0 
 [t]~C if and only if [t]~C ∈ w0,
which, by definition of the canonical epistemic model, is equivalent to
C ∈ E~(w0, t) = E ′~(w0, t).

IfM, w0 
 [t]~C, thenM, w0 
 C since R~ is reflexive. By induction
hypothesis, M′, w0 
 C. By (6.8) we have C ∈ E ′~(w0, t), and thus
M′, w0 
 [t]~C.

If M, w0 1 [t]~C, then by (6.8) we have C /∈ E ′~(w0, t), so M′, w0 1
[t]~C.

Corollary 6.21 (Finite model property). LPC
h(CS) enjoys the finite

model property with respect to epistemic models.

Using the techniques from Chapter A, we then get decidability as
stated in Theorem A.30

Theorem 6.22. LPC
h(CS) with a decidable schematic CS is decidable.
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Remark 6.23. Note however that, in the case of LPC
h(CS), the finite

model property does not imply that common knowledge can be deduced
from sufficiently many approximants, unlike in the modal case. This is
an immediate consequence of the set

Φ := {[sn]E . . . [s1]EP : n ≥ 1, s1, . . . , sn ∈ TmE}
∪ {¬ [t]CP : t ∈ TmC}

being consistent, as shown in Remark 6.16. In modal logic, a set
analogous to Φ can only be satisfied in infinite models, whereas in our
case, due to the evidence function completely taking over the role of
the accessibility relations, there is a singleton M-model that satisfies Φ.

6.5. Conservativity
We extend the two-agent version LP2 of the Logic of Proofs [Yav08] to
an arbitrary h in the natural way and rename it in accordance with our
naming scheme:

Definition 6.24. The language of LPh is obtained from that of LPC
h

by restricting the set of operations to ·i, +i, and !i and by dropping all
terms from TmE and TmC. The axioms are restricted to application,
sum, reflexivity, and inspection for each i. The definition of constant
specification is changed accordingly.

We show that LPC
h is conservative over LPh by adapting the technique

from [Fit08b], for which evidence terms are essential.

Definition 6.25. The mapping .× : FmLPC
h
→ FmLPh

is defined as
follows:

1. P×n := Pn for propositional variables Pn ∈ Prop;

2. .× commutes with propositional connectives;

3. ([t]~A)× :=


A× if t contains a subterm

s ∈ TmE ∪ TmC,

[t]~A× otherwise.
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Theorem 6.26. Let CS be a constant specification for LPC
h. For an

arbitrary formula A ∈ FmLPh
,

if LPC
h(CS) ` A, then LPh(CS×) ` A ,

where CS× := {[c]iE× : [c]iE ∈ CS}.

Proof. Since A× = A for any A ∈ FmLPh
, it suffices to demonstrate that

for any formula D ∈ FmLPC
h
, if LPC

h(CS) ` D, then LPh(CS×) ` D×,
which can be done by induction on the derivation of D.
Case when D is a propositional tautology. Then so is D×.
Case when D = [t]iB → B is an instance of the reflexivity axiom. Then
D× is either the propositional tautology B× → B× or [t]iB× → B×,
an instance of the reflexivity axiom of LPh.
Case when D = [t]iB → [!t]i [t]iB is an instance of the inspection
axiom. Then D× is either the propositional tautology B× → B× or
[t]iB× → [!t]i [t]iB×, an instance of the inspection axiom of LPh.
Case when D = [t]∗(B → C) → ([s]∗B → [t · s]∗C) is an instance of
the application axiom. We distinguish the following possibilities:

1. Both t and s contain a subterm from TmE ∪ TmC. In this sub-
case, D× has the form (B× → C×) → (B× → C×), which is a
propositional tautology and, thus, an axiom of LPh.

2. Neither t nor s contains a subterm from TmE ∪TmC. Then D× is
an instance of the application axiom of LPh.

3. Term t contains a subterm from TmE ∪ TmC while s does not.
Then D× has the form (B× → C×)→ ([s]iB× → C×), which can
be derived in LPh(CS×) from the reflexivity axiom [s]iB× → B×

by propositional reasoning. In this subcase, translation × does
not map an axiom of LPC

h to an axiom of LPh.

4. Term s contains a subterm from TmE ∪ TmC while t does not.
Then D× is [t]i(B× → C×) → (B× → C×), an instance of the
reflexivity axiom of LPh.

Case when D = [t]∗B ∨ [s]∗B → [t+ s]∗B is an instance of the sum
axiom. We distinguish the following possibilities:
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1. Both t and s contain a subterm from TmE∪TmC. In this subcase,
D× has the form B× ∨ B× → B×, which is a propositional
tautology and, thus, an axiom of LPh.

2. Neither t nor s contains a subterm from TmE ∪TmC. Then D× is
an instance of the sum axiom of LPh.

3. Term t contains a subterm from TmE ∪ TmC while s does not.
Then D× has the form B× ∨ [s]iB× → B×, which can be derived
in LPh(CS×) from the reflexivity axiom [s]iB× → B× by propo-
sitional reasoning. This is another subcase when translation ×
does not map an axiom of LPC

h to an axiom of LPh.

4. Term s contains a subterm from TmE ∪ TmC while t does not.
Then D× has the form [t]iB× ∨B× → B×, which can be derived
in LPh(CS×) from the reflexivity axiom [t]iB× → B× by propo-
sitional reasoning. This is another subcase when translation ×
does not map an axiom of LPC

h to an axiom of LPh.

Case when D = [t1]1B ∧ . . . ∧ [th]hB → [〈t1, . . . , th〉]EB is an instance
of the tupling axiom. We distinguish the following possibilities:

1. At least one of the ti’s contains a subterm from TmE∪TmC. Then
D× has the form C1 ∧ . . . ∧ Ch → B× with at least one Ci = B×

and is, therefore, a propositional tautology.

2. None of the ti’s contains a subterm from TmE ∪ TmC. Then
D× has the form [t1]1B× ∧ . . . ∧ [th]hB× → B×, which can be
derived in LPh(CS×) from the reflexivity axiom. This is another
subcase when translation × does not map an axiom of LPC

h to an
axiom of LPh.

Case when D is an instance of the projection axiom [t]EB → [πit]iB
or of the co-closure axiom: i.e., [t]CB → [head(t)]EB or [t]CB →
[tail(t)]E [t]CB. Then D× is the propositional tautology B× → B×.
Case when D = [t]C(B → [r]EB) → ([s]EB → [ind(t, s)]CB) is an
instance of the induction axiom. Then D× is the propositional tautology
(B× → B×)→ (B× → B×).
Case when D is derived by modus ponens is trivial.

84



6.6. Forgetful Projection and a Word on Realization

Case when D is [c]~B ∈ CS. Then D× is either B× or [c]iB×. In the
former case, B× is derivable in LPh(CS×), as shown above, because
B is an axiom of LPC

h; in the latter case, [c]iB× ∈ CS×.

Remark 6.27. Note that CS× need not, in general, be a constant spec-
ification for LPh because, as noted above, for an axiom D of LPC

h, its
image D× is not always an axiom of LPh. To ensure that CS× is a
proper constant specification, all formulae of the forms

(A→ B)→ ([s]iA→ B) , A ∨ [s]iA→ A ,
[t1]1A ∧ . . . ∧ [th]hA→ A , [t]iA ∨A→ A

have to be made axioms of LPh. Another option is to use Fitting’s
concept of embedding one justification logic into another, which involves
replacing constants in D with more complicated terms in D× (see
[Fit08b] for details).

6.6. Forgetful Projection and a Word on
Realization

Most justification logics are introduced as explicit counterparts to partic-
ular modal logics in the strict sense described in Chapter. 5. Although
the realization theorem for LPC

h remains an open problem, in this section
we prove that each theorem of our logic LPC

h states a valid modal fact if
all the terms are replaced with the corresponding modalities, which is
one direction of the realization theorem. We also discuss approaches to
the more difficult opposite direction.

Let us denote the set of all formulae in the language of S4C
h by FmS4C

h
.

Definition 6.28 (Forgetful projection). The mapping ◦ : FmLPC
h
→

FmS4C
h

is defined as follows:

1. P ◦j := Pj for propositional variables Pj ∈ Prop;

2. ◦ commutes with propositional connectives;

3. ([t]iA)◦ := �iA◦;

4. ([t]EA)◦ := EA◦;
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5. ([t]CA)◦ := CA◦.

Lemma 6.29. Let CS be a constant specification. For any formula
A ∈ FmLPC

h
, if LPC

h(CS) ` A, then S4C
h ` A◦.

Proof. The proof is by an easy induction on the derivation of A.

Let us briefly recall the definition of a realization.

Definition 6.30 (Realization). A realization is a mapping

r : FmS4C
h
→ FmLPC

h

such that (r(A))◦ = A. We usually write Ar instead of r(A).

We can think of a realization as a function that replaces occurrences
of modal operators (including E and C) with evidence terms of the
corresponding type. The problem of realization for a given homogeneous
C-axiomatically appropriate constant specification CS can be formulated
as follows:

Is there a realization r such that LPC
h(CS) ` Ar for any

given theorem A of S4C
h?

A positive answer to this question would constitute the more difficult
direction of the realization theorem, which is often demonstrated by
means of induction on a cut-free sequent proof of the modal formula.
In Chapter 3, Section 3.3, we have given a brief survey of sequent proof
systems for modal logics with common knowledge. We will now shortly
discuss theses systems with respect to their potential to be used to
prove the realization theorem.

The cut-free system Kω
h(C) presented in [AJ05] and [BS09] is based

on an infinitary ω-rule of the form

EmA,Γ for all m ≥ 1
CA,Γ (ω).

However, realizing such a rule presents a serious challenge because it
requires achieving uniformity among the realizations of the approxi-
mants EmA.

Finitizing this ω-rule via the finite model property, Jäger et al. obtain
the finitary cut-free system K<ω

h (C) in [JKS07]. Unfortunately, the
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“somewhat unusual” structural properties of the resulting system (see
discussion in [JKS07]) make it hard to use it for realization.

In [Fit05; Fit10], Fitting presents a non-constructive, semantic realiza-
tion method. However, this method cannot be applied directly because
of the non-standard behavior of the canonical model (see Remark 6.16).
See Chapter C for an outline of the problems occurring and possible
approaches to overcome them.

Perhaps the infinitary system presented in [BKS10b], which is finitely
branching but admits infinite branches, can help in proving the re-
alization theorem for LPC

h, however, more research on the structural
properties of this system would be necessary. For example, it is not
clear, how you would realize the very simple proof given in Figure 6.1.
For now this remains work in progress.

6.7. Coordinated Attack
To illustrate our logic, we will now analyze the coordinated attack
problem along the lines of [Fag+95], where additional references can be
found. Let us briefly recall this classical problem. Suppose two divisions
of an army, located in different places, are about to attack their enemy.
They have some means of communication, but these may be unreliable,
and the only way to secure a victory is to attack simultaneously. How
should generals G and H who command the two divisions coordinate
their attacks? Of course, general G could send a message mG

1 with the
time of attack to general H. Let us use the proposition del to denote
the fact that the message with the time of attack has been delivered.
If the generals trust the authenticity of the message, say because of a
signature, the message itself can be taken as evidence that it has been
delivered. So general H, upon receiving the message, knows the time
of attack: i.e.,

[
mG

1
]
H del. However, since communication is unreliable,

G considers it possible that his message has not been delivered. But
if general H sends an acknowledgment mH

2 , he in turn cannot be sure
whether the acknowledgment has reached G, which prompts yet another
acknowledgment mG

3 by general G, and so on.
In fact, common knowledge of del is a necessary condition for the

attack. Indeed, it is reasonable to assume it to be common knowledge
between the generals that they should only attack simultaneously or not
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attack at all, i.e., that they attack only if both know that they attack:
[t]C(att → [s]E att) for some terms s and t. Thus, by the induction
axiom, we get [s]Eatt → [ind(t, s)]C att. Another reasonable assumption
is that it is common knowledge that neither general attacks unless the
message with the time of attack has been delivered: [r]C(att → del)
for some term r. Using the application axiom, we obtain [s]Eatt →
[r · ind(t, s)]C del. Now, from [t]C(att → [s]E att) again, we obtain att →
[s]E att and thus by propositional reasoning

att → [r · ind(t, s)]C del .

We now show that common knowledge of del cannot be achieved and
that consequently no attack will take place, no matter how many mes-
sages and acknowledgments mG

1 ,m
H
2 ,m

G
3 , . . . are sent by the generals,

even if all the messages are successfully delivered.
In the classical modeling without evidence, the reason is that the

sender of the last message always considers the possibility that his
last message, say mH

2k, has not been delivered. To give a flavor of the
argument carried out in detail in [Fag+95], we provide a countermodel
where mH

2 is the last message, it has been delivered, but H is unsure of
that: i.e.,[

mG
1
]
H del, and

[
mH

2
]
G

[
mG

1
]
H del,

but ¬ [s]H
[
mH

2
]
G

[
mG

1
]
H del

for all terms s. Consider any modelM where W := {0, 1, 2, 3}, ν(del) :=
{0, 1, 2}, RG is the reflexive closure of {(1, 2)}, RH is the reflexive closure
of {(0, 1), (2, 3)}. The only requirements on the evidence function E are
to satisfy del ∈ EH

(
0,mG

1
)

and
[
mG

1
]
H del ∈ EG

(
0,mH

2
)
. Whatever

EC is, we have M, 0 1 [s]H
[
mH

2
]
G

[
mG

1
]
H del and M, 0 1 [t]C del for

any s and t because M, 3 1 del.
Let us investigate a different scenario. In our models with evidence

terms, there is an alternative possibility for the lack of knowledge: insuf-
ficient evidence. For example, G may receive the acknowledgment mH

2
but may not consider it to be evidence for

[
mG

1
]
H del because the signa-

ture of H is missing. We now demonstrate that common knowledge of
the time of attack cannot emerge, basing the argument solely on the lack
of common knowledge evidence, in contrast to the classical approach.
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Consider the M-modelM = (W,R, E , ν) obtained as follows: W := {w},
Ri := {(w,w)}, ν(del) := {w}, and E is the minimal evidence function
such that del ∈ EH

(
w,mG

1
)

and
[
mG

1
]
H del ∈ EG

(
w,mH

2
)
. In this

model, M,w 1 [t]C del for any evidence term t because del /∈ EC(w, t)
for any t. To prove the latter statement, it is sufficient to note that for
any term t, by Lemma 6.29,

0
[
mG

1
]
H del ∧

[
mH

2
]
G

[
mG

1
]
H del → [t]C del (6.9)

because
S4C
h 0 �H del ∧�G�H del → C del ,

which is easy to demonstrate. Let Mcan be the canonical epistemic
model meeting the empty constant specification and let Ecan be its
evidence function. Since the negation of the formula from (6.9) must
be satisfiable, for each t there is a world wt from Mcan such that
del ∈ Ecan

H

(
wt,m

G
1
)

and
[
mG

1
]
H del ∈ Ecan

G

(
wt,m

H
2
)
, but by the Truth

Lemma 6.17, del /∈ Ecan
C (wt, t). Since Ecan � ({wt} × Tm) satisfies all

the closure conditions, the minimality of E implies that EC(w, s) ⊆
Ecan

C (wt, s) for any term s. In particular, del /∈ EC(w, t) for any term t.

6.8. Discussion
In this chapter, we have provided a system of evidence terms for de-
scribing common knowledge, which can be used instead of modal logic
representation. One benefit of this new representation is that several
proofs that are quite hard in the modal case, e.g., those of completeness
and conservativity, are made easier in our logic. There are other merits
to this system as well.

In the single-agent case, as is pointed out in [Art08], an explicit codi-
fication of knowledge by evidence (in Artemov’s case, of the individual
knowledge of the agent) enables knowledge to be analyzed and recorded.
Recording and subsequent retrieving of evidence can be viewed as a
form of single-agent communication, with which any mathematician is
familiar. A proof of a theorem, if not recorded immediately, may require
as much effort to be restored later as finding it required originally. This
role of evidence terms in knowledge transfer is reminiscent of what is
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called explicit knowledge in Knowledge Management2 and is contrasted
with tacit knowledge. As described in [Non91], “Explicit knowledge is
formal and systematic. For this reason, it can be easily communicated
and shared, in product specifications or a scientific formula or a com-
puter program.” In this sense, evidence terms in the single-agent case
serve as a kind of explicit knowledge. Indeed, if an agent can find a
proof he/she wrote down a year ago, it will restore his/her knowledge
of the statement of the theorem.

The situation with common knowledge evidence is more complicated.
An evidence of common knowledge of some fact A, even when trans-
mitted to all agents and received by them3, does not generally create
common knowledge of A for the same reasons that were discussed in
the previous section. In fact, there exist general results about the
impossibility of achieving common knowledge via certain modes of
communication, e.g., in asynchronous systems [Fag+95]. Clearly, an in-
troduction of evidence terms cannot and should not change this general
phenomenon.

However, one can think of modes of communication that ensure that a
transmission of a common knowledge evidence term to all the agents in
the group does create common knowledge among the agents. An example
of such a mode is public announcements (see also Chapter B), a well-
known method of creating common knowledge. Thus, one of the benefits
of our system of terms is a finite encoding of common knowledge, which
is largely infinitary in nature. This finite encoding enables to transmit
evidence, which, under certain modes of communication, creates common
knowledge among the agents. Of course, common knowledge can also
be created by a public announcement of the fact itself rather than
of evidence in support of the fact. There is an important difference,
however. When, in his seminal 1989 work [Pla07a], Plaza analyzed
one of the standard stories used to explain the concept of common
knowledge, the Muddy Children Puzzle, in order to explain how common

2The term “explicit knowledge” sounds so natural that it has been used in different
areas with completely different meanings. For instance, in epistemic logic, explicit
knowledge is a type of knowledge that is not logically omniscient, as opposed to
implicit knowledge [Fag+95].

3Unreliable communication does not prevent knowledge from being explicit. Thus,
in the context of explicit vs. tacit knowledge, we only discuss the usefulness of
evidence terms that have been received by the agent(s).
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knowledge is created by a public announcement, he had to assume that
the announcements are truthful and the agents are trustful. Indeed,
an announced fact cannot become common knowledge, or any kind of
knowledge, if the fact is false. And clearly, if the agents do not trust
the announcement, their knowledge would only change provided they
can verify the announced facts.

Verifiability of announcements is exactly what we achieve by intro-
ducing evidence terms into the language. An agent who receives a
justification for A needs neither to assume that A is true nor to trust
the speaker because the agent can simply verify the received information.
A similar idea of supplying messages with justifications can be used
to describe a distributed system that authorizes the disbursement of
sensitive data, such as medical records, while maintaining a specified
privacy policy [Bla+11]. Interestingly, like in our analysis of the coordi-
nated attack, the authors also propose to use the sender’s signature as
evidence for the information about his/her intentions or policies.

Verifiability of evidence turns out to be sufficient for creating common
knowledge. Indeed, Yavorskaya [Yav08] considered a situation where
agents can verify each other’s evidence, formally:

[t]iA→
[
!ji t
]
j [t]iA for i 6= j . (6.10)

The !ji -operation implicitly presumes communication since i’s evidence t
has to be somehow available to agent j. It is not hard to show that an
addition of this operation to our logic leads to a situation where any
individual knowledge also automatically creates common knowledge of
the same fact: Let L denote LPC

h extended with (6.10) as additional
axioms. Extension here means, that also the constant specification
is extended in order to include the new axioms and the language is
adapted accordingly in order to include the new operations !ji .

Lemma 6.31. For each agent i, term t ∈ Ei and formula A ∈ FmLPC
h

there is a term t ∈ EC such that

L ` [s]iA→ [t(s)]CA.

Proof. First of all note, that constructive necessitation still holds for the
extended logic L, as we only added axioms. The proof can be trivially
adapted for the new system, it is literally the same.
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We have
L ` [s]iA→

[
!ji t
]
j [t]iA

for all j 6= i by our extension and

L ` [s]iA→ [!t]i [t]iA

by the inspection axiom.
Thus by propositional reasoning and the tupling axiom

L ` [s]iA→
[〈

!1i s, . . . , !i−1
i s, !s, !i+1

i s, . . . , !hi s
〉]

E [s]iA

As mentioned above, constructive necessitation holds for the extended
logic and thus there is a term r ∈ EC such that

L ` [r]C([s]iA→
[〈

!1i s, . . . , !i−1
i s, !s, !i+1

i s, . . . , !hi s
〉]

E [s]iA)

Using propositional reasoning and the induction axiom we obtain

L ` [s]iA→
[
ind(r,

〈
!1i s, . . . , !i−1

i s, !s, !i+1
i s, . . . , !hi s

〉
)
]

C [s]iA

There is a constant c ∈ CS witnessing the reflexivity axiom, i.e.

L ` [c]C([s]iA→ A)

and so, using the propositional reasoning and the application axiom we
finally obtain

L ` [s]iA→
[
c · ind(r,

〈
!1i s, . . . , !i−1

i s, !s, !i+1
i s, . . . , !hi s

〉
)
]

CA

Thus, we can set

t(x) := c · ind(r,
〈
!1ix, . . . , !i−1

i x, !x, !i+1
i x, . . . , !hi x

〉
) .

However, the !ji -operation depends on a mode of communication that
must be reliable and immediate in order to work, which restricts the
applicability of such a logic; for instance, it precludes an analysis of
asynchronous systems.
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Note that also the second form of evidence transfer proposed by
Yavorskaya [Yav08] leads to the same result: Let L∗ denote LPC

h extended
with the following axioms

[t]iA→
[
↑ ji t
]
jA for i 6= j

where extension is understood as above.

Corollary 6.32. For each agent i, term t ∈ Ei and formula A ∈ FmLPC
h

there is a term t ∈ EC such that

L∗ ` [s]iA→ [t(s)]CA.

Proof. It can be easily shown that the operation !ji is definable in L∗.
(Actually, also ↑ ji can be shown to be easily definable in L, but this is
not of importance to this corollary).

We have
L∗ ` [t]iA→ [!t]i [t]iA

by the inspection axiom and thus

L∗ ` [t]iA→
[
↑ ji !t

]
j [t]iA for i 6= j.

by the newly added conversion axioms, i.e. we can set

!jix :=↑ ji !

Now we can apply the proof of Lemma 6.31 and immediately obtain the
desired result.

In summary, the kind of knowledge that can be induced via justifi-
cation transmission is generally the same as in the case of statement
transmission and depends primarily on the mode of communication, on
its reliability.

So another benefit of introducing evidence terms is their verifiability,
including cases when evidence terms are communicated between agents.
Yet another benefit, this time on the meta-logical level, is an ability
to analyze common knowledge and the process of its creation. Similar
to Artemov’s analysis of the famous Gettier examples in [Art08], the
system of evidence terms for common knowledge can also be used to
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uncover hidden assumptions. Further, as shown in the previous section,
it can yield new scenarios for well-known epistemic puzzles.

Our contribution is technical in the sense that we aim to study
neither the nature of common knowledge nor ways of transmitting data
to achieve it. Our goal is to provide tools for analyzing the fine structure
of common knowledge, tools that can be used, irrespective of the mode
of communication between the agents, even when the communication
itself remains on the meta-logical level as in the standard rendition of
the Muddy Children Puzzle, e.g., in [Fag+95].
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7. More Justification Logics
with Common Knowledge

More, adj. The comparative degree of too much.

Ambrose Bierce, The Devil’s Dictonary [Bie11]

In the previous chapter we presented a justification logic with common
knowledge with LP as its fixed base logic. In this chapter we generalize
this logic to a selection of base logics and, furthermore, extend our
language in order to talk about groups of agents. This is done in a
similar manner as the modal logic S4C

h in Chapter 3, Section 3.5 was
generalized to the modal logics LC

h such as e.g. KD4C
h or K5C

h.
Most of the proofs presented here are analogous to the proofs presented

in the previous chapter. We will thus often abbreviate the proofs and
only mention the most notable changes where necessary.

7.1. Syntax
As before, we consider a system of h agents. Let us also recall the
following notion from Chapter 3: By a group of agents G = 〈i1, . . . , ik〉
we mean a (non-empty) tuple of ij ∈ {1, . . . , h} with i1 < i2 < . . . < ik.
We will use set notation ij ∈ G and G ⊆ H to state that ij occurs in
G and all ij ∈ G occur in H, respectively. Throughout this chapter1,
i always denotes an element of {1, . . . , h}, ∗ always denotes an element
of {1, . . . , h} ∪ {CG | G a group of agents}, and ~ always denotes an
element of {1, . . . , h} ∪ {EG,CG | G a group of agents}.

1Note that these conventions have been slightly changed in order to include groups
of agents.
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7. More Justification Logics with Common Knowledge

Let Cons~ := {c~1 , c
~
2 , . . .} and Var~ := {x~1 , x

~
2 , . . .} be countable

sets of proof constants and proof variables respectively for each type of
knowledge ~.

The operations on evidence terms are relativized with respects to
groups of agents and furthermore a restriction operation is introduced
to pass common knowledge from a group of agents to a subgroup. See
also Section 3.5 in Chapter 3 for a discussion of the necessity of the
corresponding axioms. The sets Tm1, . . . , Tmh, TmEG , and TmCG (for
each group of agents G) of evidence terms for individual agents and for
mutual and common knowledge for groups of agents respectively are
inductively defined as follows:

1. Cons~ ⊆ Tm~;

2. Var~ ⊆ Tm~;

3. t+∗ s ∈ Tm∗ and t ·∗ s ∈ Tm∗ for any t, s ∈ Tm∗;

4. 〈ti1 , . . . , tik〉G ∈ TmEG for any group of agents G = {i1, . . . , ik}
and tij ∈ Tmij ;

5. πG
i t ∈ Tmi for any group of agents G with i ∈ G and t ∈ TmEG ;

6. ↓G
H t ∈ TmCH for any groups of agents H ⊆ G and t ∈ TmCG ;

7. headG(t) ∈ TmEG and tailG(t) ∈ TmEG for any group of agents G
and t ∈ TmCG ;

8. indG(t, s) ∈ TmCG for any group of agents G, any t ∈ TmCG and
any s ∈ TmEG .

By Tm!
~ we denote the sets of terms obtained by allowing the following

additional clause

9. !it ∈ Tmi for any t ∈ Tmi,

by Tm?
~ we denote the sets of terms obtained by allowing the following

additional clause

10. ?it ∈ Tmi for any t ∈ Tmi,
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and by Tm!?
~ the set of terms obtained by allowing both additional

clauses above.
Tm := Tm1 ∪ . . .∪Tmh ∪TmE ∪TmC denotes the set of all evidence

terms (accordingly with superscripts !, ? or both). The indices of the
operations !, ?, +, and · will usually be omitted if they can be inferred
from the context.

Let Prop := {P1, P2, . . .} be a countable set of propositional variables.
Formulae are denoted by A, B, C, etc. and defined by the following
grammar:

A ::= Pj | ⊥ | (A→ A) | [t]~A ,

where t ∈ Tm~. The set of all formulae is denoted by FmLC
h
. The sets of

formulae Fm!
LC

h
, Fm?

LC
h

and Fm!?
LC

h
are defined equally with Tm!, Tm?, and

Tm!?, respectively, in place of Tm. We will usually omit superscripts !
and ? whenever safe, and we will also assume that whenever a statement
concerning several of the logics defined below is made, the language is
always chosen appropriately (see table 7.2 to see precisely which logic
uses which language). Furthermore, we adopt the following convention:
whenever a formula [t]~A is used, it is assumed to be well-formed, i.e., it
is implicitly assumed that term t ∈ Tm~. This enables us to omit the
explicit typification of terms.

The axioms of JC
h are

1. all propositional tautologies (taut)

2. [t]∗(A→ B)→ ([s]∗A→ [t · s]∗B) (application)

3. [t]∗A ∨ [s]∗A→ [t+ s]∗A (sum)

4. [ti1 ]i1A ∧ . . . ∧ [tik ]ikA→
[
〈ti1 , . . . , tik〉G

]
EGA

for any group of agents G = {i1, . . . , ik} (tupling)

5. [t]EGA→
[
πG
i t
]
iA

for any group of agents G with i ∈ G (projection)

6. [t]CGA→
[
↓G

H t
]

CHA
for any groups of agents H ⊆ G (restriction)

7. [t]CGA→ [headG(t)]EGA and [t]CGA→ [tailG(t)]EG [t]CGA
for any group of agents G (co-closure)
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8. [t]CG(A→ [r]EGA)→ ([s]EGA→ [indG(t, s)]CGA) (induction)

We furthermore also consider the extensions given by table 7.2 using
the additional axioms from table 7.1, where all axiom schemas are taken
from the appropriate language.

A constant specification CS for the logic LC
h is any subset

CS ⊆
⋃

~∈{1,...,h,E,C}

{
[c]~A : c ∈ Cons~ and A is an axiom of LC

h

}
.

A constant specification CS for the logic LC
h is called C-axiomatically

appropriate if for each axiom A of LC
h, there is a proof constant c ∈

ConsCH such that [c]CHA ∈ CS where H = {1, . . . , h}.
A constant specification CS is called homogeneous, if

CS ⊆ {[c]~A : c ∈ Cons~ and A is an axiom}

for some fixed ~, i.e., if for all [c]~A ∈ CS, the constants c are of the
same type.

Let CS be a constant specification for the logic LC
h. The deductive

system LC
h(CS) is the Hilbert system given by the axioms of LC

h as given
above and rules modus ponens and axiom necessitation:

A A→ B

B
(MP) , [c]~A

(AN) , where [c]~A ∈ CS.

By LC
h we denote the system LC

h(CS) with

CS =
{

[c]CHA : c ∈ ConsCH and A is an axiom of LC
h

}
(7.1)

with H = {1, . . . , h}.
For an arbitrary CS, we write ∆ `LC

h(CS) A to state that A is derivable
from ∆ in LC

h(CS). We use ∆, A to mean ∆ ∪ {A}.
Note that the logics presented here are modelled on the logics from

Chapter 3, Section 3.5 where we discussed, why we need the group
restriction axiom and necessitation for the group of all agents. As usual
for justification logics, we only have necessitation for axioms and we
will show in Corollary 7.8 that we have constructive necessitation, the
justification counterpart of “full” necessitation. Furthermore, in contrast
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(j
d)

[t]
i⊥
→
⊥
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to the situation in Chapter 5, we need no iterated axiom necessitation
rule like (AN!) even if the base logic does not contain positive inspection,
as common knowledge possesses this ability regardless of the base logic,
see Lemma 7.4.

7.2. Basic Properties
The following lemmas are immediate adaptions of the lemmas in Sec-
tion 6.2 from Chapter 6 taking into account the presence of groups of
agents and different reasoning capabilities of the base logic that can be
lifted to common knowledge.

Lemma 7.1. For any logic LC
h, any group of agents G, any constant

specification CS and any formulae A and B:

1. for any t, s ∈ TmLC
h

EG
, there is a term t ·EG s ∈ TmLC

h

EG
such that

`LC
h(CS) [t]EG(A→ B)→ ([s]EGA→ [t ·EG s]EGB);

(EG-application)

2. for any t, s ∈ TmLC
h

EG
, there is a term t+EG s ∈ TmLC

h

EG
such that

`LC
h(CS) [t]EGA ∨ [s]EGA→ [t+EG s]EGA;

(EG-sum)

3. for any t ∈ TmLC
h

CG
and any i ∈ G, there is a term ↓G

i t ∈ TmLC
h
i

such that
`LC

h(CS) [t]CGA→
[
↓G
i t
]
iA;

(i-down-conversion)

4. for any t ∈ TmLC
h

CG
and any i ∈ G, there is a term ↑G

i t ∈ TmLC
h
i

such that
`LC

h(CS) [t]CGA→
[
↑G
i t
]
i [t]CGA;

(i-up-conversion)

Proof. Assume G = {i1, . . . , ik}.
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1. Set t ·EG s :=
〈
πG
i1
t ·i1 πG

i1
s, . . . , πG

ik
t ·ik πG

ik
s
〉

G.

2. Set t+EG s :=
〈
πG
i1
t+i1 π

G
i1
s, . . . , πG

ik
t+ik π

G
ik
s
〉

G.

3. Set ↓G
i t := πG

i headG(t).

4. Set ↑G
i t := πG

i tailG(t).

Lemma 7.2. For any logic LC
h containing (jd), any group of agents G

and any constant specification CS:

1. `LC
h(CS) [t]EG⊥ → ⊥ for all t ∈ TmLC

h

EG
; (EG-seriality)

2. `LC
h(CS) [t]CG⊥ → ⊥ for all t ∈ TmLC

h

CG
. (CG-seriality)

Proof. 1. Immediate by the projection and seriality axioms.

2. Immediate by 3 from Lemma 7.1. and the seriality axiom.

Lemma 7.3. For any logic LC
h containing (jt), any group of agents G,

any constant specification CS and any formulae A:

1. `LC
h(CS) [t]EGA→ A for all t ∈ TmLC

h

EG
; (EG-reflexivity)

2. `LC
h(CS) [t]CGA→ A for all t ∈ TmLC

h

CG
. (CG-reflexivity)

Proof. 1. Immediate by the projection and reflexivity axioms.

2. Immediate by 3 from Lemma 7.1. and the reflexivity axiom.

Unlike the previous lemmas, the next lemmas require that a constant
specification CS be C-axiomatically appropriate.

Lemma 7.4. Let LC
h be any of the logics defined above, G a group of

agents, CS a C-axiomatically appropriate constant specification and A be
a formula.

1. For any t ∈ TmLC
h

CG
, there is a term !CGt ∈ TmLC

h

CG
such that

`LC
h(CS) [t]CGA→ [!CGt]CG [t]CGA. (CG-inspection)

2. For any t ∈ TmLC
h

CG
, there is a term WCG t ∈ TmLC

h

CG
such that

`LC
h(CS) [t]CGA→ [WCG t]CG [headG(t)]EGA. (CG-shift)
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Proof. Let H = {1, . . . , h}.

1. Set
!CGt := indG(↓H

G c, headG(t)) ,

where [c]CH([t]CGA→ [tailG(t)]EG [t]CGA) ∈ CS.

2. Set
WCG t :=↓H

G c ·CG (!CGt) ,

where [c]CH([t]CGA→ [headG(t)]EGA) ∈ CS.

As in the previous chapter, the following two theorems are standard
in justification logics. Their proofs can be taken almost word for word
from [Art01] and are, therefore, omitted here.

Lemma 7.5 (Deduction Theorem). Let LC
h be any of the logics defined

above and CS be a constant specification and ∆∪{A,B} ⊆ FmLC
h

. Then
∆, A `LC

h(CS) B if and only if ∆ `LC
h(CS) A→ B.

Lemma 7.6 (Substitution). Let LC
h be any of the logics defined above.

For any constant specification CS, any propositional variable P , any
∆ ∪ {A,B} ⊆ FmLC

h
, any x ∈ Var~, and any t ∈ Tm~,

if ∆ `LC
h(CS) A, then ∆(x/t, P/B) `LC

h(CS(x/t,P/B)) A(x/t, P/B) ,

where A(x/t, P/B) denotes the formula obtained by simultaneously re-
placing all occurrences of x in A with t and all occurrences of P in A
with B, accordingly for ∆(x/t, P/B) and CS(x/t, P/B).

The following lemma states that our logic can internalize its own
proofs, which is an important property of justification logics. The
proof is very similar to the corresponding proof in the previous chapter.
However, groups of agents have to be taken into account and as is to be
expected, this is witnessed by the frequent usage of the group restriction
operator.

Lemma 7.7 (C-lifting). Let LC
h be any of the logics defined above, CS

a homogeneous C-axiomatically appropriate constant specification and
H = {1, . . . , h}. If

[s1]CHB1, . . . , [sn]CHBn, C1, . . . , Cm `LC
h(CS) A ,
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then for each ~, there is a term t~(x1, . . . , xn, y1, . . . , ym) ∈ Tm~ such
that

[s1]CHB1, . . . , [sn]CHBn, [y1]~C1, . . . , [ym]~Cm
`LC

h(CS) [t~(s1, . . . , sn, y1, . . . , ym)]~A

for fresh variables y1, . . . , ym ∈ Tm~.

Proof. We proceed by induction on the derivation of A.
If A is an axiom, then there is a constant c ∈ TmCH such that

[c]CHA ∈ CS because CS is C-axiomatically appropriate. Then take

tCG :=↓H
G c, ti :=↓H

i c, tEG := headG(↓H
G c)

and use axiom necessitation and restriction, axiom necessitation and
i-conversion, or axiom necessitation, restriction and the co-closure axiom
respectively.

For A = [sj ]CBj , 1 ≤ j ≤ n, take

tCG :=↓H
G!CHsj , ti :=↓H

i !CHsj , tEG := tailG(↓H
G sj)

and use C-inspection and restriction, CH-inspection and i-conversion, or
the co-closure axiom and restriction respectively.

For A = Cj , 1 ≤ j ≤ m, take t~ := yj ∈ Var~ for a fresh variable yj .
For A derived by modus ponens from D → A and D, by induction

hypothesis there are terms r~, s~ ∈ Tm~ such that [r~]~(D → A) and
[s~]~D are provable. Take t~ := r~ ·~ s~ and use ~-application, which
is an axiom for ~ = i and for ~ = C or follows from Lemma 7.1 for
~ = E.

For A = [c]CHE ∈ CS derived by axiom necessitation, take

tCG :=↓H
G!CHc, ti :=↓H

i !CHc, tEG := tailG(↓H
G c)

and, as previously, use CG-inspection and restriction, CH-inspection and
i-conversion, or the co-closure axiom and restriction respectively. Note
that in this last case A has to have the form specified above due to the
homogeneity of the constant specification.

As usual, we obtain the following immediate corollary.
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Corollary 7.8 (Constructive necessitation). Let LC
h be any of the logics

defined above, CS a homogeneous C-axiomatically appropriate constant
specification. For any formula A, if `LC

h(CS) A, then for each ~, there
is a ground term (i.e. a term containing no variables) t ∈ Tm~ such
that `LC

h(CS) [t]~A.

Using constructive necessitation, we can now show that common
knowledge inherits the negative inspection property from its base logic
given that also reflexivity is present. As for Lemma 7.4, a direct proof
could be spelled out. However, such a proof would be very lengthy and
cumbersome.

Lemma 7.9. For any logic LC
h containing (jt) and (j5) and let G be a

group of agents, CS a C-axiomatically appropriate and A be a formula.
For any t ∈ TmLC

h

CG
, there is a term ?CGt ∈ TmLC

h

CG
such that

`LC
h(CS) ¬ [t]CGA→ [?CGt]CG¬ [t]CGA. (CG-negative inspection)

Proof. Let i ∈ G. By 4 from Lemma 7.1 we have

[t]CGA→
[
↑G
i t
]
i [t]CGA

and the contraposition of this gives

¬
[
↑G
i t
]
i [t]CGA→ ¬ [t]CGA.

Using constructive necessitation (Corollary 7.8) we find a term ri ∈
Tmi such that

[ri]i(¬
[
↑G
i t
]
i [t]CGA→ ¬ [t]CGA).

Using the application axiom, we obtain[
?i ↑G

i t
]
i¬
[
↑G
i t
]
i [t]CGA→

[
ri·?i ↑G

i t
]
i¬ [t]CGA.

Again, taking the contrapositive we get

¬
[
ri·?i ↑G

i t
]
i¬ [t]CGA→ ¬

[
?i ↑G

i t
]
i¬
[
↑G
i t
]
i [t]CGA. (7.2)

It is easy to see that

¬
[
?i ↑G

i t
]
i¬
[
↑G
i t
]
i [t]CGA→

[
↑G
i t
]
i [t]CGA (7.3)
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as this is simply the contrapositive of an instance of the negative
inspection axiom (j5).

Also, the following is an instance of the reflexivity axiom (jt)[
↑G
i t
]
i [t]CGA→ [t]CGA. (7.4)

Combining (7.2), (7.3) and (7.4) we obtain

¬
[
ri·?i ↑G

i t
]
i¬ [t]CGA→ [t]CGA.

The contrapositive of which gives us

¬ [t]CGA→
[
ri·?i ↑G

i t
]
i¬ [t]CGA.

As i ∈ G = {i1, . . . , ik} was arbitrary, using propositional reasoning
and the tupling axiom, we get

¬ [t]CGA→
[〈
ri1 ·?i1 ↑G

i1 t, . . . , rik ·?ik ↑
G
ik
t
〉

G
]

EG¬ [t]CGA. (7.5)

Let
p(t) :=

〈
ri1 ·?i1 ↑G

i1 t, . . . , rik ·?ik ↑
G
ik
t
〉

G .

Again, applying constructive necessitation (Corollary 7.8) gives us a
term s ∈ TmCG such that

[s]CG(¬ [t]CGA→ [p(t)]EG¬ [t]CGA).

Now we can use the induction axiom to obtain

[p(t)]EG¬ [t]CGA→ [indG(s, p(t))]CG¬ [t]CGA. (7.6)

Finally, using (7.5) and (7.6) we get

¬ [t]CGA→ [indG(s, p(t))]CG¬ [t]CGA.

Therefore, we can set ?CGt := indG(s, p(t)).

Remark 7.10. Note that reflexivity is necessary in the previous proof.
If the relations for all agents are Euclidean, the transitive closure of
the union is not necessarily Euclidean, as can be shown by an easy
counter-example, see Figure 7.1 and, as is to be expected, we will show
in the next section that these frame conditions correspond to the axioms
mentioned.
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Figure 7.1.: A simple two-agent counterexample showing that the transi-
tive closure of the union of Euclidean accessibility relations
is not necessarily Euclidean.

As in the previous chapter, we also obtain internalized induction rules
corresponding to (I-R2) and (I-R1) from Chapter 3.

Lemma 7.11 (Internalized induction rule 2). Let LC
h be any of the

logics defined above, CS a homogeneous C-axiomatically appropriate
constant specification. For any formula A, if `LC

h(CS) A→ [r]EGA, there
is a term t ∈ TmCG such that `LC

h(CS) [s]EGA→ [indG(t, s)]CGA.

Proof. By constructive necessitation, there exists a term t ∈ TmCG such
that `CS [t]CG(A→ [r]EGA). It remains to use the induction axiom and
propositional reasoning.

Lemma 7.12 (Internalized induction rule 1). Let LC
h be any of the

logics defined above, CS a homogeneous C-axiomatically appropriate
constant specification and G any group of agents. For any formulae A
and B, if we have

`LC
h(CS) B → [s]EG(A ∧B) ,

then there exist a term t ∈ TmCG and a constant c ∈ TmCH such that

`CS B →
[
↓H

G c ·CG indG(t, s)
]

CGA ,

where [c]CH(A ∧B → A) ∈ CS and H = {1, . . . , h}.
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Proof. Assume
`LC

h(CS) B → [s]EG(A ∧B) . (7.7)

From this we immediately get `LC
h(CS) A ∧B → [s]EG(A ∧B). Thus, by

Lemma 7.11, there is a t ∈ TmCG with

`LC
h(CS) [s]EG(A ∧B)→ [indG(t, s)]CG(A ∧B) . (7.8)

Since CS is C-axiomatically appropriate, there is a constant c ∈ TmC
such that

`LC
h(CS) [c]CH(A ∧B → A) (7.9)

and thus
`LC

h(CS)
[
↓H

G c
]

CG(A ∧B → A) . (7.10)

Making use of CG-application, we find by (7.8) and (7.10) that

`LC
h(CS) [s]EG(A ∧B)→

[
↓H

G c ·CG indG(t, s)
]

CG(A) . (7.11)

This, together with (7.7), finally yields

`LC
h(CS) B →

[
↓H

G c ·CG indG(t, s)
]

CG(A) .

7.3. Soundness and Completeness
A major change with respect to the previous chapter concerns models.
We generalize the notion of epistemic models to deal with groups of
agents in the obvious way. We will call such models weak. However, if
the base logic contains negative inspection, we need a more restrictive
notion of models, called strong models in order to obtain completeness.
Such models have the strong evidence property stating that admissible
evidence of a statement already implies knowledge of that statement.
Soundness and completeness with respect to the class of these models
is then obtained in the usual way using induction on the derivation and
a canonical model construction.

Definition 7.13. A weak (epistemic) model for logic LC
h meeting a con-

stant specification CS is a structure M = (W,R, E , ν), where (W,R, ν)
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(jt)
for

all
w
∈
W

w
e

have
(w
,w

)∈
R
i ;

(reflexivity)
(j4)

for
all

w
,v
,u
∈
W

,if(w
,v)∈

R
i and

(v
,u)∈

R
i then

(w
,u)∈

R
i ;

(transitivity)

Table
7.3.:Fram

e
conditions

corresponding
to

axiom
s

(jd)
⊥
6∈
E
i (w

,t)
for

all
w
∈
W

and
t∈

T
m
i

(consistency)

(j4)
E
i (w

,t)⊆
E
i (v
,t)

w
henever

(w
,v)∈

R
i ;

(m
onotonicity)

if
A
∈
E
i (w

,t),then
[t]i A

∈
E
i (w

,!t);
(inspection)

(j5)
if
A
6∈
E
i (w

,t),then
¬

[t]i A
∈
E
i (w

,?t);
(negative

inspection)

Table
7.4.:C

losure
conditions

corresponding
to

axiom
s
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7.3. Soundness and Completeness

is a Kripke model for the corresponding modal logic with a set of pos-
sible worlds W 6= ∅, with a function R : {1, . . . , h} → P(W ×W ) that
assigns a accessibility relation on W satisfying the frame conditions cor-
responding to the axioms of the logic LC

h (as given by table 7.3) to each
agent i ∈ {1, . . . , h}, and with a truth valuation ν : Prop→ P(W ). We
always write Ri instead of R(i) and define the accessibility relations for
mutual and common knowledge in the standard way: REG :=

⋃
i∈G Ri

and RCG :=
⋃∞
n=1(REG)n, i.e. RCG is the transitive closure of REG .

An evidence function E : W × TmLC
h → P

(
FmLC

h

)
determines the

formulae evidenced by a term at a world. We define

E~ := E � (W × TmLC
h
~ ) .

Note that whenever A ∈ E~(w, t), it follows that t ∈ TmLC
h
~ . The

evidence function E must satisfy the following closure conditions: for
any worlds w, v ∈W and groups of agents H ⊆ G = {i1, . . . , ik},

1. if [c]~A ∈ CS, then A ∈ E~(w, c); (constant specification)

2. if (A→ B) ∈ E∗(w, t) and A ∈ E∗(w, s),
then B ∈ E∗(w, t · s); (application)

3. E∗(w, s) ∪ E∗(w, t) ⊆ E∗(w, s+ t); (sum)

4. ECG(w, t) ⊆ ECG(v, t) whenever (w, v) ∈ RCG ; (C−monotonicity)

5. if A ∈ Ei(w, ti) for all i ∈ G,
then A ∈ EE(w, 〈ti1 , . . . , tik〉G); (tupling)

6. if A ∈ EEG(w, t) and i ∈ G, then A ∈ Ei(w, πG
i t); (projection)

7. if A ∈ ECG(w, t), then A ∈ ECH(w, ↓G
H t). (restriction)

8. if A ∈ ECG(w, t), then A ∈ EEG(w, headG(t))
and [t]CGA ∈ EEG(w, tailG(t)); (co-closure)

9. if A ∈ EEG(w, s) and (A→ [r]EGA) ∈ ECG(w, t),
then A ∈ ECG(w, indG(t, s)). (induction)

10. the closure conditions corresponding to the axioms (j4) and (j5)
as given by table 7.4, if any of them is present in the logic LC

h.
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When the model is clear from the context, we will directly refer to
R1, . . . , Rh, REG , RCG , E1, . . . , Eh, EEG , ECG , W , and ν.

Definition 7.14. A ternary relation M, w 
 A for formula A being
satisfied at a world w ∈ W in a model M = (W,R, E , ν) is defined by
induction on the structure of the formula A:

1. M, w 
 P if and only if w ∈ ν(P );

2. 
 behaves classically with respect to the propositional connectives;

3. M, w 
 [t]~A if and only if 1) A ∈ E~(w, t) and 2) M, v 
 A for
all v ∈W with (w, v) ∈ R~.

Definition 7.15. A strong (epistemic) model for logic LC
h meeting a

constant specification CS is a weak epistemic model for logic LC
h meeting

a constant specification CS that has the following additional property

• if A ∈ Ei(w, t), then M, w 
 [t]iA (strong evidence)

We write M 
 A if M, w 
 A for all w ∈ W . We write 
LC
h(CS) A

and say that formula A is valid with respect to CS if M 
 A for all
strong models M for logic LC

h meeting CS.

Lemma 7.16 (Soundness). Provable formulae are valid, i.e., `LC
h(CS) A

implies 
LC
h(CS) A.

Proof. Let M = (W,R, E , ν) be an model for LC
h meeting CS and let

w ∈W . We show soundness by induction on the derivation of A. The
cases for propositional tautologies, for the application, sum, reflexivity,
and positive inspection axioms, and for modus ponens rule are the same
as for the single-agent case in [Fit05] and are, therefore, omitted. We
show the remaining cases:

(seriality) As we have ⊥ 6∈ Ei(w, t) for all worlds w ∈ W and terms
t ∈ Tmi, we immediately get M, w 6
 [t]i⊥ and thus M, w 

[t]i⊥ → ⊥.

(negative inspection) Assume M, w 
 ¬ [t]iA. So, by the strong evi-
dence condition, A 6∈ Ei(w, t). By the negative inspection closure
condition we get ¬ [t]iA ∈ Ei(w, ?it) and thus, again by the strong
evidence condition, M, w 
 [?i]i¬ [t]iA.
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7.3. Soundness and Completeness

Note that this is the only place where the strong evidence condition
is necessary, thus whenever our logic does not contain (j5), we get
also the soundness and completeness results for weak models.

(tupling) Assume M, w 
 [ti]iA for all i ∈ G = {i1, . . . , ik}. Then for
all i ∈ G, we have 1) M, v 
 A for all v ∈ W with (w, v) ∈ Ri
and 2) A ∈ Ei(w, ti). So, by the tupling closure condition, A ∈
EEG(w, 〈ti1 , . . . , tik〉G) from 2). Since by definition REG =

⋃
i∈G Ri,

it follows from 1) that M, v 
 A for all v ∈W with (w, v) ∈ REG .
Hence, M, w 


[
〈ti1 , . . . , tik〉G

]
EGA.

(projection) Assume, M, w 
 [t]EGA and i ∈ G. Then 1) M, v 
 A
for all v ∈ W with (w, v) ∈ REG and 2) A ∈ EEG(w, t). By the
projection closure condition, it follows from 2) that A ∈ Ei(w, πG

i t).
In addition, since REG =

⋃
i∈G Ri, we get M, v 
 A for all v ∈W

with (w, v) ∈ Ri by 1). Thus, M, w 

[
πG
i t
]
iA.

(restriction) Assume M, w 
 [t]CGA and H ⊆ G. Then 1) M, v 
 A
for all v ∈ W with (w, v) ∈ RCG and 2) A ∈ ECG(w, t). By the
restriction closure condition, it follows from 2) that A ∈ ECH(w, ↓G

H
t). Furthermore, since RCH ⊆ RCG we get M, v 
 A for all v ∈W
with (w, v) ∈ RCH by 1). Thus, M, w 


[
↓G

H t
]

CHA.

(co-closure) Assume M, w 
 [t]CGA. Then 1) M, v 
 A for all v ∈W
with (w, v) ∈ RCG and 2) A ∈ ECG(w, t). It follows from 1) that for
all v′ ∈W with (w, v′) ∈ REG , we haveM, v′ 
 A since REG ⊆ RCG ;
also, due to the C-monotonicity closure condition, M, v′ 
 [t]CGA
since REG ◦ RCG ⊆ RCG . From 2), by the co-closure closure con-
dition, A ∈ EEG(w, headG(t)) and [t]CGA ∈ EEG(w, tailG(t)). Hence,
M, w 
 [headG(t)]EGA and M, w 
 [tailG(t)]EG [t]CGA.

(induction) Assume M, w 
 [t]CG(A → [r]EGA) and M, w 
 [s]EGA.
The induction closure condition gives us A ∈ ECG(w, indG(t, s)).
To showM, v 
 A for all v ∈W with (w, v) ∈ RCG , we prove that
M, v 
 A for all v ∈W with (w, v) ∈ (REG)n by induction on the
positive integer n.
The base case n = 1 immediately follows from M, w 
 [s]EGA.
Induction step. Let (w, v′) ∈ (REG)n and (v′, v) ∈ REG for some
v, v′ ∈ W . As M, w 
 [t]CG(A → [r]EGA), we have M, v′ 
 A →
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[r]EGA and by induction hypothesis, M, v′ 
 A, thus, M, v′ 

[r]EGA, which yields M, v 
 A.
Finally, we conclude that M, w 
 [indG(t, s)]CGA.

(axiom necessitation) Let A be an axiom of LC
h and c be a proof con-

stant such that [c]~A ∈ CS. Since A is an axiom of LC
h,M, w 
 A

for all w ∈ W , as shown above. Also, as M is a model for LC
h

meeting CS, we have A ∈ E~(w, c) for all w ∈ W by the con-
stant specification closure condition. Thus, M, w 
 [c]~A for all
w ∈W .

Definition 7.17. Let CS be a constant specification. A set Φ of
formulae is called LC

h(CS)-consistent if Φ 0LC
h(CS) φ for some formula φ.

A set Φ is called maximal LC
h(CS)-consistent if it is LC

h(CS)-consistent
and has no LC

h(CS)-consistent proper extensions.

Whenever safe, we do not mention the constant specification and
only talk about consistent and maximal consistent sets. It can be easily
shown that maximal consistent sets contain all axioms of LC

h and are
closed under modus ponens.

Definition 7.18. For a set Φ of formulae, we define

Φ/~ := {A : there is a t ∈ TmLC
h
~ such that [t]~A ∈ Φ} .

Definition 7.19. Let CS be a constant specification. The canonical
(epistemic) model M = (W,R, E , ν) for LC

h meeting CS is defined as
follows:

1. W := {w ⊆ FmLC
h

: w is a maximal LC
h(CS)-consistent set};

2. Ri := {(w, v) ∈W ×W : w/i ⊆ v};

3. E~(w, t) := {A ∈ FmLC
h

: [t]~A ∈ w};

4. ν(Pn) := {w ∈W : Pn ∈ w}.

Lemma 7.20. Let CS be a constant specification for LC
h. The canonical

model for LC
h meeting CS is a weak model for LC

h meeting CS.
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Proof. The proof of the frame conditions for each Ri, as well as the
argument for the constant specification, application, sum, inspection
closure, and monotonicity conditions, is the same as in the single-agent
case (see [Fit05]). We show the remaining closure conditions on the
evidence function:

(consistency) Is immediate by the fact that our worlds are maximal
consistent sets and the definition of the evidence function. (Oth-
erwise there would be ⊥ ∈ Ei(w, t) for some w ∈W and t ∈ Tmi)
and thus also [t]i⊥ ∈ w which by (jd) and maximal consistency
would yield ⊥ ∈ w contradicting the consistency of w.)

(negative inspection) Assume A 6∈ Ei(w, t). By definition of Ei, we
have [t]iA 6∈ w and so ¬ [t]iA ∈ w by maximal consistency. There-
fore, by the negative inspection axiom and maximal consistency
[?t]i¬ [t]A ∈ w. Thus, ¬ [t]iA ∈ Ei(w, ?t).

(tupling) Assume A ∈ Ei(w, ti) for all i ∈ G = {i1, . . . , ik}. By defi-
nition of Ei, we have [ti]iA ∈ w for all i ∈ G. Therefore, by the
tupling axiom and maximal consistency,

[
〈ti1 , . . . , tik〉G

]
EGA ∈ w.

Thus, A ∈ EEG(w, 〈ti1 , . . . , tik〉G).

(projection) Assume A ∈ EEG(w, t) and i ∈ G. Thus, we have [t]EGA ∈
w. Then, by the projection axiom and maximal consistency,[
πG
i t
]
iA ∈ w, and thus A ∈ Ei(w, πG

i t).

(restriction) Assume A ∈ EEG(w, t) and H ⊆ G. By definition of EEG , we
have [t]EGA ∈ w. Therefore, by the restriction axiom and maximal
consistency,

[
↓G

H t
]

EHA ∈ w. Thus, A ∈ EEH(w, ↓G
H t).

(co-closure) Assume A ∈ ECG(w, t). Thus, [t]CGA ∈ w, and, by the
co-closure axioms and maximal consistency, [headG(t)]EGA ∈ w
and [tailG(t)]EG [t]CGA ∈ w. Hence, A ∈ EEG(w, headG(t)) and
[t]CGA ∈ EEG(w, tailG(t)).

(induction) Assume A ∈ EEG(w, s) and (A → [r]EGA) ∈ ECG(w, t).
Then we have [s]EGA ∈ w and [t]CG(A → [r]EGA) ∈ w. From
the induction axiom, it follows by maximal consistency that
[indG(t, s)]CGA ∈ w. Therefore, A ∈ ECG(w, indG(t, s)).
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(C-monotonicity) It is sufficient to prove by induction on the positive
integer n that

if [t]CGA ∈ w and (w, v) ∈ (REG)n, then [t]CGA ∈ v . (7.12)

Base case n = 1. Assume (w, v) ∈ REG , i.e., w/i ⊆ v for
some i ∈ G. As [t]CGA ∈ w,

[
πG
i tailG(t)

]
i [t]CGA ∈ w by maximal

consistency, and hence [t]CGA ∈ w/i ⊆ v. The argument for the
induction step is similar.
Now assume (w, v) ∈ RCG =

⋃∞
n=1(REG)n and A ∈ ECG(w, t),

i.e., [t]CGA ∈ w. As shown above, [t]CGA ∈ v. Thus, A ∈ ECG(v, t).

Lemma 7.21 (Truth Lemma). Let CS be a constant specification and
M be the canonical model for LC

h meeting CS. For all formulae A and
all worlds w ∈W ,

A ∈ w if and only if M, w 
 A .

Proof. The proof is by induction on the structure of A. The cases for
propositional variables and propositional connectives are immediate by
the definition of 
 and by the maximal consistency of w. We check the
remaining cases:
Case A is [t]iB. Assume A ∈ w. Then B ∈ w/i and B ∈ Ei(w, t).
Consider any v such that (w, v) ∈ Ri. Since w/i ⊆ v, it follows that
B ∈ v, and thus, by induction hypothesis, M, v 
 B. And M, w 
 A
immediately follows from this.

For the converse, assume M, w 
 [t]iB. By definition of 
 we get
B ∈ Ei(w, t), from which [t]iB ∈ w immediately follows by definition
of Ei.
Case A is [t]EGB. Assume A ∈ w and consider any v such that (w, v) ∈
REG . Then (w, v) ∈ Ri for some i ∈ G, i.e., w/i ⊆ v. By definition of EEG ,
we get B ∈ EEG(w, t). By maximal consistency of w, it follows that[
πG
i t
]
iB ∈ w, and thus B ∈ w/i ⊆ v. Since, by induction hypothesis,

M, v 
 B, we conclude that M, w 
 A. The argument for the converse
repeats the one from the previous case.
Case A is [t]CGB. Assume A ∈ w and consider any v such that (w, v) ∈
RCG , i.e., (w, v) ∈ (REG)n for some n ≥ 1. As in the previous cases,
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B ∈ ECG(w, t) by definition of ECG . As (w, v) ∈ (REG)n, there is a v′ ∈W
such that (w, v′) ∈ (REG)n−1 and (v′, v) ∈ Ri for some i ∈ G. By (7.12)
we find A ∈ v′, and thus, by the co-closure and projection axioms and
maximal consistency, also

[
πG
i headG(t)

]
iB ∈ v′ and so B ∈ v. Hence,

by the induction hypothesis M, v 
 B. Now M, w 
 A immediately
follows. The argument for the converse repeats the one from the previous
cases.

Note that the converse directions in the proof above are far from trivial
in the modal case, see e.g. [MH95]. The last case, in particular, usually
requires more sophisticated methods that guarantee the finiteness of
the model.

Corollary 7.22. Let CS be a constant specification for LC
h. The canon-

ical model M for LC
h meeting CS is a strong model.

Proof. Suppose A ∈ Ei(w, t). By definition, [t]iA ∈ w, and so by the
Truth Lemma 7.21 M, w 
 [t]iA.

Remark 7.23. By the same argument we also get

if A ∈ EEG(w, t), then M, w 
 [t]EGA,

if A ∈ ECG(w, t), then M, w 
 [t]CGA,

i.e., the canonical model is also “strong with respect to the relations
REG and RCG”.

Theorem 7.24 (Completeness). Let CS be a constant specification for
LC
h. Then LC

h(CS) is sound and complete with respect to the class of
strong models for LC

h meeting CS, i.e., for all formulae A ∈ FmLC
h

,

`LC
h(CS) A if and only if 
LC

h(CS) A .

Proof. Soundness has already been shown in Lemma 7.16. For com-
pleteness, let M be the canonical model for LC

h meeting CS and assume
0LC

h(CS) A. Then {¬A} is LC
h(CS)-consistent and hence is contained

in some maximal LC
h(CS)-consistent set w ∈ W . So, by Lemma 7.21,

M, w 
 ¬A, and hence, by Lemma 7.20, 1LC
h(CS) A.

Furthermore, for certain logics we also get two more completeness
results with respect to different classes of models.
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Corollary 7.25. If LC
h contains (j5), then LC

h(CS) is sound and complete
with respect to the class of strong models for LC

h meeting CS with the
additional properties

1. if A 6∈ Ei(w, t) and (w, v) ∈ Ri,
then A 6∈ Ei(v, t) (Anti-Monotonicity)

2. for all w, v, u ∈W , if (w, v) ∈ Ri and (w, u) ∈ Ri,
then (v, u) ∈ Ri (Euclideanness)

Proof. It is sufficient to show that the canonical model for LC
h has the

desired properties.

1. Assume A 6∈ Ei(w, t) and (w, v) ∈ Ri. By negative inspection
closure we obtain ¬ [t]i ∈ E(w, ?t). By the strong evidence property
we getM, w 
 [?t]i¬ [t]iA and thusM, v 
 ¬ [t]iA and soM, v 6

[t]iA. Thus, again by the strong evidence property, A 6∈ Ei(w, t).

2. Let (w, v) ∈ Ri and (w, u) ∈ Ri. For any [t]iA ∈ v we have
M, v 
 [t]iA by the Truth Lemma 7.21 and so, by strong evidence
A ∈ Ei(v, t). By anti-monotonicity from the previous part we
obtain A ∈ Ei(w, t). Again, by strong evidence we get M, w 

[t]iA and thus M, u 
 A. So, we have established w/i ⊆ u and
we are finished.

Corollary 7.26. Let CS be a C-axiomatically appropriate constant
specification and LC

h contain the axiom (jd). Then LC
h(CS) is sound and

complete with respect to the class of strong Models for LC
h meeting CS

lacking the consistency closure condition but with the additional property

• for all w ∈W there is a v ∈W such that (w, v) ∈ Ri. (seriality)

Proof. For soundness we need to show M, w 6
 [t]i⊥. By seriality there
must be a world v ∈W with (w, v) ∈ Ri and there, trivially M, v 6
 ⊥
and we immediately get the desired result.

For completeness it is sufficient to show that the canonical model has
the desired frame property. Let w ∈ W . We need to show that there
is a v ∈ W such that (w, v) ∈ Ri. It is sufficient to show that w/i is
consistent, because then w/i is contained in some maximal consistent
set v and by definition of Ri we get (w, v) ∈ Ri. So, assume (towards
a contradiction) that w/i is not consistent. This means, there must
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be formulae [s1]iA1, . . . , [sn]iAn ∈ w such that A1, . . . , An ` ⊥. By
Lemma 7.7 we get

[x1]iA1, . . . , [xn]iAn ` [t(x1, . . . , xn)]i⊥

for fresh variables xi and some term t. Replacing the xi by si yields

[s1]iA1, . . . , [sn]iAn ` [t′(s1, . . . , sn)]i⊥

where t′ is the same as t except that some justification constants are
(possibly) replaced by other justification constants. But, as we are
dealing with logics containing (jd), this immediately gives

[s1]iA1, . . . , [sn]iAn ` ⊥

contradicting the consistency of w.

7.4. Finite Model Property and Decidability
The decidability proof from the previous chapter and Chapter A can
also be adapted to the general case in this chapter with the exception
of the case for logics containing negative inspection, as discussed in
Section A.7.

Definition 7.27 (M-models). An M-model is a singleton model.
We will denote an M-model by M = (E , ν) instead of ({w}, R, E , ν)

and we will write

• ν(Pj) = true if and only if w ∈ ν(Pj),

• A ∈ E~(t) if and only if A ∈ E~(w, t).

Definition 7.28 (Validity in M-models). Validity in an M-modelM =
(E , ν) for LC

h is inductively defined as follows:

• M 
 Pj if and only if ν(Pj) = true,

• 
 behaves classically with respect to propositional connectives,

• – if LC
h does not contain (jt), then

M 
 [t]~A if and only if A ∈ E~(t) ,
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7. More Justification Logics with Common Knowledge

– if LC
h does contain (jt), then

M 
 [t]~A if and only if M 
 A and A ∈ E~(t) .

Theorem 7.29 (Completeness with respect to M-models). Let CS be
a constant specification. LC

h(CS) is also sound and complete with respect
to the class of M-models meeting CS.

Proof. Soundness follows immediately from Lemma 7.16. Now assume
that 0CS A, then {¬A} is CS-consistent, and henceM, w 
 ¬A for some
world w0 ∈W in the canonical model M = (W,R, E , ν) meeting CS.

LetM′ = (E ′, ν′) be the restriction ofM to {w0}, i.e., forW ′ := {w0},
let E ′ := E � (W ′ × Tm) for any ~, and ν′(Pn) := ν(Pn) ∩W ′.

SinceM′ is clearly an M-model meeting CS, it remains to demonstrate
that M′ 
 B if and only if M, w0 
 B for all formulae B. We proceed
by induction on the structure of B. The cases where either B is a
propositional variable or its primary connective is propositional are
trivial. Therefore, we only show the case of B = [t]~C. First, observe
that

M, w0 
 [t]~C if and only if C ∈ E ′~(t) . (7.13)

Indeed, by Lemma 7.21,M, w0 
 [t]~C if and only if [t]~C ∈ w0, which,
by definition of the canonical model, is equivalent to C ∈ E~(w0, t) =
E ′~(t).

We have to consider two cases.

• Let LC
h(CS) not contain (jt). If M, w0 
 [t]~C, then C ∈ E ′~(t)

by (7.13) and thus M′ 
 C.
If M, w0 1 [t]~C then by (7.13) we have C /∈ E ′~(t), so M′ 1
[t]~C.

• Let LC
h(CS) contain (jt). IfM, w0 
 [t]~C, thenM, w0 
 C since

R~ is reflexive.
By induction hypothesis, M′ 
 C. By (7.13) we have C ∈ E ′~(t),
and thus M′ 
 [t]~C.
If M, w0 1 [t]~C, then by (7.13) we have C /∈ E ′~(t), so M′ 1
[t]~C.
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Corollary 7.30 (Finite model property). Any of the previously defined
logics LC

h(CS) enjoy the finite model property with respect to epistemic
models.

Using techniques from Chapter A, we get decidability as stated in
Theorem A.30. The decidability question for logics containing the (5)
axiom remains open, see the discussion in Chapter A.

Theorem 7.31.

1. Any justification logic

LC
h ∈ {JC

h(CS), JTC
h(CS), J4C

h(CS), LPC
h(CS)}

with a decidable schematic CS is decidable.

2. Any justification logic

LC
h ∈ {JDC

h(CS), JD4C
h(CS)}

with a decidable, schematic and axiomatically appropriate CS is
decidable.

7.5. Conservativity
The conservativity proof from the previous chapter can also be adapated
for logics containing the reflexivity axiom. However, the case for logics
not containing the reflexivity axiom remains open, see the discussion at
the end of this section.

Definition 7.32. The language of Lh is obtained from that of LC
h by

restricting the set of operations to ·i, +i, and !i and by dropping all
terms from TmEG and TmCG for all groups of agents G. The axioms
are restricted to application, sum, and, if present in the base logic L,
reflexivity, inspection, and negative inspection for each i. The definition
of constant specification is changed accordingly.

We show that any LC
h containing the reflexivity axiom is conservative

over its corresponding multi-agent logic Lh without common knowledge
by adapting a technique from [Fit08b].
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7. More Justification Logics with Common Knowledge

Definition 7.33. The mapping .× : FmLC
h
→ FmLh

is defined as follows:

1. P× := P for propositional variables P ∈ Prop;

2. .× commutes with propositional connectives;

3. ([t]~A)× :=


A× if t contains a subterm s ∈ TmEG

or s ∈ TmCG for any group
of agents G,

[t]~A× otherwise.

For a set Φ ⊆ FmLC
h

we define Φ× := {ϕ× : ϕ ∈ Φ}.

Theorem 7.34. Let LC
h be a logic containing the reflexivity axiom and

CS a constant specification for LC
h. For an arbitrary formula A ∈ FmLh

,
if LC

h(CS) ` A, then Lh(CS×) ` A.

Proof. Since A× = A for any A ∈ FmLh
, it suffices to demonstrate that

for any formula D ∈ FmLC
h
, if LC

h(CS) ` D, then Lh(CS×) ` D×, which
can be done by induction on the derivation of D.
Case when D is a propositional tautology, then so is D×.
Case when D = [t]∗(B → C) → ([s]∗B → [t · s]∗C) is an instance of
the application axiom. We distinguish the following possibilities:

1. Both t and s contain a subterm from TmEG ∪TmCG for some group
of agents G. Then D× has the form (B× → C×)→ (B× → C×),
which is a propositional tautology and, thus, an axiom of Lh.

2. Neither t nor s contains a subterm from TmEG ∪ TmCG for all
groups of agents G. Then D× is an instance of the application
axiom of Lh.

3. Term t contains a subterm from TmEG ∪ TmCG for some group of
agents G while s does not. Then D× is (B× → C×)→ ([s]iB× →
C×), which can be derived in Lh(CS×) from the reflexivity axiom
[s]iB× → B× by propositional reasoning. In this case, transla-
tion × does not map an axiom of LC

h to an axiom of Lh.

4. Term s contains a subterm from TmEG ∪ TmCG for some group of
agents G while t does not. Then D× is [t]i(B× → C×)→ (B× →
C×), an instance of the reflexivity axiom of Lh.
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Case when D = [t]∗B → [t+ s]∗B is an instance of the sum axiom.
Then D× becomes B× → B×, [t]iB× → B×, or [t]iB× → [t+ s]iB×,
i.e., a propositional tautology, an instance of the reflexivity axiom of Lh,
or an instance of the sum axiom of Lh respectively. The sum axiom
[s]∗B → [t+ s]∗B is treated in the same manner.
Case when D = [ti1 ]i1B ∧ . . . ∧ [tik ]ikB →

[
〈ti1 , . . . , tik〉G

]
EGB is an

instance of the tupling axiom for some group of agents G = {i1, . . . , ik}.
We distinguish the following possibilities:

1. At least one of the ti’s contains a subterm from TmEH ∪TmCH for
some group of agents H. Then D× has the form C1∧. . .∧Ck → B×

with at least one Ci = B× and is, therefore, a propositional
tautology.

2. None of the ti’s contains a subterm from TmEH ∪ TmCH for all
groups of agents H. Then D× has the form [ti1 ]i1B× ∧ . . . ∧
[tik ]ikB× → B×, which can be derived in Lh(CS×) from the
reflexivity axiom. This is another case when translation × does
not map an axiom of LC

h to an axiom of Lh.

Case when D is an instance of the projection axiom [t]EGB →
[
πG
i t
]
iB,

the restriction axiom [t]CGA →
[
↓G

H t
]

CGA or of the co-closure axioms,
i.e., [t]CGB → [headG(t)]EGB or [t]CGB → [tailG(t)]EG [t]CGB for some
group of agents G with i ∈ G and H ⊆ G. Then D× is the propositional
tautology B× → B×.
Case when D = [t]CG(B → [r]EGB) → ([s]EGB → [indG(t, s)]CB is an
instance of the induction axiom. Then D× is (B× → B×) → (B× →
B×), a propositional tautology.
Case when D = [t]iB → B is an instance of the reflexivity axiom (jt).
Then D× is either [t]iB× → B× or B× → B×, i.e., an instance of the
reflexivity axiom of Lh or a propositional tautology respectively.
Case when D = [t]iB → [!t]i [t]iB is an instance of the inspection
axiom (j4). Then D× is either the propositional tautology B× → B×

or [t]iB× → [!t]i [t]iB×, an instance of the inspection axiom of Lh.
Case when D = ¬ [t]iB → [?t]i¬ [t]iB is an instance of the negative
inspection axiom (j5). The D× is either the propositional tautology
¬B× → ¬B× or ¬ [t]iB× → [?t]i¬ [t]iB×, an instance of the negative
inspection axiom of Lh.
Case when D is derived by modus ponens is trivial.
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Case when D is [c]~B ∈ CS. Then D× is either B× or [c]iB×. In the
former case, B is an axiom of LC

h, and hence B× is derivable in Lh(CS×),
as shown above; in the latter case, [c]iB× ∈ CS×.

Note that as previously CS× need not, in general, be a constant
specification for Lh as discussed in Remark 6.27.

The case for the logics without the reflexivity axiom remains open.
Note that the semantical method from [Mil09] can be adapted to the
logics presented here: Given a model for the logic without common
knowledge, we can extend this model to a model for the logic with
common knowledge using the fact that the closure conditions on the
evidence functions define operators (see Chapter A). However, we would
start with a “common knowledge-free” constant specification and the
process of extension would not add anything to this constant specifica-
tion. Thus, the conservativity result would be rather weak. Hence, it
remains to find a mapping similar to the mapping .× defined above in
order to also extend the constant specification in a “natural” way.

Also, note that JD4 is not conservative over JD as shown in [Mil09],
as it can be easily shown that {x : P, y : (x : P → ⊥)} is consistent in
JD, but not in JD4 (as in the latter you can derive y·!x : ⊥). In some
sense, adding common knowledge is similar to adding positive inspection
due to the fact that common knowledge is the transitive closure of the
union of the agents’ accessibility relations. A similar effect might occur
for JDh and JDC

h. However, the typedness of the evidence terms seems
to prevent this.

7.6. Forgetful Projection and a Word on
Realization

As is to be expected, we can also easily generalize the results on forgetful
projection from the previous chapter, but the opposite direciton, the
realization theorem, remains open.

Let Fm� denote the set of formulae in the language of the (modal)
logics of common knowledge from Chapter 3, Section 3.5.

Definition 7.35 (Forgetful projection). The mapping ◦ : FmLC
h
→ Fm�

is defined as follows:
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Logic LC
h Corresponding modal logic (LC

h)◦

JC
h KC

h

JDC
h KDC

h

JD4C
h KD4C

h

JD5C
h KD5C

h

JD45C
h KD45C

h

JTC
h KTC

h

JT4C
h KT4C

h

JT5C
h KT5C

h

JT45C
h KT45C

h

J4C
h K4C

h

J45C
h K45C

h

J5C
h K5C

h

Table 7.5.: Forgetful projection

1. P ◦ := P for propositional variables P ∈ Prop;

2. ◦ commutes with propositional connectives;

3. ([t]iA)◦ := �iA◦;

4. ([t]EGA)◦ := EGA
◦;

5. ([t]CGA)◦ := CGA
◦.

For a given justification logic LC
h we will call (LC

h)◦ the correspondig
modal logic as given by table 7.6 (see Chapter 6, Section 6.6 for a
definition of these logics).

Lemma 7.36. Let CS be any constant specification. For any formula
A ∈ FmLC

h
, if LC

h(CS) ` A, then (LC
h)◦ ` A◦.

Proof. The proof is an easy induction on the derivation of A.

Definition 7.37 (Realization). A realization is a mapping

r : Fm� → FmLC
h
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such that (r(A))◦ = A. We usually write Ar instead of r(A).

As before, the problem of realization for a given homogeneous C-
axiomatically appropriate constant specification CS can be stated as:

Is there a realization r such that LC
h(CS) ` Ar for any

theorem A of the corresponding modal logic (LC
h)◦?

The problem of realization remains open. The comments from Chap-
ter 6, Section 6.6, especially concerning realization, apply here as well.
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8. Conclusions
Let not sleep fall upon thy eyes till thou has thrice
reviewed the transactions of the past day. Where have I
turned aside from rectitude? What have I been doing?
What have I left undone, which I ought to have done?
Begin thus from the first act, and proceed; and, in
conclusion, at the ill which thou hast done, be troubled,
and rejoice for the good.

Samuel Johnson’s translation of Pythagoras’s Golden
Verses 40–44, The Rambler No. 8 (14 April 1750)

[Joh10]

In Chapter 4, we presented a proof system S for common knowledge
that uses the general idea that common knowledge as a greatest fixed
point can be unfolded “infinitely often”. This leads to finitely branching
proof trees with infinitely long branches that must contain infinitely
many applications of the unfolding of the same common knowledge
formula. Similar systems were studied for the modal µ-calculus and
linear time logic [NW96; Stu08; DHL06].

It is interesting to investigate the relationship between the system
presented and the systems presented in the previous chapter, e.g. HAx,
but these would require syntactic cut elimination in particular. Also,
this could shed a new light on how common knowledge emerges. Another
important observation is, that the system presented in [Weh10] seems to
be a finitized version of the co-inductive system presentend here, using
annotations in order to check possible repetitions of sequents when
fixed points are unfolded. However, a formal relationship betweens
these system has yet to be established. For this purpose, but also as
a very general question, it is of course of particular interest, to learn
more about the behavior and form of common knowledge formulae in

127



8. Conclusions

C-threads.
In Chapters 6 and 7, we presented several justification logics with

common knowledge (in particular our “example” logic LPC
h). The major

open problem at the moment remains proving the realization theorem,
one direction of which we have demonstrated. See Section 6.6 and Chap-
ter C for a discussion of this problem and possible approaches. Further
open problems include the conservativity of the logics without the re-
flexivity axiom over the corresponding multi-agent justification logics as
well as the decidability of logics containing the negative introspection
axiom.

Our analysis of the coordinated attack problem in the language of LPC
h

shows that access to evidence creates more alternatives than the classical
modal approach. In particular, the lack of knowledge can occur either
because messages are not delivered, or because evidence of authenticity
is missing.

We have mostly focused on the study of C-axiomatically appropriate
constant specifications. For modeling distributed systems with different
reasoning capabilities of agents, it is also interesting to consider i-
axiomatic appropriate, E-axiomatic appropriate, and heterogeneous
constant specifications, where only certain aspects of reasoning are
common knowledge.

We established soundness and completeness with respect to epistemic
models and singleton M-models. The question, whether other semantics
for justification logics such as (arithmetical) provability semantics [Art95;
Art01] and game semantics [Ren09b] can be adapted to LPC

h, remains.
Using the filtration techniques described in Chapter A, we have also
been able to show the decidability of the logics presented, except for
the logics that include negative inspection.1 Further avenues of research
might include, but are not limited to, the comparison of the complexity
of the justification logics with common knowledge to the complexity of
the corresponding modal logics with common knowledge.

A long-term goal of our research is to find justification counterparts
of dynamic epistemic logics with common knowledge, see Chapter B.
Clearly, both types of systems, explicit counterparts to common knowl-
edge logics and to dynamic epistemic logics, will have to be studied on
their own first, before being combined.

1See Section A.7 for a discussion of negative introspection.
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Yet another direction of research might be justification logics that are
released from their “modal chains”, i.e., justification logics that are not
related to modal logics. Justification logics with common knowledge with
a more fine grained control of reasoning capabilities as mentioned above
might be a very simple example for such logics. Another possibility might
be an exploration of the evidential dynamics of announcements, e.g. the
announced formula itself might be a justification for its announcement.
In this vicinity it might also be interesting to consider the relationship
of Fitting models and neighborhood semantics, i.e., also the relationship
of justification logics and classical modal logics.

It also seems worthwhile to have adequate model theoretic tools at
hand, such as e.g. filtrations from Chapter A. Besides the usual modal
logic suspects such as bounded morphisms, bisimulations, etc., this
would also include techniques to deal with the evidence function in
the spirit of those presented in [Fit09]. As a simple use case of such
tools we could think of non-definability results in the spirit of [BRV02].
Furthermore, a better model theoretic understanding might also help in
overcoming the problems with the semantical realization approach as
described in Chapter C.
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A. Filtrations

In Chapters 6 and 7 we stated the decidability of some justification
logics with common knowledge. In this chapter, we investigate the
techniques used to obtain these results as presented in [BKS12a] and
use them to prove the decidability results for justification logics with
common knowledge.

Filtrations are a tool in modal logic for obtaining from a given,
usually infinite, model a smaller, usually finite, model by factoring the
set of worlds with respect to a certain equivalence relation. As noted
in [BRV02], filtrations were first introduced in [Seg71] and given their
name in [LS77]. Given the close relationship between Fitting models and
Kripke models, it is a natural task to adopt filtrations for justification
logics. The crucial step is, of course, to take into account the evidence
relation when identifying states.

Filtrations are often used to prove a finite model property and thereby
establish decidability of a given modal logic, see e.g. [BRV02]. Decid-
ability for the justification logics presented here was originally shown
in [Kuz00; Kuz08; Mkr97]. We adapt the filtration technique from modal
logic to obtain an alternative uniform proof of decidability for these
justification logics. We then apply the newly developed technique to
establish the decidability of the multi-agent justification logic with
common knowledge presented in Chapters 6 and 7.

First, we will introduce some additional definitions relevant to this
chapter. In Section A.2, we define filtrations for justification logics and
prove their basic properties. We treat two specific examples of filtrations
in Sections A.3 and A.4. In Section A.5, we use these two examples to
prove the decidability of the justification logics defined in Chapter 5.
This also leads us to investigate general properties necessary for the
decidability of justification logics and enables us to prove the decidability
of the multi-agent justification logics with common knowledge from
Chapters 6 and 7 in Section A.6.
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A.1. Preliminary Definitions
The set of subformulae Sub(A) of a given formula A is defined inductively
as follows:

Sub(pi) := {pi},
Sub(¬A) := {¬A} ∪ Sub(A),

Sub(A1 → A2) := {A1 → A2} ∪ Sub(A1) ∪ Sub(A2),
Sub(t : A) := {t : A} ∪ Sub(A).

A set of formulae Φ ⊆ Fm is closed under subformulae if⋃
F∈Φ

Sub(F ) ⊆ Φ .

Definition A.1 (t-evidence relation). Suppose we drop the monotonic-
ity condition (6)

if (t, A,w) ∈ E and wRv, then (t, A, v) ∈ E (6)

from Definition 5.5. A relation satisfying the remaining closure condi-
tions (for logics containing the (4) axiom) is called a t-evidence relation.

Definition A.2 (Evidence bases). 1. An evidence base B is a subset
of Tm× Fm×W .

2. An evidence relation E is based on B, if B ⊆ E .

Remark A.3. The closure conditions in the definition of an admissible
evidence function give rise to a monotone operator. The minimal
evidence relation based on B is the least fixed point of that operator
and thus always exists.

A.2. Filtrations
Given the close relationship of models for justification logics to Kripke
models, it is not surprising that the two definitions of filtrations look
very similar. The major difference is that we have to take the evidence
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relation into consideration. In modal logic, we identify worlds that
behave the same way, whereas in justification logic we identify worlds
that behave the same way for the same reason.

Definition A.4 (Filtration). Let M = (W,R, E , ν) be a model and Φ
some set of formulae that is closed under subformulae. We define an
equivalence relation =Φ⊆W ×W by setting w =Φ v if and only if for
all A ∈ Φ

M,w 
 A if and only if M,v 
 A

and for all t : B ∈ Φ

E(t, B,w) if and only if E(t, B, v).

We denote the equivalence classes of Φ by [w]Φ. When Φ is clear from
the context, we will often only write [w] instead of [w]Φ.

A model MΦ = (WΦ, RΦ, EΦ, νΦ) is called a filtration of M through
Φ if it satisfies the following:

1. WΦ = {[w]Φ | w ∈W},

2. RΦ satisfies
(R1) for all w, v ∈W if R(w, v), then RΦ([w]Φ, [v]Φ),
(R2) for all [w]Φ, [v]Φ ∈ WΦ, if RΦ([w]Φ, [v]Φ), then for any t :

B ∈ Φ we have

if M, w 
 t : B then M, v 
 B,

3. EΦ satisfies
(E1) for all w ∈W and t : B ∈ Φ we have

if M, w 
 t : B then (t, B, [w]Φ) ∈ EΦ,

(E2) for all w ∈W and t : B ∈ Φ we have

if (t, B, [w]Φ) ∈ EΦ then (t, B,w) ∈ E ,

4. νΦ satisfies for all atomic propositions p ∈ Φ

νΦ(p) = {[w]Φ | w ∈ ν(p)} .
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There are two major changes in the definition compared to the case for
modal logic. The first change concerns the definition of the equivalence
relation to identify worlds. Whereas a modal formula �B can only
fail due to the existence of an accessible world not satisfying B, a
justification formula t : B might fail in two ways: either B is not
satisfied in an accessible world or t is not admissible evidence for B
at the current world. So we have to refine our equivalence relation to
only identify worlds that do not only satisfy the same formulae but
also behave the same with respect to the evidence relation. The second
change concerns the evidence relation of the filtration: it has to satisfy
conditions similar to the Min- and Max-conditions (R1) and (R2) for
the accessibility relation.

The crucial property of a filtration of a model through Φ is that the
behavior of the model and the filtration is the same with respect to
formulae in Φ:

Lemma A.5. Let M = (W,R, E , ν) be a model, Φ a set of formulae
closed under subformulae, and MΦ = (WΦ, RΦ, EΦ, νΦ) a filtration of
M through Φ. Then for all worlds w ∈W and formulae A ∈ Φ we have

MΦ, [w]Φ 
 A if and only if M, w 
 A.

Proof. The proof is by induction on the structure of A. The case for
propositional variables is immediate by the definition of νΦ and the
cases for the propositional connectives are immediate by the induction
hypothesis. Let us now consider the case A = t : B.

First we show the direction from right to left. Assume M, w 

t : B. If RΦ([w]Φ, [v]Φ), then by (R2) we have M, v 
 B. By the
induction hypothesis we get MΦ, [v]Φ 
 B. Further from (E1) we get
(t, B, [w]Φ) ∈ EΦ and thus MΦ, [w]Φ 
 t : B.

For the other direction suppose MΦ, [w]Φ 
 t : B, that is

MΦ, [v]Φ 
 B for all [v]Φ with RΦ([w]Φ, [v]Φ) (A.1)

(t, B, [w]Φ) ∈ EΦ (A.2)

If R(w, v), then by (R1) also RΦ([w]Φ, [v]Φ) and by (A.1) and the
induction hypothesis we get M, v 
 B. Furthermore from (A.2) and
(E2) we get E(t, B,w) and we conclude M, w 
 t : B.
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A filtration inherits some conditions on the accessibility relations.
Furthermore, a filtration through a finite set has finitely many worlds.

Lemma A.6. Let M = (W,R, E , ν) be a model, Φ a set of formulae
closed under subformulae, and MΦ = (WΦ, RΦ, EΦ, νΦ) a filtration of
M through Φ.

1. If R is serial, so is RΦ.

2. If R is reflexive, so is RΦ.

3. If Φ is finite, then so is WΦ.

Proof. The first two claims follow immediately from (R1). The last claim
follows from the fact that each element [w]Φ ∈WΦ can be characterized
by the set of formulae A ∈ Φ that hold in [w]Φ as well as the set of
formulae t : B ∈ Φ with EΦ(t, B, [w]Φ) and the fact that P(Φ)× P(Φ)
has only finitely many elements.

A.3. Non-transitive Case
As a first example we will define filtrations for logics not containing the
(4) axiom.

Definition A.7. Let M = (W,R, E , ν) be a model and Φ a set of
formulae closed under subformulae. We consider the structure Mnt

Φ =
(W nt

Φ , R
nt
Φ , Ent

Φ , ν
nt
Φ ) that is given by

1. W nt
Φ is the set of equivalence classes induced by =Φ,

2. Rnt
Φ ([w], [v]) iff for all t : B ∈ Φ we have M, w 
 t : B implies
M, v 
 B,

3. Ent
Φ is the minimal evidence relation based on Bnt

Φ , where

Bnt
Φ (t, B, [v]) if and only if t : B ∈ Φ and E(t, B, v)

4. νnt
Φ is given by

νnt
Φ (p) =

{
{[w] | w ∈ ν(p)} if p ∈ Φ,
∅ otherwise.
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Lemma A.8. Mnt
Φ is a filtration of M through Φ.

Proof. We have to check the following conditions.

(R1) Assume R(w, v). If M, w 
 t : B, then M, v 
 B. Thus we
conclude Rnt

Φ ([w], [v]).

(R2) Let t : B ∈ Φ and Rnt
Φ ([w], [v]). If M, w 
 t : B, then we get

M, v 
 B immediately from the definition of Rnt
Φ .

(E1) Assume t : B ∈ Φ and M, w 
 t : B. We have E(t, B,w) and we
immediately get Ent

Φ (t, B, [w]) by the definition of Ent
Φ .

(E2) We show for all t : B, not only for those contained in Φ, that for
all w′ ∈ [w]

Ent
Φ (t, B, [w]) implies E(t, B,w′) .

We proceed by induction on the construction of Ent
Φ .

• If Ent
Φ (t, B, [w]) because Bnt

Φ (t, B, [w]), then by definition of
Bnt

Φ we have that t : B ∈ Φ and E(t, B,w′′) for some w′′ ∈ [w].
By w′ =Φ w′′ we conclude E(t, B,w′).

• If t = t1 + t2 and Ent
Φ (t, B, [w]) because of Ent

Φ (ti, B, [w]) (for
some i ∈ {1, 2}), then by induction hypothesis we get that
E(ti, B,w′) and thus also E(t1 + t2, B,w

′) by the closure
conditions on E .

• If t = t1 · t2 and Ent
Φ (t, B, [w]) because there is an A ∈ Fm

such that Ent
Φ (t1, A → B, [w]) and Ent

Φ (t2, A, [w]), then by
induction hypothesis E(t1, A→ B,w′) and E(t2, A,w′). So,
by the closure conditions, we get E(t1 · t2, B,w′).

• The case for axiom necessitation is trivial, as we have

E(! · · ·!!︸ ︷︷ ︸
n

c, ! · · ·!!︸ ︷︷ ︸
n−1

c : · · · :!c : c : A, v)

for any world v ∈W .
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A.4. Transitive Case
The case for logics containing the (4) axiom is a bit more involved, as
we now have to ensure that the accessibility relation of the filtration
has to be transitive as well.

Definition A.9. Let M = (W,R, E , ν) be a model and Φ a set of
formulae closed under subformulae. We consider the structure Mtr

Φ =
(W tr

Φ , R
tr
Φ, E tr

Φ , ν
tr
Φ) that is given by

1. W tr
Φ is the set of equivalence classes induced by =Φ,

2. Rtr
Φ([w], [v]) iff for all t : B ∈ Φ we have M, w 
 t : B implies
M, v 
 B ∧ t : B,

3. E tr
Φ is the minimal t-evidence relation based on Btr

Φ, where

Btr
Φ(t, B, [v]) if and only if t : B ∈ Φ and M, v 
 t : B,

4. νtr
Φ is given by

νtr
Φ(p) =

{
{[w] | w ∈ ν(p)} if p ∈ Φ,
∅ otherwise.

As a first step we have to show that E tr
Φ as defined is not only a

t-evidence relation but an actual evidence relation.

Lemma A.10. E tr
Φ is an admissible evidence relation over (W tr

Φ , R
tr
Φ).

Proof. We have to show that condition (6) in Definition 5.5 holds, i.e.,
we have to show

E tr
Φ(t, B, [w]) and Rtr

Φ([w], [v]) imply E tr
Φ(t, B, [v]) .

So assume E tr
Φ(t, B, [w]) and Rtr

Φ([w], [v]). We now show E tr
Φ(t, B, [v])

by induction on the construction of E tr
Φ .

Let E tr
Φ(t, B, [w]) because of Btr

Φ(t, B, [w]). We have t : B ∈ Φ and
M, w 
 t : B by definition of Btr

Φ. Since RΦ([w], [v]), it follows that
M, v 
 B ∧ t : B and, in particular, M, v 
 t : B. Thus, Btr

Φ(t, B, [v])
by definition of Btr

Φ, and clearly E tr
Φ(t, B, [v]).

Let us now distinguish the different possible closure conditions from
Definition 5.5:
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1. Assume we have t = t1 + t2 and E tr
Φ(t, B, [w]) because of

E tr
Φ(ti, B, [w]) for i = 1 or i = 2. Then by induction hypoth-

esis E tr
Φ(ti, B, [v]) and thus also E tr

Φ(t, B, [v]).

2. The case for · and ! follows immediately from the induction hy-
pothesis in the same manner as the previous case.

3. The case for axiom necessitation (AN) trivially holds.

The accessibility relation for the filtration is transitive.

Lemma A.11. Rtr
Φ is transitive.

Proof. Assume (a) Rtr
Φ([w], [v]) and (b) Rtr

Φ([v], [u]). Suppose t : B ∈ Φ
and M, w 
 t : B. By (a) we get M, v 
 t : B. Then by (b) we obtain

M, u 
 B ∧ t : B.

Hence we conclude Rtr
Φ([w], [u]).

Lemma A.12. Mtr
Φ is a filtration of M through Φ.

Proof. We have to check the following conditions.

(R1) Assume R(w, v). If M, w 
 t : B, then M, v 
 B and M, w 
!t :
t : B which implies M, v 
 t : B. Thus we conclude Rtr

Φ([w], [v]).

(R2) Let t : B ∈ Φ and RΦ([w], [v]). If M, w 
 t : B, then we get
M, v 
 B immediately from the definition of Rtr

Φ.

(E1) Assume t : B ∈ Φ and M, w 
 t : B. We immediately get
E tr

Φ(t, B, [w]) by the definition of E tr
Φ .

(E2) As in the proof of Lemma A.8 we can show for all t : B and all
w′ ∈ [w]

E tr
Φ(t, B, [w]) implies E(t, B,w′) .
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A.5. Decidability
The theorems in this section originate from [Kuz08]. We will thus only
give proof sketches for the sake of brevity.

Definition A.13 (Finitary model). A modelM = (W,R, E , ν) is called
finitary if

1. W is finite,

2. there exists a finite base B such that E is the minimal evidence
relation based on B, and

3. the set {(w, p) ∈W × Prop | w ∈ ν(p)} is finite.

Using filtrations we see that if a formula is satisfiable then it is
satisfiable in a finitary model. Thus we have the following:

Lemma A.14 (Completeness w.r.t. finitary models).

1. Let LCS ∈ {JCS , JTCS , J4CS , LPCS} and CS be a constant specifi-
cation for L. If a formula A is not derivable in LCS , then there
exists a finitary model M for LCS with M, w 6
 A for some world
w in M.

2. Let LCS ∈ {JDCS , JD4CS} and CS be an axiomatically appropriate
constant specification for L. If a formula A is not derivable in
LCS , then there exists a finitary model M for LCS with M, w 6
 A
for some world w in M.

Proof. Let CS be as required above. If A is not derivable in LCS , then by
Theorem 5.11 there exists a model M for LCS with M, v 6
 A for some
world v in M. Now set Φ := Sub(A) and let MΦ denote either Mnt

Φ or
Mtr

Φ from Definitions A.7 and A.9 respectively, depending on whether
LCS contains the (4) axiom. It is easy to see thatMΦ is a finitary model:
by Lemma A.6 the set of worlds is finite and, by definition of MΦ, the
evidence relation is finitely based and the valuation function satisfies
condition 3 from Definition A.13. Finally, since MΦ is a filtration of
M through Φ by Lemma A.8 or by Lemma A.12, by Lemma A.5 we
have MΦ, [v] 6
 A.
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Corollary A.15. All statements of Lemma A.14 hold if an additional
restriction is imposed that the domain of the model M be a finite subset
of N.

Proof. The claim follows trivially from Lemma A.14 by renaming worlds
to natural numbers.

The following theorem is a simple instance of Post’s theorem [Pos44]:
A set is decidable if and only if both the set and its complement are
recursively enumerable.

Theorem A.16. A logic is decidable if it is recursively enumerable and
is sound and complete with respect to a set C such that

1. C is a recursively enumerable set of finite models and

2. the relation M, w 
 A between models M ∈ C, worlds w in M,
and formulae A is decidable.

Proof. We give a proof sketch, for full details cf. [Kuz08, Theorem 4.3.3]
Given a formula A, we can simultaneously enumerate theorems

B0, B1, . . . of the logic and potential counter-models M0,M1, . . . ∈ C
and at each step check whether (a) A = Bi or (b) Mi, w 6
 A for
some w ∈ Mi. Eventually either (a) or (b) will hold for some i, thus
indicating whether the logic proves A.

Lemma A.17. Let LCS ∈ {JCS , JDCS , JD4CS , JTCS , J4CS , LPCS}. The
set of finitary models for LCS with the domain being a finite subset of N
is recursively enumerable.

Proof. We give a proof sketch, for full details cf. [Kuz08, Lemma 4.4.6].
It is obvious that the set of such models for J can be recursively

enumerated. Models of each of the other five logics must additionally
satisfy certain conditions on the accessibility relation, some combination
of transitivity, reflexivity, and seriality. Since each of these conditions
can be effectively verified, the models of J that are unsuitable for a
given logic can be effectively removed from the enumeration of models
for LCS .

Lemma A.18. Let CS be a decidable schematic constant specification
and LCS ∈ {JCS , JDCS , JD4CS , JTCS , J4CS , LPCS}. Let M = (W,R, E , ν)
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be a finitary model for LCS . Then the relation M, w 
 A between worlds
w ∈W and formulae A is decidable.

Proof. We give a proof sketch, for full details cf. [Kuz08, Corollary 4.4.8].
We can show this by induction on the formula A, the cases for

propositions and Boolean connectives being trivial.
The crucial step is to show that the relation E(t, B,w) between terms

t ∈ Tm, formulae B ∈ Fm and worlds w ∈W is decidable (see [Kuz08,
Lemma 4.4.7]).

Let B be the base for the minimal evidence relation E of M. Given
a fixed term t, we will construct a sequence of sets E it (w) inductively,
which can be seen as a partial evidence function that lists all formulae
for which t or one of its subterms are admissible evidence at world w.

In order to keep the sets finite and as we are given a schematic constant
specification, we will use variables X,Y, . . . ranging over schemes of
formulae and variables P,Q, . . . ranging over formulae. Also, we assume
that our constant specification is given in terms of schemes, i.e.

CS = {c : X | c is a constant and X is a scheme}.

The sets are defined as follows

E0
t (w) := {(s,B) | B(s,B,w) and s ∈ Sub(t)}

∪ {(c,X) | c : X ∈ CS and c ∈ Sub(t)}

Assume Ent (w) has been constructed, in order to obtain En+1
t (w) add

the following

• (s1 · s2, Y1σ) for any (s1, X1 → Y1) ∈ Ent (w) and (s2, X2) ∈ Ent (w)
such that the most general unifier σ of X1 and X2 exists and
s1 · s2 ∈ Sub(t)

• (s1 · s2, Q) for any (s1, P ) ∈ Ent (w) and (s2, X2) ∈ Ent (w) where
Q is a fresh variable over formulas and s1 · s2 ∈ Sub(t)

• (s1 + s2, X) for any (s1, X) or (s2, X) ∈ Ent (w) with s1 + s2 ∈
Sub(t)

• depending on whether the logic LCS contains the (4) axiom, we
distinguish the following two cases: If the logic does not contain
the (4) axiom, we add
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– (!! · · ·!︸ ︷︷ ︸
n+1

c, !! · · ·!︸ ︷︷ ︸
n

c : . . . :!c : c : X) for any c : X ∈ CS with

!! · · ·!︸ ︷︷ ︸
n+1

c ∈ Sub(t)

If the logic contains the (4) axiom, we add
– (!s, s : X) for any (s,X) ∈ Ent (w) with !s ∈ Sub(t)
– (s,X) for any (s,X) ∈ Ent (v) with R(v, w) and s ∈ Sub(t)

All the sets E it (w) are finite. As W and Sub(t) are finite, there is
an n easily computable from the size of W and the length of t such
that Ent (w) = E it (w) for all i ≥ n. Furthermore, we have E(t, B,w) if
and only if B unifies with some X such that (t,X) ∈ Ent (w). Thus, the
relation E(t, B,w) is decidable.

Corollary A.19 (Decidability).

1. Any justification logic in {JCS , JTCS , J4CS , LPCS} with a decidable
schematic CS is decidable.

2. Any justification logic in {JDCS , JD4CS} with a decidable, sche-
matic, and axiomatically appropriate CS is decidable.

Proof. All logics presented are obviously recursively enumerable. By
Corollary A.15, Lemma A.17 and Lemma A.18 all logics presented satisfy
the conditions of Theorem A.16 and are, therefore, decidable.

A.6. The Case of Common Knowledge
While the finiteness of the sets of worlds is a key feature of filtrations,
the finite bases of our examples are due to the specific setup of the
models and are by no means a necessary property of filtrations. On
the other hand, if we start with a logic LCS , which we already know to
be sound and complete with respect to a class of finite models, we can
adapt the construction we used to finitely base the evidence function
for the filtrations.

Definition A.20. LetM = (W,R, E , ν) be a model and Φ some set of
formulae that is closed under subformulae. The Φ-generated submodel
M � Φ of M is defined as (W,R, E � Φ, ν � Φ) where
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1. E � Φ is the minimal evidence relation based on BΦ where

BΦ(t, B,w) if and only if t : B ∈ Φ and E(t, B,w)

2. ν � Φ is given by

ν � Φ(p) =
{
{w | w ∈ ν(p)} if p ∈ Φ
∅ otherwise

Lemma A.21. Let M = (W,R, E , ν) be a model, Φ a set of formulae
closed under subformulae, and M � Φ the Φ-generated submodel of M.
Then for all worlds w in M and formulae A ∈ Φ we have

M � Φ, w 
 A if and only if M, w 
 A.

Proof. The proof is by induction on A. The case for atomic propositions
is immediate by the definition of ν � Φ and the cases for boolean
connectives follow immediately by induction hypothesis. Let us consider
the case when A is t : B.

So assume M � Φ, w 
 t : B. We get (t, B,w) ∈ E � Φ and M �
Φ, v 
 B for all v ∈ W with R(w, v). The latter gives us M, v 
 B
by induction hypothesis whereas from the former we get (t, B,w) ∈ E
as both E and E � Φ are based on BΦ and E � Φ is minimal with that
property and hence E � Φ ⊆ E . So we have M, w 
 t : B.

For the other direction assumeM, w 
 t : B. We have thus E(t, B,w)
and M, v 
 B for all v ∈ W with R(w, v). Again, the latter gives
us M � Φ, v 
 B by induction hypothesis and by the definition of
E � Φ we immediately get (t, B,w) ∈ E � Φ from the former and thus
M � Φ, w 
 t : B.

We can use this technique (adapted to the multi-agent case) to
establish decidability for the justification logic with common knowledge
LPC

h that was introduced in 6 and 7.
The crucial observation here is that the closure conditions for the

evidence function, except for the negative intropsection condition, given
in Definitions 6.9 and 7.13 define a monotone operator as before for the
logics defined in Chapter 6 and 7.

For the logics LC
h ∈ {JC

h(CS), JTC
h(CS), J4C

h(CS), LPC
h(CS)} we can

easily adapt the Φ-generated submodels from Definition A.20 and
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Lemma A.21 to the multi-agent case and turn these singleton mod-
els into finitary models. Obviously the class of these finitary, singleton
models is recursively enumerable, and adapting Lemma A.18 to the
multi-agent case shows that these logics satisfy the conditions of Theo-
rem A.16 and decidability follows as in the previous section.

Lemma A.22. Any justification logic

LC
h ∈ {JC

h(CS), JTC
h(CS), J4C

h(CS), LPC
h(CS)}

with a decidable schematic CS is decidable.

For the logics LC
h ∈ {JDC

h(CS), JD4C
h(CS)}, the proof is a bit more

involved. While we have also completeness with respect to the class of
singleton models, the evidence relation for these models has to satisfy
the consistency condition from Table 7.4 which prevents decidability of
the evidence relation. However, we also have completeness with respect
to the class of models with serial accessibility relations and without
the consistency condition on the evidence relation, see 7.26. In order
to establish decidability, we can thus use a filtration construction. We
will present the transitive case, as the intransitive case can be easily
obtained using the obvious modifications.

Remark A.23. Filtrations for the multi-agent justification logic with
common knowledge LC

h are defined as filtrations for the single agent case
in Definition A.4, except that now conditions (R1) and (R2) have to be
satisfied by all accessibility relations R1, . . . , Rh, RE, and RC as well as
all evidence relations E1, . . . , Eh, EE, and EC have to satisfy conditions
(E1) and (E2). All other notions can also be easily adapted to the
multi-agent case.

If M is a model, w ∈W a world in this model and MΦ a filtration
through a set of formulae Φ we can show

M, w 
 A if and only if MΦ, [w] 
 A (A.3)

for any A ∈ Φ just as in the proof of Lemma A.5 using the above
mentioned conditions (R1), (R2), (E1), and (E2).
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Definition A.24. Let A ∈ FmLPC
h

be a formula, let

Φ1 := {B,¬B |B ∈ Sub(A)},
Φ2 := {[πit]iB,¬ [πit]iB | for each [t]EB ∈ Φ1 and i = 1 . . . h},
Φ3 := {[head(t)]EB,¬ [head(t)]EB,

[πihead(t)]iB,¬ [πihead(t)]iB,
[tail(t)]E [t]CB,¬ [tail(t)]E [t]CB,
[πitail(t)]i [t]CB,¬ [πitail(t)]i [t]CB

| for each [t]CB ∈ Φ1 and i = 1 . . . h},

and set Φ := Φ1 ∪ Φ2 ∪ Φ3. Φ is called a suitable set for A.

Remark A.25. 1. Φ is closed under subformulae.

2. For each B ∈ Φ there is a C ∈ Φ such that for any constant
specification CS we have

JD4C
h(CS) ` ¬B ↔ C.

3. If [t]CB ∈ Φ, then [head(t)]EB ∈ Φ and [tail(t)]E [t]CB ∈ Φ.

4. If [t]EB ∈ Φ, then [πit]iB ∈ Φ for each i = 1 . . . h.
Let us fix a formula A ∈ FmJD4C

h
and a suitable set Φ for A for the

remaining part of this section.

Definition A.26. Let CS be a C-axiomatically appropriate constant
specification and let M be a model for JD4C

h meeting CS as described
in Corollary 7.26, i.e., with serial (and transitive) accessibility relations
but no consistency condition on the evidence function.

We define the MΦ = (WΦ, RΦ, EΦ, νΦ) in the following way:

• WΦ := {[w]Φ | w ∈W},

• – RΦ
i ([w], [v]) if and only if for all [t]iB ∈ Φ we have

M, w 
 [t]iB implies M, v 
 B ∧ [t]iB,

– RΦ
E :=

⋃h
i=1R

Φ
i ,
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– RΦ
C :=

⋃∞
n=1(RΦ

E )n,

• EΦ is the minimal t-evidence relation based on BΦ given by

BΦ
~(t, B, [w]) if and only if [t]~B ∈ Φ and M, w 
 [t]~B,

• νΦ(P ) :=
{
{[w] | w ∈ ν(P )} if P ∈ Φ,
∅ otherwise.

Remark A.27. MΦ is a model for JD4C
h, i.e. RΦ

i is transitive and serial
for each i = 1 . . . h and EΦ is an evidence relation.

Proof. To show that RΦ
i is transitive is a simple repetition of the proof

in Lemma A.11.
Let us show that RΦ

i is serial. Assume (towards a contradiction) that
RΦ
i is not serial. Then there must be a world w ∈ W such that [w] is

isolated with respect to RΦ
i . By definition of RΦ

i , this means that for
each v ∈ W there is a formula [tv]iBv ∈ Φ such that M, w 
 [tv]iBv
but M, v 6
 Bv ∧ [tv]iBv. But this contradicts the seriality of Ri which
implies there is a world u ∈W such that Ri(w, u) and so in particular
M, w 
 [tu]iBu and M, u 
 Bu ∧ [tu]iBu.

Finally, we need to show that E is not only a t-evidence relation but
an actual evidence relation, i.e.,

if EΦ
∗ (t, B, [w]) and RΦ

∗ ([w], [v]) then EΦ
∗ (t, B, [v]). (A.4)

In order to do so, we first show the following property for any formula
[t]~B

if EΦ
~(t, B, [w]) then M, w 
 [t]~B. (A.5)

We proceed by induction on the construction of EΦ. The base case
is trivial: if BΦ

~(t, B, [w]) because of M, w 
 [t]~B, we already have
the desired result. The induction step is equally simple, as the closure
conditions of EΦ are directly modelled on the axioms of JD4C

h and thus
the conclusion follows immediately.

Now we can show that (A.4) holds. Assume first ∗ = i ∈ {1 . . . h}. If
EΦ
i (t, B, [w]), then, by (A.5), we have M, w 
 [t]iB. From RΦ

i ([w], [v])
and by the definition of RΦ

i we get M, v 
 [t]iB. Thus we have
BΦ
i (t, B, [w]) and so also EΦ

i (t, B, [w]).
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Now assume, ∗ = C. Again, from EΦ
C (t, B, [w]) and (A.5) we get

M, w 
 [t]CB. As RΦ
C ([w], [v]), there are v1, . . . , vn ∈ W with w = v1

and v = vn such that [v1]RΦ
E [v2]RΦ

E . . . R
Φ
E [vn].

Using Lemma 6.2, we can get terms t1, . . . , tn−1 ∈ TmC such that

M, w 
 [t1]E [t2]E . . . [tn−1]E [t]CB

and we immediately obtain M, v 
 [t]CB. Again we get BΦ
C (t, B, [w])

and so also EΦ
C (t, B, [w]).

Note that Lemma 6.2 requires the C-axiomatical appropriateness of
CS.

Lemma A.28. MΦ is a filtration of M through Φ.

Proof. We have to show that conditions (R1), (R2), (E1), and (E2) hold
for R1, . . . , Rh, RE, RC and E1, . . . , Eh, EE, EC, respectively.

(R1) We consider the case ~ = i first. Assume Ri(w, v) and let [t]iB ∈
Φ with M, w 
 [t]iB. Then, by the positive inspection axiom, we
also have M, w 
 [!t]i [t]iB and we get M, v 
 B ∧ [t]iB. So, we
can conclude RΦ

i ([w], [v]).
Now let us consider the case ~ = E. If RE(w, v), then we have
Ri(w, v) for some i and by the previously shown (R1) for i we get
RΦ
i ([w], [v]) and so also RΦ

E ([w], [v]).
Finally, we let ~ = C. So assume RC(w, v). This means, we have
(w, v) ∈ (RE)n for some natural number n and by the previously
shown (R1) for E we obtain ([w], [v]) ∈ (RΦ

E )n and thus RΦ
C ([w], [v])

by definition.

(R2) The case for ~ = i follows immediately by definition of RΦ
i .

For ~ = E, let RΦ
E ([w], [v]), [t]EB ∈ Φ and M, w 
 [t]EB. From

RΦ
E ([w], [v]) we get that RΦ

i ([w], [v]) for some i and as Φ is a
suitable set, from [t]EΦ we get [πit]iB ∈ Φ. By the projection
axiom we get M, w 
 [πit]iB and by (R2) for i we finally obtain
M, w 
 B.
For the case ~ = C, let RΦ

C ([w], [v]), [t]CB ∈ Φ and M, w 

[t]CB. By definition of RΦ

C , there are w = v1, v2, . . . , vn = v ∈
W with [v1]RΦ

E [v2]RΦ
E . . . R

Φ
E [vn]. The suitability of Φ implies
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[tail(t)]E [t]CB ∈ Φ and by (R2) for E we get M, vj 
 [t]CB as
M, vj−1 
 [tail(t)]E [t]CB for each j < n. In particularM, vn−1 

[t]CB and thus also M, vn−1 
 [head(t)]EB. The suitability of Φ
and (R2) for E finally imply M, vn 
 B, i.e., M, v 
 B

(E1) This follows immediately by the definition of EΦ
~ . Let [t]~B ∈ Φ

and M, w 
 [t]~B. Then BΦ
~(t, B,w) and so also EΦ

~(t, B,w).

(E2) Let EΦ
~(t, B,w) and [t]~B ∈ Φ. By (A.5) we get M, w 
 [t]~B

and so also E~(t, B,w).

Now we can again employ the same techniques as in the previous
section to obtain

Lemma A.29. Any justification logic

LC
h ∈ {JDC

h(CS), JD4C
h(CS)}

with a decidable, schematic and axiomatically appropriate CS is decid-
able.

Combining Lemma A.22 and A.29, we get the following results.

Theorem A.30.

1. Any justification logic

LC
h ∈ {JC

h(CS), JTC
h(CS), J4C

h(CS), LPC
h(CS)}

with a decidable schematic CS is decidable.

2. Any justification logic

LC
h ∈ {JDC

h(CS), JD4C
h(CS)}

with a decidable, schematic and axiomatically appropriate CS is
decidable.

For the case of negative inspection (j5), see the discussion in the
following section.
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A.7. Notes
We have presented a uniform method of proving decidability for justifi-
cation logics using a refinement of the finite model property. In order to
achieve this property, we have adapted the modal techniques of filtration
and generated submodels to justification logics. Apart from reproving
the known decidability results for JCS , JDCS , JTCS , J4CS , JD4CS , and
LPCS , this method has enabled us to establish the decidability of the
justification logics with common knowledge introduced in Chapters 6
and 7.

The main difference from the modal case is the presence of an addi-
tional element in models called evidence relation. As evidence relations
are in general infinite objects, the filtration has to be performed in such
a way that apart from finitizing the set of worlds, also the evidence
relation is finitely representable. This finite representation is achieved
by using least fixed points of a certain monotone operator that can be
read off the axioms of the logic. The existence of the least fixed point
is guaranteed when the operator is monotone, which is the case for all
the logics considered. Some logics, e.g. justification logics with negative
inspection, however, give rise to non-monotone operators. Proving
decidability for them requires more involved techniques, see [Stu11].
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B. Public Announcements
We saw in Chapter 3, Section 3.6 how public announcements can lead
to common knowledge. It is a natural idea to combine logics of common
knowledge and public announcements (see [DHK07]) and it is a long-term
goal of our research to present a justification counterpart of these logics.
Of course, it is first necessary to study the justification counterparts
of these systems by themselves before combining them. The material
in this chapter is based on [BKS11b; Buc+10; BKS12b] where such
systems are introduced. We will give a brief overview including the main
theorems but omitting most of the proofs as they can be found in the
referenced sources. From the given remarks it should also become clear,
that the combination of these logics for now is work in progress, a better
understanding of both the justification logic for common knowledge and
the justification logic for public announcements is required.

Dynamic epistemic logic [DHK07] studies the relationship between
communication, knowledge, and belief. It is based on the language
of modal logic enriched with statements to express various forms of
communication. A basic form of communication is provided by public
announcements where a statement A is publicly communicated to all
the agents. The logic of public announcements [Pla07b; GG97] uses a
statement [A]B to express that B holds after the public announcement
of A.

In order to simplify our presentation, as in previous chapters, we
will treat belief rather than knowledge and, hence, rely on Gerbrandy–
Groeneveld’s axiomatization of public announcements [GG97]. One of
its postulates is

�(A→ [A]B)↔ [A]�B , (B.1)

which says, from left to right, that an agent who believes that B must
be the case whenever a true fact A is announced will believe B after an
actual announcement of A.

To illustrate how this principle works, let us briefly recall the following
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example from [BKS11b]. Elite-level frequent flyers can usually check
in for their flight at the business counter by presenting their elite
membership card, which can also be attached to their luggage to make
public their elite status. This check-in rule is known to airline employees.
In this situation, it follows by the implication (B.1) that when Ann
presents her elite membership card to Bob at the business counter, he
knows that he should check her in.

Modal public announcement logic tells us how beliefs change after
public announcements but not why. We try to formalize possible answers
to this why using the approach of justification logic. If we convert the left
to right implication from (B.1) to a statement with explicit justifications,
we obtain something like

s : (A→ [A]B)→ [A]t :B , (B.2)

where s represents the airline’s regulations regarding business-counter
check-in procedures and t is the reason why Bob starts checking Ann in.

The question is how the terms s and t, which represent justifications,
relate to each other; in particular, how to arrive at t given s. We use
the above example to discuss different answers to this question. There
are the following possibilities.

1. t = s. The regulations themselves tell Bob to check Ann in. This
option is implemented in the logic JPAL(K), which we developed
jointly with Bryan Renne and Joshua Sack [Buc+10].

2. t = ⇑ s. The operator ⇑ represents the inference Bob has to make
from the regulations after the elite card is shown. This approach
is taken by the logic OPAL(K), which we introduced in [BKS11b].

3. t = ⇑A s. The inference process explicitly mentions both the
regulations, s, and the demonstration of Ann’s elite card, A.
We do not consider this variant since it would make schematic
reasoning impossible. Indeed (B.1) is an axiom scheme that does
not depend on the announcement. Therefore, the operation that
represents the update on the level of terms should not depend on
the announcement either.

As already argued in [BKS11b], the simplicity of the first option, ax-
iomatized by JPAL(K), may not always be sufficient. Imagine that Ann
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has been upgraded to business class (say, as a reward for postponing
her original flight, which had been overbooked). So, according to the
same regulations, she can check in with Bob based on her ticket alone
without announcing her elite status, which in our notation is represented
by s :B. But Ann may choose to announce her elite status anyways,
or [A]s :B in our notation. In JPAL(K), where t = s, after the elite
status is announced, t encodes two different reasons for Bob to check
Ann in: as a business-class customer and as an elite flyer. By contrast,
in OPAL(K), these two reasons are represented by two different terms,
s and ⇑ s, of which the latter depends on Ann’s elite status while the
former is due to the ticket alone. And Bob would want to distinguish
between the two reasons because of the difference in baggage allowances:
an elite frequent flyer is often allowed to check more luggage for free
than an owner of a business-class ticket who has been upgraded from
economy.

In addition, in this and similar cases, the approach of JPAL(K) implies
that the meaning of the regulations changes after public announcements:
if Ann has an economy ticket, the regulations do not allow her a business-
counter check-in until she shows her elite card, and then they do. This
is a little counterintuitive since the regulations are a legal document
whose meaning should not be changed by each public announcement.
The use of reason ⇑ s enables us to separate the permanent status of
the regulations from their momentary applications influenced by public
announcements.

Let us now look at the other direction of (B.1)—from right to left—and
see how the first two options manifest themselves there. The implication
states that an agent who will believe B after an announcement of A must
believe that, if A is true and announced, B holds after the announcement.
For instance, if Charlie, while standing in a long line at the economy
check-in counter, sees Ann showing her elite card and being served
by Bob at the business counter, [A]�B, then Charlie has empirical
evidence e that Ann is served at the business counter, [A]e :B. It
would be natural for Charlie to believe that having an elite status and
showing it gets one to the business counter, �(A → [A]B). But it
seems even clearer in this case that Charlie’s empirical observation e
cannot explain the causality of the implication A → [A]B. If before
Ann showed up, Charlie had read the sign that invited elite members
to the business counter, then Charlie’s memory of this sign, refreshed
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by Ann’s actions, could serve as such an explanation. Thus, instead of
using e, as in JPAL(K), in this example it also seems better to use ⇓ e,
where ⇓ is yet another new operation of our logic OPAL(K).

Besides the explicit justifications for dynamic epistemic logic in the
already mentioned [Buc+10; BKS11b; BKS12b], there is Renne’s earlier
research on introducing new evidence [Ren08] and eliminating unre-
liable evidence [Ren] in the framework of justification logic. He also
presents expressivity results for certain justification logics with announce-
ments [Ren11]. However, the modal counterparts of Renne’s systems do
not correspond to any traditional public announcement logic whereas
both JPAL(K) and OPAL(K) are intended as justification logics with
public announcement operators whose belief dynamics closely corre-
sponds to the modal belief dynamics of Gerbrandy–Groeneveld’s modal
public announcement logic PAL(K) [GG97].

In the next section, we recall the axiomatization and basic properties
of PAL(K). In particular, we present the reduction of a PAL(K) formula
A to a provably equivalent formula red(A) that does not contain public
announcement operators. This reduction facilitates a simple complete-
ness proof for PAL(K) by reducing it to completeness of the basic modal
logic K.

As mentioned before, JPAL(K) and OPAL(K) (both with addi-
tional positive introspection axioms) were introduced in [Buc+10]
and [BKS11b], respectively, where we also established soundness and
completeness for these two logics. We give the definitions of OPAL(K)
and JPAL(K) and their semantics in Sections B.2 and B.3. Soundness
and completeness for OPAL(K) and JPAL(K) is proved in Section B.4.
Since the replacement property does not hold in justification logics,
we cannot establish completeness of either logic by reducing it to
completeness of the basic justification logic J. Instead we perform a
canonic model construction for each of the two logics. In Section B.5,
we a partial realization theorem in the following way. First, we reduce
the PAL(K) formula A to a provably equivalent formula red(A) that
has no announcement operators, i.e., red(A) is a traditional modal
logic formula. Then we use realization for modal logic (without public
announcements) to obtain a justification logic formula r(red(A)) that
realizes red(A). Finally, we ‘invert’ the reduction from A to red(A) on
the justification logic side to obtain a formula r(A) that realizes A, see
Figure B.1 on page 174.
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We call this approach realization by reduction, the closest analog of
this method can be found in [Fit11], where S5 is realized by reducing it
to K45. However, there the reversal of the reduction is trivial, while in
our setting it requires an involved extension of Fitting’s replacement
theorem [Fit09]. First, we need replacement also for formulas with
public announcements and, second, we need replacement also in negative
positions (the original proof in [Fit09] only deals with replacement in
positive positions). While we only show this extended replacement
theorem for JPAL(K), there seems to be little or no extra work required
to prove the same extended replacement theorem for OPAL(K). The
problem lies in the application of this replacement theorem to reverse
the modal reduction on the justification side for OPAL(K). The exact
nature of the problem is too technical to be explained in the introduction
and is pointed out in the proof of Theorem B.44, Footnote 3. We only
mention here that the problem concerns reversing in OPAL(K) the modal
update reduction in a negative position. Thus, we obtain realization
only for JPAL(K). It is open whether a similar result can be shown for
OPAL(K).

B.1. Modal Public Announcement Logic
In this section, we recall some of the basic definitions and facts con-
cerning the Gerbrandy–Groeneveld modal logic of public introspective
announcements [Ger99; GG97; DHK07], i.e, public announcements that
need not be truthful but are trusted by all the agents.

Definition B.1 (PAL(K) Language). We fix a countable set Prop of
atomic propositions. The language of PAL(K) consists of the formu-
las A ∈ Fml�,[·] formed by the grammar

A ::= p | ¬A | (A→ A) | �A | [A]A ,

where p ∈ Prop. The language Fml� of modal formulas without an-
nouncements is obtained from the same grammar without the [A]A con-
structor.

The Gerbrandy–Groeneveld theory PAL(K) of Public Announcement
Logic uses the language Fml�,[·] to reason about belief change and public
announcements.
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Definition B.2 (PAL(K) Deductive System). The axioms of PAL(K)
consist of all Fml�,[·]-instances of the following schemes:

1. Axiom schemes for the modal logic K

2. [A]p↔ p (independence)

3. [A](B → C)↔ ([A]B → [A]C) (normality)

4. [A]¬B ↔ ¬[A]B (functionality)

5. [A]�B ↔ �(A→ [A]B) (update)

6. [A][B]C ↔ [A ∧ [A]B]C (iteration)

The deductive system PAL(K) is a Hilbert system that consists of the
above axioms of PAL(K) and the following rules of modus ponens (MP)
and necessitation (Nec):

A A→ B
B

(MP) ,
A
�A

(Nec) .

We write PAL(K) ` A to state that A ∈ Fml�,[·] is a theorem of PAL(K).

Lemma B.3 (Admissible Announcement Necessitation, [DHK07]). An-
nouncement necessitation is admissible in PAL(K): that is, for all for-
mulas A,B ∈ Fml�,[·], we have

PAL(K) ` A implies PAL(K) ` [B]A .

PAL(K), like many traditional modal public announcement logics, fea-
tures the so-called reduction property: Fml�,[·]-formulas can be reduced
to provably equivalent Fml�-formulas [Ger99; GG97; DHK07]. That
means one can express what the situation is after an announcement by
saying what the situation was before the announcement. The following
lemma formally describes this reduction procedure (for a proof, see, for
instance, [DHK07]). The proof method was first introduced by Plaza
in [Pla07b].

Definition B.4 (Announcement Redexes and their Reducts). The
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following are five pairs of redexes and their reducts:

Redex Its reduct
[A]p p
[A]¬B ¬[A]B
[A](B → C) [A]B → [A]C
[A]�B �(A→ [A]B)
[A][B]C [A ∧ [A]B]C

(B.3)

Definition B.5 (Reduction). The one-step reduction function

red1 : Fml�,[·] → Fml�,[·]

is defined as follows:

• If no subformula of A ∈ Fml�,[·] is a redex, then red1(A) := A.

• Otherwise, let R be the outermost leftmost subformula occurrence
of A that is a redex, i.e.,

1) if R is a proper subformula occurrence of R′, which is a
subformula occurrence of A, R′ is not a redex;

2) if R is a subformula occurrence of C and B → C is a subfor-
mula occurrence of A, no redex can occur in B.

In this case, red1(A) is defined as the result of replacing the
formula occurrence R in A with its reduct.

Note that R is outside of announcements in A. Indeed, if R occured
in B with [B]C being a subformula occurrence of A, then [B]C would
itself be a redex, which is prohibited by item 1) above.

In order to show that the reduction function has the intended behavior,
we need the following notion.

Definition B.6 (Rank). The rank rk�(A) of a formula A ∈ Fml�,[·] is
defined as follows:

1. rk�(p) := 1 for each p ∈ Prop

2. rk�(¬A) := rk�(A) + 1
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3. rk�(A→ B) := max(rk�(A), rk�(B)) + 1

4. rk�(�A) := rk�(A) + 1

5. rk�([A]B) := (2 + rk�(A)) · rk�(B)

The following properties can be verified by easy and straightforward
calculations.

Lemma B.7 (Reductions Reduce Rank). For all formulas A,B,C ∈
Fml�,[·] we have the following:

1. rk�(A) > rk�(B) if B is a proper subformula of A

2. rk�([A]¬B) > rk�(¬[A]B)

3. rk�([A](B → C)) > rk�([A]B → [A]C)

4. rk�([A]�B) > rk�(�(A→ [A]B))

5. rk�([A][B]C) > rk�([A ∧ [A]B]C)

Using this formula rank it is easy to show, that for any formula
A ∈ Fml�,[·], there exists N > 0 such that redN+1

1 (A) = redN1 (A), which
must then be an Fml�-formula. In this case, redn1 (A) = redN1 (A) for any
n ≥ N and we define red(A) := redN1 (A).

Lemma B.8 (Provable Equivalence of Reductions). For all formulae
A ∈ Fml�,[·], we have PAL(K) ` A↔ red1(A), and, consequently,

PAL(K) ` A↔ red(A) .

Remark B.9. The above lemma facilitates a completeness proof
for PAL(K) by reducing it to completeness of K. The complete-
ness is proved with respect to the class of all Kripke models. To
evaluate validity of formulas with announcements, the standard Kripke
semantics is extended with a model update operation for introspective
announcements. For the sake of brevity we refer to [DHK07, Sec-
tion 4.9] for a full completeness proof and give only a sketch. Suppose
that A ∈ Fml�,[·] is valid. Then red(A) is also valid by Lemma B.8 and
by soundness of PAL(K), which is easy to show directly. Since red(A) is
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a formula of Fml�, completeness of K yields K ` red(A) and, hence,
PAL(K) ` red(A) because PAL(K) extends K. Applying Lemma B.8
again, we conclude that PAL(K) ` A. As a corollary of the soundness of
PAL(K), since the semantics for PAL(K) extends the standard Kripke
semantics, PAL(K) is a conservative extension of K.

B.2. Justification Public Announcement Logic
Our language extends the language typically used in justification logic by
adding public announcement formulas [A]B and two unary operations on
terms, ⇑ and ⇓, to express the update dynamics of evidence. However,
of the two logics JPAL(K) and OPAL(K) introduced in this section,
only OPAL(K) uses the ⇑ and ⇓ operations to record the event of an
announcement, whereas JPAL(K) does not explicitly record such an
event by an operation on terms.

Definition B.10 (Language). In addition to the set of propositions
Prop, we fix countable sets Cons of constants and Vars of variables. Our
language consists of the terms given by the grammar

t ::= x | c | (t · t) | (t+ t) | ⇑ t | ⇓ t ,

where x ∈ Vars and c ∈ Cons and the formulae formed by the grammar

A ::= p | ¬A | (A→ A) | t :A | [A]A ,

where p ∈ Prop. We denote the set of terms by Tm and the set of
formulae by FmlJ.

A term is a ground term if it does not contain variables. The language
introduced in [Buc+10; BKS11b] for justification logics with public
announcements includes additionally an operation ! on terms that is
used for positive introspection. Since the logics OPAL(K) and JPAL(K),
to be introduced below, do not have an introspection axiom, we can
dispense with the ! operation.
Remark B.11. To state axioms of our systems JPAL(K) and OPAL(K),
we use arbitrary finite sequences of announcements, which is not done
in modal public announcement logics. This use of sequences may
seem puzzling, especially given that the iteration axiom of PAL(K),
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which normally allows to replace any such finite sequence with a single
announcement, is transferred to JPAL(K) and OPAL(K) as is. But
recall that the replacement property does not hold for justification
logics, as already mentioned earlier. Replacing single announcements
with sequences of announcements in axioms is the minimally invasive
solution we have found to ensure the admissibility of the announcement
necessitation rule, which is clearly valid semantically. For instance, if
a theorem B is obtained by modus ponens from C → B and C, it
follows by announcement necessitation that [A1] . . . [An]B should be
derivable. For n = 1, the normality axiom of PAL(K) takes care of the
transition from [A1](C → B) and [A1]C to [A1]B. In order to make
such a transition possible for an arbitrary n > 0 we generalize the
normality axiom to allow an arbitrary finite sequence of announcements
[A1] . . . [An].
σ and τ (with and without subscripts) will denote finite sequences

of formulas. ε denotes the empty sequence. Given such a sequence
σ = (A1, . . . , An) and a formula B, the formula [σ]B is defined as
follows:

[σ]B := [A1] . . . [An]B if n > 0 and [ε]B := B.

Further, we define

σ,B := (A1, . . . , An, B)
and B, σ := (B,A1, . . . , An) .

For a sequence τ = (C1, . . . , Cm), we define

τ, σ := (C1, . . . , Cm, A1, . . . , An) .

We will also need the length |σ| of a sequence σ, which is given by
|ε| := 0 and |(A1, . . . , An)| := n.

Definition B.12 (OPAL(K)). The axioms of OPAL(K) consist of all
FmlJ-instances of the following schemes:

1. [σ]A, where A is a classical propositional tautology
2. [σ](t : (A→ B)→ (s :A→ t · s :B)) (application)
3. [σ](t :A→ t+ s :A), [σ](s :A→ t+ s :A) (sum)
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4. [σ]p↔ p (independence)
5. [σ](B → C)↔ ([σ]B → [σ]C) (normality)
6. [σ]¬B ↔ ¬[σ]B (functionality)
7. [σ]t : (A→ [A]B)→ [σ][A]⇑ t :B (update ⇑)
8. [σ][A]t :B → [σ]⇓ t : (A→ [A]B) (update ⇓)
9. [σ][A][B]C ↔ [σ][A ∧ [A]B]C (iteration)

The deductive system OPAL(K) is a Hilbert system that consists of the
above axioms of OPAL(K) and the following rules of modus ponens (MP)
and axiom necessitation (AN):

A A→ B
B

(MP) ,

c1, . . . , cn ∈ Cons C is an OPAL(K)-axiom
[σ1]c1 : · · · : [σn]cn :C (AN) ,

where σi’s are (possibly empty) finite sequences of formulas.
We sometimes use the same names for both axioms of OPAL(K) and

axioms of PAL(K) because it will always be clear from the context which
of the two is meant.

Besides OPAL(K), we also consider the deductive system JPAL(K),
which does not assign any particular meaning to the two term operations
⇑ and ⇓.
Definition B.13 (JPAL(K)). The axioms of JPAL(K) are the axioms
of OPAL(K) where the two update axiom schemes are replaced by the
single scheme

[σ]t : (A→ [A]B)↔ [σ][A]t :B . (update)
The deductive system JPAL(K) is a Hilbert system that consists of the
axioms of JPAL(K) and the rules (MP) and (AN), where the formula C
in (AN) now stands for an axiom of JPAL(K).

We will use OPAL(K) ` A and JPAL(K) ` A to express that A
is derivable in OPAL(K) and JPAL(K), respectively. If the deductive
system does not matter, for instance when A is derivable in both of
them, then we use ` A.

The following example gives some intuition as to how the deductive
systems work and what their differences are.
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Example B.14. For any p ∈ Prop and any c1, c2 ∈ Cons, we have

1. OPAL(K) ` [p]⇑(c1 · c2) : p and

2. JPAL(K) ` [p](c1 · c2) : p.

Proof. We use PR to denote the use of propositional reasoning. By AN
for the tautology ([p]p↔ p)→ (p→ [p]p) we have

` c1 :
(
([p]p↔ p)→ (p→ [p]p)

)
. (B.4)

By AN for the independence axiom [p]p↔ p we have

` c2 : ([p]p↔ p) . (B.5)

From (B.4) and (B.5) we obtain by the application axiom and PR

` (c1 · c2) : (p→ [p]p) . (B.6)

In OPAL(K) we get from (B.6) by the update axiom ⇑ and PR

OPAL(K) ` [p]⇑(c1 · c2) : p .

In JPAL(K) we get from (B.6) by the update axiom and PR

JPAL(K) ` [p](c1 · c2) : p .

We see that, independent of the truth value of an atomic proposition
p, after p is announced, there is a reason to believe p. In JPAL(K) this
reason is given by the term c1 · c2. In OPAL(K) the term is ⇑(c1 · c2). In
the latter case, the presence of ⇑ in the evidence term clearly signifies
that this evidence for p is contingent on a prior public announcement.
However, the exact content of such a public announcement, p in our case,
is not recorded in the term. This design decision enables us to avoid the
overcomplexification of the language and is similar to the introspection
operation in the traditional justification logics: !t is evidence for t :A
whenever t is evidence for A; however, the formula A is not recorded in
the term !t.
Remark B.15. The announcement-free fragment of OPAL(K) and
JPAL(K) (that is the first three axiom schemes with σ = ε, rule MP, and
rule AN, restricted to c1 : · · · : cn :C) is the justification logic J (see 5).
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The internalization property is standard for justification logics, it can
be proved by an easy induction on the length of derivation that it holds
for OPAL(K) and JPAL(K).

Lemma B.16 (Internalization). If C1, . . . , Cn ` A, then there is a
term t(y1, . . . , yn) for fresh variables y1, . . . , yn such that

y1 :C1, . . . , yn :Cn ` t(y1, . . . , yn) :A .

Corollary B.17 (Constructive Necessitation). For any formula A,
if ` A, then there is a ground term t such that ` t :A.

B.3. Semantics
We adapt the Kripke-style semantics for Justification Logic due to
Fitting [Fit05].

Definition B.18 (Frame). A frame is a pair (W,R) that consists of a set
W 6= ∅ of (possible) worlds and of an accessibility relation R ⊆W ×W .

Definition B.19 (Evidence Function). A function E : W × Tm →
P (FmlJ) is called evidence function if it satisfies the following closure
conditions:

1. Axioms: if c :A is derivable by the AN-rule, then A ∈ E(w, c) for
any w ∈W .

2. Application: if (A → B) ∈ E(w, t) and A ∈ E(w, s), then B ∈
E(w, t · s).

3. Sum: E(w, s) ∪ E(w, t) ⊆ E(w, s + t) for any s, t ∈ Tm and any
w ∈W .

In a model of OPAL(K) or JPAL(K), there is an evidence function Eσ
for each finite sequence σ of formulas. The idea is that the evidence
function Eσ models the “evidential situation” that arises after the
formulas in σ have been publicly announced.

Definition B.20 (Model). A model is a structure M = (W,R, E , ν),
where (W,R) is a frame, ν : Prop→ P(W ) is a valuation, and function E
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maps finite sequences σ of formulas to evidence functions Eσ. An
OPAL(K) model satisfies the following three conditions:

A→ [A]B ∈ Eσ(w, t) implies B ∈ Eσ,A(w,⇑ t) , (B.7)

B ∈ Eσ,A(w, t) implies A→ [A]B ∈ Eσ(w,⇓ t) , (B.8)
Eσ,A,B(w, t) = Eσ,A∧[A]B(w, t) . (B.9)

A JPAL(K) model satisfies (B.9) and, instead of (B.7) and (B.8), the
condition

A→ [A]B ∈ Eσ(w, t) if and only if B ∈ Eσ,A(w, t) . (B.10)

Conditions (B.7), (B.8), (B.9), and (B.10) correspond to the update
axiom ⇑, the update axiom ⇓, the iteration axiom, and the update
axiom of JPAL(K) respectively.
Remark B.21. Our notion of model is non-empty. The following example
used in [BKS11b] and [Buc+10] gives a simple sample model for OPAL(K)
and JPAL(K), respectively.

Define the structure M = (W,R, E , ν) as follows: W := {w}, R := ∅,
Eσ(w, t) := FmlJ for all σ and all t ∈ Tm, ν(p) := {w} for all p ∈ Prop.

Definition B.22 (Truth in a Model). A ternary relationM, w 
 A for
formula A being satisfied at a world w ∈W in a modelM = (W,R, E , ν)
is defined by induction on the structure of A:

• M, w 
 p if and only if w ∈ ν(p).
• 
 behaves classically with respect to Boolean connectives.
• M, w 
 t :A if and only if

1) A ∈ Eε(w, t),
2) and M, v 
 A for all v ∈W with R(w, v).

• M, w 
 [A]B if and only if MA, w 
 B, where the model MA =
(WA, RA, EA, νA) is defined as follows:

WA := W ;
RA := {(s, t) | R(s, t) and M, t 
 A} ;

(EA)σ := EA,σ ;
νA := ν .
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Note that if M is an OPAL(K) model, then MA satisfies condi-
tions (B.7)–(B.9) from Def. B.20 and hence also is an OPAL(K)
model. Similarly, if M is a JPAL(K) model, then MA satisfies
conditions (B.9) and (B.10) and hence also is a JPAL(K) model.

We write M 
 A to mean that M, w 
 A for all w ∈ W . We say
that formula A is OPAL(K) valid, written OPAL(K) 
 A, to mean
that M 
 A for all OPAL(K) models M. Formula A is JPAL(K) valid,
written JPAL(K) 
 A, if M 
 A for all JPAL(K) models M.

For a sequence τ = (A1, . . . , An) of formulas we denote by Mτ =
(Wτ , Rτ , Eτ , ντ ) the model (· · · ((MA1)A2) · · · )An

. Note that (Eτ )σ =
Eτ,σ; in particular, (Eτ )ε = Eτ .

To illustrate how the semantics works, we prove a semantic version
of the result from Example B.14.
Example B.23. For any p ∈ Prop and any c1, c2 ∈ Cons, we have

1. OPAL(K) 
 [p]⇑(c1 · c2) : p and

2. JPAL(K) 
 [p](c1 · c2) : p.

Proof. Let M = (W,R, E , ν) be an arbitrary model and let w ∈ W .
By Def. B.19.1, we have ([p]p ↔ p) → (p → [p]p) ∈ Eε(w, c1) and
([p]p↔ p) ∈ Eε(w, c2). Thus, (p→ [p]p) ∈ Eε(w, c1 · c2) by Def. B.19.2.

Assume now thatM is an OPAL(K) model. Then, by condition (B.7)
from Def. B.20, we have p ∈ Ep(w,⇑(c1 · c2)). Since Rp(w, v) implies
M, v 
 p, i.e., v ∈ ν(p) = νp(p), we have Mp, w 
 ⇑(c1 · c2) : p by
Def. B.22 and, hence, M, w 
 [p]⇑(c1 · c2) : p.

Assume that M is a JPAL(K) model. Then, by condition (B.10)
from Def. B.20, we have p ∈ Ep(w, c1 · c2). As above we then find
Mp, w 
 (c1 · c2) : p and M, w 
 [p](c1 · c2) : p.

B.4. Soundness and Completeness
The soundness proof is as usual by induction on the length of the
derivation of A

Lemma B.24 (Soundness). For all formulas A ∈ FmlJ, we have

1. OPAL(K) ` A implies A is OPAL(K) valid,
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2. JPAL(K) ` A implies A is JPAL(K) valid.

The traditional modal logic reduction approach (see Remark B.9) to
establishing completeness is not possible in the presence of justifications
since the replacement property does not hold in Justification Logic
(see [Fit09, Section 6] for a detailed discussion of the replacement
property in Justification Logic). That means, in particular, that ` A↔
B does not imply ` t :A↔ t :B, which would be an essential step in the
proof of a justification-analog of Lemma B.8. Thus, it is not possible
to transfer the completeness of J (see [Fit05; Pac05]) to OPAL(K) or
JPAL(K). We will, instead, provide a canonical model construction to
prove the completeness of OPAL(K) and JPAL(K). In the following we
let S stand for either OPAL(K) or JPAL(K).

Definition B.25 (Maximal S-Consistent Sets). A set Φ of FmlJ-
formulas is called S-consistent if there is a formula that cannot be
derived from Φ in S. A set Φ is called maximal S-consistent if it is
consistent but has no consistent proper extensions.

It can be easily shown that maximal S-consistent sets contain all
axioms of S and are closed under modus ponens and axiom necessitation.

Definition B.26 (Canonical S Model). We define the canonical S
model M = (W,R, E , ν) as follows:

1. W := {w ⊆ FmlJ | w is a maximal S-consistent set},

2. R(w, v) if and only if for all finite sequences σ and all t ∈ Tm, we
have [σ]t :A ∈ w implies [σ]A ∈ v,

3. Eσ(w, t) := {A ∈ FmlJ | [σ]t :A ∈ w},

4. ν(p) := {w ∈W | p ∈ w}.

To establish completeness, we need to know that the canonical model
is a model.

Lemma B.27 (Correctness of the Canonical Model).

1. The canonical OPAL(K) model is an OPAL(K) model.
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2. The canonical JPAL(K) model is a JPAL(K) model.

Remark B.28. The canonical OPAL(K) model and the canonical JPAL(K)
model are both degenerate, i.e., the canonical model consists of isolated
irreflexive worlds.

Proof. ⊥ → F is an axiom for any F . In particular, ` ⊥ → [⊥]F is
an axiom for any F . By (AN), for any F , we have ` c : (⊥ → [⊥]F ),
where c is a constant. By the update axiom and the update axiom ⇑
respectively, for any formula F , we have ` [⊥]s :F for some ground term
s. Hence, for any F , the formula [⊥]s :F is contained in each maximal
consistent set, that is in each world of the canonical model. Let w be
such a world and assume towards a contradiction that v is accessible
from w. We then have by Definition B.26 that [⊥]F ∈ v for any F . In
particular, both [⊥]F ∈ v and [⊥]¬F ∈ v. By the functionality axiom,
the latter implies ¬[⊥]F ∈ v, which contradicts [⊥]F ∈ v since v is
consistent. Thus, there cannot be a world v that is accessible from
w.

We can adapt the notion and properties of a rank from Definition B.6
and Lemma B.7, respectively, to formulae in the language of justification
public announcement logic:

Definition B.29 (Rank). The rank rk(A) of a formula A is defined as
follows:

1. rk(p) := 1 for each p ∈ Prop

2. rk(¬A) := rk(A) + 1

3. rk(A→ B) := max(rk(A), rk(B)) + 1

4. rk(t :A) := rk(A) + 1

5. rk([A]B) := (2 + rk(A)) · rk(B)

Lemma B.30 (Reductions Reduce Rank). For all formulas A,B,C
and all terms s, t, we have the following:

1. rk(A) > rk(B) if B is a proper subformula of A

2. rk([A]¬B) > rk(¬[A]B)
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3. rk([A](B → C)) > rk([A]B → [A]C)

4. rk([A]s :B) > rk(t : (A→ [A]B))

5. rk([A][B]C) > rk([A ∧ [A]B]C)

The following proof is done by induction on rk(D) and a case distinc-
tion on the structure of D.

Lemma B.31 (Truth Lemma). LetM be the canonical OPAL(K) model
or the canonical JPAL(K) model. For all formulas D and all worlds w
in M, we have D ∈ w if and only if M, w 
 D.

As usual, the Truth Lemma implies completeness, which, as a corollary,
yields announcement necessitation.

Theorem B.32 (Completeness). For all formulas A ∈ FmlJ, we have

1. OPAL(K) ` A if and only if A is OPAL(K) valid,

2. JPAL(K) ` A if and only if A is JPAL(K) valid.

Proof. Soundness was already shown in Lemma B.24. For completeness
of OPAL(K), consider the canonical OPAL(K) model M = (W,R, E , ν)
and assume that OPAL(K) 0 A. Then {¬A} is consistent and, hence,
contained in some maximal consistent set w ∈W . By Lemma B.31, it
follows that M, w 
 ¬A and, hence, that M, w 1 A. Since M is an
OPAL(K) model (Lemma B.27), we have shown that OPAL(K) 0 A im-
plies OPAL(K) 1 A. Completeness of OPAL(K) follows by contraposition.
Completeness of JPAL(K) is established similarly.

Corollary B.33 (Announcement Necessitation). Announcement ne-
cessitation is admissible: that is, for all formulas A,B ∈ FmlJ, we
have

1. OPAL(K) ` A implies OPAL(K) ` [B]A,

2. JPAL(K) ` A implies JPAL(K) ` [B]A.

Proof. Assume OPAL(K) ` A. By soundness, OPAL(K) 
 A. Therefore,
M 
 A for all OPAL(K) models M. In particular, MB , w 
 A for all
OPAL(K) models of the formMB and worlds w in them. Thus, we obtain
M, w 
 [B]A for all M, w. By completeness, we conclude OPAL(K) `
[B]A. The case for JPAL(K) is shown similarly.
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B.5. Forgetful Projection and Realization
This section deals with the relationship between PAL(K) and dynamic
justification logics.

Definition B.34 (Forgetful Projection). The mapping ◦ : FmlJ →
Fml�,[·] is defined as follows:

• p◦ := p for all p ∈ Prop,

• ◦ commutes with connectives ¬ and →,

• (t :A)◦ := �A◦,

• ([A]B)◦ := [A◦]B◦.

For a sequence σ = (A1, . . . , An) of FmlJ-formulas, we define σ◦ to be
the sequence (A1

◦, . . . , An
◦) of Fml�,[·]-formulas. In particular, ε◦ := ε.

By induction on the derivation of A in JPAL(K), respectively in
OPAL(K), we can show that for any theorem of either OPAL(K) or
JPAL(K), its forgetful projection is a theorem of PAL(K). Note that the
fact that for each sequence σ of FmlJ-formulas, there exists a formula
Uσ ∈ Fml�,[·] such that PAL(K) ` [σ◦]D ↔ [Uσ]D for any formula
D ∈ Fml�,[·] simplifies the proof.

Theorem B.35 (Forgetful Projection of JPAL(K) and OPAL(K)). For
all formulas A ∈ FmlJ,

JPAL(K) ` A =⇒ PAL(K) ` A◦ ,
OPAL(K) ` A =⇒ PAL(K) ` A◦ .

A much more difficult question is whether a dynamic justification
logic, such as JPAL(K) or OPAL(K), can realize PAL(K): that is, whether
for any theorem A of PAL(K), it is possible to replace each � in A with
some term such that the resulting formula is a dynamic justification
validity.

In the remainder of this section we present the first realization tech-
nique for dynamic justification logics and establish a partial realization
result for JPAL(K): it can realize formulas A that do not contain �
operators within announcements. Our main idea is to reduce realization
of PAL(K) to realization of K. In our proof, we rely on notions and
techniques introduced by Fitting [Fit09].
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Definition B.36 (Substitution). A substitution is a mapping from
variables to terms. If A is a formula and σ is a substitution, we write Aσ
to denote the result of simultaneously replacing each variable x in A
with the term xσ.

The following lemma is standard in justification logics and can be
proved by a simple induction on the derivation of A.

Lemma B.37 (Substitution Lemma). For every formula A of FmlJ
and every substitution σ,

JPAL(K) ` A implies JPAL(K) ` Aσ,
OPAL(K) ` A implies OPAL(K) ` Aσ.

In most justification logics, in addition to this substitution of proof
terms for proof variables, the substitution of formulas for propositions
is also possible (see [Art08]). However, the latter type of substitu-
tion typically fails in logics with public announcements, as it does in
both JPAL(K) and OPAL(K).

Definition B.38 (Annotations). An annotated formula is an formula
A ∈ Fml�,[·] in which each modal operator is annotated by a natural
number. An annotated formula is properly annotated if modalities in
negative positions are annotated with even numbers, modalities in posi-
tive positions are annotated with odd numbers, and no index i annotates
two modality occurrences. Positions within an announcement [A] are
considered neither positive nor negative: i.e., the parity of indices within
announcements in properly annotated formulas is not regulated. If A′ is
the result of replacing all indexed modal operators �i with � in a
(properly) annotated formula A, then A is called a (properly) annotated
version of A′.

Definition B.39 (Realization Function). A realization function r is a
mapping from natural numbers to terms such that r(2i) = xi, where
x1, x2, . . . is a fixed enumeration of all variables. For a realization
function r and an annotated formula A, r(A) denotes the result of
replacing each indexed modal operator �i in A with the term r(i).
For instance, r(�iB) = r(i) : r(B). A realization function r is called
non-self-referential on variables over A if, for each subformula �2iB
of A, the variable xi = r(2i) does not occur in r(B).
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The following realization result for the logic K is due to Brezh-
nev [Bre00]; the additional result about non-self-referentiality on vari-
ables follows from the stronger statement that K can be realized without
any self-referential cycles of arbitrary terms, proved in [Kuz10].

Theorem B.40 (Realization for K). If A′ is a theorem of K, then for
any properly annotated version A of A′, there is a realization function r
that is non-self-referential on variables over A and such that r(A) is
provable in J. Clearly, (r(A))◦ = A′.

In order to formulate the replacement theorem for JPAL(K), a tech-
nical result necessary for demonstrating the partial realization theo-
rem for JPAL(K), we use the following standard convention: whenever
D(q) and A are formulas in the same language, D(A) is the result of
replacing all occurrences of the proposition q in D(q) with A. In most
cases, q has only one occurrence in D(q) that is not within announce-
ments.

For the rest of this section, we consider only formulas A ∈ Fml�,[·]
and their annotated versions that do not contain modal operators within
announcements: i.e., if [B]C is a subformula of A, then B does not
contain modal operators.

We will use a theorem that was first proved by Fitting [Fit09] for
replacement in positive positions in LP. We use his method in a richer
language and for a different logic and also use replacement in both
positive and negative positions. See [BKS12b] for a full proof of the
following theorem:

Theorem B.41 (Restricted Realization Modification for JPAL(K)).
Assume the following:

H-1. A proposition p has exactly1 one occurrence in a properly annotated
formula X(p) that is outside of announcements and X(A) and
X(B) are properly annotated formulas with no modalities within
announcements.

H-2. r1 is a realization function, non-self-referential on variables over
X(A).

1While the proof of this theorem does not depend on whether p actually occurs in
X(p), the formulation of H-1 is simpler when it does.
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H-3. If p occurs positively in X(p), JPAL(K) ` r1(A)→ r1(B).
If p occurs negatively in X(p), JPAL(K) ` r1(B)→ r1(A).

Then for each subformula φ(p) of X(p) that occurs outside of announce-
ments, there exists some realization/substitution pair 〈rφ, σφ〉 such that:

C-1. JPAL(K) ` r1(φ(A))σφ → rφ(φ(B)) if φ(p) occurs positively in
X(p).
JPAL(K) ` rφ(φ(B)) → r1(φ(A))σφ if φ(p) occurs negatively in
X(p).

C-2. σφ lives on input positions in φ(p), i.e., xiσφ = xi if �2i does not
occur in φ(p);

C-3. σφ meets the no new variable condition, i.e., the only variable that
may occur in xσφ is x;

C-4. If r1 is non-self-referential on variables over X(B), then rφ is
also non-self-referential on variables over X(B).

The generality of the theorem above is needed to carry through the
induction. However, to prove realization, we will only need the following
weaker version:

Corollary B.42 (Replacement for JPAL(K)). Assume the following:

1. A proposition p has exactly one occurrence in a properly anno-
tated formula X(p) that is outside of announcements. X(A) and
X(B) are properly annotated formulas with no modalities within
announcements.

2. r1 is a realization function that is non-self-referential on variables
over X(A) and over X(B).

3. If p occurs positively in X(p), JPAL(K) ` r1(A)→ r1(B).
If p occurs negatively in X(p), JPAL(K) ` r1(B)→ r1(A).

Then there exists a realization function r and a substitution σ such that

JPAL(K) ` r1(X(A))σ → r(X(B))

and r is non-self-referential on variables over X(B).
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It remains to extend the notions of one-step reduction and of reduction
to annotated modal formulas (with announcements). To achieve this it
is sufficient to replace the 4th row in the table in (B.3) by

Redex Its reduct
[A]�iB �i(A→ [A]B) (B.11)

The functions red1 and red for annotated formulas are defined the
same way as in Definition B.5 but based on the new set of reductions.
Accordingly, red1(A) is an annotated formula and red(A) is an annotated
formula without announcements whenever A is an annotated formula.

Since the only difference in how red1 works on Fml�,[·]-formulas and
on annotated formulas is such that erasing annotations in a pair of
redex/reduct of the annotated red1 yields a pair of redex/reduct of the
unannotated red1, the following lemma is not very surprising:

Lemma B.43. Let D be a properly annotated variant of D′ ∈ Fml�,[·]
and let neither one contain modalities within announcements.2 Then
red1(D) and red(D) are properly annotated variants of red1(D′) and
red(D′) respectively, neither red1(D) nor red1(D′) contains modalities
within announcements, and neither red(D) nor red(D′) contains an-
nouncements.

Proof. That red1(D) is an annotated version of red1(D′) and, hence,
red(D) is an annotated version of red(D′) is clear from the definition.
Thus, it remains to prove that red1 preserves the properness of annota-
tions and the property of not having modalities within announcements.
We will only show this for the pair of redex/reduct from (B.11). The
other four cases are even simpler. Let D = X([A]�iB) for some X(p)
and red1 maps it to X(�i(A → [A]B)). By assumption, A contains
no modalities and p is outside of announcements in X(p). Hence,
after the replacement �i and the modalities in B remain outside of
announcements. Further, all annotations in �i(A → [A]B), i.e., i
and all annotations in B, do not occur in X(p) because D is properly
annotated. The duplication of A does not violate the properness of
annotation because A is modality-free.

We now have all the ingredients sufficient to establish our realization
theorem. The following diagram shows how we obtain it. We start with

2If one does not contain them, then the other does not either.
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D

Reduction

��

r(D)
Forgetful projectionoo

red(D)
K realization

// rK(red(D))

Replacement to
“invert” red

OO

Figure B.1.: Realizing PAL(K)

a formula D′ ∈ Fml�,[·]. Taking its arbitrary properly annotated version
D, we use annotated reduction from Lemma B.43, K realization from
Theorem B.40, and replacement from Corollary B.42 to construct a
formula r(D) ∈ FmlJ that realizes D. It is easy to see that (r(D))◦ = D′.

Theorem B.44 (Realization for PAL(K)). Let D′ be a theorem
of PAL(K) that does not contain modalities within announcements.
Then for any properly annotated version D of D′, there is a realization
function r such that r(D) is provable in JPAL(K) and (r(D))◦ = D′.

Proof. Let D be a properly annotated version of D′. Clearly, D con-
tains no modalities within announcements. By Lemma B.43, there
exists a sequence of properly annotated formulas D0, D1, . . . , DN that
do not contain modalities within announcements and a sequence of
Fml�,[·]-formulas D′0, D′1, . . . , D′N that do not contain modalities within
announcements such that D0 = D,D′0 = D′, Di+1 = red1(Di) and
D′i+1 = red1(D′i) for each i = 0, . . . , N − 1, DN = red(D), D′N =
red(D′), neither DN nor D′N contains announcements, and Di is a prop-
erly annotated version of D′i for each i = 0, . . . , N . By Lemma B.8,
PAL(K) ` D′ ↔ D′N . Hence, D′N is also a theorem of PAL(K). Given
that D′N contains no announcements, it is also a theorem of K due to
the conservativity of PAL(K) over K. By Theorem B.40, there exists a
realization function rN that is non-self-referential on variables over the
properly annotated version DN of D′N such that rN (DN ) is provable in
J and, hence, in its extension JPAL(K). We now construct realization
functions rN−i, non-self-referential on variables over DN−i, such that
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rN−i(DN−i) is a theorem of JPAL(K) for i = 0, . . . , N by induction
on i. The base case is already established. Let rN−(i−1) = rN−i+1
be already constructed. Since DN−i+1 = red1(DN−i), it follows that
DN−i = X(Redex) for some X(p) with exactly one occurrence of a
fresh proposition p whereas DN−i+1 = X(Reduct), where Redex is
the outermost leftmost redex in DN−i and Reduct is the reduct of
Redex. We want to apply Corollary B.42 to X(p), Reduct, Redex,
and rN−i+1. Assumption 1 is satisfied because DN−i and DN−i+1
are properly annotated and by definition of red1 (recall also that an
outermost redex never occurs within announcements). That rN−i+1
is non-self-referential on variables over X(Reduct) = DN−i+1 follows
from the induction hypothesis. Looking at the five types of redexes and
their reducts, it is easy to check that rN−i+1 is also non-self-referential
on variables over X(Redex) because the substitution of Redex for
Reduct at p in X(p) never introduces new modalities and never moves
modalities into the scope of other modalities (recall that announce-
ments contain no modalities). Hence, assumption 2 is satisfied. It
remains to note that r(Redex) ↔ r(Reduct) is one of the axioms of
JPAL(K)3 for any realization function r, including rN−i+1, so that as-
sumption 3 is also satisfied, independent of the polarity of p in X(p).
By Corollary B.42, there exists a realization function rN−i, non-self-
referential on variables over X(Redex) = DN−i, and a substitution σi
such that JPAL(K) ` rN−i+1(X(Reduct))σi → rN−i(X(Redex)). In
other words, JPAL(K) ` rN−i+1(DN−i+1)σi → rN−i(DN−i). It re-
mains to use the induction hypothesis, the Substitution Property, and
MP to see that rN−i(DN−i) is a theorem of JPAL(K). In particular,
rN−N (DN−N ) = r0(D) is provable in JPAL(K). Set r := r0. Clearly,
(r(D))◦ = D′.

Remark B.45. It is not clear how to generalize our proof to theorems
of PAL(K) with modalities allowed within announcements. The problem
is that a reduct [�A]C → [�A]D has two copies of �A, which need to
be combined into only one copy in the corresponding redex [�A](C →
D). In general, the outer � in �A’s in the reduct will be realized by
different terms, and we currently lack methods of merging terms within
announcements.

3This is not the case in OPAL(K) for redex/reduct pairs from (B.11).
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Remark B.46. Adapting this proof to OPAL(K) presents certain
challenges. The problem is that in order to ‘invert’ the reduction
from PAL(K) to K, we need to apply replacement also in negative
positions. This is only possible because in the update axiom (update)
of JPAL(K), we have the same evidence term on both sides of the
equivalence. If, like in OPAL(K), we work with update operations ⇑
and ⇓ on terms, then we end up with different terms in the update
axioms, which prevents the use of Fitting’s replacement at negative
positions.

B.6. Notes
We have presented JPAL(K) and OPAL(K), two alternative justification
logic counterparts of Gerbrandy–Groeneveld’s modal public announce-
ment logic PAL(K). One of PAL(K)’s update principles is

�(A→ [A]B)→ [A]�B ,

which we render in JPAL(K) as

s : (A→ [A]B)→ [A]s :B

and in OPAL(K) as

s : (A→ [A]B)→ [A]⇑ s :B .

For the semantics, we have used a combination of the traditional
semantics for public announcement logic (where an agent rejects as
impossible the worlds that are inconsistent with the announcement
made) and evidence functions from epistemic models for justification
logic (that specify for each world which formulas an evidence term
can justify). We then have shown soundness and completeness (by a
canonical model construction) for JPAL(K) and OPAL(K).

The main result is a realization theorem stating that JPAL(K) real-
izes all the theorems of PAL(K) that do not contain modalities within
announcements. To obtain this result we have to extend Fitting’s re-
placement theorem such that, first, it works in the context of public
announcements and, second, it allows replacement also in negative
positions.
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B.6. Notes

Finally, it should be noted that our novel realization method does not
rely on a cut-free deductive system for PAL(K). Its constructiveness,
however, depends on constructive realization for the modal logic K, to
which we reduce PAL(K).

177





C. The Road to Realization?
In Chapter 6, Section 6.6, we have mentioned that the non-standard
behavior of the canonical model prevents an application of Fitting’s
semantical realization method. In this chapter, we outline how such
a proof would work and indicate what part causes problems. We also
discuss possible solutions.

In order to facilitate notations in the following part, let us use the
following convention: by ~A we mean the (modal) formula

• �iA, if ~ = i,

• EA, if ~ = E,

• CA, if ~ = C.

C.1. Realizations and the Alternative
Canonical Model

Definition C.1. For a given constant specification CS, the alternative
canonical model M′ = (W,R1, . . . , Rh, R

′
E, R

′
C, E , ν) meeting CS is de-

fined as the canonical model meeting CS from Definition 6.14 but with
RE and RC replaced by R′E and R′C as defined in Remark 6.16, i.e.,

(w, v) ∈ R′E if and only if w/E ⊆ v

and
(w, v) ∈ R′C if and only if w/C ⊆ v .

Remark C.2. While by Remark 6.16, the alternative canonical model is
not an actual model, the Truth Lemma 6.17 nevertheless holds, i.e., for
all formulae A and all worlds w ∈W ,

A ∈ w if and only if M′, w 
 A .
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The proof for this fact is even simpler forM′, as the cases for mutual and
common knowledge now can be treated in the same way as individual
knowledge.

We first need the following simple auxiliary lemma.

Lemma C.3. Let CS be a homogeneous, C-axiomatically appropriate
constant specification, w a maximally CS-consistent set and B ∈ FmLPC

h
.

If w/ ~ ∪{¬B} is not consistent, then there is a term t ∈ Tm~ such
that [t]~B ∈ w.

Proof. We prove the contrapositive. So assume (towards a contradic-
tion), that [t]~B 6∈ w for every term t ∈ Tm~, but w/ ~ ∪{¬B} is
not consistent. Then there are formulae A1, . . . , An ∈ w/~ such that
{A1, . . . , An,¬B} is not consistent, i.e. LPC

h(CS) ` A1 → (A2 → (. . .→
(An → B))). By constructive necessitation (Corollary 6.6), there is a
ground term t ∈ Tm~ such that LPC

h(CS) ` [t]~(A1 → (A2 → (. . . →
(An → B)))). As A1, . . . , An ∈ w/~, there are terms s1, . . . , sn ∈ Tm~
such that [sj ]~Aj ∈ w for j = 1 . . . n. Using the application axiom and
maximal consistency of w we then get [(t · s1) · s2) · . . .) · sn)]~ ∈ w,
contradicting our assumption that no such formula is in w.

For the rest of this chapter, let us fix a modal formula A ∈ FmS4C
h
.

Definition C.4. We assign polarities to subformulae of A as follows
in the usual way.

• A itself is a positive subformula of A.

• If ~B is a positive (negative) subformula of A, then B is also a
positive (negative) subformula of A.

• If B → C is a positive (negative) subformula of A, then B is a
negative (positive) subformula of A and C is a positive (negative)
subformula of A.

• If ¬B is a positive (negative) subformula of A, then B is a negative
(positive) subformula of A.

Definition C.5. An annotation for A is a mapping A assigning proof
variables to negatively occuring subformulae of the form ~B.

An annotation is called proper, if
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1. different occurences are assigned different proof variables, and

2. types of modalities and proof variables match, e.g. a C-modality
is assigned a proof variable from VarC. Formally A(~B) ∈ Var~
for a negative subformula occurrence ~B of A.

Let us also fix a proper annotation A for A for the rest of this
chapter. We will now define a mapping that assigns a set of “potential
pre-realizations” to subformula occurrences of A with respect to the
annotation A.

Definition C.6. The mapping

|.| : {B is a subformula occurrence of A} → P(FmLPC
h
)

from subformulae occurrences of A to sets of formulae is defined induc-
tively as follows

• |P | := {P},

• |¬B| := {¬B′ | B′ ∈ |B|},

• |B → C| := {B′ → C ′ | B′ ∈ |B| and C ′ ∈ |C|},

• if ~B is a negative subformula occurrence, then

|~B| := {[x]~B′ | A(~B) = x ∈ Var~ and B′ ∈ |B|},

• if ~B is a positive subformula occurrence, then

|~B| := {[t]~(B′1 ∨ . . . ∨B′n) | t ∈ Tm~ and B′1, . . . , B
′
n ∈ |B|}.

We use ¬|B| to denote the set {¬B′ | B′ ∈ |B|}.

Remark C.7. We can considerM′ as a Kripke model by simply ignoring
the evidence function. This model also suffers the defect that RC ( R′C
as stated in Remark 6.16. Even though it is always clear from the
context whether 
 is used with respect to Fitting semantics or Kripke
semantics (i.e. with respect to formulae of justification logic or modal
formulae), we will sometimes write 
LPC

h
and 
S4C

h
, respectively, in order

to emphasize this point.
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Lemma C.8. Let CS be a homogeneous, C-axiomatically appropriate
constant specification and M′ the alternative canoncial model meeting
CS.

1. If B is a positive subformula occurrence of A andM′, w 
LPC
h
¬|B|,

then M′, w 6
S4C
h
B.

2. If B is a negative subformula occurrence of A andM′, w 
LPC
h
|B|,

then M′, w 
S4C
h
B.

Proof. We proceed by induction on the complexity of the subformula
B of A.

• The case for atomic subformulae is trivial as we have |P | = {P}.

• Suppose ¬B is a subformula occurring positively and M′, w 

¬|¬B|. This means, for each B′ ∈ |B| we have M′, w 
 ¬(¬B′).
As B is a negatively occuring subformula, we get by induction
hypothesis M′, w 
 B and thus M′ 6
 ¬B.

• Suppose ¬B is a negative subformula occurrence and M′, w 

|¬B|. So, we have M′ 
 ¬B′ for all B′ ∈ |B|. As B is a positive
subformula occurrence, we get M′ 
 ¬|B| and so, by induction
hypothesis M′, w 6
 B, i.e. M′, w 
 ¬B.

• Suppose B → C is a positively occuring subformula and M′, w 

¬|B → C|. This means, we have M′, w 
 ¬(B′ → C ′) for
any B′ ∈ |B| and C ′ ∈ |C|. So, we have M′, w 
 B′ for any
B′ ∈ |B| and M′, w 
 ¬C ′ for any C ′ ∈ |C|, i.e. M′, w 
 |B| and
M′, w 
 ¬|C|. As B occurs negatively and C occurs positively,
by the induction hypothesis we get M′, w 
 B and M′, w 6
 C
and thus M′, w 6
 B → C.

• Suppose B → C is a negatively occuring subformula andM′, w 

|B → C|. We will distinguish two cases. IfM′, w 
 ¬|B|, then, as
B occurs positively, we getM′, w 6
 B by the induction hypothesis
and thus also M′, w 
 B → C and we are done. Otherwise, there
is a B′ ∈ |B| such that M′, w 
 B′ and, as we have M′, w 

B′ → C ′ for any C ′ ∈ |C| by assumption, we get M′, w 
 C ′

for any C ′ ∈ |C|, i.e. M′, w 
 |C|. As C occurs negatively,
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we then get M′, w 
 C by induction hypothesis and thus also
M′, w 
 B → C.

• Suppose ~B occurs positively andM′, w 
 ¬|~B|. We are done,
if we can show

w/~ ∪¬|B| is consistent. (C.1)

For, then there must be a v ∈ W such that w/~ ∪¬|B| ⊆ v, as
v is a maximal consistent set. By definition of R~, this means
R~(w, v) and, as in particular ¬|B| ⊆ v, we get M′, v 
 ¬|B| by
the Truth Lemma for the alternative canoncial model C.2. As B
also occurs positively, by induction hypothesis we get M′, v 6
 B.
Let us now show the open claim (C.1). Assume (towards a
contradiction), that w/ ~ ∪¬|B| is not consistent. Then, by
Lemma C.3 there is a term t ∈ Tm~ and B1, . . . , Bn ∈ |B| such
that [t]~(B1 ∨ . . . ∨Bn) ∈ w and so, by the Truth Lemma C.2 we
have M′, w 
 [t]~(B1 ∨ . . . ∨Bn), contradicting the assumption
M′, w 
 ¬|~B|.

• Supppose ~B occurs negatively andM′, w 
 |~B|. Let B′ ∈ |B|
and A(~B) = x ∈ Var~. We have M′, w 
 [x]~B′ and so
M′, v 
 B′ for any v ∈ W with R~(w, v). As B′ was chosen
arbitrarily, we get M′, v 
 |B| and by induction hypothesis we
obtainM′, v 
 B for all v ∈W with R~(w, v). Finally, we obtain
M′, w 
 ~B.

C.2. Where the Problem is
Following the usual semantical realization method, we would now use
the previous lemma to prove a statement of the form

Let CS be a homogeneous, C-axiomatically appropri-
ate constant specification. If S4C

h ` A, then there are
A1, . . . , An ∈ |A| such that LPC

h(CS) ` A1 ∨ . . . ∨An.
(∗)

This is usually done by proving the contrapositive: Assume for any
A1, . . . , An ∈ |A|, we have

LPC
h(CS) 6` A1 ∨ . . . ∨An.

183



C. The Road to Realization?

Then ¬|A| is consistent and so there is a world w ∈W in M′ such that
¬|A | ⊆ w. By the Truth Lemma C.2 we get

M′, w 
LPC
h(CS) ¬|A |.

As A is a positive subformula of itself, we can use Lemma C.8 to conclude

M′, w 6
S4C
h
A.

However, this is where the problems start. As noted in Remark C.7,
M′ also is not in the right class of Kripke models, as we have RC ( R′C
and thus we can not use soundness to conclude

S4C
h 6` A.

The usual approach in modal logic would be to use filtrations to obtain
a model of the right form. However, this fails as we have maximal
LPC

h-consistent sets and not maximal S4C
h-consistent sets and there

is no obvious relationship between such maximal consistent sets. In
particular, it is not clear whether the modal inducation axiom holds
for the alternative canonical model. Another approach would be to
use filtrations for justifications logics as introduced in Chapter A. For
now, this remains work in progress and will need more model theoretic
insights. For instance, filtrations will have to be set up in a way that
preserves validity for certain forgetful projections. Furthermore, the
lack of characteristic formulae (see Chapter A, Section A.2) prevents
a simple adapation of the usual filtration techniques for models with
non-standard behaviour (see [MH95; HKJ00]).

C.3. How the Proof Would Continue
Remarkably, the rest of the proof would work without any further
problems. Let us outline the path. The next step is to look at the
set of “potential realizations” and it remains to be shown, that the
previously defined “potential pre-realizations” can be turned into such
actual “potential realizations”.

Definition C.9. The mapping

‖.‖ : {B is a subformula occurrence of A} → P(FmLPC
h
)

184



C.3. How the Proof Would Continue

is defined as |.| with ‖.‖ in place of |.| everywhere, except for the case
of ~B being a positive subformula of A, where we set

‖~B‖ := {[t]~B′ | B′ ∈ ‖B‖ and t ∈ Tm~}.

Definition C.10. 1. A substitution is a mapping σ : Var → Tm
such that σ(x) ∈ Tm~ whenever x ∈ Var~. Substitutions can be
extended inductively to terms and formulae in the obvious way.
For a formula C ∈ FmLPC

h
we denote by Cσ the formula obtained

by simultaneously replacing all occurrences of x by σ(x) in C. For
a set of formulae Φ ⊆ FmLPC

h
, we set Φσ := {Aσ | A ∈ Φ}.

2. The domain of a substitution σ is defined as

dom(σ) := {x | σ(x) 6= x}.

3. A substitution σ with finite domain dom(σ) = {x1, . . . , xn} will
also be denoted by σ = {x1/t1, . . . , xn/tn} where σ(xj) = tj .

4. For two substitutions σ1 and σ2 with dom(σ1) ∩ dom(σ2) = ∅ we
define σ1 ∪ σ2 by

(σ1 ∪ σ2)(x) :=


σ1(x) if x ∈ dom(σ1),
σ2(x) if x ∈ dom(σ2),
x otherwise.

5. A substitution σ is said to live on a formula C ∈ FmLPC
h
, if

dom(σ) ⊆ {x | x is a proof variable
occurring in negative position in C}.

6. A substitution σ meets the no new variable condition, if σ(x)
contains no variables except for x.

Remark C.11. A substitution σ is said to live away from a formula C,
if all variables in its domain do not occur in negative position in C. If
we have two substitutions σ1 and σ2 such that σ1 lives on some formula
C and σ2 lives away from the same formula C and both meet the no
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new variable condition, we have σ1σ2 = σ2σ1 = σ1 ∪ σ2. However, if
σ lives away from C, this does not mean that Cσ = C, as variables
in the domain of σ might occur in positive position in C. This fact is
important in the cases for implications and in the case for negatively
occurring modalities in the following proof.

Lemma C.12. Let CS be a homogeneous, C-axiomatically appropriate,
schematic constant specification. For every subformula B of A and for
all B1, . . . , Bn ∈ |B| there is a formula B′ ∈ ‖B‖ and a substitution σ
living on B′ and meeting the no new variable condition such that

1. If B is a positive subformula occurrence of A, then

LPC
h(CS) ` (B1 ∨ . . . ∨Bn)σ → B′.

2. If B is a negative subformula occurrence of A, then

LPC
h(CS) ` B′ → (B1 ∧ . . . ∧Bn)σ.

Proof. We will proceed by induction on the complexity of the subformula
B.

• If B is the atomic proposition P , then the statement is trivial, as
|B| = ‖B‖ = {P} and thus we can use the empty substitution (i.e.
the identity function).

• Suppose ¬B is a positively occurring subformula of A and let
¬B1, . . . ,¬Bn ∈ |¬B|. Then B occurs negatively, Bj ∈ |B |
for j = 1 . . . n, and by induction hypothesis there is B′ ∈ ‖B‖
and a substitution σ with the necessary properties such that
LPC

h(CS) ` B′ → (B1 ∧ . . . ∧Bn)σ. Using the contrapositive, we
get LPC

h(CS) ` (¬B1 ∨ . . . ∨ ¬Bn)σ → ¬B′. As ¬B′ ∈ ‖¬B‖ and
σ satisfies the necessary properties by induction hypothesis, we
are done.

• The case for ¬B being a negatively occurring subformula is sym-
metric to the previous case and therefore omitted.

• Suppose B → C is a positive subformula occurrence and let
B1 → C1, . . . , Bn → Cn ∈ |B → C|. As B occurs negatively, C
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occurs positively, Bj ∈ |B|, and Cj ∈ |C| for j = 1 . . . n, there are
B′ ∈ ‖B‖ and σB as well as C ′ ∈ ‖C‖ and σC such that LPC

h(CS) `
B′ → (B1 ∧ . . . ∧Bn)σB and LPC

h(CS) ` (C1 ∨ . . . ∨ Cn)σC → C ′.
As CS is schematic, we then also have LPC

h(CS) ` (B′ → (B1 ∧
. . . ∧ Bn)σB)σC and LPC

h(CS) ` ((C1 ∨ . . . ∨ Cn)σC → C ′)σB.
As σB lives on B′ and σC lives on C ′, both are different subfor-
mulae occurrences of A and A is a proper annotation, we have
dom(σB)∩dom(σC) = ∅ and we can thus define σ := σB∪σC . We
now can write the previous as LPC

h(CS) ` B′σC → (B1∧. . .∧Bn)σ
and LPC

h(CS) ` (C1∨ . . .∨Cn)σ → C ′σB . Using propositional rea-
soning, we obtain LPC

h(CS) ` ((B1 → C1) ∨ . . . ∨ (Bn → Cn))σ →
(B′σC → C ′σB) and we are done as it is very easy to see that σ
and B′σC → C ′σB satisfy the necessary conditions.

• The case for B → C being a negative subformula occurrence is
again symmetric to the previous case.

• Suppose ~B is a positively occurring subformula and let

[t1]~B1, . . . , [tn]~Bn ∈ |~B|.

By induction hypothesis there is a B′ ∈ ‖B‖ and a substitu-
tion σ such that LPC

h(CS) ` (B1 ∨ . . . ∨ Bn)σ → B′. Note
that we can apply the induction hypothesis as each Bj is a dis-
junction of elements of |B|, hence in particular B1 ∨ . . . ∨ Bn
is a disjunction of elements of |B|. We immediately obtain
LPC

h(CS) ` Bjσ → B′ for each j = 1 . . . n. By constructive neces-
sitation (Corollary 6.6) there is a ground proof term uj ∈ Tm~
such that LPC

h(CS) ` [uj ]~(Bjσ → B′). Using the application
axiom (Lemma 6.1, respectively, for the case where ~ = E) we
obtain LPC

h(CS) ` ([tj ]~Bj)σ → [uj · tjσ]~B′. Now we can set
s := u1 · t1σ + . . . + un · tnσ and using the sum axiom (again
Lemma 6.1, respectively), we get LPC

h(CS) ` ([tj ]~Bj)σ → [s]~B′
and so finally also LPC

h(CS) ` (([t1]~B1)σ ∨ . . . ∨ ([tn]~Bn)σ)→
[s]~B′. Obviously we have [s]~B′ ∈ ‖ ~ B‖ and σ satisfies the
necessary conditions by induction hypothesis.

• Suppose ~B is a negatively occuring subformula and let

[x]~B1, . . . , [x]~Bn ∈ |~B|
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where A(~B) = x ∈ Var~. By induction hypothesis there is
a B′ ∈ ‖B‖ and a substitution σ such that LPC

h(CS) ` B′ →
(B1 ∧ . . . ∧ Bn)σ. As σ lives on B′, meets the no new variable
condition, B is a subformula of A and A is a proper annotation
of A, we have x 6∈ dom(σ). Furthermore, for each j = 1 . . . n we
have LPC

h(CS) ` B′ → Bjσ and so, by constructive necessitation
(Corollary 6.6), there is a ground proof term tj ∈ Tm~ such
that LPC

h(CS) ` [tj ]~(B′ → Bjσ). Now set s := t1 + . . . + tn,
then by the sum axiom (Lemma 6.1, respectively), we have
LPC

h(CS) ` [s]~(B′ → Bjσ). Define σ0 := {x/(s · x)} and by
the schematicness of CS we get LPC

h(CS) ` ([s]~(B′ → Bjσ))σ0.
As s is ground, we immediately have LPC

h(CS) ` [s]~(B′σ0 →
Bjσσ0). By the application axiom (Lemma 6.1, respectively)
also LPC

h(CS) ` [x]~(B′σ0) → [s · x]~(Bjσσ0). Set σ′ := σ ∪ σ0
(remember x 6∈ dom(σ)). Now we can restate our previous re-
sult as LPC

h(CS) ` [x]~(B′σ0) → ([x]~Bj)σ′. So we also have
LPC

h(CS) ` [x]~(B′σ0)→ ([x]~B1 ∧ . . . ∧ [x]~Bn)σ′. It is easy to
see that σ′ lives on [x]~(B′σ0) and meets the no new variable
condition.

To conclude, let CS be a homogeneous, C-axiomatically appropriate,
schematic constant specification. Our aim is to show

If S4C
h ` A, then there is a A′ ∈ ‖A‖ and a substitution σ

such that LPC
h(CS) ` B′.

This would be done in the following manner: if S4C
h ` A and if (∗)

holds, there are B1, . . . , Bn ∈ |B| such that

LPC
h(CS) ` B1 ∨ . . . ∨Bn.

By Lemma C.12, there is a B′ ∈ ‖B‖ and a substitution σ, such that

LPC
h(CS) ` (B1 ∨ . . . ∨Bn)σ → B′.

Furthermore, by Lemma 6.4, and as CSσ ⊆ CS by the schematicness of
CS we also have

LPC
h(CS) ` (B1 ∨ . . . ∨Bn)σ.

So, we finally obtain
LPC

h(CS) ` B′.
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C.3. How the Proof Would Continue

Note that this method can be easily adapted to also cover the logics
introduced in Chapter 7, as it does not assume any particular aspects of
the logics except constructive necessitation and the truth lemma with
respect to the alternative canonical model.
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for logics of common knowledge”. In: Annals of Pure and
Applied Logic 133.1–3 (May 2005), pp. 73–99. doi: 10.1016/
j.apal.2004.10.004 (cit. on pp. 17, 18, 31, 32, 86).

[AK09] Sergei [N.] Artemov and Roman Kuznets. “Logical Om-
niscience as a Computational Complexity Problem”. In:
Theoretical Aspects of Rationality and Knowledge, Proceed-
ings of the Twelfth Conference (TARK 2009). Ed. by Aviad
Heifetz. Stanford University, California: ACM, July 2009,
pp. 14–23. doi: 10.1145/1562814.1562821 (cit. on p. 54).

[AN05] Sergei [N.] Artemov and Elena Nogina. “Introducing Jus-
tification into Epistemic Logic”. In: Journal of Logic and
Computation 15.6 (Dec. 2005), pp. 1059–1073. doi: 10.
1093/logcom/exi053 (cit. on p. 62).

[Ant07] Evangelia Antonakos. “Justified and Common Knowledge:
Limited Conservativity”. In: Logical Foundations of Com-
puter Science, International Symposium, LFCS 2007, New
York, NY, USA, June 4–7, 2007, Proceedings. Ed. by Sergei
N. Artemov and Anil Nerode. Vol. 4514. Lecture Notes in

191

http://plato.stanford.edu/archives/fall2011/entries/logic-justification/
http://plato.stanford.edu/archives/fall2011/entries/logic-justification/
http://plato.stanford.edu/archives/fall2011/entries/logic-justification/
http://dx.doi.org/10.1016/j.apal.2004.10.004
http://dx.doi.org/10.1016/j.apal.2004.10.004
http://dx.doi.org/10.1145/1562814.1562821
http://dx.doi.org/10.1093/logcom/exi053
http://dx.doi.org/10.1093/logcom/exi053


Bibliography

Computer Science. Springer, 2007, pp. 1–11. doi: 10.1007/
978-3-540-72734-7_1 (cit. on p. 63).

[Art01] Sergei N. Artemov. “Explicit Provability and Constructive
Semantics”. In: Bulletin of Symbolic Logic 7.1 (Mar. 2001),
pp. 1–36 (cit. on pp. 51, 53, 71, 104, 128).

[Art06] Sergei [N.] Artemov. “Justified common knowledge”. In:
Theoretical Computer Science 357.1–3 (July 2006), pp. 4–22.
doi: 10.1016/j.tcs.2006.03.009 (cit. on pp. 53, 62–64).

[Art08] Sergei [N.] Artemov. “The Logic of Justification”. In: The
Review of Symbolic Logic 1.4 (Dec. 2008), pp. 477–513. doi:
10.1017/S1755020308090060 (cit. on pp. 53, 55, 60, 90,
94, 170).

[Art10] Sergei [N.] Artemov. “Tracking Evidence”. In: Fields of
Logic and Computation, Essays Dedicated to Yuri Gurevich
on the Occasion of His 70th Birthday. Ed. by Andreas
Blass, Nachum Dershowitz, and Wolfgang Reisig. Vol. 6300.
Lecture Notes in Computer Science. Springer, 2010, pp. 61–
74. doi: 10.1007/978-3-642-15025-8_3 (cit. on pp. 53,
63, 64).

[Art95] Sergei N. Artemov. Operational modal logic. Tech. rep. MSI
95–29. Cornell University, Dec. 1995 (cit. on pp. 53, 128).

[Bal10] Roberta Ballarin. “Modern Origins of Modal Logic”. In:
The Stanford Encyclopedia of Philosophy. Ed. by Edward N.
Zalta. Winter 2010. 2010 (cit. on pp. 3, 4).

[Bar88] Jon Barwise. “Three views of common knowledge”. In:
Proceedings of the 2nd conference on Theoretical aspects of
reasoning about knowledge. TARK ’88. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1988, pp. 365–379.
isbn: 0-934613-66-9. url: http://dl.acm.org/citation.
cfm?id=1029718.1029753 (cit. on p. 11).

[BBW07] Patrick Blackburn, J. F. A. K. van Benthem, and Frank
Wolter, eds. Handbook of Modal Logic. Vol. 3. Studies in
logic and practical reasoning. Elsevier, 2007. isbn: 978-0-
444-51690-9 (cit. on p. 3).

192

http://dx.doi.org/10.1007/978-3-540-72734-7_1
http://dx.doi.org/10.1007/978-3-540-72734-7_1
http://dx.doi.org/10.1016/j.tcs.2006.03.009
http://dx.doi.org/10.1017/S1755020308090060
http://dx.doi.org/10.1007/978-3-642-15025-8_3
http://dl.acm.org/citation.cfm?id=1029718.1029753
http://dl.acm.org/citation.cfm?id=1029718.1029753


Bibliography

[Bet53] Evert Willem Beth. “On Padoa’s method in the theory of
definitions”. In: Indagationes mathematicae. A 56 (1953),
pp. 330–339 (cit. on p. 21).
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sagenkalküls”. In: Ergebnisse Math. Kolloq. 4 (1933), pp. 39–
40. English translation in S. Feferman et al., eds. Kurt
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Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine
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Mathematik und Informatik

2008–2012 PhD-Studium in Informatik bei Prof. Dr. Gerhard Jäger
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