
A feasible theory of truth over combinatory algebra

Sebastian Eberhard1

Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse 10,
CH-3012 Bern, Switzerland.

Abstract

We define an applicative theory of truth TPT which proves totality exactly for

the polynomial time computable functions. TPT has natural and simple axioms

since nearly all its truth axioms are standard for truth theories over an applica-

tive framework. The only exception is the axiom dealing with the word predicate.

The truth predicate can only reflect elementhood in the words for terms that have

smaller length than a given word. This makes it possible to achieve the very low

proof-theoretic strength. Truth induction can be allowed without any constraints.

For these reasons the system TPT has the high expressive power one expects from

truth theories. It allows embeddings of feasible systems of explicit mathematics and

bounded arithmetic.

The proof that the theory TPT is feasible is not easy. It is not possible to apply a

standard realisation approach. For this reason we develop a new realisation approach

whose realisation functions work on directed acyclic graphs. In this way, we can

express and manipulate realisation information more efficiently.

Keywords: Polytime computability, applicative theories, truth theories

2010 MSC: 03F03, 03F50

1. Introduction

The theory of truth TPT introduced in this paper is based on an applicative ground

language for operations in the sense of combinatory logic; operations can freely be

applied to other operations and strong principles of recursion are available due to the

known expressive power of combinatory algebras. The first order applicative base

describes the operational core of Feferman’s explicit mathematics, cf. [13, 14, 15].

The notion of a partial, self-referential predicate of truth is rooted in Frege’s seminal

work. Theories which expand an applicative core with such a truth predicate are

Email address: eberhard@iam.unibe.ch (Sebastian Eberhard)
1Research supported by the Swiss National Science Foundation.

Preprint submitted to Elsevier January 22, 2014

introduced in the work of Aczel [1] and Beeson [2]. Similar theories to the one

introduced in this paper were developed in Cantini [4, 5] and Kahle [24, 25]. For

important results in the realm of truth theories over arithmetical ground theories, see

e.g. Feferman’s [16, 18], Friedman and Sheard [21]. For a comprehensive overview

and newer results see Halbach [22].

The theory TPT that will be developed in this paper can be seen as feasible analogue

of Cantini’s theory of truth in [6]. As Cantini’s theory, also TPT contains unrestricted

truth induction and natural axioms for compositional truth. The only difference

between the two theories is that TPT reflects only elementhood in the words for terms

that have smaller length than a given word. This restriction is responsible for its

very low proof theoretic strength. The idea to restrict the reflection of elementhood

in the words in order to obtain weak theories was also used in explicit mathematics

where types for the initial segments of the words were introduced by Spescha and

Strahm in [28, 29]. The system PETJ, introduced there, can indeed be seen as

analogue of the theory TPT in explicit mathematics. PETJ was proven to be feasible

by Probst in [26] using non-standard models. The close connection of TPT and

PETJ is established by Strahm and the author in [12] where mutual embeddings

of TPT and a - from the point of expressive power - strengthened version of PETJ

are demonstrated. Presupposing the feasibility of TPT this yields a new proof of the

feasibility of PETJ. Indeed, embeddings into TPT are possible for many other feasible

systems such as Buss’ S1
2 [3] or Cook and Urquart’s PV ω [9]. That TPT proves

totality for all polynomial time computable functions follows from these embeddings,

or also directly using their well-known function algebra description developed by

Cobham in [8].

In this paper, we will focus on the proof of the upper bound of TPT. Upper bounds

for weak applicative theories are usually established using realisation techniques as

developed by Cantini in [6] and Strahm in [31]. This is because for most of the

analysed theories, embeddings into bounded arithmetic do not seem to be possible

because equality of lambda terms is already Σ1 complete. The upper bound com-

putation of TPT is difficult because the usual realisation approach does not work.

A new realisation approach will be developed which uses directed acyclic graphs to

store and manipulate realisation information more efficiently. This approach also

allows to find upper bounds for the corresponding theories of explicit mathematics,

but can be motivated best for TPT.

We conclude the introduction with a detailed outline of the paper. In Section 2,

we will introduce the basic applicative framework of TPT, which was developed

by Strahm in [31]. Strahm’s system uses a predicate W for binary words instead

2

of a predicate N for natural numbers as ground type, which allows to state weak

induction principles in a very natural way. As usual for theories of truth, we always

work in a total setting. In Section 3, we introduce the theory TPT which extends

the applicative axioms with a compositional truth predicate T and the principle of

truth induction. We will discuss some of the theorems of TPT.

The rest of the paper is devoted to the upper bound proof of TPT. First, we introduce

the realisation approach developed by Cantini in [6] which allowed him to find upper

bounds for theories of truth with additional principles such as choice and uniformity.

We do so because the new realisation approach is based on Cantini’s approach. It

will also be shown were Cantini’s approach fails when it is applied to TPT, which

also motivates the new approach. In Section 5, we give its technical details. We

define a special set of directed acyclic graphs with multiple edges, and explain how

they carry realisation information.

In section 6, we show how this approach can be used to find the upper bound for

an intuitionistic version TiPT of TPT. The restriction to intuitionistic logic allows

us to present the ideas more transparently. Nevertheless, the approach could easily

be adapted, in a similar way as presented in Strahm’s [31], to deal with classical

logic. Most of the work has to be done to realise the induction rule which is realised,

as usual, using bounded recursion. An important difference to realisations of other

applicative theories of polynomial strength, such as PT introduced by Strahm in [31]

or PETJ, is that this bound cannot be constructed directly from the form of the in-

duction formula and the realisation function for a special induction premise. Instead

the bound must be established using bounding conditions which can be proved to

hold for all used realisation functions by induction on the depth of the corresponding

proof. We conclude this lengthy section by sketching how the approach could be

adapted to realise the classical version of TPT. Finally, in section 7, we mention our

current research and related research.

2. The basic applicative framework

The theory TPT that is studied in this paper is based on an applicative base theory

which includes the axioms for a total2 combinatory algebra and a basic data type

2We work in a total setting because this is the usual framework for theories of truth. Otherwise,

problems with the reflection of negated atoms containing undefined terms occur. Since our truth

predicate does not reflect negative formulas anyway, partiality is not problematic in our case. The

partial version of TPT has equal strength as TPT since it allows the same direct lower bound proof.

A detailed discussion of partial applicative theories of truth can be found in Kahle [23].

3

W which is interpreted as the set W = {0, 1}∗ of binary words in the standard

interpretation. As usual, ⊆ denotes the relation of being an initial subword, and ≤
the relation of having a smaller length. By the length |w| of a word w, we denote

the number of zeros and ones it is build of.

2.1. The applicative language L

Our basic language L is a first order language for the logic of partial terms which

includes:

• variables a, b, c, x, y, z, u, v, f, g, h, . . .

• constants k, s, p, p0, p1, dW, ε, s0, s1, pW, c⊆, ∗, ×

• relation symbols = (equality), W (binary words)

• the binary function constant ◦ (application)

The meaning of the constants will become clear in the next paragraph.

The terms (r, s, t, p, q, . . .) are inductively generated from the variables and constants

by means of application. So if s and t are terms then also ◦(s, t). The formulas

(A,B,C, . . .) of L are given as the closure of the atoms s = t, W(s) under negation

the connectors ∧,∨ and the quantifiers ∃, ∀. We assume the following standard

abbreviations and syntactical conventions:

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

s(t1, . . . , tn) := st1 . . . tn

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

c≤(s, t) := c⊆(1×s, 1×t) = 0

s ≤W t := c≤(s, t) ∧ s ∈ W

In the following we often write A[~x] in order to indicate that the variables ~x =

x1, . . . , xn may occur free in A. Finally, let us write w for the canonical closed L

term denoting the binary word w ∈W.

2.2. The basic theory of operations and words B

The applicative base theory B has been introduced in Strahm [30, 31]. We present

a total version of this theory and can therefore use classical logic. The non-logical

axioms of B include:

4

• partial combinatory algebra:

kxy = x, sxyz = xz(yz)

• pairing p with projections p0 and p1

• defining axioms for the binary words W with ε, the binary successors s0, s1

and the predecessor pW

• definition by cases dW on W

• initial subword relation c⊆

• word concatenation ∗, word multiplication ×3

These axioms are fully spelled out in Strahm’s [30, 31].

Let us remind the reader of the standard open term model TM of B: Take the

universe of open λ terms and consider the usual reduction of the extensional untyped

lambda calculus λη, augmented by suitable reduction rules for the constants other

than k and s. Interpret application as juxtaposition. Two terms are equal if they

have a common reduct and W denotes those terms that reduce to a “standard” word

w.

3. The system TPT

The system TPT contains a predicate T that mimics the properties of positive truth,

e.g. the properties of truth restricted to formulas not containing negation. The

axiomatisation of this predicate relies on a coding mechanism for formulas. In the

applicative framework, we code formulas using new constants designating logical

operations.

3.1. The language LT of positive truth

The (first order) language of TPT is an extension of the language L by

• a new unary predicate symbol T for truth

• new individual constants =̇, Ẇ, ∧̇, ∨̇, ∃̇, ∀̇

The new constants allow the coding of negation-free formulas, called positive for-

mulas in the following. We will use infix notation for =̇, ∧̇ and ∨̇.

3x×y signifies the length of y fold concatenation of x with itself; note that we use infix notation

for ∗ and ×.

5

3.2. The axioms and rules of TPT

The theory TPT with language LT is an extension of the total version of B by com-

positional truth axioms and truth induction. Accordingly, its underlying logic is

simply first order classical predicate logic.

Compositional truth

(C1) T(a
.
= b)↔ a = b

(C2) a ∈ W→ (T(Ẇab)↔ b ≤W a)

(C3) T(a∨̇b)↔ T(a) ∨ T(b)

(C4) T(a∧̇b)↔ T(a) ∧ T(b)

(C5) T(∃̇a)↔ ∃xT(ax)

(C6) T(∀̇a)↔ ∀xT(ax)

Additionally, we have unrestricted truth induction.

Truth Induction

T(aε) ∧ (∀x ∈ W)(T(ax)→ T(a(s0x)) ∧ T(a(s1x)))→ (∀x ∈ W)(T(ax))

3.3. Theorems of TPT

Let us give the set of formulas for which the Tarski biconditionals hold.

Definition 1 Let A be a positive LT formula and u be a variable not occurring in

A. Then the formula Au is obtained by replacing each subformula of the form t ∈ W

of A by t ≤W u.

The following lemma can be proved by an easy external induction on the complexity

of A.

Lemma 2 Let A be a positive LT formula. Then, we have

TPT ` u ∈ W→ (T(〈Au〉)↔ Au),

where 〈Au〉 denotes the obvious code of Au, see [12] for details.

The strength of theories weaker than Peano arithmetic is usually measured by giving

their provably total functions. We use the standard definition of provable totality

in the applicative setting.

6

Definition 3 A function F : Wn → W is called provably total in an LT theory T,

if there exists a closed L term tF such that

(i) T ` tF : Wn → W and, in addition,

(ii) T ` tFw1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.

We can easily show that all polynomial time computable functions are provably total

in TPT. This is done by an external induction on the rank of the function relative

to Cobham’s function algebra description given in Clote [7].

The theory PETJ of explicit mathematics of polynomial strength which is defined

and analysed by Spescha and Strahm in [27, 28, 29] can be embedded into TPT by a

standard embedding which is illustrated by Strahm and the author in [12]. This gives

an alternative proof of the lower bound. The embedding is straightforward and uses

the well-known correspondence between sets and unary predicates: Set constants

have to be defined by terms which formulate their elementhood conditions, or by

terms that do so when applied to a suitable number of arguments, respectively. The

extension of PETJ by the axiom that everything is a name can be embedded using

the same approach.

3.4. Sequent style formulation of TiPT

As mentioned before, we will detail the upper bound proof for the intuitionistic

version TiPT of TPT. The realisation approach is best formulated for systems in

sequent style, and it is routine to formulate TiPT or TPT in this way. We can assume

that the axioms contain only positive formulas. Induction is formulated as a rule

with positive main formulas in the usual way. Because of this restrictive formulation

of the sequent calculus, a standard cut elimination argument yields the following

lemma.

Lemma 4 Let T be the theory TPT or TiPT. Let Γ, D be a sequence of positive

formulas such that T ` Γ⇒ D. Then there exists a T proof of Γ⇒ D that contains

only positive formulas.

4. The standard realisation approach

We denote by standard realisation approach the realisation technique executed in

Cantini [6] for weak theories of truth and in Strahm [31] for feasible applicative

theories.

7

4.1. Cantini’s realisation relation

Our version of Cantini’s realisation relation allows to discriminate realisers of dif-

ferent atoms, disjunctions and conjunctions. All relevant properties are unchanged

by these modifications.

We will define the realisation relation with the help of an abstract derivability re-

lation d `m t where d ∈ W, m ∈ ω, and t is an arbitrary term, by means of

a set of introduction rules, where m measures the length of proof. Assume that

p=q, pTq, pWq, p∧q, p∨q are different words. We denote in the following the equal-

ity of the terms s, t in the standard open term model by s = t. We also assume

that 〈· · · 〉 denotes a polynomial time computable tupling function for arbitrary arity

with the property that tuples of different arities are different. An example for such

a pairing function is given in Clote’s [7].

• =̇-rule
t = a=̇b a = b

〈pTq, ε〉 `m t for m ∈ N

• Ẇ-rule
t = Ẇrs s = ρ c≤(s, r)

〈pTq, ρ〉 `m t for m ∈ N

• ∨̇-rule
t = r∨̇s d `n r (or d `n s)

〈p∨q, 0, d〉 `m t (or 〈p∨q, 1, d〉 `m t) for n < m

• ∧̇-rule
t = r∧̇s d `n1 r e `n2 s

〈p∧q, d, e〉 `m t for n1, n2 < m

• ∀̇-rule (assume x /∈ FV (rt))

t = ∀̇r d `n rx
d `m t for n < m

• ∃̇-rule
t = ∃̇r d `n rq for some q

d `m t for n < m

We abbreviate (∃m)(d `m t) as d ` t. Now we are in the position to define the

realisation relation for all positive formulas of LT. We denote βη equality between

8

terms s, t below by s = t.

ρ R T(t) iff ρ ` t

ρ R W(t) iff ρ = 〈ρ0, ρ1〉 ∧ t = ρ1 ∧ ρ0 = pWq

ρ R (t1 = t2) iff ρ = 〈ρ0, ρ1〉 ∧ ρ1 = ε ∧ t1 = t2 ∧ ρ0 = pWq

ρ R (A ∧B) iff ρ = 〈ρ0, ρ1, ρ2〉 ∧ ρ0 = p∧q ∧ ρ1 R A ∧ ρ2 R B,

ρ R (A ∨B) iff ρ = 〈ρ0, ρ1, ρ2〉 ∧ ρ0 = p∨q ∧ (ρ1 = 0 ∧ ρ2 R A)∨

(ρ1 = 1 ∧ ρ2 R B),

ρ R (∀x)A(x) iff ρ R A(u) for a fresh variable u,

ρ R (∃x)A(x) iff ρ R A(t) for some term t.

This definition assures that we can discriminate realisers of atoms of the form W(t)

and T(Ẇst), which is crucial for the new realisation approach.

4.2. Not treatable sequent by standard realisation approach

In the following, we derive a sequent in TPT for which there is no polynomial time

computable realisation function relative to the standard approach. In TPT we have

totality and the λ-theorem holds because it includes B. Therefore, there is a closed

term r which satisfies the following recursion equations for any w ∈ W.

• r(ε) = 0=̇0

• r(siw) = r(w) ∧̇ r(w)

Using logical and applicative axioms, C1, C4 and truth induction we get:

TPT ` x ∈ W⇒ T(rx)

But we can not find a (standard) polynomial time computable realisation function

for this sequent: Internal as well as external conjunctions are realised (roughly)

by a pair which contains the realisers of both conjuncts. Therefore, using natural

assumptions about the pairing function, realisation functions of the above displayed

sequent must grow exponentially.

4.3. Inefficiencies in the standard realisation approach

Two inefficiencies of the standard realisation approach, which are closely related, will

be demonstrated in the following. We will overcome them using the new realisation

approach.

9

Let us look first at the realisers of the formulas T(rw) for the function r defined

as before and w ∈ W. Intuitively, these realisers do not contain much information,

they just contain, repeatedly paired, the information ε. The realisers only grow that

fast in w because we ask for realisation information for each internal conjunct of

each internal conjunction of rw even if two such conjuncts always have the same

realiser. Our formalism will take advantage of this by allowing that the same piece

of realisation information can be used for several (internal) subformulas.

Another closely related source of inefficiency in the standard realisation approach

can be demonstrated for the realisation of the conclusion of the cut rule. Let the

used cut rule have the following form.

Γ⇒ A Γ, A⇒ D

Γ⇒ D

We assume realisation functions p and q for the premises. To produce a realiser of

D, we will first produce realisation information for A, and add this information to

the tuple of realisers of Γ. Then we will apply the realisation function q. This is

inefficient because realisation information that is necessary for A may already be

contained in the realisers of Γ. This means that we apply the realisation function

q to an input that is larger than it has to be. The formalism developed in this

section allows to use the same realisation information for the subformulas of several

formulas in a sequence and therefore overcomes this inefficiency.

5. The new formalism

5.1. Sketch of the new approach

In the previous session, we have seen examples of inefficiency since the same real-

isation information was produced several times instead of shared. A natural way

to allow the reuse of information is the use of directed acyclic graphs with multi-

ple edges (dagme). In the new approach, we interpret the vertices of such graphs

as addresses under which realisation information is stored. E.g. the dagme with

vertices v0, v1 containing two edges from v1 to v0 stores at vertex v1 a pair whose

components both are stored at vertex v0.

vn ⇒ vn−1 ⇒ · · ·⇒ v0(ε)

Following this informal interpretation the dagme above, whose vertex v0 is indexed

by ε, is interpreted as follows: Because vn has two outgoing edges, it stores a pair.

Since both edges lead to vn−1, both components contain the content stored at vertex

vn−1. The content stored at vn−1 is calculated analogously. This interpretation

10

finally yields that the standard realiser of T(rw) for w ∈ W with |w| = n is stored

at vn since at vertex v0, the empty word ε is stored4.

Note that the dagme given above has linear size in n, in contrast to the standard

realiser of T(rw) with |w| = n, because it allows to use the same pieces of information

for several internal subformulas. Note also that for all words v ⊆ w the realiser of

T(rv) is simultaneously stored at vertex m where |v| = m.

5.2. Realisation dags

Let us now define precisely the special sort of dagmes relevant for the realisation

approach.

Definition 5 (Realisation dags) A realisation dag (RD) α is a finite dagme with

vertices V and edges E fulfilling the following conditions.

• Each v ∈ V has at most two outgoing edges.

• Each v ∈ V is indexed by a unique word (its address). We call the set of these

indices the addresses of α.

• For each v ∈ V , if v has two outgoing edges, one of these edges is indexed by

0 and the other one by 1.

• For each v ∈ V , if v has exactly one outgoing edge, this edge is indexed by 0,

1 or it is not indexed.

• For each v ∈ V , if v is a leaf, it is indexed (in addition to its address) by

〈pWq, w〉 or 〈pTq, w〉 for some word w.

• α does not contain other indices.

The rational behind this definition becomes clear by looking at the definition of

the function con which allows to construct standard realisers from realisation dags.

Depending on the number and the indices of the outgoing edges of an input vertex v

of an input realisation dag α, con constructs a realiser for a conjunction, disjunction,

or for an atom.

Notations 6 For an address c of a realisation dag α, we write vα(c) for its vertex

indexed by c. We drop the subindex α if the realisation dag is clear from the context.

4In this informal description, we ignore the fact that conjunctions are realised by triples with

first component p∧q.

11

Definition 7 (Construction function con) Let α be a realisation dag and c a

word. Then the function con(α, c) is defined recursively as follows.

If c is not an address of α, we return a fixed word ε (error) which is not a realiser

of any formula. In all other cases, we execute the following definition by cases.

Case 1 There are two outgoing edges from v(c) in α. The edge indexed by i leads to

v(di) for 0 ≤ i ≤ 1:

con(α, c) := 〈p∧q, con(α, d0), con(α, d1)〉.

Case 2 There is a unique outgoing edge from v(c) in α. This edge is indexed by

0 ≤ i ≤ 1 and leads to v(d):

con(α, c) := 〈p∨q, i, con(α, d)〉.

Case 3 There is a unique outgoing edge from v(c) in α. This edge is not indexed

and leads to v(d):

con(α, c) := con(α, d).

Case 4 v(c) is a leaf indexed by 〈pWq, w〉:

con(α, c) := 〈pWq, w〉.

Case 5 v(c) is a leaf indexed by 〈pTq, w〉:

con(α, c) := 〈pTq, w〉.

Notations 8 In the following, we often abbreviate the word

n times︷ ︸︸ ︷
0 · · · 0 by n. We ab-

breviate indices of the form 〈pWq, w〉 for w ∈W by w. We use Greek letters to refer

to realisation dags.

Example 9 Let α be the following realisation dag which extends the dagme pre-

sented on page 10 by indices. It contains n + 1 ∈ N vertices, indexed by the words

0, 1, 2, · · · , n. For each 0 < i ≤ n, v(i) has two outgoing edges, both lead to v(i− 1).

Finally, the leaf v(0) is indexed by ε.

Let us calculate con(α, n). (We suppress pairing with p∧q.)

con(α, n) = 〈con(α, n− 1), con(α, n− 1)〉 =〈
〈con(α, n− 2), con(α, n− 2)〉, 〈con(α, n− 2), con(α, n− 2)〉

〉
= · · ·

12

This calculation finally delivers the standard realiser of T(rn).

Let us now define formally, how RDs are used to realise sequences of formulas.

Definition 10 (Realisation relation) Let A1, . . . , An be a sequence of positive

formulas. Let α be a RD. Let b : W ×W → W be a polynomial time computable

function. Then the following holds.

α rb A1, . . . , An :⇔ For all i with 1 ≤ i ≤ n : con(α, b(α, i)) R Ai

From now on, in such a context, b is called an address finder. We call the words

denoted by i with 1 ≤ i ≤ n its relevant inputs.

Note that the role of b is to find the addresses at which standard realisers for the

formulas A1, · · · , An are stored. It is easy to prove the usual elementary properties

for the above defined realisation relation since it is based on R which has the same

properties.

Lemma 11 Let b be an address finder. Let A1, . . . , An be a sequence of positive

formulas. We let ~s = ~t abbreviate s0 = t0 ∧ · · · ∧ sm = tm. Then the following

assertions hold.

• α rb A1, . . . , An[~x] implies α rb A1, . . . , An[~s] for all ~s.

• α rb A1, . . . , An[~s] and TM � ~s = ~t implies α rb A1, . . . , An[~t] for all ~s,~t.

To realise the theory TiPT using our realisation approach, we define a realisation

function fΓ⇒D for each sequent Γ ⇒ D provable in TiPT. fΓ⇒D will take as input a

RD realising Γ and yield as output a RD realising the sequence Γ, D. TPT is realised

analogously. Of course, the computational complexity of the realisation functions

will be crucial. To apply notations of complexity theory to them, we implicitly

interpret RDs as words, assuming a coding. In the following, we sketch how this

coding works and introduce at the same time an efficient notation system for RDs.

Notations 12 Let α be a RD with vertices V and edges E. Then α is denoted by

the finite set S build as follows.

• For each vertex v(c) ∈ V , if v(c) has an edge indexed by 0 ≤ i ≤ 1 leading to

v(d) ∈ V , S contains the string c
i→ d.

• For each vertex v(c) ∈ V , if v(c) has a non-indexed edge leading to v(d), S

contains the string c→ d.

13

• For each leaf v(c) ∈ V indexed by i, S contains the string c : i.

The elements of S are denoted as RD parts of α. In the following, we identify

realisation dags α and their representation as finite set S. For S containing exactly

RD parts s1, · · · , sn, we write s1/ · · · /sn in the following.

Using a natural coding, the elements of S as well as S itself are considered as words.

In the following, when we talk about functions on RDs, we implicitly assume that

these functions are defined on words using the above mentioned coding function.

They are assumed to output ε if one of their arguments intended to code a RD does

not do so. It can be checked easily, whether some word codes a RD, therefore this

assumption is not problematical even when working in a polynomial time setting.

5.3. Important functions on RDs

We define functions on RDs which are crucial for the upper bound proof of TiPT
presented in the next section.

First, we define a function conW which allows to extract realisation information of

the form 〈pWq, w〉 for w ∈ W from its input α. The following definition is needed

for this purpose.

Definition 13 (Reachable address relation) Let c, d be addresses of a RD α.

The address d is reachable from c relative to α, i.e. Rα(c, d) holds, exactly if there

is a path from v(c) to v(d) in α.

Definition 14 (conW) The function conW : W×W→W is defined by the following

algorithm for the calculation of conW(α, c):

Step 1: Find all addresses d for which Rα(c, d) holds. They form a set M .

Step 2: Output the maximum with respect to the lexicographic ordering over all words

u such that d : u occurs in α for d ∈M . If M = ∅, output ε.

Output ε if α is not a RD, or c is not an address of α.

Lemma 15 The function conW is polynomial time computable.

Proof. It can be checked in polynomial time whether α is a RD containing address

c. If not, conW(α, c) is evaluated immediately as ε. If α is a RD, for each address c

occurring in α the addresses d with Rα(c, d) can be found in polytime. The number

of addresses occurring in α is bounded by the length of α 5. This yields that the

5We use here natural assumptions about the function coding RDs as words.

14

set M can be constructed in polynomial time relative to α. Then, the required

maximum can be found in polynomial time relative to M and α. 2

Example 16 Let us calculate conW(α, n) for α being the realisation dag presented

in example 9. All addresses are reachable from n, therefore M is the set of all

addresses of α. 0 : ε occurs in α but no other RD parts of this form. Therefore

conW(α, n) = ε.

Notations 17 For a term t, let us write value(t) for the word with TM � t =

value(t) if there exists any.

Lemma 18 Let α be a RD, and c one of its addresses. Let t be a term. Then, the

following holds.

con(α, c) R t ∈ W⇒ conW(α, c) = value(t)

Proof. It follows from the definition of con that the set of reachable addresses from c

contains exactly one address d with v(d) being a leaf of α. Because of the assumption

v(d) has to be indexed by the value of t which yields the claim. 2

The function Wb, which depends on conW, helps to bound realisation functions.

Definition 19 (Wb) Let b be an address finder. The function Wb : W ×W → W
is defined as

Wb(w, α) := max{conW(α, b(α, v)) : ε ⊂ v ⊆ w},

where max refers to the lexicographic ordering of the words. Wb outputs ε if α is

not a RD.

Wb is polytime because conW is polytime as well.

Example 20 Let us explain the behaviour of the function Wb in a typical example.

Let its second argument α have the following property: α rb A1, · · · , An. Then,

Wb(n, α) outputs the largest word u in a RD part c : u of α for c reachable from an

address in the set {b(α, 1), b(α, 2), · · · , b(α, n)}.

The polynomial time computable function defined below is important to bound

realisation functions too.

Definition 21 (Maximal address function) The function MA : W → W ap-

plied to a RD α returns its maximal address with respect to the lexicographic order.

It returns ε if α is not a RD.

Example 22 Let us apply the function MA to α being the RD from example 9.

Clearly, we have MA(α) = n.

15

6. Applying the formalism to Ti
PT

From now on, we work with a sequent style formulation of TiPT which we call TiPT
as well.

6.1. Stating the main claim

Notations 23 The following notations allow to state the main theorem concisely.

• Γ is always a sequence of positive formulas of the form

A1, . . . , An. |Γ| gives its length n.

• Γ, A[~s] denotes Γ[~s], A[~s].

• We often use + and · instead of ∗ and ×. In such contexts natural numbers n

denote the word 00 · · · 0︸ ︷︷ ︸
n times

as usual. We sometimes write w− 1 instead of pW(w)

for w ∈W.

• As in example 20, the function Wb will always occur in connection with a se-

quence of formulas of length n, and we will always take n as its first argument.

Therefore, we suppress it always.

• For a RD α, α� denotes the RD produced by deleting the RD parts of α which

contain the maximal address of α. α� is defined to be the empty word if α is

not a RD. Clearly, we have w� ≤ w for all words w 6.

Theorem 24 Let Γ, D be a sequence of positive formulas. Assume that there is a

proof of Γ ⇒ D in TiPT that uses only positive formulas. Assume that a polytime

address finder b is given. Then there exist polytime functions p−1, δ, κ, γ (independent

of b) and a polytime realisation function pb such that for all ~s and for all α that are

realisers of Γ[~s] relative to b the following five properties hold:

(1) • p−1(pb(α)) = α.

• p−1(w) ≤ w for all w ∈W.

(2) pb(α) rb∗ Γ, D[~s], where b∗ is the following address finder.

b∗(ρ, i) =


b(p−1(ρ), i), if 1 ≤ i ≤ |Γ|

MA(ρ), if i = |Γ|+ 1

ε, else

6Again, we use natural assumptions about the function coding RDs as words that is silently

assumed.

16

(3) MA(pb(α)) ≤ MA(α) + κ(Wb(α)).

(4) pb(α) ≤ α + δ(Wb(α),MA(α)).

(5) Wb∗(pb(α)) ≤ γ(Wb(α)).

(1) claims that we have an inverse function for the realisation function. The inverses

can be defined because the realisation functions always add something to the given

realiser (we will assume this tacitly in the whole realisation proof). The realisation

functions will always store the new information under addresses which are not used

yet. This guarantees that we construct again a RD.

(2) claims that the application of the realisation function to a realiser of Γ[~s] delivers

a realiser of Γ, D[~s] such that the standard realisers of the formulas of Γ[~s] are

constructed from the same addresses as before. The standard realiser of D[~s] is

constructed from the maximal address.

All realisation functions we use apply the address finder only to relevant inputs.

Therefore, we will tacitly assume that for two address finders b and b′ that fulfil

b(w, i) = b′(w, i) for all relevant inputs i and all words w, the same realisation

functions are produced. This allows us to define address finders only for relevant

inputs in the following.

(3) claims that we can control the length of the maximal address. It is important

that the bound depends only on Wb(α) but not on MA(α).

(4) and (5) make analogue statements for the whole realiser. The suppressed first

arguments in (5) are |Γ|+ 1 or |Γ|, respectively.

We will prove the main theorem by simultaneous induction on the depth of the

positive proof of Γ⇒ D in TiPT. The bounding properties 3 and 4 will be needed to

deal with induction, property 5 for cut. Because it increases legibility, we will always

find first the pb-functions, and only then construct the other polytime functions

(p−1, δ, κ, γ). This is legitimate because these functions will always be constructed

independently of b or pb.

6.2. Realisation functions for the axioms

Let us show that for proof depth 0 the claim holds. We illustrate some interesting

or explanatory examples.

6.2.1. Equation axioms

Let us realise

Γ, s = t, s ∈ W, t ∈ W⇒ dW(p, q, s, t) = p.

17

Assume α rb Γ, s = t, s ∈ W, t ∈ W[~s] for an address finder b 7. This implies the

existence of standard realisers for the main formulas relative to the substitution

[~s] and therefore TM � dW(p, q, s, t) = p[~s]. This means that we can realise the

succedent trivially and get the realiser we searched by adding the RD part MA(α) +

1 : ε to α. We define pb as

pb(ρ) := ρ/MA(ρ) + 1 : ε.

A function that satisfies the requirements of the inverse is p−1, defined as

p−1(ρ) := ρ�.

Let us check that 2 holds. Because p−1 is the inverse of pb, we have for 1 ≤ i ≤ |Γ|

b∗(pb(α), i) = b(α, i).

Because of the assumption about α, this yields for 1 ≤ i ≤ |Γ|

con
(
pb(α), b∗

[
pb(α), i

])
R Ai[~s].

To show yet is

con
(
pb(α), b∗

[
pb(α), |Γ|+ 1

])
R dW(p, q, s, t) = p[~s].

b∗
(
pb(α), |Γ| + 1

)
is equal to MA(α) + 1. So con

(
pb(α), b∗

(
pb(α), |Γ| + 1

))
is equal

to ε. This delivers 2.

pb increases the maximal address of its argument only by one and the length of the

information added by pb can be bounded polynomially in MA(α). Therefore, 3 and

4 are satisfied. To see that 5 is satisfied, let us calculate Wb∗(pb(α)), which is the

maximum of the set

{conW
(
pb(α), b∗

[
pb(α), i

])
: 1 ≤ i ≤ |Γ|+ 1}.

Wb(α) is the maximum of the set

{conW
(
α, b
[
α, i
])

: 1 ≤ i ≤ |Γ|}.

Because of the definition of b∗ and because p−1 is the inverse function of pb, the two

sets are identical except for the element

conW
(
pb(α), b∗

[
pb(α), |Γ|+ 1

])
,

which equals ε. Therefore, the two maxima are the same. Other equation axioms

can be realised analogously. We note that, given a correct inverse, to prove 2 and

5, we only have to check the content stored at the maximal address.

7Even if s and ~s look related, they are completely independent. Similarly for t.

18

6.2.2. Compositional truth

To realise these axioms the use of pointers will be crucial not to violate 3 or 4. We

will construct the realisation function for the following axiom.

Γ,T(s∨̇t)⇒ T(s) ∨ T(t)

Assume α rb Γ,T(s∨̇t)[~s] for an address finder b. We are interested in the realisation

information for T(s∨̇t)[~s]. Because T(s∨̇t)[~s] is realised exactly as (T(s) ∨ T(t))[~s],

we only have to point to its address. We define pb as

pb(ρ) := ρ/MA(ρ) + 1→ b(ρ, |Γ|+ 1).

A function p−1 that satisfies the requirements of the inverse can be defined as

p−1(ρ) := ρ�.

By similar reasoning as before, one can show that properties 1 until 5 are satisfied.

Observe that conditions 3 and 4 might be violated if we would just reproduce the

realisation information stored at b(ρ, |Γ|+ 1) instead of using an additional edge.

Let us look now at the axiom

Γ, s ∈ W,T(Ẇst)⇒ t ∈ W.

We use an auxiliary function conT defined as follows.

Definition 25 (conT) The function conT : W×W→W is defined as conW with the

only difference that it outputs the maximum over all words u such that d : 〈pTq, u〉
is a part of α for d ∈M . If M is empty, it also outputs ε.

The function conT is polytime for the same reasons as conW. Using conT, we define

the realisation function pb as follows.

pb(ρ) := ρ/MA(ρ) + 1 : conT(ρ, |Γ|+ 2)

The realisation information of the formula s ∈ W does not occur in the realisation

function, nevertheless the bound s for t is needed. Let us explain why.

The added realisation information for t ∈ W could increase the maximum of the

computational content calculated by Wb. Indeed, the value of t is already present in

the realiser of the antecedent. But the function conW that extracts computational

content ignores RD parts of the form c : 〈pTq, w〉. Therefore, only the presence

of the realisation information for s ∈ W assures that conditions 4 and 5 are not

violated in this case. This shows where our approach would fail for truth theories

of the strength PRA containing the additional axiom

Γ,T(Ẇt)⇒ t ∈ W.

19

6.3. Realisation functions for the conclusions of rules

We illustrate some interesting or difficult examples. We leave away the ∨-right - and

the quantifier rules because they can be realised easily. The ∧-right-rule is realised

similarly as cut.

6.3.1. ∨-left rule

Let the applied ∨-left rule have the following form.

Γ, A⇒ D Γ, B ⇒ D

Γ, A ∨B ⇒ D

By induction hypothesis, we have realisation functions p and q for both premises.

Assume α rb Γ, (A∨B)[~s] for an address finder b. We have to make a distinction by

cases according to the disjunct of (A ∨ B)[~s] which is realised by α. Depending on

this, we will apply p or q. To the result of this application we add a marker which

tells us which function has been applied. This allows the definition of an inverse

function which works for both cases.

Let us now give the realisation function for an arbitrary input ρ ∈W in detail. We

will modify the input ρ before applying p or q since they expect a realiser of Γ, A[~s]

or Γ, B[~s], respectively. This is done using the following auxiliary function.

Definition 26 (↓) The function ↓: W×W→W applied to a RD α and an address

c of α returns the address of the vertex at the end of a maximal →-path p in α

starting at v(c) containing only non-indexed edges except of possibly its last edge.

We write c↓ for ↓(α, c) if α is clear from the context. ↓ outputs ε if one of the inputs

is not as intended.

The modified RD is ρ/MA(ρ) + 1→ b(ρ, |Γ|+ 1)↓, which we abbreviate as ρ′.

We find the realisation information contained in ρ′ by the following address finder

b
′
.

b′(ρ, i) :=

b(ρ�, i), if 1 ≤ i ≤ |Γ|

MA(ρ), if i = |Γ|+ 1

We define a second auxiliary function h.

Definition 27 (h) For a RD α and an address c of α, let the path p be given as in

the last definition. Then, the function h : W ×W → W outputs 0 if p contains an

edge indexed by 0 and 1 else. h outputs ε if one of the inputs is not as intended.

20

We define the property C to hold, exactly if h(ρ, b(ρ, |Γ|+ 1)) = 0. Note that if ρ is

given as intended, C holds exactly if ρ′ is a realiser of Γ, A[~s]. Now, we can define

fb as follows.

fb(ρ) :=

pb′(ρ′)/MA
[
pb′(ρ

′)
]

+ 1 : 0/MA
[
pb′(ρ

′)
]

+ 2→ MA
[
pb′(ρ

′)
]
, if C

qb′(ρ
′)/MA

[
qb′(ρ

′)
]

+ 1 : 1/MA
[
qb′(ρ

′)
]

+ 2→ MA
[
qb′(ρ

′)
]
, else

The marker, stored in the second largest address tells us whether p or q was applied.

Accordingly, we define f−1 as follows.

f−1(ρ) :=

p−1(ρ��)�, if conW(ρ,MA(ρ)− 1) = 0

q−1(ρ��)�, else

We have to show that this function works as an inverse of fb when fb is applied to

a realiser α of Γ, (A ∨ B)[~s] relative to b. First, we assume that α realises the first

disjunct of (A ∨B)[~s]. The definition of the realisation relation delivers

α′ rb′ Γ, A[~s].

Therefore, the induction hypothesis delivers p−1(pb′(α
′)) = α′. Similarly, if α realises

the second disjunct, we have q−1(qb′(α1)) = α1. Altogether, this immediately implies

property 1.

Let us show that property 2 holds. Again we assume that α realises the first disjunct

of (A ∨B)[~s], the other case works similarly.

α′ rb′ Γ, A[~s]

implies because of the induction hypothesis for p

con
(
pb′(α

′),MA
[
pb′(α

′)
])

R D[~s],

which yields property 2 because of the correctness of the inverse. Now, we prove

property 3. Let us again assume that α realises the first disjunct of (A ∨B)[~s], the

other case works similarly. The induction hypothesis delivers

MA(fb(α)) ≤ MA(α′) + κp(Wb′(α
′)) + 2.

(2 corresponds to the marker and the added copy.) Clearly, we have Wb′(α
′) = Wb(α)

and MA(α′) = MA(α) + 1. Therefore, we get

MA(fb(α)) ≤ (MA(α) + 1) + κp(Wb(α)) + 2.

For the other case, the same bounding polynomial but with κp replaced by κq could

be found. Therefore, for a polynomial bounding κp and κq property 3 is fulfilled.

Property 4 can be proved similarly. Property 5 follows easily from Wb(α) = Wb′(α
′)

and the induction hypothesis for p and q.

21

6.3.2. Cut

Let the applied cut rule have the following form.

Γ⇒ A Γ, A⇒ D

Γ⇒ D

By induction hypothesis we have realisation functions p and q for the premises.

Assume α rb Γ[~s] for an address finder b. We define the new realisation function

as composition of p and q. First, we apply pb to get a realiser of Γ, A[~s] relative

to a b′. Then apply qb′ to get a realiser of Γ, A,D[~s]. This is the realiser we need

relative to an address finder that just forgets the address that contains the realisation

information for A[~s]. We define b′ as follows.

b′(ρ, i) :=

b(p−1(ρ), i), if 1 ≤ i ≤ |Γ|

MA(ρ), if i = |Γ|+ 1

We define fb as

fb(ρ) := qb′(pb(ρ)).

We define f−1 as

f−1(ρ) := p−1(q−1(ρ)).

We have to show that this function works as an inverse of fb when fb is applied to

a realiser α of Γ[~s] relative to b. From the induction hypothesis 2 for p we get

(A) pb(α) rb′ Γ, A[~s].

Now, the induction hypothesis 1 for q delivers q−1(qb′ [pb(α)]) = pb(α). Therefore,

the induction hypothesis 1 for p delivers property 1.

From (A), we get by induction hypothesis for 2

con(qb′
[
pb(α)

]
,MA(qb′

[
pb(α)

]
) R D[~s],

which implies property 2.

Let us prove now property 3. Because of the induction hypothesis for 5, we have

Wb′(pb(α)) ≤ γp(Wb(α)). Using induction hypothesis 3, we have additionally

MA(fb(α)) ≤ MA(pb(α)) + κq(Wb′(pb(α))) ≤ MA(α) + κp(Wb(α)) + κq(Wb′(pb(α)))

≤ MA(α) + κp(Wb(α)) + κq(γp(Wb(α)))).

Property 4 can be proved similarly.

22

Let us show now property 5. By induction hypothesis 5, the following two inequa-

tions hold.

Wb′(pb(α)) ≤ γp(Wb(α))

conW(qb′(pb(α)),MA(qb′(pb(α)))) ≤ γq(Wb′(pb(α)))

Therefore, we have for the composition γq ◦ γp

Wb∗(qb′(pb(α))) ≤ (γq ◦ γp)(Wb(α)).

6.3.3. Induction

Let the applied induction rule have the following form.

Γ⇒ T(rε) Γ,T(rx), x ∈ W⇒ T(r(six))

Γ, t ∈ W⇒ T(rt)

By induction hypothesis we have realisation functions p, q0 and q1 for the premises.

As usual, we use recursion to define the realisation function. The main obstacle is

to deliver the necessary bound, which will be produced using induction hypotheses

3 and 4.

The recursion works roughly in the following way: Given a realiser α of Γ, t ∈ W[~s]

relative to b, we get by applying pb to α a realiser of Γ,T(rε)[~s] relative to a b1. When

we add to pb(α) a suitable RD part, we get a realiser of Γ,T(rε), ε ∈ W[~s] relative

to a b2. We can apply the functions (q0)b2 or (q1)b2 to get a realiser of Γ,T(r0)[~s]

or Γ,T(r1)[~s] relative to a b3. Then again, by adding a suitable RD part, we get a

realiser of e.g. Γ,T(r0), 0 ∈ W[~s] relative to a b4 and can apply the functions (q0)b4
or (q1)b4 to get a realiser of e.g. Γ,T(r00)[~s]. This process can be iterated arbitrary

often and will deliver after |value(t[~s])| many iterations the searched realiser.

Nevertheless, two problems have to be solved yet:

1. We have to use always the same recursion step functions. Therefore, we need

an address finder b̃ such that for each w ∈ W, after |w| many recursion steps

we still have a realiser of Γ,T(rw), w ∈ W[~s] relative to b̃.

2. We have to deliver a bound for the sketched recursion.

Our strategy is to define first a binary function f . Its first argument is considered to

be a realiser of Γ, t ∈ W[~s], the length of the second argument gives the number of

iterations of the above described process to be carried out. Later, from this binary

function, we easily define the realisation function.

Let us tackle now the first problem for the above sketched binary function. The (qi)b̃
which we will apply in the recursion step always ask for the realisation information

23

for Γ[~s], which is stored in the first argument of the function. Therefore b̃ relies on

an inverse of f which we define below.

Definition 28 The function f−1 : W×W→W is defined by recursion as follows.

f−1(ρ, ε) := p−1(ρ�)

f−1(ρ, siw) := f−1(q−1
i (ρ�), w)

This function is clearly polynomial time computable since it can be given by a

recursion bounded by ρ. We define b̃ which is the function mentioned in the first

problem mentioned above.

Definition 29 Assume that b is an address finder. The function b̃ : W×W → W
is given by the following definition of cases.

b̃(ρ, i) =


b
(
f−1
[
ρ, conW(ρ,MA(ρ))

]
, i
)
, if 1 ≤ i ≤ |Γ|

MA(ρ)− 1, if i = |Γ|+ 1

MA(ρ), if i = |Γ|+ 2

Using b̃ the earlier mentioned function fb can be defined.

Definition 30 The function fb : W×W→W is defined by recursion as follows.

fb(ρ, ε) := pb(ρ)/MA(pb(ρ)) + 1 : ε

fb(ρ, siw) := (qi)b̃(fb(ρ, w))/MA
(

(qi)b̃
(
fb(ρ, w)

))
+ 1 : siw

Example 31 Let us give concrete examples for the above defined functions. We

look another time at the function r which was defined at page 9 and the sequent

x ∈ W⇒ T(rx),

which cannot be realised by a polytime function using the standard realisation ap-

proach. It can be derived by the following induction.

⇒ T(rε) T(rx), x ∈ W⇒ T(r(six))

t ∈ W⇒ T(rt)

So, if we deliver realisation functions for the premises, we can use the above defined

functions to construct a realisation function f for the conclusion. We will con-

struct fId, for Id defined as the function λxy.y on words, using premise realisation

functions, but note that all introduced functions are independent of address finders

24

since there are no side formulas. We will use a realisation function pId for the first

premise, e.g.

pId(ρ) := ρ/MA(ρ) + 1 : ε.

We also use the realisation functions (qi)Ĩd for the induction step premises, where

Ĩd is the following function (note that Id has no relevant inputs).

Ĩd(ρ, i) =

MA(ρ)− 1, if i = 1

MA(ρ), if i = 2

Realisation functions (qi)Ĩd for the induction step can be given as

(qi)Ĩd(ρ) := ρ/MA(ρ) + 1
0→ MA(ρ)− 1/MA(ρ) + 1

1→ MA(ρ)− 1.

Let us now calculate fId(ρ, w) for ρ, w ∈ W with f defined as in definition 30. We

get

• fId(ρ, ε) = ρ/MA(ρ) + 1 : ε/MA(ρ) + 2 : ε

• fId(ρ, 0) = ρ/MA(ρ)+1 : ε/MA(ρ)+2 : ε/MA(ρ)+3
0→ MA(ρ)+1/MA(ρ)+3

1→
MA(ρ) + 1/MA(ρ) + 4 : 0

• fId(ρ, 00) = ρ/MA(ρ)+1 : ε/MA(ρ)+2 : ε/MA(ρ)+3
0→ MA(ρ)+1/MA(ρ)+3

1→
MA(ρ) + 1/MA(ρ) + 4 : 0/MA(ρ) + 5

0→ MA(ρ) + 3/MA(ρ) + 5
1→ MA(ρ) +

3/MA(ρ) + 6 : 00

• · · ·

• fId(ρ, n) = ρ/MA(ρ)+1 : ε/MA(ρ)+2 : ε/MA(ρ)+3
0→ MA(ρ)+1/MA(ρ)+3

1→
MA(ρ) + 1/MA(ρ) + 4 : 0/MA(ρ) + 5

0→ MA(ρ) + 3/MA(ρ) + 5
1→ MA(ρ) +

3/MA(ρ)+6 : 00/ · · · /MA(ρ)+(2n+1)
0→ MA(ρ)+(2n−1)/MA(ρ)+(2n+1)

1→
MA(ρ) + (2n− 1)/MA(ρ) + (2n+ 2) : n

(Analogously for arbitrary words of the same length as second argument.) It can

be easily seen that fId(ρ, w) is a realiser of T(rw), w ∈ W relative to Ĩd for any

ρ, w ∈W. The function fId is polytime because of its small growth. How do we get

from fId a realisation function fb for the sequent t ∈ W ⇒ T(rt)? The realisation

information for t ∈ W[~s] tells us how many and which recursion steps have to take

place which delivers the second argument for fId. Therefore, we get a realisation

function fb for the sequent as

fb(ρ) := fId

(
ρ, conW

[
ρ, b(ρ, 1)

])
.

25

To put the realiser of the formula T(rt) to the last position, we use a copy.

In the following, we will show how to find the realisation function fb for arbitrary

conclusions of the induction rule. The additional difficulty is that in general the

function fb is not polytime. Usually, we have to control the recursion with a bound.

The next lemma claims the correctness of the function f from definition 30 and of

its inverse f−1 from definition 28.

Lemma 32 Let α be a realiser of Γ, t ∈ W[~s] relative to b. Then for each w ∈ W
(A) and (B) hold.

(A) fb(α,w) rb̃ Γ,T(rw), w ∈ W[~s]

(B) f−1(fb(α,w), w) = α

Proof. We show (A) and (B) by simultaneous induction on w. If w equals ε, both

claims follow immediately from properties 1 and 2 for p.

Let us switch to an siw ∈W. The induction hypothesis for (A) delivers

fb(α,w) rb̃ Γ,T(rw), w ∈ W[~s].

Therefore property 1 for qi implies

(qi)
−1(fb(α, siw)�) = fb(α,w).

Together with the induction hypothesis for (B), this delivers (B) for siw.

Property 2 of qi and the induction hypothesis for (A) imply that the maximal ad-

dress of (qi)b̃(fb(α,w)) contains the realisation information for T(r(siw)). It follows

that the second largest - and largest address of fb(α, siw) contain the realisation

information for T(r(siw)) and siw ∈ W, respectively. Together with these facts, (B)

for siw implies

fb(α, siw) rb̃ Γ,T(r(siw)), siw ∈ W[~s],

which finishes the proof. 2

To bound the function fb by a polynomial for first arguments that realise

Γ, t ∈ W[~s], it will be necessary to bound the values of Wb̃(fb(α,w)) for w ∈ W.

This is so, because the length of the added parts in each recursion step of fb depends

polynomially on Wb̃(fb(α,w)) for a certain w ∈W.

Lemma 33 Let α be a realiser of Γ, t ∈ W[~s] relative to b and let w ∈W be less or

equal value(t[~s]). Then we have

Wb̃(fb(α,w)) ≤ Wb(α)

26

Proof. Let us calculate Wb̃(fb(α,w)). Because of lemma 32, we have for 1 ≤ i ≤ |Γ|

b̃(fb(α,w), i) = b(α, i).

Therefore, the content at these addresses does not violate the inequation. Let us

look at the |Γ|+ 1-th relevant address. Because of lemma 32, we have

con
(
fb(α,w), b̃

(
fb(α,w), |Γ|+ 1

))
R T(rw).

Because of the stipulation that RD parts of the form c : 〈pTq, v〉 do not contribute

to the computational content, we have

conW
(
fb(α,w), b̃

(
fb(α,w), |Γ + 1|

))
= ε.

Because we have w ≤ value(t[~s]) also the realisation information stored at the

|Γ|+ 2-th relevant address does not violate the inequation. 2

The lemma we just proved allows to find bounding polynomials for fb(α,w) and

MA(fb(α,w)) for suitably chosen α and w.

Lemma 34 There is a polynomial κf : W→W such that for all address finders b,

all ~s, all realisers α of Γ, t ∈ W[~s] relative to b, and all w ≤ value(t[~s]), we have

MA(fb(α,w)) ≤ MA(α) + κf (Wb(α)).

Proof. Because property 3 holds for p, q0, q1, we have MA-bounding polynomials

κp, κq0 , κq1 . Let κq be a polynomial that bounds κq0 and κq1 . Using the properties

of the bounding functions, we derive

MA(fb(α,w)) ≤ MA(α) + κp(Wb(α)) + 1 +
∑
v⊂w

(
κq
[
Wb̃(fb(α, v))

]
+ 1
)
.

Using lemma 33, we get

MA(fb(α,w)) ≤ MA(α) + κp(Wb(α)) + 1 + κq(Wb(α)) · w + w.

This implies our claim because we have w ≤ Wb(α). 2

Lemma 35 There is a polynomial δf : W→W such that for all address finders b,

all ~s, all realisers α of Γ, t ∈ W[~s] relative to b, and all w ≤ value(t[~s]), we have

fb(α,w) ≤ α + δf (Wb(α),MA(α)).

27

Proof. Because property 4 holds for p, q0, q1 by induction hypothesis, we have bound-

ing polynomials δp, δq0 , δq1 . Let δq be a polynomial that bounds δq0 and δq1 . The RD

parts of the form c : w we add in the course of the recursion after using an induction

premise function can be bounded by a polynomial h in MA(α) and Wb(α) because

of lemma 34. Altogether, this implies

fb(α,w) ≤ α + δp
(
Wb(α),MA(α)

)
+ h
(
Wb(α),MA(α)

)
+∑

v⊂w

(
δq

(
Wb̃

[
fb(α, v)

]
,MA

[
fb(α, v)

])
+ h
[
Wb(α),MA(α)

])
.

Using lemmas 33 and 34 we derive

fb(α,w) ≤ α + δp
(
Wb(α),MA(α)

)
+ h
(
Wb(α),MA(α)

)
+∑

v⊂w

(
δq

(
Wb(α),MA(α) + κf (Wb(α))

)
+ h
[
Wb(α),MA(α)

])
.

The summands are not dependent on the sum variable v, so we get

fb(α,w) ≤ α + δp
(
Wb(α),MA(α)

)
+ h
(
Wb(α),MA(α)

)
+

w ·

(
δq

(
Wb(α),MA(α) + κf (Wb(α))

)
+ h
[
Wb(α),MA(α)

])
.

This implies our claim because we have w ≤ Wb(α). 2

Now, using the binary function fb, we can define the realisation function fb in the

following way. First, we define a polytime variant f̂b(ρ, v) of fb(ρ, v) by bounded

recursion with bound ρ+δf (Wb(ρ),MA(ρ)). Because of the previous lemma, f̂b(ρ, v)

equals fb(ρ, v) if ρ is a realiser of Γ, t ∈ W[~s] relative to b and v smaller or equal

value(t[~s]).

To get a unary realisation function, we use realisation information for the formula

t ∈ W[~s] stored in ρ to determine value(t[~s]). This is the missing second argument

of f̂b. Therefore, we define the unary hb(ρ) as

f̂b

(
ρ, conW

[
ρ, b(ρ, |Γ|+ 1)

])
.

hb delivers the realisation information for T(rt)[~s], but not under the maximal ad-

dress. Therefore, we use a copy and define the realisation function fb as

fb(ρ) := hb(ρ)/MA(hb(ρ)) + 1→ MA(hb(ρ))− 1.

It can be seen immediately that all components of the function fb are polytime.

Therefore, the following holds.

28

Lemma 36 The function fb is polytime for any address finder b.

To finish the proof of the main claim, we have to show that properties 1 until 5 hold

for fb.

For property 1, we have to define an inverse function for fb which must be correct

for realiser inputs. For a realiser α of Γ, t ∈ W[~s] relative to b, we have because of

lemma 35

f̂b

(
α, conW

[
α, b(α, |Γ|+ 1)

])
= fb

(
α, conW

[
α, b(α, |Γ|+ 1)

])
.

Therefore, using lemma 32, we get a correct inverse f−1 defined as follows.

f−1(ρ) = f−1
(
ρ�, conW

[
ρ�,MA(ρ�)

])
Lemmas 32 and 35 imply property 2. Property 3 follows from 34. Property 4 follows

immediately from the definition of fb. Property 5 follows because the formula which

is realised additionally is a T-formula. This concludes the proof of the main theorem

24. The feasibility of TiPT follows now as a corollary.

Corollary 37 (of theorem 24) The provably total functions of TiPT are exactly

the polynomial time computable functions.

Proof. The lower bound of TPT follows from [12] as mentioned in the introduction.

Assume that the function F : W → W is provably total in TiPT
8. Therefore, for a

corresponding closed tF , we have

TiPT ` x ∈ W⇒ tFx ∈ W

By cut elimination we have a proof of this sequent only containing positive formulas.

We can apply the main theorem 24 and get a polytime function f with properties 1

until 5. For an arbitrary w ∈W we have for the identity address finder Id

0 : w rId w ∈ W.

Property 2 of fId delivers

con
(
fId(0 : w),MA

[
fId(0 : w)

])
R tFw ∈ W,

which implies because of lemma 18

conW
(
fId(0 : w),MA

[
fId(0 : w)

])
= value(tFw).

8The proof is easily adapted to functions with higher arity.

29

This implies

conW
(
fId(0 : w),MA

[
fId(0 : w)

])
= F (w),

for all w in W. Therefore, F is a polytime function.

2

6.4. Applying the formalism to (the classical) TPT

To deal with classical logic, the new realisation formalism can be modified in exactly

the same way as in Strahm [31]. The realisation functions always delivers a pair as

output, where its first element determines, which formula D of the consequent is

realised, and the second is a realiser of Γ, D. We use the following conventions which

allow to state the new main theorem very similarly as before.

• For any function F whose image contains exclusively pairs, let f denote the

function λx.F (x)1, where F (x)1 is the second projection of F (x).

• Dj always denotes the j-th formula of a sequence ∆ of formulas.

Theorem 38 Let Γ,∆ be a sequence of positive formulas. Assume that there is a

TPT proof of Γ⇒ ∆ that uses only positive formulas. Assume that a polytime address

finder b is given. Then there exist polytime functions p−1, δ, κ, γ (independent of b)

and a polytime realisation function Pb such that for all ~s and for all α that are

realisers of Γ[~s] relative to b the following five properties hold:

(1) • p−1(w) ≤ w for all w ∈W.

• p−1(pb(α)) = α.

(2) pb(α) rb∗ Γ, Dj[~s] holds, where Pb(α)0 = j, and where b∗ is the following function.

b∗(ρ, i) =

b(p−1(ρ), i), if 1 ≤ i ≤ |Γ|

MA(ρ), if i = |Γ|+ 1

(3) MA(pb(α)) ≤ MA(α) + κ(Wb(α)).

(4) pb(α) ≤ α + δ(Wb(α),MA(α)).

(5) Wb∗(pb(α)) ≤ γ(Wb(α)).

This main theorem can again be proved by induction on the depth of the positive

proof of Γ⇒ ∆ in TPT similarly as before. Because some additional case distinctions

are necessary, some additional markers have to be used.

30

7. Related and current research

The unfolding program founded by Feferman in [17] asks for a given logical system

S which operations and predicates ought to be accepted if one accepts the system

S. By adding new operation - and predicate symbols to S denoting these operations

and predicates often elegant and natural theories are produced. Unfoldings have

been presented in the literature for non-finitist and finitist arithmetic (see Feferman

[17] and Feferman and Strahm [19, 20]). In Eberhard and Strahm [11], the system

TPT plays a crucial role in order to obtain proof-theoretic upper bounds for the full

unfolding U(FEA) of a natural schematic system FEA of feasible arithmetic.

In Cantini [6] interesting additional principles for applicative theories such as choice

and uniformity are presented. In his PhD thesis [10], the author addresses extensions

of TPT by these principles, and proves that they have polynomial strength too. The

difficulty is that the axiom of choice makes the realisation of formulas containing

negation necessary. Nevertheless, combining functional realisers as presented in [6]

with the realisation dag formalism presented in this paper yields the conservativity

result.

In current research, the author addresses the question, which principles of TPT for

the truth predicate are necessary to obtain polynomial strength. Obviously, the

axioms (C5) and (C6) dealing with the quantifiers are not needed. Interestingly, not

even the axiom

a ∈ W→ (T(Ẇab)↔ b ≤W a)

does seem to be necessary to prove the totality of all polynomial time computable

relations. This is because of the high combinatorial power of the applicative base

theory and the flexible truth induction which seem to allow a coding of Turing

machine computations.

Results of this kind are of interest because they might suggest new implicit charac-

terisations of well-known complexity classes using different computation principles.

8. Acknowledgements

The author would like to thank the anonymous referees for helpful comments and

suggestions that led to significant improvements of this paper. The author would

also like to thank Prof. Thomas Strahm and the Swiss National Science Foundation

for their support.

31

References

[1] Aczel, P. Frege structures and the notion of proposition, truth and set. In

The Kleene Symposium (1980), J. Barwise, H. Keisler, and K. Kunen, Eds.,

North-Holland, pp. 31– 59.

[2] Beeson, M. J. Foundations of Constructive Mathematics: Metamathematical

Studies. Springer, Berlin, 1985.

[3] Buss, S. R. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[4] Cantini, A. Logical Frameworks for Truth and Abstraction. North-Holland,

Amsterdam, 1996.

[5] Cantini, A. Proof-theoretic aspects of self-referential truth. In Tenth Inter-

national Congress of Logic, Methodology and Philosophy of Science, Florence,

August 1995, Maria Luisa Dalla Chiara et. al., Ed., vol. 1. Kluwer, September

1997, pp. 7–27.

[6] Cantini, A. Choice and uniformity in weak applicative theories. In Logic

Colloquium ’01, M. Baaz, S. Friedman, and J. Kraj́ıček, Eds., vol. 20 of Lecture

Notes in Logic. Association for Symbolic Logic, 2005, pp. 108–138.

[7] Clote, P. Computation models and function algebras. In Handbook of Com-

putability Theory, E. Griffor, Ed. Elsevier, 1999, pp. 589–681.

[8] Cobham, A. The intrinsic computational difficulty of functions. In Logic,

Methodology and Philosophy of Science II. North Holland, Amsterdam, 1965,

pp. 24–30.

[9] Cook, S. A., and Urquhart, A. Functional interpretations of feasibly

constructive arithmetic. Annals of Pure and Applied Logic 63, 2 (1993), 103–

200.

[10] Eberhard, S. Weak applicative theories, truth, and computational complexity.

PhD thesis, University of Berne, 2013.

[11] Eberhard, S., and Strahm, T. Unfolding feasible arithmetic and weak

truth. In Axiomatic Theories of Truth (2012), T. Achourioti, H. Galinon,

K. Fujimoto, and J. Mart́ınez-Fernández, Eds., Logic, Epistemology and the

Unity of Science, Springer. Being published.

32

[12] Eberhard, S., and Strahm, T. Weak theories of truth and explicit math-

ematics. In Logic, Construction, Computation, Ulrich Berger, Hannes Diener,

and Peter Schuster, Eds. Ontos Verlag, 2012.

[13] Feferman, S. A language and axioms for explicit mathematics. In Algebra

and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathematics. Springer,

Berlin, 1975, pp. 87–139.

[14] Feferman, S. Recursion theory and set theory: a marriage of convenience.

In Generalized recursion theory II, Oslo 1977, J. E. Fenstad, R. O. Gandy,

and G. E. Sacks, Eds., vol. 94 of Stud. Logic Found. Math. North Holland,

Amsterdam, 1978, pp. 55–98.

[15] Feferman, S. Constructive theories of functions and classes. In Logic Col-

loquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North Holland,

Amsterdam, 1979, pp. 159–224.

[16] Feferman, S. Logics for termination and correctness of functional programs.

In Logic from Computer Science, Y. N. Moschovakis, Ed., vol. 21 of MSRI

Publications. Springer, Berlin, 1991, pp. 95–127.

[17] Feferman, S. Gödel’s program for new axioms: Why, where, how and what?

In Gödel ’96, P. Hájek, Ed., vol. 6 of Lecture Notes in Logic. Springer, Berlin,

1996, pp. 3–22.

[18] Feferman, S. Axioms for the determinateness of truth. Review of Symbolic

Logic 1 (2008), 204–217.

[19] Feferman, S., and Strahm, T. The unfolding of non-finitist arithmetic.

Annals of Pure and Applied Logic 104, 1–3 (2000), 75–96.

[20] Feferman, S., and Strahm, T. Unfolding finitist arithmetic. Review of

Symbolic Logic 3, 4 (2010), 665–689.

[21] Friedman, H., and Sheard, M. An axiomatic approach to self-referential

truth. Annals of Pure and Applied Logic 33, 1 (1987), 1–21.

[22] Halbach, V. Axiomatic Theories of Truth. Cambridge University Press, 2011.

[23] Kahle, R. Frege structures for partial applicative theories. Tech. Rep. IAM-

96-013, Institut für Informatik und angewandte Mathemati, Universität Bern,

September 1996.

33

[24] Kahle, R. Applikative Theorien und Frege-Strukturen. PhD thesis, Institut

für Informatik und angewandte Mathematik, Universität Bern, 1997.

[25] Kahle, R. The Applicative Realm. Habilitation Thesis, Tübingen, 2007. Ap-

peared in Textos de Mathemática 40, Departamento de Mathemática da Uni-

versidade de Coimbra, Portugal, 2007.

[26] Probst, D. The provably terminating operations of the subsystem PETJ of

explicit mathematics. Annals of Pure and Applied Logic 162, 11 (2011), 934–

947.

[27] Spescha, D. Weak systems of explicit mathematics. PhD thesis, Universität

Bern, 2009.

[28] Spescha, D., and Strahm, T. Elementary explicit types and polynomial

time operations. Mathematical Logic Quarterly 55, 3 (2009), 245–258.

[29] Spescha, D., and Strahm, T. Realizability in weak systems of explicit

mathematics. Mathematical Logic Quarterly 57, 6 (2011), 551–565.

[30] Strahm, T. Proof-theoretic Contributions to Explicit Mathematics. Habilita-

tionsschrift, University of Bern, 2001.

[31] Strahm, T. Theories with self-application and computational complexity.

Information and Computation 185 (2003), 263–297.

34

