
On the Realization and Classification
of Justification Logics

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Remo Goetschi

von Galmiz FR

Leiter der Arbeit:

Prof. Dr. G. Jäger

Institut für Informatik und angewandte Mathematik

On the Realization and Classification
of Justification Logics

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Remo Goetschi

von Galmiz FR

Leiter der Arbeit:

Prof. Dr. G. Jäger

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 25.9.2012
Der Dekan:
Prof. Dr. S. Decurtins

Contents

Introduction 7

1 Modal and Justification Logics 13
1.1 Modal Logics and Axiom Systems 13
1.2 Justification Logics and Axiom Systems 17
1.3 Constant Specifications 21
1.4 Justification Counterparts and Realization Theorems . 22
1.5 Basic Properties of Justification Logics 24

2 Classification via Embedding 29
2.1 The Concept of Embedding 31
2.2 Classification of Logics 41
2.3 An Alternative: Local Embedding 51

3 Proving Realization Theorems 57
3.1 Preliminaries . 58
3.2 A General Realization Method 65
3.3 A Uniform and Modular Realization Theorem 75

4 Gentzen Systems for Logics of Belief and Inversed Internal-
ization 95
4.1 Gentzen Systems for Logics of Belief 96
4.2 Inversed Internalization 108

5 Conservativity 115
5.1 Conservativity for Logics of Knowledge 115
5.2 Partial Conservativity for Logics of Belief 119
5.3 Negative Results for Logics of Consistent Belief 122

Conclusions 127

Bibliography 131

Index 135

Introduction

Justification logic is a refinement of modal logic and, as such, studies
the concepts of knowledge, belief, and provability. The single modal-
ity � from the modal language is replaced by a family of justification
terms. While a modal formula �A can be read as A is known/believed,
or A is provable, a justification counterpart t :A of this formula is read
as A is known/believed for reason t or t is evidence for A, where t is
a justification term. By introducing operations on justification terms,
justification logic studies the operational content of modality in var-
ious modal logics. For example, the justification counterpart of the
modal axiom �A → ��A of positive introspection is t : A → ! t : t : A,
where ! denotes a unary operation on terms. This formula can be read
as if t is evidence for A, then ! t is evidence for t being evidence for
A. Therefore, justification logic studies explicit knowledge or belief,
while modal logic studies implicit knowledge or belief.

The first justification logic, the Logic of Proofs or LP, was introduced
by Artemov [Art95, Art01] as a tool for giving an arithmetical seman-
tics for the modal logic S4. Justification logics are also interesting
as epistemic logics. For example, as shown in [AK09], justification
logics avoid the well-known logical omniscience problem1 because jus-
tification terms have a structure and thus provide a “measure” of
how hard it is to obtain knowledge of something. Further, justifica-
tion logics can be used to analyze epistemic paradoxes such as Gettier
problems [Get63] (see Artemov’s paper [Art08]). Kuznets showed that
self-referentiality in modal logics can be studied through their justi-
fication counterparts. See his PhD thesis [Kuz08] for an overview.
Recently, Studer [Stu11] presented an application of justification logic
to protocol verification.

The formal correspondence between S4 and LP, a realization theorem,
has two directions. First, it says that each provable formula of S4 can
be turned into a provable formula of LP by realizing, i.e., replacing,

1 Logical omniscience denotes the unrealistic property that an agent knows all
the logical consequences of her basic assumptions.

7

Introduction

instances of � with justification terms. The converse direction says
that replacing all terms in a provable formula of LP with � results in
a modal formula provable in S4. Similar correspondences have been
established for several other modal logics by means of various proof
methods.

Each modal axiom schema d, t, b, 4, or 5 has a natural corresponding
justification axiom schema jd, jt, jb, j4, or j5 respectively. And like one
can build modal logics by adding to the basic modal logic K modal
axiom schemas in various combinations, one can build justification
logics by adding to the basic justification logic J these justification
axiom schemas in various combinations. However, a modal logic may
have several axiomatizations and thus may have several justification
counterparts, supposedly one for each axiomatization. These coun-
terparts mainly differ in the set of operations on terms they employ.
There is a total of 24 so obtained justification logics, as opposed to
only 15 modal logics.

In this thesis, we study various aspects of these 24 justification logics:
we classify them via notions of embedding and equivalence (Chap-
ter 2), we develop a general method for proving realization theorems
and use this method to prove a uniform and modular realization theo-
rem that involves all of the 24 logics (Chapter 3), we introduce Gentzen
systems for some justification logics and study the property of inversed
internalization (Chapter 4), and we analyze which justification logics
are conservative extensions of others (Chapter 5). All the results in
this thesis are obtained by purely syntactic proofs.

In Chapter 1, we introduce modal and justification logics and state
some basic properties of justification logics, the most well-known of
which is internalization: if a formula A is provable, then so is t :A for
some term t.

In Chapter 2, we classify the 24 justification logics by introducing
an embedding relation on them that extends that of Fitting [Fit08].
This embedding gives rise to an equivalence relation, which is natural
in the sense that two equivalent justification logics realize the same
modal logic. The modular realization theorem in Chapter 3 will also
establish the converse direction of this statement, thereby demonstrat-
ing that the embedding provides the right level of granularity among
justification logics.

The machinery of embeddings also enables us to study minimal sets
of operations on terms. For instance, we show that some logics do

8

Introduction

have positive introspection even though the operation ! of positive
introspection (and its defining axiom schema) is not present in the
logic. This leads—in Chapter 3—to minimal justification logics (in
the sense of number of operations used) that realize a modal logic.

Chapter 3 is the most involved part of this thesis. We first develop
a general constructive method for proving realization theorems. The
method applies to all modal logics that can be captured by cut-free
nested sequent systems. We apply it to prove a realization theorem
that uniformly connects every normal modal logic formed from the ax-
iom schemas d, t, b, 4, and 5 with one of its justification counterparts.
The notion of embedding from Chapter 2 then enables us to extend
this realization theorem to all natural justification counterparts, i.e.,
we obtain a realization theorem that is modular in the following sense:
given a modal logic ML, all its justification counterparts realize ML.
We therefore present a systematic study of the effects of variant axiom-
atizations of a modal logic on its realizations and provide realizations
that are based on alternative modal axiomatizations.

To date, there are essentially two approaches of establishing realization
theorems: the syntactic approach due to Artemov [Art95, Art01] and
the semantic approach due to Fitting [Fit05]. The syntactic approach
makes use of cut-free sequent systems for modal logics, while the se-
mantic approach makes use of a Kripke-style semantics for justification
logics. In contrast to the semantic approach, the syntactic approach
is constructive: it provides an algorithm for computing justification
terms that realize all the occurrences of modalities in a given modal
theorem. The semantic approach has been used to prove several re-
alization theorems: for S4, S5, K45, and KD45 [Art08, Fit05, Rub06].
Prior to the publication of [BGK10], constructive realizations, via
the syntactic approach, were available only for K, D, T, K4, D4,
S4, and S5 [Art95, Art01, AKS99, Bre00, Fit09, Fit11]. In the case
of S5, for which no cut-free sequent system is available, two methods
have been used: via a translation from S5 to K45 [Fit11] in conjunction
with the realization merging technique developed in [Fit09] and via a
cut-free hypersequent system [AKS99]. However, neither method can
be applied to other modal logics that lack cut-free sequent systems,
such as K5 and KB.

Our method is of the syntactic type. It applies to a wide class of
modal logics that can be captured by cut-free nested sequent systems
consisting of so-called context-sharing rules. Nested sequents, which

9

Introduction

can be viewed as trees of sequents, naturally generalize both sequents,
which are nested sequents of depth zero, and hypersequents, which
are essentially nested sequents of depth one. A crucial feature of these
proof systems is deep inference [Brü03, Gug07], which in this case
means applying inference rules to formulas arbitrarily deep inside a
nested sequent. We show that in order to realize the modal logic of a
nested sequent system, it is enough to realize the non-nested, or shal-
low, version of each rule. We apply our method to the nested sequent
systems by Brünnler [Brü09] that capture all the 15 normal modal
logics formed by the axiom schemas d, t, b, 4, and 5, which gives us
a uniform constructive realization theorem for these logics. In partic-
ular, this proves Pacuit’s conjecture implicit in [Pac05] that J52 is a
justification counterpart of K5. Our method also helps provide justi-
fication counterparts for the modal logics D5, KB, DB, TB, and KB5,
which, to our knowledge, did not have justification counterparts prior
to the publication of [BGK10].

In Chapter 4, we introduce cut-free Gentzen systems for so-called
justification logics of belief, which are logics that lack axiom schemas jd
and jt (the counterparts of modal axiom schemas d and t respectively).
Although these systems have the drawback of not being analytic, i.e.,
they violate the subformula property, they help us study the property
of inversed internalization: if a formula t :A is provable, then so is A.
This property holds for logics J and J4 (the counterparts of modal
logics K and K4 respectively), but fails for all other logics of belief.

In Chapter 5, we study which justification logics are conservative
extensions of others. For logics that contain axiom schema jt we use
a method developed by Fitting [Fit08] to show that every extension
of such a logic is conservative. For justification logics of belief we
use the Gentzen systems from Chapter 4 to prove a partial conser-
vativity result for various logics. The idea how to do this is due to
Milnikel [Mil12], who proved a partial conservativity result for the
extension J4 of J. Apart from the syntactic proof based on Gentzen
systems, he also gave a semantic proof of this result. For the so-called
logics of consistent belief, i.e., logics that contain axiom schema jd
but lack jt, we generalize a counterexample by Milnikel—used to show
non-conservativity of JD4 over JD—to prove that extensions of logics
of consistent belief are not conservative.

2Pacuit used the name LP(K5).

10

Introduction

Relationship to Previous Work

The results of Chapter 2—without Section 2.3—and the results of
Chapter 3 are published in [GK12]. Note, however, that some proofs
have been omitted in [GK12]. The definition of justification logics used
there slightly differs from the one used in this thesis. Here, we allow
justification logics to be restricted by so-called constant specifications.
Further, for simplicity, in [GK12] a uniform, full language was used
for all the justification logics, while in this thesis we use restricted
languages, which allows us to study conservativity. In [BGK10], a
uniform realization theorem for all the 15 normal modal logics formed
by the axiom schemas d, t, b, 4, and 5 was proved. The proof of
the realization theorem presented there is a special case of the gen-
eral method described in Chapter 3. Further, the realization theorem
in [BGK10] was not modular, i.e., it did not involve all the justification
counterparts of a modal logic. In [BGK10], in order to minimize the
number of operations on terms, the negative introspection operation ?
was used to realize both the modal axiom schemas 5 and b. However,
because of the new definition of embedding for justification logics (in-
troduced in Chapter 2), it makes more sense to use a new operation ?̄
to realize b and to establish the exact relationship between the oper-
ation ?, typically used to realize 5, and this new ?̄ by exploring the
conditions under which one can be replaced by the other. Another
difference from [BGK10] is that, in this thesis, justification constants
are assigned levels to make the results on embedding in Chapter 2
stronger (see Remark 1.2.2 for details).

Acknowledgments

First of all, I express my gratitude to Professor Gerhard Jäger for his
support, for raising my interest in mathematical logic and for giving
me the opportunity to do research in this field.

I am also especially thankful to Roman Kuznets. I learned a lot from
him and working with him was always a great pleasure. Many ideas
and results presented in this thesis evolved from the collaboration with
him.

Special thanks also go to Kai Brünnler for a successful and fun col-
laboration and for patiently answering my questions on proof theory.

11

Introduction

I am also very thankful to Bettina Choffat, Thomas Strahm, and
Thomas Studer, who all provided me with valuable advice whenever
needed.

Further, I thank all the current and former members of our research
group for many interesting discussions during work or work breaks.

Special thanks go to Galina Savukova for correcting many English
mistakes in the journal paper [GK12], thereby indirectly reducing the
number of mistakes in this thesis.

Last but not least, I thank Samuel Bucheli for providing me with
a template for the title page, Patrick Liniger for pointing out some
mistakes in this introduction and Alessio Guglielmi for the Virginia
Lake LATEX macros, of which I made extensive use in this thesis.

During my time as a PhD student, I was supported by Swiss National
Science Foundation grants 200021–117699 and 200020–134740.

Bern, May 2012, Remo Goetschi

12

1 Modal and Justification
Logics

In Section 1.1, we introduce modal logics and their axiom systems, and
we briefly discuss Kripke semantics for these logics. We then introduce
languages and axiom systems of the justification logics we work with
(Sections 1.2 and 1.3), and define forgetful projection and realization
theorems, which provide a formal connection between modal and jus-
tification logics and languages (Section 1.4). We also explain in detail
the naming conventions for axiom systems and logics to be employed
throughout the thesis. Finally, in Section 1.5, we state some basic
properties of justification logics, such as internalization and substitu-
tion. A reader already familiar with these basics is still encouraged to
skim through the chapter because the justification language we use is
not entirely standard (e.g., constants are divided into levels, and there
is a new operation ?̄).

1.1 Modal Logics and Axiom Systems

For modal formulas, we adopt the negation normal form, with con-
junction and disjunction as primary propositional connectives. The
negation normal form makes possible the use of one-sided nested se-
quent calculi for modal logics (cf. Chapter 3), which is more common
and also minimizes the number of propositional sequent rules, thereby
shortening many proofs.

Modal language. Modal formulas are given by the grammar

A ::= Pi | ¬Pi | (A ∨A) | (A ∧A) | �A | ♦A ,

where i ranges over positive natural numbers, Pi denotes a proposition,
and ¬Pi denotes its negation. The negation operation is extended from

13

1 Modal and Justification Logics

◦S4

qqqqqq ◦S5

qqqqqq

◦T ◦TB

◦D4 ◦
D45

◦
D5

qqqqqq

◦D

��������
hhhhhhhhhhhh ◦ DB

◦K4

�������� ◦
K45

◦
KB5

��������

◦
K5

qqqqqq

◦
K

hhhhhhhhhhhh ◦
KB

Figure 1.1: The modal cube

propositions to all formulas by means of the usual De Morgan laws:

¬¬Pi := Pi ,

¬(A ∨B) := (¬A ∧ ¬B) ,

¬(A ∧B) := (¬A ∨ ¬B) ,

¬�A := ♦¬A ,

¬♦A := �¬A .

Using this negation operation, we define implication, equivalence and
falsum as usual:

(A → B) := (¬A ∨B) ,

(A↔B) :=
(
(A → B) ∧ (B → A)

)
,

⊥ := (P1 ∧ ¬P1) .

Modal logics and their axiom systems. We first recall the notion
of a (Hilbert-style) axiom system. The following definition applies to
both modal and justification logics.

Definition 1.1.1 (Axiom System and Logic). An axiom system (modal
or justification) consists of a set of axiom schemas and a finite set of
inference rules. A proof in an axiom system is a finite list of formu-
las that are either axioms, i.e., instances of axiom schemas, or follow
from earlier formulas in the list by application of an inference rule.

14

1.1 Modal Logics and Axiom Systems

taut: A fixed complete set of propositional axiom schemas
distr: �(A → B) → (�A → �B)

A A → B
MP

B

A
N
�A

Figure 1.2: The axiom system for the basic normal modal logic K

�⊥ → ⊥ d (consistency)
�A → A t (factivity)
A → �¬�¬A b
�A → ��A 4 (positive introspection)
¬�A → �¬�A 5 (negative introspection)

Figure 1.3: Modal axiom schemas

A formula A is provable in an axiom system provided there exists a
proof in it whose last element is A. Every axiom system yields a logic,
namely the set of all formulas provable in the axiom system. We call
a formula A provable in a logic L provided A is provable in an axiom
system that yields L.

One of our goals is to prove a uniform realization theorem for all modal
logics in the so-called modal cube from [Gar09] (see Figure 1.1). All
these logics are extensions of the basic normal modal logic K that
are obtained by taking its axiom system from Figure 1.2 and adding
to it the modal axiom schemas d, t, b, 4, and 5 from Figure 1.3 in
various combinations. Figure 1.1 contains only 15 logics for 25 =
32 such axiom systems because several axiom systems may yield one
modal logic. For the modal logics with variant axiomatizations, we
distinguish these axiomatizations because we realize them individually,
thereby providing alternative realizations for such modal logics. To
this end, we adopt the following naming conventions. Axiom systems
are denoted by listing the (always present) axiom schema k, followed
by the names of the axiom schemas added to the axiom system for K
from Figure 1.2, with all letters capitalized. For example, KD45 is
the axiom system with additional axiom schemas d, 4, and 5. If a
logic from the cube has only one such axiom system, we use the same
notation for both the logic and the axiom system, except that some

15

1 Modal and Justification Logics

logics traditionally have the initial letter ‘K’ omitted from their names:
for instance, the logic of the axiom system KD45 is often called D45.

Two of the logics predate this modular axiomatization and, hence,
bear traditional names S4 and S5. The former is the logic of the axiom
systems KT4 and KDT4, while the latter is the logic of the following
13 axiom systems: KT5, KDT5, KDB4, KTB4, KDTB4, KDB5, KTB5,
KDTB5, KT45, KDT45, KDB45, KTB45, and KDTB45. Further, the
three axiom systems KB4, KB5, and KB45 produce the same modal
logic, which, following [Gar09], we call KB5. Thus, there is a small
ambiguity between the logic KB5 and the axiom system KB5, which
is resolved by explicit typification, as in this sentence. Finally, the
axiom systems KT and KDT produce the same modal logic, as do
the axiom systems KTB and KDTB. The traditional names for these
logics are M and B respectively. To avoid confusing the latter with the
logic KB, where the initial letter is omitted, we use TB instead of B.
By analogy, T is used instead of M.

Unless stated otherwise, from this point on, by a modal axiom system
we mean either the axiom system K or one of its extensions, and by a
modal logic we mean the logic of a modal axiom system. We denote
an arbitrary modal logic by ML.

Kripke semantics. Proving the non-validity of a formula is a lot
easier in modal logic than in justification logic. Because modal and
justification logics are closely connected by realization theorems, we
can use Kripke semantics for modal logic to indirectly show the non-
validity of justification formulas. We briefly introduce Kripke seman-
tics for modal logics. See, e.g., [Che80] or [HC96] for further reading.

A Kripke frame is a pair (W,R), where W is a nonempty set and R is
a binary relation on W . The elements of W are often called possible
worlds and R is called an accessibility relation. A Kripke model M is
a triple (W,R, V), where (W,R) is a Kripke frame and V is a function
that maps every element of W to a set of propositions. If Pi ∈ V (w),
we say proposition Pi is true at world w, and false otherwise. For
a Kripke model M = (W,R, V) the truth relation |= is defined as
follows:

• M, w |= Pi iff Pi ∈ V (w);

• M, w |= ¬Pi iff Pi 6∈ V (w);

• M, w |= (A ∨B) iff M, w |= A or M, w |= B;

• M, w |= (A ∧B) iff M, w |= A and M, w |= B;

16

1.2 Justification Logics and Axiom Systems

• M, w |= �A iff M, v |= A for every v ∈W with wRv;

• M, w |= ♦A iff M, v |= A for some v ∈W with wRv.

Let A be a modal formula. We say that A is valid inM, ifM, w |= A
for every w ∈ W . We say A is valid in a Kripke frame (W,R), if A is
valid in every Kripke model (W,R, V) based on (W,R). We say that
a modal logic ML is sound and complete with respect to a class C of
Kripke frames, provided that any modal formula A is provable in ML
iff A is valid in every member of C.

k (no condition)
d seriality ∀w∃v. wRv
t reflexivity ∀w. wRw
b symmetry ∀vw. wRv =⇒ vRw
4 transitivity ∀uvw. wRv ∧ vRu =⇒ wRu
5 euclideanness ∀uvw. wRu ∧ wRv =⇒ uRv

Figure 1.4: Modal frame conditions

We identify various classes of Kripke frames by defining conditions
on accessibility relations. For example, the class of reflexive Kripke
frames consists of all the Kripke frames with a reflexive accessibility
relation. Every axiom schema from d, t, b, 4, and 5 corresponds to
a frame condition according to Figure 1.4. The basic modal logic K
is sound and complete with respect to the class of all Kripke frames.
Every proper extension ML of K is sound and complete with respect
to the class of Kripke frames determined by the axiom schemas of ML,
e.g., S4 is sound and complete with respect to the class of reflexive
and transitive Kripke frames.

1.2 Justification Logics and Axiom Systems

The languages of justification logics are given in a more traditional
format with falsum and implication as primary propositional connec-
tives.

Justification languages. Apart from formulas, the languages of
justification logics have another type of syntactic objects called justi-
fication terms, or simply terms, that are given by the grammar

t ::= cji | xi | (t · t) | (t+ t) | ! t | ? t | ?̄ t ,

17

1 Modal and Justification Logics

where i and j range over positive natural numbers, cji denotes a (jus-
tification) constant of level j, and xi denotes a (justification) variable
The binary operations · and +, which are left-associative, are called
application and sum respectively. The unary operations !, ?, and ?̄ are
called positive introspection (or proof checker), negative introspection,
and weak negative introspection respectively. Terms that do not con-
tain variables are called ground and are denoted by p, with or with-
out sub- or superscripts, whereas arbitrary terms are denoted by t,
s, and q, with or without sub- or superscripts. We use the notation

t(xi1 , . . . , xin)

for terms that do not contain variables other than xi1 , . . . , xin .

Constants, variables, and the operations · and + are present in all
justification logics we consider, whereas !, ?, and ?̄ are optional and
may or may not be present, depending on the axioms of the logic.
For S ⊆ {!, ?, ?̄} we denote by L(S) the justification language whose
optional operations are those in S. For simplicity, we omit curly braces
and write, e.g., L(!, ?) instead of L({!, ?}).
For S ⊆ {!, ?, ?̄} Justification formulas over L(S) are given by the
grammar

A ::= Pi | ⊥ | (A → A) | (t :A) ,

where Pi denotes a proposition, as in the modal language, and t is
a justification term in the language L(S). The remaining Boolean
connectives ¬, ∨, ∧, ↔, and the Boolean constant> are defined as usual:

¬A := (A → ⊥) ,

(A ∨B) := (¬A → B) ,

(A ∧B) := ¬(A → ¬B) ,

(A↔B) :=
(
(A → B) ∧ (B → A)

)
,

> := (P1 ∨ ¬P1) .

While writing formulas, we assume that implication is right-associative
and that the colon : binds stronger than implication, conjunction, and
disjunction; the last two bind stronger than implication. For example,
t : E ∧A → B → C ∨D stands for (t : E) ∧

(
A →

(
B → (C ∨D)

))
.

Justification axiom systems. The basic justification logic is called
J. Its language is L(∅) and its axiom system—also denoted J—consists
of the axioms and rules given in Figure 1.5. The zero-premise iAN-rule

18

1.2 Justification Logics and Axiom Systems

taut: A fixed finite complete set of propositional axiom schemas
app: s : (A → B) → (t :A → (s · t) :B)
sum: s :A → (s+ t) :A and s :A → (t+ s) :A

A A → B
MP

B

A is an axiom
iAN

cnin : cn−1
in−1

: . . . : c1i1 :A

Figure 1.5: The axiom system for the basic justification logic J

is called iterated axiom necessitation. We define it as a rule and not as
an axiom schema to prevent it from referring to iself. The finiteness of
the set of propositional axiom schemas in taut is required for the results
on embedding in Chapter 2 (it is also a standard requirement for
proving decidability and estimating complexity of justification logics).

To define extensions of system J we add to its axiom system axiom
schemas jd, jt, jb, j4, and j5 from Figure 1.6 in various combinations.
Note that these extensions also have extended languages. For example,
the language of the axiom system resulting from adding j4 to J is L(!).

t :⊥ → ⊥ jd (consistency)
t :A → A jt (factivity)
A → ?̄ t : (¬t : ¬A) jb (weak negative introspection)
t :A → ! t : t :A j4 (positive introspection)
¬t :A → ? t : (¬t :A) j5 (negative introspection)

Figure 1.6: Justification axiom schemas

The axiom schemas j4 and jt occur already in Artemov [Art95]; jd and j5
were introduced by Brezhnev [Bre00] and by Pacuit [Pac05] respec-
tively. The axiom schema jb, as presented here, was first published
in [GK12]—it has also been independently proposed by Meghdad Ghari
in an unpublished manuscript. The idea to use a new operation ?̄
rather than reuse ? to mimic the modal axiom schema b is consistent
with the general policy that incomparable axiom schemas should be
realized via different operations (cf. Remark 2.2.8).

Remark 1.2.1 (Alternative axiom necessitation). In the literature,
axiomatizations of justification logics that contain the axiom schema j4

19

1 Modal and Justification Logics

often use a simpler version of the iAN-rule:

A is an axiom
c1i :A

The above rule is called axiom necessitation instead of iterated axiom
necessitation. In the presence of j4, axiom necessitation is sufficient
to prove the Internalization Property (cf. Section 1.5). Since we are
interested in the relationships among justification logics, it is more
natural to use the rule iAN suitable for all justification logics rather
than switch between different versions of the rule (cf. also [Art08,
Fit08]). Moreover, logics formulated with the above rule instead of iAN
would not be extensions of J because, in them, no formula of the form
cnin : . . . : c1i1 : A would be provable. Instead of iAN, some authors use
the rule

A is an axiom
! ! . . . !︸ ︷︷ ︸
n

c1i : ! . . . !︸︷︷︸
n−1

c1i : . . . : c1i :A

This rule is not suitable for our purpose because it gives the !-operation
a peculiar meaning—different from the one given by j4—and would
break our results on embedding in Chapter 2.

Remark 1.2.2 (Levels of constants). The assignment of levels to
constants is needed for proving the results on embedding in Chap-
ter 2—the other chapters, however, do not rely on levels. Without
levels, we would be forced to use the weaker notion of local embed-
ding (cf. Section 2.3) instead of embedding. A similar concept of
levels was introduced in [Kuz10] (see also the definition of constant
specification in [Art08]). Levels would not be needed for justification
logics that contain the axiom schema j4 if we had chosen the first rule
from Remark 1.2.1 instead of iAN.

Naming conventions. The naming conventions for justification log-
ics and their axiom systems are similar to those for modal logics. For
example, the axiom system JB5 is J extended by axioms jb and j5, and
its logic is also denoted JB5. The only exceptions from the one-axiom-
system-per-justification-logic rule are due to the fact that all instances
of jd are also instances of jt. Hence, adding the axiom schema jd to
an axiom system that already contains jt does not change the logic,
thereby creating for it a second axiomatization. Accordingly, we omit
the letter ‘D’ from the names of all 8 logics with two axiom systems

20

1.3 Constant Specifications

each. For instance, the logic JT5 is the logic of the axiom systems JT5
and JDT5. Note that in all the other cases, every two axiom systems
yield different logics simply because their sets of axioms are different
and so are their sets of provable formulas of the form c1i : A, where
A is an axiom and c1i is a constant of level 1. Note that this gives
us 24 extensions of J, as opposed to only 15 extensions of the modal
logic K.

Unless stated otherwise, from this point on by a justification logic,
usually denoted as JL with or without a subscript, we mean the logic
of either the axiom system J or one of its extensions.

Logics that prove the axiom schema jt are usually called logics of
knowledge1 whereas logics that do not prove jt are called logics of
belief. Logics of belief that additionally prove jd are sometimes called
logics of consistent belief.

We often do not explicitly mention a formula’s language when it is
clear from the context. For example, when we write J45 ` A, it is
clear that A is a formula in the language L(!, ?).

1.3 Constant Specifications

By the rule iAN, every sequence cnin , . . . , c
1
i1

of constants justifies ev-
ery axiom of a logic. However, it can be useful to restrict the use of
constants, for example, to reserve particular constants for a particu-
lar axiom or axiom schema. Such restrictions, called constant speci-
fications, were used to establish complexity results [Mil07, BK12], to
demonstrate potential undecidability [Kuz05], and to study the logical
omniscience problem [AK06, AK09] and self-referentiality [Kuz10].

Definition 1.3.1 (Constant Specification). For a justification logic
JL, any set

CS ⊆
{
cnin : . . . : c1i1 :A

∣∣∣∣ A is an axiom of JL and cnin , . . . , c
1
i1

are
constants.

}
is called a constant specification for JL.

Note that constant specifications depend on the axioms of a logic.
Therefore, a constant specification for one logic may not be a constant
specification for another (smaller) logic.

1This additionally includes JDB4, JDB5, and JDB45, as we show in Section 2.2.

21

1 Modal and Justification Logics

Definition 1.3.2 (JLCS). Let CS be a constant specification for a
justification logic JL. We denote by JLCS the logic obtained from JL
by replacing the iAN-rule of its axiom system(s) with the rule

cnin : . . . : c1i1 :A ∈ CS
iANCS

cnin : . . . : c1i1 :A

Using the notation JLCS, the (unrestricted) justification logic JL could
be denoted JLTCS, where TCS is the total constant specification for JL:

TCS :=

{
cnin : . . . : c1i1 :A

∣∣∣∣ A is an axiom of JL and cnin , . . . , c
1
i1

are
constants.

}
.

The following types of constant specifications are relevant in this the-
sis:

Definition 1.3.3 (Types of Constant Specifications). Let CS be a
constant specification for a justification logic JL.

• CS is called axiomatically appropriate if for every axiom A of JL
and for every number n > 0 there exist constants cnin , . . . , c

1
i1

such that cnin : . . . : c1i1 :A ∈ CS. In other words: for every axiom
there exist constants that justify it.

• CS is called schematic if whenever cnin : . . . : c1i1 :A ∈ CS, where A
is an axiom of JL, then for every instance B of the same axiom
schema, cnin : . . . : c1i1 : B ∈ CS. In other words: a sequence of
constants justifies entire axiom schemas.

• CS is called downward closed if cnin :cn−1
in−1

: . . . :c1i1 :A ∈ CS implies

cn−1
in−1

: . . . : c1i1 :A ∈ CS for every n > 1.

Note that the total constant specification TCS for a logic JL is ax-
iomatically appropriate, schematic, and downward closed.

Also note that, e.g., J4CS is an extension of JCS′ iff CS ⊇ CS′.

1.4 Justification Counterparts and
Realization Theorems

We have named and formulated modal and justification axioms in
such a way that each justification axiom schema from Figure 1.6 has

22

1.4 Justification Counterparts and Realization Theorems

a corresponding modal axiom schema from Figure 1.3. Consequently,
we have named the axiom systems in such a way that each modal
axiom system has a natural corresponding justification axiom system,
and vice versa. The names of corresponding systems differ only in
the first letter: K for a modal axiom system and J for a justification
one. For example, KT45 corresponds to JT45. Based on this naming
convention, we define the justification counterparts of a modal logic:

Definition 1.4.1 (Justification Counterparts). Every modal logic ML
has one or several justification counterparts, namely the justification
logics of justification axiom systems that correspond to one of the
modal axiom systems of ML.

In particular, the justification counterparts of KB5 are JB4, JB5,
and JB45. The ones for S5 are JT5, JTB5, JDB5, JT45, JTB45, JDB45,
JTB4, and JDB4 (recall from page 16 that KB5 and S5 have more than
one axiom system). Every other modal logic has only one axiom systen
and therefore exactly one justification counterpart, e.g., JD45 for D45.

A deeper correspondance between modal logics and their justification
counterparts is established by realization theorems. The first realiza-
tion theorem was proved by Artemov [Art95, Art01] for the modal
logic S4. It connects S4 with a justification logic that he called LP,
or the Logic of Proofs, and that we refer to as JT4 (note that JT4 is
indeed the justification axiom system that corresponds to KT4, one of
the axiom systems of S4).

Realization theorems are formulated using a natural translation func-
tion from justification to modal formulas:

Definition 1.4.2 (Forgetful projection and realization). Given a jus-
tification formula A, its forgetful projection A◦ is defined by induction
on the structure of A:

P ◦i := Pi, ⊥◦ := ⊥, (A → B)◦ := A◦ → B◦, (t :A)◦ := �A◦.

The forgetful projection of a set X of justification formulas is the set
of their forgetful projections:

X◦ := {A◦ | A ∈ X} .

A justification logic JL realizes a modal logic ML if JL◦ = ML, i.e., if
the forgetful projection of the set of theorems of JL is exactly the set
of theorems of ML.

23

1 Modal and Justification Logics

Using the above notation, the aforementioned realization theorem for
S4 can be formulated as S4 = JT4◦.

While the inclusion ML ⊆ JL◦ of a realization theorem is difficult to
prove, the forgetul projection part JL◦ ⊆ ML is trivial:

Lemma 1.4.3 (Forgetful Projection). Let ML be a modal logic and
let JL be one of its justification counterparts. Let CS be an arbitrary
constant specification for JL. Then (JLCS)◦ ⊆ ML.

Proof. By a straightforward induction on a proof in JLCS. Forgetful
projections of JL-axioms are derivable in ML and forgetful projections
of the rules MP and iANCS are admissible in ML.

The realization theorems we prove in Chapter 3 have an additional re-
striction: diamonds, i.e., negative boxes, should be realized by distinct
variables.

1.5 Basic Properties of Justification Logics

We state some properties of justification logics that we use extensively
in later chapters. Probably the most well-known of these properties
is the Internalization Property, which enables one to internalize as a
term any proof of a formula B, with or without hypotheses. This is
formally stated in Lemma 1.5.2, originally proved for JT4 [Art01].

Definition 1.5.1 (A1, . . . , An `JLCS
B). For any justification logic

JL and constant specification CS for JL and for arbitrary formulas
A1, . . . , An, and B we write A1, . . . , An `JLCS

B provided there exists
a JLCS-proof of B, where A1, . . . , An may serve as additional axioms.

Lemma 1.5.2 (Internalization). For any justification logic JL and
axiomatically appropriate constant specification CS for JL, if

A1, . . . , An `JLCS
B , (1.1)

then there exists a term t(x1, . . . , xn) such that

s1 :A1, . . . , sn :An `JLCS
t(s1, . . . , sn) :B

for all terms s1, . . . , sn. Note that the term t is ground if n = 0.

24

1.5 Basic Properties of Justification Logics

Proof. By induction on a JLCS-proof (1.1). For an axiom, the term t
is taken to be a constant of level 1. For an instance of iANCS with the
outermost constant of level n, the term t is taken to be a constant of
level n + 1. Note that, in both cases, such a constant exists because
CS is assumed to be axiomatically appropriate. For a hypothesis Ai,
we take t(xi) := xi. For a conclusion D of MP with premises C → D
and C, by induction hypothesis, there must exist terms t1 for C → D
and t2 for C. The term for D is taken to be t := t1 · t2.

We mostly use another version of internalization, stated in Corol-
lary 1.5.4. It can be obtained by using rule MP and the Deduction
Theorem for justification logics. The proof of the Deduction Theorem
can be almost literally adopted from that for classical propositional
logic since MP remains the only rule with premises.

Lemma 1.5.3 (Deduction Theorem). For any justification logic JL
and constant specification CS for JL, if

A1, . . . , An `JLCS
B ,

then
A1, . . . , An−1 `JLCS

An → B .

Corollary 1.5.4 (Internalization). For any justification logic JL and
axiomatically appropriate constant specification CS for JL, if

JLCS ` A1 → . . . → An → B ,

then there exists a term t(x1, . . . , xn) such that

JLCS ` s1 :A1 → . . . → sn :An → t(s1, . . . , sn) :B

for all terms s1, . . . , sn. The term t is ground if n = 0.

For logics with positive introspection, a stronger variant of the Inter-
nalization Property holds, usually called Lifting Lemma.

Lemma 1.5.5 (Lifting Lemma). For any justification logic JL ⊇ J4
and axiomatically appropriate constant specification CS for JL, if

A1, . . . , An, t1 :B1, . . . , tm :Bm `JLCS
C , (1.2)

then there exists a term t(x1, . . . , xn, xn+1, . . . , xn+m) such that

s1 :A1, . . . , sn :An, t1 :B1, . . . , tm :Bm `JLCS
t(s1, . . . , sn, t1, . . . , tm) :C

for all terms s1, . . . , sn. The term t is ground if n = 0 and m = 0.

25

1 Modal and Justification Logics

Proof. By induction on a JLCS-proof (1.2). For an axiom, the term t
is taken to be a constant of level 1. For an instance of iANCS with the
outermost constant of level n, the term t is taken to be a constant of
level n + 1. Note that, in both cases, such a constant exists because
CS is assumed to be axiomatically appropriate. For a hypothesis Ai,
1 ≤ i ≤ n, we take t(xi) := xi. For a hypothesis ti :Bi, 1 ≤ i ≤ m, we
take t(xn+i) := !xn+i. For a conclusion D of MP with premises C → D
and C, by induction hypothesis, there must exist terms t1 for C → D
and t2 for C. The term for D is taken to be t := t1 · t2.

Remark 1.5.6 (Lifting Lemma and Positive Introspection). In Sec-
tion 2.2, we show that the Lifting Lemma also holds for logics that
do not contain axiom schema j4 but still prove a schema of positive
introspection: t :A → s(t) : t :A for some term s(x1).

Another important and well-known feature of justification logics is the
so-called Substitution Property, by which we can substitute arbitary
terms for variables and arbitrary formulas for propositions. To for-
mulate it we introduce the concept of a substitution, which also plays
an important role in the realization procedure in Chapter 3. The
following definition is mostly standard, see, e.g., [BN98].

Definition 1.5.7 (Substitution). A substitution (in a justification
language L), denoted by σ, is a total mapping from variables to L-
terms. For any L-term t, the L-term tσ is then inductively defined as
follows:

cjiσ := cji for any constant cji ,
xiσ := σ(xi) for any variable xi,

(∗t)σ := ∗(tσ) for any unary operation ∗, and
(t1 ∗ t2)σ := (t1σ) ∗ (t2σ) for any binary operation ∗.

We write Aσ for the formula that is obtained from A by simultaneously
replacing every term t in A with tσ.

Remark 1.5.8 (n-ary Operations). In Chapter 2, we work with ar-
bitrary n-ary operations, n ≥ 0. For such an operation ∗ the term
∗(t1, . . . , tn)σ is defined as ∗(t1σ, . . . , tnσ).

Lemma 1.5.9 (Substitution Property). For any justification logic JL
and schematic constant specification CS for JL, if JLCS ` A, then

(1) JL ` Aσ for any substitution σ (in the language of JL) and

26

1.5 Basic Properties of Justification Logics

(2) JL ` A[Pi1 7→ B1, . . . , Pin 7→ Bn], where A[Pi1 7→ B1, . . . , Pin 7→
Bn] denotes the result of simultaneously replacing all occurrences
of the distinct propositions Pi1 , . . . , Pin in A with the formulas
B1, . . . , Bn respectively.

Proof. By induction on a JLCS-proof of A. For an axiom, (1) and (2)
hold because if C is an axiom, then Cσ and C[Pi1 7→ B1, . . . , Pin 7→
Bn] are instances of the same axiom schema. For a conclusion cnin :
. . . : c1i1 : C of iANCS, since C, Cσ, and C[Pi1 7→ B1, . . . , Pin 7→ Bn]
are instances of the same axiom schema and CS is schematic, by the
iANCS-rule we have JLCS ` cnin : . . . : c1i1 : Cσ and

JLCS ` cnin : . . . : c1i1 : C[Pi1 7→ B1, . . . , Pin 7→ Bn] .

For a conclusion D of MP with premises C → D and C, by induction
hypothesis, JLCS ` Cσ → Dσ and JLCS ` Cσ. By an application of
MP, JLCS ` Dσ. The inductive step for statement (2) is analogous.

Remark 1.5.10 (Simultaneous substitution). In Lemma 1.5.9 (2),
we formulate simultaneous substitution of several formulas for propo-
sitions. Naturally, it would have been sufficient to allow only a single
such substitution at a time, but this would have resulted in more
cumbersome proofs later on when this lemma is actually used, e.g., in
Lemma 2.2.3. In addition, the proof for the simultaneous version is
exactly the same as for the single-proposition version, and the given
formulation is more in line with Lemma 1.5.9 (1).

In this thesis, we make extensive use of the Internalization Prop-
erty 1.5.4 and the Substitution Property 1.5.9. As a consequence,
it is often required that constant specifications be axiomatically ap-
propriate and schematic.

27

2 Classification via Embedding

We have introduced 24 justification logics and 15 modal logics, some
of which have several justification counterparts according to Defini-
tion 1.4.1. In this chapter, we define what it means for one justification
logic to embed in another and show that the justification counterparts
of a modal logic all mutually embed in each other and, hence, are
pairwise equivalent. This notion of equivalence is also useful to ex-
tend known realization theorems to other, equivalent logics: if two
logics are equivalent and one realizes a modal logic ML, then so does
the other. This enables us—in Chapter 3—to strengthen the realiza-
tion theorem proved there in the sense that it connects every modal
logic to all of its justification counterparts.

The notion of embedding we introduce is quite natural. Consider the
situation in modal logic first. It is common to formulate modal log-
ics with a fixed but unspecified complete set of propositional axiom
schemas. This creates no ambiguity because the set of theorems re-
sulting from different axiomatizations remains the same. The only
change is that, in general, the proof of a formula depends on the given
axiomatization; in particular, an axiom under one axiomatization may
require a more involved proof under another axiomatization. The sit-
uation with justification logics is more nuanced because proofs are
represented in the object language. Therefore, for justification logic,
different proofs due to alternative axiomatizations become different
theorems of the logic, the difference being in the terms used. In the
above mentioned case of an axiom turned theorem, a constant that jus-
tifies the axiom needs to be replaced with a more complicated term.
As a result, an insignificant change in the propositional axiomatization
leads to a different set of theorems, i.e., to a different logic.

The idea that this change of the logic is not significant has been cap-
tured by Fitting [Fit08], who was the first to introduce notions of
embedding and equivalence of justification logics. In his opinion, the
change of a propositional axiomatization leads to a different but equiv-
alent logic, where equivalence is defined as a two-way embedding. In-

29

2 Classification via Embedding

formally, Fitting’s definition of embedding is as follows: a logic JL1

embeds in a logic JL2, provided there is a mapping from constants
of JL1 to terms of JL2 that converts each theorem of JL1 into a theo-
rem of JL2.

Fitting’s notion of embedding is also sufficient to demonstrate that
changing the non-propositional part of the axiomatization in a prov-
ably equivalent way and/or changing the primary Boolean connectives
of the logic would lead to an equivalent logic (in the latter case, pro-
vided the embedding also does the appropriate Boolean conversions).
However, as we will soon show, there are justification logics that realize
the same modal logic but are not equivalent with respect to Fitting’s
definition. These logics differ in their sets of operations on terms. For
instance, we will demonstrate that both JT45 and JT5 realize S5, even
though JT5 lacks the operation of positive introspection.

To explain in which sense JT5 is equivalent to JT45, consider an analo-
gous situation when Boolean connectives are changed. If conjunction
is not present in the language, it can be defined via primary con-
nectives. We propose to do the same with operations on terms. In
particular, ! missing in JT5 can be defined via the remaining opera-
tions. In other words, j4 can be proved in JT5 if ! s is replaced with
another term t!(s). Hence, to obtain a sufficiently general notion of
equivalence, we generalize Fitting’s definition of an embedding from
0-ary operations (i.e., constants) to arbitrary n-ary operations. In-
formally, we say that JL1 embeds in JL2, provided there is a mapping
from operations of JL1 to terms of JL2 that maps each n-ary operation
to a term with n distinct variables such that each theorem of JL1 is
converted into a theorem of JL2. We call such a mapping an operation
translation.

Remark 2.0.11 (Avoiding trivial equivalences). To see why the prop-
erty of realizing the same modal logic by itself does not qualify as a
definition of equivalence, imagine a “justification logic” that is ob-
tained from JT45 by replacing all the terms with a single constant.
Such a logic trivially realizes S5, but intuitively it should not be con-
sidered equivalent to JT45.

Many definitions and results in Section 2.1 not only apply to what we
call the extensions of J but to a more general class of justification log-
ics. Everything up to Definition 2.1.10 is general enough to be applica-
ble to logics with any collection of justification terms. Fact 2.1.11 holds
for justification logics that satisfy the Substitution Property whereas

30

2.1 The Concept of Embedding

Lemma 2.1.13 and Theorem 2.1.15 hold for justification logics that
satisfy the Internalization and Substitution Properties and prove sum.
The remaining results are specific to the extensions of J.

In Section 2.1, we introduce the concept of embedding. In Section 2.2,
we classify all our logics with respect to embedding. In Section 2.3, we
present an alternative, weaker concept of embedding that we call local
embedding and that allows to dispense with the levels of constants.

2.1 The Concept of Embedding

Even though the operations of our logics are at most binary, we want
to keep the following definitions as general as possible. Note that, in
this general setting, we use prefix notation also for binary operations.

Definition 2.1.1 (Operation Translation). Let L1 and L2 be two
justification languages. An operation translation ω (from L1 to L2)
is a total function that for each n ≥ 0, maps every n-ary operation ∗
of L1 to an L2-term ω(∗) = ω∗(x1, . . . , xn). In particular, constants
of L1 are mapped to ground terms of L2. For any L1-term t, the
term tω is inductively defined as follows:

xiω := xi ,(
∗(t1, . . . , tn)

)
ω := ω∗(t1ω, . . . , tnω) ,

for any variable xi and n-ary operation ∗ of L1, n ≥ 0. Similarly, for
any L1-formula A, the formula Aω is inductively defined as follows:

Piω := Pi ,

⊥ω := ⊥ ,

(A → B)ω := Aω → Bω ,

(t :B)ω := (tω) : (Bω) .

Whenever safe, we omit parentheses and write, e.g., ∗(t1, . . . , tn)ω
instead of

(
∗(t1, . . . , tn)

)
ω.

As an example, let ? be a unary operation in the language L1 and
ω(?) = ω?(x1). Then(

¬s :A → ? s : ¬s :A
)
ω = ¬(sω) : (Aω) → ω?(sω) : ¬(sω) : (Aω) .

31

2 Classification via Embedding

Fact 2.1.2 (Properties of Operation Translations). Let ω be an op-
eration translation from L1 to L2 and let t and A be an L1-term and
an L1-formula respectively. Then

(1) tω is an L2-term and Aω is an L2-formula;

(2) A◦ = (Aω)◦;

(3) for any justification variable xi, we have that xi occurs in Aω
iff xi occurs in A.

Proof. (1): By induction on the structure of t. The statement is trivial
for variables. Let t = ∗(t1, . . . , tn) for an n-ary L1-operation ∗, n ≥ 0.
By definition, ω(∗) is an L2-term ω∗(x1, . . . , xn). Since t1ω, . . . , tnω
are L2-terms by induction hypothesis, tω = ω∗(t1ω, . . . , tnω) is also
an L2-term.

By induction on the structure of A. The propositional cases are trivial.
Let A = t : B. As shown above, tω is an L2-term. By induction
hypothesis, Bω is an L2-formula. Hence, Aω = (tω) : (Bω) is also an
L2-formula.

(2): By induction on the structure of A. The propositional cases
are trivial. If A = t : B, then A◦ = (t : B)◦ = �B◦ and (Aω)◦ =
((tω):(Bω))◦ = �(Bω)◦, which is the same as �B◦ since, by induction
hypothesis, B◦ = (Bω)◦.

(3): It is enough to show by induction on the structure of t that
vars(t) = vars(tω) for an arbitrary term t. If t is a variable xi,
then xiω = xi. If t = ∗(t1, . . . , tn) for n ≥ 0, then ω(∗) is a term
ω∗(x1, . . . , xn). By induction hypothesis, vars(ti) = vars(tiω) for
1 ≤ i ≤ n. Therefore we have

vars(tω) = vars(ω∗(t1ω, . . . , tnω)) =

n⋃
i=1

vars(tiω) =

n⋃
i=1

vars(ti) =

vars(∗(t1, . . . , tn)) = vars(t) .

Definition 2.1.3 (Embedding and equivalence). Let JL1 and JL2 be
justification logics over languages L1 and L2 respectively. We say
that JL1 embeds in JL2, written JL1 ⊆̃ JL2, if there exists an operation
translation ω from L1 to L2 such that

JL1 ` A =⇒ JL2 ` Aω

32

2.1 The Concept of Embedding

for any L1-formula A. We say that JL1 and JL2 are equivalent, written
JL1 ≡ JL2, if JL1 ⊆̃ JL2 and JL2 ⊆̃ JL1.

By the following lemma, equivalent logics realize the same modal logic.

Lemma 2.1.4 (Equivalence and Forgetful Projection). Let JL1 and
JL2 be justification logics over languages L1 and L2 respectively. Then
JL1 ≡ JL2 implies (JL1)◦ = (JL2)◦. 1

Proof. We show that JL1 ⊆̃ JL2 implies (JL1)◦ ⊆ (JL2)◦. The opposite
inclusion is analogous. Let ω be an operation translation that wit-
nesses the embedding JL1 ⊆̃ JL2. Each modal formula B ∈ (JL1)◦

has the form A◦ for some L1-formula A such that JL1 ` A. By
Fact 2.1.2 (1), Aω is an L2-formula. By definition of the embed-
ding relation, JL2 ` Aω. By Fact 2.1.2 (2), (Aω)◦ = A◦ = B. Hence,
B ∈ (JL2)◦.

Definition 2.1.5 (Identity Operation Translation). The identity op-
eration translation ωid (for a language L) is the operation translation
that for each n ≥ 0, maps every n-ary L-operation ∗ to ∗(x1, . . . , xn).

Lemma 2.1.6 (Identity Operation Translation). Let ωid be the iden-
tity operation translation for a language L. Then for every L-term t
and L-formula A, t = tωid and A = Aωid.

Proof. By straightforward inductions on the structure of an L1-term t
and of an L1-formula A respectively.

Lemma 2.1.7 (Extension and Embedding). Let JL1 and JL2 be jus-
tification logics with JL1 ⊆ JL2. Then JL1 ⊆̃ JL2.

Proof. Let L1 and L2 be the languages of JL1 and JL2 respectively.
Let ωid be the identity operation translation for L1. We have L1 ⊆ L2

and, therefore, ωid is an operation translation from L1 to L2. By
Lemma 2.1.6, if JL1 ` A, then JL1 ` Aωid, and, consequently, JL2 `
Aωid. Thus, JL1 ⊆̃ JL2.

In order to show that ≡ is indeed an equivalence relation, we need the
following auxiliary lemma.

1Note that the definition of forgetful projection does not depend on which justi-
fication terms are used in the logic.

33

2 Classification via Embedding

Lemma 2.1.8 (Operation Translation and Substitution). Let ω be an
operation translation from a language L1 to a language L2 and let σ be
an L1-substitution. Then for any L1-term t, we have (tσ)ω = (tω)σ′,
where σ′ is the L2-substitution defined by σ′(xi) := σ(xi)ω for any
variable xi.

Proof. By induction on the structure of t. If t is a variable xi, then
(xiω)σ′ = xiσ

′ = σ′(xi) = σ(xi)ω = (xiσ)ω. If t = ∗(t1, . . . , tn) for
some n-ary L1-operation ∗, n ≥ 0, then(
∗(t1, . . . , tn)σ

)
ω = ∗(t1σ, . . . , tnσ)ω = ω∗

(
(t1σ)ω, . . . , (tnσ)ω

)
.

By induction hypothesis, this is the same as

ω∗
(
(t1ω)σ′, . . . , (tnω)σ′

)
=
(
ω∗(t1ω, . . . , tnω)

)
σ′

=
(
∗(t1, . . . , tn)ω

)
σ′ .

The penultimate equality holds because the only variables that occur
in ω∗(t1ω, . . . , tnω) are those that occur in one of t1ω, . . . , tnω.

Recall that a preorder (also called quasi-order) is a binary relation
that is reflexive and transitive.

Lemma 2.1.9 (Equivalence Relation). The relation ⊆̃ is a preorder.
Accordingly, ≡ is an equivalence relation.

Proof. Since each logic is a trivial extension of itself, it follows from
Lemma 2.1.7 that each logic embeds in itself. Hence, ⊆̃ is reflexive.

Let JL1, JL2, and JL3 be justification logics over languages L1, L2,
and L3 respectively. Let operation translations ω′ and ω′′ witness the
embeddings JL1 ⊆̃ JL2 and JL2 ⊆̃ JL3 respectively. We show JL1 ⊆̃ JL3.
For every L1-formula A, JL1 ` A implies JL2 ` Aω′. Accordingly, for
every L2-formula B, JL2 ` B implies JL3 ` Bω′′. Let JL1 ` A for an
L1-formula A. It follows that JL3 ` (Aω′)ω′′. Let ω be defined by

ω(∗) := ω′(∗)ω′′

for every n-ary L1-operation ∗, n ≥ 0. Since ω′(∗) is an L2-term
with x1, . . . , xn as its only variables, it follows from Facts 2.1.2 (1)
and 2.1.2 (3) that ω′(∗)ω′′ is an L3-term with the same variables.
Hence, ω is an operation translation from L1 to L3. It is now sufficient

34

2.1 The Concept of Embedding

to show that (Aω′)ω′′ = Aω. To this end, we show that (tω′)ω′′ = tω
for every L1-term t by induction on the structure of t.

If t is a variable xi, then (xiω
′)ω′′ = xiω

′′ = xi = xiω.

Let t = ∗(t1, . . . , tn) for some n-ary L1-operation ∗, n ≥ 0. Then(
∗(t1, . . . , tn)ω′

)
ω′′ =

(
ω′∗(t1ω

′, . . . , tnω
′)
)
ω′′ ;

in other words, for the L2-substitution

σ := {xi 7→ tiω
′ | 1 ≤ i ≤ n} ∪ {xi 7→ xi | i > n}

we have (
∗(t1, . . . , tn)ω′

)
ω′′ =

(
ω′(∗)σ

)
ω′′ . (2.1)

By definition, ∗(t1, . . . , tn)ω = ω∗(t1ω, . . . , tnω). By induction hy-
pothesis, this is the same as

ω∗
(
(t1ω

′)ω′′, . . . , (tnω
′)ω′′

)
= ω(∗)σ′

for the L3-substitution

σ′ := {xi 7→ (tiω
′)ω′′ | 1 ≤ i ≤ n} ∪ {xi 7→ xi | i > n} .

By definition of ω, we have ω(∗)σ′ =
(
ω′(∗)ω′′

)
σ′. Altogether,

∗ (t1, . . . , tn)ω =
(
ω′(∗)ω′′

)
σ′ . (2.2)

Note that σ′(xi) = σ(xi)ω
′′ for any variable xi. Therefore, it follows by

Lemma 2.1.8 that
(
ω′(∗)σ

)
ω′′ =

(
ω′(∗)ω′′

)
σ′ and, by (2.1) and (2.2),(

∗(t1, . . . , tn)ω′
)
ω′′ = ∗(t1, . . . , tn)ω .

Hence, ⊆̃ is transitive.

Thus, ⊆̃ is a preorder. The definition of ≡ is a standard definition of
the equivalence relation induced by the preorder ⊆̃.

Our goal is to find sufficient conditions for two logics to embed in each
other. Axiom schemas (formula schemas in general) and constants
play a fundamental role in this respect. It is convenient to write
formula schemas in the form of their formula representation:

Definition 2.1.10 (Formula Representation of Schemas). Let L1 be
a justification language.

35

2 Classification via Embedding

(1) Any L1-formula of the form

A(x1, . . . , xn, P1, . . . , Pk) ,

with n, k ≥ 0 and with all variables and propositions indicated,
is called a formula representation of an L1-formula schema S.

(2) For arbitrary L1-terms t1, . . . , tn and L1-formulas B1, . . . , Bk,
the formula

A(t1, . . . , tn, B1, . . . , Bk)

is called an instance of S.

(3) For a justification logic JL over language L1, an L1-schema S
is called provable in JL if the formula representation of S is a
theorem of JL.

(4) For an operation translation ω from L1 to a justification lan-
guage L2, the L2-formula schema represented by the formula

A(x1, . . . , xn, P1, . . . , Pk)ω

is denoted by Sω.

For the rest of this chapter we write the justification axiom schemas
from Figures 1.5 and 1.6 using their formula representations. For
instance, the axiom schema j4 is now written as x1 : P1 → !x1 : x1 : P1

instead of t :A → ! t : t :A, with a variable t over terms and a variable A
over formulas.

Fact 2.1.11 (Properties of Formula Schemas). Let L1 and L2 be justi-
fication languages, S be an L1-formula schema with formula represen-
tation A(x1, . . . , xn, P1, . . . , Pk), JL be a justification logic over L1 that
satisfies the Substitution Property, and ω be an operation translation
from L1 to L2. Then

(1) S is provable in JL iff all instances of S are theorems of JL;

(2) if A is an instance of S, then Aω is an instance of Sω.

Proof. (1): If S is provable in JL, by the Substitution Lemma 1.5.9, so
is every instance A(t1, . . . , tn, B1, . . . , Bk) of S. The converse is trivial
since A(x1, . . . , xn, P1, . . . , Pk) is itself an instance of S.

(2): By Fact 2.1.2 (3), the L2-formula A(x1, . . . , xn, P1, . . . , Pk)ω that
represents the schema Sω has all variables and propositions indicated.

36

2.1 The Concept of Embedding

Therefore, it can be written as B(x1, . . . , xn, P1, . . . , Pk). For any
instance A(t1, . . . , tn, B1, . . . , Bk) of S the formula

A(t1, . . . , tn, B1, . . . , Bk)ω = B(t1ω, . . . , tnω,B1ω, . . . , Bkω)

is clearly an instance of Sω.

We now finally explain why constants are assigned levels. Suppose, as
an example, we want to embed JTB4 in JDB4 and that constants do
not have levels. Then, for a single constant c

c : c : . . . : c︸ ︷︷ ︸
m

: (x1 : P1 → P1)

would be provable in JTB4 for all m > 0. Note that the above is
not provable in JDB4 because x1 : P1 → P1 is not an axiom in JDB4
(it is, however, provable in JDB4 as a theorem; cf. Lemma 2.2.6).
Showing that JTB4 embeds in JDB4 would thus require us, according
to Definition 2.1.3, to provide an operation translation ω that, in
particular, maps c to some ground term p such that

p : p : . . . : p︸ ︷︷ ︸
m

: (x1 : P1 → P1) (2.3)

is provable in JDB4 for all m > 0. It can be shown (cf. Lemma 2.3.3)
that for a particular m there exists a term pm that satisfies (2.3).
However, because terms are finite objects, there is no term p that
satisfies (2.3) for every number m. As a consequence, the desired ω
does not exist. The assignment of levels to constants is a solution to
this problem because it enables us to map constants of different levels
to different ground terms.

Remark 2.1.12 (Levels and Constant Specifications). Even though
Fitting’s definition of embedding from [Fit08] is less general than ours,
the problem just described still potentially occurs. Fitting avoided it
by imposing injective constant specifications: at most one formula
is justified by each (sequence of) constant(s). Note that—strictly
speaking—our solution of assigning levels to constants can also be
viewed as a restriction on the usage of constants, i.e., a constant spec-
ification. But the assignment of levels is less restrictive than injective
constant specifications.

Recall that an inference rule is called admissible in a logic L provided
that for any instance of the rule, if its premises are provable in L, then
so is its conclusion.

37

2 Classification via Embedding

Lemma 2.1.13 (Iterated Internalization of Schemas). Let L be a
justification language that has a binary operation +. Let JL be a jus-
tification logic over L that enjoys Internalization Property 1.5.4 and
Substitution Lemma 1.5.9, in which MP is an admissible rule and
x1 :P1 → (x1 +x2) :P1 and x2 :P1 → (x1 +x2) :P1 are provable formula
schemas, collectively referred to as sum.2 Let S1, . . . , Sn be L-formula
schemas provable in JL. There exists an infinite sequence of ground
L-terms p1, p2, . . . such that for any m > 0 and for any L-instance A
of one of Si, 1 ≤ i ≤ n,

JL ` pm : pm−1 : . . . : p1 :A .

Proof. Let Ai(x1, . . . , xki , P1, . . . , Pli) be a formula representation of
schema Si, i = 1, . . . , n. We show how to construct the term pj ,
j = 1, 2, . . . by induction on j. For each 1 ≤ i ≤ n, by Internalization
Property 1.5.4, there exists a ground L-term p1

i such that

JL ` p1
i :Ai(x1, . . . , xki , P1, . . . , Pli) .

Let p1 := p1
1 + . . . + p1

n. For each 1 ≤ i ≤ n, by using appropriate
instances of the schemas sum and the rule MP, we obtain

JL ` p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Assume that for some m > 0, we have already constructed ground
L-terms p1, p2, . . . , pm such that for all i = 1, . . . , n

JL ` pm : pm−1 : . . . : p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

We show how to construct pm+1. For each 1 ≤ i ≤ n, by Internaliza-
tion Property 1.5.4, there exists a ground L-term pm+1

i such that

JL ` pm+1
i : pm : . . . : p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Let pm+1 := pm+1
1 + . . . + pm+1

n . Again, for each 1 ≤ i ≤ n, by
instances of sum and MP,

JL ` pm+1 : pm : . . . : p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

2Earlier in this thesis, sum denoted one of the axiom schemas of J. We are using
the same name here because these two formula schemas coincide with that
axiom schema. The only difference is that instead of requiring them to be
axiom schemas as before, here we only postulate that all their instances are
theorems.

38

2.1 The Concept of Embedding

Thus, we have constructed an infinite sequence of ground L-terms
p1, p2, . . . such that for all m > 0 and for all i = 1, . . . , n,

JL ` pm : pm−1 : . . . : p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Therefore, JL ` pm : pm−1 : . . . : p1 : A for every L-instance A of one
of Si, 1 ≤ i ≤ n, by the Substitution Lemma 1.5.9.

Because all the extensions of J have the rule MP, the two sum-axiom
schemas, and satisfy both Internalization Property 1.5.4 and Substi-
tution Lemma 1.5.9, we obtain the following

Corollary 2.1.14 (Iterated Internalization of Schemas for the Ex-
tensions of J). Let JL be an extension of J as defined on page 19.
Then Lemma 2.1.13 holds for JLCS, provided CS is an axiomatically
appropriate and schematic constant specification for JL.

Theorem 2.1.15 (Embedding). Let JL1 and JL2 be two justifica-
tion logics over languages L1 and L2 respectively. Let the set of con-
stants of L1 be divided into levels (cf. page 17), let → be one of binary
Boolean connectives, and let MP and iANCS be the only rules of JL1.
Let JL2 and L2 satisfy all the conditions of Lemma 2.1.13. Assume
the following:

(1) JL1 is axiomatized by finitely many axiom schemas;

(2) the formula representations of the axiom schemas of JL1 do not
contain constants;3

(3) there exists an operation translation ω from L1 to L2 such that
for every axiom schema S of JL1, the L2-formula schema Sω is
provable in JL2.

Then JL1 embeds in JL2.

Proof. We have to show that there exists an operation translation ω′

from L1 to L2 such that JL1 ` A implies JL2 ` Aω′ for any L1-
formula A.

Let S1, . . . , Sn be the axiom schemas of JL1. By assumption (3), the
L2-schemas S1ω, . . . , Snω are provable in JL2. By Lemma 2.1.13, there
exists an infinite sequence of ground L2-terms p1, p2, . . . such that for
every m > 0 and for every L2-instance B of one of Siω for 1 ≤ i ≤ n,

JL2 ` pm : pm−1 : . . . : p1 :B . (2.4)

3Naturally, the axiom instances can contain constants.

39

2 Classification via Embedding

Let the operation translation ω′ be defined as follows:

ω′(∗) :=

{
pj if ∗ is an L1-constant cji of level j > 0,

ω(∗) otherwise.

Clearly, ω′ is an operation translation from L1 to L2.

Let A be an arbitrary theorem of JL1. We show by induction on a
JL1-proof of A that JL2 ` Aω′. Note that Aω′ is an L2-formula by
Fact 2.1.2 (1).

If A is an instance of an axiom schema Si of JL1, 1 ≤ i ≤ n, then, by
Fact 2.1.11 (2), Aω′ is an instance of the L2-formula schema Siω

′. The
latter coincides with the L2-formula schema Siω because the formula
representation of Si does not contain any constants by assumption (2)
and ω agrees with ω′ on operations of positive arity. Thus, Aω′ is an
instance of the provable schema Siω and is itself provable in JL2 by
Fact 2.1.11 (1).

If A is obtained by the rule iANCS, then it is of the form cmim : . . . :c1i1 :B,
where B is an instance of an axiom schema Si for some 1 ≤ i ≤ n.
As shown in the previous paragraph, Bω′ is then an instance of the
formula schema Siω. By (2.4), we have JL2 ` pm : . . . : p1 :Bω′, which
is the same as JL2 ` Aω′ by definition of ω′.

Finally, if A is obtained by MP from B → A and B, then, by induction
hypothesis, JL2 ` Bω′ → Aω′ and JL2 ` Bω′, and, therefore, JL2 `
Aω′ follows by MP.

Since conditions (1) and (2) of the above theorem hold for any exten-
sion of J, we have

Corollary 2.1.16 (Embedding for the Extensions of J). Let JL1 and
JL2 be two extensions of J as defined on page 19 and let CS and CS′

be an arbitrary constant specification for JL1 and an axiomatically
appropriate and schematic constant specification for JL2 respectively.
If there exists an operation translation ω from the language of JL1 to
the language of JL2 such that for every axiom schema S of JL1, the
formula schema Sω is provable in JL2CS′ , then JL1CS

embeds in JL2CS′ .

Additionally, by Corollary 2.1.16 and Lemma 2.1.6:

Corollary 2.1.17 (Equivalence and Constant Specifications). Let
JL be an extension of J and let CS1 and CS2 be constant specifica-

40

2.2 Classification of Logics

tions for JL that are axiomatically appropriate and schematic. Then
JLCS1

and JLCS2
are equivalent.

2.2 Classification of Logics

We now return to our justification logics that we call the extensions
of J. Corollary 2.1.16 can be used to prove that for every modal
logic, its justification counterparts are pairwise equivalent. It will be
sufficient to provide appropriate operation translations. Moreover, for
all such operation translations ω, we can set ω(+) := x1 + x2 and
ω(·) := x1 · x2, as in the identity operation translation, because the
axiom schemas sum and app are present in all the extensions of J.

We proceed to prove that all the justification counterparts (as defined
on page 23) of KB5 are pairwise equivalent and so are those of S5.
Lemma 2.2.6 is the main ingredient for the construction of operation
translations that witness these embeddings between justification log-
ics. To prove it, we need five auxiliary lemmas, some of which are
later used in the realization proof in Section 3.3.

Lemma 2.2.1 (Consistency). Let JL ⊇ JD and let CS be an arbitrary
constant specification for JL. For arbitrary terms t and s and an
arbitrary formula A,

JLCS ` t :A → ¬s : ¬A .

Proof. From the app-instance s : (A → ⊥) → t :A → (s · t) :⊥, we obtain
by propositional reasoning and the jd-instance (s · t) :⊥ → ⊥

JLCS ` t :A → s : (A → ⊥) → ⊥ ,

which is the same as JLCS ` t :A → ¬s : ¬A.

The following lemma provides a uniform realization of the theorem
�(A → B) → �(B → C) → �(A → C) of K.

Lemma 2.2.2 (Syllogism). Let JL be a justification logic and let
CS be an axiomatically appropriate and schematic constant specifi-
cation for JL. There exists a term syl(x1, x2) such that for arbitrary
terms t1 and t2 and for arbitrary justification formulas A, B, and C,

JLCS ` t1 : (A → B) → t2 : (B → C) → syl(t1, t2) : (A → C) .

41

2 Classification via Embedding

Proof. From the propositional tautology (P1 → P2) → (P2 → P3) →

(P1 → P3), by Internalization Property 1.5.4, there exists a term
syl(x1, x2) such that for arbitrary terms t1 and t2,

JLCS ` t1 : (P1 → P2) → t2 : (P2 → P3) → syl(t1, t2) : (P1 → P3) .

The desired result now follows from the Substitution Lemma 1.5.9.
Note that syl(x1, x2) does not depend on t1, t2, A, B, or C.

Lemma 2.2.3 (Internalized Factivity). Let JL ⊇ J5 and let CS be an
axiomatically appropriate and schematic constant specification for JL.
There exists a term fact(x1) such that for any term s and any justifi-
cation formula A,

JLCS ` fact(s) : (s :A → A) .

Proof. From the propositional tautology P1 → P2 → P1, by Internal-
ization Property 1.5.4, there exists a term t1(x1) such that JLCS `
s : P1 → t1(s) : (P2 → P1) for any term s. Hence, by the Substitution
Lemma 1.5.9, for any formula A,

JLCS ` s :A → t1(s) : (s :A → A) . (2.5)

Similarly, for ¬P2 → P2 → P1, there exists a term t2(x1) such that

JLCS ` ? s : ¬P2 → t2(? s) : (P2 → P1)

for any term s. By the Substitution Lemma 1.5.9,

JLCS ` ? s : ¬s :A → t2(? s) : (s :A → A)

for any formula A. Since ¬s :A → ? s : ¬s :A is a j5-instance, it follows
that

JLCS ` ¬s :A → t2(? s) : (s :A → A) .

From this, (2.5), and sum, we have JLCS ` fact(s) : (s : A → A) for
fact(x1) := t1(x1) + t2(?x1). Note that fact(x1) depends on nei-
ther s nor A.

The following auxiliary lemma is used in the proofs of Lemmas 2.2.5
and 2.2.6.

42

2.2 Classification of Logics

Lemma 2.2.4 (Inverse to Negative Introspection, Internalized). Let
JL ⊇ J5 and let CS be an axiomatically appropriate and schematic
constant specification for JL. There exists a term invnegint(x1) such
that for arbitrary terms t and s and for any justification formula A,

JLCS ` s : ¬ ? t : ¬t :A → invnegint(s) : t :A .

Proof. By a propositional tautology and Internalization Property 1.5.4
there exists a ground term p such that

JLCS ` p :
(
(¬x2 : P1 → ?x2 : ¬x2 : P1) → ¬ ?x2 : ¬x2 : P1 → x2 : P1

)
.

Since CS is axiomatically appropriate, by j5 and iANCS,

JLCS ` c1j :
(
¬x2 : P1 → ?x2 : ¬x2 : P1

)
for some constant c1j of level 1. Therefore, by app and MP,

JLCS ` (p · c1j) : (¬ ?x2 : ¬x2 : P1 → x2 : P1) .

Also by app and MP,

JLCS ` x1 : ¬ ?x2 : ¬x2 : P1 → (p · c1j · x1) : x2 : P1 .

The statement of the lemma for invnegint(x1) := p · c1j ·x1 now follows
from the Substitution Lemma 1.5.9. Note that invnegint(x1) does not
depend on t, s, or A.

Lemma 2.2.5 (Internalized Positive Introspection). Let JL ⊇ J5 and
let CS be an axiomatically appropriate and schematic constant speci-
fication for JL. There exist terms posint(x1) and t!(x1) such that for
any term s and any justification formula A,

JLCS ` posint(s) :
(
s :A → t!(s) : s :A

)
.

Proof. We first show that there exists a term s(x1) such that for
any t and A,

JLCS ` s(t) : (A → ? t : ¬t : ¬A) . (2.6)

By a propositional tautology and Internalization Property 1.5.4 there
exists a ground term p such that

JLCS ` p :
(
(x1 : ¬P1 → ¬P1) → P1 → ¬x1 : ¬P1

)
.

43

2 Classification via Embedding

By Lemma 2.2.3, for the term fact(x1) constructed there, JLCS `
fact(x1) : (x1 : ¬P1 → ¬P1). By app and MP,

JLCS `
(
p · fact(x1)

)
: (P1 → ¬x1 : ¬P1) .

Since CS is axiomatically appropriate, for some constant c1i of level 1,
c1i : (¬x1 : ¬P1 → ?x1 : ¬x1 : ¬P1) is provable in JLCS by j5 and iANCS.
Hence, by Lemma 2.2.2,

JLCS ` syl
(
p · fact(x1), c1i

)
: (P1 → ?x1 : ¬x1 : ¬P1) .

Now (2.6) follows from the Substitution Lemma 1.5.9 for s(x1) :=
syl
(
p · fact(x1), c1i

)
.

By Lemma 2.2.4, for the term invnegint(x1) constructed there,

JLCS ` ? ?x1 : ¬ ?x1 : ¬x1 : P1 → invnegint(? ?x1) : x1 : P1 .

Then, by Internalization Property 1.5.4, there exists a ground term p2

such that

JLCS ` p2 :
(
? ?x1 : ¬ ?x1 : ¬x1 : P1 → invnegint(? ?x1) : x1 : P1

)
.

By (2.6), for t = ?x1 and A = x1 : P1,

JLCS ` s(?x1) : (x1 : P1 → ? ?x1 : ¬ ?x1 : ¬x1 : P1) .

Hence, by Lemma 2.2.2,

JLCS ` syl
(
s(?x1), p2

)
:
(
x1 : P1 → invnegint(? ?x1) : x1 : P1

)
.

For posint(x1) := syl
(
s(?x1), p2

)
and t!(x1) := invnegint(? ?x1), the

statement of the lemma now follows by the Substitution Lemma 1.5.9.
Note that t!(x1) and posint(x1) depend on neither s nor A.

Lemma 2.2.6 (Operation Replacement). Let CS1 be an arbitrary con-
stant specification for JT5 and let CS2, CS3, CS4, CS5, and CS6 be
constant specifications for JT5, JB5, JB4, JDB4, and JDB5 respec-
tively that are axiomatically appropriate and schematic. Then there
exist an L(?, ?̄)-term t′!(x1) and an L(!, ?̄)-term t?(x1) such that

(1) JT5CS1 ` A → ? s : ¬s : ¬A;

(2) JT5CS2
` s :A → t!(s) : s :A;

(3) JB5CS3
` s :A → t′!(s) : s :A;

44

2.2 Classification of Logics

(4) JB4CS4
` ¬s :A → t?(s) : ¬s :A;

(5) JDB4CS5 ` s :A → A;

(6) JDB5CS6
` s :A → A,

where t!(x1) is the L(?)-term constructed in Lemma 2.2.5, and s and
A denote an arbitrary term and formula respectively, in each case in
the language of the given logic.

Proof. (1) The formula ¬s : ¬A → ? s : ¬s : ¬A is an instance of j5.
Hence, A → ? s : ¬s : ¬A follows by syllogism with A → ¬s : ¬A, which
is the contraposition of an instance of jt.

(2) By Lemma 2.2.5, for the terms posint(x1) and t!(x1) constructed
there,

JT5CS2
` posint(s) :

(
s :A → t!(s) : s :A

)
.

The desired statement now follows from an instance of jt.

(3) By Lemma 2.2.4, for the ground term invnegint(x1) constructed
there,

JB5CS3
` ?̄ ?x1 : ¬ ?x1 : ¬x1 : P1 → invnegint(?̄ ?x1) : x1 : P1 .

Since x1 : P1 → ?̄ ?x1 : ¬ ?x1 : ¬x1 : P1 is an instance of jb, for

t′!(x1) := invnegint(?̄ ?x1) ,

we have JB5CS3 ` x1 : P1 → t′!(x1) : x1 : P1 by syllogism. The desired
statement now follows by the Substitution Lemma 1.5.9. Note that
t′!(x1) depends on neither s nor A.

(4) By a propositional tautology and Internalization Property 1.5.4,
there exists a ground term p1 such that JB4CS4 ` p1 : (x1 : P1 →

¬¬x1 : P1). By the axiom schema app,

JB4CS4
` !x1 : x1 : P1 → (p1 · !x1) : ¬¬x1 : P1 .

By syllogism and the j4-instance x1 : P1 → !x1 : x1 : P1,

JB4CS4
` x1 : P1 → (p1 · !x1) : ¬¬x1 : P1 .

By contraposition and Internalization Property 1.5.4, there exists a
term t1(x1) such that

JB4CS4
` ?̄(p1 · !x1) : ¬(p1 · !x1) : ¬¬x1 : P1 → t1

(
?̄(p1 · !x1)

)
: ¬x1 : P1 .

45

2 Classification via Embedding

From the jb-instance

¬x1 : P1 → ?̄(p1 · !x1) : ¬(p1 · !x1) : ¬¬x1 : P1 ,

it follows by syllogism that JB4CS4
` ¬x1 : P1 → t?(x1) : ¬x1 : P1 for

t?(x1) := t1
(
?̄(p1 · !x1)

)
.

The desired statement now follows by the Substitution Lemma 1.5.9.
Note that t?(x1) depends on neither s nor A.

(5) By the propositional tautology P1 → ¬¬P1 and Internalization
Property 1.5.4, there exists a term t1(x1) such that

JDB4CS5
` x1 : P1 → t1(x1) : ¬¬P1 .

By contraposition and Internalization Property 1.5.4, there exists a
term t2(x1) such that

JDB4CS5 ` x2 : ¬t1(x1) : ¬¬P1 → t2(x2) : ¬x1 : P1 .

Again by contraposition,

JDB4CS5
` ¬t2(x2) : ¬x1 : P1 → ¬x2 : ¬t1(x1) : ¬¬P1 . (2.7)

By Lemma 2.2.1, JDB4CS5
` !x1 : x1 : P1 → ¬t2(x2) : ¬x1 : P1. By the

j4-instance x1 : P1 → !x1 : x1 : P1 and syllogism,

JDB4CS5 ` x1 : P1 → ¬t2(x2) : ¬x1 : P1 .

By syllogism with (2.7),

JDB4CS5
` x1 : P1 → ¬x2 : ¬t1(x1) : ¬¬P1 .

By the Substitution Lemma 1.5.9,

JDB4CS5
` x1 : P1 → ¬ ?̄ t1(x1) : ¬t1(x1) : ¬¬P1 .

It follows by the contrapositive ¬ ?̄ t1(x1) : ¬t1(x1) : ¬¬P1 → P1 of a
jb-instance and by syllogism that JDB4CS5

` x1 :P1 → P1. The desired
statement now follows by the Substitution Lemma 1.5.9.

(6) By repeating the steps that lead to (2.7) in the proof of 2.2.6 (5),

JDB5CS6
` ¬t2(x2) : ¬x1 : P1 → ¬x2 : ¬t1(x1) : ¬¬P1 (2.8)

46

2.2 Classification of Logics

for some terms t1(x1) and t2(x1). Let

CS−6 := CS6 \ {cnin : . . . : c1i1 :A | A is an instance of jd} .

Since CS6 is axiomatically appropriate and schematic, CS−6 ⊆ CS6 is
an axiomatically appropriate and schematic constant specification for
JB5. Therefore, by Lemma 2.2.6 (3), for the term t′!(x1) constructed
there,

JB5CS−6
` x1 : P1 → t′!(x1) : x1 : P1 .

Since JB5CS−6
⊆ JDB5CS6

, the same formula is provable in JDB5CS6
.

By Lemma 2.2.1,

JDB5CS6 ` t′!(x1) : x1 : P1 → ¬t2(x2) : ¬x1 : P1 .

By syllogism,

JDB5CS6 ` x1 : P1 → ¬t2(x2) : ¬x1 : P1 .

By syllogism with (2.8),

JDB5CS6 ` x1 : P1 → ¬x2 : ¬t1(x1) : ¬¬P1 .

It remains to repeat the final steps of the proof of Lemma 2.2.6 (5).

Remark 2.2.7 (Uniformity of Terms). Note that the constants occur-
ring in the terms constructed in Lemma 2.2.6 depend on the constant
specifications used. For example, although the term t!(x1) works in
a uniform way for a given constant specification CS—i.e., JT5CS `
s :A → t!(s) : s :A for arbitrary s and A—the constants in t!(x1) might
change if a different constant specification is used.

Remark 2.2.8 (Why ?̄ is not ?). In [BGK10], a single operation ? was
used to formulate both the axiom schemas j5 and jb. This decision was
motivated by a desire to minimize the number of operations on terms.
It was possible to use ? to realize the modal axiom schema b in JT5
becauseA → ? s:¬s:¬A is provable in JT5 (cf. Lemma 2.2.6 (1)). Hence,
JB embeds in JT5 by an operation translation that replaces ?̄ with ?.
However, the same operation translation does not embed JB in J5; nor
does the inverse operation translation that replaces ? with ?̄ embed
J5 in JB. In fact, no operation translation embeds JB in J5 or J5 in JB.
Indeed, if JB ⊆̃ J5, then, by the proof of Lemma 2.1.4, JB◦ ⊆ J5◦

and, by the Realization Theorem (to be proved in Section 3.3), KB ⊆

47

2 Classification via Embedding

K5, which is not the case since the modal axiom schema b is not
provable in K5. An analogous argument shows that J5 does not embed
in JB. Since each of J5 and JB can be viewed as J supplied with the
definition of ? and of ?̄ respectively, the argument just given shows
that ? and ?̄ are different operations.

Theorem 2.2.9 (Equivalences).

(1) JB4 ≡ JB5 ≡ JB45.

(2) JT5 ≡ JT45 ≡ JTB45 ≡ JTB4 ≡ JDB4 ≡ JDB45 ≡ JDB5 ≡
JTB5.

The above equivalences also hold if the logics are restricted to ax-
iomatically appropriate and schematic constant specifications, e.g.,
JB4CS ≡ JB5CS′ for constant specifications CS and CS′ for JB4 and
JB5 respectively, both axiomatically appropriate and schematic.

Proof. We prove the theorem for logics with total constant specifi-
cations. The lemma for logics with restricted constant specifications
then follows from Corollary 2.1.17 and the fact that≡ is an equivalence
relation by Lemma 2.1.9.

To show each embedding, according to Corollary 2.1.16, it is suffi-
cient to provide an operation translation ω such that for every axiom
schema S of one logic, the formula schema Sω is provable in the other.
In the following proof, we provide such an ω—based on the terms from
Lemma 2.2.6—for each embedding.

(1) Since ≡ is an equivalence relation induced by ⊆̃, it is sufficient to
show a circular chain of three embeddings: JB4 ⊆̃ JB5 ⊆̃ JB45 ⊆̃ JB4.

JB4 ⊆̃ JB5: Let ω! -elim agree with the identity operation translation
for L(?̄, !) (cf. Definition 2.1.5), except that ω! -elim(!) := t′!(x1) for
the term t′!(x1) that exists by Lemma 2.2.6 (3). Note that ω! -elim

is indeed an operation translation from L(?̄, !) to L(?̄, ?). Since each
axiom schema S of JB4, except for j4, is also an axiom schema of JB5
and since its formula representation does not contain !, Sω! -elim = S
is provable in JB5. For the only remaining axiom schema, j4,

(x1 : P1 → !x1 : x1 : P1)ω! -elim = x1 : P1 → t′!(x1) : x1 : P1 , (2.9)

which is provable in JB5 by Lemma 2.2.6 (3).

JB5 ⊆̃ JB45: The identity operation translation ωid for L(?̄, ?) wit-
nesses the embedding. Indeed, since for each axiom schema S of JB5,

48

2.2 Classification of Logics

we have Sωid = S, it remains to note that all axiom schemas of JB5
remain axiom schemas in JB45.

JB45 ⊆̃ JB4: Let ω? -elim agree with the identity operation translation
for L(?̄, !, ?), except that ω? -elim(?) := t?(x1) for the term t?(x1) that
exists by Lemma 2.2.6 (4). Note that ω? -elim is indeed an opera-
tion translation from L(?̄, !, ?) to L(?̄, !). Since each axiom schema S
of JB45, except for j5, is also an axiom schema of JB4 and since its
formula representation does not contain ?, Sω? -elim = S is provable
in JB4. For the only remaining axiom schema, j5,

(¬x1 : P1 → ?x1 : ¬x1 : P1)ω? -elim =

¬x1 : P1 → t?(x1) : ¬x1 : P1 , (2.10)

which is provable in JB4 by Lemma 2.2.6 (4).

(2) Again, it is sufficient to demonstrate a circular chain of eight em-
beddings:

JT5 ⊆̃ JT45 ⊆̃ JTB45 ⊆̃ JTB4 ⊆̃ JDB4

⊆̃ JDB45 ⊆̃ JDB5 ⊆̃ JTB5 ⊆̃ JT5CS1 .

Among these embeddings, four are trivially witnessed—as in the em-
bedding JB5 ⊆̃ JB45 above—by identity operation translations:

JT5 ⊆̃ JT45; JT45 ⊆̃ JTB45; JDB4 ⊆̃ JDB45; and JDB5 ⊆̃ JTB5 .

We now prove the remaining four embeddings.

JTB45 ⊆̃ JTB4: Let ω? -elim agree with the identity operation transla-
tion for L(?̄, !, ?), except that ω? -elim(?) := t?(x1) for the term t?(x1)
that exists by Lemma 2.2.6 (4). As in the case of JB45 ⊆̃ JB4, all the
axiom schemas of JTB45, except for j5, remain axiom schemas in JTB4
and their formula representations do not contain ?. As noted above
(cf. (2.10)), j5ω? -elim is provable in JB4 and, hence, in JTB4.

JTB4 ⊆̃ JDB4: The identity operation translation ωid for L(?̄, !) wit-
nesses the embedding. Indeed, since for each axiom schema S of JTB4,
we have Sωid = S, it remains to note that all but one axiom schema
of JTB4 remain axiom schemas in JDB4. The only remaining axiom
schema, jt, with a formula representation x1 : P1 → P1, is provable
in JDB4 by Lemma 2.2.6 (5).

JDB45 ⊆̃ JDB5: Let ω! -elim agree with the identity operation transla-
tion for L(?̄, !), except that ω! -elim(!) := t′!(x1), for the term t′!(x1) that

49

2 Classification via Embedding

exists by Lemma 2.2.6 (3). As in the case of JB4 ⊆̃ JB5, all the ax-
iom schemas of JDB45, except for j4, remain axiom schemas in JDB5
and their formula representations do not contain !. As noted above
(cf. (2.9)), j4ω! -elim is provable in JB5 and, hence, in JDB5.

JTB5 ⊆̃ JT5: Let ω?̄ -elim agree with the identity operation translation
for L(?̄, ?), except that ω?̄ -elim(?̄) := ?x1. Since each axiom schema S
of JTB5, except for jb, is also an axiom schema of JT5 and since its
formula representation does not contain ?̄, Sω?̄ -elim = S is provable
in JT5. For the only remaining axiom schema, jb,

(P1 → ?̄x1 : ¬x1 : ¬P1)ω?̄ -elim = P1 → ?x1 : ¬x1 : ¬P1 ,

which is provable in JT5 by Lemma 2.2.6 (1).

Theorem 2.2.9 allows us to draw a justification analog of the modal
cube (cf. Figure 1.1). The Hasse diagram of Figure 2.1 contains all
our 24 justification logics; the nodes denote the equivalence classes
with respect to ≡. An edge between two nodes means that the logics
of the lower left node all embed in every logic of the upper right
node. Note that ⊆̃ is transitive by Lemma 2.1.9 and that for two
logics JL1 ⊆ JL2 the embedding JL1 ⊆̃ JL2 is witnessed by the identity
operation translation (cf. proof of Theorem 2.2.9).

◦JT4

qqqqqq ◦JT5,JTB5,JDB5,JT45,JTB45,JDB45,JTB4,JDB4

qqqqqq

◦JT ◦JTB

◦JD4 ◦
JD45

◦
JD5

qqqqqq

◦JD

��������
hhhhhhhhhhhh ◦JDB

◦J4

�������� ◦
J45

◦
JB4,JB5,JB45

��������

◦
J5

qqqqqq

◦
J

hhhhhhhhhhhh ◦
JB

Figure 2.1: The “justification cube”

Using the results of this section, we can restate Lemma 1.5.5 (Lifting)
for a bigger class of logics, namely for those logics that contain positive
introspection.

50

2.3 An Alternative: Local Embedding

Lemma 2.2.10 (Lifting Lemma Extended). Let JL be either one of
the logics JB5, JT5, JTB5, JDB5 or an extension of J4. Let CS be a
constant specification for JL that is axiomatically appropriate (and
schematic if JL is not an extension of J4). If

A1, . . . , An, t1 :B1, . . . , tm :Bm `JLCS
C , (2.11)

then there exists a term t(x1, . . . , xn, xn+1, . . . , xn+m) such that

s1 :A1, . . . , sn :An, t1 :B1, . . . , tm :Bm `JLCS
t(s1, . . . , sn, t1, . . . , tm) :C

for all terms s1, . . . , sn. The term t is ground if n = 0 and m = 0.

Proof. It is enough to show that JLCS contains positive introspection,
i.e., that there exists a term t(x1) such that JLCS ` s :A → t(s) : s :A,
where s and A are arbitrary. Using this schema of positive introspec-
tion instead of j4, the lemma then follows by literally repeating the
proof of the original Lifting Lemma 1.5.5.

There is nothing to show for extensions of J4.

If JL is JT5, JLCS contains positive introspection by Lemma 2.2.6 (2).
Assume JL is JTB5. Then

CS− := CS \ {cnin : . . . : c1i1 :A | A is an instance of jb}

is an axiomatically appropriate and schematic constant specification
for JT5. Therefore, by Lemma 2.2.6 (2), JT5CS− contains positive
introspection and, since JT5CS− ⊂ JTB5CS, so does JLCS.

If JL is JB5, JLCS contains positive introspection by Lemma 2.2.6 (3).
If JL is JDB5, then JLCS contains positive introspection by a similar
argument as for JTB5.

2.3 An Alternative: Local Embedding

Theorems 2.1.15 (and, hence, Theorem 2.2.9) depend on the constants
being divided into levels (cf. explanations on page 37). These levels can
be dropped, but this comes at the price of a weaker definition of em-
bedding and, as a consequence, weaker statements of Theorems 2.1.15
and 2.2.9. In this section, we sketch this alternative approach. Fol-
lowing Fitting [Fit07], the alternative definition of embedding is called
local : in order to embed a logic in another, instead of providing a

51

2 Classification via Embedding

global operation translation, it is enough to provide a separate, local
operation translation for every formula. Local equivalence is defined
accordingly. Proving two logics locally equivalent then does not re-
quire levels of constants. Lemma 2.3.3 and Theorem 2.3.4 below are
the local analogs of Lemma 2.1.13 and Theorem 2.1.15 respectively.

Using Theorem 2.3.4, all the results of Section 2.2 could be reformu-
lated with respect to local embedding instead of embedding and for
logics whose constants are not divided into levels—all the proofs could
be almost literally adopted. As a consequence, the modular realization
theorem from Section 3.3 does also hold for logics without levels.

Definition 2.3.1 (Local Embedding and Local Equivalence). Let JL1

and JL2 be justification logics over languages L1 and L2 respectively.
We say that JL1 locally embeds in JL2, written JL1 ⊆̃L JL2, if for every
L1-formula A there exists an operation translation ω from L1 to L2

such that
JL1 ` A =⇒ JL2 ` Aω .

We say that JL1 and JL2 are locally equivalent, written JL1 ≡L JL2, if
JL1 ⊆̃L JL2 and JL2 ⊆̃L JL1.

Obviously, two equivalent logics are also locally equivalent (the con-
verse is not true). The proof that ≡L is an equivalence relation is
similar to the proof of Lemma 2.1.9.

Lemma 2.3.2 (≡L is an Equivalence Relation). The relation ⊆̃L is a
preorder. Accordingly, ≡L is an equivalence relation.

Proof. Since ⊆̃ is reflexive by Lemma 2.1.9 and ⊆̃L is an extension
of ⊆̃, ⊆̃L is reflexive too.

Let JL1, JL2, and JL3 be justification logics over languages L1, L2,
and L3 respectively such that JL1 ⊆̃L JL2 and JL2 ⊆̃L JL3 . We show
JL1 ⊆̃L JL3. Let A be an arbitrary L1-formula provable in JL1. By
assumption, there exists an operation translation ω′ from L1 to L2

such that JL2 ` Aω′. Also by assumption, there exists an operation
translation ω′′ from L2 to L3 such that JL3 ` (Aω′)ω′′. Let ω be
defined by

ω(∗) := ω′(∗)ω′′

for every n-ary L1-operation ∗, n ≥ 0. Since ω′(∗) is an L2-term with
x1, . . . , xn as its only variables, it follows from Facts 2.1.2 (1) and
2.1.2 (3) that ω′(∗)ω′′ is an L3-term with the same variables. Hence,

52

2.3 An Alternative: Local Embedding

ω is an operation translation from L1 to L3. It is now sufficient to
show that (Aω′)ω′′ = Aω. To this end, the part of the proof of
Lemma 2.1.9 that proves (tω′)ω′′ = tω for every L1-term t can be
literally adopted.

Lemma 2.3.3 (Uniform Iterated Internalization of Schemas). Let
L be a justification language that has a binary operation + and whose
constants are not necessarily divided into levels. Let JL be a justi-
fication logic over L that enjoys Internalization Property 1.5.4 and
Substitution Lemma 1.5.9, in which MP is an admissible rule and
x1 :P1 → (x1 +x2) :P1 and x2 :P1 → (x1 +x2) :P1 are provable formula
schemas, collectively referred to as sum. Let S1, . . . , Sn be L-formula
schemas provable in JL. Then for every m > 0 there exists a ground
term p such that for any L-instance A of one of Si, 1 ≤ i ≤ n and for
any k ≤ m,

JL ` p : p : . . . : p︸ ︷︷ ︸
k

: A .

Proof. Let Ai(x1, . . . , xki , P1, . . . , Pli) be a formula representation of
the provable schema Si, i = 1, . . . , n. For each i, by the Internalization
Property 1.5.4, there exists a ground L-term pi1 such that

JL ` pi1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Let p1 := p1
1 + · · · + pn1 . For each 1 ≤ i ≤ n, by using appropriate

instances of sum and the rule MP,

JL ` p1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Let y1, . . . , ym denote fresh and distinct variables. Let p+
1 := p1 +y2 +

. . . + ym. For each 1 ≤ i ≤ n, by using appropriate instances of sum
and the rule MP,

JL ` p+
1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

For each 1 ≤ i ≤ n, by the Internalization Lemma 1.5.4, there exists
a ground L-term pi2 such that

JL ` pi2 : p+
1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

Let p2 := p1
2 + · · · + pn2 . For each 1 ≤ i ≤ n, by using appropriate

instances of sum and the rule MP,

JL ` p2 : p+
1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

53

2 Classification via Embedding

Let p+
2 := y1 + p2 + y3 + . . . + ym. For each 1 ≤ i ≤ n, by using

appropriate instances of sum and the rule MP,

JL ` p+
2 : p+

1 :Ai(x1, . . . , xki , P1, . . . , Pli) .

By repeating this procedure, we can construct terms p+
3 , . . . , p

+
m such

that for each 1 ≤ i ≤ n and for each k ≤ m,

JL ` p+
k : . . . : p+

2 : p+
1 :Ai(x1, . . . , xki , P1, . . . , Pli) . (2.12)

Note that every term p+
k , 1 ≤ k ≤ m, contains exactly the variables in

{y1, . . . , ym} \ {yk}. Let the substitution σ map yk to pk, 1 ≤ k ≤ m,
and otherwise behave like the identity substitution that maps every
variable to itself. It is easy to check that

p+
1 σ = . . . = p+

mσ = p1 + . . .+ pm .

Let this term be denoted by p. For each 1 ≤ i ≤ n and for each k ≤ m,
by (2.12) and the Substitution Lemma 1.5.9, we obtain (note that σ
has no effect on Ai(x1, . . . , xki , P1, . . . , Pli))

JL ` p : p : . . . : p︸ ︷︷ ︸
k

: Ai(x1, . . . , xki , P1, . . . , Pli) .

Therefore, JL ` p : p : . . . : p︸ ︷︷ ︸
k

: A for every L-instance A of one of Si,

1 ≤ i ≤ n, by the Substitution Lemma 1.5.9.

Theorem 2.3.4 (Local Embedding). Let JL1 and JL2 be two justifica-
tion logics over languages L1 and L2 respectively (whose constants are
not necessarily divided into levels), let → be one of binary Boolean
connectives, and let MP and iANCS be the only rules of JL1. Let
JL2 and L2 satisfy all the conditions of Lemma 2.3.3. Assume the
following:

(1) JL1 is axiomatized by finitely many axiom schemas;

(2) the formula representations of the axiom schemas of JL1 do not
contain constants;4

(3) there exists an operation translation ω from L1 to L2 such that
for every axiom schema S of JL1, the L2-formula schema Sω is
provable in JL2.

4Naturally, the axiom instances can contain constants.

54

2.3 An Alternative: Local Embedding

Then JL1 locally embeds in JL2.

Proof. We have to show that for any L1-formula A there exists an
operation translation ω′ from L1 to L2 such that JL1 ` A implies
JL2 ` Aω′. So assume JL1 ` A and let P be a JL1-proof of A. Let

m := max{n | cin : . . . : ci1 :B is a conclusion of iANCS in P} .

Let S1, . . . , Sn be the axiom schemas of JL1. By assumption (3), the
L2-schemas S1ω, . . . , Snω are provable in JL2. By Lemma 2.3.3, for
this m there exists an L2-term p such that for every L2-instance C of
one of Siω, 1 ≤ i ≤ n, and for every k ≤ m,

JL2 ` p : p : . . . : p︸ ︷︷ ︸
k

: C . (2.13)

Let the operation translation ω′ be defined as follows:

ω′(∗) :=

{
p if ∗ is an L1-constant ci,

ω(∗) otherwise.

Clearly, ω′ is an operation translation from L1 to L2. Note that p
depends on m, which, in turn, depends on the proof P of A.

We show by induction on P that JL2 ` Aω′. Note that Aω′ is an
L2-formula by Fact 2.1.2 (1).

For an instance D of an axiom schema Si of JL1, 1 ≤ i ≤ n, by
Fact 2.1.11 (2), Dω′ is an instance of the L2-formula schema Siω

′.
The schema Siω

′ coincides with the L2-formula schema Siω because
the formula representation of Si does not contain any constants by
assumption (2) and ω agrees with ω′ on operations of positive arity.
Thus, Dω′ is an instance of the provable schema Siω and is itself
provable in JL2 by Fact 2.1.11 (1).

Consider a conclusion cik : . . . : ci1 :D of iANCS, where D is an instance
of an axiom schema Si for some 1 ≤ i ≤ n. As shown in the previous
paragraph, Dω′ is an instance of the formula schema Siω. By (2.13),

JL2 ` p : . . . : p︸ ︷︷ ︸
k

: Dω′ ,

which is the same as JL2 ` (cik : . . . : ci1 :D)ω′ by definition of ω′.

55

2 Classification via Embedding

Finally, if D is obtained by MP from E → D and E, then, by induction
hypothesis, JL2 ` Eω′ → Dω′ and JL2 ` Eω′, and, therefore, JL2 `
Dω′ follows by MP.

56

3 Proving Realization
Theorems

In this chapter, we develop a constructive method for proving real-
ization theorems, general enough to be applicable to any modal logic
captured by a cut-free nested sequent system of context-sharing rules.
Recall that nested sequent systems cover more modal logics than or-
dinary Gentzen systems, e.g., they cover all the logics in the modal
cube from Figure 1.1. As a consequence, our realization method is
more general than existing methods (see also the introduction of this
thesis) and allows for new realization theorems, e.g., for K5.

In Section 3.1, we introduce the basic technical machinery that the
method is based on. In addition, we formulate the Merging Theorem
by Fitting (Theorem 3.1.6), which plays a major role in our method
of realization. In Section 3.2, we introduce the formalism of nested
sequents and present our general realization method based on nested
sequents. In Section 3.3, we apply this method to the nested sequent
systems by Brünnler [Brü09] that capture all the 15 normal modal
logics in the modal cube, which gives us a uniform and constructive
realization theorem for these logics. In addition, we use the results of
Chapter 2 to make this realization theorem modular in the sense that
it connects every modal logic to all of its justification counterparts.

Note that, while our method is more powerful than existing meth-
ods, it is also more complex. The additional complexity is mainly
caused by the more complex structure of nested sequents, which are
trees of formulas, as opposed to ordinary Gentzen sequents, which are
sequences. Further, because our realization theorem in Section 3.3
covers all the logics in the modal cube, there are many modal rules to
realize, essentially one for each axiom schema d, t, b, 4, and 5.

Recall that modal formulas are given in negation normal form, while
justification formulas are given in a traditional format with implication
and falsum as primary propositional connectives. As a result, the
process of realization also encompasses a Boolean translation between

57

3 Proving Realization Theorems

two complete systems of propositional connectives. Not distinguishing
between primary and defined connectives in either language enables
us to perform these translations implicitly, except for cases where a
Boolean transformation affects justification terms.

3.1 Preliminaries

Proving realization theorems involves turning provable formulas of a
given modal logic into provable formulas of a corresponding justifica-
tion logic by replacing occurrences of � with terms and of ♦ with vari-
ables. To distinguish between different occurrences of modalities we
annotate them with different natural numbers, using parity to distin-
guish between �’s and ♦’s, and realize such annotated modal formulas.
The annotations are purely syntactic devices and have no semantic
meaning. We adopt and adapt Fitting’s notation from [Fit09].

Definition 3.1.1 (Annotations). Annotated modal formulas, or an-
notated formulas for short, are built according to the grammar

A ::= Pi | ¬Pi | (A ∨A) | (A ∧A) | �2k−1A | ♦2lA ,

where i, k, and l range over positive natural numbers, Pi and ¬Pi de-
note a proposition and its negation, as in the unannotated modal
language. Given a modal formula A′, every annotated formula A is
called an annotated version of A′ provided that A′ is obtained from A
by dropping all indices on its modalities. An annotated formula is
called properly annotated if no index occurs twice in it.

We mostly work with properly annotated formulas. Note that, since
modal formulas are in negation normal form, every subformula of a
(properly) annotated formula is itself (properly) annotated.

Remark 3.1.2 (Negation and substitution of annotated formulas).
Note that it is not clear how to define the negation operation for
annotated formulas. The obvious definition of ¬�kA as ♦k¬A does not
work because it does not produce an annotated formula. In particular,
the substitution of annotated formulas for propositions is only possible
for positive, i.e., non-negated, propositions.

We now define realizations as functions from positive natural numbers
to terms, with the restriction that the set of even numbers is in one-
to-one correspondence with the set of variables. This restriction, the

58

3.1 Preliminaries

(Pi)
r := Pi (A ∨B)r := Ar ∨Br (♦2lA)r := ¬r(2l) : ¬Ar

(¬Pi)
r := ¬Pi (A ∧B)r := Ar ∧Br (�2k−1A)r := r(2k − 1) :Ar

Figure 3.1: Realization of annotated formulas

normality condition, is standard. It corresponds to the intuition that
♦’s (or negatively occurring boxes if ¬ is a primary connective instead
of ♦) represent assumptions on what should be provable and that they
become Skolem variables if �’s—existentially read as ‘∃ a proof’—are
skolemized.

Definition 3.1.3 (Realization function). A prerealization function r
(in a justification language L) is a partial mapping from positive natu-
ral numbers to L-terms. A prerealization function r is called a realiza-
tion function if r(2l) = xl whenever r(2l) is defined. A (pre)realization
function on a given annotated formula is one that is defined on all
indices of that formula. If A is an annotated formula and r is a pre-
realization function on A, then the justification formula Ar is induc-
tively defined as in Figure 3.1. Note that if r is a realization function
on ♦2lA, then (♦2lA)r = ¬xl : ¬Ar. Further, note that every justifica-
tion formula B can be written as B = Ar, for some properly annotated
formula A and some prerealization function r.

When working with realization functions, we usually don’t mention
the underlying justification language explicitly because it is either ir-
relevant or given by the context, i.e., by the justification logic we work
with.

Definition 3.1.4. Let A be an annotated formula and r be a prere-
alization function. We define

vars♦(A) := {xk | ♦2k occurs in A} ,

r �A := r � {i | i occurs in A as an index} ,

where f �S is the restriction of the partial function f to the set S ∩
dom(f).

Substitutions (recall Definition 1.5.7) play an important role in our
realization procedure. As with (pre)realization functions, we usually
do not mention the underlying justification language of a substitution.
The definition of domain for substitutions differs from the standard

59

3 Proving Realization Theorems

one for ordinary functions such as prerealization functions. The do-
main of a substitution σ is

dom(σ) := {xi | σ(xi) 6= xi} .

Note that the definition of the domain of a substitution differs from
the common definition of the domain of a function (e.g., a realization
function). The variable range of σ, denoted by vrange(σ), is the set
of variables that occur in terms from the set {σ(xi) | xi ∈ dom(σ)}.
Composition of substitutions is defined as

(σ2 ◦ σ1)(xi) := σ1(xi)σ2

for any variable x. Composition of a substitution with a prerealization
function is defined as

(σ ◦ r)(n) := r(n)σ ,

in particular, (σ ◦ r)(n) is undefined whenever r(n) is. Finally, for
substitutions σ1 and σ2 with disjoint domains, i.e., with dom(σ1) ∩
dom(σ2) = ∅, their union is a substitution defined as follows:

(σ1 ∪ σ2)(xi) :=


σ1(xi) if xi ∈ dom(σ1),

σ2(xi) if xi ∈ dom(σ2),

xi otherwise.

A substitution σ lives on an annotated formula A if

dom(σ) ⊆ vars♦(A) .

A substitution σ lives away from an annotated formula A if

dom(σ) ∩ vars♦(A) = ∅ .

The following lemma (to be used in the proof of Theorem 3.2.11)
shows that, although the process of realizing a modal formula starts
with annotating it—which can be done in many different ways—the
realizability of the formula does not depend on the chosen annotation.

Lemma 3.1.5 (Renaming of Annotations). Let JL be a justification
logic and let CS be a schematic constant specification for JL. Let
A1 and A2 be properly annotated versions of the same modal for-
mula A′ and let r1 be a realization function on A1 with JLCS ` (A1)r1 .
Then there exists a realization function r2 on A2 such that JLCS `
(A2)r2 .

60

3.1 Preliminaries

Proof. For every index n of A1 let n′ denote the corresponding index
of A2. Since both A1 and A2 are properly annotated, n′ has the same
parity as n. Let the substitution σ be defined as follows:

σ(xm) :=

{
xn if 2m is an index of A1 and (2m)′ = 2n,

xm otherwise.

For every n > 0, let the realization function r2 be defined as

r2(n) :=


xm if n = 2m is an index of A2,

r1(m)σ if n is an odd index of A2 and m′ = n,

undefined otherwise.

Clearly, r2 is a realization function on A2.

We show by induction on the structure of A′ that (A1)r1σ = (A2)r2 .
It then follows by Substitution Lemma 1.5.9 that (A2)r2 is provable
in JLCS. The base case and the propositional cases are trivial.

Let A′ = �B′. Then A1 = �mB1 and A2 = �nB2 for some odd
indices m and n with m′ = n and for some properly annotated for-
mulas B1 and B2, both annotated versions of B′. Then r2(n) =
r1(m)σ by definition of r2. By induction hypothesis, we further have
(B1)r1σ = (B2)r2 . Therefore, (�mB1)r1σ = r1(m)σ : (B1)r1σ =
r2(n) : (B2)r2 = (�nB2)r2 .

Let A′ = ♦B′. Then A1 = ♦2mB1 and A2 = ♦2nB2 for some in-
dices 2m and 2n with (2m)′ = 2n and for some properly annotated
formulas B1 and B2, both annotated versions of B′. Then xmσ = xn
by definition of σ. By induction hypothesis, (B1)r1σ = (B2)r2 . There-
fore, (♦2mB1)r1σ = ¬xmσ :¬(B1)r1σ = ¬xn :¬(B2)r2 = (♦2nB2)r2 .

Our method for proving realization theorems is by induction on the
height of a derivation in a nested sequent system for a modal logic.
Since in different premises of branching rules, realizations of side for-
mulas may not coincide, these realizations need to be reconciled, which
is done using Fitting’s merging technique. The merging theorem below
is an instance of Theorem 8.2 from [Fit09]. There it is formulated and
proved for JT4, but the proof makes use only of the operations + and ·,
of the Internalization Property, and the Substitution Lemma. Hence,
the theorem also holds for all the justification logics we consider, pro-
vided the constant specifications used are axiomatically appropriate
and schematic (i.e., they enforce the Internalization Property and the
Substitution Lemma).

61

3 Proving Realization Theorems

Theorem 3.1.6 (Realization Merging). Let JL be a justification logic
and let CS be an axiomatically appropriate and schematic constant
specification for JL. Let A be a properly annotated formula, and
r1, . . . , rn be realization functions on A. Then there exists a realization
function r on A and a substitution σ that lives on A such that

JLCS ` Ariσ → Ar

for i = 1, . . . , n. (Note that it is not assumed that the Ari ’s are prov-
able.)

The following properties are used in many of the proofs that follow.

Fact 3.1.7 (Combinations of Substitutions and Realization Func-
tions). Let A be an annotated formula, σ1 and σ2 be substitutions,
and r be a prerealization function.

(1) vars(tσ1) ⊆ vars(t) ∪ vrange(σ1) for any term t;

(2) σ2 ◦σ1 is a substitution with dom(σ2 ◦σ1) ⊆ dom(σ1)∪dom(σ2)
and vrange(σ2◦σ1) ⊆ vrange(σ1)∪vrange(σ2). Moreover, A(σ2◦
σ1) = (Aσ1)σ2;

(3) if dom(σ1) ∩ dom(σ2) = ∅, then dom(σ1 ∪ σ2) = dom(σ1) ∪
dom(σ2);

(4) if dom(σ1)∩ dom(σ2) = ∅ and vrange(σ1)∩ dom(σ2) = ∅, then
σ1 ∪ σ2 = σ2 ◦ σ1;

(5) σ1 ◦ r is a prerealization function with dom(σ1 ◦ r) = dom(r);

(6) in particular, if r is a prerealization function on A, then so is σ1◦
r and Aσ1◦r = Arσ1;

(7) if r is a (pre)realization function on A, then so is r �A.

Whenever r1 and r2 are realization functions,

(8) if dom(r1)∩dom(r2) ⊆ {n | n is even}, then r1 ∪ r2 is a realiza-
tion function;

(9) if r1∪r2 is a realization function, then dom(r1∪r2) = dom(r1)∪
dom(r2);

(10) σ1 ◦ r1 is a realization function iff xn /∈ dom(σ1) whenever
r1(2n) is defined.

Proof. (1): We prove the statement by induction on the structure
of t. If t is a constant cij , vars(cijσ1) = vars(cij) = ∅. If t is a variable

62

3.1 Preliminaries

xi ∈ dom(σ1), then vars(xiσ1) = vars(σ1(xi)) ⊆ vrange(σ1). If t is a
variable xi /∈ dom(σ1), then vars(xiσ1) = {xi} ⊆ vars(t).

If t is ∗s for some unary operation ∗, then

vars((∗s)σ1) = vars(∗(sσ1)) = vars(sσ1) ,

which, by induction hypothesis, is contained in

vars(s) ∪ vrange(σ1) = vars(∗s) ∪ vrange(σ1) .

If t is (t1 ∗ t2), for some binary operation ∗, then vars((t1 ∗ t2)σ1) =
vars(t1σ1 ∗ t2σ1) = vars(t1σ1) ∪ vars(t2σ1), which, by induction hy-
pothesis, is contained in

vars(t1) ∪ vrange(σ1) ∪ vars(t2) ∪ vrange(σ1) =

vars(t1 ∗ t2) ∪ vrange(σ1) .

(2): For any variable xi, the composition (σ2 ◦ σ1)(xi) is defined as
σ1(xi)σ2. Hence, it is a total mapping from variables to terms and,
thus, a substitution. That dom(σ2 ◦ σ1) ⊆ dom(σ1) ∪ dom(σ2) is
obvious.

To show that vrange(σ2 ◦σ1) ⊆ vrange(σ1)∪vrange(σ2) we show that

vars((σ2 ◦ σ1)xi) ⊆ vrange(σ1) ∪ vrange(σ2)

for any xi ∈ dom(σ2 ◦ σ1). Indeed, vars((σ2 ◦ σ1)xi) = vars(σ1(xi)σ2).
If xi ∈ dom(σ1), then, by 3.1.7 (1),

vars(σ1(xi)σ2) ⊆ vars(σ1(xi))∪vrange(σ2) ⊆ vrange(σ1)∪vrange(σ2) .

If xi /∈ dom(σ1), xi ∈ dom(σ2) and vars(σ1(xi)σ2) = vars(σ2(xi)) ⊆
vrange(σ2).

To show A(σ2 ◦ σ1) = Aσ1σ2, it is enough to show t(σ2 ◦ σ1) = tσ1σ2

by induction on the structure of an arbitrary term t. If t is a constant,
there is nothing to prove.

If t is a variable xi, then, by definition, xi(σ2 ◦ σ1) = (σ2 ◦ σ1)(xi) =
σ1(xi)σ2 = xiσ1σ2.

If t is ∗s, for some unary operation ∗, then, by definition, (∗s)σ1σ2 =
(∗(sσ1))σ2 = ∗(sσ1σ2), which, by induction hypothesis, is the same as
∗(s(σ2 ◦ σ1)) = (∗s)(σ2 ◦ σ1).

63

3 Proving Realization Theorems

If t is (t1 ∗ t2), for some binary operation ∗, then, by definition,

(t1 ∗ t2)σ1σ2 = (t1σ1 ∗ t2σ1)σ2 = (t1σ1σ2 ∗ t2σ1σ2) ,

which, by induction hypothesis, is the same as (t1(σ2 ◦ σ1) ∗ t2(σ2 ◦
σ1)) = (t1 ∗ t2)(σ2 ◦ σ1).

(3) is obvious from the definition on page 60.

(4): For xi ∈ dom(σ1) we have (σ1 ∪ σ2)(xi) = σ1(xi) = σ1(xi)σ2

because no variable from vrange(σ1) is affected by σ2.

For xi ∈ dom(σ2) we have (σ1 ∪ σ2)(xi) = σ2(xi) = xiσ2 = σ1(xi)σ2

because σ1(xi) = xi for a variable from dom(σ2).

For xi /∈ dom(σ1) ∪ dom(σ2) we have (σ1 ∪ σ2)(xi) = xi = xiσ1σ2.

(5): The composition (σ1 ◦ r)(n) is defined as r(n)σ1, for any n that
r is defined on. So it is obviously a prerealization function with the
same domain as r.

(6): Since r and σ1 ◦ r have the same domain by 3.1.7 (5), if r is a
prerealization function on A, then so is σ1 ◦ r.
We show Aσ1◦r = Arσ1 by induction on the structure of A. The
atomic and propositional cases are trivial.

Let A = �kB for an odd index k. By definition,

(�kB)σ1◦r = (σ1 ◦ r)(k) :Bσ1◦r = r(k)σ1 :Bσ1◦r ,

which, by induction hypothesis, is the same as r(k)σ1 : (Brσ1). On
the other hand, (�kB)rσ1 = (r(k) :Br)σ1 = r(k)σ1 : (Brσ1).

Let A = ♦2kB. By definition,

(♦2kB)σ1◦r = ¬(σ1 ◦ r)(2k) : ¬Bσ1◦r = ¬(r(2k)σ1) : ¬Bσ1◦r ,

which, by induction hypothesis, is the same as ¬(r(2k)σ1) : ¬(Brσ1).
On the other hand, (♦2kB)rσ1 = (¬r(2k) : ¬Br)σ1 = ¬(r(2k)σ1) :
¬(Brσ1).

(7) is obvious.

(8) follows from the fact that all realization functions agree on even
numbers, i.e., the function value of 2k is always the variable xk.

(9) is obvious.

(10): Assume that σ1 ◦ r1 is a realization function and that r1(2n) is
defined. Then xn = (σ1 ◦ r1)(2n) = r1(2n)σ1 = σ1(xn). Therefore
xn 6∈ dom(σ1).

64

3.2 A General Realization Method

Now assume that xn 6∈ dom(σ1) whenever r1(2n) is defined. That
σ1 ◦r1 is a prerealization function follows from 3.1.7 (5). To show that
it is a realization function, assume that (σ1◦r1)(2n) is defined for some
arbitrary number 2n. I.e., r1(2n) is defined and r1(2n) = xn. From
xn 6∈ dom(σ1) it follows that σ1(xn) = xn and (σ1 ◦ r1)(2n) = xn.

Corollary 3.1.8. If r is a realization function on an annotated for-
mula A and if a substitution σ lives away from A, then σ ◦ (r �A) is
a realization function on A.

Proof. Assume that r is a realization function on A and σ lives away
from A, i.e., dom(σ) ∩ vars♦(A) = ∅. Then r �A is a realization
function on A by 3.1.7 (7) and σ ◦ (r �A) is a prerealization function
on A by 3.1.7 (6). Let r �A be defined on a number 2n, i.e., ♦2n occur
in A. Since σ lives away from A, we have xn 6∈ dom(σ). It thus follows
from 3.1.7 (10) that σ ◦ (r �A) is a realization function.

3.2 A General Realization Method

We now present our general realization procedure based on nested se-
quent calculi. The essence of this procedure is that realizing arbitrary
nested sequent rules can be reduced to realizing their non-nested (or
shallow) versions (cf. Lemma 3.2.10), which is even simpler than real-
izing rules of an ordinary sequent calculus. As a consequence, in order
to realize a modal logic presented via a nested sequent system, it is
sufficient to realize the shallow versions of all the rules of the system
(cf. Theorem 3.2.11). Realization of various (shallow) nested sequent
rules and proofs of actual realization theorems are postponed until
Section 3.3.

Nested sequents. Nested sequents, or sequents for short, are induc-
tively defined as follows:

• the empty sequence ∅ is a nested sequent;

• if Σ and ∆ are nested sequents and A is a modal formula, then
Σ, A and Σ, [∆] are nested sequents, where the comma denotes
concatenation.

The brackets of the expression [∆] are called structural box. The cor-
responding formula of a sequent Γ, denoted Γ, is inductively defined

65

3 Proving Realization Theorems

by

∅ := ⊥, Σ, A :=

{
(Σ ∨A) if Σ 6= ∅,
A otherwise,

Σ, [∆] :=

{
(Σ ∨�∆) if Σ 6= ∅,
�∆ otherwise.

(3.1)

We use the letters Γ, ∆, Λ, Ω, Π, and Σ with or without sub- or
superscripts to denote sequents.

Sequent contexts. A sequent context, or context for short—denoted
by Γ{ }, ∆{ }, etc.—is inductively defined as follows:

• { } is a context (the symbol { } is called hole);

• if Σ{ } is a context, then so are [Σ{ }] and ∆,Σ{ },Π, where
∆ and Π are sequents.

For a context Γ{ } and a sequent ∆, the sequent Γ{∆} is obtained by
replacing the hole in Γ{ } with ∆. For example, if Γ{ } = A, [[B], { }]
and ∆ = C, [D], then Γ{∆} = A, [[B], C, [D]].

Sequent contexts are used to formulate nested rules. As an example,
the nested version of the exchange rule can be formulated as follows:

Γ{∆,Σ}
exch

Γ{Σ,∆}
(3.2)

One of the instances of (3.2) is[
P2 ∧ ♦P3, [P1], P1

]
,
[
P1, ¬P1

]
exch [

[P1], P1, P2 ∧ ♦P3

]
,
[
P1, ¬P1

]
where the context Γ{ } = [{ }], [P1, ¬P1] and sequents ∆ = P2 ∧ ♦P3

and Σ = [P1], P1. In Section 3.3 we provide systems of such rules
for all logics in the modal cube and use these systems to prove actual
realization theorems for these logics. In this section, however, we treat
arbitrary context-sharing nested rules, i.e., rules of the form

Γ{S1} . . . Γ{Sn}
Γ{S}

where n is a nonnegative integer, Γ{ } denotes an arbitrary con-
text, common for all the premises and the conclusion of the rule, and

66

3.2 A General Realization Method

S, S1, . . . , Sn are sequent schemas. A sequent schema differs from a
sequent in the sense that, instead of modal formulas, it contains vari-
ables over sequents and variables over modal formulas. For example,
[∆, A] is a sequent schema, where ∆ is a variable over sequents and A
is a variable over modal formulas. Each context-sharing nested rule ρ
has a shallow version sh-ρ that corresponds to the common context
being empty, Γ{ } = { }:

S1 . . . Sn

S

For instance, the shallow version of the nested exchange rule (3.2) is

∆,Σ
sh-exch

Σ,∆

From now on, by a nested rule we mean a context-sharing nested rule.

In addition, contexts provide for an especially simple definition of
subsequent:

Definition 3.2.1 (Subsequent). A subsequent of a given sequent Γ is
any sequent ∆ such that Γ = Σ{∆} for some context Σ{ }.

Definition 3.2.2 (Annotated Sequent). An annotated sequent (con-
text) is a sequent (context) in which only annotated formulas occur
and all structural boxes are annotated by odd indices. The corre-
sponding formula of an annotated sequent Γ is an annotated formula
defined as in (3.1), except that the third case is replaced by

Σ, [∆]k :=

{
Σ ∨�k∆ if Σ 6= ∅,
�k∆ otherwise.

Remark 3.2.3. Many notions, such as an annotated version and
proper annotation, naturally apply to sequents as well. Other notions
are extended from (annotated) formulas to (annotated) sequents by
being applied to the corresponding formula of the (annotated) sequent.
For instance, a realization function on an annotated sequent Γ is a real-
ization function on Γ, in particular, Γr := (Γ)r, vars♦(Γ) := vars♦(Γ),
etc.

Whenever safe, we do not explicitly distinguish between an annotated
formula A and the annotated sequent that consists of this formula A,

67

3 Proving Realization Theorems

e.g., r is a realization function on a formula A iff it is a realization func-
tion on the sequent A, which enables us to call it simply “a realization
function on A.”

We often use the following trivial fact without mentioning it explicitly:

Fact 3.2.4 (Preservation of Structure in Annotated Versions). If an
annotated sequent ∆ is an annotated version of Γ′{Λ′} for some con-
text Γ′{ } and some sequent Λ′, there exists a unique annotated ver-
sion Γ{} of the context Γ′{ } and a unique annotated version Λ of the
sequent Λ′ such that ∆ = Γ{Λ}. Moreover, if ∆ is properly annotated,
so is Λ.

Further, if an annotated sequent Γ is an annotated version of a se-
quent Γ′, then its corresponding formula Γ is an annotated version
of Γ′.

Just like a realization function on a formula A is trivially a realization
function on any subformula of A, the same is true for sequents and
their subsequents. Note, however, that realization functions are de-
fined on corresponding formulas rather than on sequents themselves,
and ∆ is not in general a subformula of Γ{∆}—e.g., for Γ{ } = P1, { }
and ∆ = P2, P3, the formula ∆ = P2 ∨ P3 is not a subformula of
Γ{∆} = P1, P2, P3 = (P1 ∨ P2) ∨ P3. The following fact is used as a
matter of course without explicit mention.

Fact 3.2.5 (Realization Function on a Subsequent). If r is a realiza-
tion function on an annotated sequent Γ{∆}, then r is also a realiza-
tion function on its subsequent ∆.

Proof. Simply by the fact that every index of ∆ is also an index
of Γ{∆}.

The following lemma is needed because, in general, the formula Γ,Σ
does not coincide with Γ ∨ Σ.

Lemma 3.2.6 (Associativity of Disjunction). For any justification
logic JL and constant specification CS for JL,

JLCS ` (Σ,Γ)rσ ↔ Σrσ ∨ Γrσ ,

where Γ and Σ are arbitrary annotated sequents, r is any realization
function on Σ,Γ, and σ is any substitution.

68

3.2 A General Realization Method

Proof. By induction on the structure of Γ.

If Γ = ∅, then Σ,Γ = Σ and Γrσ = ⊥rσ = ⊥. By propositional
reasoning, JLCS ` Σrσ ↔ Σrσ ∨⊥.

Let Γ = ∆, A. By induction hypothesis,

JLCS ` (Σ,∆)rσ ↔ Σrσ ∨∆rσ .

By propositional reasoning,

JLCS ` (Σ,∆)rσ ∨Arσ ↔ Σrσ ∨ (∆rσ ∨Arσ) ,

which can be rewritten as

JLCS ` (Σ,∆ ∨A)rσ ↔ Σrσ ∨ (∆ ∨A)rσ ,

which is what we need since Σ,∆, A = Σ,∆ ∨A and ∆, A = ∆ ∨A.

Let Γ = ∆, [Ω]k. By induction hypothesis and propositional reasoning,

JLCS ` (Σ,∆)rσ ∨ (�kΩ)rσ ↔ Σrσ ∨
(
∆rσ ∨ (�kΩ)rσ

)
,

which can be rewritten as

JLCS ` (Σ,∆ ∨�kΩ)rσ ↔ Σrσ ∨
(
∆ ∨�kΩ)rσ ,

which is what we need since Σ,∆, [Ω]k = Σ,∆ ∨ �kΩ and ∆, [Ω]k =
∆ ∨�kΩ.

Definition 3.2.7 (Annotated Rule Instance). Given an instance of a
nested rule

Γ′{Λ′1} . . . Γ′{Λ′n}
Γ′{Λ′}

with common context Γ′{ }, an annotated version of this instance is
of the form

Γ{Λ1} . . . Γ{Λn}
Γ{Λ}

where Γ{}, Λ1, . . . ,Λn,Λ are annotated versions of Γ′{}, Λ′1, . . . ,Λ
′
n,Λ

′

respectively, Γ{Λ1}, . . . ,Γ{Λn}, and Γ{Λ} are properly annotated,
and no index occurs in both Λi and Λj for any 1 ≤ i < j ≤ n.
Note that the annotated context Γ{ } is the same for every premise
and the conclusion.

69

3 Proving Realization Theorems

Definition 3.2.8 (Realizable Rule). An instance
Γ′{Λ′}

of a zero-

premise nested rule is called realizable in a justification logic JL if there

exists an annotated version
Γ{Λ}

of it and a realization function r

on Γ{Λ} such that JL ` Γ{Λ}r. An instance
Γ′{Λ′1} . . . Γ′{Λ′n}

Γ′{Λ′}
of

an n-premise nested rule with n > 0 and common context Γ′{} is called

realizable in JL if there is an annotated version
Γ{Λ1} . . . Γ{Λn}

Γ{Λ}
of this instance such that for arbitrary realization functions r1, . . . , rn
on Γ{Λ1}, . . . ,Γ{Λn} respectively, there exists a realization function r
on Γ{Λ} and a substitution σ that lives on each of Γ{Λi}, i = 1, . . . , n,
such that

JL ` Γ{Λ1}r1σ → . . . → Γ{Λn}rnσ → Γ{Λ}r .

A rule is called realizable in JL if all its instances are realizable in JL.

Remark 3.2.9 (Realizability of Cut). Currently it is not known
whether the cut rule

Γ{A} Γ{¬A}
Γ{∅}

is realizable in J or in some of its extensions. Note that the fact that
the cut rule is nested is not a problem (cf. Lemma 3.2.10 below). The
problem, however, is that the cut formula A occurs positively in one
premise and negatively in the other premise. As an example, consider
the following (shallow) instance of the cut rule:

�P1 ∨ ♦P2 ♦¬P1 ∧�¬P2

∅

According to Definition 3.2.8, the above instance is realizable in J if
there exists an annotated version

�2k+1P1 ∨ ♦2lP2 ♦2m¬P1 ∧�2n+1¬P2

∅

of it such that for arbitrary realization functions r1 and r2 on �2k+1P1∨

♦2lP2 and ♦2m¬P1 ∧ �2n+1¬P2, respectively, there exists a substitu-
tion σ that lives on both (annotated) premises such that

J ` (�2k+1P1 ∨ ♦2lP2)r1σ → (♦2m¬P1 ∧�2n+1¬P2)r2σ → ⊥ ,

70

3.2 A General Realization Method

which can be rewritten as

J ` (r1(2k + 1) : P1 ∨ ¬xl : ¬P2)σ →

(¬xm : ¬¬P1 ∧ r2(2n+ 1) : ¬P2)σ → ⊥ ,

which is propositionally equivalent to

J ` (r1(2k + 1) : P1 ∨ ¬xl : ¬P2)σ →

(xm : ¬¬P1 ∨ ¬r2(2n+ 1) : ¬P2)σ .

An obvious solution would be to choose a σ that unifies the terms
r1(2k + 1) and xm and the terms r2(2n+ 1) and xl respectively. But
since, in general, r1(2k + 1) contains the variable xl and r2(2n + 1)
contains the variable xm, this unification problem causes circular de-
pendencies and, hence, has no solution. It is open whether a more
sophisticated definition of realizability allows for a realization of the
cut rule. Fortunately, all our nested sequent systems are cut-free.

Lemma 3.2.10 (From Shallow to Nested). Let JL be a justification
logic and let CS be an axiomatically appropriate and schematic con-
stant specification for JL. For any nested rule ρ, if its shallow ver-
sion sh-ρ is realizable in JLCS, then ρ itself is realizable in JLCS.

Proof. We prove the lemma for the harder case where ρ has n > 0
premises. The proof for the case when n = 0 is much simpler and can
be read off from the case n > 0.

We consider an arbitrary instance

∆′{Λ′1} . . . ∆′{Λ′n}
∆′{Λ′}

(3.3)

of ρ and show that it is realizable in JLCS. By assumption, its shallow

version
Λ′1 . . . Λ′n

Λ′
, which is an instance of sh-ρ, has an annotated

version
Λ1 . . . Λn

Λ
such that for any realization functions r1, . . . , rn

on Λ1, . . . ,Λn respectively, there exists a realization function r0 on Λ
and a substitution σ0 that lives on each of Λi, i = 1, . . . , n, such that
JLCS ` (Λ1)r1σ0 → . . . → (Λn)rnσ0 → Λr0 .

We prove a stronger statement, namely that for any annotated context
Γ{ } such that Γ{Λ1}, . . . ,Γ{Λn}, and Γ{Λ} are properly annotated

71

3 Proving Realization Theorems

and for arbitrary realization functions r1, . . . , rn on Γ{Λ1}, . . . ,Γ{Λn}
respectively, there exists a realization function r on Γ{Λ} and a sub-
stitution σ that lives on each of Γ{Λi}, i = 1, . . . , n, such that

JLCS ` Γ{Λ1}r1σ → . . . → Γ{Λn}rnσ → Γ{Λ}r .

It then follows that the above also holds for some particular annotated

context Γ{ } = ∆{ } such that
∆{Λ1} . . . ∆{Λn}

∆{Λ}
is an annotated

version of our arbitrary ρ-instance (3.3). The proof is by induction on
the structure of Γ{ }.
Base case Γ{ } = { }. Given realization functions r1, . . . , rn on
Λ1, . . . ,Λn respectively, take r := r0 and σ := σ0.

Case Γ{ } = [Σ{ }]k. Let r1, . . . , rn be realization functions on
[Σ{Λ1}]k, . . . , [Σ{Λn}]k respectively. Since Σ{Λ1}, . . . ,Σ{Λn}, and
Σ{Λ} are properly annotated as subsequents of properly annotated
sequents [Σ{Λ1}]k, . . . , [Σ{Λn}]k, and [Σ{Λ}]k respectively and since
r1, . . . , rn are also realization functions on Σ{Λ1}, . . . ,Σ{Λn} respec-
tively, by induction hypothesis, there exists a realization function r′

on Σ{Λ} and a substitution σ′ that lives on each of Σ{Λi} such that

JLCS ` Σ{Λ1}r1σ′ → . . . → Σ{Λn}rnσ′ → Σ{Λ}r
′

. (3.4)

By Internalization Property 1.5.4, there exists a term t(x1, . . . , xn)
such that

JLCS ` r1(k)σ′ :
(
Σ{Λ1}r1σ′

)
→ . . . → rn(k)σ′ :

(
Σ{Λn}rnσ′

)
→ t

(
r1(k)σ′, . . . , rn(k)σ′

)
: Σ{Λ}r

′
. (3.5)

Let

σ := σ′ and r :=
(
r′ �Σ{Λ}

)
∪
{
k 7→ t

(
r1(k)σ′, . . . , rn(k)σ′

)}
.

Since [Σ{Λ}]k is properly annotated, index k does not occur in Σ{Λ}.
Hence, k /∈ dom

(
r′ �Σ{Λ}

)
and r is a realization function on [Σ{Λ}]k

by Fact 3.1.7. Further, (3.5) can now be rewritten as

JLCS `
(
[Σ{Λ1}]k

)r1
σ → . . . →

(
[Σ{Λn}]k

)rn
σ →

(
[Σ{Λ}]k

)r
.

For each i = 1, . . . , n, since σ′ lives on Σ{Λi}, it is obvious that σ = σ′

lives on [Σ{Λi}]k.

72

3.2 A General Realization Method

Case Γ{ } = ∆,Σ{ },Π. Let r1, . . . , rn be realization functions on
∆,Σ{Λ1},Π , . . . , ∆,Σ{Λn},Π respectively. As in the previous case,
by induction hypothesis, there exists a realization function r′ on Σ{Λ}
and a substitution σ′ that lives on each of Σ{Λi} such that (3.4) holds.

By Fact 3.2.5, each ri, i = 1, . . . , n, is a realization function on ∆,Π.
Since each ∆,Σ{Λi},Π is properly annotated and σ′ lives on each
Σ{Λi}, it lives away from ∆,Π. Thus, by Corollary 3.1.8,

σ′ ◦ (ri �∆,Π)

is a realization function on ∆,Π for each i = 1, . . . , n.

By Theorem 3.1.6 (Realization Merging) there exists a realization
function rM on ∆,Π and a substitution σM that lives on ∆,Π such
that for each i = 1, . . . , n

JLCS ` (∆,Π)σ
′◦(ri �∆,Π)σM → (∆,Π)rM . (3.6)

By Fact 3.1.7 (6), (∆,Π)σ
′◦(ri �∆,Π)σM = (∆,Π)riσ′σM . Therefore,

(3.6) can be rewritten as

JLCS ` (∆,Π)riσ′σM → (∆,Π)rM . (3.7)

From the induction hypothesis (3.4) it follows by the Substitution
Lemma 1.5.9 that

JLCS ` Σ{Λ1}r1σ′σM → . . . → Σ{Λn}rnσ′σM → Σ{Λ}r
′
σM .

From this and (3.7) it follows by propositional reasoning that

JLCS ` Σ{Λ1}r1σ′σM ∨ (∆,Π)r1σ′σM → . . .

→ Σ{Λn}rnσ′σM ∨ (∆,Π)rnσ′σM

→ Σ{Λ}r
′
σM ∨ (∆,Π)rM . (3.8)

Since ∆,Σ{Λ},Π is properly annotated and σM lives on ∆,Π, it lives
away from Σ{Λ}, hence σM ◦

(
r′ �Σ{Λ}

)
is a realization function

on Σ{Λ} by Corollary 3.1.8. By Facts 3.1.7 (5), 3.1.7 (8), and 3.1.7 (9),
we conclude that

r :=
(
σM ◦

(
r′ �Σ{Λ}

))
∪ (rM �∆,Π)

is a realization function on ∆,Σ{Λ},Π. Let

σ := σM ◦ σ′ .

73

3 Proving Realization Theorems

This σ lives on ∆,Σ{Λi},Π for each i = 1, . . . , n by Fact 3.1.7 (2). By
Fact 3.1.7 (6),

Σ{Λ}r
′
σM = Σ{Λ}r

′ �Σ{Λ}σM = Σ{Λ}σM◦(r′ �Σ{Λ}) ,

which allows to rewrite (3.8) as

JLCS `
(
Σ{Λ1} ∨ (∆,Π)

)r1
σ → . . . →

(
Σ{Λn} ∨ (∆,Π)

)rn
σ

→
(
Σ{Λ} ∨ (∆,Π)

)r
,

which, by Lemma 3.2.6, is propositionally equivalent to

JLCS `
(
∆,Σ{Λ1},Π

)r1
σ → . . . →

(
∆,Σ{Λn},Π

)rn
σ

→
(
∆,Σ{Λ},Π

)r
.

Recall that the height of a node in a (derivation) tree is the length of
the longest downward path to a leaf from that node. The height of a
(derivation) tree is the height of its root.

Theorem 3.2.11 (Realization of Nested Systems). Let JL be a justifi-
cation logic and let CS be an axiomatically appropriate and schematic
constant specification for JL. Let S be a system of nested rules whose
shallow versions are realizable in JLCS. Then for every sequent Γ′

provable in S there exists a properly annotated version Γ of it and a
realization function r on Γ such that JLCS ` Γr.

Proof. By induction on the height of a derivation of Γ′ in the sys-
tem S. By Lemma 3.2.10, all rules used in this derivation are real-
izable in JLCS. If Γ′ is the conclusion of an instance of a 0-premise
rule, the statement of the lemma follows from the fact that this rule is
realizable in JLCS. Let Γ′ = ∆′{Λ′} be the conclusion of an instance

∆′{Λ′1} . . . ∆′{Λ′n}
∆′{Λ′}

(3.9)

of an n-premise rule ρ with common context ∆′{}, where n > 0. Since
ρ is realizable in JLCS, there exists an annotated version

∆{Λ1} . . . ∆{Λn}
∆{Λ}

74

3.3 A Uniform and Modular Realization Theorem

of (3.9) such that for arbitrary realization functions r1, . . . , rn on
∆{Λ1}, . . . ,∆{Λn} respectively, there exists a realization function r
on ∆{Λ} and a substitution σ that lives on each of ∆{Λi}, i = 1, . . . , n,
such that

JLCS ` ∆{Λ1}r1σ → . . . → ∆{Λn}rnσ → ∆{Λ}r . (3.10)

By induction hypothesis, for each i = 1, . . . , n there exists a properly
annotated version ∆i{Λi} of the premise ∆′{Λ′i} and a realization
function ri on ∆i{Λi} such that JLCS ` ∆i{Λi}ri . Since ∆{Λi} is
another properly annotated version of the same premise ∆′{Λ′i}, by
Lemma 3.1.5 there exists a realization function ri on ∆{Λi} such that
JLCS ` ∆{Λi}ri .
Let r and σ be obtained from the realizability of ρ for these func-
tions r1, . . . , rn. By the Substitution Lemma 1.5.9, JLCS ` ∆{Λi}riσ
for each i = 1, . . . , n. It now follows from (3.10) by n applications of
modus ponens that JLCS ` ∆{Λ}r. It remains to note that ∆{Λ} is a
properly annotated version of the conclusion ∆′{Λ′} = Γ′ of the rule
instance (3.9).

3.3 A Uniform and Modular Realization
Theorem

We use Theorem 3.2.11 to prove a uniform realization theorem for all
the logics in the modal cube, i.e., we prove that the shallow versions
of the rules of various nested sequent systems for our modal logics
are realizable. This leads to a series of lemmas—essentially one for
each rule, of which Lemma 3.3.8 (contraction) is the most interesting
one. While there is no principal difference in the treatment of modal
rules (Lemmas 3.3.9 and 3.3.11), some of the rules require extra work.
In this respect, the rules that are used in modal logics with negative
introspection turned out to be the hardest.

Remark 3.3.1. It is interesting to note that while dealing with con-
traction (Lemma 3.3.8) is one of the main challenges of our method, it
did not create any problems for Fitting in [Fit09], where he applies a
similar method to sequent calculi. For an advanced reader, the reason
for this inequality might be interesting. Merging, which plays a crucial
role both in Fitting’s and in our method, prohibits repetitions in the

75

3 Proving Realization Theorems

id
Γ{Pi, ¬Pi}

Γ{A,B}
∨

Γ{A ∨B}
Γ{A} Γ{B}

∧

Γ{A ∧B}

Γ{A,A}
ctr

Γ{A}
Γ{∆,Σ}

exch
Γ{Σ,∆}

Γ{[A]}
�

Γ{�A}
Γ{[A,∆]}

k
Γ{♦A, [∆]}

Γ{[A]}
d

Γ{♦A}
Γ{A}

t
Γ{♦A}

Γ{[∆], A}
b

Γ{[∆,♦A]}
Γ{[♦A,∆]}

4
Γ{♦A, [∆]}

Γ{[∆],♦A}
5a

Γ{[∆,♦A]}
Γ{[∆], [Π,♦A]}

5b
Γ{[∆,♦A], [Π]}

Γ{[∆, [Π,♦A]]}
5c

Γ{[∆,♦A, [Π]]}

Figure 3.2: Rules of the nested sequent calculus

D T KB K4 K5 DB D4 D5 TB K45 S4 KB5 D45 S5

d t b 4 5 d, b d, 4 d, 5 t, b 4, 5 t, 4 b, 4, 5 d, 4, 5 t, 4, 5

Figure 3.3: Sequent systems of modal logic

annotation, forcing us to annotate the formulas being contracted dif-
ferently and prompting the explicit reconciliation of the annotations
as detailed in Lemma 3.3.8. However, Fitting was able to sidestep
this by merging things on a formula level and, thus, being able to use
the same annotation for the formulas being contracted. The richer
structure of nested sequents, with its structural modalities that also
require merging, prevents the same trick from being used in our case.

Remark 3.3.2. Note also that while dealing with the shallow ver-
sions of all the logical propositional rules is equally trivial, the case of
conjunction is significantly more complicated in the nested case. This
is due to the fact that conjunction is the only multi-premise rule, by
virtue of which its nested version requires the real use of merging in
Lemma 3.2.10.

Consider the inference rules in Figure 3.2. The sequent system SK
consists of the rules id, ∨, ∧, ctr, exch, �, and k. It corresponds to
the axiom system K. Extensions of system SK are obtained by adding
further rules from Figure 3.2 according to Figure 3.3, where 5 means
that all three rules 5a, 5b, and 5c are added. Note that a name in

76

3.3 A Uniform and Modular Realization Theorem

the first row of Figure 3.3 now denotes 1) a logic, 2) a (Hilbert-style)
axiom system, and 3) a sequent system at the same time.

These sequent systems are essentially the same as the ones in [Brü09],
where their completeness is proved, so we have the following theorem.

Theorem 3.3.3 (Completeness). System SK and its extensions are
sound and complete with respect to their corresponding modal logics.

Lemma 3.3.4 (id-rule). Let JL ⊇ J and let CS be an arbitrary con-
stant specification for JL. The shallow version of the id-rule is realiz-
able in JLCS.

Proof. Since JLCS ` Pi ∨ ¬Pi, the nowhere defined realization function
r := ∅ suffices.

Lemma 3.3.5 (∨- and exch-rule). Let JL ⊇ J and let CS be an arbi-
trary constant specification for JL. The shallow versions of the rules ∨

and exch are realizable in JLCS.

Proof. For an arbitrary instance
A′, B′

A′ ∨B′
of sh-∨, let an annotated se-

quent A,B be a properly annotated version of its premise. Then
A,B

A ∨B
is an annotated version of this instance. For any realization function r1

on the annotated sequent A,B let

r := r1

and σ be the identity substitution. Then A,B = A ∨ B = A ∨B.

Hence,
(
A,B

)r1
σ → (A ∨B)

r
is a propositional tautology and, thus,

is provable in JLCS.

For an arbitrary instance
∆′,Σ′

Σ′,∆′
of sh-exch, let annotated sequents ∆

and Σ be annotated versions of ∆′ and Σ′ respectively such that the
sequent ∆,Σ is a properly annotated version of the premise ∆′,Σ′.

Then
∆,Σ

Σ,∆
is an annotated version of this instance. For any realization

function r1 on ∆,Σ let
r := r1

and σ be the identity substitution. Then JLCS ` (∆,Σ)r1σ → (Σ,∆)r

follows from Lemma 3.2.6.

77

3 Proving Realization Theorems

The realizability for the �-rule is trivial:

Lemma 3.3.6 (�-rule). Let JL ⊇ J and let CS be an arbitrary con-
stant specification for JL. The shallow version of the �-rule is realiz-
able in JLCS.

Lemma 3.3.7 (∧-rule). Let JL ⊇ J and let CS be an arbitrary constant
specification for JL. The shallow version of the ∧-rule is realizable
in JLCS.

Proof. For an arbitrary instance
A′ B′

A′ ∧B′
of sh-∧, let an annotated se-

quent A ∧ B be a properly annotated version of its conclusion. Then
A B

A ∧B
is an annotated version of this instance since A and B do not

share indices. For arbitrary realization functions r1 and r2 on the
annotated sequents A and B respectively let

r := (r1 �A) ∪ (r2 �B)

and σ be the identity substitution. The above is a realization function
on A ∧ B by Facts 3.1.7 (7) and 3.1.7 (9). Finally, Ar1σ → Br2σ →

(A∧B)r is a propositional tautology and, thus, provable in JLCS, since
(A ∧B)r = Ar1σ ∧Br2σ.

Lemma 3.3.8 (ctr-rule). Let JL ⊇ J and let CS be an axiomatically
appropriate and schematic constant specification for JL. The shallow
version of the ctr-rule is realizable in JLCS.

Proof. For an arbitrary instance
A′, A′

A′
of sh-ctr, let annotated se-

quents A1, A2, and A3 not share indices and be properly annotated

versions of its premise and conclusion respectively. Then
A1, A2

A3

is

an annotated version of this instance. Given an arbitrary realization
function r1 on A1, A2, for each subformula occurrence B3 of A3 we
construct a realization function r on B3 and a substitution σ that
lives on B1 ∨ B2 and, additionally, with vrange(σ) ⊆ vars♦(B3) such
that

(B1 ∨B2)r1σ → (B3)r (3.11)

is provable in JLCS by induction on the structure of B3, where B1 and
B2 denote the subformula occurrences in A1 and A2 respectively that

78

3.3 A Uniform and Modular Realization Theorem

correspond to B3 in A3 (recall that A1, A2, and A3 are all annotated
versions of A′ and, hence, have the “same” structure). Note also that
r1 is clearly a realization function on B1 ∨B2.

Base case: B3 = Pi or B3 = ¬Pi. In this case, B1 = B2 = B3 and,
independent of σ and r, (3.11) can be rewritten as B3 ∨ B3 → B3, a
propositional tautology provable in JLCS. Hence, one can take σ to be
the identity substitution and r := ∅.

To prove the inductive step the following cases have to be considered:

Case B3 = D3 ∨ C3. Then B1 = D1 ∨ C1 and B2 = D2 ∨ C2.
By induction hypothesis, there exist realization functions r′D and r′C
on D3 and C3 respectively, as well as substitutions σ′D and σ′C that
live on D1∨D2 and C1∨C2 respectively with vrange(σ′D) ⊆ vars♦(D3)
and vrange(σ′C) ⊆ vars♦(C3) such that

JLCS ` (D1 ∨D2)r1σ′D → (D3)r
′
D and

JLCS ` (C1 ∨ C2)r1σ′C → (C3)r
′
C .

By the Substitution Lemma 1.5.9,

JLCS ` (D1 ∨D2)r1σ′Dσ
′
C → (D3)r

′
Dσ′C and (3.12)

JLCS ` (C1 ∨ C2)r1σ′Cσ
′
D → (C3)r

′
Cσ′D . (3.13)

Since C1 and D1, C2 and D2, and C3 and D3 are subformulas of A1,
A2, and A3 respectively, the latter three pairwise sharing no indices,
dom(σ′C) ⊆ vars♦(C1 ∨ C2) is disjoint from vrange(σ′D) ⊆ vars♦(D3).
Further, dom(σ′C) is also disjoint from dom(σ′D) ⊆ vars♦(D1 ∨ D2)
because, in addition, D1 ∨C1 and D2 ∨C2 are properly annotated. It
follows from Fact 3.1.7 (4) that σ′D ∪ σ′C = σ′C ◦ σ′D. Let

σ := σ′D ∪ σ′C .

Then (D1 ∨ D2)r1σ′Dσ
′
C = (D1 ∨ D2)r1σ and σ lives on B1 ∨ B2

by Fact 3.1.7 (3). It can be similarly shown that vrange(σ′C) ⊆
vars♦(C3) is disjoint from dom(σ′D) and, hence, σ = σ′D ◦ σ′C , so
that (C1 ∨C2)r1σ′Cσ

′
D = (C1 ∨C2)r1σ. By Fact 3.1.7 (2), vrange(σ) ⊆

vars♦(D3) ∪ vars♦(C3) = vars♦(B3). So σ is a suitable substitution
and (3.12) and (3.13) can be rewritten as

JLCS ` (D1 ∨D2)r1σ → (D3)r
′
Dσ′C and (3.14)

JLCS ` (C1 ∨ C2)r1σ → (C3)r
′
Cσ′D . (3.15)

79

3 Proving Realization Theorems

Since σ′C and σ′D live away from D3 and C3 respectively, by Corol-
lary 3.1.8 both

rD := σ′C ◦ (r′D �D3) and rC := σ′D ◦ (r′C �C3)

are realization functions on D3 and C3 respectively. Further, by
Fact 3.1.7 (6) we have (D3)r

′
Dσ′C = (D3)rD and (C3)r

′
Cσ′D = (C3)rC .

Now (3.14) and (3.15) can be rewritten as

JLCS ` (D1 ∨D2)r1σ → (D3)rD and

JLCS ` (C1 ∨ C2)r1σ → (C3)rC .

Finally, by propositional reasoning, it is provable in JLCS that(
(D1 ∨ C1) ∨ (D2 ∨ C2)

)r1
σ → (D3)rD ∨ (C3)rC ,

which is exactly (3.11) for

r := rD ∪ rC .

It is easy to see, using Fact 3.1.7, that r is a realization function on
the properly annotated formula B3 = D3 ∨ C3.

Case B3 = D3 ∧ C3 is analogous to B3 = D3 ∨ C3.

Case B3 = ♦2nC3. Then B1 = ♦2kC1 and B2 = ♦2mC2. By in-
duction hypothesis, there exists a realization function r′ on C3 and a
substitution σ′ that lives on C1∨C2 with vrange(σ′) ⊆ vars♦(C3) such
that JLCS ` (C1 ∨ C2)r1σ′ → (C3)r

′
. By propositional reasoning,

JLCS ` ¬(C3)r
′
→ ¬(C1)r1σ′ and JLCS ` ¬(C3)r

′
→ ¬(C2)r1σ′ .

By Internalization Property 1.5.4, there exist terms t1(x1) and t2(x1)
such that

JLCS ` xn : ¬(C3)r
′
→ t1(xn) :

(
¬(C1)r1σ′

)
and

JLCS ` xn : ¬(C3)r
′
→ t2(xn) :

(
¬(C2)r1σ′

)
.

It then follows by propositional reasoning that

JLCS ` ¬t1(xn) :
(
¬(C1)r1σ′

)
∨ ¬t2(xn) :

(
¬(C2)r1σ′

)
→ ¬xn : ¬(C3)r

′
. (3.16)

80

3.3 A Uniform and Modular Realization Theorem

Since dom(σ′) ⊆ vars♦(C1∨C2) 63 xn (indeed, ♦2n occurs in B3, which
shares indices with neither B1 nor B2), the substitution σ′ affects nei-
ther t1(xn) nor t2(xn) because they contain no variables other than xn.
As a consequence, (3.16) can be rewritten as

JLCS `
(
¬t1(xn) : ¬(C1)r1 ∨ ¬t2(xn) : ¬(C2)r1

)
σ′ → ¬xn : ¬(C3)r

′
.

Let

σ′′ := {xk 7→ t1(xn);xm 7→ t2(xn)} ∪ {xi 7→ xi | i /∈ {k,m}} .

By the Substitution Lemma 1.5.9 and since xn /∈ {xk, xm},

JLCS `
(
¬t1(xn) : ¬(C1)r1 ∨ ¬t2(xn) : ¬(C2)r1

)
σ′σ′′

→ ¬xn : ¬
(
(C3)r

′
σ′′
)

. (3.17)

Since σ′′ lives away from C3 (indeed, ♦2k and ♦2m occur in B1 and B2

respectively, neither of which shares indices with B3), we know by
Corollary 3.1.8 that σ′′ ◦ (r′ �C3) is a realization function on C3. In

addition, (C3)r
′
σ′′ = C3

σ′′◦(r′ �C3). Therefore, (3.17) can be rewritten
as

JLCS `
(
¬t1(xn) : ¬(C1)r1 ∨ ¬t2(xn) : ¬(C2)r1

)
σ′σ′′

→ ¬xn : ¬(C3)σ
′′◦(r′ �C3). (3.18)

Let

σ := σ′′ ◦ σ′ and r :=
(
σ′′ ◦ (r′ �C3)

)
∪ {2n 7→ xn} .

Clearly, r is a realization function on B3. Since σ′ affects none of xk,
xm, t1(xn), or t2(xn), (3.18) can be rewritten as the provability in JLCS
of (♦2kC1 ∨ ♦2mC2)r1σ → (♦2nC3)r, which is exactly (3.11). It
remains to note that, by Fact 3.1.7 (2),

dom(σ) ⊆ dom(σ′) ∪ dom(σ′′) ⊆ vars♦(C1 ∨ C2) ∪ {xk, xm}
= vars♦(♦2kC1 ∨ ♦2mC2)

and also vrange(σ) ⊆ vrange(σ′) ∪ vrange(σ′′) ⊆ vars♦(C3) ∪ {xn} =
vars♦(♦2nC3).

Case B3 = �mC3. Then B1 = �kC1 and B2 = �lC2. By induction
hypothesis, there exists a realization function r′ on C3 and a substi-
tution σ′ that lives on C1 ∨C2 with vrange(σ′) ⊆ vars♦(C3) such that

81

3 Proving Realization Theorems

JLCS ` (C1 ∨ C2)r1σ′ → (C3)
r′

. By propositional reasoning and In-
ternalization Property 1.5.4, there exist terms t1(x1) and t2(x1) such
that

JLCS ` r1(k)σ′ :
(
(C1)r1σ′

)
→ t1

(
r1(k)σ′

)
: (C3)r

′
and

JLCS ` r1(l)σ′ :
(
(C2)r1σ′

)
→ t2

(
r1(l)σ′

)
: (C3)r

′
.

By axiom schema sum, for s := t1
(
r1(k)σ′

)
+ t2

(
r1(l)σ′

)
,

JLCS ` r1(k)σ′ :
(
(C1)r1σ′

)
→ s : (C3)r

′
and

JLCS ` r1(l)σ′ :
(
(C2)r1σ′

)
→ s : (C3)r

′
.

Thus, by propositional reasoning,

JLCS `
(
r1(k) : (C1)r1 ∨ r1(l) : (C2)r1

)
σ′ → s : (C3)r

′
. (3.19)

Let

σ := σ′ and r := (r′ �C3) ∪ {m 7→ s} .

Clearly, r is a realization function on B3, σ lives on C1 ∨C2, or equiv-
alently on B1 ∨ B2, and vrange(σ) ⊆ vars♦(C3) = vars♦(B3). Now
(3.19) can be rewritten to state the provability in JLCS of (�kC1 ∨

�lC2)r1σ → (�mC3)r, which is exactly (3.11).

It remains to note that (3.11) for B3 = A3 and for thus constructed r
and σ is just

(
A1, A2

)r1
σ →

(
A3

)r
.

Lemma 3.3.9 (k-rule). Let JL ⊇ J and let CS be an axiomatically
appropriate constant specification for JL. The shallow version of the
k-rule is realizable in JLCS.

Proof. For an arbitrary instance
[A′,∆′]

♦A′, [∆′]
of sh-k, let [A,∆]k and

♦2mA, [∆]i be properly annotated versions of its premise and con-

clusion respectively. Then
[A,∆]k

♦2mA, [∆]i
is an annotated version of this

instance. Let r1 be an arbitrary realization function on [A,∆]k. Con-
sider the propositional tautology (A,∆)r1 → ¬Ar1 → ∆r1 . By Inter-
nalization Property 1.5.4 there is a term t(x1, x2) such that

JLCS ` r1(k) : (A,∆)r1 → xm : ¬Ar1 → t
(
r1(k), xm

)
: ∆r1 .

82

3.3 A Uniform and Modular Realization Theorem

By propositional reasoning,

JLCS ` r1(k) : (A,∆)r1 → ¬xm : ¬Ar1 ∨ t
(
r1(k), xm

)
: ∆r1 . (3.20)

Since ♦2mA, [∆]i is properly annotated, the indices 2m and i cannot
occur in either A or ∆. Hence,

r := (r1 �A,∆) ∪
{

2m 7→ xm; i 7→ t
(
r1(k), xm

)}
is a realization function on ♦2mA, [∆]i. For the identity substitution σ
and this r, (3.20) can be rewritten as

JLCS `
(
[A,∆]k

)r1
σ →

(
♦2mA, [∆]i

)r
.

Lemma 3.3.11 covers the remaining rules. The part of Lemma 3.3.11
that concerns the rules 5a, 5b, and 5c uses auxiliary lemmas from
Section 2.2 as well as the following corollary:

Corollary 3.3.10 (Internalized Inverse Positive Introspection). Let
JL ⊇ J5 and let CS be an axiomatically appropriate and schematic
constant specification for JL. There exists a term invposint(x1) such
that for the term t!(x1) constructed in Lemma 2.2.5,

JLCS ` invposint(s) :
(
¬ t!(s) : s :A → ¬s :A

)
for any term s and any formula A.

Proof. By Lemma 2.2.5, for the terms posint(x1) and t!(x1) con-
structed there, we have JLCS ` posint(x1) :

(
x1 : P1 → t!(x1) : x1 : P1

)
.

By propositional reasoning and Internalization Property 1.5.4 there
exists a ground term p such that

JLCS ` p :
((
x1 : P1 → t!(x1) : x1 : P1

)
→ ¬ t!(x1) : x1 : P1 → ¬x1 : P1

)
.

For invposint(x1) := p · posint(x1), by app and MP,

JLCS ` invposint(x1) :
(
¬ t!(x1) : x1 : P1 → ¬x1 : P1

)
.

The desired result now follows from the Substitution Lemma 1.5.9.
Note that invposint(x1) depends on neither s nor A.

Lemma 3.3.11 (Modal Rules). Let ρ ∈ {d, t, b, 4, 5a, 5b, 5c} and
let JL ⊇ Jρ, where by Jd we mean JD, and so on, except for ρ ∈
{5a, 5b, 5c} where we mean J5. Let CS be an axiomatically appropri-
ate and schematic constant specification for JL. The shallow version
of ρ is realizable in JLCS.

83

3 Proving Realization Theorems

Proof. We consider an arbitrary instance of sh-ρ for each rule ρ in
turn.

Case ρ = d. For an arbitrary instance
[A′]

♦A′
of sh-d, let [A]k and

♦2mA be properly annotated versions of its premise and conclusion

respectively. Then
[A]k

♦2mA
is an annotated version of this instance.

Consider an arbitrary realization function r1 on [A]k. From an app-
instance xm : (Ar1 → ⊥) → r1(k) : Ar1 →

(
xm · r1(k)

)
:⊥ it follows by

propositional reasoning that

JLCS ` r1(k) :Ar1 → xm : (Ar1 → ⊥) →
(
xm · r1(k)

)
:⊥ .

Using the jd-instance
(
xm · r1(k)

)
:⊥ → ⊥, we obtain by propositional

reasoning

JLCS ` r1(k) :Ar1 → xm : (Ar1 → ⊥) → ⊥ ,

which is identical to JLCS ` r1(k) :Ar1 → ¬xm :¬Ar1 . Since 2m is even,

r := r1 ∪ {2m 7→ xm}

is a realization function on ♦2mA by Facts 3.1.7 (8) and 3.1.7 (9).
Thus for the identity substitution σ and this r, we have

JLCS `
(
[A]k

)r1
σ → (♦2mA)r .

Case ρ = t. For an arbitrary instance
A′

♦A′
of sh-t, let ♦2mA be

a properly annotated version of its conclusion. Then
A

♦2mA
is an

annotated version of this instance. Consider an arbitrary realization
function r1 on A. By the contrapositive of a jt-instance xm : ¬Ar1 →
¬Ar1 we have JLCS ` Ar1 → ¬xm : ¬Ar1 . Again, since 2m is even,

r := r1 ∪ {2m 7→ xm}

is a realization function on ♦2mA. Thus for the identity substitution σ
and this r, JLCS ` Ar1σ → (♦2mA)r.

Case ρ = b. For an arbitrary instance
[∆′], A′

[∆′,♦A′]
of sh-b, let [∆]k, A and

[∆,♦2mA]i be properly annotated versions of its premise and conclu-

sion respectively. Then
[∆]k, A

[∆,♦2mA]i
is an annotated version of this

84

3.3 A Uniform and Modular Realization Theorem

instance. Consider an arbitrary realization function r1 on [∆]k, A.
Since ∆r1 → ∆r1 ∨ ¬xm : ¬Ar1 is an instance of a propositional tautol-
ogy, by Internalization Property 1.5.4 there exists a term t1(x1) such
that

JLCS ` r1(k) : ∆r1 → t1
(
r1(k)

)
: (∆r1 ∨ ¬xm : ¬Ar1) . (3.21)

Similarly, for the instance ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 of a propo-
sitional tautology, there exists a term t2(x1) such that

JLCS ` ?xm : ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) .

From this and (3.21) it follows by axiom schema sum and propositional
reasoning that

JLCS ` r1(k) : ∆r1 ∨ ?xm : ¬xm : ¬Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1)

for t := t1
(
r1(k)

)
+ t2(?xm). Finally, from the instance Ar1 → ?xm :

¬xm : ¬Ar1 of axiom schema jb it follows that

JLCS ` r1(k) : ∆r1 ∨Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1) .

Since [∆,♦2mA]i is properly annotated, the indices 2m and i do not
occur in either ∆ or A. Hence,

r := (r1 � ∆, A) ∪ {i 7→ t; 2m 7→ xm}

is a realization function on [∆,♦2mA]i. Thus for the identity substi-
tution σ and this r, we have JLCS `

(
[∆]k, A

)r1
σ →

(
[∆,♦2mA]i

)r
.

Case ρ = 4. For an arbitrary instance
[♦A′,∆′]

♦A′, [∆′]
of sh-4, let [♦2mA,∆]k

and ♦2mA, [∆]i be properly annotated versions of its premise and con-

clusion respectively. Then
[♦2mA,∆]k

♦2mA, [∆]i
is an annotated version of this

instance. Consider an arbitrary realization function r1 on [♦2mA,∆]k.
Since xm : ¬Ar1 → ¬xm : ¬Ar1 ∨∆r1 → ∆r1 is an instance of a propo-
sitional tautology, it follows from Internalization Property 1.5.4 that
there is a term s(x1) such that

JLCS ` !xm : xm : ¬Ar1 → s(!xm) : (¬xm : ¬Ar1 ∨∆r1 → ∆r1) .

From a j4-instance xm : ¬Ar1 → !xm : xm : ¬Ar1 it then follows by
propositional reasoning that

JLCS ` xm : ¬Ar1 → s(!xm) : (¬xm : ¬Ar1 ∨∆r1 → ∆r1) .

85

3 Proving Realization Theorems

By axiom schema app and propositional reasoning,

JLCS ` xm :¬Ar1 → r1(k) : (¬xm :¬Ar1 ∨∆r1) →
(
s(!xm) ·r1(k)

)
:∆r1 ,

which is propositionally equivalent to

JLCS ` r1(k) : (¬xm : ¬Ar1 ∨∆r1) → ¬xm : ¬Ar1 ∨
(
s(!xm) · r1(k)

)
: ∆r1 .

The index i does not occur in either ∆ or ♦2mA because ♦2mA, [∆]i is
properly annotated. Hence,

r := (r1 � ♦2mA,∆) ∪ {i 7→ s(!xm) · r1(k)}

is a realization function on ♦2mA, [∆]i. Thus for the identity substitu-
tion σ and this r, we have JLCS `

(
[♦2mA,∆]k

)r1
σ →

(
♦2mA, [∆]i

)r
.

Case ρ = 5a. Consider an arbitrary instance
[∆′],♦A′

[∆′,♦A′]
of sh-5a and

let [∆]k,♦2mA and [∆,♦2mA]i be properly annotated versions of its

premise and conclusion respectively. Then
[∆]k,♦2mA

[∆,♦2mA]i
is an annotated

version of this instance. Consider an arbitrary realization function r1

on [∆]k,♦2mA. By an instance of a propositional tautology ∆r1 →

∆r1 ∨ ¬xm : ¬Ar1 and Internalization Property 1.5.4 there exists a
term t1(x1) such that

JLCS ` r1(k) : ∆r1 → t1
(
r1(k)

)
: (∆r1 ∨ ¬xm : ¬Ar1) . (3.22)

Similarly, for the instance ¬xm : ¬Ar1 → ∆r1 ∨ ¬xm : ¬Ar1 of a propo-
sitional tautology there is a term t2(x1) such that

JLCS ` ?xm : ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) .

From the instance ¬xm :¬Ar1 → ?xm :¬xm :¬Ar1 of j5, by propositional
reasoning,

JLCS ` ¬xm : ¬Ar1 → t2(?xm) : (∆r1 ∨ ¬xm : ¬Ar1) . (3.23)

It follows from (3.22) and (3.23) by axiom schema sum and proposi-
tional reasoning that

JLCS ` r1(k) : ∆r1 ∨ ¬xm : ¬Ar1 → t : (∆r1 ∨ ¬xm : ¬Ar1)

for t := t1
(
r1(k)

)
+ t2(?xm). The index i does not occur in either ∆

or ♦2mA because [∆,♦2mA]i is properly annotated. Hence,

r := (r1 � ∆,♦2mA) ∪ {i 7→ t}

86

3.3 A Uniform and Modular Realization Theorem

is a realization function on [∆,♦2mA]i. For the identity substitution σ
and this r,

JLCS `
(
[∆]k,♦2mA

)r1
σ →

(
[∆,♦2mA]i

)r
.

Case ρ = 5b. For an arbitrary instance
[∆′], [Π′,♦A′]

[∆′,♦A′], [Π′]
of sh-5b,

let [∆]k, [Π,♦2mA]i and [∆,♦2mA]l, [Π]j be properly annotated ver-

sions of its premise and conclusion respectively. Then
[∆]k, [Π,♦2mA]i

[∆,♦2mA]l, [Π]j
is an annotated version of this instance. Consider an arbitrary re-
alization function r1 on [∆]k, [Π,♦2mA]i. By Corollary 3.3.10, for
the term invposint(x1) constructed there and the term t!(x1) from
Lemma 2.2.5,

JLCS ` invposint(xm) :
(
¬ t!(xm) : xm : ¬Ar1 → ¬xm : ¬Ar1

)
.

Thus, by app and MP,

JLCS ` ? t!(xm) : ¬ t!(xm) : xm : ¬Ar1 →(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 .

From the instance ¬ t!(xm) : xm : ¬Ar1 → ? t!(xm) : ¬ t!(xm) : xm : ¬Ar1

of j5 it follows that

JLCS ` ¬ t!(xm) : xm : ¬Ar1 →(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 . (3.24)

By a propositional tautology and Internalization Property 1.5.4, for
some ground term p1

JLCS ` p1 :
(
xm : ¬Ar1 → Πr1 ∨ ¬xm : ¬Ar1 → Πr1

)
.

Thus, by app,

JLCS ` t!(xm) : xm : ¬Ar1 →
(
p1 · t!(xm)

)
: (Πr1 ∨ ¬xm : ¬Ar1 → Πr1) .

Again by app and propositional reasoning, for s := p1 · t!(xm) · r1(i)

JLCS ` t!(xm) : xm : ¬Ar1 → r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → s : Πr1 ,

which is propositionally equivalent to

JLCS ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → ¬ t!(xm) : xm : ¬Ar1 ∨ s : Πr1 .

87

3 Proving Realization Theorems

From this and (3.24), by propositional reasoning,

JLCS ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 ∨ s : Πr1 . (3.25)

By the propositional tautology ¬xm :¬Ar1 → ∆r1∨¬xm :¬Ar1 and Inter-
nalization Property 1.5.4 there is a term t3(x1) such that from (3.25)
and propositional reasoning,

JLCS ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →

t3
(
invposint(xm) · ? t!(xm)

)
: (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 . (3.26)

By the propositional tautology ∆r1 → ∆r1∨¬xm :¬Ar1 and Internaliza-
tion Property 1.5.4 there is a term t4(x1) such that JLCS ` r1(k):∆r1 →

t4
(
r1(k)

)
: (∆r1 ∨ ¬xm : ¬Ar1). Therefore, by axiom schema sum,

JLCS ` r1(k) : ∆r1 → t : (∆r1 ∨ ¬xm : ¬Ar1) (3.27)

for t := t3
(
invposint(xm) · ? t!(xm)

)
+ t4

(
r1(k)

)
. Similarly, by (3.26)

and sum,

JLCS ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) → t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 .

Finally, by propositional reasoning with (3.27),

JLCS ` r1(k) : ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →

t : (∆r1 ∨ ¬xm : ¬Ar1) ∨ s : Πr1 .

The indices l and j do not occur in any of ∆, Π, or ♦2mA because
[∆,♦2mA]l, [Π]j is properly annotated. Hence,

r := (r1 � ∆,♦2mA,Π) ∪ {l 7→ t; j 7→ s}

is a realization function on [∆,♦2mA]l, [Π]j . For the identity substi-
tution σ and this r,

JLCS `
(
[∆]k, [Π,♦2mA]i

)r1
σ →

(
[∆,♦2mA]l, [Π]j

)r
.

Case ρ = 5c. For an arbitrary instance
[∆′, [Π′,♦A′]]

[∆′,♦A′, [Π′]]
of sh-5c, let

[∆, [Π,♦2mA]i]k and [∆,♦2mA, [Π]j]l be properly annotated versions

88

3.3 A Uniform and Modular Realization Theorem

of its premise and conclusion respectively. Then
[∆, [Π,♦2mA]i]k

[∆,♦2mA, [Π]j]l
is an

annotated version of this instance. Consider an arbitrary realization
function r1 on [∆, [Π,♦2mA]i]k. As in the subcase ρ = 5b (cf. (3.25))
we find

JLCS ` r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 ∨ s : Πr1 .

Thus, by propositional reasoning,

JLCS ` ∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1) →

∆r1 ∨
(
invposint(xm) · ? t!(xm)

)
: ¬xm : ¬Ar1 ∨ s : Πr1 .

By Internalization Property 1.5.4 there exists a term s1(x1) such that

JLCS ` r1(k) :
(
∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)

)
→

s1

(
r1(k)

)
:
(
∆r1 ∨ t3 : ¬xm : ¬Ar1 ∨ s : Πr1

)
, (3.28)

where t3 := invposint(xm) · ? t!(xm). By Lemma 2.2.3, there exists a
term fact(x1) such that

JLCS ` fact(t3) : (t3 : ¬xm : ¬Ar1 → ¬xm : ¬Ar1) . (3.29)

By propositional reasoning and Internalization Property 1.5.4, for
some ground term p2

JLCS ` p2 :
(
(t3 : ¬xm : ¬Ar1 → ¬xm : ¬Ar1) →

∆r1 ∨ t3 : ¬xm : ¬Ar1 ∨ s : Πr1 → ∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1
)

.

From this and (3.29) by app and MP,

JLCS `
(
p2 · fact(t3)

)
: (∆r1 ∨ t3 : ¬xm : ¬Ar1 ∨ s : Πr1 →

∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1) .

It follows by app and MP that

JLCS ` s1

(
r1(k)

)
: (∆r1 ∨ t3 : ¬xm : ¬Ar1 ∨ s : Πr1) →

t4 : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1)

89

3 Proving Realization Theorems

for t4 := p2 ·fact(t3)·s1

(
r1(k)

)
. By propositional reasoning with (3.28),

JLCS ` r1(k) :
(
∆r1 ∨ r1(i) : (Πr1 ∨ ¬xm : ¬Ar1)

)
→

t4 : (∆r1 ∨ ¬xm : ¬Ar1 ∨ s : Πr1) .

The indices l and j do not occur in any of ∆, Π, or ♦2mA because
[∆,♦2mA, [Π]j]l is properly annotated. Hence,

r := (r1 � ∆,♦2mA,Π) ∪ {j 7→ s; l 7→ t4}

is a realization function on [∆,♦2mA, [Π]j]l. For the identity substi-
tution σ and this r, we have(

[∆, [Π,♦2mA]i]k
)r1
σ →

(
[∆,♦2mA, [Π]j]l

)r
.

Theorem 3.3.12 (Realization). Let a modal logic ML and a justifi-
cation logic JL be chosen respectively from the 1st and the 2nd row of
the same column of the following table:

K D T KB K4 K5 DB D4 D5 TB K45 S4 KB5 D45 S5

J JD JT JB J4 J5 JDB JD4 JD5 JTB J45 JT4 JB45 JD45 JT45

Note that the first row contains all 15 modal logics from the modal
cube. Let CS be an axiomatically appropriate and schematic constant
specification for JL. Then (JLCS)◦ = ML. Moreover, for each A′ ∈ ML
there exists a properly annotated version A of it and a realization
function r on A such that JLCS ` Ar.

Proof. The inclusion (JLCS)◦ ⊆ ML follows from Lemma 1.4.3.

So we turn to the more interesting opposite inclusion. As discussed
at the beginning of this section, with the exception of the case of
the modal logic K, whose sequent system is denoted by SK, ML also
denotes the sequent system (an extension of SK according to Fig-
ure 3.3) for the modal logic ML. Be it SK or ML for ML 6= K, this
sequent system is complete with respect to the modal logic ML by
Theorem 3.3.3. By Lemmas 3.3.4–3.3.9 the rules sh-id, sh-∨, sh-∧, sh-
ctr, sh-exch, sh-�, and sh-k, i.e., the shallow versions of all the rules of
the sequent system SK for the modal logic K, are realizable in JLCS.
Let ρ ∈ {d, t, b, 4, 5a, 5b, 5c} be one of the remaining rules of the se-
quent system ML. By Lemma 3.3.11, sh-ρ is realizable in JLCS. Again,
the shallow versions of all the rules of ML are realizable in JLCS. Let
A′ ∈ ML, i.e., ML ` A′ for a modal formula A′. By completeness of
our sequent system, the sequent A′ is provable in it. Therefore, by

90

3.3 A Uniform and Modular Realization Theorem

Theorem 3.2.11, for some properly annotated version A of A′ there
exists a realization function r on A such that JLCS ` Ar. Clearly,
(Ar)◦ = A′. Hence, A′ ∈ (JLCS)◦.

Theorem 3.3.12 involves only 15 of our 24 justification logics. Based
on the fact that all justification counterparts of a modal logic are pair-
wise equivalent by Theorem 2.2.9, we now prove a modular realization
theorem that connects every modal logic to all of its justification coun-
terparts, thus yielding a realization theorem that involves all of our
24 justification logics.

We first need an auxiliary lemma: the requirement that different oc-
currences of ♦ be realized by distinct variables can be preserved under
embeddings.

Lemma 3.3.13 (Embedding and Realization). Let JL1 and JL2 be
arbitrary justification logics (not necessarily extensions of J) over lan-
guages L1 and L2 respectively. Assume JL1 ⊆̃ JL2 and JL1 ` Ar1 for
some properly annotated formula A and a realization function r1 on A.
Then there exists a realization function r2 on A such that JL2 ` Ar2 .

Proof. Let ω be an operation translation that witnesses the embedding
JL1 ⊆̃ JL2. Then JL2 ` Ar1ω. Define r2(i) := r1(i)ω so that r2(i) is
undefined whenever r1(i) is. Since, by Fact 2.1.2 (1), r1(i)ω is an
L2-term whenever r1(i) is defined, r2 is a prerealization function in
language L2 on A. Whenever r2(2k) is defined, r1(2k) = xk because
r1 is a realization function. Hence, r2(2k) = r1(2k)ω = xkω = xk.
Thus, r2 is also a realization function. It is trivial to check by induction
on the structure of A that Ar1ω = Ar2 .

Theorem 3.3.14 (Modular Realization). Let ML be a modal logic and
let JL be one of its justification counterparts. Let CS be an axiomat-
ically appropriate and schematic constant specification for JL. Then
(JLCS)◦ = ML. Moreover, for each A′ ∈ ML there exists a properly
annotated version A of it and a realization function r on A such that
JLCS ` Ar.

Proof. All the modal logics, except for KB5 and S5, have only one
justification counterpart, for which the statement of the theorem was
proved in Theorem 3.3.12.

Let S5 ` A′. By Theorem 3.3.12, there exists a properly annotated
version A of A′ and a realization function r on A such that JT45 `

91

3 Proving Realization Theorems

Ar. Let JL be any justification counterpart of S5 and let CS be an
axiomatically appropriate and schematic constant specification for JL.
By Theorem 2.2.9, JLCS ≡ JT45. Therefore, by Lemma 3.3.13, there
exists a realization function r2 on A such that JLCS ` Ar2 . Clearly,
(Ar2)◦ = A′. Hence, A′ ∈ (JLCS)◦. The inclusion (JLCS)◦ ⊆ S5 follows
from Lemma 1.4.3.

The proof for KB5 is analogous, except that JB45 is used in place
of JT45.

By Theorems 3.3.14 and 2.2.9, two justification logics are equivalent
if and only if they realize the same modal logic:

Corollary 3.3.15. For two justification logics JL1 and JL2 and ax-
iomatically appropriate and schematic constant specifications CS1 and
CS2 for JL1 and JL2 respectively,

JL1CS1
≡ JL2CS2

⇐⇒ (JL1CS1
)◦ = (JL2CS2

)◦ .

In particular, there exist distinct justification logics that are equivalent.
It then follows that one logic may embed in the other without being its
subset.

Remark 3.3.16. Alternatively, Theorem 3.3.14 could be proved us-
ing the fact that, by Corollary 3.3.17 below, each rule of the sequent
system S5 (KB5) is realizable in every justification counterpart of the
logic S5 (KB5). Theorem 3.3.14 could thus be proved similarly to
Theorem 3.3.12, using Theorem 3.2.11.

Corollary 3.3.17 (Realizability of Modal Rules). The following rules
are realizable:

(1) the b-rule in JLCS, where JL ⊇ JT5 and CS an axiomatically
appropriate and schematic constant specification for JL;

(2) the 4-rule in JLCS, where either JL ⊇ JT5 or JL ⊇ JB5 and CS an
axiomatically appropriate and schematic constant specification
for JL;

(3) the 5-rules in JLCS, where JL ⊇ JB4 and CS an axiomatically
appropriate and schematic constant specification for JL;

(4) the t-rule in JLCS, where either JL ⊇ JDB4 or JL ⊇ JDB5 and
CS an axiomatically appropriate and schematic constant specifi-
cation for JL.

92

3.3 A Uniform and Modular Realization Theorem

Proof. Using Lemma 2.2.6, we can prove realizability of the shallow
rules in the respective justification logics by repeating the proof of
Lemma 3.3.11, replacing each use of the axiom schema jb with A →

? s :¬s :¬A, of the axiom schema j4 for JL ⊇ JT5 with s :A → t!(s):s :A,
of the axiom schema j4 for JL ⊇ JB5 with s : A → t′!(s) : s : A, and of
the axiom schema j5 with ¬s : A → t?(s) : ¬s : A. Note also that the
provability of axiom schema jt for JL ⊇ JDB4 and JL ⊇ JDB5 follows
from Lemma 2.2.6. The realizability of the nested rules then follows
from Lemma 3.2.10.

93

4 Gentzen Systems for Logics
of Belief and Inversed
Internalization

We first introduce Gentzen systems for logics of belief (i.e., for J, J4,
J5, J45, JB, JB4, JB5, and JB45) and prove their completeness via
syntactic cut elimination. We then use these systems to prove—for J
and J4—a property that we call inversed internalization: for arbitrary
t and A,

` t :A implies ` A .

We also show that this property fails for all other logics of belief.
To our knowledge, inversed internalization has not yet been studied in
the literature. However, Kuznets proved a similar, but more restricted
statement (cf. Lemma 3.4.10 in [Kuz08]). Note that proving inversed
internalization is not straight-forward: if a formula t : A is obtained
from an MP-instance

B B → t :A

t :A
,

then it is not obvious—in the absence of the axiom schema jt—that
formula A is provable.

Gentzen systems for logics of belief have not yet been present in the
literature, except for [Mil12], where systems for J and J4 were intro-
duced without proving their completeness. Artemov [Art01] presented
a cut-free Gentzen system for JT4. However, instead of via syntac-
tic cut elimination, he proved completeness via arithmetical semantics
for JT4. Later, Artemov [Art02] presented a Gentzen system for the
intuitionistic version of JT4 and proved completeness via a rather in-
volved syntactic cut elimination procedure. A similar proof would
probably also work for the classical version of JT4 (and for other ex-
tensions of JT). Here, however, we present a cut elimination proof for
logics of belief that is—thanks to the absence of the axiom schema jt—
significantly simpler and more standard than the one from [Art02].

95

4 Gentzen Systems for Logics of Belief and Inversed Internalization

Unfortunately, neither the cut elimination proof presented here nor
Artemov’s proof apply to JD and extensions. For them, finding cut-
free Gentzen systems remains an open problem.

Beyond traditional Gentzen systems for justification logics, a num-
ber of developments have been going on recently: Renne [Ren06]1

presented tableaux systems for JT4 and S4LP (a hybrid logic that
combines JT4 and S4). Further, tableaux and hypersequent systems
for S4LP and S4LPN (a variant of S4LP that additionally contains
negative introspection) have been introduced by Kurokawa [Kur09,
Kur11]. Based on Kurokawa’s work, Fitting [Fit12] presented nested
sequent systems for the hybrid logics K+J (modal logic K combined
with J) and S4LP; he also showed that the nested sequent systems
and the tableaux systems are notational variants of each other. Pog-
giolesi [Pog10] introduced a hypersequent-like system for intuitionis-
tic JT4.

Common to all the systems mentioned (including the systems pre-
sented here) is the fact that they—although cut-free—are not ana-
lytic, i.e., they do not enjoy the subformula property. See [Pog10] for
a discussion on this matter.

4.1 Gentzen Systems for Logics of Belief

We start by defining Gentzen systems for logics of belief. Then we
prove some structural properties of these systems such as invertibil-
ity of the implication rules and (partial) admissibility of contraction.
Finally, we establish cut elimination and completeness.

Note that—in contrast to the situation in modal logics, where the
connectives ♦ and � are dual—for justification logics, there is no dual
to t :A and, as a consequence, justification formulas cannot be trans-
formed into negation normal form. Therefore, the sequents we are
using are two-sided.

A sequent is a pair Γ ⇒ ∆, where Γ and ∆ are multisets of justifica-
tion formulas (in the language of the logic the system is formulated
for). In the following, we use Γ and ∆ (with or without sub- or super-
scripts) to denote multisets of formulas. We adopt common notation
and write, e.g., Γ,∆ for Γ ∪∆, where ∪ denotes multiset union. We

1The article contains a mistake, a correction of which is under way but not yet
published.

96

4.1 Gentzen Systems for Logics of Belief

also write, e.g., Γ, A instead of Γ, {A}. The corresponding formula of
a sequent Γ ⇒ ∆ is

∧
Γ →

∨
∆, where

∧
Γ (
∨

∆) denotes the con-
junction (disjunction) of all the formulas in Γ (∆) in some standard
order. See [TS96] for a general introduction on Gentzen systems.

For JL ∈ {J, J4, J5, J45, JB, JB4, JB5, JB45} and a constant specifica-
tion CS for JL, we define the system GJLCS (or GJL if CS is the total
constant specification for JL). The axiom schemas of GJLCS are:

(Ax)
P,Γ⇒ ∆, P

(⊥)
⊥,Γ⇒ ∆

cnin : . . . : c1i1 :A ∈ CS
(CS)

Γ⇒ ∆, cnin : . . . : c1i1 :A

The meta-variable P in (Ax) denotes either a proposition or a formula
of the form t :A. The level n in (CS) is greater than zero.

The propositional rules of GJLCS are:

Γ⇒ ∆, A B,Γ⇒ ∆
(L→)

A → B,Γ⇒ ∆

A,Γ⇒ ∆, B
(R→)

Γ⇒ ∆, A → B

The only structural rule of GJLCS is a restricted version of right-
contraction:

Γ⇒ ∆, t :A, t :A
(RC)

Γ⇒ ∆, t :A

GJLCS contains rules corresponding to the axiom schemas sum and app:

Γ⇒ ∆, t :A
(+)

Γ⇒ ∆, (s+ t) :A

Γ⇒ ∆, t :A
(+)

Γ⇒ ∆, (t+ s) :A

Γ⇒ ∆, s : (A → B) Γ⇒ ∆, t :A
(·)

Γ⇒ ∆, (s · t) :B

GJLCS contains the following rule iff j4 is an axiom schema of JL:

Γ⇒ ∆, t :A
(!)

Γ⇒ ∆, ! t : t :A

GJLCS contains the following rule iff j5 is an axiom schema of JL:

t :A,Γ⇒ ∆
(?)

Γ⇒ ∆, ? t : ¬t :A

97

4 Gentzen Systems for Logics of Belief and Inversed Internalization

GJLCS contains the following rule iff jb is an axiom schema of JL:

Γ⇒ ∆, A
(?̄)

Γ⇒ ∆, ?̄ t : ¬t : ¬A

Note that the language of the formulas in the above rules depends on
the logic JL. Unless stated otherwise, from this point on, by GJLCS we
denote any Gentzen system for JL ∈ {J, J4, J5, J45, JB, JB4, JB5, JB45}
and a constant specification CS for JL. Further, when we say that a
formula A is provable in GJLCS, we mean that the sequent ⇒ A is
provable in GJLCS.

Remark 4.1.1 (Differences Against Other Systems). The systems
presented here have some structural differences against Artemov’s
original system for JT4. Our systems do not have a left-contraction
rule and only a restricted version of right-contraction. This facilitates
the proof of cut elimination. Further, (Ax) is restricted to propositions
and formulas of the form t : A. The reason for this choice is that we
need the implication rules to be height-preserving invertible. Finally,
instead of (CS), which also takes into account constant specifications,
Artemov’s system for JT4 contains a rule

Γ⇒ ∆, A

Γ⇒ ∆, c :A

with A being an axiom.

The rule (·) is the one that prevents the above systems from being
analytic: a formula A in the premise may not occur as a subformula in
the conclusion. Another downside of the systems is that the rules (+),
(·), (!), (?), and (?̄) are not invertible. For example, (s + t) : A ⇒
(s + t) : A is provable (as an axiom), but (s + t) : A ⇒ t : A may not
be. As a consequence, the rule (RC) is not admissible, i.e., it cannot
be absorbed into the other rules.

Despite these drawbacks, our Gentzen systems still have some advan-
tages over Hilbert proof systems. For example, sequent derivations
satisfy a kind of subterm property. The following lemma is the key
ingredient to prove the partial conservativity results in Section 5.2.
The lemma states that operations introduced by rules (!), (?), and (?̄)
cannot be eliminated and, hence, occur in the endsequent of a deriva-
tion. This was first observed by Milnikel [Mil12] for a Gentzen system
for J4.

98

4.1 Gentzen Systems for Logics of Belief

Lemma 4.1.2 (Partial Subterm Property).
Let JL ∈ {J, JB, J4, J5, J45} and let CS be a constant specification
for JL. If a GJLCS-derivation D makes use of a rule (∗), where ∗ ∈
{!, ?, ?̄}, then the endsequent of D contains the operation ∗.

Proof. We say that an operation ∗ occurs at depth 0 in a formula A
iff either A is of the form t : B and ∗ occurs in t, or A is of the form
B → C and ∗ occurs at depth 0 in B or in C. For example, ? occurs
at depth 0 in ¬x1 : P1 → ?x1 : ¬x1 : P1. We say ∗ occurs at depth 0 in
a sequent iff ∗ occurs at depth 0 in the corresponding formula of this
sequent.

Since ∗ ∈ {!, ?, ?̄} occurs at depth 0 in the conclusion of (∗), the lemma
follows immediately from the following claim: if an operation ∗ ∈
{!, ?, ?̄} occurs at depth 0 in a premise of a rule, then it occurs at
depth 0 in the conclusion of that rule.

The claim is obvious for all the rules except for (?̄), which is only
present if JL is JB. In this case, ∗ must be ?̄. But since ?̄ occurs at
depth 0 in the conclusion of (?̄), the claim holds trivially.

Lemma 4.1.2 fails for proper extensions of JB. The following derivation
serves as a counterexample for GJB4 and GJB45 (it makes use of the
rule (!) but the endsequent does not contain !):

D

����????

⇒ p : (¬x1 : ¬ ! c11 : c11 :A → >)

(CS)
⇒ c11 :A

(!)
⇒ ! c11 : c11 :A

(?̄)
⇒ ?̄x1 : ¬x1 : ¬ ! c11 : c11 :A

(·)
⇒ c12 · (?̄x1) :>

where D is a derivation of the indicated sequent for some ground
term p, which exists by Internalization Property 1.5.4. A similar coun-
terexample can easily be found for GJB5.

We now prove some auxiliary lemmas that are needed to prove cut
elimination. In the following, we write `h Γ ⇒ ∆ if the sequent
Γ⇒ ∆ has a GJLCS-derivation of height at most h ≥ 0.

Lemma 4.1.3 (Height-Preserving Invertibility of (L→) and (R→)).
For every Gentzen system GJLCS,

1. if `h A → B,Γ⇒ ∆, then `h Γ⇒ ∆, A and `h B,Γ⇒ ∆;

99

4 Gentzen Systems for Logics of Belief and Inversed Internalization

2. if `h Γ⇒ ∆, A → B, then `h A,Γ⇒ ∆, B.

Proof. We first prove invertibility of (L→) by induction on h. The
base case h = 0 is trivial: since A → B cannot be the principal
formula of an axiom, if A → B,Γ ⇒ ∆ is an axiom, so are Γ ⇒ ∆, A
and B,Γ⇒ ∆.

For the inductive step we look at the last rule R of a derivation of
A → B,Γ ⇒ ∆. Note that the only possibility for A → B being the
principal formula of R is when R is (L→). In this case, we can simply
take the premises of R and are done. In every other case—including
the case where R is (L→) and A → B is not principal—we apply the
induction hypothesis to the premise(s) of R and then apply R (twice).
We exemplarily show the case R = (·):

A → B,Γ⇒ ∆′, s : (C → D) A → B,Γ⇒ ∆′, t : C

A → B,Γ⇒ ∆′, (s · t) :D

By induction hypothesis,

`h−1 Γ ⇒ ∆′, s : (C → D), A ;
`h−1 B,Γ ⇒ ∆′, s : (C → D) ;
`h−1 Γ ⇒ ∆′, t : C,A ;
`h−1 B,Γ ⇒ ∆′, t : C .

From the first and third assertions, by applying (·), `h Γ ⇒ ∆′, (s ·
t) :D,A. Similarly, from the second and fourth assertions, `h B,Γ⇒
∆′, (s · t) :D.

Proving invertibility of (R→) is dual to the case of (L→). In the base
case, if Γ ⇒ ∆, A → B is an axiom, so is A,Γ ⇒ ∆, B. For the
inductive step we look at the last rule R of a derivation of Γ ⇒
∆, A → B. If R is (R→) with A → B as its principal formula, we
take the premise of R and are done. In every other case, we apply the
induction hypothesis to the premise(s) of R and then apply R.

Lemma 4.1.4 (Height-Preserving Admissibility of Weakening). For
every Gentzen system GJLCS, if `h Γ⇒ ∆ , then `h Γ,Γ′ ⇒ ∆,∆′.

Proof. By a straight-forward induction on h: if Γ ⇒ ∆ is an axiom,
then so is Γ,Γ′ ⇒ ∆,∆′; and if Γ ⇒ ∆ was derived by a rule, we
apply the induction hypothesis to its premise(s) and apply the rule
again.

100

4.1 Gentzen Systems for Logics of Belief

Lemma 4.1.5 (Admissibility of Contraction). For every Gentzen sys-
tem GJLCS,

1. if ` A,A,Γ⇒ ∆, then ` A,Γ⇒ ∆ ;

2. if ` Γ⇒ ∆, A,A, then ` Γ⇒ ∆, A .

Proof. For all h, A, Γ, and ∆ we prove the statements

`h A,A,Γ⇒ ∆ implies ` A,Γ⇒ ∆ and

`h Γ⇒ ∆, A,A implies ` Γ⇒ ∆, A

by a simultaneous induction on the structure of A, with a subinduction
on h.

Base case. Assume that A is either a proposition Pi or ⊥. For
the first assertion, if A,A,Γ ⇒ ∆ is an axiom, so is A,Γ ⇒ ∆. If
A,A,Γ⇒ ∆ was derived by a rule R, then A cannot be principle in R.
We consider the case where R is a single-premise rule (the two-premise
case is similar):

A,A,Γ′ ⇒ ∆′
R
A,A,Γ⇒ ∆

By subinduction hypothesis, ` A,Γ′ ⇒ ∆′ and by an application of R,
` A,Γ⇒ ∆.

The second assertion is proved similarly: for A a proposition Pi or ⊥,
if Γ⇒ ∆, A,A is an axiom, so is Γ⇒ ∆, A; if Γ⇒ ∆, A,A was derived
by a rule R, apply the subinduction hypothesis to the premise(s) of R
and then apply R.

Inductive step. We first prove the first assertion. Assume A is of
the form t :B. If t :B, t :B,Γ⇒ ∆ is an axiom, so is t :B,Γ⇒ ∆. If
t :B, t :B,Γ⇒ ∆ was derived by a rule R, then—since t :B cannot be
principle—we apply the subinduction hypothesis to the premise(s) of
R and then apply R.

Assume A is of the form B → C. If B → C,B → C,Γ⇒ ∆ is an axiom
or was derived by a rule in which B → C is not principal, we proceed
as in the case A = t :B. So assume B → C,B → C,Γ⇒ ∆ was derived
by (L→) with principal formula B → C:

B → C,Γ⇒ ∆, B C,B → C,Γ⇒ ∆
(L→)

B → C,B → C,Γ⇒ ∆

101

4 Gentzen Systems for Logics of Belief and Inversed Internalization

By height-preserving invertibility of (L→) (Lemma 4.1.3),

`h−1 Γ⇒ ∆, B,B and `h−1 C,C,Γ⇒ ∆ .

By induction hypothesis, ` Γ ⇒ ∆, B and ` C,Γ ⇒ ∆. By an
application of (L→), ` B → C,Γ⇒ ∆.

Let’s turn to the second assertion. If A is of the form t : B and
Γ⇒ ∆, t :B, t :B is either an axiom or was derived by a rule in which
t : B is not principle, we proceed as in the case A = t : B of the first
assertion. If A is of the form t :B and Γ⇒ ∆, t :B, t :B was derived by
a rule in which t :B is principal, then we apply (RC)2. Assume A is of
the form B → C. If Γ⇒ ∆, B → C,B → C is an axiom or was derived
by a rule in which B → C is not principal, we proceed as in the case
A = t :B of the first assertion. So assume Γ⇒ ∆, B → C,B → C was
derived by (R→) with principal formula B → C:

B,Γ⇒ ∆, B → C,C
(R→)

Γ⇒ ∆, B → C,B → C

By height-preserving invertibility of (R→) (Lemma 4.1.3),

`h−1 B,B,Γ⇒ ∆, C, C .

By applying the induction hypothesis twice, ` B,Γ ⇒ ∆, C. By an
application of (R→), ` Γ⇒ ∆, B → C.

For any system GJLCS the system GJL+
CS is obtained from GJLCS by

adding the cut rule:

Γ⇒ ∆, A A,Γ′ ⇒ ∆′
(cut)

Γ,Γ′ ⇒ ∆,∆′

The formula A is called the cut formula.

Definition 4.1.6 (Cut Level and Rank). The rank of a cut-instance
with cut formula A is the number of implications in A. The level of
a cut-instance (in a given derivation) is the sum of the heights of the
derivations of its premises.

Lemma 4.1.7 (Reduction Lemma). Let D be a GJL+
CS-derivation with

final inference a cut such that D contains no other cuts. Then there
exists a (cut-free) GJLCS-derivation D′ with the same endsequent.

2Note that this increases the height of the derivation.

102

4.1 Gentzen Systems for Logics of Belief

Proof. We proceed by induction on the rank of the final cut

D1

�����?????

Γ⇒ ∆, A

D2

�����?????

A,Γ′ ⇒ ∆′
(cut)

Γ,Γ′ ⇒ ∆,∆′

of D, with a subinduction on its level. Note that D1 and D2 are
cut-free. We follow [TS96] by distinguishing three cases:

1. Either D1 or D2 is an axiom.

2. D1 and D2 are not axioms and the cut formula A is not principal
in at least one of the premises.

3. The cut formula A is principal in both premises.

Note that the base cases of the induction and the subinduction, as well
as the inductive steps are proved implicitly in the case distinctions.

Case 1. We consider the following subcases:

1a. D1 is an instance of (Ax) or (⊥) and the cut formula A is not
principal in this instance. We consider the case (Ax) (the case
(⊥) is similar):

P,Γ′′ ⇒ ∆′′, P,A

D2

�����?????

A,Γ′′′ ⇒ ∆′′′
(cut)

P,Γ′′,Γ′′′ ⇒ ∆′′, P,∆′′′

The conclusion is itself an axiom and can be taken as D′.
1b. D1 is an instance of (Ax) and the cut formula A = P is principal

in this instance:

P,Γ′′ ⇒ ∆, P

D2

�����?????

P,Γ′ ⇒ ∆′
(cut)

P,Γ′′,Γ′ ⇒ ∆,∆′

By Lemma 4.1.4, we can replace the cut by an application of
weakening to the endsequent of D2.

1c. D1 is an instance of (CS) and the cut formula A is not principal
in this instance. In this case, the conclusion of the cut is itself
an instance of (CS) and can be taken as D′.

103

4 Gentzen Systems for Logics of Belief and Inversed Internalization

1d. D1 is an instance of (CS) and the cut formula A is principal in
this instance:

Γ⇒ ∆, cnin : . . . : c1i1 :B

D2

�����?????

cnin : . . . : c1i1 :B,Γ′ ⇒ ∆′
(cut)

Γ,Γ′ ⇒ ∆,∆′

If D2 is also an axiom, then so is the conclusion of the cut (note
that if D2 is (Ax), then the conclusion of the cut is either (Ax)
or an instance of (CS)). If D2 is not an axiom, then the cut
formula A = cnin : . . . :c1i1 :B cannot be principal in the last rule R
of D2. We consider the case where R is a two-premise rule (the
one-premise case is similar):

Γ,⇒ ∆, A

D′2

�����?????

A,Γ′′ ⇒ ∆′′

D′′2

�����?????

A,Γ′′′ ⇒ ∆′′′
R

A,Γ′ ⇒ ∆′
(cut)

Γ,Γ′ ⇒ ∆,∆′

We can replace this cut by two cuts of equal rank but smaller
level:

Γ,⇒ ∆, A

D′2

�����?????

A,Γ′′ ⇒ ∆′′
(cut)

Γ,Γ′′ ⇒ ∆,∆′′
Γ,⇒ ∆, A

D′′2

�����?????

A,Γ′′′ ⇒ ∆′′′
(cut)

Γ,Γ′′′ ⇒ ∆,∆′′′
R

Γ,Γ′ ⇒ ∆,∆′

Then, by subinduction hypothesis, the conclusions of the new
cuts have cut-free derivations and, hence, so has Γ,Γ′ ⇒ ∆,∆′.

1e. D2 is an instance of (Ax) or (⊥) and the cut formula is not
principal in this instance. This case is similar to subcase 1a.

1f. D2 is an instance of (Ax) and the cut formula A = P is principal
in this instance:

D1

�����?????

Γ⇒ ∆, P P,Γ′ ⇒ ∆′, P
(cut)

Γ,Γ′ ⇒ ∆,∆′, P

104

4.1 Gentzen Systems for Logics of Belief

By Lemma 4.1.4, we can replace the cut by an application of
weakening to the endsequent of D1.

1g. D2 is an instance of (⊥) and the cut formula A = ⊥ is principal
in this instance:

D1

�����?????

Γ⇒ ∆,⊥ ⊥,Γ′ ⇒ ∆′
(cut)

Γ,Γ′ ⇒ ∆,∆′

If D1 is an axiom, then so is the conclusion of the cut. If D1 is
not an axiom, then Γ⇒ ∆,⊥ was derived by a rule R in which
the cut formula A = ⊥ is not principal. We proceed similarly
as in subcase 1d (i.e., replace the cut by two cuts of equal rank
but smaller level).

1h. D2 is an instance of (CS). In this case, the conclusion of the cut
it itself an instance of (CS).

Case 2. D1 and D2 are not axioms and the cut formula is not principal
in at least one of the premises of the cut. Assume that the cut formula
A is not principal in the last rule of D1 (the case of D2 is similar), and
that D1 ends with a two-premise rule R (again, the one-premise case
is similar):

D′1

�����?????

Γ′′ ⇒ ∆′′, A

D′′1

�����?????

Γ′′′ ⇒ ∆′′′, A
R

Γ⇒ ∆, A

D2

�����?????

A,Γ′ ⇒ ∆′
(cut)

Γ,Γ′ ⇒ ∆,∆′

We can replace this cut by two cuts of equal rank but smaller level:

D′1

�����?????

Γ′′ ⇒ ∆′′, A

D2

�����?????

A,Γ′ ⇒ ∆′
(cut)

Γ′′,Γ′ ⇒ ∆′′,∆′

D′′1

�����?????

Γ′′′ ⇒ ∆′′′, A

D2

�����?????

A,Γ′ ⇒ ∆′
(cut)

Γ′′′,Γ′ ⇒ ∆′′′,∆′
R

Γ,Γ′ ⇒ ∆,∆′

Then, by subinduction hypothesis, the conclusions of the new cuts
have cut-free derivations and, hence, so has Γ,Γ′ ⇒ ∆,∆′.

105

4 Gentzen Systems for Logics of Belief and Inversed Internalization

Case 3. The cut formula A is principal in both premises. Then we
have the following situation:

D′1

�����?????

A,Γ⇒ ∆, B
(L→)

Γ⇒ ∆, A → B

D′2

�����?????

Γ′ ⇒ ∆′, A

D′′2

�����?????

B,Γ′ ⇒ ∆′
(R→)

A → B,Γ′ ⇒ ∆′
(cut)

Γ,Γ′ ⇒ ∆,∆′

We replace this cut by two cuts of smaller rank:

D′2

�����?????

Γ′ ⇒ ∆′, A

D′1

�����?????

A,Γ⇒ ∆, B

D′′2

�����?????

B,Γ′ ⇒ ∆′
(cut)

A,Γ,Γ′ ⇒ ∆,∆′
(cut)

Γ,Γ′,Γ′ ⇒ ∆,∆′,∆′

By induction hypothesis, A,Γ,Γ′ ⇒ ∆,∆′ has a cut-free derivation
and therefore, again by induction hypothesis, so does Γ,Γ′,Γ′ ⇒
∆,∆′,∆′. By a number of left- and right-contractions, which are
admissible by Lemma 4.1.5, we obtain a cut-free derivation of Γ,Γ′ ⇒
∆,∆′.

Using the above lemma, every GJL+
CS-derivation can be transformed

into a (cut-free) GJLCS-derivation:

Theorem 4.1.8 (Cut Elimination). For every Gentzen system GJLCS,
if a sequent has a GJL+

CS-derivation, then it has a (cut-free) GJLCS-
derivation.

Proof. By induction on the height h of an arbitrary GJL+
CS-derivation.

If h = 0, then the derived sequent is an axiom and the derivation is
trivially cut-free. If h > 0 and the derivation ends with a rule R other
than cut, then, by induction hypothesis, the premise(s) of R have cut-
free derivations and, hence, so has the conclusion of R. So assume
h > 0 and the derivation ends with a cut with conclusion Γ ⇒ ∆.
Then, by induction hypothesis, the premises of this cut have cut-free
derivations. Therefore, there exists a derivation of Γ ⇒ ∆ that ends
with a cut and contains no other cuts. By the Reduction Lemma 4.1.7,
Γ⇒ ∆ has a (cut-free) GJLCS-derivation.

106

4.1 Gentzen Systems for Logics of Belief

Theorem 4.1.9 (Completeness of GJLCS). Let

JL ∈ {J, J4, J5, J45, JB, JB4, JB5, JB45}

and let CS be a constant specification for JL. We have

GJLCS ` Γ⇒ ∆ ⇐⇒ JLCS `
∧

Γ →
∨

∆ .

Proof. The soundness direction follows by a straight-forward induction
on the height of a GJLCS-derivation.

The completeness direction is proved by induction on JLCS-proofs. In
the base case, we show that every axiom of JLCS is derivable in GJLCS.

Since weakening and contraction are admissible by Lemmas 4.1.4 and
4.1.5, the system GJLCS is propositionally complete and, hence, ev-
ery propositional axiom is derivable in it. See, e.g., the system G2c
in [TS96] for details.

The following is a derivation of an an arbitrary instance of one of the
sum-axiom schemas (the other one is similar):

t :B ⇒ t :B
(+)

t :B ⇒ (s+ t) :B
(R→)
⇒ t :B → (s+ t) :B

The following is a derivation of an arbitrary app-instance:

s : (B → C), t :B ⇒ s : (B → C) s : (B → C), t :B ⇒ t :B
(·)

s : (B → C), t :B ⇒ (s · t) : C
(R→)

s : (B → C)⇒ t :B → (s · t) : C
(R→)
⇒ s : (B → C) → (t :B → (s · t) : C)

The following is a derivation of an arbitrary j4-instance:

t :B ⇒ t :B
(!)
t :B ⇒ ! t : t :B

(R→)
⇒ t :B → ! t : t :B

The following is a derivation of an arbitrary j5-instance (recall that

107

4 Gentzen Systems for Logics of Belief and Inversed Internalization

¬A = A → ⊥):

t :B ⇒ t :B
(?)
⇒ t :B, ? t : ¬t :B ⊥ ⇒ ? t : ¬t :B

(L→)
¬t :B ⇒ ? t : ¬t :B

(R→)
⇒ ¬t :B → ? t : ¬t :B

Given a derivation D of an arbitrary sequent B ⇒ B, the following is
a derivation of an arbitrary jb-instance:

D

����????

B ⇒ B
(?̄)
B ⇒ ?̄ :¬t : ¬B

(R→)
⇒ B → ?̄ :¬t : ¬B

If cnin : . . . : c1i1 :B is the conclusion of the iANCS-rule, then the sequent
⇒ cnin : . . . : c1i1 :B is derivable by the (CS)-rule.

Inductive step. If a formula A is the conclusion of MP with premises
B and B → A, by induction hypothesis, there exist GJLCS-derivations
of ⇒ B and ⇒ B → A. By invertibility of (R→) (Lemma 4.1.3), the
sequent B ⇒ A is derivable in GJLCS. Therefore, by admissibility of
cut (Theorem 4.1.8), there exists a GJLCS-derivation of ⇒ A.

4.2 Inversed Internalization

We now use the Gentzen systems of the previous section to prove that
J and J4 satisfy the property of inversed internalization: if t : A is
provable, then so is A. Note that inversed internalization trivially
holds for logics that prove the axiom schema jt. However, it fails for
some extensions of J5 and JB, as we show in Lemma 4.2.3.

Inversed internalization for J and J4 is a consequence of the follow-
ing lemma. The name stripping lemma is due to Artemov [Art02];
however, he uses it to denote a different statement. Note that in
Lemma 4.2.1 we are only working with sequents of the form ⇒ ∆ be-
cause, in the context of inversed internalization, we are interested in
formulas/sequents where (sub)formulas of type t : A occur only posi-
tively.

108

4.2 Inversed Internalization

Lemma 4.2.1 (Stripping Lemma). Let JL ∈ {J, J4}, let CS be a
downward closed constant specification for JL, let ∆ be a (possibly
empty) multiset of formulas of the form t : A (in the language of JL)
and let n > 0. If a sequent

⇒ ∆, s1 :B1, . . . , sn :Bn (4.1)

is derivable in GJLCS, then so is

⇒ ∆, B1, . . . , Bn .

Proof. By induction on the height of a GJLCS-derivation of (4.1).

In the base case,⇒ ∆, s1:B1, . . . , sn:Bn must be the conclusion of the
rule (CS). If the principal formula is one of ∆, then⇒ ∆, B1, . . . , Bn is
another instance of (CS). So assume—without loss of generality—that
s1 :B1 = clil : . . . : c1i1 : C1 ∈ CS is the principal formula:

(CS)

⇒ ∆, clil : . . . : c1i1 : C1︸ ︷︷ ︸
s1:B1

, . . . , sn :Bn

If l > 1, then, because CS is downward closed,

⇒ ∆, cl−1
il−1

: . . . : c1i1 : C1︸ ︷︷ ︸
B1

, . . . , Bn

is also an instance of (CS). If l = 1, by completeness of GJLCS (Theo-
rem 4.1.9), the JL-axiom C1 = B1 is provable in GJLCS and, by admissi-
bility of weakening (Lemma 4.1.4), so is the sequent⇒ ∆, B1, . . . , Bn.

For the inductive step we look at the last rule R of a derivation
of (4.1). Note that R cannot be (L→) or (R→).

We first assume that none of s1 :B1, . . . , sn :Bn is principle in R and
that R has one premise (the two-premise case being analogous):

⇒ ∆′, s1 :B1, . . . , sn :Bn
R
⇒ ∆, s1 :B1, . . . , sn :Bn

By induction hypothesis, ⇒ ∆′, B1, . . . , Bn is provable in GJLCS and,
by an application of R, so is ⇒ ∆, B1, . . . , Bn.

In the following, we assume—without loss of generality—that s1 : B1

is principal in R.

109

4 Gentzen Systems for Logics of Belief and Inversed Internalization

Assume that R is (RC):

⇒ ∆, s1 :B1, s1 :B1, . . . , sn :Bn
(RC)

⇒ ∆, s1 :B1, . . . , sn :Bn

By induction hypothesis, ` ⇒ ∆, B1, B1, . . . , Bn and by admissibility
of right-contraction (Lemma 4.1.5), ` ⇒ ∆, B1, . . . , Bn.

Assume that R is one of the (+)-rules, e.g.:

⇒ ∆, s′1 :B1, . . . , sn :Bn
(+)
⇒ ∆, (s′1 + s′′2) :B1, . . . , sn :Bn

The statement of the lemma follows by induction hypothesis.

Assume that R is (·):

⇒ ∆, s′1 : (C1 → B1), . . . , sn :Bn ⇒ ∆, s′′1 : C1, . . . , sn :Bn
(·)

⇒ ∆, (s′1 · s′′1) :B1, . . . , sn :Bn

By applying the induction hypothesis to the left premise and by in-
vertibility of the rule (R→) (Lemma 4.1.3),

` C1 ⇒ ∆, B1, . . . , Bn . (4.2)

By applying the induction hypothesis to the right premise,

` ⇒ ∆, C1, . . . , Bn . (4.3)

By admissibility of cut (Theorem 4.1.8) on (4.2) and (4.3),

` ⇒ ∆, B2, . . . , Bn,∆, B1, . . . , Bn .

Since right-contraction is admissible by Lemma 4.1.5,

` ⇒ ∆, B1, . . . , Bn .

Finally, provided JL = J4, assume that R is (!):

⇒ ∆, s′1 : C1, s2 :B2 . . . , sn :Bn
(!)
⇒ ∆, ! s′1 : s′1 : C1, s2 :B2, . . . , sn :Bn

Note that ∆, s′1:C1 is a multiset of formulas of the form t:A. Therefore,
by induction hypothesis, ` ⇒ ∆, s′1 :C1, B2, . . . , Bn, which is what we
want. Note that, in this case, it is crucial that the induction hypothesis
allows not to strip s′1 from s′1 : C1.

110

4.2 Inversed Internalization

Inversed internalization for J and J4 now follows from Lemma 4.2.1
and Theorem 4.1.9.

Corollary 4.2.2 (Inversed Internalization). For JL ∈ {J, J4}, a down-
ward closed constant specification CS for JL, and for arbitrary terms
and formulas t and A respectively,

JLCS ` t :A =⇒ JLCS ` A .

Lemma 4.2.3 (Inversed Internalization Fails).
Let JL ∈ {J5, J45, JB5, JB45, JD5, JD45, JB, JB4}. We have

JL ` t :A 6=⇒ JL ` A

for some term t and formula A.

Proof. We give counterexamples for all the logics.

By Lemma 2.2.3 there exists a term fact(x1) such that for any for-
mula A

J5 ` fact(x1) : (x1 :A → A) .

Assume to the contrary that x1 : A → A is provable in J5. Then, by
Lemma 1.4.3, K5 ` �A◦ → A◦, which is well-known to be false. The
same argument works for J45, JB5, JB45, JD5, and JD45.

We now turn to JB and JB4. Take a propositional tautology B. By
axiom schema jb and MP, ?̄ :¬t : ¬B is provable in JB for any term
t. Assume to the contrary that ¬t : ¬B is provable in JB. Then, by
Lemma 1.4.3, B ` ♦B◦. But any non-reflexive one-world Kripke model
is a (symmetric) B-countermodel for ♦B◦. So we have a contradiction.
The same argument works for JB4 since any non-reflexive one-world
Kripke model is also transitive and, hence, a B4-countermodel for ♦B◦.

Note that the above argument for JB and JB4 does not work for JDB
because ♦B◦ is provable in modal logic KDB.

Figure 4.1 summarizes the above results on inversed internalization.
A question mark means that it is not known whether the property
holds for the given logic. Note that logics that prove jt are not listed
because, for them, inversed internalization holds trivially.

Since the Internalization Property 1.5.2 also holds with hypotheses, it
is a natural question whether inversed internalization holds with hy-
potheses, i.e., whether s1 :B1, . . . , sm :Bm ` t :A implies B1, . . . , Bm `
A. The following lemma shows that this is the case for J.

111

4 Gentzen Systems for Logics of Belief and Inversed Internalization

J JB J5 J4 J45 JB4 JB5 JB45 JD JDB JD4 JD5 JD45√
− −

√
− − − − ? ? ? − −

Figure 4.1: Summary of Inversed Internalization

Lemma 4.2.4 (Inversed Internalization with Hypotheses). Let CS be
a downward closed constant specification for J. Then for every m ≥
0 and for arbitrary terms s1, . . . , sm, t and formulas B1, . . . , Bm, A
respectively,

s1 :B1, . . . , sm :Bm `JCS t :A =⇒ B1, . . . , Bm `JCS A .

Proof. We show that in GJCS, for all numbers m ≥ 0 and n > 0,

` s1 :B1, . . . , sm :Bm ⇒ t1 :A1, . . . , tn :An (4.4)

implies

` B1, . . . , Bm ⇒ A1, . . . , An . (4.5)

The statement of the lemma then follows from completeness of GJCS
(Theorem 4.1.9) and the Deduction Theorem (Lemma 1.5.3). We
proceed by induction on the height of a GJCS-derivation (4.4).

Base case. First assume that (4.4) is an instance of (CS) and—
without loss of generality—that t1 :A1 is the principal formula. Then
either A1 is an axiom and thus (4.5) is provable by completeness (The-
orem 4.1.9) and admissibility of weakening (Lemma 4.1.4); or, since
CS is downward closed, A1 ∈ CS and, hence, (4.5) is an instance of
(CS). If (4.4) is an instance of (Ax), then the sequent in (4.5) has the
form B1, . . . , Bm ⇒ . . . , Bi, . . . for some 1 ≤ i ≤ m, and thus is prov-
able by completeness (Theorem 4.1.9) and admissibility of weakening
(Lemma 4.1.4).

For the inductive step we look at the last rule R of a derivation (4.4).
Note that R cannot be (L→) or (R→). In the following, we assume—
without loss of generality—that t1 :A1 is principal in R.

Assume that R is (RC):

s1 :B1, . . . , sm :Bm ⇒ t1 :A1, t1 :A1, . . . , tn :An
(RC)

s1 :B1, . . . , sm :Bm ⇒ t1 :A1, . . . , tn :An

112

4.2 Inversed Internalization

By induction hypothesis, ` B1, . . . , Bm ⇒ A1, A1, . . . , An and by
admissibility of right-contraction (Lemma 4.1.5),

` B1, . . . , Bm ⇒ A1, . . . , An .

If R is one of the (+)-rules, the statement follows by induction hy-
pothesis.

Assume that R is (·) with premises

s1 :B1, . . . , sm :Bm ⇒ t′1 : (C1 → A1), . . . , tn :An , (4.6)

s1 :B1, . . . , sm :Bm ⇒ t′′1 : C1, . . . , tn :An (4.7)

and conclusion

s1 :B1, . . . , sm :Bm ⇒ (t′1 · t′′1) :A1, . . . , tn :An .

By applying the induction hypothesis to (4.6),

` B1, . . . , Bm ⇒ C1 → A1, . . . , An

and by invertibility of the rule (R→) (Lemma 4.1.3),

` C1, B1, . . . , Bm ⇒ A1, . . . , An . (4.8)

By applying the induction hypothesis to (4.7),

` B1, . . . , Bm ⇒ C1, . . . , An . (4.9)

By admissibility of cut (Theorem 4.1.8) on (4.8) and (4.9),

` B1, . . . , Bm, B1, . . . , Bm ⇒ A2, . . . , An, A1, . . . , An

and by a number of left- and right-contractions, which are admissible
by Lemma 4.1.5,

` B1, . . . , Bm,⇒ A1, . . . , An .

An easy counterexample shows that Lemma 4.2.4 does not hold for
extensions of J4: we have c1i : P1 `J4 ! c1i : c1i : P1 by axiom schema j4
and the Deduction Theorem (Lemma 1.5.3), but P1 6`J4 c1i : P1.

113

5 Conservativity

In this chapter, we show that among our 24 justification logics some ex-
tensions are conservative and others are not—unfortunately, for logics
of belief only a partial result is proved. Recall the following definition:

Definition 5.0.5 (Conservative Extension). A logic (i.e., a set of
formulas, cf. Definition 1.1.1) L2 is called an extension of a logic L1
if L1 ⊆ L2. If L2 is an extension of L1 and for any formula A in the
language of L1, L2 ` A implies L1 ` A, then L2 is called a conservative
extension of L1.

The approach in Section 5.1 that applies to logics of knowledge is
due to Fitting [Fit08]; we just modify it slightly such that it also
covers extensions of JTB. The partial conservativity result for logics
of belief in Section 5.2 was originally proved by Milnikel [Mil12] for
the extension J4 of J. Using the Gentzen systems from Chapter 4, we
generalize his result to cover also JB, J5, and J45. In Section 5.3,
we show that extensions of logics of consistent belief, i.e., logics that
contain axiom schemas jd but lack jt, are not conservative. The first
such result, namely that JD4 is not a conservative extensions of JD,
was found by Milnikel [Mil12].

5.1 Conservativity for Logics of Knowledge

Until now, the set taut of propositional axiom schemas was not spec-
ified, any finite complete set of axiom schemas would work (cf. Fig-
ure 1.5). However, Fitting’s [Fit08] method for proving conservativity
for logics of knowledge relies on a specific choice of propositional ax-
iom schemas. Moreover, it is required that propositional variants of jt
are also axiom schemas. We show later that the logics satisfying these
additional requirements are equivalent to the original ones.

For JL ⊇ JT let JL? denote the logic that, in addition to the axiom

115

5 Conservativity

schemas of JL, contains the following axiom schemas:

A → A , (5.1)

A → ¬¬A , (5.2)

A → ¬t : ¬A , (5.3)

(A → B) → (t :A → B) . (5.4)

Note that (5.1) and (5.2) are tautological and, hence, may already be
axiom schemas of JL. Axiom schemas (5.3) and (5.4) are consequences
of jt (cf. Lemma 5.1.2 for a proof of this).

We adopt the notation from [Fit08], which allows for an elegant for-
mulation of a conservativity statement that covers all the extensions
of JT. Since we do not analyze weak logics without + or ·, our no-
tation is a bit simpler than the one in [Fit08]. For S ⊆ {!, ?, ?̄}, by
K(S) (the K stands for knowledge) we denote the smallest extension
of JT? that contains the defining axiom schema for every operation
in S. For example, K(?, ?̄) denotes JTB5? (for simplicity, we write
K(?, ?̄) instead of K({?, ?̄}), and so on).

Theorem 5.1.1 generalizes Fitting’s conservativity result from [Fit08]
in the sense that it includes extensions of JB?. It shows, for exam-
ple, that the following logics are conservative extensions of JT?: JT4?,
JTB?, JT5?, JTB5?, JT45?, JTB45?, JTB4?. Note that the theorem
does not cover those justification counterparts of S5 that do not con-
tain jt as an axiom schema because they are not extensions of JT. For
example, JDB4 is not an extension of JT because—although provable
by Lemma 2.2.6—jt is not an axiom schema of JDB4 and, hence, no
formula c1i : (t :A → A) is a theorem of JDB4.

Also note that Theorem 5.1.1 is formulated for logics with total con-
stant specifications. The proof—in general—would not work with re-
stricted constant specifications because it requires a certain flexibility
from the constants. For example, a constant c1i1 justifying an axiom
t : A → ! t : t : A in JT4? must also justify the (propositional) axiom
t :A → t :A in JT?.

Theorem 5.1.1 (Conservativity for Logics of Knowledge). Let S1 (
S2 ⊆ {!, ?, ?̄}. Then K(S2) is a conservative extension of K(S1).

Proof. Let S := S2 \ S1. For a formula A, by A#S we denote the
formula obtained from A by dropping all the terms that contain op-

116

5.1 Conservativity for Logics of Knowledge

erations from S. Formally,

(Pi)
#S := Pi ;

⊥#S := ⊥ ;

(A → B)#S := A#S → B#S ;

(t :A)#S :=

{
A#S if t contains an operation from S,
t :A#S otherwise .

Note that if A is an L(S2)-formula, then A#S is an L(S1)-formula.
We first show that if A is an axiom of K(S2), then A#S is an axiom
of K(S1). This requires a simple but tedious case analysis:

If A is an instance of a propositional axiom schema, then so is A#S .

If A is an instance t :B → B or (B → C) → (t :B → C) of jt or of (5.4)
respectively, then there are two possibilities:

• if t contains an operation from S, then A#S is an instance
of (5.1);

• if t does not contain an operation from S, then A#S is another
instance of jt or of (5.4).

If A is an instance B → ¬t:¬B of (5.3), then there are two possibilities:

• if t contains an operation from S, then A#S is an instance
of (5.2);

• if t does not contain an operation from S, then A#S is another
instance of (5.3).

If A is an instance t:B → (s+t):B of sum, we distinguish the following
cases:

• if t contains an operation from S, then A#S is an instance
of (5.1);

• if s but not t contains an operation from S, then A#S = t:B#S →

B#S is an instance of jt;

• if neither t nor s contain an operation from S, then A#S =
t :B#S → (s+ t) :B#S is another instance of sum.

If A is an instance t:(B → C) → (s:B → (t·s):C) of app, we distinguish
the following cases:

• if both t and s contain an operation from S, then A#S is an
instance of (5.1);

117

5 Conservativity

• if s but not t contains an operation from S, then A#S = t :
(B#S → C#S) → (B#S → C#S) is an instance of jt;

• if t but not s contains an operation from S, then A#S = (B#S →

C#S) → (s :B#S → C#S) is an instance of (5.4);

• if neither t nor s contain an operation from S, then A#S =
t : (B#S → C#S) → (s :B#S → (t · s) : C#S) is another instance
of app.

If A is an instance B → ?̄ t : ¬t : ¬B of jb, then there are three cases to
consider:

• if t contains an operation from S, then A#S = B#S → ¬¬B#S

is an instance of (5.2);

• if t does not contain an operation from S and ?̄ /∈ S, then A#S =
B#S → ?̄ t : ¬t : ¬B#S is another instance of jb;

• if t does not contain an operation from S and ?̄ ∈ S, then A#S =
B#S → ¬t : ¬B#S is an instance of (5.3).

If A is an instance t : B → ! t : t : B of j4, we distinguish the following
cases:

• if t contains an operation from S, then A#S = B#S → B#S is
an instance of (5.1);

• if t does not contain an operation from S and ! /∈ S, then A#S =
t :B#S → ! t : t :B#S is another instance of j4;

• if t does not contain an operation from S and ! ∈ S, then A#S =
t :B#S → t :B#S is an instance of (5.1).

The case where A is an instance of j5 is similar.

Proving the theorem is now straightforward. Let A be an arbitrary
L(S1)-formula provable in K(S2). Then A = A#S . Consider a proof of
A inK(S2) and replace each line C of that proof with C#S . As we have
shown, every axiom of K(S2) is turned into an axiom of K(S1) and,
consequently, instances of iAN in K(S2) are turned into instances of
iAN in K(S1). Because instances of MP are also turned into instances
of MP, we have obtained a proof of A = A#S in K(S1).

Lemma 5.1.2. Let JL ⊇ JT. Then JL? and JL are equivalent.

Proof. Since both JL and JL? satisfy conditions (1) and (2) of The-
orem 2.1.15, to prove the equivalence of JL? and JL it is enough to
show that every axiom schema of JL? is provable in JL and vice versa;

118

5.2 Partial Conservativity for Logics of Belief

the identity operation translation hence being the witness for both
embeddings.

Since JL? is an extension of JL, every axiom schema of JL is obviously
provable in JL?.

The propositional axiom schemas (5.1) and (5.2) of JL? are tautological
and, hence, provable in JL. Axiom schema (5.3) of JL? is provable in JL
by taking the contraposition of jt. Axiom schema (5.4) of JL? follows
from jt by MP and the tautological formula schema (t :A → A) → (A →

B) → (t :A → B).

It is an open question whether Theorem 5.1.1 also holds for logics
without the additional axiom schemas (5.1)-(5.4).

5.2 Partial Conservativity for Logics of Belief

We now turn to logis of belief, i.e., logics that do not contain axiom
schemas jt and jd. We introduce a similar notation as in Section 5.1.
For S ⊆ {!, ?, ?̄} by B(S) (the B stands for belief) we denote the
smallest extension of J that contains the defining axiom schemas for
every operation in S. For example, B(?, ?̄) denotes JB5 (again, we
write B(?, ?̄) instead of B({?, ?̄}), and so on).

Definition 5.2.1 (A‡S and CS‡S). Let S ⊆ {!, ?, ?̄}. For any for-
mula A, by A‡S we denote the formula obtained from A by replacing
all the terms that contain operations from S with variable x1. For-
mally,

(Pi)
‡S := Pi ;

⊥‡S := ⊥ ;

(A → B)‡S := A‡S → B‡S ;

(t :A)‡S :=

{
x1 :A‡S if t contains an operation from S,
t :A‡S otherwise .

For a Gentzen sequent Γ ⇒ ∆, the sequent Γ‡S ⇒ ∆‡S is obtained
from Γ⇒ ∆ by replacing every formula A in Γ or ∆ with A‡S . Further,
for a constant specification CS:

CS‡S := {A‡S | A ∈ CS} .

119

5 Conservativity

The following fact is obvious from Definition 5.2.1:

Fact 5.2.2 (‡S and Language). For S1 ⊆ S2 ⊆ {!, ?, ?̄} and S :=
S2 \S1, if A is an L(S2)-formula, then A‡S is an L(S1)-formula. For
example, if A is an L(!, ?)-formula, then A‡{!} is an L(?)-formula.

Lemma 5.2.3 proves a partial conservativity result for the following
logics:

J ⊂ JB, J ⊂ J4, J ⊂ J5, J ⊂ J45, J4 ⊂ J45, J5 ⊂ J45 .

Lemma 5.2.3 (Partial Conservativity for Logics of Belief). Let S2 be
either {?̄} or a nonempty subset of {!, ?} and let S1 (S2. Let CS be
a constant specification for B(S2) such that

cnin : . . . : c1i1 : C /∈ CS ,

for any instance C of a defining axiom schema of an operation from
S := S2 \ S1 and for arbitrary constants c1i1 , . . . , c

n
in

1. Then CS‡S is
a constant specification for B(S1), and for any L(S1)-formula A,

B(S2)CS ` A =⇒ B(S1)CS‡S ` A .

Proof. We first verify that CS‡S is a constant specification for B(S1).
Since ‡S does not affect constants, i.e., (cnin : . . . : c1i1 :C)‡S = cnin : . . . :

c1i1 : C‡S , and since CS does not contain instances of defining axiom
schemas of S = S2 \S1, it is enough to show that for every instance C
of a B(S1)-axiom schema in language L(S2), the formula C‡S is an
axiom of B(S1). From Fact 5.2.2 it follows that C‡S is indeed an
L(S1)-formula. It is easy to verify that if C is an instance of taut, app,
or sum, then so is C‡S . For example,

(t :A → (s+ t) :A)‡S = t‡S :A‡S → (t‡S + s‡S) :A‡S

is another instance (in language L(S1)) of sum.

It is also easy to verify that if C is an instance of a defining axiom
schema of an operation from S1, then so is C‡S . For example, assuming
? ∈ S1 (and, hence, ? /∈ S),

(t :A → ? t : t :A)‡S = t‡S :A‡S → ? t‡S : t‡S :A‡S

1Informally, CS is a constant specification for B(S1), but in language L(S2).
E.g., if B(S1) is J and B(S2) is J5, then cnin : . . . : c1i1 : (¬t :A → ? t :¬t :A) /∈ CS.

120

5.2 Partial Conservativity for Logics of Belief

is another instance (in language L(S1)) of j5.

Therefore, CS‡S is a constant specification for B(S1).

Let A be an L(S1)-formula provable in B(S2)CS. By Theorem 4.1.9,
there exists a derivation D of ⇒ A in the Gentzen system GB(S2)CS.
We show by induction on the height of a sequent Γ ⇒ ∆ in D that
Γ‡S ⇒ ∆‡S is provable in the system GB(S1)CS‡S . It then follows from
Theorem 4.1.9 that A = A‡S is provable in B(S1)CS‡S .

Base case. If Γ⇒ ∆ is an instance of (⊥) or (Ax), then so is Γ‡S ⇒
∆‡S . If Γ⇒ ∆ is an instance of (CS), then it is of the form

Γ⇒ ∆′, cnin : . . . : c1i1 : C ,

where cnin : . . . : c1i1 : C ∈ CS. By definition of CS‡S ,

(cnin : . . . : c1i1 : C)‡S = cnin : . . . : c1i1 : C‡S ∈ CS‡S

and, hence, Γ‡S ⇒ ∆′
‡S
, cnin : . . . : c1i1 : C‡S is provable in GB(S1)CS‡S

by the rule (CS).

For the inductive step we look at the last rule R of a (sub-)derivation
of Γ⇒ ∆.

By Lemma 4.1.2, if the derivation D makes use of a rule (∗), where
∗ ∈ {!, ?, ?̄}, then the endsequent ⇒ A must contain ∗. Therefore,
for ∗ ∈ S, R cannot be the rule (∗) because otherwise ∗ would occur
in ⇒ A, which is impossible since A is an L(S1)-formula.

We first consider the case where R is (·) (the cases (L→), (R→), (RC),
and (+) are similar):

Γ⇒ ∆′, s : (B → C) Γ⇒ ∆′, t :B
(·)

Γ⇒ ∆′, (s · t) : C

By induction hypothesis,

` Γ‡S ⇒ ∆′‡S ,
(
s : (B → C)

)‡S
and

` Γ‡S ⇒ ∆′‡S , (t :B)‡S ,

which can be rewritten as

` Γ‡S ⇒ ∆′‡S , s‡S : (B‡S → C‡S) and

` Γ‡S ⇒ ∆′‡S , t‡S :B‡S .

121

5 Conservativity

By an application of (·) we obtain a derivation of

Γ‡S ⇒ ∆′‡S , (s‡S · t‡S) : C‡S = Γ‡S ⇒ ∆′‡S ,
(
(s · t) : C

)‡S
.

The cases where R is a rule (∗) for ∗ ∈ {!, ?, ?̄} and ∗ /∈ S are also
straightforward. Exemplarily, we show the case where R is (?) (and,
hence, ? /∈ S):

t :B,Γ⇒ ∆′
(?)

Γ⇒ ∆′, ? t : ¬t :B

By induction hypothesis, t‡S : B‡S ,Γ‡S ⇒ ∆′‡S is derivable. By an
application of (?), so is

Γ‡S ⇒ ∆′‡S , ? t‡S : ¬t‡S :B‡S ,

which, since ? t‡S = (? t)‡S , is the same as

Γ‡S ⇒ ∆′‡S , (? t : ¬t :B)‡S .

5.3 Negative Results for Logics of Consistent
Belief

Surprisingly, when it comes to logics of consistent belief, i.e., logics
that contain axiom schema jd but lack jt, extensions of logics are not
conservative. For example, JD4 is not a conservative extension of JD,
as was shown by Milnikel in [Mil12]. In this section, we expand this
result and show that also JD5 is not conservative over JD, JDB is not
conservative over JD, and so on. It remains an open question whether
JDB45 is a conservative extension of JDB4 and of JDB5, but we give
an informal argument for a negative answer at the end of the section.

Lemma 5.3.1 (Non-Conservativity).
Let JL1 ∈ {JD, JD4, JD5, JDB, JD45} and let JL2) JL1. Then JL2 is
not a conservative extension of JL1.

Proof. We first consider the case where JL2 is either an extension
of JT or one of the logics JDB4, JDB5, JDB45. By Lemma 2.2.6, JL2

proves jt. The following argument shows that the L(∅)-schema jt is
not provable in JL1 and, hence, JL2 is not a conservative extension
of JL1: if jt were provable in JL1, then, by Lemma 1.4.3, every formula

122

5.3 Negative Results for Logics of Consistent Belief

�A → A were provable in the modal logic that JL1 is a justification
counterpart of, i.e., in D, D4, D5, DB, or D45. But it is well-known
that none of these logics proves �A → A.

We now prove the remaining cases.

The following is a proof2 in both JD4 and JD45:

1. x1 : P1 (assumption)

2. x2 : (x1 : P1 → ⊥) (assumption)

3. !x1 : x1 : P1 (by 1. and j4)

4. x2 : (x1 : P1 → ⊥) → !x : x : P → x2 · !x1 :⊥ (app)

5. x2 · !x1 :⊥ (by 2., 3., 4., and MP)

6. ⊥ (by 5. and jd)

Hence, by the Deduction Theorem (Lemma 1.5.3),

JD4/JD45 ` x1 : P1 → x2 : (x1 : P1 → ⊥) → ⊥ .

Note that this is a formula in the language L(∅). We show that
it is not provable in JD5 (and thus not in JD ⊂ JD5) and, hence,
JD4 and JD45 are not conservative extensions of JD, and JD45 is
not a conservative extension of JD5. Assume to the contrary that
the formula is provable in JD5. Then, by Lemma 1.4.3, its forgetul
projection

�P1 → �(�P1 → ⊥) → ⊥ = ♦¬P1 ∨ ♦�P1 (5.5)

is provable in D5. We build a D5-countermodel to show that this is
a contradiction. Consider the following (serial and euclidean) Kripke
frame:

w1 // w2
**��
w3

��
jj

Now build a Kripke model based on the above frame with P1 being
true at w2 and false at w1 and w3. Then ♦¬P1 and ♦�P1 are false
at w1 and, hence, we have a D5-countermodel for (5.5).

Now consider the following proof in JD5/JD45:

1. ¬x1 : P1 (assumption)

2. x2 : (¬x1 : P1 → ⊥) (assumption)

2It is based on an informal example from [Mil12].

123

5 Conservativity

3. ?x1 : ¬x1 : P1 (by 1. and j5)

4. x2 : (¬x1 : P1 → ⊥) → (?x1 : ¬x1 : P1 → x2 · ?x1 :⊥) (app)

5. x2 · ?x1 :⊥ (by 2., 3., 4., and MP)

6. ⊥ (by 5. and jd)

Hence, by the Deduction Theorem (Lemma 1.5.3),

JD5/JD45 ` ¬x1 : P1 → x2 : (¬x1 : P1 → ⊥) → ⊥ .

We show that this L(∅)-formula is not provable in JD4 (and thus
not in JD ⊂ JD4) and, hence, JD45 is not a conservative extension
of JD4, and JD5 is not a conservative extension of JD. Assume to the
contrary that the formula is provable in JD4. Then, by Lemma 1.4.3,
its forgetul projection

¬�P1 → �(¬�P1 → ⊥) → ⊥ = �P1 ∨ ♦♦¬P1 (5.6)

is provable in D4. We build a D4-countermodel to show that this is
a contradiction. Consider the following (serial and transitive) Kripke
frame:

w1 //

!!DDDDDDDD w2

��
w3 gg

Now build a Kripke model based on this frame with P1 being false
at w2 and true at w3. Then �P1 and ♦♦¬P1 are false at w1 and,
hence, we have a D4-countermodel for (5.6).

It remains to show that JDB is not a conservative extension of JD.
Consider the following proof in JDB:

1. P1 (assumption)

2. x2 : (¬x1 : ¬P1 → ⊥) (assumption)

3. ?̄x1 : ¬x1 : ¬P1 (by 1. and jb)

4. x2 : (¬x1 : ¬P1 → ⊥) → (?̄x1 : ¬x1 : ¬P1 → x2 · ?̄x1 :⊥) (app)

5. x2 · ?̄x1 :⊥ (by 2., 3., 4., and MP)

6. ⊥ (by 5. and jd)

Hence, by the Deduction Theorem (Lemma 1.5.3),

JD5 ` P1 → x2 : (¬x1 : ¬P1 → ⊥) → ⊥ .

124

5.3 Negative Results for Logics of Consistent Belief

We show that this L(∅)-formula is not provable in JD and, hence,
JDB is not a conservative extension of JD. Assume to the contrary
that the formula is provable in JD. Then, by Lemma 1.4.3, its forgetul
projection

P1 → �(¬�¬P1 → ⊥) → ⊥ = ¬P1 ∨ ♦♦P1 (5.7)

is provable in D. We build a D-countermodel to show that this is a
contradiction. Consider the following (serial) Kripke frame:

w1
**
w2

��

Now build a Kripke model based on the above frame with P1 being
true at w1 but false at w2. Then ¬P1 and ♦♦P1 are false at w1 and,
hence, we have a D-countermodel for (5.7).

Non-conservativity of JDB45 over JDB4 and JDB5 cannot be proved
in the same way as Lemma 5.3.1 because, by Theorem 3.3.14, these
three logics all have the same forgetul projection, i.e., S5. We leave
it open whether JDB45 is conservative over JDB4 and JDB5. But the
conjecture is that it is not. We conclude this section by giving an
argument for this conjecture.

We internalize, in JDB45, the second counterexample from the proof of
Lemma 5.3.1 and argue that the so obtained formula is not provable
in JDB4. A similar argument (internalize the first counterexample
from the proof of Lemma 5.3.1 instead of the second one) supports
the conjecture that JDB45 is not a conservative extension of JDB5.

By rule (CS), applied to instances of j5, app, and jd respectively,

` c11 : (¬x1 : P1︸ ︷︷ ︸
A

→ ?x1 : ¬x1 : P1︸ ︷︷ ︸
B

) , (5.8)

` c12 :
(
x2 : (¬x1 : P1 → ⊥)︸ ︷︷ ︸

C

→ (?x1 : ¬x1 : P1︸ ︷︷ ︸
B

→ x2 · ?x1 :⊥︸ ︷︷ ︸
D

)
)

, (5.9)

` c13 : (x2 · ?x1 :⊥︸ ︷︷ ︸
D

→ ⊥) . (5.10)

By a propositional tautology and Internalization Property 1.5.4,

` p :
(

(A → B) →
(
C → (B → D)

)
→ (D → ⊥) → A → C → ⊥

)

125

5 Conservativity

for some ground term p. It is easy to see from the proof of the Inter-
nalization Property 1.5.4 that p can be an L(∅)-term. By the above,
an instance of app, (5.8), and MP,

` p · c11 :
((
C → (B → D)

)
→ (D → ⊥) → A → C → ⊥

)
.

Similarly, by the above and (5.9),

` (p · c11) · c12 :
(
(D → ⊥) → A → C → ⊥

)
.

Finally, by the above and (5.10),

` ((p · c11) · c12) · c13 :
(
A → C → ⊥

)
,

which is the same as

` ((p · c11) · c12) · c13 :
(
¬x1 : P1 → x2 : (¬x1 : P1 → ⊥) → ⊥

)
. (5.11)

Note that we have derived an L(∅)-formula (which is also an L(!, ?̄)-
formula) in JDB45. However, the described proof is clearly not a JDB4-
proof because, in JDB4, j5 is not an axiom schema and, hence, (5.8)
is not provable in JDB4. Note, however, that negative introspection is
present in JDB4 by Lemma 2.2.6. As a consequence, when translating
the above proof into a JDB4-proof, we are forced to use

` q : (¬x1 : P1 → t?(x1) : ¬x1 : P1)

instead of (5.8), where q is some ground term more complex than c11
and t?(x1) is the term constructed in Lemma 2.2.6. Therefore, in-
stead of (5.11), we would obtain (5.11) with q substituted for c11. It
seems that negative introspection being axiomatic is essential for prov-
ing (5.11) and, therefore, (5.11) is not provable in JDB4. But a formal
proof of this is left to others.

126

Conclusions

We have studied several aspects of all the 24 justification logics formed
by the axiom schemas jd, jt, jb, j4, and j5. We have therefore provided
a survey of the justification counterparts of all the modal logics in the
modal cube.

We have classified these 24 logics by introducing an equivalence rela-
tion on justification logics that is based on translations of justification
operations. We have proved that the justification counterparts of a
modal logic are all pairwise equivalent, and have thereby shown that
the equivalence relation is natural in that justification logics are equiv-
alent if and only if they realize the same modal logic.

We have developed a general method to prove realization theorems
constructively and uniformly. It can be applied to any modal logic
captured by a cut-free nested sequent system. Proving a realization
theorem is reduced to dealing with the non-nested versions of rules,
which are essentially ordinary sequent rules without side formulas. In
particular, the method has enabled us to realize the 15 modal logics in
the modal cube. We have thereby reproved in a uniform way several
known realization theorems and have realized modal logics that did
not have justification counterparts prior to the publication of [BGK10].
Using the notion of equivalence of justification logics, we have demon-
strated that the realization theorem for these 15 modal logics can be
made modular, independent of whether the modal sequent systems are
modular (i.e., whether any combination of modal rules corresponding
to axiom schemas d, t, b, 4, and 5 yields a complete system). Our real-
ization theorem is modular in the sense that we produce a justification
counterpart for each axiomatization of a modal logic.

Our method is easily applicable to the modular nested sequent systems
from [BS09]. Although these systems have turned out to be incom-
plete, our method should also be applicable to the corrected versions
that Brünnler and Straßburger are working on.

We have introduced cut-free Gentzen systems for justification logics of

127

Conclusions

belief, most of them did not have such systems before. The Gentzen
systems for J and J4 enabled us to show that the Internalization Prop-
erty for these logics has a converse direction: not only can we, for every
formula A, build a term p such that p : A is provable if A is, but for
any term t, if t :A is provable, then so is A. We have also shown that
this property, which we called inversed internalization, does not hold
for all logics of belief.

In the last chapter, we have studied which justification logics are con-
servative extensions of others. We have restated some known results
but have also provided new ones.

The main open problem of this thesis is related to conservativity: it
is not known whether the partial result on conservativity for logics of
belief can be generalized to obtain a full result. That is, whether J4 is a
conservative extension of J, J5 of J, and so on. The problem here is that
the (·)-rule of our Gentzen systems does not satisfy the subformula
property and, hence, operations !, ?, and ?̄ can possibly be eliminated
in a derivation. There exists also a semantic approach [Mil12] for
proving this partial result. However, it is not much more promising
because the semantic closure condition3 for the operation · violates
what could be called a semantic analog of the subformula property.

Apart from conservativity for logics of belief, there are some smaller
open problems.

It remains unknown whether each valid annotated formula A can be
realized with the additional restriction on a realization function r that
whenever ♦2nB is a subformula of A, the variable xn should not occur
in Br. This restriction, called non-self-referentiality on variables, was
introduced by Fitting in [Fit09]. The main difficulty of obtaining this
extra condition via our realization method lies in the contraction rule.

Since we have introduced new justification logics, i.e., the extensions
of JB, an obvious next step is to look for appropriate semantics and
to investigate the decidability and complexity of these logics.

Further, it could be interesting to explore the connections between the
equivalence of justification logics and their decidability and complex-
ity, e.g., whether equivalent logics are necessarily in the same com-
plexity class.

3 Semantics for justification logics involve a so-called evidence function E from
terms to formulas. The closure condition for · states that if A → B ∈ E(t) and
A ∈ E(s), then B ∈ E(t · s).

128

Conclusions

It is not known whether cut-free Gentzen systems exist for logics of
consistent belief, i.e., for JD, JD4, JD5, etc. It is also unknown whether
the property of inversed internalization holds for JD, JDB, and JD4.

A long-term goal is to establish realizability of the cut-rule, or equiv-
alently of modus ponens. It is not known whether cut is realizable
with respect to the definition we have given or with respect to some
other suitable definition of a realizable rule. A positive answer to this
question would allow for direct realization proofs via Hilbert systems
and, thus, would probably lead to new realization theorems for modal
logics that lack cut-free systems even in nested calculi, e.g., for logics
of common knowledge (cf. [BKS11]).

129

Bibliography

[AK06] Sergei N. Artemov and Roman Kuznets. Logical omniscience via
proof complexity. In Zoltán Ésik, editor, Computer Science Logic,
20th International Workshop, CSL 2006, 15th Annual Conference
of the EACSL, Szeged, Hungary, September 25–29, 2006, Proceed-
ings, volume 4207 of Lecture Notes in Computer Science, pages
135–149. Springer, 2006.

[AK09] Sergei N. Artemov and Roman Kuznets. Logical omniscience as
a computational complexity problem. In Aviad Heifetz, editor,
Theoretical Aspects of Rationality and Knowledge, Proceedings of
the Twelfth Conference (TARK 2009), pages 14–23, Stanford Uni-
versity, California, July 6–8, 2009. ACM.

[AKS99] Sergei N. Artemov, Yevgeny Kazakov, and Dmitry Shapiro. Logic
of knowledge with justifications. Technical Report CFIS 99–12,
Cornell University, 1999.

[Art95] Sergei N. Artemov. Operational modal logic. Technical Report
MSI 95–29, Cornell University, December 1995.

[Art01] Sergei N. Artemov. Explicit provability and constructive seman-
tics. Bulletin of Symbolic Logic, 7(1):1–36, March 2001.

[Art02] Sergei N. Artemov. Unified semantics for modality and λ-terms
via proof polynomials. In Kees Vermeulen and Ann Copestake,
editors, Algebras, Diagrams and Decisions in Language, Logic and
Computation, volume 144 of CSLI Lecture Notes, pages 89–118.
CSLI Publications, Stanford, 2002.

[Art08] Sergei N. Artemov. The logic of justification. The Review of
Symbolic Logic, 1(4):477–513, December 2008.

[BGK10] Kai Brünnler, Remo Goetschi, and Roman Kuznets. A syntactic
realization theorem for justification logics. In Lev Beklemishev,
Valentin Goranko, and Valentin Shehtman, editors, Proceedings
of Advances in Modal Logic 2010, volume 8. College Publications,
2010.

[BK12] Samuel R. Buss and Roman Kuznets. Lower complexity bounds in
justification logic. Annals of Pure and Applied Logic, 163(7):888–
905, July 2012. Published online November 2011.

131

Bibliography

[BKS11] Samuel Bucheli, Roman Kuznets, and Thomas Studer. Justifi-
cations for common knowledge. Journal of Applied Non-classical
Logics, 21:35–60, 2011.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[Bre00] Vladimir N. Brezhnev. On explicit counterparts of modal logics.
Technical Report CFIS 2000–05, Cornell University, 2000.

[Brü03] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs.
PhD thesis, Technische Universität Dresden, September 2003.

[Brü09] Kai Brünnler. Deep sequent systems for modal logic. Archive for
Mathematical Logic, 48(6):551–577, July 2009.

[BS09] Kai Brünnler and Lutz Straßburger. Modular sequent systems
for modal logic. In Martin Giese and Arild Waaler, editors, Pro-
ceedings of TABLEAUX 2009, volume 5607 of Lecture Notes in
Artificial Intelligence, pages 152–166. Springer, 2009.

[Che80] Brian F. Chellas. Modal Logic: An Introduction. Cambridge Uni-
versity Press, 1980.

[Fit05] Melvin Fitting. The logic of proofs, semantically. Annals of Pure
and Applied Logic, 132(1):1–25, February 2005.

[Fit07] Melvin Fitting. Justification logics and conservative extensions.
Technical Report TR–2007015, CUNY Ph.D. Program in Com-
puter Science, July 2007.

[Fit08] Melvin Fitting. Justification logics, logics of knowledge, and con-
servativity. Annals of Mathematics and Artificial Intelligence,
53(1–4):153–167, August 2008.

[Fit09] Melvin Fitting. Realizations and LP. Annals of Pure and Applied
Logic, 161(3):368–387, December 2009.

[Fit11] Melvin Fitting. The realization theorem for S5: A simple, con-
structive proof. In Johan van Benthem, Amitabha Gupta, and
Eric Pacuit, editors, Games, Norms and Reasons: Logic at the
Crossroads, volume 353 of Synthese Library, chapter 4, pages 61–
76. Springer, 2011.

[Fit12] Melvin Fitting. Prefixed tableaus and nested sequents. Annals of
Pure and Applied Logic, 163(3):291–313, March 2012. Published
online October 2011.

[Gar09] James Garson. Modal logic. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Winter 2009 edi-
tion, 2009. http://plato.stanford.edu/archives/win2009/

entries/logic-modal/.

132

http://plato.stanford.edu/archives/win2009/entries/logic-modal/
http://plato.stanford.edu/archives/win2009/entries/logic-modal/

Bibliography

[Get63] Edmund L. Gettier. Is justified true belief knowledge? Analysis,
23(6):121–123, June 1963.

[GK12] Remo Goetschi and Roman Kuznets. Realization for justifica-
tion logics via nested sequents: Modularity through embedding.
Annals of Pure and Applied Logic, 2012.

[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM
Transactions on Computational Logic, 8(1:1), January 2007.

[HC96] George E. Hughes and Max J. Cresswell. A New Introduction to
Modal Logic. Routledge, 1996.

[Kur09] Hidenori Kurokawa. Tableaux and hypersequents for Justifica-
tion Logic. In Sergei [N.] Artemov and Anil Nerode, editors,
Logical Foundations of Computer Science, International Sympo-
sium, LFCS 2009, Deerfield Beach, FL, USA, January 3–6, 2009,
Proceedings, volume 5407 of Lecture Notes in Computer Science,
pages 295–308. Springer, 2009.

[Kur11] Hidenori Kurokawa. Tableaux and hypersequents for justification
logics. Annals of Pure and Applied Logic, Articles In Press, Oc-
tober 2011.

[Kuz05] Roman Kuznets. On decidability of the logic of proofs with arbi-
trary constant specifications. In 2004 Annual Meeting of the As-
sociation for Symbolic Logic, Carnegie Mellon University, Pitts-
burgh, PA, May 19–23, 2004, volume 11(1) of Bulletin of Symbolic
Logic, page 111. Association for Symbolic Logic, March 2005. Ab-
stract.

[Kuz08] Roman Kuznets. Complexity Issues in Justification Logic. PhD
thesis, CUNY Graduate Center, May 2008.

[Kuz10] Roman Kuznets. Self-referential justifications in epistemic logic.
Theory of Computing Systems, 46(4):636–661, May 2010.

[Mil07] Robert S. Milnikel. Derivability in certain subsystems of the Logic
of Proofs is Πp

2-complete. Annals of Pure and Applied Logic,
145(3):223–239, March 2007.

[Mil09] Robert S. Milnikel. Conservativity for logics of justified be-
lief. In Sergei N. Artemov and Anil Nerode, editors, Logi-
cal Foundations of Computer Science, International Symposium,
LFCS 2009, Deerfield Beach, FL, USA, January 3–6, 2009, Pro-
ceedings, volume 5407 of Lecture Notes in Computer Science,
pages 354–364. Springer, 2009.

[Mil12] Robert S. Milnikel. Conservativity for logics of justified belief:
Two approaches. Extended version of [Mil09], 2012.

133

Bibliography

[Pac05] Eric Pacuit. A note on some explicit modal logics. In Proceedings
of the 5th Panhellenic Logic Symposium, pages 117–125, Athens,
Greece, July 25–28, 2005. University of Athens.

[Pog10] Francesca Poggiolesi. Towards a satisfying proof analysis of
the logic of proofs. In Xabier Arrazola and Maŕıa Ponte, edi-
tors, LogKCA-10, Proceedings of the Second ILCLI International
Workshop on Logic and Philosophy of Knowledge, Communica-
tion and Action, pages 371–385. University of the Basque Country
Press, 2010.

[Ren06] Bryan Renne. Semantic cut-elimination for two explicit modal log-
ics. In Janneke Huitink and Sophia Katrenko, editors, Proceedings
of the Eleventh ESSLLI Student Session, 18th European Summer
School in Logic, Language and Information (ESSLLI’06), pages
148–158, Málaga, Spain, July 31–August 11, 2006. FoLLI.

[Rub06] Natalia M. Rubtsova. Evidence reconstruction of epistemic
modal logic S5. In Dima Grigoriev, John Harrison, and Ed-
ward A. Hirsch, editors, Computer Science — Theory and Appli-
cations, First International Computer Science Symposium in Rus-
sia, CSR 2006, St. Petersburg, Russia, June 8–12, 2006, Proceed-
ings, volume 3967 of Lecture Notes in Computer Science, pages
313–321. Springer, 2006.

[Stu11] Thomas Studer. An application of justification logic to pro-
tocol verification. In Proceedings of Computational Intelligence
and Security CIS 2011, page 779–783. IEEE, IEEE, 2011. URL:
http://www.iam.unibe.ch/ltgpub/2011/stu11b.pdf.

[TS96] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof
Theory. Cambridge University Press, 1996.

134

http://www.iam.unibe.ch/ltgpub/2011/stu11b.pdf

Index

+, 18
A◦, 23
B(S), 119
K(S), 116
JL?, 115
·, 18
!, 18
⊆̃, 32
⊆̃L, 52
≡, 32
≡L, 52
L(S), 18
ωid, see operation
?, 18
iAN, 19
iANCS, 22
�, 59
?̄, 18, 47
4, 15
5, 15
GJLCS, 97
GJL+

CS, 102

annotation, 58
annotated rule, 69
annotated version, 58
proper, 58

app, 19
axiom necessitation, 20

iterated, 19
axiomatically appropriate, see con-

stant

b, 15

common knowledge, 129

conservative extension, 115–126
consistency, 19
constant, 18

level, 18, 37
specification, 21

axiomatically appropriate,
22

downward closed, 22
schematic, 22
total, 22

context
context-sharing rule, 66
sequent, 66

contraction, 75, 78, 97
admissibility, 101

CS, 21
cut, 57, 70, 102

elimination, 106

D, 14
d, 15
D4, 14
D45, 14
D5, 14
DB, 14
deduction theorem, 25
dom(σ), see domain
domain, 59
downward closed, see constant

embedding, 32
local, 52

equivalence, 32
local, 52
relation, 34, 52

135

Index

euclideanness, 15

factivity, 19
internalized, 42

forgetful projection, 23

gentzen systems, 9, 95–108
Gettier problem, 7

internalization, 24, 25
inversed, 95, 108–113

with hypotheses, 111
invertibility

of (L→) and (R→), 99

J, 18, 20
J4, 20
j4, 19
J45, 20
J5, 20
j5, 19
JB, 20
jb, 19
JB4, 20
JB45, 20
JB5, 20
JD, 20
jd, 19
JD4, 20
JD45, 20
JD5, 20
JDB, 20
JDB4, 20
JDB45, 20
JDB5, 20
JT, 20
jt, 19
JT4, 20
JT45, 20
JT5, 20
JTB, 20
JTB4, 20
JTB45, 20
JTB5, 20
justification counterpart, 23

justification cube, 50
justification term, see term

K, 14
K4, 14
K45, 14
K5, 14
KB, 14
KB5, 14
Kripke

frame, 16, 123
model, 16, 111, 123

level, see constant
lifting lemma, 25, 51
logical omniscience, 7
LP, 7, 23
LP(K5), 10

modal cube, 14
MP, 19

negative introspection, 18
weak, 18

nested sequent, 65

operation, 18
replacement, 44
translation, 31

identity, 33

positive introspection, 18
internalized, 43

prerealization function, 59

realizable rule, 70, 92
realization

function, 59
merging, 62, 73, 76
theorem, 7, 23, 90

modular, 91
reflexivity, 15

S4, 14
S5, 14

136

Index

schema, formula, 35
schematic, see constant
semantics, 7, 9, 128

Kripke, see Kripke
sequent, 96

nested, see nested sequent
seriality, 15
shallow version, 67, 71
stripping lemma, 109
subformula property, 96, 98, 128
substitution, 26, 59

composition, 60
property, 26
union, 60

subterm property, 99
sum, 19
symmetry, 15

T, 14
t, 15
taut, 19
TB, 14
term, 17
terms

ground, 18
transitivity, 15

variable, 18
range, 60

vars♦, 59
vrange(σ), 60

weakening, 100

137

