
Weak theories of truth and explicit

mathematics

Sebastian Eberhard∗ Thomas Strahm∗∗

Version of August, 2011

Abstract

We study weak theories of truth over combinatory logic and their

relationship to weak systems of explicit mathematics. In particular,

we consider two truth theories TPR and TPT of primitive recursive and

feasible strength. The latter theory is a novel abstract truth-theoretic

setting which is able to interpret expressive feasible subsystems of

explicit mathematics.

1 Introduction

The theories of truth and explicit mathematics considered in this article are

all based on a common applicative ground language for operations in the sense

of combinatory logic; operations can freely be applied to other operations and

strong principles of recursion are available due to the known expressivity of

combinatory algebras. The first order applicative base describes the opera-

tional core of Feferman’s explicit mathematics, cf. [15, 16, 17]; instead of a

predicate N for natural numbers we will consider a predicate W in order to

single out those operations which denote binary words.

∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrück-

strasse 10, CH-3012 Bern, Switzerland. Email: eberhard@iam.unibe.ch
∗∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrück-

strasse 10, CH-3012 Bern, Switzerland. Email: strahm@iam.unibe.ch. Homepage:

http://www.iam.unibe.ch/~strahm

1



Types (or classifications) in explicit mathematics are extensional collections

of operations. They are generated successively and linked to the applicative

ground structure by a naming relation: the names of a type constitute its

intensional or computational representations. The interplay of types and

names on the level of combinatory operations makes the framework of explicit

mathematics very expressive.

An alternative means to extend first order applicative theories by a typing

discipline is to extend them by a unary truth predicate T and interpret

naive set theory by stipulating x ∈ a as T(ax). The so-obtained axiomatic

frameworks of partial, self-referential truth are rooted in Kripke’s seminal

work and also yield an interpretation of classical Frege structures (cf. Aczel

[1], Beeson [2], and Hayashi and Kobayashi [27]). For detailed background

on the type of truth theories considered here, see Cantini [6, 7] and Kahle

[30, 31]. Of course, the work on axiomatic truth over combinatory logic is

also strongly related to corresponding work in the area of arithmetical truth

theories, see e.g. Feferman [18, 21], Friedman and Sheard [25], and Halbach

[26].

The focus of the present paper is to discuss various weak (positive) truth

theories and systems of explicit mathematics as well as their mutual rela-

tionship. Namely we will address two families of theories, capturing the

primitive recursive and polynomial time computable functions, respectively.

We will see that the truth theories can interpret corresponding systems of

explicit mathematics very directly, whereas reverse embeddings of truth the-

ories into explicit mathematics are more elaborate and require additional

assumptions.

A further novelty of this paper is the introduction of a natural feasible truth

theory TPT, whose provably total operations are the polynomial time com-

putable ones, as is shown in Eberhard [12]. TPT can only reflect initial

segments of the class W of binary words, but features unrestricted truth in-

duction; it is obtained as a natural restriction of a truth theory TPR of the

strength of primitive recursive arithmetic. Moreover, TPT can interpret very

expressive feasible systems of explicit mathematics.

We conclude the introduction with a detailed outline of the paper. In Section

2



2 we will introduce the basic applicative framework which is common to

all systems studied in this paper. Section 3 presents the two central truth

theories of this paper, TPR and TPT. The first one was previously introduced

in Cantini [10, 7]. Both systems rely on a form of positive truth and embody

truth induction. Whereas TPR can reflect the whole predicate W of binary

words, TPT only reflects initial segments. In Section 4 we will present two

natural systems of explicit mathematics of polynomial and primitive recursive

strength, respectively: the system PETJ of Spescha and Strahm [37, 36, 38]

and a natural explicit system EPCJ; both of these frameworks are direct

subsystems of Feferman’s EM0 plus the join principle (cf. [15, 17]). For the

embedding of truth theories into explicit mathematics, further principles will

be needed, for example, the existence of universes, and Cantini’s uniformity

principle. Section 5 will be devoted to mutual embeddings of weak truth

theories and systems of explicit mathematics. Firstly, we will see that PETJ

and EPCJ are very directly contained in TPT and TPR, respectively. The

reverse embeddings are more difficult: (i) for the direct embedding of TPR

into EPCJ we assume the existence of a universe and the uniformity principle;

(ii) the reduction of TPT to PETJ proceeds via an intermediate leveled truth

theory, which in turn can be directly modeled in an extension of PETJ by

universes. In Section 6 we turn to an extended discussion of the proof theory

of the systems considered in this paper; this includes the review of some

known results and a discussion of work under preparation, namely Eberhard’s

novel realizability interpretation of TPT, which also yields that the extensions

of the systems of explicit mathematics mentioned before do not raise the

proof-theoretic strength. We conclude this article with an outlook of future

work, namely the application of the feasible truth theory TPT in order to

obtain proof-theoretic upper bounds for the unfolding of schematic systems

of feasible arithmetic.

2 The basic applicative framework

The theories of truth and explicit mathematics studied in this paper are

based on a common applicative base theory. It includes the axioms for a

partial or total combinatory algebra and a basic data type of binary words.

3



2.1 The applicative language L

Our basic language L is a first order language for the logic of partial terms

which includes:

• variables a, b, c, x, y, z, u, v, f, g, h, . . .

• constants k, s, p, p0, p1, dW, ε, s0, s1, pW, c⊆, ∗, ×

• relation symbols = (equality), ↓ (definedness), W (binary words)

• arbitrary term application ◦

The meaning of the constants will become clear in the next paragraph.

The terms (r, s, t, p, q, . . . ) and formulas (A,B,C, . . . ) of L are defined in

the expected manner. We assume the following standard abbreviations and

syntactical conventions:

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

s(t1, . . . , tn) := st1 . . . tn

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

〈t〉 := t

〈t1, . . . , tn+1〉 := p〈t1, . . . , tn〉tn+1

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

s ≤ t := c⊆(1×s, 1×t) = 0

s ≤W t := s ≤ t ∧ s ∈ W

In the following we often write A[~x] in order to indicate that the variables

~x = x1, . . . , xn may occur free in A. Finally, let us write w for the canonical

closed L term denoting the binary word w ∈W.

2.2 The basic theory of operations and words B

The applicative base theory B has been introduced in Strahm [40, 41]. Its

logic is the classical logic of partial terms due to Beeson [2, 3]. The non-

logical axioms of B include:

4



• partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

• pairing p with projections p0 and p1

• defining axioms for the binary words W with ε, the binary successors

s0, s1 and the predecessor pW

• definition by cases dW on W

• initial subword relation c⊆

• word concatenation ∗, word multiplication ×1

These axioms are fully spelled out in [40, 41]. Below we will be mainly

interested in extensions of B by the axioms of totality of application and

extensionality of operations:

Totality of application:

(Tot) (∀x)(∀y)(xy↓)

Extensionality of operations:

(Ext) (∀f)(∀g)[(∀x)(fx ' gx)→ f = g]

Observe that in the presence of the totality axiom, the logic of partial terms

reduces to ordinary classical predicate logic. In the following we write B+ for

the extension of B by (Tot) and (Ext).

Various extensions of B or B+ by suitable induction principles on W have

been proposed in the past. Most relevant for the systems studied in this

article are the theories PT and PR, cf. Strahm [41]. The former includes a

form of bounded induction, namely Σb
W induction, whereas the latter features

induction for arbitrary positive formulas.

Let us turn to the crucial consequences of the axioms about a partial com-

binatory algebra. For proofs of these standard results, the reader is referred

to Beeson [2] or Feferman [15].

1x×y signifies the length of y fold concatenation of x with itself; note that we write

x×y instead of ×xy.

5



Lemma 1 (Explicit definitions and fixed points)

1. For each L term t there exists an L term (λx.t) so that

B (λx.t)↓ ∧ (λx.t)x ' t

2. There is a closed L term fix so that

B fixg↓ ∧ fixgx ' g(fixgx)

Let us quickly remind the reader of two standard models of B, namely the

recursion-theoretic model PRO and the term modelM(λη). For an extensive

discussion of many more models of the applicative basis, the reader is referred

to Beeson [2] and Troelstra and van Dalen [43].

Example 2 (Recursion-theoretic model PRO) Take the universe of

binary words W = {0, 1}∗ and interpret application ◦ as partial recursive

function application in the sense of ordinary recursion theory.

Example 3 (The open term model M(λη)) Take the universe of open

λ terms and consider the usual reduction of the extensional untyped lambda

calculus λη, augmented by suitable reduction rules for the constants other

than k and s. Interpret application as juxtaposition. Two terms are equal

if they have a common reduct and W denotes those terms that reduce to a

“standard” word w. Note that M(λη) satisfies both (Tot) and (Ext).

2.3 Provably total functions

We intend to measure the proof-theoretic strength of all the systems treated

in this article by ascertaining their provably total functions. In the following

let L be a language extending our first-order language L. The notion of a

provably total function is introduced for an arbitrary L theory Th.

Definition 4 A function F : Wn →W is called provably total in an L theory

Th, if there exists a closed L term tF such that

(i) Th tF : Wn → W and, in addition,

6



(ii) Th tFw1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.

The notion of a provably total word function is divided into two conditions

(i) and (ii). The first condition (i) expresses that tF is a total operation from

Wn to W, provably in the L theory Th. Condition (ii), on the other hand,

claims that tF indeed represents the given function F : Wn → W, for each

fixed tuple of words ~w in Wn.

To give an example, the provably total functions of the above-mentioned the-

ories PT and PR are the polynomial time computable and primitive recursive

functions, respectively.

3 Positive truth

Theories of truth contain a predicate T that mimics the properties of truth.

The axiomatization of this predicate relies on a coding mechanism for for-

mulas. In the applicative framework, we code formulas using new constants

designating logical operations. In the weak theories of truth discussed in this

paper, the Tarski biconditionals hold only for positive formulas. Therefore

no liar paradoxes occur.

In the following we will introduce two weak truth theories TPR and TPT.

The theories will be presented simultaneously since their axioms differ only

slightly.

3.1 The language LT of positive truth

The (first order) language LT is an extension of the language L by

• a new unary predicate symbol T for truth

• new individual constants =̇, Ẇ, ∧̇, ∨̇, ∀̇, ∃̇

The new constants allow only the coding of positive formulas since we do not

add a constant ¬̇ to code negation. As usual, we will use infix notation for

=̇, ∧̇, and ∨̇.

7



3.2 Two theories of positive truth

All truth theories considered in this article are based on the applicative the-

ory B+. Accordingly, their underlying logic is simply first order classical

predicate logic. The truth axioms for TPR and TPT differ only in the Tarski

biconditionals which are available for the word predicate W. The truth ax-

ioms for TPR spell out the expected clauses according to the compositional

semantics of truth as follows.

Compositionality:

(=̇) T(x =̇ y) ↔ x = y

(ẆPR) T(Ẇx) ↔ W(x)

(∧̇) T(x ∧̇ y) ↔ T(x) ∧ T(y)

(∨̇) T(x ∨̇ y) ↔ T(x) ∨ T(y)

(∀̇) T(∀̇f) ↔ (∀z)T(fz)

(∃̇) T(∃̇f) ↔ (∃z)T(fz)

For the feasible theory TPT, we use instead of (ẆPR) the following axiom:

x ∈ W→ (T(Ẇxy)↔ y ≤W x)(ẆPT)

In contrast to (ẆPR), it allows only the reflection of initial segments of the

set of words. Both theories contain unrestricted truth induction.

Truth induction:

T(rε) ∧ (∀x ∈ W)(T(rx)→ T(r(s0x)) ∧ T(r(s1x)))→ (∀x ∈ W)T(rx)

Next we would like to determine the classes of formulas for which the Tarski

truth biconditionals hold. In the case of TPT this is the class of so-called sim-

ple formulas, which are patterned after similar classes of formulas in explicit

mathematics, see [37, 34] and the next section of this paper.

Definition 5 (Simple formulas) Let A be a positive LT formula and u be

a variable not occurring in A. Then the formula Au which is obtained by

replacing each subformula of the form t ∈ W of A by t ≤W u is called simple.

Next we define coding operations for TPR and TPT which map the positive,

respectively the simple formulas to their codes.

8



Definition 6 For each positive formula A of LT we inductively define a term

[A] whose free variables are exactly the free variables of A:

[t = s] := t =̇ s

[T(t)] := t

[s ∈ W] := Ẇs

[A ∧B] := [A]∧̇[B]

[A ∨B] := [A]∨̇[B]

[(∀x)A] := ∀̇(λx.[A])

[(∃x)A] := ∃̇(λx.[A])

Definition 7 For each simple formula Au of LT we inductively define a term

〈A〉 whose free variables are exactly the free variables of A:

〈t = s〉 := t =̇ s

〈T(t)〉 := t

〈s ≤W u〉 := Ẇus

〈A ∧B〉 := 〈A〉∧̇〈B〉
〈A ∨B〉 := 〈A〉∨̇〈B〉
〈(∀x)A〉 := ∀̇(λx.〈A〉)
〈(∃x)A〉 := ∃̇(λx.〈A〉)

We have that λx.[A], respectively λx.〈A〉 can be interpreted as the propo-

sitional function defined by the formula A. For both theories of truth, the

Tarski biconditionals can be proved for the positive, respectively simple for-

mulas.

Lemma 8 (Biconditionals for TPR) Let A be a positive LT formula. We

have

TPR T([A])↔ A

Lemma 9 (Biconditionals for TPT) Let Au be a simple LT formula. We

have

TPT u ∈ W→ (T(〈Au〉)↔ Au)

9



An interesting consequence of the biconditionals is a second recursion or fixed

point theorem for positive, respectively simple predicates. This theorem

can be obtained by lifting the fixed point theorem for combinatory logic

(cf. Lemma 1) to the truth-theoretic language, cf. Cantini [6, 10].

4 Explicit mathematics

Types in explicit mathematics are collections of operations and must be

thought of as being generated successively from preceding ones. They are

represented by operations via a suitable naming relation <. Types are ex-

tensional and have (explicit) names which are intensional. The formalization

of explicit mathematics using a naming relation < is due to Jäger [28].

We will present the two weak theories of explicit mathematics EPCJ and

PETJ and some extensions thereof. We will describe the two theories simul-

taneously since their axioms differ only slightly.

4.1 The language L of explicit mathematics

The language L is a two-sorted language extending L by

• type variables U, V,W,X, Y, Z, . . .

• binary relation symbols < (naming) and ∈ (elementhood)

• new (individual) constants w (sets of words), id (identity), un (union),

int (intersection), dom (domain), all (forall), inv (inverse image), and j

(join)

The formulas (A,B,C, . . .) of L are built from the atomic formulas of L as

well as from formulas of the form

(s ∈ X), <(s,X), (X = Y )

by closing under the propositional connectives and quantification in both

sorts of variables. The formula <(s,X) reads as “the individual s is a name

of (or represents) the type X”.

10



We use the following abbreviations:

<(s) := (∃X)<(s,X),

s ∈ t := (∃X)(<(t,X) ∧ s ∈ X).

4.2 Two theories of explicit mathematics

In the following we spell out the axioms of the system EPCJ whose character-

istic axioms are elementary positive comprehension and join. The applicative

basis of EPCJ is B+ as for all theories of explicit mathematics studied in this

paper. Hence their underlying logic is ordinary two-sorted classical predicate

logic.

The following axioms state that each type has a name, that there are no

homonyms and that equality of types is extensional.

Ontological axioms:

(∃x)<(x,X)(O1)

<(a,X) ∧ <(a, Y ) → X = Y(O2)

(∀z)(z ∈ X ↔ z ∈ Y ) → X = Y(O3)

The following axioms provide a finite axiomatization of the schema of positive

elementary comprehension and join.

Type existence axioms:

<(w) ∧ (∀x)(x ∈ w↔ x ∈ W)(wPR)

<(id) ∧ (∀x)(x ∈ id↔ (∃y)(x = 〈y, y〉))(id)

<(a)→ <(inv(f, a)) ∧ (∀x)(x ∈ inv(f, a)↔ fx ∈ a)(inv)

<(a) ∧ <(b)→ <(un(a, b)) ∧ (∀x)(x ∈ un(a, b)↔ (x ∈ a ∨ x ∈ b))(un)

<(a) ∧ <(b)→ <(int(a, b)) ∧ (∀x)(x ∈ int(a, b)↔ (x ∈ a ∧ x ∈ b))(int)

<(a)→ <(dom(a)) ∧ (∀x)(x ∈ dom(a)↔ (∃y)(〈x, y〉 ∈ a))(dom)

<(a)→ <(all(a)) ∧ (∀x)(x ∈ all(a)↔ (∀y)(〈x, y〉 ∈ a))(all)

<(a) ∧ (∀x ∈ a)<(fx)→ <(j(a, f))(j.1)

<(a) ∧ (∀x ∈ a)<(fx)→ (∀x)(x ∈ j(a, f)↔ Σ(f, a, x))(j.2)

11



where Σ(f, a, x) is the formula

(∃y)(∃z)(x = 〈y, z〉 ∧ y ∈ a ∧ z ∈ fy)

The only difference between EPCJ and PETJ is that for PETJ we replace the

axiom (wPR) by (wPT).

a ∈ W → <(w(a)) ∧ (∀x)(x ∈ w(a)↔ x ≤W a)(wPT)

In contrast to the comprehension schema available in EPCJ, in PETJ it is not

claimed that the collection of binary words forms a type, but merely that for

each word a, the collection {x ∈ W : x ≤ a} forms a type, uniformly in a.

Finally, both theories include the principle of type induction along W.

Type induction on W:

ε ∈ X ∧ (∀x ∈ W)(x ∈ X → s0x ∈ X ∧ s1x ∈ X)→ (∀x ∈ W)(x ∈ X)

The finite axiomatizations of elementary comprehension in EPCJ and PETJ

immediately imply corresponding schemes of elementary comprehension with

respect to the characteristic formula classes of EPCJ and PETJ, respectively.

Lemma 10 (Positive Comprehension) Let A[a, ~x, ~X] be a positive L for-

mula with exactly the free variables displayed which does neither contain the

predicate < nor second order quantifiers. Then there exists a term tA[~x, ~z]

with exactly the free variables displayed such that EPCJ proves

<(~z, ~X) → <(tA[~x, ~z]) ∧ (∀a)
(
a ∈ tA[~x, ~z]↔ A[a, ~x, ~X]

)
Given a positive L formula A which does neither contain the predicate < nor

second order quantifiers, the restriction Au is defined in the same way as in

Definition 5. The so-obtained formulas are called simple L formulas.

Lemma 11 (Simple Comprehension) Let Au[u, a, ~x, ~X] be a simple L for-

mula with exactly the free variables displayed. Then there exists a term

tA[u, ~x, ~z] with exactly the free variables displayed such that PETJ proves

u ∈ W ∧ <(~z, ~X) → <(tA[u, ~x, ~z]) ∧ (∀a)
(
a ∈ tA[u, ~x, ~z]↔ Au[u, a, ~x, ~X]

)
Lemma 10 and Lemma 11 allow us to use set notation. We will sometimes

write {x : A[x]} instead of tA where tA is defined as above.

12



4.3 Extensions

In standard models of explicit mathematics, the elementhood and naming

relation are constructed in stages; the same applies to standard models of

truth theories, see Feferman [15] and Cantini [6]. Beginning with sentences

which can be immediately seen to be true, we establish the truth of more

complex statements. The truth predicate can then be conceived as joining

the truth stage predicates of at least ω many stages. To interpret this object

in explicit mathematics, we will define recursively types corresponding to

particular stages. However the admissibility of an iterative definition of types

presupposes induction on W for the naming predicate to prove that the type

constructors work as intended. In the following, we will expand our theories

of explicit mathematics such that name induction is possible at least in a

restricted way. But instead of expanding these theories by a type reflecting

the name predicate, we vote for the weaker and more usual extension by

universes. This additional expressive power makes it possible to interpret

the truth theories TPR and TPT respectively.

A universe is a type U such that:

• U is closed under (positive) elementary comprehension and join;

• All elements of U are names.

To introduce universes precisely we define a closure condition in the following

way: CEPCJ(z, a) holds iff one of the following conditions is satisfied:

• a = w

• a = id

• (∃x)(∃f)(a = inv(f, x) ∧ x ∈ z)

• (∃x)(∃y)(a = un(x, y) ∧ x ∈ z ∧ y ∈ z)

• (∃x)(∃y)(a = int(x, y) ∧ x ∈ z ∧ y ∈ z)

• (∃x)(a = dom(x) ∧ x ∈ z)

• (∃x)(a = all(x) ∧ x ∈ z)

13



• (∃x)(∃f)
[
a = j(x, f) ∧ x ∈ z ∧ (∀y ∈ x)(fy ∈ z)

]
For PETJ we have to adapt the first condition: we replace a = w by the

formula (∃u ∈ W)(a = wu). We call the modified formula CPETJ(z, a).

Assuming that z is a name, the formula (∀x)(CEPCJ(z, x)→ x ∈ z) expresses

that z names a type that is closed under the type constructors of the theory

EPCJ; analogously for PETJ. We abbreviate the formula

(∀x)(CEPCJ(z, x)→ x ∈ z) ∧ (∀x)(x ∈ z → <(x)) ∧ <(z)

by UEPCJ(z); the formula UPETJ(z) is defined analogously.

Next assume that the language L contains two additional constants `EPCJ and

`PETJ. The following two axioms state that `EPCJ and `PETJ create an EPCJ

or PETJ universe respectively, if applied to a name.

<(a) → UEPCJ(`EPCJ(a)) ∧ a ∈ `EPCJ(a)(UEPCJ)

<(a) → UPETJ(`PETJ(a)) ∧ a ∈ `PETJ(a)(UPETJ)

In order to keep the notation simple, we write EPCJ + U instead of EPCJ +

UEPCJ and analogously PETJ+U instead of PETJ+UPETJ. Similarly, we drop

the subscript of `EPCJ and `PETJ if it is clear from the context.

Using the universe it is possible to code the elementhood relation of its types

by using a suitable join.

Lemma 12 There exists a closed term e such that for Th = PETJ + U or

EPCJ + U we have that Th proves

<(a)→ <(e(a)) ∧ (∀x)
(
x ∈ e(a)↔ (∃y)(∃z)(x = 〈y, z〉 ∧ z ∈ `(a) ∧ y ∈ z

)
Below, Cantini’s uniformity principle (cf. [10]) is needed for the embedding

of TPR. It claims for each positive L formula A

(∀x)(∃y ∈ W)A[x, y]→ (∃y ∈ W)(∀x)A[x, y](UP)

This concludes the description of the relevant extensions of explicit mathe-

matics.

14



5 Embeddings

We will embed the theories of explicit mathematics with universes into the

theories of truth and vice versa. The embedding of the theories of explicit

mathematics with universes is straightforward. The reverse embeddings are

more difficult and work in a different way for both theories of truth: it

seems to be impossible to embed TPT into PETJ + U directly. Instead we

embed a leveled theory of truth to which TPT is reducible by an asymmetric

interpretation argument.

In this section we assume an equivalent first order formulation of EPCJ and

PETJ. The first order formulations postulate the type-theoretic axioms di-

rectly via a unary naming predicate < and a binary elementhood relation ∈
between individuals. The first and the second order versions can be mutually

embedded for both theories of explicit mathematics. For details about the

embedding, see e.g. Spescha [36] or Spescha and Strahm [38].

5.1 Embedding weak theories of explicit mathematics

into weak truth theories

For both weak truth theories introduced in the paper, the embedding works

completely analogously. We take the embedding of EPCJ + U into TPR as

example. The main idea is to interpret the elementhood relation by using

the truth predicate and to trivialize the universes. The translation ∗ of a

formula s ∈ t will be

T(t∗s∗).

To make this translation work, we have to interpret the type constructors in

the right way. The idea is to translate them by predicates, which embody

their membership condition.

Definition 13 (Translation of terms) For each term t of L, its transla-

tion t∗ into LT is defined recursively on the complexity of t in the following

way.

• All applicative constants are left untouched.

15



• id∗ ≡ λz.∃̇λy. z =̇ 〈y, y〉

• w∗ ≡ λz. Ẇz

• int∗ ≡ λa.λb.λz. az ∧̇ bz

• un∗ ≡ λa.λb.λz. az ∨̇ bz

• inv∗ ≡ λf.λa.λz. a(fz)

• dom∗ ≡ λa.λz. ∃̇λy.a〈z, y〉

• all∗ ≡ λa.λz. ∀̇λy.a〈z, y〉

• j∗ ≡ λf.λa.λz. ∃̇λx.∃̇λy.z =̇ 〈x, y〉 ∧̇ ax ∧̇ (fx)y

• `EPCJ∗ ≡ λa.λz.0 =̇ 0

• st∗ ≡ s∗t∗

Formulas are translated in the following way: atomic formulas commute with
∗ except for the formulas of the shape s ∈ t whose translation is T(t∗s∗) and

the formulas of the shape <(s) whose translation is 0 = 0. The translation

commutes with negation, propositional connectives and quantifiers.

For this translation, the embedding theorem below can be proved without

difficulties. Since the name predicate is interpreted trivially, the translations

of the universe axioms hold in TPR. Moreover, the translation can be modified

in the obvious way in order to provide an embedding of PETJ + U into TPT.

Theorem 14 EPCJ+U and PETJ+U are contained in TPR and TPT via the
∗ translation or a slight modification thereof, respectively.

Let us mention that this embedding theorem also holds for expansions of

explicit mathematics by positive uniformity if the truth theories are expanded

analogously.

16



5.2 Embedding of TPR into EPCJ + U + UP

Our main task is to define a type which interprets the truth predicate. We

first define types corresponding to the levels of truth. Since ω many levels

suffice, we construct a truth-level type τw for each word w. Using join we

can then collect all these truth-level types. The resulting type satisfies the

translated truth axioms.

The types τw for the truth levels all consist of tuples of three elements. The

first element contains a code for a logical symbol of LT. All these codes are

assumed to be different words. The second and the third element stand for

the terms the logical constant is applied to. The third element is sometimes

only a placeholder. Let us define the bottom truth level τε as

{〈a, b, c〉|a = p=̇q ∧ b = c ∨ a = pẆq ∧W(b) ∧ c = ε}.

The types for the higher truth levels are defined recursively (using the fixed

point theorem of B) in the following way:

τ(siw) := τw ∪ {〈a, b, c〉|
(
a = p∧̇q ∧ b ∈ τw ∧ c ∈ τw

)
∨(

a = p∨̇q ∧ [b ∈ τw ∨ c ∈ τw]
)

∨(
a = p∃̇q ∧ (∃x)(bx ∈ τw) ∧ c = ε

)
∨(

a = p∀̇q ∧ (∀x)(bx ∈ τw) ∧ c = ε
)
}

To justify the type notation, we have to show that the above given terms

τw are names for each w ∈ W. Only then, the type constructors work in

the intended way and indeed name the above displayed types. Since R-

induction is not available, we use type induction with the universe `EPCJ(id)

for this purpose. It is easy to see that τε ∈ `EPCJ(id) and

(∀w ∈ W)(τw ∈ `EPCJ(id)→ τ(siw) ∈ `EPCJ(id))

hold. We apply type induction and use the fact (∀x)
(
x ∈ `EPCJ(id)→ R(x)

)
to get the desired result.

Now the stage is set to define a translation ◦ of TPR into EPCJ + U + UP. In

particular, we translate the truth predicate using the above defined hierarchy

of types.

17



Definition 15 (Translation of terms) For each term t of LT, its transla-

tion t◦ is defined inductively on its complexity in the following way.

• All applicative constants are left untouched.

• =̇◦ ≡ λx.λy.〈p=̇q, x, y〉

• Ẇ◦ ≡ λx.〈pẆq, x, ε〉

• ∧̇◦ ≡ λx.λy.〈p∧̇q, x, y〉

• ∨̇◦ ≡ λx.λy.〈p∨̇q, x, y〉

• ∃̇◦ ≡ λx.〈p∃̇q, x, ε〉

• ∀̇◦ ≡ λx.〈p∀̇q, x, ε〉

• st◦ ≡ s◦t◦

Definition 16 (Translation of formulas) For each formula A of LT, its

translation A◦ is defined inductively in the following way.

• s = t◦ ≡ s◦ = t◦

• s ∈ W◦ ≡ s◦ ∈ W

• T(t)◦ ≡ t◦ ∈ dom(inv(λx.〈p1x, p0x〉, j(W, τ)))

• The translation commutes with negation, propositional connectives and

quantifiers.

Note that by the type axioms of EPCJ + U, we have

t ∈ dom(inv(λx.〈p1x, p0x〉, j(W, τ))) ↔ (∃w ∈ W)(t ∈ τ(w))

We are now ready to state the embedding of TPR into EPCJ + U + UP.

Theorem 17 TPR is contained in EPCJ + U + UP via the ◦ translation.

18



Proof. It is clear that the translations of the applicative axioms hold in

EPCJ + U. Further, we can show that the translation of truth induction

holds in EPCJ + U using inv. So let us check the translations of the truth

axioms. The direction from right to left is always trivially fulfilled except for

(∀̇). Its translation is in EPCJ + U equivalent to

(∀x)(∃w ∈ W)(fx ∈ τw)→ (∃w ∈ W)(〈p∀̇q, f, ε〉 ∈ τw).

Using UP, from the antecedens we can derive the existence of a w ∈ W such

that (∀x)(fx ∈ τw). This implies that 〈p∀̇q, f, ε〉 is in the successor truth

level type τ(siw).

The direction from left to right is always proved in the same way. We sketch

the proof for the ∧̇-axiom. Let .− be defined in the following way.

• x .− ε := x

• x .− siw := pW(x .− w)

Let us assume the lefthand side of the ∧̇-axiom. Its translation implies in

EPCJ + U

〈p∧̇q, a, b〉 ∈ τw

for a w ∈ W unequal ε. We define the formula A[x] as2

〈p∧̇q, a, b〉 ∈ τ(w .− x) ∨ (∃y ∈ W)(y ⊂ w ∧ a ∈ τy ∧ b ∈ τy).

Clearly, this formula is progressive in W due to the construction of the truth

level types. By type induction we get

〈p∧̇q, a, b〉 ∈ τε ∨ (∃y ∈ W)(y ⊂ w ∧ a ∈ τy ∧ b ∈ τy).

Since the bottom level of truth does not contain tuples of the form 〈p∧̇q, a, b〉,
the second disjunct has to be true. This immediately implies the lefthand

side of the ∧̇-axiom. 2

Note that we needed only the existence of one single universe to prove this

embedding. In addition, similarly as described in the next paragraph for TPT,

it is also possible to reduce TPR via an intermediate leveled truth theory to

EPCJ + U. This results in a reduction of TPR to EPCJ + U which does not

depend on the uniformity principle.

2We use s ⊂ t as abbreviation for dW(0, 1, s, t) = 1 ∧ c⊆st = 0

19



5.3 Reduction of TPT to PETJ + U

Unfortunately an embedding similar to the one in the previous subsection

does not seem to be possible in this case. This is because we cannot collect

the truth levels for all words, since join can have only initial segments of the

type of words as index type.

5.3.1 The leveled truth theory T`
PT

Because of the above mentioned reasons, we have to reduce the truth theory

TPT to a leveled truth theory T`
PT. This means that the predicate T in T`

PT is

a binary predicate, whose first argument is written as index and interpreted

as truth level. This index displays the maximal complexity of formulas the

corresponding unary truth predicate can reflect. The logical axioms and rules

of T`
PT are the usual ones. T`

PT has the following non-logical axioms.

• a ∈ W→ (Ta(x
.
= y)↔ x = y)

• a, b ∈ W→ (x ≤W b↔ Ta(Ẇbx))

• a ∈ W→
(
Tsia(x ∨̇ y)↔ Ta(x) ∨ Ta(y)

)
• a ∈ W→

(
Tsia(x ∧̇ y)↔ Ta(x) ∧ Ta(y)

)
• a ∈ W→

(
Tsia(∃̇f)↔ (∃z)Ta(fz)

)
• a ∈ W→

(
Tsia(∀̇f)↔ (∀z)Ta(fz)

)
• a0, a1 ∈ W ∧ a0 ≤ a1 ∧ Ta0(x)→ Ta1(x)

Additionally, we have truth induction in the following form:

Tpε
qε(fε) ∧ (∀x ∈ W)

[
Tpx
qx(fx)→ T

p(s0x)
q(s0x)

(f(s0x)) ∧ T
p(s1x)
q(s1x)

(f(s1x))
]

→ (∀x ∈ W)(Tpx
qx(fx))

In the following, we always use polynomials for p and q.

For the asymmetric interpretation of TPT in T`
PT, we bound the truth level

and the W predicate simultaneously. We work as usual with sequent style

20



formulations of TPT and T`
PT which we call TPT and T`

PT as well. We as-

sume that in these calculi all axioms are formulated for terms to guarantee

a sufficient cut elimination.

Definition 18 (Asymmetric interpretation) Let A be a positive LT for-

mula and let a, b be variables. The formula Aa,b is defined in the following

way.

• t ∈ Wa,b ≡ t ≤W a

• T(t)a,b ≡ Tb(t)

Other atomic formulas are untouched by the asymmetric interpretation. The

asymmetric interpretation commutes with propositional connectives and quan-

tifiers.

Next we state the crucial asymmetric interpretation lemma of TPT into T`
PT.

An immediate consequence of the lemma is that the provably total functions

of TPT are contained in the provably total functions of T`
PT.

Lemma 19 Let Γ ⇒ ∆ be a positive sequent which has a proof of depth k

in TPT containing only positive formulas. Then there exists a polynomial p

of degree 2(2k) such that 3

T`
PT a, b ∈ W,Γa,b ⇒ ∆pa,pa∗b

Proof. We show the lemma by induction on the depth of the positive proof.

The only difficult case is induction. In this case we have by induction hy-

pothesis polynomials p, q0, q1 of degree 2(2k) with the following properties.

T`
PT a, b ∈ W,Γa,b ⇒ Tpa∗b(rε),∆pa,pa∗b(1)

T`
PT a, b ∈ W,Γa,b,Tb(rx), x ≤W a⇒ Tqia∗b(r(six)),∆qia,qia∗b(2)

Let q be a polynomial that bounds q0 and q1. We define the polynomial g as

g(x, y) := p(x) ∗ (q(x)× s0y).

3We use the notation pa ∗ b to denote the term ∗(pa, b). Analogously for similar nota-

tions.

21



Because of monotonicity of the asymmetric interpretation the following hold:

T`
PT a, b ∈ W,Γa,b ⇒ Tgaε∗b(rε),∆gaε,gaε∗b(3)

T`
PT a, b ∈ W,Γa,gax∗b,Tgax∗b(rx), x ≤W a⇒(4)

Tga(six)∗b(r(six)),∆qa,ga(six)∗b

We use again monotonicity of the asymmetric interpretation to unify the side

formulas and thus get:

T`
PT a, b ∈ W,Γa,b ⇒ Tgaε∗b(rε),∆gaa,gaa∗b(5)

T`
PT a, b ∈ W,Γa,b,Tgax∗b(rx), x ≤W a⇒(6)

Tga(six)∗b(r(six)),∆gaa,gaa∗b

These are the premises for an induction over an initial segment of W which

can be proved admissible as usual. After using induction, monotonicity de-

livers the following.

T`
PT a, b ∈ W,Γa,b, x ≤W a⇒ Tgaa∗b(rx),∆gaa,gaa∗b(7)

Since gaa is a polynomial of degree 2(2k) + 1 in a this is the desired result.

Note that the degree 2(2k+1) for the bounding polynomial is needed for the

cut rule. 2

5.3.2 Embedding of T`
PT into PETJ + U

In analogy to the previous embedding, we construct a closed term τ such

that for all w ∈ W the type τ(w) corresponds to the truth level w. We set

τ(ε) := {〈a, b, c〉|a = p=̇q ∧ b = c ∨ a = pẆq ∧ 〈c,w(b)〉 ∈ e(id)}.

The types for the higher truth levels are defined recursively as before:

τ(siw) := τw ∪ {〈a, b, c〉|
(
a = p∧̇q ∧ b ∈ τw ∧ c ∈ τw

)
∨(

a = p∨̇q ∧ [b ∈ τw ∨ c ∈ τw]
)

∨(
a = p∃̇q ∧ (∃x)(bx ∈ τw) ∧ c = ε

)
∨(

a = p∀̇q ∧ (∀x)(bx ∈ τw) ∧ c = ε
)
}

22



As above, we show that these levels are all names by type induction with the

universe `(e(id)).

We are now ready to modify the translation ◦ from the last subsection in

order to provide a translation from T`
PT into PETJ + U.

Definition 20 (Translation of terms) For each term t of LT its transla-

tion t◦ into L is defined in the same way as above except that we put

Ẇ◦ ≡ λx.λy.〈pẆq, x, y〉

Definition 21 (Translation of formulas) For each formula A of LT its

translation A◦ is defined inductively in the following way.

• s = t◦ ≡ s◦ = t◦

• s ∈ W◦ ≡ s◦ ∈ W

• Ts(t)◦ ≡ 〈t◦, τ(0× s◦)〉 ∈ e(e(id))

• The translation commutes with negation, propositional connectives and

quantifiers.

Similarly to the previous embedding theorem, we now obtain the following

result.

Theorem 22 T`
PT is contained in PETJ + U via the ◦ translation.

Proof. The translations of the truth axioms can be proved as before; note

that the induction formula is equivalent to a simple formula. Because of the

leveling the uniformity principle is not needed. An easy induction estab-

lishes v, w ∈ W ∧ v ⊂ w ∧ Tv(x) → Tw(x), which implies the translation of

monotonicity. 2

Note that the previous lemma and theorem readily imply that the provably

total functions of TPT are contained in those of PETJ + U.4

4The theory TPT can also be reduced to an extension of polynomial strength of PETJ

by a single universe and an additional type constructor to deal with sharply bounded

universal quantification. In this case the intermediate reduction theory is a twice leveled

theory of truth whose second level designates the maximal value of s to which formulas of

the form t ≤W s are reflected. The corresponding truth levels can be interpreted in this

extension of PETJ without using e(id).

23



6 Proof-theoretic analysis

In this section we give an overview of the existing and forthcoming literature

regarding the proof theory of weak systems of truth and explicit mathematics,

including the ones discussed in this paper.

6.1 Weak systems of explicit mathematics

Let us start by briefly reviewing some previous proof-theoretic work regarding

systems of explicit mathematics of strength PRA. Early systems of flexible

typing of this strength are extensively studied by Feferman. In [18, 19] he

proposes a program to use explicit mathematics to analyze properties of func-

tional programs. In the realm of pure applicative theories, natural systems

of strength PRA are proposed and analyzed in Feferman and Jäger [22] and

Jäger and Strahm [29]. Theories that are strongly related to the system

EPCJ are considered in Krähenbühl [33]. Let us note that all upper bound

computations for the systems mentioned above proceed via embeddings into

suitable subsystems of Peano arithmetic of strength PRA.

Let us now turn to the discussion of the proof theory of systems of explicit

mathematics of polynomial strength. Purely first order systems were pro-

posed and analyzed in Calamai [4], Cantini [8, 9, 10, 5], Kahle and Oitavem

[32], and Strahm [39, 40, 41].5 For those theories, a direct embedding into

feasible subsystems of arithmetic does not seem to be possible, as, for exam-

ple, already the standard interpretation of equality of terms translates into

a proper Σ0
1 statement in arithmetic. Extensions of these weak applicative

theories formulated in the full language of explicit mathematics and featuring

weak forms of elementary comprehension were first introduced and studied in

Spescha and Strahm [37]. In particular, the system PET of types and names6

has been proposed whose provably total functions are exactly the polytime

functions. The PhD thesis of Spescha [36] gives a uniform treatment of

various weak systems of explicit mathematics in the spirit of PET, possibly

5For a very different and interesting approach to feasibility in the context of Heyting

arithmetic and using notions of ramification and linearity for proof terms, see Schwicht-

enberg [35].
6In the notation of this paper, PET is PETJ without the join axioms.

24



augmented by the axiom of join. A new syntactical approach to the analysis

of these systems is proposed via a novel realizability interpretation for the

language of types and names, see also the article Spescha and Strahm [38].

The very recent work of Probst [34] solves the delicate and difficult prob-

lem of showing that the provably total operations of the system PET with

the join axiom and classical logic are still the polynomial time computable

ones. The article Strahm [42] surveys most of these results. However, let use

mention that the techniques used in these papers do not validate expansions

of PETJ by universes or by the assertion ∀< claiming that everything is a

name. These additional principles, however, can be treated by Eberhard’s

new realizability techniques [12] discussed in the next paragraph.

6.2 Weak truth theories

First examples of very expressive and natural truth theories of strength PRA

are presented in Cantini [7]. The proof-theoretic tools used in this article

are the technique of asymmetric interpretation as well as subtle formaliza-

tions in the subsystem of Peano arithmetic with induction restricted to Σ0
1

statements. In his more recent [10], Cantini studies a rich family of truth the-

ories of strength PRA including additional principles such as positive choice

and uniformity. Special emphasis is put on the reduction of classical truth

theories to their intuitionistic counterparts using a forcing relation. The com-

putational content of the intuitionistic truth theories is analyzed by means of

suitable realizability techniques. A direct companion to [10] is Cantini [11],

which deals with further extensions of the theories in [10]. Let us note that

our truth theory TPR can be embedded into PRA plus Σ0
1 induction by using

the formalized term model construction used in the proof of Theorem 9 in

Cantini [11].

Let us now turn to the discussion of truth theories of polynomial strength.

First examples are treated in Cantini [10], where the truth predicate is used

as a guiding technical tool in order to deal with additional principles. One of

the core differences between our system TPT and the weak truth theories in

[10] is the fact that in TPT we have unrestricted truth induction. This very

liberal induction principle makes the proof-theoretic analysis of TPT compli-

25



cated. The realization approach used in [10] does not work; in particular,

there are provable sequents which require exponential realization functions.

Nevertheless, it is possible to show that TPT is feasible by using a new real-

ization approach which is developed in Eberhard [12]. The main idea is to

use pointers thanks to which the same piece of realization information can

be used to realize subformulas of several formulas. This allows to represent

and manipulate realization information more efficiently. Using this modified

realization approach, one finds polynomial time realization functions for each

provable positive sequent. Also the strengthening of TPT by UP can be real-

ized by the same technique. Finally, let us mention that the same approach

can also be used in order to realize extensions of the system PETJ of explicit

mathematics. In particular, the system PETJ + U used in the embeddings

above can be realized using the techniques developed in [12].

6.3 Summary of proof-theoretic results

Let us conclude this section by summarizing the results about the proof-

theoretic strength of the theories of truth and explicit mathematics consid-

ered in this article.

Theorem 23 (Systems of primitive recursive strength) The provably

total functions of the following theories are the primitive recursive ones:

1. EPCJ, possibly augmented by UP and U;

2. TPR, possibly augmented by UP.

Theorem 24 (Systems of polynomial strength) The provably total func-

tions of the following theories are the polynomial time computable ones:

1. PETJ, possibly augmented by UP and U;

2. TPT, possibly augmented by UP.

Let us note that for both theories of explicit mathematics, U is a consequence

of ∀<, since under this assumption, `a can be interpreted as {x : x = x}
for any a. Moreover, Eberhard’s realization approach trivializes the name

predicate and hence can handle ∀<. Finally, we mention that in the context

26



of TPR, Cantini [10] deals with further choice and reflection principles which

do not raise the strength of TPR.

7 Concluding remarks

We have studied two natural truth-theoretic frameworks over combinatory

logic and their relationship to weak systems of explicit mathematics. We

have seen that the embedding of explicit mathematics into truth theories is

very straightforward, whereas the direct reverse embeddings require further

(natural) extensions of explicit mathematics and sometimes even intermedi-

ate reduction steps. The corresponding extensions of explicit mathematics

do not increase the proof-theoretic strength of the underlying systems.

The newly proposed feasible truth theory TPT is also an important reference

theory in our recent work on Feferman’s unfolding program (see Feferman

[20] and Feferman and Strahm [23, 24]): in Eberhard and Strahm [13, 14],

the system TPT plays a crucial role in order to obtain proof-theoretic upper

bounds for the full unfolding U(FEA) of a natural schematic system FEA of

feasible arithmetic.

References

[1] Aczel, P. Frege structures and the notion of proposition, truth and set.

In The Kleene Symposium (1980), J. Barwise, H. Keisler, and K. Kunen,

Eds., North-Holland, pp. 31– 59.

[2] Beeson, M. J. Foundations of Constructive Mathematics: Metamath-

ematical Studies. Springer, Berlin, 1985.

[3] Beeson, M. J. Proving programs and programming proofs. In Logic,

Methodology and Philosophy of Science VII, Barcan Marcus et. al., Ed.

North Holland, Amsterdam, 1986, pp. 51–82.

[4] Calamai, G. Proof-theoretic contributions to computational complex-

ity. PhD thesis, University of Siena, 2008.

27



[5] Cantini, A. A footnote on the Parsons-Mints-Takeuti theorem. Talk

at Recent Trends in Proof Theory, Bern, July 2008.

[6] Cantini, A. Logical Frameworks for Truth and Abstraction. North-

Holland, Amsterdam, 1996.

[7] Cantini, A. Proof-theoretic aspects of self-referential truth. In Tenth

International Congress of Logic, Methodology and Philosophy of Science,

Florence, August 1995, Maria Luisa Dalla Chiara et. al., Ed., vol. 1.

Kluwer, September 1997, pp. 7–27.

[8] Cantini, A. Feasible operations and applicative theories based on λη.

Mathematical Logic Quarterly 46, 3 (2000), 291–312.

[9] Cantini, A. Polytime, combinatory logic and positive safe induction.

Archive for Mathematical Logic 41, 2 (2002), 169–189.

[10] Cantini, A. Choice and uniformity in weak applicative theories. In

Logic Colloquium ’01, M. Baaz, S. Friedman, and J. Kraj́ıček, Eds.,

vol. 20 of Lecture Notes in Logic. Association for Symbolic Logic, 2005,

pp. 108–138.

[11] Cantini, A. Remarks on applicative theories. Annals of Pure and

Applied Logic 136 (2005), 91–115.

[12] Eberhard, S. A truth theory over an applicative framework of strength

PT. Preliminary draft, February 2011.

[13] Eberhard, S., and Strahm, T. Unfolding feasible arithmetic. In

preparation.

[14] Eberhard, S., and Strahm, T. Towards the unfolding of feasible

arithmetic (Abstract). Bulletin of Symbolic Logic (to appear).

[15] Feferman, S. A language and axioms for explicit mathematics. In

Algebra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathe-

matics. Springer, Berlin, 1975, pp. 87–139.

28



[16] Feferman, S. Recursion theory and set theory: a marriage of con-

venience. In Generalized recursion theory II, Oslo 1977, J. E. Fenstad,

R. O. Gandy, and G. E. Sacks, Eds., vol. 94 of Stud. Logic Found. Math.

North Holland, Amsterdam, 1978, pp. 55–98.

[17] Feferman, S. Constructive theories of functions and classes. In Logic

Colloquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North

Holland, Amsterdam, 1979, pp. 159–224.

[18] Feferman, S. Logics for termination and correctness of functional

programs. In Logic from Computer Science, Y. N. Moschovakis, Ed.,

vol. 21 of MSRI Publications. Springer, Berlin, 1991, pp. 95–127.

[19] Feferman, S. Logics for termination and correctness of functional

programs II: Logics of strength PRA. In Proof Theory, P. Aczel, H. Sim-

mons, and S. S. Wainer, Eds. Cambridge University Press, Cambridge,

1992, pp. 195–225.

[20] Feferman, S. Gödel’s program for new axioms: Why, where, how and

what? In Gödel ’96, P. Hájek, Ed., vol. 6 of Lecture Notes in Logic.

Springer, Berlin, 1996, pp. 3–22.

[21] Feferman, S. Axioms for the determinateness of truth. Review of

Symbolic Logic 1 (2008), 204–217.

[22] Feferman, S., and Jäger, G. Systems of explicit mathematics with

non-constructive µ-operator. Part I. Annals of Pure and Applied Logic

65, 3 (1993), 243–263.

[23] Feferman, S., and Strahm, T. The unfolding of non-finitist arith-

metic. Annals of Pure and Applied Logic 104, 1–3 (2000), 75–96.

[24] Feferman, S., and Strahm, T. Unfolding finitist arithmetic. Review

of Symbolic Logic 3, 4 (2010), 665–689.

[25] Friedman, H., and Sheard, M. An axiomatic approach to self-

referential truth. Annals of Pure and Applied Logic 33, 1 (1987), 1–21.

29



[26] Halbach, V. Axiomatic Theories of Truth. Cambridge University

Press, 2011.

[27] Hayashi, S., and Kobayashi, S. A new fomalization of Feferman’s

system of functions and classes and its relation to Frege structurs. In-

ternational Journal of Foundations of Computer Science 6, 3 (1995),

187–202.

[28] Jäger, G. Induction in the elementary theory of types and names. In

Computer Science Logic ’87, E. Börger, H. Kleine Büning, and M.M.

Richter, Eds., vol. 329 of Lecture Notes in Computer Science. Springer,

Berlin, 1988, pp. 118–128.

[29] Jäger, G., and Strahm, T. Totality in applicative theories. Annals

of Pure and Applied Logic 74, 2 (1995), 105–120.

[30] Kahle, R. Applikative Theorien und Frege-Strukturen. PhD thesis,

Institut für Informatik und angewandte Mathematik, Universität Bern,

1997.

[31] Kahle, R. The Applicative Realm. Habilitation Thesis, Tübingen,

2007. Appeared in Textos de Mathemática 40, Departamento de

Mathemática da Universidade de Coimbra, Portugal, 2007.

[32] Kahle, R., and Oitavem, I. An applicative theory for FPH. In

Proceedings Third International Workshop on Classical Logic and Com-

putation CL&C (2010), S. van Bakel, S. Berardi, and U. Berger, Eds.,

vol. 47 of EPTCS.

[33] Krähenbühl, J. Explicit mathematics with positive existential com-

prehension and join. Master’s thesis, Institut für Informatik und ange-

wandte Mathematik, Universität Bern, 2006.

[34] Probst, D. The provably terminating operations of the subsystem

PETJ of explicit mathematics. Annals of Pure and Applied Logic 162,

11 (2011), 934–947.

30



[35] Schwichtenberg, H. An arithmetic for polynomial time computa-

tion. Theoretical Computer Science 357 (2006), 202–214.

[36] Spescha, D. Weak systems of explicit mathematics. PhD thesis, Uni-

versität Bern, 2009.

[37] Spescha, D., and Strahm, T. Elementary explicit types and poly-

nomial time operations. Mathematical Logic Quarterly 55, 3 (2009),

245–258.

[38] Spescha, D., and Strahm, T. Realizability in weak systems of ex-

plicit mathematics. Mathematical Logic Quarterly (to appear).

[39] Strahm, T. Polynomial time operations in explicit mathematics. Jour-

nal of Symbolic Logic 62, 2 (1997), 575–594.

[40] Strahm, T. Proof-theoretic Contributions to Explicit Mathematics.

Habilitationsschrift, University of Bern, 2001.

[41] Strahm, T. Theories with self-application and computational com-

plexity. Information and Computation 185 (2003), 263–297.

[42] Strahm, T. Weak theories of operations and types. In Ways of Proof

Theory, R. Schindler, Ed. Ontos Verlag, 2010, pp. 441–468.

[43] Troelstra, A., and van Dalen, D. Constructivism in Mathematics,

vol. II. North Holland, Amsterdam, 1988.

Bern, August 26, 2011

31


