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Abstract

Justification logics are refinements of modal logics, where justification terms replace modalities. Modal
and justification logics are connected via so-called realization theorems. We develop a general constructive
method of proving the realization of a modal logic in an appropriate justification logic by means of cut-free
modal nested sequent systems. We prove a constructive realization theorem that uniformly connects every
normal modal logic formed from the axioms d, t, b, 4, and 5 with one of its justification counterparts. We
then generalize the notion of embedding introduced by Fitting for justification logics, which enables us to
extend our realization theorem to all natural justification counterparts. As a result, we obtain a modular
realization theorem that provides several justification counterparts based on various axiomatizations of a
modal logic. We also prove that these justification counterparts realize the same modal logic if and only if
they belong to the same equivalence class induced by our embedding relation, thereby demonstrating that
the embedding provides the right level of granularity among justification logics.
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1. Introduction

Justification logic. The language of justification logic is a refinement of the language of modal logic.
It replaces the single modality � by a family of so-called justification terms. While a modal formula �A
can be read as A is provable or A is known, a justification counterpart t : A of this formula is read as t is
a proof of A or A is known for reason t. By introducing operations on terms, justification logic studies the
operational content of modality in various modal logics. In this paper, we develop a method for testing
whether a given set of operations on justifications is sufficient to represent a given modal logic defined via
a nested sequent system. We also apply the method to study comparative strengths of several such sets of
operations.

The first justification logic, called the Logic of Proofs or LP, was introduced by Artemov [1, 2] as a
stepping stone for giving an arithmetical semantics for the modal logic S4. Epistemic logic is another
promising area of application for justification logics. For example, as shown in [5], justification logics avoid
the well-known logical omniscience problem because justification terms have a structure and thus provide a
measure of how hard it is to obtain knowledge of something.

The formal correspondence between S4 and LP, called a realization theorem, has two directions. First, it
says that each provable formula of S4 can be turned into a provable formula of LP by realizing, i.e., replacing,
instances of modalities with justification terms. The converse direction says that replacing all terms in a
provable formula of LP with modalities results in a modal formula provable in S4. Similar correspondences
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have been established for several other modal logics by means of various proof methods (see an overview
in [3]).

Methods for proving realization. There are essentially two methods of establishing realization
theorems: the syntactic method due to Artemov [1, 2] and the semantic method due to Fitting [13]. The
syntactic method makes use of cut-free sequent systems for modal logics, while the semantic method makes
use of a Kripke-style semantics for justification logics. In contrast to the semantic method, the syntactic
method is constructive: it provides an algorithm for computing justification terms that realize all the
occurrences of modalities in a given modal theorem.

The semantic method has been used to prove several realization theorems: for S4, S5, K45, and KD45 [3,
13, 23]. Prior to the publication of [10], constructive realizations, via the syntactic method, were available
only for K, D, T, K4, D4, S4, and S5 [1, 2, 4, 7, 16, 17]. In the case of S5, for which no cut-free sequent system
is available, two approaches have been used: via a translation from S5 to K45 [17] in conjunction with the
realization merging technique developed in [16] and via a cut-free hypersequent system [4]. However, neither
approach can be applied to other modal logics that lack cut-free sequent systems, such as K5 and KB.

General realization. In this paper, we develop a general method for proving realization theorems,
which applies to a wide class of modal logics that can be captured by cut-free nested sequent systems
consisting of so-called context-sharing rules. Nested sequents, which can be viewed as trees of sequents,
naturally generalize both sequents, which are nested sequents of depth zero, and hypersequents, which are
essentially nested sequents of depth one. A crucial feature of these proof systems is deep inference [8, 19],
which in this case means applying inference rules to formulas arbitrarily deep inside a nested sequent. We
show that in order to realize the modal logic of a nested sequent system, it is enough to realize the non-
nested, or shallow, version of each rule. We apply our method to the nested sequent systems by Brünnler [9]
that capture all the 15 normal modal logics formed by the axioms d, t, b, 4, and 5, which gives us a uniform
constructive realization theorem for these logics. In particular, this proves Pacuit’s conjecture implicit in [22]
that J51 is a justification counterpart of K5. Our method also helps provide justification counterparts for
the modal logics D5, KB, DB, TB, and KB5, which, to our knowledge, did not have justification counterparts
prior to the publication of [10].

Embedding and modular realization. Based on our realization method, we discuss the question of
modularity of realizations: each modal axiom has a natural corresponding justification axiom. However,
a modal logic may have several axiomatizations and thus, a priori, may have several justification counter-
parts, supposedly one for each axiomatization. These counterparts mainly differ in the set of operations on
justifications they employ. We classify these various justification counterparts by introducing an embedding
relation on them that extends that of Fitting [15]. This embedding gives rise to an equivalence relation,
which is natural in the sense that justification logics are equivalent iff they realize the same modal logic. The
machinery of embeddings enables us to study minimal sets of operations on justifications that are sufficient
to realize a given modal logic. For instance, we have shown that the operation of positive introspection is
not necessary to realize the modal logic S5, although it enjoys positive introspection.

Outline. In Section 2, we introduce justification logics and modal logics. In Section 3, we introduce
notation and prove auxiliary lemmas to be used in the following sections, as well as recall Fitting’s merging
technique. In Section 4, we introduce nested sequent systems and describe our general method for proving
realization theorems. We use this method in Section 5 to prove our central result: the uniform realization
theorem. In Section 6, we classify the justification logics using our notion of embedding and prove a modular
realization theorem.

Relationship to previous work. In [10], which was a joint work with Kai Brünnler, we proved a
uniform realization theorem for all the 15 normal modal logics formed by the axioms d, t, b, 4, and 5. The
proof of the realization theorem presented there is a special case of the general method described in this
paper. Here, we also prove a modular realization theorem that provides axiomatization-based justification
counterparts for those modal logics among the above-mentioned 15 that have more than one axiomatization.
Note that the definition of justification logics we use here slightly differs from the one used in [10]. To

1Pacuit used the name LP(K5).
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minimize the number of operations on justifications, the negative introspection operation ? was used in [10]
to realize both the modal axioms 5 and b. However, because of the new definition of embedding for
justification logics, introduced in Section 6 of this paper, it makes more sense to use a new operation ?̄ to
realize b and to establish the exact relationship between the operation ?, typically used to realize 5, and this
new ?̄ by exploring the conditions under which one can be replaced by the other. Another difference from [10]
is that justification constants are assigned levels to make the formulation of the results on embedding more
elegant (see Remark 2.2 for details).

2. Justification Logics and Their Modal Counterparts

In this section, we define the modal and justification languages, give axiom systems we work with,
both modal and justification, and introduce forgetful projection and realization theorems, which provide a
formal connection between these languages and between these logics. We also explain in detail the naming
conventions for axiom systems and logics to be employed throughout the paper. A reader already familiar
with these basics is still encouraged to skim through the section because the justification language we use
is not entirely standard (e.g., constants are divided into levels, and there is a new operation ?̄).

We start by recalling the languages of modal and justification logics. For modal formulas, we adopt the
negation normal form, with conjunction and disjunction as primary propositional connectives. The negation
normal form makes possible the use of one-sided nested sequent calculi for modal logics, which is more
common and also minimizes the number of propositional sequent rules, thereby shortening our proofs. At
the same time, justification formulas are given in a more traditional format, with falsum and implication
as primary propositional connectives. As a result, the process of realization also encompasses a Boolean
translation between two complete systems of propositional connectives. Not distinguishing between primary
and defined connectives in either language enables us to perform these translations implicitly, except for
cases where a Boolean transformation affects justification terms.

Modal language. Modal formulas are given by the grammar

A ::= Pi | ¬Pi | (A ∨A) | (A ∧A) | �A | ♦A ,

where i ranges over positive natural numbers, Pi denotes a proposition, and ¬Pi denotes its negation. The
negation operation is extended from propositions to all formulas by means of the usual De Morgan laws,
with ¬¬Pi := Pi. Using this negation operation, we define (A → B) := (¬A ∨ B). Equivalence is defined as
usual, and ⊥ := (Pj ∧ ¬Pj) for some fixed proposition Pj .

Justification language. Apart from formulas, the language of justification logic has another type of
syntactic objects called justification terms, or simply terms, that are given by the grammar

t ::= cji | xi | (t · t) | (t+ t) | ! t | ? t | ?̄ t ,

where i and j range over positive natural numbers, cji denotes a (justification) constant of level j, and
xi denotes a (justification) variable. The binary operations · and +, which are left-associative, are called
application and sum respectively. The unary operations !, ?, and ?̄ are called positive introspection (or
proof checker), negative introspection, and weak negative introspection respectively. Terms that do not
contain variables are called ground and are denoted by p, with or without a sub- and/or a superscript,
whereas arbitrary terms are denoted by t and s, with or without a sub- and/or a superscript. We use the
notation t(xi1 , . . . , xin) for terms that do not contain variables other than xi1 , . . . , xin .

Justification formulas are given by the grammar

A ::= Pi | ⊥ | (A → A) | t :A ,

where Pi denotes a proposition, as in the modal language, and t is a justification term. The remaining
Boolean connectives are defined as usual. While writing formulas, we assume that implication is right-
associative and that both conjunction and disjunction bind stronger than implication.
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Figure 1: The modal cube

taut: A fixed complete set of propositional axioms
distr: �(A → B) → (�A → �B)
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Figure 2: The axiom system for the basic normal modal logic K

Modal logics and their axiom systems. One of our goals is to prove a uniform realization theorem
for all modal logics in the so-called modal cube from [18] (see Figure 1). All these logics are extensions of
the basic normal modal logic K that are obtained by taking its axiom system from Figure 2 and adding
to it the modal axioms d, t, b, 4, and 5 from Figure 3 in various combinations. Figure 1 contains only
15 logics for 25 = 32 such axiom systems because several axiom systems may yield one modal logic. For
the modal logics with variant axiomatizations, we distinguish these axiomatizations because we realize them
individually, thereby providing alternative realizations for such modal logics. To this end, we adopt the
following naming conventions. Axiom systems are denoted by listing the (always present) axiom k, followed
by the names of the axioms added to the axiom system for K from Figure 2, with all letters capitalized. For
example, KD45 is the axiom system with additional axioms d, 4, and 5. If a logic from the cube has only
one such axiom system, we use the same notation for both the logic and the axiom system, except that some
logics traditionally have the initial letter ‘K’ omitted from their names: for instance, the logic of the axiom
system KD45 is often called D45.

Two of the logics predate this modular axiomatization and, hence, bear traditional names S4 and S5.
The former is the logic of the axiom systems KT4 and KDT4, while the latter is the logic of the following
13 axiom systems: KT5, KDT5, KDB4, KTB4, KDTB4, KDB5, KTB5, KDTB5, KT45, KDT45, KDB45,
KTB45, and KDTB45. Further, the three axiom systems KB4, KB5, and KB45 produce the same modal
logic, which, following [18], we call KB5. Thus, there is a small ambiguity between the logic KB5 and
the axiom system KB5, which will be resolved by explicit typification, as in this sentence. Finally, the

d: �⊥ → ⊥ t: �A → A b: A → �¬�¬A
jd: t :⊥ → ⊥ jt: t :A → A jb: A → ?̄ t : (¬t : ¬A)

4: �A → ��A 5: ¬�A → �¬�A
j4: t :A → ! t : t :A j5: ¬t :A → ? t : (¬t :A)

Figure 3: Modal axioms and their corresponding justification axioms
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taut: A fixed finite complete set of propositional axioms
app: s : (A → B) → (t :A → (s · t) :B)
sum: s :A → (s+ t) :A and s :A → (t+ s) :A

A A → B
MP
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Figure 4: The axiom system for the basic justification logic J

axiom systems KT and KDT produce the same modal logic, as do the axiom systems KTB and KDTB. The
traditional names for these logics are M and B respectively. To avoid confusing the latter with the logic KB,
where the initial letter is omitted, we use TB instead of B. By analogy, T is used instead of M.

Justification logics and their axiom systems. The 15 modal logics of the modal cube are realized
into 24 justification logics that we similarly define as extensions of the basic justification logic J. Its axiom
system, also denoted J, consists of the axioms and rules given in Figure 4; the iAN-rule is called iterated
axiom necessitation. We define the zero-premise iAN-rule as a rule and not as an axiom to prevent it
from referring to itself. The finiteness of the set of propositional axioms in taut is required for the results on
embedding in Section 6 (it is also a standard requirement for proving decidability and estimating complexity
of justification logics). To define extensions of the system J, we add to its axiom system the justification
axioms jd, jt, jb, j4, and j5 from Figure 3 in various combinations.

The axioms j4 and jt occur already in Artemov [1]; jd and j5 were introduced by Brezhnev [7] and by
Pacuit [22] respectively. The axiom jb, as presented here, is new but has been independently proposed by
Meghdad Ghari in an unpublished manuscript. The idea to use a new operation ?̄ rather than rebrand ? to
mimic the modal axiom b is consistent with the general policy that incomparable axioms should be realized
via different operations (cf. Remark 6.19).

Remark 2.1 (Alternative axiomatizations). Axiomatizations of justification logics that contain the ax-
iom j4 often use a simpler version of the iAN-rule, called axiom necessitation:

A is an axiom instance
c1i :A

.

Since we are interested in the relationships among justification logics, it is more natural to use the form of
axiom necessitation suitable for all justification logics rather than switch between different versions of the
rule (cf. also [3, 15]).

Remark 2.2 (Levels of constants). The assignment of levels to constants is useful for proving the results
on embedding in Section 6. A similar concept of levels was introduced in [21] (see also the definition of
constant specification in [3]). Levels would not be needed for justification logics that contain the axiom j4
if we had chosen the rule from Remark 2.1 instead of iAN.

Remark 2.3 (Common language). We have decided to use a common language with all five operations
on justifications for all justification logics to avoid cluttered formulations of lemmas and theorems that
apply to all justification logics. For instance, the operation !, present in the common language, does not
occur in Figure 4 and, hence, has no special meaning for the logic J. As a side effect, in this language, it is
not possible to formulate conservativity results for justification logics. Instead of conservativity results, we
introduce a more elaborate relationship among logics that is based on translation of operations rather than
on their presence/absence in the language.

Naming conventions. The naming conventions for justification logics and their axiom systems are
similar to those for modal logics. For example, the axiom system JB5 is J extended by the axioms jb and j5,
and its logic is also denoted JB5. The only exceptions from the one-axiom-system-per-justification-logic rule
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are due to the fact that all instances of the axiom jd are also instances of jt. Hence, adding the axiom jd
to an axiom system that already contains jt does not change the logic, thereby creating for it a second
axiomatization. Accordingly, we omit the letter ‘D’ from the names of all the 8 logics with two axiom
systems each. For instance, the logic JT5 is the logic of the axiom systems JT5 and JDT5. Note that in
all the other cases, every two axiom systems yield different logics simply because their sets of axioms are
different and so are their sets of provable formulas of the form c1i :A, where A is an axiom instance and c1i is
a constant of level 1.

Unless stated otherwise, from this point on, by a justification logic we mean the logic of either the axiom
system J or one of its extensions. Likewise, by a modal axiom system we mean either the axiom system K
or one of its extensions, and by a modal logic we mean the logic of a modal axiom system. We denote an
arbitrary modal axiom system, modal logic, and justification logic by AS, ML, and JL respectively.

We have named the axiom systems in such a way that each modal axiom system has a natural corre-
sponding justification axiom system, and vice versa. The names of corresponding systems differ only in
the first letter: K for a modal axiom system and J for a justification one. For example, KT45 corresponds
to JT45.

Realization theorems. A deeper correspondence between modal and justification logics is established
by realization theorems. The first realization theorem was proved by Artemov [1, 2] for the modal logic S4.
It connects S4 with a justification logic that he called LP, or the Logic of Proofs, and that we mostly refer
to as JT4 (note that JT4 is indeed the justification axiom system that corresponds to KT4, one of the axiom
systems of S4).

Realization theorems are formulated using a natural translation function from justification to modal
formulas:

Definition 2.4 (Forgetful projection and realization). Given a justification formula A, its forgetful
projection A◦ is defined by induction on the structure of A:

P ◦i := Pi, ⊥◦ := ⊥, (A → B)◦ := A◦ → B◦, and (t :A)◦ := �A◦.

The forgetful projection of a set X of justification formulas is the set of their forgetful projections:
X◦ := {A◦ | A ∈ X}. A justification logic JL realizes a modal logic ML if JL◦ = ML: i.e., if the forgetful
projection of the set of theorems of JL is exactly the set of theorems of ML.

In the next section, we impose an additional standard restriction on realizations: namely, diamonds
(i.e., negative boxes) should be realized by distinct variables.

To date, no systematic study exists of the effects of variant axiomatizations of a modal logic on its real-
izations. In this paper, we present such a study and provide realizations that are based on alternative modal
axiomatizations and are modular in the following sense: given an axiom system AS for a modal logic ML,
the justification axiom system that corresponds to AS yields a justification logic that realizes ML. To this
end, we say that every modal logic ML has one or several justification counterparts, i.e., the justification
logics of justification axiom systems that correspond to one of the modal axiom systems of ML. In partic-
ular, the justification counterparts of KB5 are JB4, JB5, and JB45. The ones for S5 are JT5, JTB5, JDB5,
JT45, JTB45, JDB45, JTB4, and JDB4. Every other modal logic has exactly one justification counterpart,
e.g., JD45 for D45.

3. Preparation for Realization

Proving realization theorems involves turning provable formulas of a given modal logic into provable
formulas of a corresponding justification logic by replacing occurrences of � with terms and of ♦ with
variables. We employ an induction on a given sequent-style derivation. In order to describe this constructive
procedure, we introduce realization functions that assign terms to modalities. To distinguish between
different occurrences of modalities in a formula, we annotate them with distinct natural numbers, using
parity to distinguish between �’s and ♦’s. These annotations, which we adopt and adapt from [16], are
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(Pi)
r := Pi (A ∨B)r := Ar ∨Br (♦2lA)r := ¬r(2l) : ¬Ar

(¬Pi)
r := ¬Pi (A ∧B)r := Ar ∧Br (�2k−1A)r := r(2k − 1) :Ar

Figure 5: Realization of annotated formulas

purely syntactic devices and have no semantic meaning. In this section, we also describe technical machinery
to be used for operating with realization functions, including their interaction with substitutions. In addition,
we formulate the Internalization Property (Lemma 3.4 and Corollary 3.5) enjoyed by all the justification
logics, which is necessary for proving realization theorems, and state the Merging Theorem by Fitting
(Theorem 3.11), which plays a major role in our method of realization.

Definition 3.1 (Annotations). Annotated modal formulas, or simply annotated formulas, are given by
the grammar

A ::= Pi | ¬Pi | (A ∨A) | (A ∧A) | �2k−1A | ♦2lA ,

where i, k, and l range over positive natural numbers, Pi and ¬Pi denote a proposition and its negation,
as in the unannotated modal language. If A′ is a modal formula obtained from an annotated formula A by
dropping all indices on its modalities, then we call A an annotated version of A′. An annotated formula is
called properly annotated if no index occurs twice in it.

We mostly work with properly annotated formulas, for which the use of negation normal form has
a positive effect of every subformula of a properly annotated formula being itself properly annotated, in
contrast to [16].

Remark 3.2 (Negation and substitution of annotated formulas). Note that it is not clear how to
define the negation operation for annotated formulas. The obvious definition of ¬�kA as ♦k¬A does not work
because it does not produce an annotated formula. In particular, the substitution of annotated formulas for
propositions is only possible for positive, i.e., non-negated, propositions.

We now define realizations as functions from positive natural numbers to terms, with a restriction that
the set of even numbers is in one-to-one correspondence with the set of variables. This restriction, which is
called the normality condition, is standard and corresponds to the intuition that ♦’s (or negatively occurring
boxes if ¬ is a primary connective instead of ♦) represent assumptions on what should be provable and that
they become Skolem variables if �’s, existentially read as ‘∃ a proof,’ are skolemized.

Definition 3.3 (Realization function). A prerealization function r is a partial mapping from positive
natural numbers to terms. A prerealization function r is called a realization function if r(2l) = xl whenever
r(2l) is defined. A (pre)realization function on a given annotated formula is one that is defined on all indices
of that formula.

If A is an annotated formula and r is a prerealization function on A, then the justification formula Ar is
inductively defined as in Figure 5. Note that if r is a realization function on ♦2lA, then (♦2lA)r = ¬xl :¬A

r.
Further, note that every justification formula B can be written as B = Ar for some properly annotated
formula A and some prerealization function r.

A basic feature of justification logics used extensively in this paper is the Internalization Property, which
enables one to internalize as a term any proof of a formula B, with or without hypotheses. This is formally
stated in the lemma below, originally proved for LP [2].

Lemma 3.4 (Internalization). For any justification logic JL, if

A1, . . . , An `JL B , (1)

then there exists a term t(x1, . . . , xn) such that

s1 :A1, . . . , sn :An `JL t(s1, . . . , sn) :B

for all terms s1, . . . , sn. Note that the term t is ground if n = 0.
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Proof sketch. This can be easily proved by induction on JL-proof (1). For an axiom, the term t is taken to
be a constant of level 1. For an instance of iAN with the outermost constant of level n, the term t is taken
to be a constant of level n + 1. For a hypothesis Ai, the term t := xi. For a conclusion D of the MP-rule
with premises C → D and C, there must exist terms t1 for C → D and t2 for C. The term for D is taken to
be t := t1 · t2.

In our realization proof, we mostly use the following form of Internalization, obtained by using the
rule MP and the Deduction Theorem. The proof of the latter for justification logics can be almost literally
adopted from that for classical propositional logic since MP remains the only rule with premises.

Corollary 3.5 (Internalization). For any justification logic JL, if

JL ` A1 → . . . → An → B ,

then there exists a term t(x1, . . . , xn) such that

JL ` s1 :A1 → . . . → sn :An → t(s1, . . . , sn) :B

for all terms s1, . . . , sn. The term t is ground if n = 0.

Our general method for proving realization theorems is by induction on the depth of a proof in a nested
sequent system (to be introduced later) for a modal logic. Since realizations of side formulas need not be the
same in different premises of branching rules, these realizations need to be reconciled, which will be done
using Fitting’s merging technique [16]. In order to formulate it, we need additional notation and definitions,
especially the notion of substitution, which also plays an important role in the realization procedure itself.

Definition 3.6 (Additional notation). Let A be an annotated formula and r be a prerealization function.
We define

vars♦(A) := {xk | ♦2k occurs in A} ,

r �A := r � {i | i occurs in A} ,

where f �S is the restriction of the partial function f to the set S ∩ dom(f).

The following definition is mostly standard (see, e.g., [6]).

Definition 3.7 (Substitution). A substitution, denoted by σ, is a total mapping from variables to terms.
For any term t, the term tσ is inductively defined as follows: cσ := c for any constant c, xσ := σ(x) for any
variable x, (∗t)σ := ∗(tσ) for any unary operation ∗, and (t1∗t2)σ := (t1σ)∗(t2σ) for any binary operation ∗.
We write Aσ for the formula that is obtained from A by simultaneously replacing every term t in A with tσ.

The definition of domain for substitutions differs from the standard one for ordinary functions, such as
prerealization functions. The domain of σ is dom(σ) := {x | σ(x) 6= x}. The variable range of σ, denoted
by vrange(σ), is the set of variables that occur in terms from the set {σ(x) | x ∈ dom(σ)}.

Composition of substitutions is defined as (σ2 ◦ σ1)(x) := σ1(x)σ2 for any variable x. Composition of
a substitution with a prerealization function is defined as (σ ◦ r)(n) := r(n)σ; in particular, (σ ◦ r)(n) is
undefined whenever r(n) is. Finally, for substitutions σ1 and σ2 with disjoint domains, i.e., with dom(σ1)∩
dom(σ2) = ∅, their union is a substitution defined as follows:

(σ1 ∪ σ2)(x) :=


σ1(x) if x ∈ dom(σ1),

σ2(x) if x ∈ dom(σ2),

x otherwise.

A substitution σ lives on an annotated formula A if dom(σ) ⊆ vars♦(A). A substitution σ lives away
from an annotated formula A if dom(σ) ∩ vars♦(A) = ∅.

The following lemma is easily proved by induction on a proof of A (see, e.g., [20]).
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Lemma 3.8 (Substitution). If JL ` A for a justification logic JL, then

(1) JL ` Aσ for any substitution σ and

(2) JL ` A[Pi1 7→ B1, . . . , Pin 7→ Bn], where A[Pi1 7→ B1, . . . , Pin 7→ Bn] denotes the result of simulta-
neously replacing all occurrences of the propositions Pi1 , . . . , Pin in A with the formulas B1, . . . , Bn
respectively.

Remark 3.9 (Simultaneous substitution). In Lemma 3.8 (2), we formulate simultaneous substitution
of several formulas for propositions. Naturally, it would have been sufficient to allow only a single such
substitution at a time, but this would have resulted in more cumbersome proofs later on when this lemma
is actually used, e.g., in Lemma 5.11. In addition, the proof for the simultaneous version is exactly the same
as for the single-proposition version, and the given formulation is more in line with Lemma 3.8 (1).

Since the process of realizing a modal formula starts with annotating it, a priori the realizability of the
formula might depend on the annotation chosen. The following lemma shows that this is not the case.

Lemma 3.10 (Renaming Annotations). Let JL be a justification logic, A1 and A2 be properly anno-
tated versions of the same modal formula A′, and r1 be a realization function on A1 with JL ` (A1)r1 . Then
there exists a realization function r2 on A2 such that JL ` (A2)r2 .

Proof. For every index n of A1, let n′ denote the corresponding index of A2. Since both A1 and A2 are
properly annotated, n′ has the same parity as n. Let the substitution σ be defined as follows:

σ(xm) :=

{
xn if 2m is an index of A1 and (2m)′ = 2n,

xm otherwise.

For every n > 0, let the realization function r2 be defined as follows:

r2(n) :=


xm if n = 2m is an index of A2,

r1(m)σ if n is an odd index of A2 and m′ = n,

undefined otherwise.

Clearly, r2 is a realization function on A2.
We show by induction on the structure of A′ that (A1)r1σ = (A2)r2 . It then follows by Substitution

Lemma 3.8 that (A2)r2 is provable in JL. The base case and the propositional cases are trivial.
Let A′ = �B′. Then A1 = �mB1 and A2 = �nB2 for some odd indices m and n with m′ = n and

for some properly annotated formulas B1 and B2, both annotated versions of B′. Then r2(n) = r1(m)σ by
definition of r2. By induction hypothesis, (B1)r1σ = (B2)r2 . Therefore,

(�mB1)r1σ = r1(m)σ : (B1)r1σ = r2(n) : (B2)r2 = (�nB2)r2 .

Let A′ = ♦B′. Then A1 = ♦2mB1 and A2 = ♦2nB2 for some indices 2m and 2n with (2m)′ = 2n and for
some properly annotated formulas B1 and B2, both annotated versions of B′. Then xmσ = xn by definition
of σ. By induction hypothesis, (B1)r1σ = (B2)r2 . Therefore,

(♦2mB1)r1σ = ¬xmσ : ¬(B1)r1σ = ¬xn : ¬(B2)r2 = (♦2nB2)r2 .

We now formulate the merging theorem, which is an instance of Theorem 8.2 from [16]. There it is
formulated for LP, but the proof makes use only of the operations + and · and of the Internalization
Property. Hence, the theorem also holds for all justification logics we consider.

Theorem 3.11 (Realization Merging). Let JL be a justification logic, A be a properly annotated for-
mula, and r1, . . . , rn be realization functions on A. Then there exists a realization function r on A and a
substitution σ that lives on A such that JL ` Ariσ → Ar for i = 1, . . . , n. (Note that it is not assumed that
the Ari ’s are provable.)
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The following properties are used, often implicitly, in many of the proofs in this paper.

Fact 3.12 (Combinations of Substitutions and Realization Functions). Let A be an annotated for-
mula, σ, σ1, and σ2 be substitutions, and r be a prerealization function.

(1) σ2 ◦ σ1 is a substitution with dom(σ2 ◦ σ1) ⊆ dom(σ1) ∪ dom(σ2) and vrange(σ2 ◦ σ1) ⊆ vrange(σ1) ∪
vrange(σ2). Moreover, A(σ2 ◦ σ1) = (Aσ1)σ2;

(2) if dom(σ1) ∩ dom(σ2) = ∅, then dom(σ1 ∪ σ2) = dom(σ1) ∪ dom(σ2);

(3) if dom(σ1) ∩ dom(σ2) = ∅ and vrange(σ1) ∩ dom(σ2) = ∅, then σ1 ∪ σ2 = σ2 ◦ σ1;

(4) σ ◦ r is a prerealization function with dom(σ ◦ r) = dom(r);

(5) if r is a prerealization function on A, then so is σ ◦ r and Aσ◦r = Arσ;

(6) if r is a (pre)realization function on A, then so is r �A.

Whenever r, r1, and r2 are realization functions,

(7) if dom(r1) ∩ dom(r2) ⊆ {n | n is even}, then r1 ∪ r2 is a realization function;

(8) if r1 ∪ r2 is a realization function, then dom(r1 ∪ r2) = dom(r1) ∪ dom(r2);

(9) σ ◦ r is a realization function iff xn /∈ dom(σ) whenever r(2n) is defined.

Corollary 3.13. If r is a realization function on an annotated formula A and if a substitution σ lives away
from A, then σ ◦ (r �A) is a realization function on A.

4. A General Realization Method for Nested Sequent Systems

In this section, we introduce the formalism of nested sequent calculi and describe a general framework
for proving realization theorems based on such calculi. The essence of the method is that realizing arbitrary
nested sequent rules can be reduced to realizing their non-nested (or shallow) versions (Lemma 4.11), which
is even simpler than realizing rules of an ordinary sequent calculus. As a consequence, in order to prove a
realization theorem for a modal logic presented via a nested sequent system, it is sufficient to realize the
shallow versions of all the rules of the system (Theorem 4.12). The realization of various (shallow versions of)
nested sequent rules and proofs of actual realization theorems are postponed until Section 5.

Nested sequents. Nested sequents, or simply sequents, are inductively defined as follows: the empty
sequence ∅ is a nested sequent; if Σ and ∆ are nested sequents and A is a modal formula, then Σ, A and
Σ, [∆] are nested sequents, where the comma denotes concatenation. The brackets of the expression [∆] are
called structural box. The corresponding formula of a sequent Γ, denoted Γ, is inductively defined as follows:

∅ := ⊥; Σ, A :=

{
Σ ∨A if Σ 6= ∅,

A otherwise;
Σ, [∆] :=

{
Σ ∨�∆ if Σ 6= ∅,

�∆ otherwise.
(2)

We use the letters Γ, ∆, Λ, Π, and Σ with or without a sub- and/or a superscript to denote sequents.
Sequent contexts. A sequent context, or simply context, is a sequent with exactly one occurrence of the

symbol { }, called a hole, which does not occur inside formulas. Contexts are denoted by Γ{ }. An inductive
definition can be given as follows: { } is a context and if Σ{ } is a context, then so are [Σ{ }] and ∆,Σ{ },Π,
where ∆ and Π are sequents. For a context Γ{} and a sequent ∆, the sequent Γ{∆} is obtained by replacing
the hole in Γ{ } with ∆. For example, if Γ{ } = A, [[B], { }] and ∆ = C, [D], then Γ{∆} = A, [[B], C, [D]].

Sequent contexts are used to formulate nested rules. As an example, the nested version of the exchange
rule can be formulated as follows:

Γ{∆,Σ}
exch

Γ{Σ,∆}
. (3)
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One of the instances of (3) is

[
P2 ∧ ♦P3, [P1], P1

]
,
[
P1, ¬P1

]
exch [

[P1], P1, P2 ∧ ♦P3

]
,
[
P1, ¬P1

], where context Γ{ } = [{ }], [P1, ¬P1] and

sequents ∆ = P2 ∧ ♦P3 and Σ = [P1], P1.
In the next section, we provide systems of such rules for all the logics in the modal cube and use these

systems to prove realization theorems for these logics. In this section, however, we treat arbitrary context-
preserving nested rules, i.e., rules of the form

Γ{S1} . . . Γ{Sn}
Γ{S}

,

where n is a non-negative integer, Γ{ } denotes an arbitrary context, common for all the premises and the
conclusion of the rule, and S, S1, . . . , Sn are sequent schemas. Each context-preserving nested rule ρ has a
shallow version sh-ρ that corresponds to the common context being empty, Γ{ } = { }:

S1 . . . Sn

S
.

For instance, the shallow version of the nested exchange rule (3) is
∆,Σ

sh-exch
Σ,∆

. From now on, by a nested

rule we mean a context-preserving nested rule.
Contexts provide for an especially simple definition of subsequents:

Definition 4.1 (Subsequent). A subsequent of a given sequent Γ is any sequent ∆ such that Γ = Σ{∆}
for some context Σ{ }.

Definition 4.2 (Annotated sequent). An annotated sequent (context) is a sequent (context) in which
only annotated formulas occur and all structural boxes are annotated by odd indices. The corresponding
formula of an annotated sequent is an annotated formula defined as in (2), except that the third case is
replaced with

Σ, [∆]k :=

{
Σ ∨�k∆ if Σ 6= ∅,

�k∆ otherwise.

Remark 4.3 (Notions extended from formulas to sequents). Many notions, such as an annotated
version and proper annotation, naturally apply to sequents as well. Other notions are extended from (anno-
tated) formulas to (annotated) sequents by being applied to the corresponding formula of the (annotated)
sequent. For instance, a realization function on an annotated sequent Γ is a realization function on Γ,
Γr := (Γ)r, vars♦(Γ) := vars♦(Γ), etc.

Whenever safe, we do not explicitly distinguish between an annotated formula A and the annotated sequent
that consists of this formula A: e.g., r is a realization function on a formula A iff it is a realization function
on the sequent A, which enables us to call it simply a realization function on A.

We often use the following trivial fact without mentioning it explicitly:

Fact 4.4 (Preservation of Structure in Annotated Versions). If an annotated sequent ∆ is an an-
notated version of Γ′{Λ′} for some context Γ′{ } and some sequent Λ′, there exists a unique annotated
version Γ{ } of the context Γ′{ } and a unique annotated version Λ of the sequent Λ′ such that ∆ = Γ{Λ}.
Moreover, if ∆ is properly annotated, so is Λ.

If an annotated sequent Γ is an annotated version of a sequent Γ′, then its corresponding formula Γ is
an annotated version of Γ′.

A realization function on a formula A is trivially a realization function on any subformula of A; the
same is true for sequents and their subsequents. Note, however, that realization functions are defined
on corresponding formulas rather than on sequents themselves and that ∆ is not in general a subformula
of Γ{∆}. The following fact will be used as a matter of course without explicit mention.
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Fact 4.5 (Realization Function on a Subsequent). If r is a realization function on an annotated se-
quent Γ{∆}, then r is also a realization function on its subsequent ∆.

The following lemma can be easily obtained from the associativity of Boolean disjunction by induction
on the structure of Γ. The lemma is needed because, in general, the formula Γ,Σ does not coincide with the
formula Γ ∨ Σ.

Lemma 4.6 (Associativity of Disjunction). For any annotated sequents Γ and Σ, for any realization
function r on Σ,Γ, and for any substitution σ, we have J ` (Σ,Γ)rσ ↔ Σrσ ∨ Γrσ.

Definition 4.7 (Annotated rule instance). Given an instance of a nested rule

Γ′{Λ′1} . . . Γ′{Λ′n}
Γ′{Λ′}

,

with common context Γ′{ }, an annotated version of this instance is of the form

Γ{Λ1} . . . Γ{Λn}
Γ{Λ}

,

where Γ{ }, Λ1, . . . ,Λn, and Λ are annotated versions of Γ′{ }, Λ′1, . . . ,Λ
′
n, and Λ′ respectively, sequents

Γ{Λ1}, . . . ,Γ{Λn}, and Γ{Λ} are properly annotated, and no index occurs in both Λi and Λj for any
1 ≤ i < j ≤ n. Note that the annotated context Γ{ } is the same for every premise and the conclusion.

Definition 4.8 (Realizable rule). An instance
Γ′{Λ′}

of a 0-premise nested rule is called realizable in a

justification logic JL if there exists an annotated version
Γ{Λ}

of it and a realization function r on Γ{Λ}

such that JL ` Γ{Λ}r. An instance
Γ′{Λ′1} . . . Γ′{Λ′n}

Γ′{Λ′}
of an n-premise nested rule with n > 0 and with

common context Γ′{} is called realizable in JL if there exists an annotated version
Γ{Λ1} . . . Γ{Λn}

Γ{Λ}
of it

such that for any realization functions r1, . . . , rn on Γ{Λ1}, . . . ,Γ{Λn} respectively, there exists a realization
function r on Γ{Λ} and a substitution σ that lives on each of Γ{Λi}, i = 1, . . . , n, such that

JL ` Γ{Λ1}r1σ → . . . → Γ{Λn}rnσ → Γ{Λ}r .

A rule is called realizable in JL if all its instances are realizable in JL.

The following fact trivially follows from the definition.

Fact 4.9 (Realizability in Extensions). If a nested rule is realizable in a justification logic JL, then it
is also realizable in every extension of JL.

Remark 4.10 (Realizability of cut). Currently it is not known whether the cut rule is realizable in J or
in some of its extensions. A more sophisticated definition of realizability may be necessary. Fortunately, all
sequent systems we use are cut-free.

Lemma 4.11 (From Shallow to Nested). For any nested rule ρ, if its shallow version sh-ρ is realizable
in a justification logic JL, then ρ itself is also realizable in JL.
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Proof. We prove the lemma for the harder case where ρ has n > 0 premises. The proof for the case when
n = 0 is similar and, hence, omitted. We consider an arbitrary instance

∆′{Λ′1} . . . ∆′{Λ′n}
∆′{Λ′}

(4)

of ρ and show that it is realizable in JL. By assumption, its shallow version
Λ′1 . . . Λ′n

Λ′
, which is an in-

stance of sh-ρ, has an annotated version
Λ1 . . . Λn

Λ
such that for arbitrary realization functions r1, . . . , rn

on Λ1, . . . ,Λn respectively, there exists a realization function r0 on Λ and a substitution σ0 that lives on
each of Λi, i = 1, . . . , n, such that

JL ` (Λ1)r1σ0 → . . . → (Λn)rnσ0 → Λr0 .

We prove a stronger statement, namely that for any annotated context Γ{} such that Γ{Λ1}, . . . ,Γ{Λn},
and Γ{Λ} are properly annotated and for arbitrary realization functions r1, . . . , rn on Γ{Λ1}, . . . ,Γ{Λn}
respectively, there exists a realization function r on Γ{Λ} and a substitution σ that lives on each of Γ{Λi},
i = 1, . . . , n, such that

JL ` Γ{Λ1}r1σ → . . . → Γ{Λn}rnσ → Γ{Λ}r .

It then follows that the above also holds for some particular annotated context Γ{ } = ∆{ } such that
∆{Λ1} . . . ∆{Λn}

∆{Λ}
is an annotated version of our arbitrary ρ-instance (4). The proof is by induction on

the structure of Γ{ }.
Base case Γ{ } = { }. Given realization functions r1, . . . , rn on Λ1, . . . ,Λn respectively, take r := r0

and σ := σ0.
Case Γ{ } = [Σ{ }]k. Let r1, . . . , rn be realization functions on [Σ{Λ1}]k, . . . , [Σ{Λn}]k respectively.

Since Σ{Λ1}, . . . ,Σ{Λn}, and Σ{Λ} are properly annotated as subsequents of properly annotated sequents
[Σ{Λ1}]k, . . . , [Σ{Λn}]k, and [Σ{Λ}]k respectively and since r1, . . . , rn are also realization functions on
Σ{Λ1}, . . . ,Σ{Λn} respectively, by induction hypothesis, there exists a realization function r′ on Σ{Λ}
and a substitution σ′ that lives on each of Σ{Λi} such that

JL ` Σ{Λ1}r1σ′ → . . . → Σ{Λn}rnσ′ → Σ{Λ}r
′

. (5)

By Internalization Property 3.5, there exists a term t(x1, . . . , xn) such that

JL ` r1(k)σ′ :
(
Σ{Λ1}r1σ′

)
→ . . . → rn(k)σ′ :

(
Σ{Λn}rnσ′

)
→ t

(
r1(k)σ′, . . . , rn(k)σ′

)
: Σ{Λ}r

′
. (6)

Let σ := σ′ and let
r :=

(
r′ �Σ{Λ}

)
∪
{
k 7→ t

(
r1(k)σ′, . . . , rn(k)σ′

)}
.

Since [Σ{Λ}]k is properly annotated, index k does not occur in Σ{Λ}. Hence, k /∈ dom
(
r′ �Σ{Λ}

)
and r is

a realization function on [Σ{Λ}]k by Fact 3.12. Now (6) can be rewritten as

JL `
(
[Σ{Λ1}]k

)r1
σ → . . . →

(
[Σ{Λn}]k

)rn
σ →

(
[Σ{Λ}]k

)r
.

For each i = 1, . . . , n, since σ′ lives on Σ{Λi}, it is obvious that σ = σ′ lives on [Σ{Λi}]k.
Case Γ{ } = ∆,Σ{ },Π. Let r1, . . . , rn be realization functions on

∆,Σ{Λ1},Π, . . . , ∆,Σ{Λn},Π

respectively. As in the previous case, by induction hypothesis, there exists a realization function r′ on Σ{Λ}
and a substitution σ′ that lives on each of Σ{Λi} such that (5) holds. It follows from Fact 4.5 that each ri,
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i = 1, . . . , n, is a realization function on ∆,Π. Since each ∆,Σ{Λi},Π is properly annotated and σ′ lives on
each Σ{Λi}, it lives away from ∆,Π. Thus, by Corollary 3.13, σ′◦(ri �∆,Π) is a realization function on ∆,Π,
for each i = 1, . . . , n. By Theorem 3.11 (Realization Merging), there exists a realization function rM on ∆,Π
and a substitution σM that lives on ∆,Π such that for each i = 1, . . . , n

JL ` (∆,Π)σ
′◦(ri �∆,Π)σM → (∆,Π)rM . (7)

By Fact 3.12 (5), (∆,Π)σ
′◦(ri �∆,Π)σM = (∆,Π)riσ′σM . Therefore, (7) can be rewritten as

JL ` (∆,Π)riσ′σM → (∆,Π)rM . (8)

From the induction hypothesis (5), it follows by the Substitution Lemma that

JL ` Σ{Λ1}r1σ′σM → . . . → Σ{Λn}rnσ′σM → Σ{Λ}r
′
σM .

From this and (8), it follows by propositional reasoning that

JL ` Σ{Λ1}r1σ′σM ∨ (∆,Π)r1σ′σM → . . . → Σ{Λn}rnσ′σM ∨ (∆,Π)rnσ′σM → Σ{Λ}r
′
σM ∨ (∆,Π)rM . (9)

Since ∆,Σ{Λ},Π is properly annotated and σM lives on ∆,Π, it lives away from Σ{Λ}; so σM ◦
(
r′ �Σ{Λ}

)
is a realization function on Σ{Λ} by Corollary 3.13. By Facts 3.12 (4), 3.12 (7), and 3.12 (8), we conclude
that

r :=
(
σM ◦

(
r′ �Σ{Λ}

))
∪ (rM �∆,Π)

is a realization function on ∆,Σ{Λ},Π. Let σ := σM ◦ σ′. This σ lives on ∆,Σ{Λi},Π for each i = 1, . . . , n
by Fact 3.12 (1). By Fact 3.12 (5), we have

Σ{Λ}r
′
σM = Σ{Λ}r

′ �Σ{Λ}σM = Σ{Λ}σM◦(r′ �Σ{Λ}) .

Therefore, we can rewrite (9) as

JL `
(
Σ{Λ1} ∨ (∆,Π)

)r1
σ → . . . →

(
Σ{Λn} ∨ (∆,Π)

)rn
σ →

(
Σ{Λ} ∨ (∆,Π)

)r
,

which, by Lemma 4.6, is propositionally equivalent to

JL `
(
∆,Σ{Λ1},Π

)r1
σ → . . . →

(
∆,Σ{Λn},Π

)rn
σ →

(
∆,Σ{Λ},Π

)r
.

Theorem 4.12 (Realization of Nested Systems). Let S be a system of nested rules whose shallow
versions are realizable in a justification logic JL. Then for every sequent Γ′ provable in S there exists a
properly annotated version Γ of it and a realization function r on Γ such that JL ` Γr.

Proof. By induction on the depth of a proof of the sequent Γ′ in S. By Lemma 4.11, all rules used in this
proof are realizable in JL. If Γ′ is the conclusion of an instance of a 0-premise rule, the statement of the
lemma follows from the fact that this rule is realizable in JL. Let Γ′ = ∆′{Λ′} be the conclusion of an
instance

∆′{Λ′1} . . . ∆′{Λ′n}
∆′{Λ′}

(10)

of an n-premise rule ρ with common context ∆′{}, where n > 0. Since ρ is realizable in JL, there exists an an-

notated version
∆{Λ1} . . . ∆{Λn}

∆{Λ}
of the ρ-instance (10) such that for any realization functions r1, . . . , rn

on ∆{Λ1}, . . . ,∆{Λn} respectively, there exists a realization function r on ∆{Λ} and a substitution σ that
lives on each of ∆{Λi}, i = 1, . . . , n, such that

JL ` ∆{Λ1}r1σ → . . . → ∆{Λn}rnσ → ∆{Λ}r . (11)
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id
Γ{Pi, ¬Pi}

Γ{A,B}
∨

Γ{A ∨B}
Γ{A} Γ{B}

∧

Γ{A ∧B}

Γ{A,A}
ctr

Γ{A}
Γ{∆,Σ}

exch
Γ{Σ,∆}

Γ{[A]}
�

Γ{�A}
Γ{[A,∆]}

k
Γ{♦A, [∆]}

Γ{[A]}
d

Γ{♦A}
Γ{A}

t
Γ{♦A}

Γ{[∆], A}
b

Γ{[∆,♦A]}
Γ{[♦A,∆]}

4
Γ{♦A, [∆]}

Γ{[∆],♦A}
5a

Γ{[∆,♦A]}
Γ{[∆], [Π,♦A]}

5b
Γ{[∆,♦A], [Π]}

Γ{[∆, [Π,♦A]]}
5c

Γ{[∆,♦A, [Π]]}

Figure 6: Rules of nested sequent calculi

By induction hypothesis, for each i = 1, . . . , n, there exists a properly annotated version ∆i{Λi} of the
premise ∆′{Λ′i} and a realization function ri on ∆i{Λi} such that JL ` ∆i{Λi}ri . Since ∆{Λi} is another
properly annotated version of the same premise ∆′{Λ′i}, by Lemma 3.10, there exists a realization function ri
on ∆{Λi} such that JL ` ∆{Λi}ri .

Let r and σ be obtained from the realizability of ρ for these functions r1, . . . , rn. By the Substitution
Lemma, JL ` ∆{Λi}riσ for each i = 1, . . . , n. It now follows from (11) by n applications of MP that
JL ` ∆{Λ}r. It remains to note that ∆{Λ} is a properly annotated version of the conclusion ∆′{Λ′} = Γ′

of the rule instance (10).

5. The Realization Theorem

In this section, we use Theorem 4.12 to prove a uniform realization theorem for all the modal logics:
i.e., we prove that the shallow versions of the rules of various nested sequent systems for our modal logics are
realizable. This leads to a series of lemmas—essentially one for each rule—of which contraction (Lemma 5.8)
is the most interesting one. While there is no principal difference in the treatment of modal rules (Lem-
mas 5.9 and 5.15), some of the rules require extra work. In this respect, the rules that are used in logics
with negative introspection have turned out to be the hardest. In order to make their presentation more
readable, we separate parts of the argument into auxiliary lemmas (Lemmas 5.10–5.13 and Corollary 5.14).

Remark 5.1 (Merging and the contraction rule). It is interesting to note that while dealing with con-
traction (Lemma 5.8) is one of the main challenges of our method, it did not create any problems for Fitting
in [16], where he applies a similar method to sequent calculi. For an advanced reader, it might be useful
to ponder on the roots of such an inequality. Merging, which plays a crucial role both in Fitting’s and in
our method, prohibits repetitions in the annotation, forcing us to annotate the formulas being contracted
in a nested sequent differently and prompting the explicit reconciliation of the annotations as detailed in
Lemma 5.8. In contrast, Fitting merged things on a formula level and, thus, was able to use the same
annotation for the formulas being contracted. The richer structure of nested sequents with its structural
modalities, which also require merging, prevents us from using the same trick.

Remark 5.2 (Merging and the conjunction rule). Note that, whereas dealing with the shallow ver-
sions of all the logical propositional rules is equally trivial, the case of conjunction would be significantly
more complicated in the actual implementation of our constructive procedure. This is due to the fact that
conjunction is the only multi-premise rule, by virtue of which the use of merging in Lemma 4.11 is essential
for its nested version.
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Figure 7: Additional rules in nested sequent systems for modal logics

Consider the inference rules in Figure 6. The sequent system SK consists of the rules id, ∨, ∧, ctr, exch,
�, and k. It corresponds to the axiom system K. Extensions of the system SK are obtained by adding further
rules from Figure 6 according to Figure 7, where adding 5 means that all the three rules 5a, 5b, and 5c are
added. Note that a name in the first row of Figure 7 now simultaneously denotes 1) a logic, 2) an axiom
system, and 3) a sequent system.

These sequent systems are essentially the same as the ones in [9], where their completeness is proved, so
we have the following theorem.

Theorem 5.3 (Completeness). The system SK and its extensions are sound and complete with respect
to their corresponding modal logics.

Lemma 5.4 (id-rule). The shallow version of the id-rule is realizable in J.

Proof. Since J ` Pi ∨ ¬Pi, the nowhere defined realization function r := ∅ suffices.

Lemma 5.5 (∨- and exch-rules). The shallow versions of the rules ∨ and exch are realizable in J.

Proof. For an arbitrary instance
A′, B′

A′ ∨B′
of sh-∨, let an annotated sequent A,B be a properly annotated

version of its premise. Then
A,B

A ∨B
is an annotated version of this instance. For any realization function r1

on the annotated sequent A,B, let r := r1 and σ be the identity substitution. Then A,B = A ∨B = A ∨B.

Hence,
(
A,B

)r1
σ →

(
A ∨B

)r
is a propositional tautology and, thus, is provable in J.

For an arbitrary instance
∆′,Σ′

Σ′,∆′
of sh-exch, let annotated sequents ∆ and Σ be annotated versions

of ∆′ and Σ′ respectively such that the sequent ∆,Σ is a properly annotated version of the premise ∆′,Σ′.

Then
∆,Σ

Σ,∆
is an annotated version of this instance. For any realization function r1 on ∆,Σ, let r := r1 and

σ be the identity substitution. Then J ` (∆,Σ)r1σ → (Σ,∆)r follows from Lemma 4.6.

The realizability for the �-rule is trivial:

Lemma 5.6 (�-rule). The shallow version of the �-rule is realizable in J.

Lemma 5.7 (∧-rule). The shallow version of the ∧-rule is realizable in J.

Proof. For an arbitrary instance
A′ B′

A′ ∧B′
of sh-∧, let an annotated sequent A ∧ B be a properly annotated

version of its conclusion. Then
A B

A ∧B
is an annotated version of this instance since A and B do not share

indices. For arbitrary realization functions r1 and r2 on the annotated sequents A and B respectively, let
r := (r1 �A) ∪ (r2 �B) and σ be the identity substitution. The former is a realization function on A ∧ B
by Facts 3.12 (6) and 3.12 (8). Finally, Ar1σ → Br2σ → (A ∧ B)r is a propositional tautology and, thus, is
provable in J since (A ∧B)r = Ar1σ ∧Br2σ.

Lemma 5.8 (ctr-rule). The shallow version of the ctr-rule is realizable in J.
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Proof. For an arbitrary instance
A′, A′

A′
of sh-ctr, let annotated sequents A1, A2 and A3 not share indices

and be properly annotated versions of its premise and conclusion respectively. Then
A1, A2

A3

is an annotated

version of this instance. Let r1 be a realization function on A1, A2. Let B3 be a subformula occurrence
of A3 and let B1 and B2 denote the subformula occurrences in A1 and A2 respectively that correspond to B3

in A3. By induction on the structure of B3, we construct a realization function r on B3 and a substitution σ
with vrange(σ) ⊆ vars♦(B3) that lives on B1 ∨B2 such that

(B1 ∨B2)r1σ → (B3)r (12)

is provable in J. Recall that A1, A2, and A3 are all annotated versions of A′ and, hence, have the “same”
structure. Note also that r1 is clearly a realization function on B1 ∨ B2 for any subformula occurrence B3

of A3.
Base case: B3 = Pi or B3 = ¬Pi. In this case, B1 = B2 = B3 and, independent of σ and r, (12) can

be rewritten as B3 ∨ B3 → B3, a propositional tautology provable in J. Hence, one can take σ to be the
identity substitution and r := ∅.

To prove the induction step, the following cases have to be considered:
Case B3 = D3 ∨ C3. Then B1 = D1 ∨ C1 and B2 = D2 ∨ C2. By induction hypothesis, there

exist realization functions r′D and r′C on D3 and C3 respectively, as well as substitutions σ′D and σ′C with
vrange(σ′D) ⊆ vars♦(D3) and vrange(σ′C) ⊆ vars♦(C3) that live on D1 ∨D2 and C1 ∨ C2 respectively, such
that

J ` (D1 ∨D2)r1σ′D → (D3)r
′
D and J ` (C1 ∨ C2)r1σ′C → (C3)r

′
C .

By the Substitution Lemma,

J ` (D1 ∨D2)r1σ′Dσ
′
C → (D3)r

′
Dσ′C and J ` (C1 ∨ C2)r1σ′Cσ

′
D → (C3)r

′
Cσ′D . (13)

Since C1 and D1, C2 and D2, and C3 and D3 are subformulas of A1, A2, and A3 respectively, the latter
three pairwise sharing no indices, it follows that dom(σ′C) ⊆ vars♦(C1 ∨ C2) is disjoint from vrange(σ′D) ⊆
vars♦(D3). Further, dom(σ′C) is also disjoint from dom(σ′D) ⊆ vars♦(D1 ∨D2) because, in addition, D1 ∨C1

and D2 ∨ C2 are properly annotated. It follows from Fact 3.12 (3) that σ′D ∪ σ′C = σ′C ◦ σ′D. Let σ :=
σ′D ∪ σ′C . Then (D1 ∨ D2)r1σ′Dσ

′
C = (D1 ∨ D2)r1σ and σ lives on B1 ∨ B2 by Fact 3.12 (2). It can be

similarly shown that vrange(σ′C) ⊆ vars♦(C3) is disjoint from dom(σ′D) and, hence, σ = σ′D ◦ σ′C , so that
(C1 ∨ C2)r1σ′Cσ

′
D = (C1 ∨ C2)r1σ. By Fact 3.12 (1), vrange(σ) ⊆ vars♦(D3) ∪ vars♦(C3) = vars♦(B3). So

σ is a suitable substitution and (13) can be rewritten as

J ` (D1 ∨D2)r1σ → (D3)r
′
Dσ′C and J ` (C1 ∨ C2)r1σ → (C3)r

′
Cσ′D . (14)

Since σ′C and σ′D live away from D3 and C3 respectively, by Corollary 3.13, both rD := σ′C ◦ (r′D �D3)
and rC := σ′D ◦ (r′C �C3) are realization functions on D3 and C3 respectively. By Fact 3.12 (5), we have

(D3)r
′
Dσ′C = (D3)rD and (C3)r

′
Cσ′D = (C3)rC . Now (14) can be rewritten as

J ` (D1 ∨D2)r1σ → (D3)rD and J ` (C1 ∨ C2)r1σ → (C3)rC .

Finally, by propositional reasoning, it is provable in J that(
(D1 ∨ C1) ∨ (D2 ∨ C2)

)r1
σ → (D3)rD ∨ (C3)rC ,

which is exactly (12) for r := rD ∪ rC . It is easy to see, using Fact 3.12, that r is a realization function on
the properly annotated formula B3 = D3 ∨ C3.

Case B3 = D3 ∧ C3 is analogous to B3 = D3 ∨ C3.
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Case B3 = ♦2nC3. Then B1 = ♦2kC1 and B2 = ♦2mC2. By induction hypothesis, there exists a
realization function r′ on C3 and a substitution σ′ with vrange(σ′) ⊆ vars♦(C3) that lives on C1 ∨ C2 such
that J ` (C1 ∨ C2)r1σ′ → (C3)r

′
. By propositional reasoning,

J ` ¬(C3)r
′
→ ¬(C1)r1σ′ and J ` ¬(C3)r

′
→ ¬(C2)r1σ′ .

By Internalization Property 3.5, there exist terms t1(x1) and t2(x1) such that

J ` xn : ¬(C3)r
′
→ t1(xn) :

(
¬(C1)r1σ′

)
and J ` xn : ¬(C3)r

′
→ t2(xn) :

(
¬(C2)r1σ′

)
.

It then follows by propositional reasoning that

J ` ¬t1(xn) :
(
¬(C1)r1σ′

)
∨ ¬t2(xn) :

(
¬(C2)r1σ′

)
→ ¬xn : ¬(C3)r

′
. (15)

Since dom(σ′) ⊆ vars♦(C1∨C2) 63 xn (indeed, ♦2n occurs in B3, which shares indices with neither B1 nor B2),
the substitution σ′ affects neither t1(xn) nor t2(xn) because they contain no variables other than xn. As a
consequence, (15) can be rewritten as

J `
(
¬t1(xn) : ¬(C1)r1 ∨ ¬t2(xn) : ¬(C2)r1

)
σ′ → ¬xn : ¬(C3)r

′
.

Let σ′′ := {xk 7→ t1(xn);xm 7→ t2(xn)} ∪ {xi 7→ xi | i /∈ {k,m}}. By the Substitution Lemma and since
xn /∈ {xk, xm},

J `
(
¬t1(xn) : ¬(C1)r1 ∨ ¬t2(xn) : ¬(C2)r1

)
σ′σ′′ → ¬xn : ¬

(
(C3)r

′
σ′′
)

. (16)

Since σ′′ lives away from C3 (indeed, ♦2k and ♦2m occur in B1 and B2 respectively, neither of which shares
indices with B3), we know by Corollary 3.13 that σ′′ ◦ (r′ �C3) is a realization function on C3. In addition,

(C3)r
′
σ′′ = C3

σ′′◦(r′ �C3). Therefore, (16) can be rewritten as

J `
(
¬t1(xn) : ¬(C1)r1 ∨ ¬t2(xn) : ¬(C2)r1

)
σ′σ′′ → ¬xn : ¬(C3)σ

′′◦(r′ �C3) . (17)

Let σ := σ′′ ◦ σ′ and r :=
(
σ′′ ◦ (r′ �C3)

)
∪ {2n 7→ xn}. Clearly, r is a realization function on B3.

Since σ′ affects none of xk, xm, t1(xn), or t2(xn), (17) can be rewritten to state the provability in J of
(♦2kC1 ∨ ♦2mC2)r1σ → (♦2nC3)r, which is exactly (12). It remains to note that, by Fact 3.12 (1),

dom(σ) ⊆ dom(σ′) ∪ dom(σ′′) ⊆ vars♦(C1 ∨ C2) ∪ {xk, xm} = vars♦(♦2kC1 ∨ ♦2mC2)

and also vrange(σ) ⊆ vrange(σ′) ∪ vrange(σ′′) ⊆ vars♦(C3) ∪ {xn} = vars♦(♦2nC3).
Case B3 = �mC3. Then B1 = �kC1 and B2 = �lC2. By induction hypothesis, there exists a

realization function r′ on C3 and a substitution σ′ with vrange(σ′) ⊆ vars♦(C3) that lives on C1 ∨ C2 such

that J ` (C1 ∨ C2)r1σ′ → (C3)
r′

. By propositional reasoning and Internalization Property 3.5, there exist
terms t1(x1) and t2(x1) such that

J ` r1(k)σ′ :
(
(C1)r1σ′

)
→ t1

(
r1(k)σ′

)
: (C3)r

′
and J ` r1(l)σ′ :

(
(C2)r1σ′

)
→ t2

(
r1(l)σ′

)
: (C3)r

′
.

By the axiom sum, for s := t1
(
r1(k)σ′

)
+ t2

(
r1(l)σ′

)
,

J ` r1(k)σ′ :
(
(C1)r1σ′

)
→ s : (C3)r

′
and J ` r1(l)σ′ :

(
(C2)r1σ′

)
→ s : (C3)r

′
.

Thus, by propositional reasoning,

J `
(
r1(k) : (C1)r1 ∨ r1(l) : (C2)r1

)
σ′ → s : (C3)r

′
. (18)

Let σ := σ′ and r := (r′ �C3) ∪ {m 7→ s}. Clearly, r is a realization function on B3, σ lives on C1 ∨ C2, or
equivalently on B1 ∨ B2, and vrange(σ) ⊆ vars♦(C3) = vars♦(B3). Now (18) can be rewritten to state the
provability in J of (�kC1 ∨�lC2)r1σ → (�mC3)r, which is exactly (12).

It remains to note that (12) for B3 = A3 and for thus constructed r and σ is
(
A1, A2

)r1
σ →

(
A3

)r
.
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Lemma 5.9 (k-rule). The shallow version of the k-rule is realizable in J.

Proof. For an arbitrary instance
[A′,∆′]

♦A′, [∆′]
of sh-k, let [A,∆]k and ♦2mA, [∆]i be properly annotated versions

of its premise and conclusion respectively. Then
[A,∆]k

♦2mA, [∆]i
is an annotated version of this instance. Let r1 be

an arbitrary realization function on [A,∆]k. Consider the propositional tautology (A,∆)r1 → ¬Ar1 → ∆r1 .
By Internalization Property 3.5, there exists a term t(x1, x2) such that

J ` r1(k) : (A,∆)r1 → xm : ¬Ar1 → t
(
r1(k), xm

)
: ∆r1 .

It follows by propositional reasoning that

J ` r1(k) : (A,∆)r1 → ¬xm : ¬Ar1 ∨ t
(
r1(k), xm

)
: ∆r1 . (19)

The indices 2m and i cannot occur in either A or ∆ because ♦2mA, [∆]i is properly annotated. Hence,

r := (r1 �A,∆) ∪
{

2m 7→ xm; i 7→ t
(
r1(k), xm

)}
is a realization function on ♦2mA, [∆]i. For the identity substitution σ and this r, (19) can be rewritten as

J `
(
[A,∆]k

)r1
σ →

(
♦2mA, [∆]i

)r
.

Lemma 5.15 covers the remaining rules from Figure 6. The following auxiliary lemmas are used for
the part of Lemma 5.15 that concerns the rules 5a, 5b, and 5c. The following lemma provides a uniform
realization for the theorem �(A → B) → �(B → C) → �(A → C) of K.

Lemma 5.10 (Syllogism). There exists a term syl(x1, x2) such that for arbitrary terms t1 and t2 and for
arbitrary justification formulas A, B, and C,

J ` t1 : (A → B) → t2 : (B → C) → syl(t1, t2) : (A → C) .

Proof. From the propositional tautology (P1 → P2) → (P2 → P3) → (P1 → P3), by Internalization Prop-
erty 3.5, there exists a term syl(x1, x2) such that for arbitrary terms t1 and t2,

J ` t1 : (P1 → P2) → t2 : (P2 → P3) → syl(t1, t2) : (P1 → P3) .

The desired result now follows from the Substitution Lemma. Note that syl(x1, x2) does not depend on t1,
t2, A, B, or C.

Lemma 5.11 (Internalized Factivity). There exists a term fact(x1) such that for any term s and any
justification formula A,

J5 ` fact(s) : (s :A → A) .

Proof. From the propositional tautology P1 → P2 → P1, by Internalization Property 3.5, there exists a
term t1(x1) such that J5 ` s : P1 → t1(s) : (P2 → P1) for any term s. Hence, by the Substitution Lemma, for
any formula A,

J5 ` s :A → t1(s) : (s :A → A) . (20)

Similarly, for ¬P2 → P2 → P1, there exists t2(x1) such that J5 ` ? s : ¬P2 → t2(? s) : (P2 → P1) for any term s.
By the Substitution Lemma,

J5 ` ? s : ¬s :A → t2(? s) : (s :A → A)

for any formula A. Since ¬s :A → ? s : ¬s :A is a j5-instance, it follows that

J5 ` ¬s :A → t2(? s) : (s :A → A) .

From this, (20), and sum, we have J5 ` fact(s) : (s : A → A) for fact(x1) := t1(x1) + t2(?x1). Note that
fact(x1) depends on neither s nor A.
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The following auxiliary lemma is used in the proofs of Lemmas 5.13 and 6.17.

Lemma 5.12 (Inverse to Negative Introspection, Internalized). There exists a term invnegint(x1)
such that for arbitrary terms t and s and for any justification formula A,

J5 ` s : ¬ ? t : ¬t :A → invnegint(s) : t :A .

Proof. It follows from propositional reasoning and Internalization Property 3.5 that there exists a ground
term p such that

J5 ` p :
(
(¬x2 : P1 → ?x2 : ¬x2 : P1) → ¬ ?x2 : ¬x2 : P1 → x2 : P1

)
. (21)

For a fixed arbitrary constant c1j of level 1, J5 ` c1j :
(
¬x2 : P1 → ?x2 : ¬x2 : P1

)
by j5 and iAN. From this

and (21), by app and MP,
J5 ` (p · c1j ) : (¬ ?x2 : ¬x2 : P1 → x2 : P1) .

Also by app and MP,
J5 ` x1 : ¬ ?x2 : ¬x2 : P1 → (p · c1j · x1) : x2 : P1 .

The statement of the lemma for invnegint(x1) := p · c1j · x1 now follows from the Substitution Lemma. Note
that invnegint(x1) does not depend on t, s, or A.

Lemma 5.13 (Internalized Positive Introspection). There exist terms posint(x1) and t!(x1) such that
for any term s and any justification formula A,

J5 ` posint(s) :
(
s :A → t!(s) : s :A

)
.

Proof. We first show that there exists a term s(x1) such that for any t and A,

J5 ` s(t) : (A → ? t : ¬t : ¬A) . (22)

It follows from propositional reasoning and Internalization Property 3.5 that there exists a ground term p
such that

J5 ` p :
(
(x1 : ¬P1 → ¬P1) → P1 → ¬x1 : ¬P1

)
.

By Lemma 5.11, for the term fact(x1) constructed there, J5 ` fact(x1) : (x1 : ¬P1 → ¬P1). By app and MP,

J5 `
(
p · fact(x1)

)
: (P1 → ¬x1 : ¬P1) .

For a fixed arbitrary constant c1i of level 1, c1i : (¬x1 : ¬P1 → ?x1 : ¬x1 : ¬P1) is provable in J5 by j5 and iAN.
Hence, by Lemma 5.10,

J5 ` syl
(
p · fact(x1), c1i

)
: (P1 → ?x1 : ¬x1 : ¬P1) .

Now (22) follows from the Substitution Lemma for s(x1) := syl
(
p · fact(x1), c1i

)
.

By Lemma 5.12, for the term invnegint(x1) constructed there,

J5 ` ? ?x1 : ¬ ?x1 : ¬x1 : P1 → invnegint(? ?x1) : x1 : P1 .

Then, by Internalization Property 3.5, there exists a ground term p2 such that

J5 ` p2 :
(
? ?x1 : ¬ ?x1 : ¬x1 : P1 → invnegint(? ?x1) : x1 : P1

)
.

By (22), for t = ?x1 and A = x1 : P1,

J5 ` s(?x1) : (x1 : P1 → ? ?x1 : ¬ ?x1 : ¬x1 : P1) .

Hence, by Lemma 5.10,

J5 ` syl
(
s(?x1), p2

)
:
(
x1 : P1 → invnegint(? ?x1) : x1 : P1

)
.

For posint(x1) := syl
(
s(?x1), p2

)
and t!(x1) := invnegint(? ?x1), the statement of the lemma now follows

by the Substitution Lemma. Note that t!(x1) and posint(x1) depend on neither s nor A.
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Corollary 5.14 (Internalized Inverse Positive Introspection). There exists a term invposint(x1) such
that for any term s, for any formula A, and for the term t!(x1) constructed in Lemma 5.13,

J5 ` invposint(s) :
(
¬ t!(s) : s :A → ¬s :A

)
.

Proof. By Lemma 5.13, for the terms posint(x1) and t!(x1) constructed there,

J5 ` posint(x1) :
(
x1 : P1 → t!(x1) : x1 : P1

)
.

By propositional reasoning and Internalization Property 3.5, there exists a ground term p such that

J5 ` p :
((
x1 : P1 → t!(x1) : x1 : P1

)
→ ¬ t!(x1) : x1 : P1 → ¬x1 : P1

)
.

For invposint(x1) := p · posint(x1), by app and MP,

J5 ` invposint(x1) :
(
¬ t!(x1) : x1 : P1 → ¬x1 : P1

)
.

The statement of the lemma now follows from the Substitution Lemma. Note that invposint(x1) depends
on neither s nor A.

Lemma 5.15 (Modal Rules). Let ρ ∈ {d, t, b, 4, 5a, 5b, 5c}. The shallow version of ρ is realizable in Jρ,
where by Jd we mean JD, and so on, except for ρ ∈ {5a, 5b, 5c}, where we mean J5.

Proof. We consider an arbitrary instance of sh-ρ for each rule ρ in turn.

Case ρ = d. For an arbitrary instance
[A′]

♦A′
of sh-d, let [A]k and ♦2mA be properly annotated versions

of its premise and conclusion respectively. Then
[A]k

♦2mA
is an annotated version of this instance. Consider

an arbitrary realization function r1 on [A]k. From the app-instance

xm : (Ar1 → ⊥) → r1(k) :Ar1 →
(
xm · r1(k)

)
:⊥ ,

it follows by propositional reasoning that

JD ` r1(k) :Ar1 → xm : (Ar1 → ⊥) →
(
xm · r1(k)

)
:⊥ .

Using the jd-instance
(
xm · r1(k)

)
:⊥ → ⊥, we obtain by propositional reasoning

JD ` r1(k) :Ar1 → xm : (Ar1 → ⊥) → ⊥ ,

which is identical to JD ` r1(k) :Ar1 → ¬xm : ¬Ar1 . Since 2m is even, r := r1 ∪ {2m 7→ xm} is a realization
function on ♦2mA by Facts 3.12 (7) and 3.12 (8). Thus, for the identity substitution σ and this r,

JD `
(
[A]k

)r1
σ → (♦2mA)r .

Case ρ = t. For an arbitrary instance
A′

♦A′
of sh-t, let ♦2mA be a properly annotated version of its

conclusion. Then
A

♦2mA
is an annotated version of this instance. Consider an arbitrary realization function r1

on A. By taking the contraposition of the jt-instance xm :¬Ar1 → ¬Ar1 , we have JT ` Ar1 → ¬xm :¬Ar1 . Since
2m is even, r := r1 ∪ {2m 7→ xm} is a realization function on ♦2mA. Thus, for the identity substitution σ
and this r,

JT ` Ar1σ → (♦2mA)r .
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Case ρ = b. For an arbitrary instance
[∆′], A′

[∆′,♦A′]
of sh-b, let [∆]k, A and [∆,♦2mA]i be properly

annotated versions of its premise and conclusion respectively. Then
[∆]k, A

[∆,♦2mA]i
is an annotated version of

this instance. Consider an arbitrary realization function r1 on [∆]k, A. Since ∆r1 → ∆r1 ∨ ¬xm : ¬Ar1 is a
propositional tautology, by Internalization Property 3.5, there exists a term t1(x1) such that

JB ` r1(k) : ∆r1 → t1
(
r1(k)

)
: (∆r1 ∨ ¬xm : ¬Ar1) . (23)

Similarly, for ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 , there exists a term t2(x1) such that

JB ` ?̄xm : ¬xm : ¬Ar1 → t2(?̄xm) : (∆r1 ∨ ¬xm : ¬Ar1) .

From this and (23), it follows by the axiom sum and propositional reasoning that

JB ` r1(k) : ∆r1 ∨ ?̄xm : ¬xm : ¬Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1)

for t := t1
(
r1(k)

)
+ t2(?̄xm). Finally, from the jb-instance Ar1 → ?̄xm : ¬xm : ¬Ar1 , it follows that

JB ` r1(k) : ∆r1 ∨ Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1) .

The indices 2m and i do not occur in either ∆ or A because [∆,♦2mA]i is properly annotated. Hence,

r := (r1 �∆, A) ∪ {i 7→ t; 2m 7→ xm}

is a realization function on [∆,♦2mA]i. Thus, for the identity substitution σ and this r,

JB `
(
[∆]k, A

)r1
σ →

(
[∆,♦2mA]i

)r
.

Case ρ = 4. For an arbitrary instance
[♦A′,∆′]

♦A′, [∆′]
of sh-4, let [♦2mA,∆]k and ♦2mA, [∆]i be properly

annotated versions of its premise and conclusion respectively. Then
[♦2mA,∆]k

♦2mA, [∆]i
is an annotated version of

this instance. Consider an arbitrary realization function r1 on [♦2mA,∆]k. Since

xm : ¬Ar1 → ¬xm : ¬Ar1 ∨ ∆r1 → ∆r1

is a propositional tautology, it follows from Internalization Property 3.5 that there is a term s(x1) such that

J4 ` !xm : xm : ¬Ar1 → s(!xm) : (¬xm : ¬Ar1 ∨ ∆r1 → ∆r1) .

From the j4-instance xm : ¬Ar1 → !xm : xm : ¬Ar1 , it then follows by propositional reasoning that

J4 ` xm : ¬Ar1 → s(!xm) : (¬xm : ¬Ar1 ∨ ∆r1 → ∆r1) .

By the axiom app and propositional reasoning,

J4 ` r1(k) : (¬xm : ¬Ar1 ∨ ∆r1) → ¬xm : ¬Ar1 ∨
(
s(!xm) · r1(k)

)
: ∆r1 .

The index i does not occur in either ∆ or ♦2mA because ♦2mA, [∆]i is properly annotated. Hence,

r := (r1 � ♦2mA,∆) ∪ {i 7→ s(!xm) · r1(k)}

is a realization function on ♦2mA, [∆]i. Thus, for the identity substitution σ and this r,

J4 `
(
[♦2mA,∆]k

)r1
σ →

(
♦2mA, [∆]i

)r
.
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Case ρ = 5a. For an arbitrary instance
[∆′],♦A′

[∆′,♦A′]
of sh-5a, let [∆]k,♦2mA and [∆,♦2mA]i be properly

annotated versions of its premise and conclusion respectively. Then
[∆]k,♦2mA

[∆,♦2mA]i
is an annotated version of

this instance. Consider an arbitrary realization function r1 on [∆]k,♦2mA. By the propositional tautology
∆r1 → ∆r1 ∨ ¬xm : ¬Ar1 and Internalization Property 3.5, there exists a term t1(x1) such that

J5 ` r1(k) : ∆r1 → t1
(
r1(k)

)
: (∆r1 ∨ ¬xm : ¬Ar1) . (24)

Similarly, for the propositional tautology ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 , there exists t2(x1) such that

J5 ` ?xm : ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) .

From the j5-instance ¬xm : ¬Ar1 → ?xm : ¬xm : ¬Ar1 , by propositional reasoning,

J5 ` ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) . (25)

It follows from (24) and (25) by the axiom sum and propositional reasoning that for t := t1
(
r1(k)

)
+t2(?xm),

J5 ` r1(k) : ∆r1 ∨ ¬xm : ¬Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1) .

The index i does not occur in either ∆ or ♦2mA because [∆,♦2mA]i is properly annotated. Hence,

r := (r1 �∆,♦2mA) ∪ {i 7→ t}

is a realization function on [∆,♦2mA]i. For the identity substitution σ and this r,

J5 `
(
[∆]k,♦2mA

)r1
σ →

(
[∆,♦2mA]i

)r
.

Case ρ = 5b. For an arbitrary instance
[∆′], [Π′,♦A′]

[∆′,♦A′], [Π′]
of sh-5b, let [∆]k, [Π,♦2mA]i and [∆,♦2mA]l, [Π]j

be properly annotated versions of its premise and conclusion respectively. Then
[∆]k, [Π,♦2mA]i

[∆,♦2mA]l, [Π]j
is an

annotated version of this instance. Consider an arbitrary realization function r1 on [∆]k, [Π,♦2mA]i. By
Corollary 5.14, for the term invposint(x1) constructed there and the term t!(x1) from Lemma 5.13,

J5 ` invposint(xm) :
(
¬ t!(xm) : xm : ¬Ar1 → ¬xm : ¬Ar1

)
.

Thus, by app and MP,

J5 ` ? t!(xm) : ¬ t!(xm) : xm : ¬Ar1 →
(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 .

From the j5-instance ¬ t!(xm) : xm : ¬Ar1 → ? t!(xm) : ¬ t!(xm) : xm : ¬Ar1 , it follows that

J5 ` ¬ t!(xm) : xm : ¬Ar1 →
(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 . (26)

By propositional reasoning and Internalization Property 3.5, for some ground term p1,

J5 ` p1 :
(
xm : ¬Ar1 → Πr1 ∨ ¬xm : ¬Ar1 → Πr1

)
.

Thus, by app and MP,

J5 ` t!(xm) : xm : ¬Ar1 →
(
p1 · t!(xm)

)
: (Πr1 ∨ ¬xm : ¬Ar1 → Πr1) .

By app and propositional reasoning,

J5 ` t!(xm) : xm : ¬Ar1 → r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →
(
p1 · t!(xm) · r1(i)

)
: Πr1 ,
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which is propositionally equivalent to

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → ¬ t!(xm) : xm : ¬Ar1 ∨ s : Πr1

for s := p1 · t!(xm) · r1(i). From this and (26), by propositional reasoning,

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →
(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 ∨ s : Πr1 . (27)

By Internalization Property 3.5, for the propositional tautology ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 , there exists
a term t3(x1) such that from (27), by propositional reasoning, we obtain the provability in J5 of

r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → t3
(
invposint(xm) · ? t!(xm)

)
: (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 . (28)

Since ∆r1 → ∆r1 ∨ ¬xm : ¬Ar1 is a propositional tautology, by Internalization Property 3.5, there exists a
term t4(x1) such that

J5 ` r1(k) : ∆r1 → t4
(
r1(k)

)
: (∆r1 ∨ ¬xm : ¬Ar1) .

Therefore, by the axiom sum,

J5 ` r1(k) : ∆r1 → t : (∆r1 ∨ ¬xm : ¬Ar1) (29)

for t := t3
(
invposint(xm) · ? t!(xm)

)
+ t4

(
r1(k)

)
. Similarly, by (28) and sum,

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 . (30)

Finally, by propositional reasoning from (29) and (30),

J5 ` r1(k) : ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 .

The indices l and j do not occur in ∆, Π, or ♦2mA because [∆,♦2mA]l, [Π]j is properly annotated. Hence,

r := (r1 �∆,♦2mA,Π) ∪ {l 7→ t; j 7→ s}

is a realization function on [∆,♦2mA]l, [Π]j . For the identity substitution σ and this r,

J5 `
(
[∆]k, [Π,♦2mA]i

)r1
σ →

(
[∆,♦2mA]l, [Π]j

)r
.

Case ρ = 5c. For an arbitrary instance
[∆′, [Π′,♦A′]]

[∆′,♦A′, [Π′]]
of sh-5c, let [∆, [Π,♦2mA]i]k and [∆,♦2mA, [Π]j ]l

be properly annotated versions of its premise and conclusion respectively. Then
[∆, [Π,♦2mA]i]k

[∆,♦2mA, [Π]j ]l
is an

annotated version of this instance. Consider an arbitrary realization function r1 on [∆, [Π,♦2mA]i]k. As in
the case ρ = 5b, cf. (27),

J5 ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →
(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 ∨ s : Πr1 .

Thus, by propositional reasoning,

J5 ` ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → ∆r1 ∨
(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 ∨ s : Πr1 .

By Internalization Property 3.5, there exists a term s1(x1) such that

J5 ` r1(k) :
(
∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)

)
→ s1

(
r1(k)

)
: (∆r1 ∨ t3 : ¬xm : ¬Ar1 ∨ s : Πr1) , (31)

where t3 := invposint(xm) · ? t!(xm). By Lemma 5.11, for the term fact(x1) constructed there,

J5 ` fact(t3) : (t3 : ¬xm : ¬Ar1 → ¬xm : ¬Ar1) . (32)
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By propositional reasoning and Internalization Property 3.5, for some ground term p2,

J5 ` p2 :
(
(t3 : ¬xm : ¬Ar1 → ¬xm : ¬Ar1) → ∆r1 ∨ t3 : ¬xm : ¬Ar1 ∨ s : Πr1 → ∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1

)
.

From this and (32), by app and MP, it follows that

J5 `
(
p2 · fact(t3)

)
: (∆r1 ∨ t3 : ¬xm : ¬Ar1 ∨ s : Πr1 → ∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1) .

It follows by app and MP that

J5 ` s1

(
r1(k)

)
: (∆r1 ∨ t3 : ¬xm : ¬Ar1 ∨ s : Πr1) → t4 : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1)

for t4 := p2 · fact(t3) · s1

(
r1(k)

)
. From this and (31), by propositional reasoning,

J5 ` r1(k) :
(
∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)

)
→ t4 : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1) .

The indices l and j do not occur in ∆, Π, or ♦2mA because [∆,♦2mA, [Π]j ]l is properly annotated. Hence,

r := (r1 �∆,♦2mA,Π) ∪ {j 7→ s; l 7→ t4}

is a realization function on [∆,♦2mA, [Π]j ]l. For the identity substitution σ and this r,(
[∆, [Π,♦2mA]i]k

)r1
σ →

(
[∆,♦2mA, [Π]j ]l

)r
.

Theorem 5.16 (Realization). Let a modal logic ML and a justification logic JL be chosen respectively
from the first and the second row of the same column of the following table:

K D T KB K4 K5 DB D4 D5 TB S4 K45 D45 S5 KB5
J JD JT JB J4 J5 JDB JD4 JD5 JTB JT4 J45 JD45 JT45 JB45

Note that the first row contains all the 15 modal logics from the modal cube. Then JL◦ = ML. Moreover,
for each A′ ∈ ML, there exists a properly annotated version A of it and a realization function r on A such
that JL ` Ar.

Proof. The inclusion JL◦ ⊆ ML is easy to prove by induction on a proof in JL since the forgetful projections
of axioms of any justification logic are derivable and the forgetful projections of its rules are admissible in
the modal logic with the corresponding axiom system.

Let us now turn to the more interesting opposite inclusion. As discussed at the beginning of this section,
with the exception of the case of the modal logic K, whose sequent system is denoted by SK, ML also denotes
the sequent system (an extension of SK according to Figure 7) for the modal logic ML. Be it SK or ML
for ML 6= K, this sequent system is complete with respect to the modal logic ML by Theorem 5.3. By
Lemmas 5.4–5.9, the rules sh-id, sh-∨, sh-∧, sh-ctr, sh-exch, sh-�, and sh-k, i.e., the shallow versions of
all the rules of the sequent system SK for the modal logic K, are realizable in J. If ML 6= K, then JL is
an extension of J, so the shallow versions of these nested rules are also realizable in JL by Fact 4.9. Let
ρ ∈ {d, t, b, 4, 5a, 5b, 5c} be one of the remaining rules of the sequent system ML. It is easy to see from the
table above and Figure 7 that JL is an extension of the justification logic, the realizability of sh-ρ in which
is stated in Lemma 5.15. Thus, sh-ρ is realizable in JL by Fact 4.9. Again, the shallow versions of all the
rules of ML are realizable in JL. Let A′ ∈ ML, i.e., ML ` A′, for a modal formula A′. By completeness of our
sequent system, the sequent A′ is provable in it. Therefore, by Theorem 4.12, for some properly annotated
version A of A′, there exists a realization function r on A such that JL ` Ar. Clearly, (Ar)◦ = A′. Hence,
A′ ∈ JL◦.
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6. Embedding and the Modular Realization Theorem

So far, we have introduced 24 justification logics. However, only 15 of them are connected to a modal
logic by Theorem 5.16. In this section, we define what it means for one logic to embed in another and show
that the justification counterparts (as defined in Section 2) of a modal logic all mutually embed in each other
and, hence, are pairwise equivalent. This enables us to prove a modular realization theorem that connects
every modal logic to all of its justification counterparts, thus yielding a realization theorem that involves all
of the 24 justification logics.

The notion of embedding we introduce is quite natural. Consider the situation in modal logic first. It
is common to formulate modal logics with a fixed but unspecified complete set of propositional axioms.
This creates no ambiguity because the set of theorems resulting from different axiomatizations remains the
same. The only change is that, in general, the proof of a formula depends on the given axiomatization; in
particular, an axiom under one axiomatization may require a more involved proof under another axiomati-
zation. The situation with justification logics is more nuanced because proofs are represented in the object
language. Therefore, for justification logic, different proofs due to alternative axiomatizations become dif-
ferent theorems of the logic, the difference being in the terms used. In the above mentioned case of an axiom
turned theorem, a constant that justifies the axiom needs to be replaced with a more complicated term.
As a result, an insignificant change in the propositional axiomatization leads to a different set of theorems,
i.e., to a different logic.

The idea that this change of the logic is not significant has been captured by Fitting [15], who was the
first to introduce the notions of embedding and equivalence of justification logics. In his opinion, the change
of a propositional axiomatization leads to a different but equivalent logic, where equivalence is defined as a
two-way embedding. A logic JL1 embeds in a logic JL2, provided there is a mapping from constants of JL1

to terms of JL2 that converts each theorem of JL1 into a theorem of JL2.
Fitting’s notion of embedding is also sufficient to demonstrate that changing the non-propositional part

of the axiomatization in a provably equivalent way and/or changing the primary Boolean connectives of the
logic would lead to an equivalent logic (in the latter case, provided the embedding also does the appropriate
Boolean conversions). However, as we will soon show, there are justification logics that realize the same
modal logic but are not equivalent with respect to Fitting’s definition. These logics differ in their sets of
operations on justifications. For instance, we will demonstrate that both JT45 and JT5 realize S5, even
though JT5 lacks the operation of positive introspection: although ! is present in the language, the axiom j4
describing its properties is not a theorem of JT5.

To explain in which sense JT5 is equivalent to JT45, consider an analogous situation when Boolean
connectives are changed. If conjunction is not present in the language, it can be defined via primary
connectives. We propose to do the same with operations on justifications. In particular, ! missing in JT5
can be defined via the remaining operations. In other words, j4 can be proved in JT5 if ! s is replaced with
another term t!(s). Hence, to obtain a sufficiently general notion of equivalence, we generalize Fitting’s
definition of an embedding from 0-ary operations (i.e., constants) to arbitrary n-ary operations. Informally,
we say that JL1 embeds in JL2, provided there is a mapping from operations of JL1 to terms of JL2 that
maps each n-ary operation to a term with n distinct variables such that each theorem of JL1 is converted
into a theorem of JL2. We call such a mapping an operation translation.

Remark 6.1 (Avoiding trivial equivalences). To see why the property of realizing the same modal
logic by itself does not qualify as a definition of equivalence, imagine a “justification logic” that is obtained
from JT45 by replacing all the terms with a single constant. Such a logic trivially realizes S5, but intuitively
it should not be considered equivalent to JT45.

Many definitions and results in this section apply to a more general class of justification logics than the
one discussed in this paper. Everything up to Fact 6.11 is general enough to be applicable to logics with
any collection of justification terms. Lemma 6.13 and Theorem 6.14 hold for justification logics that satisfy
the Internalization Property and can prove sum. The remaining results are specific to what we call the
extensions of J. Note that all the results also apply to logics with different languages (recall that all the
extensions of J have the same language).
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Even though the operations of our logics are at most binary, we want to keep the following definitions
as general as possible. Note that, in this general setting, we use prefix notation also for binary operations.

Definition 6.2 (Operation translation). Let L1 and L2 be two justification languages. An operation
translation ω (from L1 to L2) is a total function that for each n ≥ 0, maps every n-ary operation ∗ of L1

to an L2-term ω(∗) = ω∗(x1, . . . , xn). In particular, constants of L1 are mapped to ground terms of L2.
For any L1-term t, the term tω is inductively defined as follows: for any variable xi, xiω := xi; if ∗ is an
n-ary operation of L1, n ≥ 0, then

(
∗(t1, . . . , tn)

)
ω := ω∗(t1ω, . . . , tnω). Similarly, for any L1-formula A,

the formula Aω is inductively defined as follows: for any proposition Pi, Piω := Pi; ω distributes through
all Boolean connectives; finally, (t :B)ω := (tω) : (Bω).

Whenever safe, we omit parentheses and write, e.g., ∗(t1, . . . , tn)ω instead of
(
∗(t1, . . . , tn)

)
ω.

As an example, let ? be a unary operation in the language of L1 and ω(?) = ω?(x1). Then(
¬s :A → ? s : ¬s :A

)
ω = ¬(sω) : (Aω) → ω?(sω) : ¬(sω) : (Aω) .

Fact 6.3 (Properties of Operation Translation). Let ω be an operation translation from L1 to L2 and
let t and A be an L1-term and an L1-formula respectively. Then

(1) tω is an L2-term and Aω is an L2-formula;

(2) A◦ = (Aω)◦;

(3) for any justification variable x, we have that x occurs in Aω iff x occurs in A.

Definition 6.4 (Embedding and equivalence). Let JL1 and JL2 be justification logics over languages L1

and L2 respectively. We say that JL1 embeds in JL2, written JL1 ⊆̃ JL2, if there exists an operation trans-
lation ω from L1 to L2 such that JL1 ` A implies JL2 ` Aω for any L1-formula A. We call JL1 and JL2

equivalent, written JL1 ≡ JL2, if JL1 ⊆̃ JL2 and JL2 ⊆̃ JL1.

By the following two lemmas, equivalent logics realize the same modal logic.

Lemma 6.5 (Equivalence and Forgetful Projection). Let JL1 and JL2 be justification logics over lan-
guages L1 and L2 respectively. JL1 ≡ JL2 implies (JL1)◦ = (JL2)◦.2

Proof. We show that JL1 ⊆̃ JL2 implies (JL1)◦ ⊆ (JL2)◦. The opposite inclusion is analogous. Let ω be
an operation translation that witnesses the embedding JL1 ⊆̃ JL2. Each modal formula B ∈ (JL1)◦ has the
form A◦ for some L1-formula A such that JL1 ` A. By Fact 6.3 (1), Aω is an L2-formula. By definition of
embedding, JL2 ` Aω. By Fact 6.3 (2), (Aω)◦ = A◦ = B. Hence, B ∈ (JL2)◦.

The realization theorem from the previous section has an additional requirement that different occur-
rences of ♦ be realized by distinct variables. This requirement can also be preserved under embeddings:

Lemma 6.6 (Embedding and Realization). Let JL1 and JL2 be justification logics over languages L1

and L2 respectively. Let JL1 ⊆̃ JL2 and JL1 ` Ar1 for some properly annotated formula A and an L1-
realization function r1 on A. Then there exists an L2-realization function r2 on A such that JL2 ` Ar2 .

Proof. Let ω be an operation translation that witnesses the embedding JL1 ⊆̃ JL2. Then JL2 ` Ar1ω. Define
r2(i) := r1(i)ω so that r2(i) is undefined whenever r1(i) is. Since, by Fact 6.3 (1), r1(i)ω is an L2-term
whenever r1(i) is defined, r2 is an L2-prerealization function on A. Whenever r2(2k) is defined, r1(2k) = xk
since r1 is a realization function. Hence, r2(2k) = r1(2k)ω = xkω = xk. Thus, r2 is also a realization
function. It is easy to check by induction on the structure of A that Ar1ω = Ar2 .

2Note that the definition of forgetful projection does not depend on which justification terms are used in the logic.
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Lemma 6.7 (Extension and Embedding). Let JL1 and JL2 be justification logics over languages L1 ⊆
L2. If JL1 ⊆ JL2, then JL1 ⊆̃ JL2.

Proof. Let ωid denote the identity operation translation such that ωid(∗) := ∗(x1, . . . , xn) for each n-ary L1-
operation ∗. Since L1 ⊆ L2, clearly ωid is an operation translation from JL1 to JL2. It is easy to show by
induction on the structure of an L1-term t and of an L1-formula A that t = tωid and A = Aωid. Hence, if
JL1 ` A, then JL1 ` Aωid, and, consequently, JL2 ` Aωid. Thus, JL1 ⊆̃ JL2.

In order to show that ≡ is indeed an equivalence relation, we need the following auxiliary lemma.

Lemma 6.8 (Operation Translation and Substitution). Let ω be an operation translation from a lan-
guage L1 to a language L2 and let σ be an L1-substitution. Then for any L1-term t, we have (tσ)ω = (tω)σ′,
where σ′ is the L2-substitution defined by σ′(x) := σ(x)ω for any variable x.

Proof. By induction on the structure of t. If t is a variable x, then (xω)σ′ = xσ′ = σ′(x) = σ(x)ω = (xσ)ω.
If t = ∗(t1, . . . , tn) for some n-ary L1-operation ∗, n ≥ 0, then(

∗(t1, . . . , tn)σ
)
ω = ∗(t1σ, . . . , tnσ)ω = ω∗

(
(t1σ)ω, . . . , (tnσ)ω

)
.

By induction hypothesis, this is the same as

ω∗
(
(t1ω)σ′, . . . , (tnω)σ′

)
=
(
ω∗(t1ω, . . . , tnω)

)
σ′ =

(
∗(t1, . . . , tn)ω

)
σ′ .

The penultimate equality holds because the only variables that occur in ω∗(t1ω, . . . , tnω) are those that
occur in one of t1ω, . . . , tnω.

Lemma 6.9 (Equivalence Relation). The relation ⊆̃ is a preorder. Accordingly, ≡ is an equivalence
relation.

Proof. Since each logic is a trivial extension of itself, it follows from Lemma 6.7 that each logic embeds in
itself. Hence, ⊆̃ is reflexive.

Let JL1, JL2, and JL3 be justification logics over languages L1, L2, and L3 respectively. Let operation
translations ω′ and ω′′ witness the embeddings JL1 ⊆̃ JL2 and JL2 ⊆̃ JL3 respectively. We show JL1 ⊆̃ JL3.
For every L1-formula A, JL1 ` A implies JL2 ` Aω′. Accordingly, for every L2-formula B, JL2 ` B implies
JL3 ` Bω′′. Let JL1 ` A for an L1-formula A. It follows that JL3 ` (Aω′)ω′′. Let ω be defined by
ω(∗) := ω′(∗)ω′′ for every n-ary L1-operation ∗, n ≥ 0. Since ω′(∗) is an L2-term with x1, . . . , xn as its
only variables, it follows from Facts 6.3 (1) and 6.3 (3) that ω′(∗)ω′′ is an L3-term with the same variables.
Hence, ω is an operation translation from L1 to L3. It is now sufficient to show that (Aω′)ω′′ = Aω. To
this end, we show that (tω′)ω′′ = tω for every L1-term t by induction on the structure of t.

If t is a variable x, then (xω′)ω′′ = xω′′ = x = xω. Let t = ∗(t1, . . . , tn) for some n-ary L1-operation ∗,
n ≥ 0. Then (

∗(t1, . . . , tn)ω′
)
ω′′ =

(
ω′∗(t1ω

′, . . . , tnω
′)
)
ω′′ ;

in other words, for the L2-substitution σ := {xi 7→ tiω
′ | 1 ≤ i ≤ n} ∪ {xi 7→ xi | i > n},(

∗(t1, . . . , tn)ω′
)
ω′′ =

(
ω′(∗)σ

)
ω′′ . (33)

By definition, ∗(t1, . . . , tn)ω = ω∗(t1ω, . . . , tnω). By induction hypothesis, this is the same as

ω∗
(
(t1ω

′)ω′′, . . . , (tnω
′)ω′′

)
= ω(∗)σ′

for the L3-substitution σ′ := {xi 7→ (tiω
′)ω′′ | 1 ≤ i ≤ n} ∪ {xi 7→ xi | i > n}. By definition of ω, we have

ω(∗)σ′ =
(
ω′(∗)ω′′

)
σ′. Altogether,

∗ (t1, . . . , tn)ω =
(
ω′(∗)ω′′

)
σ′ . (34)

Note that σ′(x) = σ(x)ω′′ for any variable x. Therefore, by Lemma 6.8, we have
(
ω′(∗)σ

)
ω′′ =

(
ω′(∗)ω′′

)
σ′

and, by (33) and (34),
(
∗(t1, . . . , tn)ω′

)
ω′′ = ∗(t1, . . . , tn)ω. Hence, ⊆̃ is transitive.

Thus, ⊆̃ is a preorder. The definition of ≡ is a standard definition of the equivalence relation induced
by the preorder ⊆̃.
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Our goal is to find sufficient conditions for two logics to embed in each other. Axioms (formula schemas
in general) and constants play a fundamental role in this respect.

Definition 6.10 (Formula schema). Let L1 be any justification language. Any L1-formula of the form
A(x1, . . . , xn, P1, . . . , Pk), with n, k ≥ 0 and with all variables and propositions indicated, is called a for-
mula representation of an L1-formula schema S. Then for arbitrary L1-terms t1, . . . , tn and L1-formulas
B1, . . . , Bk, the formula A(t1, . . . , tn, B1, . . . , Bk) is called an instance of S. For a justification logic JL over
the language L1, an L1-schema S is called provable in JL if the formula representation of S is a theorem of JL.
For an operation translation ω from L1 to a justification language L2, the L2-formula schema represented
by the formula A(x1, . . . , xn, P1, . . . , Pk)ω is denoted by Sω.

All the justification axioms from Figures 3 and 4 are, in fact, schemas written with variables over terms
and variables over formulas. From now on, we write them using their formula representations instead. For
instance, the axiom j4 is now written as x1 :P1 → !x1 : x1 :P1 instead of t :A → ! t : t :A, with a variable over
terms t and a variable over formulas A.

Fact 6.11 (Properties of Formula Schemas). Let L1 and L2 be justification languages, S be an L1-
formula schema with formula representation A(x1, . . . , xn, P1, . . . , Pk), JL be a justification logic over L1,
and ω be an operation translation from L1 to L2. Then

(1) S is provable in JL iff all instances of S are theorems of JL;

(2) if A is an instance of S, then Aω is an instance of Sω.

Now we can finally explain why constants are assigned levels. Suppose we want to embed JTB4 in JDB4.
Without levels, c : c : . . . : c︸ ︷︷ ︸

m

: (x :P → P ) would be provable in JTB4 for any constant c and m ≥ 0. Therefore,

we would have to provide an operation translation ω that maps c to some ground term p such that, in
particular, JDB4 ` p : p : . . . : p︸ ︷︷ ︸

m

: (x : P → P ). It can be shown that for each m, there exists such a term p.

However, according to Definition 6.4, we have to choose ω in such a way that it maps c to a single term p
that works for every number m. This is not possible because such a p would have to be infinite. The
assignment of levels to constants enables us to map constants of different levels to different ground terms.

Alternatively, we could drop the levels and change Definition 6.4 in such a way that in order to embed
a logic in another one, instead of having a global operation translation, it would be enough to provide a
separate operation translation for every formula. Following Fitting [14], such an embedding could be called
local.

Lemma 6.12 (Iterated Internalization of Schemas). Let L be a justification language that has a bi-
nary operation +. Let JL be a justification logic over L that enjoys Internalization Property 3.5 and Substi-
tution Lemma 3.8, in which MP is an admissible rule and x1 :P1 → (x1 +x2):P1 and x2 :P1 → (x1 +x2):P1 are
provable formula schemas, collectively referred to as sum.3 Let S1, . . . , Sn be L-formula schemas provable
in JL. There exists an infinite sequence of ground L-terms p1, p2, . . . such that for any m > 0 and for any
L-instance A of one of Si, 1 ≤ i ≤ n, we have JL ` pm : pm−1 : . . . : p1 :A.

Proof. Let Ai(x1, . . . , xki , P1, . . . , Pli) be a formula representation of Si, i = 1, . . . , n. We show how to
construct the term pj , j = 1, 2, . . . by induction on j. For each 1 ≤ i ≤ n, by Internalization Property 3.5,
there exists a ground L-term p1

i such that

JL ` p1
i :Ai(x1, . . . , xki , P1, . . . , Pli) .

3Earlier in this paper, sum denoted one of the axioms of J. We are using the same name here because these two formula
schemas coincide with that axiom. The only difference is that instead of requiring them to be axioms as before, here we only
postulate that all their instances are theorems.
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Let p1 := p1
1 + . . . + p1

n. For each 1 ≤ i ≤ n, by using appropriate instances of the schemas sum and the
rule MP, we obtain

JL ` p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Assume that for some m > 0, we have already constructed ground L-terms p1, p2, . . . , pm such that

JL ` pm : pm−1 : . . . : p1 :Ai(x1, . . . , xki , P1, . . . , Pli)

for all i = 1, . . . , n. We show how to construct pm+1. For each 1 ≤ i ≤ n, by Internalization Property 3.5,
there exists a ground L-term pm+1

i such that

JL ` pm+1
i : pm : . . . : p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Let pm+1 := pm+1
1 + . . .+ pm+1

n . Again, for each 1 ≤ i ≤ n, by instances of sum and MP,

JL ` pm+1 : pm : . . . : p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Thus, we have constructed an infinite sequence of ground L-terms p1, p2, . . . such that for all m > 0 and for
all i = 1, . . . , n,

JL ` pm : pm−1 : . . . : p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Therefore, JL ` pm : pm−1 : . . . : p1 : A for every L-instance A of one of Si, 1 ≤ i ≤ n, by the Substitution
Lemma.

Since all the extensions of J have the rule MP and the axiom sum and satisfy both Internalization
Property 3.5 and Substitution Lemma 3.8, we obtain the following

Corollary 6.13 (Iterated Internalization of Schemas for the Extensions of J). Lemma 6.12 holds
for any extension JL of J as defined on p. 5.

Theorem 6.14 (Embedding). Let JL1 and JL2 be two justification logics over languages L1 and L2 re-
spectively. Let the set of constants of L1 be divided into levels (cf. page 3), let → be one of binary Boolean
connectives, and let MP and iAN be the only rules of JL1. Let JL2 and L2 satisfy all the conditions of
Lemma 6.12. Assume the following:

(1) JL1 is axiomatized by finitely many axioms, i.e., formula schemas;

(2) the formula representations of the axioms of JL1 do not contain constants;4

(3) there exists an operation translation ω from L1 to L2 such that for every axiom S of JL1, the L2-formula
schema Sω is provable in JL2.

Then JL1 embeds in JL2.

Proof. We have to show that there exists an operation translation ω′ from L1 to L2 such that JL1 ` A
implies JL2 ` Aω′ for any L1-formula A.

Let S1, . . . , Sn be the axioms of JL1. By assumption (3), the L2-schemas S1ω, . . . , Snω are provable
in JL2. By Lemma 6.12, there exists an infinite sequence of ground L2-terms p1, p2, . . . such that for every
m > 0 and for every L2-instance B of one of Siω for 1 ≤ i ≤ n,

JL2 ` pm : pm−1 : . . . : p1 :B . (35)

Let the operation translation ω′ be defined as follows:

ω′(∗) :=

{
pj if ∗ is an L1-constant cji of level j > 0,

ω(∗) otherwise.

4Naturally, the axiom instances can contain constants.
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Clearly, ω′ is an operation translation from L1 to L2.
Let A be an arbitrary theorem of JL1. We show by induction on a JL1-proof of A that JL2 ` Aω′. Note

that Aω′ is an L2-formula by Fact 6.3 (1).
If A is an instance of an axiom Si of JL1, 1 ≤ i ≤ n, then, by Fact 6.11 (2), Aω′ is an instance of

the L2-formula schema Siω
′. The latter coincides with the L2-formula schema Siω because the formula

representation of Si does not contain any constants by assumption (2) and ω agrees with ω′ on operations
of positive arity. Thus, Aω′ is an instance of the provable schema Siω and is itself provable in JL2 by
Fact 6.11 (1).

If A is obtained by the rule iAN, then it is of the form cmim : cm−1
im−1

: . . . : c1i1 : B, where B is an instance

of an axiom Si for some 1 ≤ i ≤ n. As shown in the previous paragraph, Bω′ is then an instance of the
formula schema Siω. By (35), we have JL2 ` pm : pm−1 : . . . : p1 : Bω′, which is the same as JL2 ` Aω′ by
definition of ω′.

Finally, if A is obtained by MP from B → A and B, then, by induction hypothesis, JL2 ` Bω′ → Aω′

and JL2 ` Bω′, and, therefore, JL2 ` Aω′ follows by MP.

Since conditions (1) and (2) of this theorem hold for any extension of J,

Corollary 6.15 (Embedding for the Extensions of J). Let JL1 and JL2 be two extensions of J as de-
fined on p. 5. If there exists an operation translation ω from the common language of JL1 and JL2 to the same
language such that for every axiom S of JL1, the formula schema Sω is provable in JL2, then JL1 embeds
in JL2.

We now return to our restricted set of justification logics that we call the extensions of J, which all
have the same language. Corollary 6.15 can be used to prove that for every modal logic, its justification
counterparts are pairwise equivalent. It will be sufficient to provide appropriate operation translations.
Moreover, for all such operation translations ω, we can set ω(+) := x1 + x2 and ω(·) := x1 · x2, as in the
identity operation translation, because the axioms sum and app are present in all the extensions of J.

We proceed to prove that all the justification counterparts of KB5 (among the extensions of J) are
pairwise equivalent and so are those of S5. The following is an auxiliary lemma to be used in the proof of
Lemma 6.17.

Lemma 6.16 (Consistency). For arbitrary terms t and s and an arbitrary formula A,

JD ` t :A → ¬s : ¬A .

Proof. From the app-instance s : (A → ⊥) → t :A → (s · t) :⊥, we obtain by propositional reasoning and the
jd-instance (s · t) :⊥ → ⊥

JD ` t :A → s : (A → ⊥) → ⊥ ,

which is the same as JD ` t :A → ¬s : ¬A.

The following lemma is the main ingredient for the construction of operation translations that witness
the embeddings between justification logics.

Lemma 6.17 (Operation Replacement). There exist terms t′!(x1) and t?(x1) such that for the term t!(x1)
constructed in Lemma 5.13 and for any term s and any formula A,

(1) JT5 ` A → ? s : ¬s : ¬A;

(2) JT5 ` s :A → t!(s) : s :A;

(3) JB5 ` s :A → t′!(s) : s :A;

(4) JB4 ` ¬s :A → t?(s) : ¬s :A;

(5) JDB4 ` s :A → A;
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(6) JDB5 ` s :A → A.

Proof. (1) The formula ¬s :¬A → ? s :¬s :¬A is an instance of j5. Hence, A → ? s :¬s :¬A follows by syllogism
with A → ¬s : ¬A, which is the contraposition of an instance of jt.

(2) By Lemma 5.13, for the terms posint(x1) and t!(x1) constructed there and for any term s and any
formula A, J5 ` posint(s) :

(
s :A → t!(s) : s :A

)
. Since J5 ⊆ JT5, also JT5 ` posint(s) :

(
s :A → t!(s) : s :A

)
.

The desired statement now follows by MP from an instance of jt.
(3) By Lemma 5.12, for the ground term invnegint(x1) constructed there,

J5 ` ?̄ ?x1 : ¬ ?x1 : ¬x1 : P1 → invnegint(?̄ ?x1) : x1 : P1 .

The same formula is provable in JB5. Since x1 : P1 → ?̄ ?x1 : ¬ ?x1 : ¬x1 : P1 is an instance of jb, for
t′!(x1) := invnegint(?̄ ?x1), we have JB5 ` x1 : P1 → t′!(x1) : x1 : P1 by syllogism. The desired statement now
follows by the Substitution Lemma. Note that t′!(x1) depends on neither s nor A.

(4) By a propositional tautology and Internalization Property 3.5, there exists a ground term p1 such
that JB4 ` p1 : (x1 : P1 → ¬¬x1 : P1). By the axiom app,

JB4 ` !x1 : x1 : P1 → (p1 · !x1) : ¬¬x1 : P1 .

By syllogism and the j4-instance x1 : P1 → !x1 : x1 : P1,

JB4 ` x1 : P1 → (p1 · !x1) : ¬¬x1 : P1 .

By contraposition and Internalization Property 3.5, there exists a term s1(x1) such that

JB4 ` ?̄(p1 · !x1) : ¬(p1 · !x1) : ¬¬x1 : P1 → s1

(
?̄(p1 · !x1)

)
: ¬x1 : P1 .

From the jb-instance
¬x1 : P1 → ?̄(p1 · !x1) : ¬(p1 · !x1) : ¬¬x1 : P1 ,

it follows by syllogism that ¬x1 : P1 → t?(x1) : ¬x1 : P1 for t?(x1) := s1

(
?̄(p1 · !x1)

)
. The desired statement

now follows by the Substitution Lemma. Note that t?(x1) depends on neither s nor A.
(5) By the propositional tautology P1 → ¬¬P1 and Internalization Property 3.5, there exists a term t(x1)

such that J ` x1 : P1 → t(x1) : ¬¬P1. By contraposition and Internalization Property 3.5, there exists a
term s2(x1) such that

J ` x2 : ¬t(x1) : ¬¬P1 → s2(x2) : ¬x1 : P1 .

Again by contraposition,
J ` ¬s2(x2) : ¬x1 : P1 → ¬x2 : ¬t(x1) : ¬¬P1 . (36)

Since JDB4 ⊇ JD, we have JDB4 ` !x1 : x1 : P1 → ¬s2(x2) : ¬x1 : P1 by Lemma 6.16. By the j4-instance
x1 : P1 → !x1 : x1 : P1 and syllogism,

x1 : P1 → ¬s2(x2) : ¬x1 : P1 (37)

is provable in JDB4. By syllogism with (36), JDB4 ` x1 :P1 → ¬x2 :¬t(x1):¬¬P1. By the Substitution Lemma,
JDB4 ` x1 :P1 → ¬ ?̄ t(x1) :¬t(x1) :¬¬P1. It follows by the contrapositive ¬ ?̄ t(x1) :¬t(x1) :¬¬P1 → P1 of a jb-
instance and by syllogism that JDB4 ` x1 :P1 → P1. The desired statement now follows by the Substitution
Lemma.

(6) Since JDB5 ⊇ JB5, we have JDB5 ` x1 : P1 → t′!(x1) : x1 : P1 by Lemma 6.17 (3) for the term t′!(x1)
constructed there. Since JDB5 ⊇ JD, by Lemma 6.16,

JDB5 ` t′!(x1) : x1 : P1 → ¬s2(x2) : ¬x1 : P1 .

By syllogism, (37) is provable in JDB5. It remains to repeat the final steps of the proof of Lemma 6.17 (5).
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Corollary 6.18 (Realizability of Modal Rules). The following nested rules are realizable:

(1) the b-rule in JT5;

(2) the 4-rule in JT5 and JB5;

(3) the 5-rule in JB4;

(4) the t-rule in JDB4 and JDB5.

Proof. Using Lemma 6.17, we can prove realizability of the shallow rules in the respective justification logics
by repeating the proof of Lemma 5.15, replacing each use of the axiom jb with A → ? s : ¬s : ¬A, of the
axiom j4 for JT5 with s :A → t!(s) : s :A, of the axiom j4 for JB5 with s :A → t′!(s) : s :A, and of the axiom j5
with ¬s :A → t?(s) :¬s :A. Note also that the axiom jt is derivable in both JDB4 and JDB5. The realizability
of the nested rules follows from Lemma 4.11.

Remark 6.19 (Why ?̄ is not ?). In [10], we used a single operation ? to formulate both the axioms j5
and jb. This decision was motivated by a desire to minimize the number of operations on justifications.
It was possible to use ? to realize the modal axiom b in JT5 because A → ? s : ¬s : ¬A is provable in JT5
(cf. Lemma 6.17 (1)). Hence, JB embeds in JT5 by an operation translation that replaces ?̄ with ?. However,
the same operation translation does not embed JB in J5; nor does the inverse operation translation that
replaces ? with ?̄ embed J5 in JB. In fact, no operation translation embeds JB in J5 or J5 in JB. Indeed,
if JB ⊆̃ J5, then, by the proof of Lemma 6.5 and by Theorem 5.16, KB = JB◦ ⊆ J5◦ = K5, which is not the
case since the modal axiom b is not provable in K5. An analogous argument shows that J5 does not embed
in JB. Since each of J5 and JB can be viewed as J supplied with the definition of ? and of ?̄ respectively, the
argument just given shows that ? and ?̄ are different operations.

Theorem 6.20 (Equivalences).

(1) JB4 ≡ JB5 ≡ JB45.

(2) JT5 ≡ JT45 ≡ JTB45 ≡ JTB4 ≡ JDB4 ≡ JDB45 ≡ JDB5 ≡ JTB5.

Proof. To show each embedding, according to Corollary 6.15, it is sufficient to provide an operation trans-
lation ω such that for every axiom S of one logic, the formula schema Sω is provable in the other. In the
following proof, we provide such an ω for each embedding. Recall that all the extensions of J have common
language.

(1) Since ≡ is an equivalence relation induced by ⊆̃, it is sufficient to show a circular chain of three
embeddings: JB4 ⊆̃ JB5 ⊆̃ JB45 ⊆̃ JB4.

JB4 ⊆̃ JB5: Let ω! -elim agree with the identity operation translation ωid (see the proof of Lemma 6.7),
except that ω! -elim(!) := t′!(x1). Since each axiom S of JB4, except for j4, is also an axiom of JB5 and
since its formula representation does not contain !, Sω! -elim = S is provable in JB5. For the only remaining
axiom, j4,

(x1 : P1 → !x1 : x1 : P1)ω! -elim = x1 : P1 → t′!(x1) : x1 : P1 , (38)

which is provable in JB5 by Lemma 6.17 (3).
JB5 ⊆̃ JB45: Follows from Lemma 6.7.
JB45 ⊆̃ JB4: Let ω? -elim agree with ωid, except that ω? -elim(?) := t?(x1). Since each axiom S of JB45,

except for j5, is also an axiom of JB4 and since its formula representation does not contain ?, Sω? -elim = S
is provable in JB4. For the only remaining axiom, j5,

(¬x1 : P1 → ?x1 : ¬x1 : P1)ω? -elim = ¬x1 : P1 → t?(x1) : ¬x1 : P1 , (39)

which is provable in JB4 by Lemma 6.17 (4).
(2) Again, it is sufficient to demonstrate a circular chain of eight embeddings:

JT5 ⊆̃ JT45 ⊆̃ JTB45 ⊆̃ JTB4 ⊆̃ JDB4 ⊆̃ JDB45 ⊆̃ JDB5 ⊆̃ JTB5 ⊆̃ JT5 .
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Among these, four are immediate from Lemma 6.7:

JT5 ⊆̃ JT45, JT45 ⊆̃ JTB45, JDB4 ⊆̃ JDB45, and JDB5 ⊆̃ JTB5 .

We now prove the remaining four embeddings.
JTB45 ⊆̃ JTB4: The operation translation ω? -elim defined above witnesses the embedding. Indeed, as in

the case of JB45 ⊆̃ JB4, all the axioms of JTB45, except for j5, remain axioms in JTB4 and their formula
representations do not contain ?. As noted above, the operation translation (39) of the formula representation
of j5 is provable in JB4 and, hence, in its extension JTB4.

JTB4 ⊆̃ JDB4: The identity operation translation ωid witnesses the embedding. Indeed, since for each
axiom S of JTB4, we have Sωid = S, it remains to note that all but one axiom of JTB4 remain axioms
in JDB4. The only remaining axiom, jt, with a formula representation x1 : P1 → P1, is provable in JDB4 by
Lemma 6.17 (5).

JDB45 ⊆̃ JDB5: The operation translation ω! -elim defined above witnesses the embedding. Indeed, as in
the case of JB4 ⊆̃ JB5, all the axioms of JDB45, except for j4, remain axioms in JDB5 and their formula
representations do not contain !. As noted above, the operation translation (38) of the formula representation
of j4 is provable in JB5 and, hence, in its extension JDB5.

JTB5 ⊆̃ JT5: Let ω?̄ -elim agree with ωid, except that ω?̄ -elim(?̄) := ?x1. Since each axiom S of JTB5,
except for jb, is also an axiom of JT5 and since its formula representation does not contain ?̄, Sω?̄ -elim = S
is provable in JT5. For the only remaining axiom, jb,

(P1 → ?̄x1 : ¬x1 : ¬P1)ω?̄ -elim = P1 → ?x1 : ¬x1 : ¬P1 ,

which is provable in JT5 by Lemma 6.17 (1).

Now we are ready to prove the modular realization theorem. It states that any modal logic can be
realized by each of its justification counterparts, as defined on p. 6.

Theorem 6.21 (Modular Realization). Let ML be a modal logic and let JL be one of its justification
counterparts. Then JL◦ = ML. Moreover, for each A′ ∈ ML, there exists a properly annotated version A of
it and a realization function r on A such that JL ` Ar.

Proof. All the modal logics, except for KB5 and S5, have only one justification counterpart, for which the
statement of the theorem was proved in Theorem 5.16.

Let S5 ` A′. By Theorem 5.16, there exists a properly annotated version A of A′ and a realization
function r on A such that JT45 ` Ar. Let JL be any justification counterpart of S5. By Theorem 6.20,
JL ≡ JT45; hence, by Lemma 6.6, there exists a realization function r2 on A such that JL ` Ar2 . Clearly,
(Ar2)◦ = A′; hence, A′ ∈ JL◦. For the converse, JT45◦ = S5 by Theorem 5.16. Since JL ≡ JT45, it follows
from Lemma 6.5 that JL◦ = S5.

The proof for KB5 is analogous, except that JB45 is used in place of JT45.

Corollary 6.22. For two justification logics JL1 and JL2, we have JL1 ≡ JL2 iff (JL1)◦ = (JL2)◦. In
particular, there exist distinct justification logics that are equivalent. It then follows that one logic may
embed in the other without being its subset.

Remark 6.23. Alternatively, the modular realization theorem can be obtained by using the fact that,
by Corollary 6.18 and Fact 4.9, each rule of the sequent system S5 (KB5) is realizable in every justifica-
tion counterpart of the logic S5 (KB5). The modular realization theorem can thus be proved similarly to
Theorem 5.16, using Theorem 4.12.
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7. Conclusions

We have presented a general method to prove realization theorems constructively and uniformly. It can
be applied to any modal logic captured by a cut-free nested sequent system. Proving a realization theorem is
reduced to dealing with the non-nested versions of rules, which are essentially ordinary sequent rules without
side formulas. In particular, the method has enabled us to realize the 15 modal logics of the modal cube. In
the process, we have reproved in a uniform way several known realization theorems and have realized modal
logics that did not have justification counterparts before.

We have demonstrated that the realization for these 15 modal logics can be made modular, independent
of whether the modal sequent systems are. Our realization theorem is modular in the sense that we produce
a justification counterpart for each axiomatization of a modal logic. This modularity has been achieved
by introducing an equivalence relation on justification logics that is based on translations of justification
operations. This equivalence relation is natural in that justification logics are equivalent iff they realize the
same modal logic. Although the modular systems from [11] have turned out to be incomplete, our method
should be easily applicable to the corrected versions of these systems that Brünnler and Straßburger are
working on.

Since we have introduced new justification logics, an obvious next step is to look for appropriate semantics
and proof systems and to investigate the decidability and complexity of these logics. Further, it could be
interesting to explore the connections between the equivalence of justification logics and their decidability
and complexity, e.g., whether equivalent logics are necessarily in the same complexity class.

It remains an open problem whether each valid annotated formula A can be realized with the additional
restriction on a realization function r that whenever ♦2nB is a subformula of A, the variable xn should not
occur in Br. This restriction, called non-self-referentiality on variables, was introduced by Fitting in [16].
The main difficulty of obtaining this extra condition via our realization method lies in the contraction rule.

In this paper, we have only considered justification logics with unrestricted axiom necessitation rule.
This rule is often restricted by so-called constant specifications. We are confident that our results can be
extended to logics with arbitrary schematic and axiomatically appropriate constant specifications.

A major open problem is to establish realizability of the cut-rule, or equivalently of modus ponens. It is
not known whether cut is realizable with respect to the definition we have given or with respect to some other
suitable definition of a realizable rule. A positive answer to this question would allow for direct realization
proofs via Hilbert systems and, thus, would probably lead to new realization theorems—for modal logics
that lack cut-free systems even in nested calculi, e.g., for logics of common knowledge (cf. [12]).
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