
Canonical proof nets for classical logic

Richard McKinley

Logic and Theory Group, Institut für Informatik und Angewandte Mathematik, Üniversität Bern

Abstract. Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the
idea being that if two proofs have the same underlying proof-net, they are in essence the same proof.
Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an
important step in understanding classical sequent calculus proofs. By convincing, we mean that (a)
there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to
check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a
sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness.
Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one
of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying
(a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit
demonstration of (c). That sequent calculus, called LK∗ in this paper, is a novel one-sided sequent
calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-
contained extended version of [23]) , we give a full proof of (c) for expansion nets with respect to LK∗,
and in addition give a cut-elimination procedure internal to expansion nets – this makes expansion nets
the first notion of proof-net for classical logic satisfying all four criteria.

1 Introduction

Proof theory, the study of formal proofs, was invented as a tool to study the consistency of mathematical
theories, one of Hilbert’s famous 23 problems. However, Hilbert had originally considered presenting at his
Paris lecture a 24th problem [26] which concerned proofs directly: he proposed “develop(ing) a theory of
mathematical proof in general”. Central to this question is the idea that usual proofs, as written down by
mathematicians, or formalized in, for example, Gentzen’s sequent calculus [11], are syntactic representations
of much more abstract proof objects. Given that, we should be able to tell when two syntactic proofs represent
the same abstract proof.

It is striking how difficult this question seems to be, even for propositional classical logic. In contrast
to the well-developed theory of proof-identity for intuitionistic natural deduction (given by interpretation
of proofs in a cartesian-closed category), the theory of identity for proofs in classical logic is very poorly
understood. Investigations by several researchers over the last ten years [25, 10, 19, 20, 2, 17] have only served
to underline the difficulty of the problem. Many of these difficulties concern proofs with cuts. The identity of
non-analytic proofs is not problematic for intuitionistic logic; since each proof has a unique normal form, he
problem reduces to that of the identity of normal proofs. Reduction to normal form in the classical sequent
calculus is in general neither confluent nor strongly normalizing, and so the identity of proofs containing cuts
must also be considered.

Yet even for cut-free proofs, opinions on the “right notion” of proof-identity differ. It is not reasonable, as
it is for natural deduction proofs, to declare two cut-free sequent proofs equal only if they are syntactically
identical; a good minimum notion of equality is that proofs differing by commuting conversions of non-
interfering sequent rules should be equal. Proof-nets [14] are a tool for providing canonical representants
of such equivalence classes of proofs in linear logic [12]. A proposal by Robinson [25], following ideas from
Girard [13], gives proof-nets for propositional classical logic, and these nets do indeed identify proofs differing
by commutative conversions. However, they fail to provide canonical representants for sequent proofs owing
to the presence of weakening attachments; explicit information about the context of a weakening not present
in sequent proofs. As a result one sequent proof corresponds to many different nets, the exact opposite of
the situation one expects. In addition, the proof-identities induced by Robinson’s nets do not include, among

other desirable equations, commutativity/associativity of contraction, a key assumption in the development
of abstract models of proofs (such identities are assumed in [10], in [2] and also in [20]). Other notions of
abstract proof for classical logic (Combinatorial proofs [16] and B/N-nets [19]) make such identifications, but
at the cost of losing sequentialization into a sequent calculus.

The current paper concerns expansion-nets: a calculus of proof-nets for classical logic first presented
in [23] which, unlike Robinson’s nets, provide canonical representants of equivalence classes of classical
sequent proofs. To avoid the problems inherent in weakening, we restrict attention to proofs in a new sequent
calculus, LK∗ (see Figure 1). This calculus has no weakening rule, nor does it have implicit weakening at
the axioms: instead, it has both the multiplicative and additive forms of disjunction rule. This new calculus
has all the properties one might hope of a sequent calculus for classical logic (except, perhaps, terminating
proof search): it has the subformula property, is cut-free complete, and even has syntactic cut-elimination
(although this is perhaps easier to see via the proof nets than directly in the sequent calculus, owing to
the curious nature of the cut-elimination theorem: if Γ is provable in LK∗ with cut, then some subsequent
∆ ⊆ Γ is provable without cut). Treating the introduction of weak formulae in this way allows us to
define a canonical function mapping sequent proofs in LK∗ to expansion nets. Correctness for expansion
nets (whether a net really corresponds to a sequent proof) can be checked in polynomial time, using small
adaptations of standard methods from the theory of proof nets for MLL− + Mix (multiplicative linear logic,
plus the mix rule, without units, as studied in [1, 8, 9]) – meaning that expansion-nets form a propositional
proof system [6]. Translating from sequent proofs to expansion nets identifies, in addition to nets differing
by commuting conversions, nets differing by the order in which contractions are performed. The current
paper (a self-contained extension of [23]) gives a detailed account of the connection between expansion-nets
and their associated sequent calculus: in particular, an explicit proof of sequentialization for expansion nets
as(Theorem 5), which was missing in [23]. In addition, we present a cut-elimination procedure for expansion
nets (proof transformations which we prove, in Propositions 11 – 14 to preserve correctness) which are weakly
normalizing (Lemma 6 and Theorem 6 detail a strategy for reducing any net with cuts to a cut-free net). This
result was absent from [23]: with it, we can see that expansion nets have polynomial-time proof checking,
sequentialization into a sequent calculus and cut-elimination preserving sequent-calculus correctness – the
first notion of abstract proof for propositional classical logic to satisfy all of these properties.

1.1 Structure of the paper

Section 2 gives some preliminaries, and then Section 3 introduces the variant sequent calculus LK∗, showing
completeness and some other key properties. Section 4 surveys the existing notions of abstract proof in
propositional classical logic. Section 5 defines expansion nets, and compares them with the existing notions
of abstract proof in the literature.

The next two chapters contain most of the novel technical material in the paper. Section 6 deals with
the notion of subnet, a key analogue of the notion of subproof in sequent calculus which we will need to
define cut-reduction. This technology (including the new notion of contiguous empire) also affords a proof
of sequentialization of expansion-nets into LK∗. Section 7 then provides the cut-reduction steps themselves,
and a proof of cut-elimination for expansion nets.

Acknowledgements The author thanks Kai Brünnler, Lutz Strassburger, Michel Parigot, Tom Gundersen,
and the anonymous referees for their helpful comments and criticisms.

2 Preliminaries

2.1 Formulae of propositional classical logic

Let P be a countable set of proposition symbols. An atom is a pair (a, i), where a ∈ P and i ∈ {+,−}. By
an abuse of notation, but in line with common use, we will simply write a for (a,+), and write ā for (a,−).
Two atoms are dual if they differ only in their second component.

2

Ax
a, ā

Ax>
>

Γ, A
∨0

Γ, A ∨B

Γ, A,B
∨

Γ, A ∨B

Γ, B
∨1

Γ, A ∨B

Γ, A ∆, B
∧

Γ,∆, A ∧B

Γ ∆
Mix

Γ,∆

Γ, a, a
C

Γ, a

Γ, ā, ā
C

Γ, ā

Γ, A ∧B,A ∧B
C

Γ, A ∧B

Fig. 1. LK∗: A variant sequent calculus without weakening

The classical formulae over P are given by the following grammar

A ::= a | ā | > | ⊥ | A ∧A | A ∨A.

Negation is not a connective in our systems, but is defined by De Morgan duality. We will use the notation
Ā to denote the De Morgan dual of the formula A. The rank rk(A) of a formula A is defined as follows:

rk(>) = rk(⊥) = rk(a) = rk(ā) = 1

rk(A ∧B) = rk(A ∨B) = 1 + max(rk(A), rk(B))

2.2 Forests and sequents

A forest (in this paper) is a pair (A,pr) consisting of a set A of nodes and a partial endofunction pr
(predecessor) on A (the elements of A on which pr is undefined being the roots) such that, for each element
x of A, there is an n ≥ 0 such that prn(x) is a root. Clearly, a forest with one root is a tree. Given a y such
that pr(x) = y, we will say that x is a successor of y. A node with no successors is a leaf. A node x in a
forest is ordered if it comes equipped with an injective function from its set of successors to N — otherwise
it is unordered.

A forest defines a natural partial order ≤ on its nodes derived from predecessor: x ≤ y if there exists
n ≥ 0 with x = prn(y). A forest also gives rise to a directed graph (the graph of the forest) with nodes the
same as the nodes of the forest, and a directed edge from every node to its predecessor.

A subforest of F is a nonempty set G of nodes of F such that if g1 is a member of G and g1 ≤ g2 then
g2 is a member of G.

Given that a formula is a tree, it is natural to consider a sequent to be a forest: a classical sequent will
be, for us, a finite forest whose trees are classical propositional formulae.

Remark 1. Sequents are typically defined either as sets, multisets or sequences of formulae: why then have
we chosen to define sequents as forests? For an fine-grained analysis of proofs, sets are a bad representation,
as they throw away all explicit information about contraction. Sequences, on the other hand, distinguish too
much; what we need is a representation which allows us to distinguish individual occurrences of the same
formula in a sequent without caring in which order they appear. The problem with the multiset representation
of sequents lies in confusion over the meaning of “multiset”, which is different depending on context, and in
essential ways. In particular, problems arise for structural proof theory if the intended meaning of multiset
is “set with multiplicities”. Suppose that from Ā, A we derive Ā, A,A by weakening. If we wish to form a
cut against A, we must choose which copy of A to cut against: the choice will have drastic consequences
during cut-elimination. But in the “set with multiplicities” understanding of multisets, there is no notion of
an individual copy of A in the sequent.

By defining a sequent to be a forest, we avoid this conceptual hurdle: each formula in the sequent
corresponds to a distinct root of the forest. When we want to think about sequents as multisets to make

3

sense, for example, of the expression ∆ ⊆ Γ (“∆ is a subsequent of Γ ”), we can use the set of roots of the
sequent (the above expression is interpreted as “∆ is a subforest of Γ , each of whose roots is a root of Γ ”).

We write sequent proofs without turnstiles: if L is a sequent system, we write L ` Γ to mean “there is a
sequent derivation in L with Γ at the root and axioms at the leaves.

Ax
a, ā

Ax>
>

Γ, A,B
∨

Γ, A ∨B

Γ, A ∆, B
∧

Γ,∆, A ∧B

Γ, A,A
C

Γ, A

Γ
W

Γ, B

Fig. 2. Cut-free multiplicative LK (one-sided)

3 A variant sequent calculus for classical logic

The completeness of expansion nets relies on the completeness of a variant sequent calculus LK∗ (shown
in Figure 1). This sequent calculus was introduced, along with expansion-nets, in [23]. The calculus bears
some similarities to Hughes’s “minimal calculus” Mp [18], in that it has both multiplicatively and additively
formulated disjunction rules. However, while Mp has a mixed additive/multiplicative conjunction rule, LK∗

has the standard multiplicative conjunction rule. Given these logical rules, we need the contraction rule
(which is absent from Mp) to be complete with respect to classical logic. This would ordinarily make the
multiplicative disjunction rule redundant, as it is derivable from the two additive rules plus contraction;
however, in LK∗ contraction is forbidden on disjunctions. Contraction is, however, admissible in LK∗; we
will prove this using the following two easy lemmata:

Lemma 1 (Pseudo-invertibility of ∨). If LK∗ ` Γ, A ∨B, then one of the following holds:

• LK∗ ` Γ, A,B
• LK∗ ` Γ, A
• LK∗ ` Γ, B

Lemma 2. If Γ is nonempty and LK∗ ` Γ,>, then LK∗ ` Γ.

Proposition 1. Contraction is admissible in LK∗.

Proof. Contraction is admissible for > by Lemma 2, and for atoms/conjunctions by the contraction rule.
Now suppose that contraction is admissible for all formulae of rank < n, and let A ∨B have rank n. Given
a proof of Γ, A ∨ B,A ∨ B, apply pseudo invertibility (Lemma 1) to obtain a proof of Γ, A(n), B(m), (here
C(n) denotes n copies of the formula C) where 0 ≤ m,n ≤ 2 and n + m ≥ 2. Using a combination of the
induction hypothesis and one of the disjunction rules of LK∗ we obtain a proof of Γ, A ∨B. ut

In common with Mp, LK∗ has the curious property of being sound and complete for formulae (` A iff
� A) but not “sequent complete”: that is, there are sequents provable in LK which cannot be proved in the
variant system. For example, if a and b are distinct propositional letters, then a, ā, b does not have a proof
in LK∗. For this reason, our proof of completeness proceeds by showing that each LK-provable sequent has
an LK∗-provable subsequent:

4

Proposition 2. Let Γ be provable in LK (we take as LK the system in Figure 2). Then we may partition
the formulae in Γ (in terms of forests, the roots of Γ) into Γs (the strong formulae of Γ) and Γw (the weak
formulae of Γ), such that LK∗ proves Γs.

Proof. By induction on the length of an LK derivation. Clearly, the proposition is true for consequences of
the LK axiom. We proceed by case analysis on the last rule ρ used in the LK derivation:

[ρ = W] The induction hypothesis gives us the strong formulae Γs of the premiss Γ of ρ, such that
LK∗ ` Γs. The sequent Γs is also a subsequent of the conclusion Γ, B of ρ, and so we may take it as the
strong formulae of the conclusion (i.e. B is a weak formula in the conclusion).

[ρ = ∨] Let Γ, A,B be the premiss of ρ, and Γ, A ∨B the conclusion. Apply the induction hypothesis to
Γ, A,B, yielding a sequent Γs of strong formulae provable in LK∗:

• If A and B are both strong, then Γs = ∆, A,B is provable in LK∗, and ∆, A ∨ B is an LK∗ provable
subsequent of the conclusion of ρ.
• If A and B are both weak, then Γs is also a subsequent of the conclusion of ρ, and so we may take Γs as

the strong formulae of the concluion of ρ.
• If A is weak and B is strong, then Γs = ∆, B, and thus, using ∨1, ∆, A∨B is an LK∗ provable subsequent

of the conclusion of ρ. Symmetrically if A strong and B weak.

[ρ = C] This is similar to the case for disjunction, with the added twist that we must use admissible
contraction where a contraction rule is not available in LK∗. Let Γ, A,A be the premiss of ρ, and Γ, A the
conclusion. Apply the induction hypothesis to Γ, A,A, yielding a sequent Γs of strong formulae provable in
LK∗:

• If both copies of A are strong, then Γs = ∆, A,A is provable in LK∗, and ∆, A is an LK∗ provable
subsequent of the conclusion of ρ by contraction admissibility.
• If both copies of A are weak, then Γs is also a subsequent of the conclusion of ρ, and so we may take Γs

as the strong formulae of the conclusion of ρ.
• If one copy of A is weak, then Γs = ∆, A is also an LK∗ provable subsequent of the conclusion of ρ.

[ρ = ∧] This is the most interesting case. Let Γ, A, be one premiss of ρ and ∆, B the other. The induction
hypothesis applied to both premisses gives us a subsequents Γs and ∆s of strong formulae respectively for
each premiss.

• If A and B are both strong in their respective sequents, then Γs = Γ′, A and ∆s = ∆′, B, and so
Γ′,∆′, A ∧B, a subsequent of the conclusion of ρ, is provable in LK∗.
• If A and B are both weak, then Γs,∆s is a subsequent of the conclusion of ρ, provable in LK∗ using the
Mix rule.
• If A is weak and B is strong, then Γs does not contain A, and is therefore a subsequent of Γ,∆, A ∧ B

provable in LK∗. Symmetrically if A strong and B weak.

Remark 2. LK∗ is also formula complete without the Mix rule; we only use Mix in the completeness
argument once, where a conjunction is applied to two weak formulae; the Mix rule allows us to translate
this derivation into LK∗ in a symmetric manner. Without Mix, we would be forced to choose one or other
of the premisses as the strong formulae of the conclusion.

4 Existing notions of proof-net for classical logic

To underline the need for a new notion of proof-net, we consider the existing notions of proof-net for classical
logic, and underline their strengths and weaknesses as canonical representatives of equivalence classes of
proofs.

5

>

1

Ax

a ā

A

Wk

A ∧B

∧

BA

A

Ctr

AA

A ∨B

∨

BA

Fig. 3. Näıve classical nets: graph figures

4.1 Näıve classical nets

The basic idea for a rudimentary form of classical proof-net comes from Girard [13], and the details were
first worked out by Robinson in [25]: the underlying structure of the nets is identical to that for MLL nets,
and correctness is given by treating the conjunctions and axioms of classical logic in the same way as the
linear logic axiom and tensor,treating both contraction and disjunction in the same way as the linear logic
“par” connective, and treating weakenings as ⊥ is treated in MLL nets.

Remark 3. The following presentation of classical nets differs from that of Robinson, in that we work with
one-sided proofs, and we use weakening attachments for correctness rather than explicit weakening nodes.
Since these nets represent the most basic idea for developing MLL nets into nets for classical logic, and
since they lack many of the properties we would desire of proof-objects for classical logic, we call them näıve
classical nets.

A graph-like presentation of näıve classical nets can be found in Figure 3: a näıve classical proof-structure
is a graph built from the individual graph elements by matching types, such that the resulting graph has
no sources (nodes with no incoming edges) labelled with formulae. There is an inductive definition mapping
sequent-proofs in LK to proof-structures, which can be very easily obtained by considering proof-structures
not as graphs, but as forests of trees:

Definition 1. Let X be a countable set of wire symbols. A wire variable is an atom over X , as defined in
Section 2.1: a pair of a member x of X and a polarity (+ or −). Thus wire variables occur in dual pairs, for
example x and x̄. A contraction-weakening tree (or cw-tree) over X is a member of the following grammar.

s ::= 1 | Wk | x | x̄ | (s ∨ s) | (s ∧ s) | Ctr(s, s)

where x and x̄ are wire variables over X .

We use these cw-trees to define the mapping from sequent proofs to proof structures, by annotating formulae
appearing in LK derivations with cw-trees. The system in Figure 4 derives sequents of “annotated formulae”,
in which each formula has an associated cw-tree: the tree attached to a formula provides a history of how it
was proved.

We can recover the more usual graph-like presentation of proof structures by considering the graph of
an annotated sequent, given by adding axiom links to the forest of cw-terms as suggested by the dual wire
variables.

Example 1. The following annotated sequent represents a proof of Pierce’s law

((x̄ ∨Wk) ∧ ȳ) : (p̄ ∨ q) ∧ p̄, Ctr(x, y) : p (1)

6

Ax
x : a, x̄ : ā

F G
Mix

F,G
Ax>

1 : >

G, t : A, s : B
∨

G, s ∨ t : A ∨B

G, s : A F, t : B
∧

G,F, s ∧ t : A ∧B

G, s : A, t : A
C

G, Ctr(s, t) : A

G
W

G, Wk : B

Fig. 4. LKnet: annotating LK plus Mix with a näıve form of classical proof-net

The graph of this annotated sequent is

(p̄ ∨ q) ∧ p̄

∧

ȳ : p̄∨

Wk : q̄x̄ : p̄

p

Ctr

y : px : p

(2)

To obtain a correctness criterion, it is necessary to anchor each weakening to some other node of the
proof. In [25] this anchoring is part of the structure of the weakening node: we instead use the more usual
notion of an attachment

Definition 2. An attachment f for a näıve classical proof structure F is a function mapping each rule node
labelled with Wk to some other rule-node of the proof-structure. By an attached proof structure, we mean a
pair (F, f) of a proof structure F and an attachment f for F .

Example 2. Below we see two different attachments of the same proof structure, represented by the grey
arrows:

> ∨>

∨
>

1

>

1

⊥ ∧⊥

∧
⊥

Wk

⊥
Wk

> ∨>

∨
>

1

>

1

⊥ ∧⊥

∧
⊥

Wk

⊥
Wk

(3)

The annotated sequent calculus in Figure 4 provides a function from LK proofs to proof structures. To
extend this to attached proof structures, we must give an attachment for each weakening in the sequent proof.
We may choose any one of the formulae present in the context of the weakening rule; this arbitrary choice
means that attached proof-nets themselves cannot be the canonical proof objects we seek. For MLL, the
right notion of canonical proof object is a quotient of attached proof-nets by so-called Trimble rewiring [27],
whereby two proof-nets are equivalent if they can be transformed into one another by several steps of
“rewiring” a single unit: a rewiring is a change of attachment for the unit which yields a correct net.
According to Trimble rewiring, the two attached nets in (3) are different, as rewiring any one unit would
result in a structure which is not a net; this is important, as the corresponding morphisms are distinguished
in some ∗-autonomous categories.

7

The standard problem in the theory of proof-nets is to give a global correctness criterion for identifying,
among the proof-structures, those which can be obtained from desequentializing a sequent proof. This then
leads to a sequentialization theorem, allowing one to reconstruct a sequent proof out of a correct proof-
net. Näıve classical nets are very closely modelled on MLL nets; this means we may adapt any of the many
equivalent formulations of correctness for MLL nets to provide a correctness criterion for them. For example,
the following is the switching graph criterion [7], suitably altered for our setting:

Definition 3. Let F be a näıve classical proof-structure.

(a) A rule-node of F is switched if it is a Ctr or ∨ node. A switching of a näıve classical proof-structure is
a choice, for each switched node, of one of its successors.

(b) Given an attachment f for F , and a switching σ for F , the switching graph σ(F, f) is the graph obtained
by deleting from F all edges from a switched node to its successor not chosen by σ, forgetting directedness
of edges, and adding an edge from each Wk node to its image under f .

(c) (F, f) is ACC-correct if, for each switching σ, σ(F, f) is acyclic and connected.

(d) F is a näıve classical net if, for some f , (F, f) is ACC-correct.

Theorem 1 (Robinson).

(a) Every proof-structure arising from an LK proof is a näıve classical net.

(b) Every näıve classical net can be obtained by desequentializing an LK proof.

Using the techniques developed in [8, 9], we can capture classical reasoning in the presence of the Mix rule
(which does not allow us to prove any new theorems, but extends the space of cut-free proofs):

` Γ ` ∆
Mix

` Γ,∆

Definition 4. Let F be a Robinson proof-structure, and f an attachment for F

(a) (F, f) is AC-correct if, for each switching σ, σ(F, f) is acyclic.

(b) F is a Mix-net if there is an attachment f such that (F, f) is AC-correct.

Theorem 2. (a) Every proof-structure arising from a sequent proof in the system in Figure 2 plus Mix is
a Mix-net.

(b) Every Mix-net can be obtained by desequentializing a sequent proof with Mix.

Correctness for näıve classical nets, and sequentialization, can be developed easily by analogy with MLL
nets; for details see [25].

As intrinsic representations of proofs, näıve classical nets have a number of drawbacks:

Either correctness is NP, or weakening introduces noncanonicity Correctness for näıve classical
proof structures is NP-complete; it is in NP, since the correctness criterion goes via guessing an attachment
for each Wk: without an attachment it is not possible to adapt the correctness criterion from MLL. Cor-
rectness for unattached näıve nets is NP hard since there is an evident surjective map from cw-annotated
sequents to unattached MLL nets, for which correctness is known to be NP hard [21]. We could, instead,
take attached näıve nets as our abstract proof objects, having, as in Robinson’s original formulation, an
explicit attachent for each weakening. Then correctness would be checkable in polynomial time (so we would
have a propositional proof system) but there would no longer be a canonical function mapping sequent proofs
to proof-nets – that is, we would not have a calculus of abstract proofs.

8

Contraction is not associative, commutative Given a cw-annotated sequent F, t : A, s : A, u : A,
there are twelve distinct ways to contract the three displayed terms in the sequent calculus, each leading to
a different näıve net. For example, the net

F, Ctr(Ctr(t, s), u) : A

is syntactically distinct from the net
F, Ctr(t,Ctr(s, u)) : A

Näıve classical nets satisfy neither the identity Ctr(Ctr(t, s), u) = Ctr(t,Ctr(s, u)), nor the identity Ctr(s, t) =
Ctr(t, s); taken together, these equations ensure a canonical way to contract multiple instances of the same
formula.

Weakening is not a unit for contraction Given a net G = F, t : A, we can weaken to arrive at a net
F, t : A,Wk : A, and then contract to form a net F,Ctr(t,Wk) : A. This net differs from G, but we would
prefer it to be identified with G: that is, Wk should be a unit for the contraction operation.

Contraction on disjunctions is not pointwise Given a cw-annotated sequent

F, t1 : A, t2 : A, s1 : B, s2 : B,

we can apply the rules of LK to obtain a single term of type A ∨ B in five distinct ways, which once again
we would prefer were identified. Two of them are displayed below

F, Ctr((t1 ∨ s1), (t2 ∨ s2)) : A ∨B | F, (Ctr(t1, t2) ∨ Ctr(s1, s2)) : A ∨B.

If these two derivations, are identified, we will say that contraction on disjunctions is constructed pointwise:
in näıve classical nets this is clearly not the case.

Two further proposals for proof-net-like objects exist in the literature. They do not suffer from the above
problems but pay a heavy price for doing so, lacking as they do a strong connection with the sequent calculus.
We will not discuss these proposals in as great a depth as näıve classical nets, as there is not such a close
connection between them and expansion-nets.

4.2 Lamarche-Strassburger nets

The Lamarche-Strassburger approach to classical proof-nets [19] (hereafter LS-nets) are a generalization of
MLL− proof nets which allow classical logic to be captured: instead of changing the underlying forests, as
with näıve proof structures, this approach changes the behaviour of the links. Specifically, while in MLL−

nets each leaf takes part in precisely one axiom link, in LS-nets a leaf may take part in several links, or indeed
none – it is this liberalized notion of axiom link that allows LS-nets to capture classical logic. Depending
on the particular flavour of net, there may even be more than one link between a pair of dual atoms. The
“proof-structures” of these calculi of nets are the following:

• A B-prenet over Γ is a set L of pairs of leaves of Γ, such that the first member of each pair is labelled
with a positive atom a, and the second member of the pair is labelled with the dual ā of that atom.

• A N-prenet over Γ is a multiset L of pairs of leaves of Γ, such that the first member of each pair is
labelled with a positive atom a, and the second member of the pair is labelled with the dual ā of that
atom.

The difference between B-prenets, N-prenets and näıve classical nets can be readily seen in Figure 5: while
contraction is explicit in näıve nets, in a B-prenet it is represented by an atom’s participation in multiple
axiom links. In a N-prenet, there can, in addition, be multiple links between the same pair of atoms: thus

9

∧

ab̄

∧

b̄ā

∧

ab

∧

bā

∧

ab̄

∧

b̄ā

∧

ab

∧

bā

∧

ab̄

∧

b̄ā

∧

ab̄

∧

b̄ā

∧

aCtr

bb

∧

Ctr

bb

ā

Ctr Ctr

Fig. 5. The same LK∗ proof, rendered as a B-net, N-net, and näıve net

more information about contraction is present in naive nets than in N-nets, and more in N-nets than in
B-nets.

The translation from sequent proofs to pre-nets is almost immediate: it arises simply by tracing the
occurrences of atoms through the sequent proof (for full details see [19]). If we are interested in extracting a
B-prenet, we only care if there is a path between two atoms: in the case of N-prenets we are also interested in
how many paths there are. Neither flavour of LS-net suffers from the non-canonicity problems of Robinson-
style nets, but they introduce new problems:

No polynomial-time correctness algorithm for B-nets Strassburger and Lamarche give in [19] an
exponential-time criterion singling out those B-prenets which correspond to sequent proofs; since the size of
a B-net is polynomially bounded by the size of its conclusion, we cannot reasonably hope to do better. The
condition given for N-nets in [19] simply collapses a N-net to a B-net and checks correctness of the B-net,
the result being that there are “correct” N-nets that are not the translation of any sequent proof. There is
some hope that a different polynomial-time correctness criterion might be found for these nets, or for the
similar atomic flows [15], but none has been found so far, despite substantial effort. Consequently, there is
currently no notion of sequentializing N-nets, either into a sequent system or some other calculus.

Cut-elimination does not preserve correctness Cut-elimination is easy to define on LS-nets: as shown
in [19], it suffices, when opposing atomic contractions in a cut, to simply count the number of paths through
the cut between each pair of atoms. This procedure is proved in [19] to be strongly normalizing, confluent,
and correctness preserving on B-nets. However, applying this procedure to N-nets, there is a N-net which is
the image of a sequent proof, but whose cut reduct is not the image of a sequent proof; cut-reduction does
not preserve correctness with respect to the sequent-calculus.

4.3 Hughes’s Combinatorial proofs

The combinatorial proofs of Hughes [17, 16] are a more radical departure from the standard notions of proof
net than Lamarche-Strassburger or Robinson-style nets. Broadly, combinatorial proofs represent classical
proofs as “fibered” linear proofs, with the fibring representing the structural rules. The “semi-combinatorial”

10

presentation of combinatorial proofs given in [16] is the most immediately graspable for a proof-theorist: a
combinatorial proof of a sequent Γ of classical propositional logic is a function f from the leaves of an
MLL + Mix proof net π (which we can represent as a binary MLL formula, in which atoms occur in dual
pairs) to the leaves of Γ preserving

• Duality (if leaves X and Y are dual, then so are f(X) and f(Y))

• Conjunctive relationships (If the topmost connective between X and Y is a ⊗, then the topmost con-
nective between f(X) and f(Y) is a ∧.

and such that f is a contraction-weakening :

• f is built from pure contraction (c : A ∧ A → A), weakening (w : A ∧ B → A), and associa-
tivity/commutativity of the connectives, using function composition and “horizontal” composition (if
f : A → B and g : A′ → B′ are contraction-weakenings, then so are the evident functions f ∧ g :
A ∧A′ → B ∧B′ and f ∨ g : A ∨A′ → B ∨B′).

Example 3. An example of a semi-combinatorial proof is the following:

((x̄O ȳ) O z̄), (w̄ ⊗ v̄), ((x⊗ v) O (y ⊗ w))⊗ z

q̄, (p̄ ∧ p̄), (((q ∨ q) ∧ p) ∧ q)

Semi-combinatorial proofs suffer from the same problems as näıve nets with regard to associativity of con-
traction: differences in the association of contractions manifest in the MLL + Mix formula: for example,
the following is also a semi-combinatorial proof, differing from the one above only by the association of the
left-hand O:

(x̄O (ȳ O z̄)), (w̄ ⊗ v̄), ((x⊗ v) O (y ⊗ w))⊗ z

q̄, (p̄ ∧ p̄), (((q ∨ q) ∧ p) ∧ q)

Combinatorial proofs themselves avoid this problem by representing the binary MLL + Mix theorem not
as a formula, but as its co-graph: two MLL formulae have the same co-graph if and only if they differ by
associativity and commutativity of connectives. Thus, combinatorial proofs provide a sufficiently abstract
notion of proof for our purposes.

The contraction-weakening requirement is equivalent to two other requirements, as proved by Hughes:
the skew fibration condition and the fact that f preserves maximal cliques of conjunctively related leaves.
The surprising result of [16] is that these conditions can be checked in polynomial time: thus Combinatorial
proofs, unlike unattached näıve classical nets or LS-nets, form a propositional proof system.

Combinatorial proofs fail to satisfy our other two specifications for a good notion of abstract classical
proof:

Sequentialization into a nonstandard calculus There are combinatorial proofs which are not the image
of any sequent-calculus proof, as shown in [16]; Hughes introduces in that paper an extended calculus (the
Homomorphism calculus for which the map from proofs to invariants is surjective. This calculus can be seen

11

as a generalization of the sequent calculus which replaces the usual structural rules with a homomorphism
rule

Γ, A
f : A→ B is a contraction-weakening

Γ, B

but is less well understood than the sequent calculus: in addition, it lacks certain desirable properties, such
as the subformula property.

Cut-reduction does not preserve sequent correctness We might hope that some other, more sophisti-
cated correctness condition might identify the combinatorial proofs arising from sequent calculus derivations.
This may be so, but such a correctness criterion would be incompatible with the dynamic aspects of combi-
natorial proofs shown in [16]. In that paper Hughes defines a notion of combinatorial proof with cut, gives
a strongly normalizing cut-elimination procedure for combinatorial proofs which preserves his correctness
criterion. However, this procedure does not stay within this subclass of sequent-correct combinatorial proofs.

5 Expansion nets

As we saw in the previous section, weakening causes substantial problems in näıve classical proof-nets,
but the alternatives (N-nets and combinatorial proofs) lack correctness/sequentialization with respect to a
sequent calculus. In this section we give a calculus of nets which retains a connection to the sequent calculus
while also having a polynomial-time correctness criterion, without the need for weakening attachment and
its attendant noncanonicity.

The basic idea can be seen already in näıve classical nets: if weakening only happens within a disjunction,
then attachment is redundant. Let F be a näıve proof-structure. If a weakening subterm Wk of F is the
successor of a disjunction, and if the other successor t of that disjunction is not an instance of Wk, we will
say that the weakening subterm has a default attachment, namely t. If every weakening subterm of F has a
default attachment, we will say it is default-attached. If F is default-attached, the default attachment of F
is the function from instances of Wk to nodes of F assigning each instance of Wk to its default attachment.

Example 4. The net (3) for Pierce’s formula is default attached: the only weakening in that net appears as
an immediate subtree of a disjunction, and the setting the other disjunct x̄ : p̄ as the attachment for it yields
an ACC correct attached net.

The cw-annotated sequent x : p, x̄ : p̄, Wk : q is not default-attached, as the weakening appears outside
of a disjunction. The following is also not default-attached:

1 : >, Wk ∧Wk : ⊥ ∧⊥, 1 : >, Wk ∧Wk : ⊥ ∧⊥, 1 : >

Since the difficult part of correctness for näıve nets is guessing the attachment, correctness for default-
attached nets is easy:

Proposition 3. Correctness of default-attached näıve proof-structures can be checked in polynomial time.

Proof. Correctness for näıve structures is NP because the attachment of the weakenings must be guessed.
For a default-attached structure, the default attachment can be computed in linear time, and the polynomial
correctness algorithm for attached nets may then be applied. ut

Default-attached nets improve on general näıve nets by having a polynomial-time verifiable correctness
criterion, without the need for an explicit weakening attachment (which compromises the canonicity of näıve
nets). However, we still have the problem that contraction is neither associative, commutative, nor pointwise
on disjunctions. The first two of these problems were noticed by Girard at the same time he proposed nets for
classical logic, and there is an evident solution: make contraction n-ary, while at the same time forbidding
either weakenings or contractions from being the successors of a contraction. The last of these problems

12

(pointwise contraction) can be solved by forbidding contraction on disjunctions. We enforce those conditions
by moving to a new kind of proof-net, which we call expansion nets: these nets were introduced in [23]. The
terminology is inspired by Miller’s expansion-tree proofs [24], which are a representation of proofs in first-
and higher-order logic. Expansion-tree proofs represent n-ary contraction in a similar fashion to expansion
nets; in expansion trees contraction happens only on existentially quantified subformulae (not on universally
quantified formula), and is represented by formal sums (expansions) of witnessing terms rather than binary
contractions. Expansion-tree proofs provide a compact, bureaucracy-free representation of proofs for first-
and higher-order classical logic; expansion-nets provide a similar technology for propositional classical logic.

Expansion-nets are built from trees we call propositional expansion trees (to distinguish from Miller’s
expansion trees):

Definition 5 (Propositional Expansion trees). Let X be a set of wire symbols, with = x, y, x̄, ȳ . . . the
corresponding wire variables – atoms over X . An propositional expansion tree over X is of the form t below:

t ::= 1 | (w + · · ·+ w) | (t ∨ t) | (t ∨ ∗) | (∗ ∨ t) w ::= x | x̄ | t⊗ t

where (w+ · · ·+w) denotes a nonempty finite formal sum, which we call an expansion. We call the members
of the grammar w “witnesses”. In line with the previous section we will call trees of the form (t ∨ ∗) and
(∗ ∨ t) default weakenings.

Just as cw-trees gave us a succinct way to write down and reason about näıve nets, so propositional
expansion trees will give us a nice way to present expansion nets. However, it will be just as important to
think of expansion-nets as a graphical proof calculus, in particular when we want to talk about paths in a
net. For this purpose, we will need to consider the tree (in the sense of Section 2.2) defined by a propositional
expansion tree: that is, a set of nodes and a predecessor function. We should also consider which of the nodes
of this tree are ordered.

The parse tree for an expansion-tree/witness (given by the grammars in Definition 5) gives us an immedi-
ate reading of a propositional expansion tree (or witness) as a tree: for example, the propositional expansion
trees

(x̄+ ȳ + z̄) ((w̄)⊗ (v̄)) ((((∗ ∨ (x))⊗ (v)) + (((y) ∨ ∗)⊗ (w)))⊗ (z))

can be seen as trees

+

x̄ȳz̄

+

⊗

+

v̄

+

w̄

+

⊗

+

z

+

⊗

+

w

(∨ ∗)

+

y

⊗

+

v

(∗ ∨)

+

x

(4)

However, this tree-reading of an expansion-tree treats the subtrees (t ∨ ∗) and (∗ ∨ t) as having only one
successor. It will be useful at certain points to regard ∗ as a subtree of (t∨ ∗) (resp (∗ ∨ t)) even though the
symbol ∗ never appears outside of a default weakening. Treating the occurrences of ∗ as nodes, we obtain

13

the tree

+

⊗

+

z

+

⊗

+

w

∨

∗+

y

⊗

+

v

∨

+

x

∗

(5)

We will call the nodes of a propositional expansion tree which are not instances of ∗ proper nodes.
When showing examples of expansion-nets, we will sometimes not show the expansion structure on trivial

expansions of atomic type: this improves readability and makes some diagrams smaller. For example, using
this shorthand the three expansion trees above are:

+

x̄ȳz̄

+

⊗

(v̄)(w̄)

+

⊗

(z)+

⊗

(w)∨

∗(y)

⊗

(v)∨

(x)∗

(6)

The successors of a node t∨ s or t⊗ s are the nodes t and s: these nodes are ordered, as they correspond
to the sequent-calculus introduction rules for the connectives. The successors of a node (w1 + · · · + wn)
are the nodes w1 to wn. Since + denotes a formal sum, the successors of an expansion are unordered : this
corresponds to the fact that contraction is a symmetric operation.

The successors of a node (t ∨ ∗) are the node t and a node labelled ∗, ordered such that the order of t is
0 and the order of the ∗ is 1. Similarly for (∗ ∨ t), but with the orders reversed. The nodes labelled with ∗,
x, x̄ and 1 have no successors: they are the leaves of the tree.

Our proof structures will be typed forests of propositional expansion trees: we type propositional expansion
trees with formulae of classical propositional logic. To maintain the associativity and commutativity of the
formal sum (which interprets contraction), we make a distinction at the level of types between witnesses and
expansions: the expansions recieve a special “witness types”, while the expansion is typed with a formula.
This enforces that contractions are n-ary and of maximum size.

Definition 6. A type is either

(a) A formula of classical propositional logic;
(b) A witness type: one of the three following forms:

• A positive witness type, written [a], where a is a positive atom;
• A negative witness type, written [ā], where ā is a negative atom; or
• A conjunctive witness type, written A ⊗ B, where A and B are formulae of propositional classical

logic.

Each witness type has an underlying classical formula: for A⊗ B this is A ∧ B, for [a] this is a and for [ā]
this is ā.

A typed tree/ typed witness is a pair of a propositional expansion tree/witness and a type, derivable in
the typing system shown in Figure 6. This typing system should be thought of as an analogue of Figure 3 for
expansion-nets: it specifies the shape of the “proof-structures” we consider.

14

x̄ : [p̄] 1 : >
t : B

(∗ ∨ t) : A ∨B

t : A

(t ∨ ∗) : A ∨B x : [p]

t : A s : B

(t ∨ s) : A ∨B

t : A s : B

t⊗ s : A⊗B

w1 : [p] · · · wn : [p]

(w1 + · · ·+ wn) : p

w1 : [p̄] · · · wn : [p̄]

(w1 + · · ·+ wn) : p̄

w1 : A⊗B · · · wn : A⊗B

(w1 + · · ·+ wn) : A ∧B

Fig. 6. Typing derivations for propositional expansion trees

Example 5. The wire variable x can be assigned the witness type [p], while the expansions (x) (a trivial
expansion) and (x+ y) can be assigned as a type the propositional formula p.

Example 6. The following are correctly typed propositional expansion trees:

(x̄+ ȳ + z̄) : q̄ ((w̄)⊗ (v̄)) : (p̄ ∧ p̄) ((((∗ ∨ (x))⊗ (v)) + (((y) ∨ ∗)⊗ (w)))⊗ (z)) : (((q ∨ q) ∧ p) ∧ q)

Definition 7. A typed forest is a finite forest F of typed propositional expansion trees and witnesses, in
which axiom variables occur in dual pairs: that is

(a) each axiom variable x, and each negated variable ȳ, occurs at most once in F , and
(b) there is an occurrence of x̄ in F if and only if there is an occurrence of x.

The type of a typed forest F is the forest of types of the terms in F . We will say that F is an e-annotated
sequent if all the terms in F are expansion-trees: equivalently, if the type of F is a sequent of classical
propositional logic (that is, it contains no witness types).

Example 7. The forest consisting of the three typed propositional expansion trees shown in Example 6 is an
e-annotated sequent.

Example 8. The following is a typed forest:

((w̄)⊗ (v̄)) : p̄ ∧ p̄, w : [p], v : [p]

It is not an e-annotated sequent, since some of its roots are witnesses.

The e-annotated sequents are our notion of proof-structure; the more general notion of typed forests is
needed to study subproofs and cut-elimination.

Example 9. The following e-annotated sequent arises by annotating the standard proof of Pierce’s law

(((x̄) ∨ ∗)⊗ (ȳ)) : (p̄ ∨ q) ∧ p̄, (x+ y) : p (7)

As with cw-annotated sequents, we can consider the graph of this annotated sequent by adding in the axiom
wires, giving a representation of our proof-structures closer to that usually seen for proof-nets:

Definition 8. The graph of an e-annotated sequent F is a directed graph with vertices identical to the nodes
of the forest of F . The edges of the graph are given by the forest structure (with edges directed toward the
root), plus an edge from x to x̄ for each wire variable x appearing in F .

15

For example, this graph represents the proof of Pierce’s formula given above:

(p̄ ∨ q) ∧ p̄

+

⊗
+

ȳ

∨

∗+

x̄

p

+

yx

(8)

The e-annotated sequents are our notion of proof structure: the expansion nets are those e-annotated
sequents which arise from sequent proofs in LK∗. The procedure of inductively constructing a proof-net from
a sequent proof is given via the annotated sequent calculus shown in Figure 7.

Definition 9. An expansion-net is an e-annotated sequent derivable in the system shown in Figure 7.

Remark 4. Notice that the order in which contractions occur in the sequent proof is no longer relevant to the
net derived, as it was in näıve classical nets, since we represent contractions by the formal sum of witnesses.
This can be seen in the following two examples of annotated derivations:

Ax
(x̄) : ā, (x) : a

Ax
(ȳ) : ā, (y) : a

∧
(x̄) : ā, (ȳ) : ā, (x⊗ y) : a ∧ a

Ax
(z̄) : ā, (z) : a

∧
(x̄) : ā, (ȳ) : ā, z̄ : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

C
(x̄) : ā, (ȳ + z̄) : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

C
(x̄+ ȳ + z̄) : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

Ax
(x̄) : ā, (x) : a

Ax
(ȳ) : ā, (y) : a

∧
(x̄) : ā, (ȳ) : ā, (x⊗ y) : a ∧ a

Ax
(z̄) : ā, (z) : a

∧
(x̄) : ā, (ȳ) : ā, z̄ : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

C
(x̄+ z̄) : ā, (ȳ) : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

C
(x̄+ ȳ + z̄) : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

Example 10. The e-annotated sequent

(x̄+ ȳ + z̄) : q̄ ((w̄)⊗ (v̄)) : (p̄ ∧ p̄) ((((∗ ∨ (x))⊗ (v)) + (((y) ∨ ∗)⊗ (w)))⊗ (z)) : (((q ∨ q) ∧ p) ∧ q)

is an expansion-net: if we let t = (((y) ∨ ∗) ⊗ (w)), and s = ((∗ ∨ (x)) ⊗ (v)), then we have the following
derivation:

16

Ax>
1 : >

F G
Mix

F, G

Ax
(x̄) : p̄, (x) : p

F, t : A, s : B
∨

F, t ∨ s : A ∨B

F, t : A
∨0

F, t ∨ ∗ : A ∨B

F, s : B
∨1

F, ∗ ∨ s : A ∨B

F, t : A G, s : B
∧

F,G, (t⊗ s) : A ∧B

F, t : A ∧B, s : A ∧B
C∧

F, t + s : A ∧B

F, s : p, t : p
Cp

F, s + t : p

F, s : p̄, t : p̄
Cp̄

F, s + t : p̄

Fig. 7. LK∗e : an annotated version of LK∗ deriving expansion nets

Ax
(x̄) : q̄, (x) : q

∨1
(x̄) : q̄, (∗ ∨ (x)) : (q ∨ q)

Ax
(w) : p, (w̄) : p̄

∧
(x̄) : q̄, t : ((q ∨ q) ∧ p), (w̄) : p̄

Ax
(ȳ) : q̄, (y) : q

∨0
(ȳ) : q̄, ((y) ∨ ∗) : (q ∨ q)

Ax
(v) : p, (v̄) : p̄

∧
(ȳ) : q̄, s : ((q ∨ q) ∧ p), (v̄) : p̄

∧
((w̄)⊗ (v̄)) : (p̄ ∧ p̄), (x̄) : q̄, (ȳ) : q̄, t : ((q ∨ q) ∧ p), s : ((q ∨ q) ∧ p)

C2

((w̄)⊗ (v̄)) : (p̄ ∧ p̄), (x̄+ ȳ) : q̄, s+ t : ((q ∨ q) ∧ p)
Ax

(z) : q, (z̄) : q̄
∧

(x̄+ ȳ) : q̄, (z̄) : q̄, ((w̄)⊗ (v̄)) : (p̄ ∧ p̄), s+ t : (((q ∨ q) ∧ p) ∧ q)
C

(x̄+ ȳ + z̄) : q̄, ((w̄)⊗ (v̄)) : (p̄ ∧ p̄), ((s+ t)⊗ (z)) : (((q ∨ q) ∧ p) ∧ q)

Cut-free formula-completeness of LK∗ gives us the following:

Theorem 3. A formula A of classical propositional logic is valid if and only if there is an expansion net
t : A.

Each e-annotated sequent corresponds to an equivalence-class of default-attached cw-annotated sequents,
modulo the associativity and commutativity of contraction and the pointwise construction of contractions.
Furthermore, it is easy to verify that, given an equivalence class of cw-annotated sequents induced by an
e-annotated sequent, either all or none of them are correct. Thus, correctness of a member of the equivalence
class can be used to define a notion of correctness for expansion-nets. However, it will be useful later to
consider the idea of a switching path in an expansion-net, and for this reason we give now an independent
definition of correctness for expansion-nets – actually, for all typed forests. We give here the notion of AC-
correctness (AC for ACyclic, as distinct from ACC, ACyclic and Connected, the usual criterion for MLL−

nets) for typed forests:

Definition 10. Let F be a typed forest

(a) A node X of F is a switched node if it is an expansion, or if it is a ∨ node t ∨ s where neither t nor s
is an instance of ∗.

(b) A switching σ for F is a choice of successor for each switched node.
(c) The switching graph σ(F) is obtained from the graph of F by:

1: deleting all incoming edges to each switched node other than those coming from the nodes chosen by
the switching, and

2: forgetting the directedness of edges.
(d) F is AC-correct if, for every switching σ of F , σ(F) is acyclic.

Remark 5. Notice that nodes of the form (t ∨ ∗) and (∗ ∨ t) are unswitched ; we can see this as implicitly
adding to the switching graph an attachment from ∗ to t.

17

While the switching graph definition of correctness suggests an exponential-time correctness algorithm,
it is essentially the same as the MLL + Mix switching criterion, and can therefore be checked in polynomial
time; such a polynomial time algorithm is given, for example, by attempting to sequentialize by searching
for splitting pars, a technique first described in [8], and available in English translation in the Linear Logic
Primer [9].

A useful notion arising from the switching graphs is that of a switching path: a nonempty sequence
P = X1, . . . Xn of nodes of F which defines a path in some switching graph Fσ of F . The AC correctness
criterion can, using this notion, be stated as follows: an annotated sequent is correct if it all its switching
paths are acyclic. We will refer to a switching path as “entering a node X through its successor Y ” (or
“entering X from above”) on a switching path P if the node Y is immediately followed by the node X in
P , and “entering a node X through its predecessor Z” (or “entering X from below”) if X is immediately
preceded by Z in P . Terminology related to a path leaving a node through predecessors/successor is defined
analogously.

The AC correctness criterion characterizes, of course, those e-annotated sequents derivable in LK∗e:

Theorem 4. An e-annotated sequent F is an expansion-net (i.e. LK∗e ` F) if and only if F is AC-correct.

This result can be proved via a number of techniques, including the aforementioned “splitting pars”
technique, or the earlier “splitting tensors” technique. The latter was adapted for MLL + Mix by Bellin
in [1]. In Section 6 below, we give a proof directly for expansion-nets which uses the new notion of a contiguous
subnet.

5.1 Comparison with other notions of invariant

It should be clear that expansion nets identify more proofs of LK∗ than näıve classical nets: two proofs
differing only by the order in which contractions are performed will have different näıve nets but the same
expansion net. We take some time now to compare the equivalence classes of proofs defined by expansion
nets and the other existing notions of abstract proof – N-nets and combinatorial proofs (since B-nets identify
strictly more proofs than N-nets, we will not consider them further).

N-nets identify more LK∗ derivations than expansion nets To obtain an N-net from a given deriva-
tion, one simply traces paths from positive to negative atoms in the conclusion of the proof. For both LK∗

derivations and expansion-nets, there is an obvious way to this: and it is not difficult to establish he following:

Proposition 4. Let Φ be an LK∗ derivation, and let F be its corresponding expansion net. The N-nets of
Φ and F coincide.

This means that expansion-nets cannot distinguish two proofs identified by their N-nets; said differently,
expansion nets contain at least as much information as N-nets. In fact, they contain strictly more information.
Consider the following two sequent derivations proving the same sequent:

ā, a
∨0

ā ∨ b̄, a

c̄, c
∨0

c̄ ∨ d̄, c
∧,∨

(ā ∨ b̄) ∧ (c̄ ∨ d̄), a ∨ c

b̄, b
∨1

ā ∨ b̄, b

d̄.d
∨1

c̄ ∨ d̄, d
∧,∨

(ā ∨ b̄) ∧ (c̄ ∨ d̄), b ∨ d
∧

(ā ∨ b̄) ∧ (c̄ ∨ d̄), (ā ∨ b̄) ∧ (c̄ ∨ d̄), (a ∨ c) ∧ (b ∨ d)
C

(ā ∨ b̄) ∧ (c̄ ∨ d̄), (a ∨ c) ∧ (b ∨ d)

a, ā
∨0

a ∨ c, ā

b, b̄
∨0

b ∨ d, b̄
∧,∨

(a ∨ c) ∧ (b ∨ d), ā ∨ b̄

c̄, c
∨1

a ∨ c, c̄

d, d̄
∨1

b ∨ d, d̄
∧,∨

(a ∨ c) ∧ (b ∨ d), (c̄ ∨ d̄)
∧

(ā ∨ b̄) ∧ (c̄ ∨ d̄), (a ∨ c) ∧ (b ∨ d), (a ∨ c) ∧ (b ∨ d)
C

(ā ∨ b̄) ∧ (c̄ ∨ d̄), (a ∨ c) ∧ (b ∨ d)

18

These two proofs have the same N-net, with one link between each pair of dual atoms, but different
expansion nets:

(ā ∨ b̄) ∧ (c̄ ∨ d̄)

+

⊗

∨

w̄∗

∨

z̄∗

⊗

∨

∗ȳ

∨

∗x̄

(a ∨ c) ∧ (b ∨ d)

+

⊗

∨

wz

∨

yx

(a ∨ c) ∧ (b ∨ d)

+

⊗

∨

w∗

∨

z∗

⊗

∨

∗y

∨

∗x

(ā ∨ b̄) ∧ (c̄ ∨ d̄)

+

⊗

∨

w̄z̄

∨

ȳx̄

Identifying these two proofs, as suggested by their N-nets, does not seem at all natural in the multiplica-
tively formulated sequent calculus (it arises very naturally, however, in the deep inference proof theory of
classical logic [5, 4], which provided inspiration for the design of N-nets.) In light of this, and the sequential-
ization theorem, we claim that expansion-nets provide a better notion of abstract proof for sequent proofs
than N-nets.

Combinatorial proofs identify at least as many LK∗ derivations as expansion nets To see how to
extract a combinatorial proof from an expansion-net, we will need the following intuitive notion: an expansion
tree F of type Γ induces a function f from the wire variables of F to the leaves (atom occurrences) of Γ.
This function arises in much the same way as the N-net of an expansion-net: by tracing the atoms through
the tree. Given an expansion net F , extract a co-graph from F as follows: the vertices of the co-graph are
the wire variables of F , and there is an edge between two wire variables if and only if smallest subtree of
F containing both variables is an ⊗ tree. The function f from wire variables to atoms is a contraction-
weakening, by the structure of propositional expansion trees, and so the pair of co-graph and function given
by an expansion-net defines a correct combinatorial proof. For example, the expansion-net in Example 6
yields the (semi-)combinatorial proof in Example 3.

This combinatorial proof is the same proof as would be extracted directly from an LK∗ derivation giving
rise to F : thus combinatorial proofs identify, at the very least, all the proofs identified by expansion-nets. It
is likely that, in fact, combinatorial proofs identify the same LK∗ derivations as expansion-nets; if so, this
would provide a criterion identifying just those combinatorial proofs arising from LK∗ derivations.

6 Subnets of expansion nets

In the sequent calculus, we have a clear notion of “subproof of a sequent proof”, given by subtrees. In proof-
nets, it is harder to see, intuitively, the correct notion of subproof, and this causes a number of conceptual
problems when manipulating proofs. The notion of “subnet” captures, in proof nets, the concept of subproof.

Subproofs play two important roles in the proof theory of classical logic. The first is that proving cut-
elimination often relies on a principal lemma in which it is shown that a single cut can be eliminated from

19

an otherwise cut-free proof: in this case the cut is always the final rule in the proof. Full cut-elimination
then follows by considering uppermost cuts: the subproof introducing an uppermost cut contains no other
cuts. In proof nets, there is no clear notion of uppermost cut, or of the subproof containing a cut. It is with
a view to obtaining such a notion that we define the subnets of a net.

The second role that subproofs play is in the definition of cut-reduction steps, where one of the cut-
formulae is the result of a structural rule. For example, the usual way to reduce a cut against contraction,
such as

··· Φ
F,A

··· Ψ
F ′, Ā, Ā

C
F, Ā

Cut
F, F ′

(9)

is to duplicate the subproof Φ, and then contract the resulting duplicated conclusions:

··· Φ
F,A

··· Φ
F,A

··· Ψ
F ′Ā, Ā

Cut
F, F ′, Ā

Cut
F, F, F ′

C∗

F, F ′

(10)

To perform such an operation in proof-nets requires that we know what a subproof is, and can find them.
In linear logic proof nets with exponentials, duplication and deletion are typically mediated by boxes – that
is, the subgraphs to be duplicated are explicitly marked regions of the net. Expansion-nets are box-free, and
so the appropriate subgraph to delete or duplicate must be calculated; further, we must ensure that this
duplication or deletion does not break correctness.

A subnet of an expansion-net F (a concept first introduced for MLL− nets in [3]) is a graph corresponding
to a subproof of F : we define them as follows:

Definition 11. Let F be a typed forest: a substructure of F is a subforest G of F which is

• closed under axiom links: that is, if the leaf annotated with x is in G, then so is the leaf annotated with
x̄.

• closed under default attachment: that is, if an instance of ∗ occurs in G, then its predecessor (t ∨ ∗) or
(∗ ∨ t) is in G.

If X is a node of F , let str(X) be the smallest substructure of F containing X.

Definition 12. Let F be an AC typed forest: a subnet of F is a substructure G of F such that, for any two
roots X, Y of G, every switching path between X and Y lies inside G.

A more obvious (but incorrect) notion of subnet for expansion-nets would be, simply, a subforest which is,
itself, an expansion net. This simplistic kind of definition works for MLL− proof-nets, for example. Consider,
however, the following sequent proof in classical logic:

π =

Ax
p̄, p

Ax
p̄, p

C
(p̄ ∧ p̄), p, p

C
(p̄ ∧ p̄), p

Ax
p̄, p

Mix
(p̄ ∧ p̄), p̄, p, p

∨
(p̄ ∧ p̄) ∨ p̄, p, p

C
(p̄ ∧ p̄) ∨ p̄, p

20

The expansion net F corresponding to π is:

(p̄ ∧ p̄) ∨ p̄

∨
+

ȳ

+
⊗

+

z̄

+

x̄

p

+

yzx

(11)

Now consider the sub-proof of the sequent proof proving p ∧ p, p, p. The expansion-net corresponding to
that proof is the following:

(p̄ ∧ p̄)
+

⊗
+

z̄

+

x̄

p

+

x

p

+

z

(12)

This does not appear as a subforest of F ; in other words, the subforests of F which are themselves
expansion-nets do not suffice to express the sub-proofs of F . The subnet corresponding to the subproof is in
this case not an expansion net: it is the shaded subgraph in the following:

(p̄ ∧ p̄) ∨ p̄

∨
+

ȳ
+

⊗
+

z̄

+

x̄

p

+

y

zx

(13)

or, alternatively, (x̄+ ȳ) : p̄ ∧ p̄, x : [p], y : [p], which is not an expansion net, as it has witnesses as roots.
Now consider the following shaded substructure of F , which is not a subnet of F :

(p̄ ∧ p̄) ∨ p̄

∨
+

ȳ

+
⊗

+

z̄

+

x̄

p

+

yzx

(14)

This typed forest satisfies the AC correctness criterion: each of its switching graphs is acyclic. However, it is
not a subnet of F , since there is a switching path from x̄ to z̄ which passes outside the shaded substructure.
This shaded substructure does not correspond to any subproof of π, nor of any other sequentialization of F .
For more discussion on subnets in the presence of the mix rule, see [1].

21

6.1 Kingdoms and Empires

Given a proper node X (that is, a node which is not an instance of ∗), the subnets with X as a root correspond
to subproofs with X in the conclusion.

Given any proper node X, the set of subnets with X as a root are closed under intersection:

Lemma 3. Let G1 and G2 be subnets of an AC typed forest F having the node X as a root. Let G1 ∩ G2

denote the substructure of F defined by the nodes of F common to G1 and G2. Then G1 ∩G2 is a subnet of
F .

Proof. Suppose there is a switching path P between two roots of G1 ∩ G2 but outside of G1 ∩ G2. If both
X and Y are roots of G1, then G1 is not a subnet, similarly for G2: therefore without loss of generality X
is only a root of G1, and Y only a root of G2. Since Y is not a root of G1, P passes through some root of
G1: but then the path from that root to X is a path between two roots of G1, outside of G1, and so G1 is
not a subnet.

This means, particular, that we can consider the smallest subnet with X as a root, given by taking the
intersection of all such subnets : the following terminology originates in [3].

Definition 13. Let F be an AC typed forest, and let be X a node of F , such that at least one subnet of F
has X as a root. The kingdom k(X) of X in F is the smallest subnet of F which has X as a root.

Notice that, by this definition, only proper nodes can have a kingdom or empire: there is no substructure of
any expansion net having a ∗ as a root.

Example 11. The shaded net shown in example 13 is the kingdom of its leftmost root.

Kingdoms are of interest because they allow us to see additional dependencies between nodes in an
expansion-net. If in an expansion-net F a node Y is in the kingdom of a node X, then in every sequential-
ization of F (every LK∗e derivation resulting in F) the rule introducing Y will occur in a subproof of the rule
introducing X. We will use the relation symbol � to denote this kingdom ordering :

X � Y if and only if X is in the kingdom of Y .

This relation plays a key role in our proof of cut-elimination for expansion-nets (Theorem 6). It allows us to
recover a notion of “uppermost cut” in an expansion net: a cut which is �-maximal corresponds to a cut
which can be sequentialized such that no other cut lies above it.

The relation � also plays an important role in our proof of sequentialization for expansion-nets (Theo-
rem 5). In fact, sequentialization is nothing more than the completion of the relation � to a tree-relation
on the nodes of an expansion net. We will need, in the proof of the sequentialization theorem, the following
fact: two nodes of an AC typed forest have the same kingdom if and only if they are a pair of dual wire
variables.

Proposition 5. � is a preorder on the proper nodes of an AC typed forest F , and moreover is a partial
order on the nonatomic proper nodes of F .

Proof. The relation� is clearly reflexive and transitive. We show that it is antisymmetric if restricted to the
nonatomic nodes of F . Suppose that X and Y are distinct nodes of F , and that X ∈ k(Y) and Y ∈ k(X).
Then clearly k(X) = k(Y), since otherwise the intersection of k(X) and k(Y) would be a smaller subnet with
both X and Y as roots. This equality holds in the case where X and Y are dual wire variables: the two ends
of a wire arising from an axiom link: we must now show that it cannot hold if either X or Y is nonatomic.
Suppose first that X is a disjunction or nontrivial expansion; then by removing X from k(Y) (but keeping
its successors) we find a smaller subnet with Y as a root: contradiction. Now suppose that X = (X1 ⊗X2).
Then k(X) = k(X1) ∪ k(X2) ∪ {X}, and so Y is a member of k(Xi) for i ∈ {0, 1}. Since Y ∈ k(Xi) and
k(Xi) ∈ k(Y), we have as above that k(Xi) = k(Y). But X /∈ k(Xi); contradiction.

We have not yet shown that every proper node of an expansion-net has a kingdom. Bellin shows directly
in [1] that every node has a kingdom, but this is a rather difficult proof: for an easier proof we turn now to
the new notion of contiguousness.

22

6.2 Contiguous subnets

A natural counterpart to the notion of kingdom, the smallest subnet with a given node as root, is the notion
of empire:

Definition 14. Let F be an AC-correct typed forest, and X a proper node of F . The empire e(X) of X in
F is the largest subnet of F with X as a root.

Example 12. Continuing our example from above, the shaded subnet in the following is the empire of its
leftmost root:

(p̄ ∧ p̄) ∨ p̄

∨
+

ȳ
+

⊗
+

z̄

+

x̄

p

+

yzx

(15)

In the absence of the mix rule (that is, if we assume that every switching graph is not only acyclic, but
also connected), the empire is a very useful concept: it is very easy to show that every proper node of an
AC-correct typed forest has an empire (indeed, there is a simple inductive definition of the empire of a node,
see [3]). However, the simple proof of the existence of the empire does not carry over for proof nets with mix.
In addition, the very notion of “empire” is less appealing in the presence of mix. Without mix, we have that
the union of two intersecting subnets is a subnet, and therefore that the empire of a node X exists if any
subnet with X as a root exists. Furthermore, we have the following “simultaneous empire lemma”: if X and
Y are two proper nodes, and Y is not in e(X), then either e(X) ⊂ e(Y) or e(X) ∩ e(Y) = ∅. The following
example shows that neither of these properties hold in the presence of mix:

Example 13. Consider the following expansion net, which cannot be derived with the Mixrule:

p

(x)

p̄ ∧ q
+

⊗
(y)(x̄)

q̄

(ȳ)

r

(z)

r̄

(z̄)

The empire of (x̄) is (x), (x̄), (z), (z̄). Similarly, the empire of (y) is (y), (ȳ), (z), (z̄). However, the union of
those two subnets is not a subnet, since there is a switching path from (x̄) to (y) outside of it. Notice also
that, while (x̄) is not in e((y)), and (y) is not in e((x̄)), the two empires intersect (that is, the simultaneous
empire property fails).

In this section we define a more appealing counterpart to the empire for proof-nets with mix: the “con-
tiguous empire” of a node. It is easier to show directly that each node has a contiguous empire than to
show directly that each node has a kingdom: moreover, the notion is useful in proving sequentialization of
expansion-nets, and allows us to define in Section 7.1 a more pleasing notion of cut-reduction.

The new notion we introduce, to define the contiguous empire, is the property that an AC typed forest
is contiguous with respect to one of its roots:

Definition 15. (a) Let F be an AC typed forest, and let X be a root of F . We say that F is contiguous
with respect to X if there is a switching path from X to every other node Y of F .

23

(b) Let F be an AC typed forest and let X be any proper node of F . The contiguous empire of X is defined
to be the largest subnet of F having X as a root which is contiguous with respect to X.

Example 14. The expansion net shown in Example 13 is not contiguous with respect to any of its roots.
Neither is the empire of (x̄) contiguous with respect to (x̄). The contiguous empire of (x̄) is (x̄), (x).

As we will see later, the kingdom of a node is always contiguous, and so there is no need to consider a
concept of “contiguous kingdom”. The advantage of the contiguous empire over the usual empire is that it
admits a simple definition, which is a minor variation on the inductive definition of empires in ACC nets
found in [3]:

Definition 16. Let F be an AC typed forest and let X be a proper node of F . We define the substructure
ce(X) as the smallest substructure of F containing X and satisfying the following:

(⊗) If Y = t⊗ s is a node of F , if t ∈ ce(X) or if s ∈ ce(X), and if and t, s 6= X, then Y is in ce(X);
(W) If Y = (t ∨ ∗) (resp. (∗ ∨ t)) is a node of F , if t 6= X, and if t ∈ ce(X), then Y is in ce(X);

(O 1) If Y is a switched node of F , and if all the successors of Y are in ce(X) and not equal to X, then
Y ∈ ce(X).

(O 2) If Y is a switched node of F , if none of the successors of Y are equal to X, and if one of the successors
of Y is in ce(X), then Y ∈ ce(X) if there is a switching path from X to Y which does not pass through
any of the successors of Y (that is, the path passes into Y from below).

Remark 6. Items (⊗), (W) and (O1) in the above definition are derived from Girard’s inductive definition of
the empire in an ACC net, as described in [3]. This inductive definition fails in the presence of mix: consider,
for example, the following expansion-net (based on an example from [1]):

(s̄ ∨ q̄) ∧ (p̄ ∨ r̄)

+

⊗

∨

(w̄)(x̄)

∨

(ȳ)(z̄)

s

(z)

r

(w)

p ∨ q

∨

(y)(x)

Applying the (faulty) inductive definition of empire to the rightmost root ((x) ∨ (y)), we only obtain the
substructure ((x) ∨ (y)), (x̄), (ȳ), which is not a subnet, since there is a switching path through the ⊗ node
from (x̄) to (ȳ). However, by using the novel extra condition (O2), we can observe that since there is a
switching path from ((x) ∨ (y)) to ((x̄) ∨ (w̄)) from below (i.e., via (y), (ȳ), and ((z̄) ∨ (ȳ)) ⊗ ((x̄) ∨ (w̄))),
((x̄) ∨ (w̄)) is in the contiguous empire of ((x) ∨ (y)). Similarly, ((z̄) ∨ (ȳ)) is in ce(((x) ∨ (y))): from which,
applying the other conditions, we obtain that ce(((x) ∨ (y))) is the whole net.

From the definition of ce(X), we can not immediately see that it is contiguous with respect to X: it is
clear that there is a switching path from X to Y in F for every Y in ce(X), but not clear that this path lies
entirely within ce(X). The following lemma shows that ce(X) has an equivalent definition which clearly is
contiguous:

Lemma 4. Let F be an AC typed forest and X be a proper node of F . Let ce′(X) be the smallest set of
nodes of F containing str(X) (the smallest substructure containing X) and closed under:

(⊗′) If Y = t ⊗ s is a node of F , if t 6= X and s 6= X and if either t ∈ ce′(X) or s ∈ ce′(X), then Z is in
ce(X) for each Z ∈ str(Y);

(W ′) If Y = (t ∨ ∗) (resp. (∗ ∨ t)) is a node of F , t 6= X, and either t ∈ ce′(X), then Y is in ce′(X);
(O′ 1) If Y is a switched node of F , and all the successors of Y are in ce′(X) and not equal to X, then

Y ∈ ce′(X).

24

(O′ 2) Let Y be a switched node of F . If none of the successors of Y are equal to X, and if one of the successors
of Y is ce′(X), then: if there is a switching path P from X to Y which does not pass through any of the
successors of Y , then Z ∈ ce′(X) for each Z ∈ str(W), W ∈ P .

Proof. We must prove that ce′(X) is not larger than ce(X) (it clearly contains ce(X)). The difficult case is
to show that a structure extended by one application of (O′ 2) can also be extended by multiple steps of (⊗),
(W),(O 1), (O 2), and closing under substructure, as in the definition of ce(X). We prove this by induction
on the length of a switching path in the application of (O′ 2). Suppose that a single step of (O′ 2) can
be carried out by multiple steps of the definition of ce(X) when the switching path is of length < n. Now
suppose (O′ 2) is applied to a structure G and a path P of length n+ 1, ending at a switched node Y . By (O
2), we may add Y to G. Recall that P must enter Y from below. Counting from X, let W be the penultimate
switched node in P entered from below on P – that is, the switching path Q traced from W to Y enters all
pars in between from a successor). Seen from the opposite direction, that means that by applying (⊗) and
(W), and closing under substructure, we can add str(V) for every V on the path Q between Y and W . In
particular, at least one of the successors of W is a member of ce(X), since Q must leave W by one of those
successors. The path P restricted to be from X to W does not pass through any successor of W , and thus
by the induction hypothesis, we may add the rest of the switching path to ce(X).

Proposition 6. ce(X) is contiguous with respect to X.

Proof. By the previous lemma; it is clear that each stage of construction of ce′(X) yields a contiguous
substructure.

Proposition 7. Let F be an AC-correct structure, and X a proper node of F . ce(X) is a subnet of F .

Proof. Suppose not. Then there are roots Y , Z of ce(X) such that there is a switching path from Y to Z
outside of ce(X). There are two cases to consider

• X is Y (X is Z is symmetric). Then there is a path from X to Z inside ce(X), and another outside
ce(X). By concatenating these two paths we obtain a cycle, which contradicts AC-correctness of F .

• Neither X nor Y is Z. By construction of ce(X), both Y and Z are the successors of switched nodes in
F . The switching path from Y to Z passes through both of those switched nodes. In particular, there
is a switching path from Y to Z ′, the predecessor of Z (a switched node), which enters Z ′ from below.
There is also a path from X to Y within ce(X), by contiguousness. Concatenating these paths, we obtain
a switching path from X to Z ′, not via a successor of Z ′; thus Z ′ is in ce(X), contradicting the fact that
Z is a root of ce(X).

Corollary 1. Let F be a AC-correct structure, and X a proper node of F . The kingdom k(X) of X exists,
and is contiguous with respect to X.

Proof. For existence, note that we have demonstrated the existence of a subnet ce(X) with X as a root: the
kingdom exists by Lemma 3. Now consider the subnet k(X) as a net in its own right, with X as a root. By
the previous proposition, there is a subnet ce(X) of k(X) with X as a root; by minimality of the kingdom
ce(X) = k(X) and so k(X) is contiguous with respect to X.

We will not need the fact that ce(X) is the contiguous empire of X but we include the proof of that fact
here for the sake of completeness.

Proposition 8. ce(X) is the contiguous empire of X.

Proof. Suppose for a contradiction that G, some contiguous subnet of F , contains a node W0 not contained
in ce(X). We may assume that this W0 is a switched node W0, which has a successor Y0 which is a root of
ce(X), and a successor Z0 not in ce(X); the path from X to any node outside of ce(X) must leave ce(X)
through such a node. Since G is contiguous, there is a switching path from X to W0: since W0 is not a
member of ce(X), that path must come via Z0, and so Z0 is also a member of G. Applying the same logic

25

as before, the path from X to Z0 in G must leave ce(X) at some root Y1 (distinct from Y0 by acyclicity).
This root is also the successor of a switched node W1, and W1 must also have a successor Z1 not in ce(X).
Note that we now have Y0, Y1, distinct roots of ce(X), successors of switched nodes W0,W1; those switched
nodes each have another successor Z0, Z1 not in ce(X). There is a switching path from W1 to W0 via Z0,
leaving W1 through its predecessor.

Now suppose that, repeating this line of thinking, we have found roots Y0 . . . Yn of ce(X), successors
of switched nodes W0, . . .Wn, such that each Wi has another successor Zi not in ce(X), and that there is
a switching path from X to each Yi, for i < n, leaving ce(X) at Yi+1. Suppose, further, that there is a
switching path from Zn to W1 which, tracing from Wn to W1, enters each Wi via Zi. Since Wn is in G,
there is a switching path from X to Zn, leaving ce(X) at Yn+1, which has a predecessor Wn+1. There thus
a switching path from Wn+1 to Zn, leaving Wn+1 through its predecessor. By concatenating with the path
from Zn to W0, we obtain a switching path from Wn+1 to W1, and consequently to each Wi (to see that this
concatenation is really a switching path, observe that if there is a switched node common to both paths,
either there is a switching cycle or a switching path from W0 to Wn+1, contradicting that W0 and Wn+1 are
not in ce(X)).

Suppose Yn+1 = Yj for j ≤ n; then there is a switching path from Wn+1 to itself: a switching cycle. Thus
Yn+1 is a new root of ce(X). Since ce(X) has only finitely many nodes, eventually Yn+1 will be equal to Yi
for some i, and we obtain a contradiction.

6.3 Splitting and sequentialization for expansion nets

Sequentialization for expansion nets is the following:

Theorem 5. Let F be an e-annotated sequent. F is an expansion-net (i.e. F is derivable in LK∗e) if and
only if F is AC-correct.

The proof of sequentialization for expansion nets is not so different from sequentialization for MLL−

plus Mix nets. The proof of sequentialization we give in this paper is bottom-up, and can be thought of as
proof search in LK∗, guided by the information contained in an e-annotated sequent. Given an AC-correct
e-annotated sequent, we look for a rule of LK∗e with F as the conclusion and AC-correct e-annotated sequents
as premisses. We call such a root of F a gate.

Definition 17. Let F be an AC-correct e-annotated sequent. A gate of F is a root t : A of F which is
the conclusion of a rule instance ρ of LK∗e, such that the premisses of ρ are also AC-correct e-annotated
sequents.

As we will see below, disjunctions and non-trivial expansions are always gates. The major difficulty in
proving sequentialization lies in showing the existence of a gate in the absence of disjunctive and non-trivial
expansions. In this case, the gate will be a “splitting” instance of ⊗.

The proof of the existence of a splitting ⊗ we give here is slightly novel, in that we make use of the notion
of contiguousness (the previous proof of this lemma for Mix-nets, by Bellin [1], is almost the same but less
elementary).

Lemma 5. Let F be an AC-correct e-annotated sequent, and let the roots of F be trivial expansions (of the
form (x), (x̄) or (t⊗ s)). If at least one root of F is non-atomic, then F has the form

F1, F2, (t⊗ s) : A ∧B,

where F1, t : A and F2, s : B are AC-correct e-annotated sequents.

Proof. Since every root of F is a trivial expansion, we have that

F = (x1) : a1, . . . (xn) : al, (ȳ1) : b1, . . . , (ȳm) : bm, (t0 ⊗ t′0) : A1 ∧B1, . . . (tn ⊗ t′n) : An ∧Bn.

26

Let G be the typed forest consisting on the witnesses contained in the roots of F : that is,

G = x1 : [a1], . . . xn : [al], ȳ1 : [b1], . . . , ȳm : [bm], t0 ⊗ t′0 : A1 ⊗B1, . . . tn ⊗ t′n : An ⊗Bn.

We will show that there is a root t⊗ s of G such that

G = G1, G2, t⊗ s : A⊗B,

and such that every path from G1 to G2 in the graph of G passes through the node t ⊗ s. In that case,
G1, t : A and G2, s : B are AC-correct typed forests, and (t⊗ s) : A ∧B is clearly a gate of F .

By Proposition 5 G has a �-maximal root X; this node must be a tensor, without loss of generality
t0 ⊗ t′0. If X is splitting, we are done. Suppose it is not splitting; then we know that

• ce(X) is not the whole of F , and in addition
• there is a (non-switching) path in the graph of G from a root of ce(t0) to a root of ce(t′0) (if no such

path exists, then t0 ⊗ t′0 is splitting).

The existence of the path means that there is a root s of ce(t0) whose predecessor is not in ce(t0), through
which this path leaves ce(t0). This now allows us to discern the existence of another �-maximal node Y ; if
the root Z below s is �-maximal, then we are done; if Z is not �-maximal, then there is an �-maximal
node Y such that Z � Y . If Y is splitting we are done.

Now suppose that t0 ⊗ t′0 . . . tn ⊗ t′n are all �-maximal non-splitting roots of G, and that there is a
switching path from t0 to t′n passing through each ti and t′i in turn. As above, since tn ⊗ t′n is not splitting
there is a root s of ce(t′i) whose predecessor is not in ce(t′i). This now allows us to discern the existence of
another �-maximal node. If the node is splitting we are done; otherwise it is a tensor tn+1 ⊗ t′n+1. Note
that it must be distinct from the roots of F already listed, otherwise F would have a switching cycle: since
k(tn+1 ⊗ t′n+1) is contiguous with respect to tn+1 ⊗ t′n+1, there is a switching path from, without loss of
generality, tn+1 to s. If that switching path enters s from below, then we have a switching path from t0 to
Y ′n+1, by concatenation. Otherwise, the switching path from tn+1 enters s from above, and must pass into
ce(Y ′i) via some other root r; either way, we have a switching path from t0 to t′n+1.

We have seen that, given n non-splitting �-maximal roots of G, we can find another such root. Since G
has only finitely many roots, we eventually find one, t′ ⊗ s′, which is splitting. So G = G1, G2, t

′ ⊗ s′, where
G1, t

′, G2, s
′ are both AC-correct typed forests. ut

Proof (Of Theorem 5). By induction on the number of symbols in F . The smallest possible numbers of
symbols in an AC-correct annotated sequent is one (F = 1 : >), which can easily seen to sequentialize.

Suppose now that F contains more than one symbol. First, suppose that F has a graph which is discon-
nected: let F ′ be a connected component of F . Then F = F ′, F ′′, and we have

F ′ F ′′

Mix
F

Both F ′ and F ′′ have fewer symbols than F ; by the induction hypothesis there are LK∗e derivations of F ′

and F ′′, and so also an LK∗e derivation of F .
Suppose first that F is an AC-correct e-annotated sequent whose graph is disconnected. Then each

connected component of the graph F defines an AC
We now show that every AC-correct e-annotated sequent F whose graph is connected either has a gate

or is of the form (x) : a, (x̄) : ā (i.e. a conclusion of the LK∗e axiom) by induction on the number of nodes in
F .

If F = F ′, (t1 + · · · + tn) : A, with n > 2 then (t1 + · · · + tn) : A is a gate: for example,F ′, (t1) :
A, (t2 + · · ·+ tn) : A is also AC-correct, and we have

F ′, (t1) : A, (t2 + · · ·+ tn) : A
C

F ′, (t1 + · · ·+ tn) : A

27

Similarly, if F = F ′, (t ∨ s) : A ∨B, then t ∨ s is a gate: F ′, t : A, s : B is AC-correct and

F ′, t : A, s : B
∨

F ′, (t ∨ s) : A ∨B

A similar argument shows that roots of the form (t ∨ ∗) and (∗ ∨ t) are gates.
If F is connected, and no root of F is a disjunction or nontrivial expansion, then either all the roots of F

are of atomic type, or F contains at least one root of conjunctive type. We may, therefore, apply Lemma 5
to obtain AC-correct e-annotated sequents F1, t

′ : A and F2, s
′ : B such that

F1, t
′ F2, s

′

∧
F

is a correct application of the ∧-rule. Since the premisses of this rule are smaller AC-correct e-annotated
sequent, they can be derived in LK∗e, and therefore so can F .

Finally, suppose that all the roots of F are trivial expansion of atomic type, and that F is connected.
Then F must contain at least one pair (x) : a, (x̄) : ā, since wire variables occur in pairs. It cannot contain
any more pairs, since otherwise it would not be connected, so F = (x) : a, (x̄) : ā, and is derivable in LK∗e.

7 Cut-elimination for expansion nets

In this final technical section we define a weakly normalizing cut-elimination procedure directly on expansion-
nets which preserves correctness. This result did not appear in [23], and is new to the current paper. In
Propositions 11,12,13 and 14, we show that any individual cut in an expansion-net can be replaced by
“smaller” cuts. Then, in Lemma 6, we show that one cut can be removed completely from an otherwise
cut-free expansion-net. Finally, in Theorem 6 we show, using the kingdom ordering defined in the previous
section, how to eliminate all cuts from an expansion-net.

The primary difficulty in defining cut-elimination for classical nets lies with the reductions involving
weakening and contraction. In the original linear logic proof nets, deletion and duplication of subproofs is
mediated by boxes. As we suggested above, in box-free settings the role of boxes is taken on by subnets. This
means that cut-reduction in classical nets is not local : the subnet to be copied must be calculated, and this
calculation can, in general, consider the whole net.

Cut-elimination for expansion nets is, of course, strongly related to cut-elimination for the calculus LK∗.
This calculus is cut-free complete, and so we already have a (semantic) cut-elimination result, but since this
calculus is only complete for formulae, and not for sequents, the result has a somewhat nonstandard form:

Proposition 9. Let Γ be provable in LK∗ plus cut. Then there is a sub-multiset Γ′ of Γ provable in LK∗.

It is interesting to consider how one might prove this theorem syntactically, within LK∗. A typical cut-
reduction step in the sequent calculus is to identify a sub-proof ending with a cut, and replace it with a
sub-proof in which no cuts appear. Applying that methodology to LK∗, we take a subproof proving Γ and
acquire a subproof proving a subsequent Γ′. If we had access to weakening, this would be unproblematic, but
in our setting we can only “weaken” within a disjunction. Thus any formula which “becomes weak” during
cut-elimination must be a conclusion of the whole derivation or an immediate subformula of a disjunction: this
is an unusual requirement for a cut-reduction step; it adds another place in which commutative conversions
must be applied and it is not immediately clear that it can lead to cut-elimination. Fortunately, in a proof-net
setting commutative conversions are not needed, and it is easy to see that such reductions can always be
applied.

To begin, we need to introduce a notion of expansion-net with cut:

Definition 18. (a) A cut tree is an unordered pair of an expansion tree t of type A, and an expansion tree
s of type Ā, where A is a formula of classical propositional logic not equal to > or ⊥. The positive term
in the cut is the term of type ā or A ∧ B. We write a cut tree t ./ s, where by convention the positive
term is written on the left (when it is known which of s and t is the positive term).

28

(b) A typed forest with cut is a finite forest of typed propositional expansion trees, witnesses and cut trees,
such that a wire-variable x occurs at most once, and occurs if and only if its dual x̄ occurs. The type of
a typed forest with cut is the forest of types of its roots which are not cuts.

(c) An expansion-net with cut is a typed forest with cut, derivable in LK∗e plus the rule

F, t : A G, s : Ā
Cut

F, G, t ./ s

Extending the correctness criterion to cuts is trivial, as usual in proof-nets: we simply treat the cut t ./ s
as though it were a conjunctive witness t ⊗ s. (i.e. an unswitched binary node). The notions of subnet,
kingdom etc. carry over in an obvious manner, as does the sequentialization theorem.

Example 15. The following is a correct expansion-net with cuts: it is derived by cutting the expansion net
in Example 6 with the expansion-net witnessing the associativity of ∧:

+

x̄ȳz̄

./

∨

(l̄)∨

(m̄)+

⊗

(n̄)(ō)

+

⊗

(z)+

⊗

(w)∨

∗(y)

⊗

(v)∨

(x)∗

+

⊗

(v̄)(w̄)

+

⊗

+

⊗

(l)(m)

∨

(n)(o)

7.1 The basic cut-reduction operations

As in Gentzen-style cut-elimination for sequent calculi, cut-elimination in expansion nets is based on a
number of basic operations. In general, the application of these rules may not terminate, but we can find
a strategy for applying these rules such that there is a measure on proofs which decreases. We define cut-
reduction, not just on expansion nets, but on AC typed forests which might, in general, have witnesses as
roots. This allows us to perform cut-reduction on subnets of an expansion-net, just as one eliminates cuts in
a subproof in the sequent calculus.

Unlike usual cut-elimination results, the cut-elimination we define in this section does not in general
preserve the type of derivations. This is for two reasons. The first has been mentioned above: namely that
expansion-nets with cut are sequent-complete (can prove all sequents derivable in LK) while expansion-nets
without cut are only formula complete. The second reason concerns cut-elimination in a general AC typed
forest. Consider the following example:

[p]

x

./

+

zy

+

x̄

p̄ ∧ p̄

⊗

(z̄)(ȳ)

Cuts of this form are reduced by “yanking”: the axiom link between the x and x̄, and the cut, disappear,
leaving the following net:

p

+

zy

p̄ ∧ p̄

⊗

(z̄)(ȳ)

29

However, the type of the net has changed: we have replaced a root of type [p] with a root of type p. We
will use the term closure to describe a sequent resulting from deleting some formulae, and replacing others
with their underlying type:

Definition 19. Let Γ be a forest of types. A closure of Γ is a forest Γ′ of types, together with an injective
function from the roots of Γ′ to the roots of G which either preserves types or replaces a type with its
underlying classical formula (see Definition 6).

Notice that if Γ does not contain any witness types, a closure of Γ is just a sub-multiset of Γ.
Our cut-elimination argument relies on isolating, in an expansion net F , a subnet G containing only one

cut, and replacing it with a cut-free AC typed forest G′ whose type is a closure of G: that is, we replace
each non-cut root t of G with f−1(G), where f given to us by the closure of the type of G. If t has no
pre-image, and is a root, we can delete it. If t has no pre-image, and is a root, we would like to replace it by
∗ (representing that the formula previously introduced by t is now introduced by weakening) – however, we
must be careful to ensure that the ∗ occurs within a default weakening. For example, consider the following
expansion-net, with marked subnet:

p̄ ∨ p̄

∨

ȳx̄

./

+

⊗

+

v̄

+

w̄z̄

∨

+

yx

∗

q

+

z

p ∨ p

∨

+

v

+

w

The marked subnet G has type [p̄], [p̄], q, [p], [p]. The AC typed forest G′ = x̄ : [p], ȳ : [q], (x+ y) : p has type
which is a completion of the marked subnet, via an injection f which does not have a preimage for q or the
first copy of [p]. The trees missing a pre-image are (z) (which is a root) and w (which is in a disjunction), so
the result of replacing G by G′ is an expansion net:

p̄ ∨ p̄

∨

ȳx̄

p ∨ p

∨

+

yx

∗

The following proposition shows that we can replace a subnet G by another AC typed forest whose type
is a closure of G, provided the deleted roots fall inside disjunctions or expansions:

Proposition 10.
Let G be a subnet of an AC typed forest F , and let G′ be an AC typed forest whose type is a closure G: that
is, there is an injective function f from the non-cut roots of G′ to those of G such that f either preserves
types or maps a term of witness type to a term of its underlying type. Call a node t of F weak if it is a root
of G but has no f -preimage. Suppose further that each weak node of F is either a root of F , or the sucessor
of a switched node Y (a disjunction or expansion) such that at least one other successor of Y is not weak.
Then, replacing G by G′ in F (by replacing t by f−1(t) if t has an f -preimage, deleting t if it is weak and
a root or a successor of an expansion, and replacing t by ∗ if it is weak and the successor of a disjunctive
node, and replacing the cuts of G by the cuts of G′) yields an AC typed forest whose type is a closure of the
type of F .

Proof. An easy examination of the correctness criterion.

30

We now introduce the basic reductions of expansion-nets, and show that they preserve AC correctness.
We illustrate the reductions by showing how to reduce the net in Example 15 to cut-free form.

We will define a logical cut to be one in which the positive cut term is an expansion consisting of a single
witness. In case the cut has non-atomic type, the definition of cut-reduction is easy:

Proposition 11 (Logical cut – ∧/∨). Let G = F, (s1 ⊗ s2) ./ (t1 ∨ t2) be an AC typed forest, such that
t1, t2 6= ∗. Then G′ = F, s1 ./ t1, s2 ./ t2 is an AC typed forest with the same type as G.

Reducing the logical cut in Example 15, we obtain the following net:

+

x̄ȳz̄

./

+

l̄

+

z

./

∨

(m̄)+

⊗

(n̄)(ō)

+

⊗

(w)∨

∗(y)

⊗

(v)∨

(x)∗

+

⊗

(v̄)(w̄)

+

⊗

+

⊗

(l)(m)

∨

(n)(o)

As discussed above, in case of an atomic logical cut, the whole forest has the form G = F, (x) ./ t, where
t is a possibly nontrivial sum of witnesses. We want to reduce this cut, as in usual proof-nets, by “yanking”:

Proposition 12 (Logical cut – atomic). Let G = F, (x) ./ t be an AC typed forest. Then F [x̄ := t] is an
AC typed forest with type G′ a closure of G.

Reducing the atomic logical cut in our example, we obtain:

+

x̄ȳz̄

./

∨

(m̄)+

⊗

(n̄)(ō)

+

⊗

(w)∨

∗(y)

⊗

(v)∨

(x)∗

+

⊗

(v̄)(w̄)

+

⊗

+

⊗

(z)+

m

∨

+

n

+

o

Cut against contraction is dealt with by reducing the positive width of the cut: the number of witnesses
appearing in the positive cut term. This is achieved by duplicating a subnet with the positive cut term as a
root (the equivalent of duplicating a subproof with the positive cut-formula in the conclusion). In duplicating
a subnet we must make sure to rename the wire-variables so that no variable occurs more than once: given
a term t, we use the notation tL, tR to denote two copies of t where each wire variable x has been replaced
by fresh variables xL, xR, and each wire variable x̄ has been replaced by fresh variables x̄L, x̄R, such that
x̄L is dual to xL, and so on.

Proposition 13 (Structural cut – contraction). Let

G = F, (s1 + · · ·+ sn) ./X t

be an AC typed forest, where s = (s1 + · · ·+ sn) is nontrivial expansion. Let s = s1 + s2 (that is, s1 and s2
partition s) and let w1 . . . , wn, c1, . . . cm, t be a subnet of G, whose roots other than t are all either witnesses
(the wi), or cuts (the ci). Let F ′ be the forest defined by replacing each wi by (wL

i + wR
i). Then

G′ = F ′, s1 ./ t
L, s2 ./ t

R

is an AC typed forest, and the type of G′ is a closure of the type of G.

31

Proof. Let H, (s1 + s2) be the kingdom of (s1 + s2): then

J = H,w1, . . . , wn, c1, . . . cm, (s1 + s2) ./ t

is a subnet of G. It is easy to see that

J ′ = H, (wL
1 + wR

1), . . . , (wL
n + wR

n), cL1 , c
R
1 . . . c

L
m, c

R
m, s1 ./ t

L, s2 ./ t
R

is an AC typed forest with type a closure of the type of J . Since J was a subnet, the result of replacing J
in F by J ′ also AC; the result follows.

Remark 7. The restriction that the duplicated subnet have only witnesses and cuts as roots ensures that
we can “contract” the duplicated conclusions by adding expansions. The kingdom of the positive cut-term
always yields such a subnet; if a root s of the kingdom of t were a disjunction or expansion, we could remove
that node to yield a smaller subnet with t as a root.

In the last step of our running example, the kingdom of the negative branch of the cut is shaded. Notice
that, apart from the root taking part in the cut, all the roots of the kingdom are witnesses. Thus, we can
duplicate the kingdom, cutting each copy against one of the witnesses on the positive branch of the cut:

+

x̄ȳz̄

./

∨

(m̄0)+

⊗

(n̄0)(ō0)

+

⊗

(w)∨

∗(y)

./

∨

(m̄1)+

⊗

(n̄1)(ō1)

+

⊗

(v)∨

(x)∗

+

⊗

(v̄)(w̄)

+

⊗

+

⊗

(z)+

m0m1

∨

+

n0n1

+

o0o1

After some logical cuts, we arrive at the following net:

+

x̄ȳz̄

./

+

⊗

(n̄0)(ō0)

∨

∗(y)

./

+

⊗

(n̄1)(ō1)

∨

(x)∗

+

⊗

(v̄)(w̄)

+

⊗

+

⊗

(z)+

vw

∨

+

n0n1

+

o0o1

This net contains two examples of our final kind of cut: a cut against default weakening. This situation
superficially resembles the a cut between the additive propositional connectives in sequent calculus. In com-
mon with the reduction for such a cut, we delete a subproof (here subnet) of the proof. Unlike the additive
reduction, we must replace the conclusions of the deleted subnet by weakenings: the catch here is that, to
ensure that each weakening thus created is a default weakening, each weakened subtree must either be a
component of a nontrivial expansion or of a disjunctive term which is not already a default weakening.

Proposition 14 (Structural cut – default weakening). Let

G = F, (s1 ⊗ s2) ./ (t ∨ ∗)

be an AC typed forest. Let E = u1, . . . , un, s2 be a subnet of G, such that each tree ui is either a root of G,
a successor of an expansion containing at least one term not in E, or is the successor of a disjunction node

32

the other successor of which is neither an instance of ∗ nor in E. Let F ′ be the forest derived from F as
follows: if ui is a root of F , delete it: otherwise, replace it by ∗. Then

G′ = F ′, s1 ./ t

is a default attached AC forest, and the type of G′ is a subsequent of the type of G.

Proof. Let L, s1 and M, t be the kingdoms of s1 and t respectively. Then

L,M, u1, . . . , un, (s1 ⊗ s2) ./ (t ∨ ∗)

is a subnet of G, and L,M, s2 ./ t is an AC forest. The forest F ′, s1 ./ t is therefore AC correct: it is
default-attached, since every non-root term replaced by ∗ is either in a non-trivial expansion or forms an
attached weakening.

Remark 8. There are two nets we can canonically choose to delete which satisfy the conditions on E above:
namely the empire and the contiguous empire of s2. This follows immediately from the definitions of (con-
tiguous) empire. Our strategy for cut-elimination will always delete the contiguous empire, for the following
reason. Consider the following rule instance in LK∗e:

F, (s1 ⊗ s2) ./ (t ∨ ∗) G
Mix

F,G, (s1 ⊗ s2) ./ (t ∨ ∗)

The empire of s2 changes after application of the rule, while the contiguous empire stays the same. If we
delete the empire of s2, then it matters in which subproof we perform the reduction, while deleting the
contiguous empire is independent of that choice. Thus, deleting ce(s2) is more compositional than deleting
e(s2), since the result depends less on the context in which the reduction takes place.

The reduction thus defined is not, however, entirely compositional: If u : A is in the contiguous empire
of s2 in F, u : A, (s1 ⊗ s2) ./ (t ∨ ∗), then before cut reduction we can form a conjunction on A, and
afterwards we cannot. This problem is, however, not so drastic; if instead we reduce the cut after introducing
the conjunction, in addition to what was deleted before, we also delete the contiguous empire of the other
conjunct, which becomes part of the contiguous empire of s2. In other words, the part of the proof which
could not be introduced via Mix will in any case be deleted after cut-reduction.

In our running example, the contiguous empire of (n̄0) is the forest (n̄0), n0, and the contiguous empire of
(ō1) is the forest (ō1), o1. The resulting cut-free net, after the structural reductions and a number of logical
reductions, is

+

x̄ȳz̄

+

⊗

(v̄)(w̄)

+

⊗

+

⊗

(z)+

vw

∨

+

x

+

y

7.2 Cut-elimination theorem for expansion nets

The core of cut-elimination is the following lemma, which states that a single “topmost” cut can be removed
from an expansion-net. Topmost is here defined using the relation �: given two cuts X and Y , if X � Y
then X is in the kingdom of Y : thus, a cut Z which is minimal among the cuts of F with respect to � is
not in the kingdom of any other cut, and so there is at least one sequentialization of the net such that the

33

proof above Z is cut-free. Furthermore, the lemma states that this topmost cut can be removed in such a
way that duplications happen only within the kingdom of the cut: that is, the cut is eliminated by replacing
the kingdom of the cut with a cut free AC forest, plus some supplementary deletions.

Lemma 6 (Principal lemma for default-attached nets). Let G = F, t ./X s be an AC forest containing
n + 1 cuts, and let the cut ./X be �-minimal among the cuts in G. By applying the transformations in
Propositions 12, 11, 13 and 14 to G, we can obtain an AC forest G′, containing n cuts, such that

(a) G and G′ only differ on the part of G disjoint from the contiguous empire of X in G.
(b) Outside of the kingdom of X in G, G and G′ only differ by the deletion of subtrees or their replacement

with ∗.

The type of G′ is a closure of the type of G.

Proof. By induction on the rank of the cut-formula, with a sub-induction on the positive width of the cut.
Suppose first that the cut-formula is atomic, and that the cut has the form x ./X t. The kingdom of X is
H, x̄, x ./X t, and the atomic cut reduction replaces this subnet by H, t. Nothing outside the kingdom of X
is changed.

Now assume, as an induction hypothesis, that the lemma holds for a �-minimal cut of rank n and
positive width m. Suppose first that the cut has the form (t ∨ ∗) ./ (s1 ⊗ s2). To reduce this cut, we delete
ce(s2), the contiguous empire of s2. After one step of reduction, we obtain an AC forest F ′ = G′, t ./Y s1;
the roots of k(Y)/ce(Y) are contained within the roots of k(X)/ce(X). Apply the induction hypothesis to
F ′ to obtain a cut-free expansion net with the required properties.

Now, suppose that the cut has the form (t1 ∨ t2) ./X (s1 ⊗ s2). After one step of cut-reduction, we
obtain the AC forest F, t1 ./Y s1, t2 ./Z s2. Note that Z /∈ k(Y) and Y /∈ k(Z), and so both Z and Y
are �-minimal; also note that if u is a root of k(Y) not equal to Y (or of k(Z) not equal to Z), then u is
contained in a root of k(X). Apply the induction hypothesis to one of the cuts, without loss of generality Y .
The important thing to note is that, since Z is not in k(Y), it is not duplicated by eliminating Y , though it
may be deleted, since it is in ce(Y). If it is deleted, we are done: otherwise, apply the induction hypothesis
a second time to Z.

Finally, suppose that the cut has the form t ./X s, where s = (w1 +w2 + · · ·+wm). Since � is a partial
order on the nodes F , at least one of these witnesses will be�-maximal. Suppose, without loss of generality,
that w1 is �-maximal among the wi’s. Then apply the duplication reduction to the kingdom of X, with the
decomposition s = (w1) + (w2 + · · ·+wm); we obtain an AC forest G′, tL ./Y (w1), tR ./Z (w2 + · · ·+wm).
Now apply the induction hypothesis to Z, to obtain an AC forest G′′, t′ ./ (w′1): crucially, since w1 was not in
k(Z), the positive width of this cut does not change after Z is eliminated. We may thus apply the induction
hypothesis again to complete the proof.

Theorem 6 (Cut elimination). If F is an expansion net with type Γ, there is a cut-free expansion net
F ′, reachable by the cut-reduction operations from F , such that the type ∆ of F ′ is a subsequent of Γ.

Proof. By successive applications of the principal lemma, we can remove all the cuts from F , the result being
an AC typed forest whose type ∆ is a closure of a subsequent of the type of F : since the closure of a classical
sequent is just the sequent itself, ∆ is a subsequent of the type of F , and so F ′ is an expansion-net.

8 Conclusion

Expansion-nets provide a class of abstract proof objects for classical propositional logic which satisfy our
checklist of good properties. There is a sequent calculus (LK∗) with a canonical function from proofs in that
calculus to expansion-nets (given in Definition 9) There is a correctness criterion (Definition 10) which can be
checked in polynomial time, such that the correct proof structures are precisely the expansion nets. We have
sequentialization into LK∗ (Theorem 5), and weakly normalizing cut-elimination directly on expansion-nets
(Theorem 6). The last two of these results are new to the paper (although the former was sketched in [23]);

34

their proofs rely on the characterization of subnets of expansion nets, including the new notion of contiguous
subnet defined in this paper. In addition to these properties, expansion-nets also identify a more natural set
of sequent derivations than do the previously existing notions of abstract proof.

We mention some further directions:

Beyond propositional logic The terminology expansion deliberately recalls Miller [24], whose expansion
tree proofs can be seen as a prototype notion of proof-net for classical logic. The paper [22] makes this
connection explicit in the case of first-order prenex formulae; the paper introduces a notion of Herbrand
net using Girard’s notion of a quantifier jump, in which provability at the propositional level is treated as
trivial — propositional axioms are replaced by arbitrary propositional tautologies. Expansion-tree proofs
themselves do not provide a good notion of proof-net when we move beyond sequents of prenex formulae:
they lack the fine-grained propositional structure of expansion-nets and so do not seem to have well-behaved
cut-elimination. However, we foresee no major obstacles in combining Herbrand nets with the results of the
current paper to capture nets for first- or higher-order classical quantifiers, including cut-elimination.

Nets for additively formulated classical logic The correctness/sequentialization results for our nets
are heavily tied to the multiplicatively formulated sequent calculus. It is, of course, possible to extract an
ed-net from a proof in an additively formulated calculus, but there are natural identities in those calculi
which are not validated by our nets. Taking the view that the additive classical connectives are essentially
different operations (that happen to coincide at the level of provability), we look for natural notions of proof
net for additively formulated classical logic.

References

1. Gianluigi Bellin. Subnets of proof-nets in multiplicative linear logic with MIX. Mathematical Structures in
Computer Science, 7(6):663–699, 1997.

2. Gianluigi Bellin, Martin Hyland, Edmund Robinson, and Christian Urban. Categorical proof theory of classical
propositional calculus. Theor. Comput. Sci., 364(2):146–165, 2006.

3. Gianluigi. Bellin and Jacques. van de Wiele. Subnets of proof-nets in MLL-. In Proceedings of the workshop on
Advances in linear logic, pages 249–270, New York, NY, USA, 1995. Cambridge University Press.

4. Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis, Technische Universität Dresden,
2003.

5. Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal Logic, 47:557–580, 2006.
6. Stephen A. Cook, Robert, and A. Reckhow. The relative efficiency of propositional proof systems. Journal of

Symbolic Logic, 44:36–50, 1979.
7. V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathematical Logic, 28:181–203, 1989.
8. Vincent Danos. La logique lineaire appliquee a letude de divers processus de normalisation et principalement du

lambda calcul. PhD thesis, Univ. de Paris, 1990.
9. Vincent Danos and Roberto di Cosmo. The linear logic primer. Available at http://www.dicosmo.org/

CourseNotes/LinLog/.
10. Carsten Führmann and David Pym. Order-enriched categorical models of the classical sequent calculus. Journal

of Pure and Applied Algebra, 204(1):21 – 78, 2006.
11. Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–210, 405–431,

1934.
12. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
13. Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical Structures in Computer Science,

1(3):255–296, 1991.
14. Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. In Logic and Algebra, pages 97–124. Marcel

Dekker, 1996.
15. Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking paths in atomic flows for classical logic. In

LICS, pages 284–293. IEEE Computer Society, 2010.
16. Dominic J. D. Hughes. Towards Hilbert’s 24th problem: Combinatorial proof invariants. Electron. Notes Theor.

Comput. Sci., 165:37–63, 2006.

35

17. Dominic J.D. Hughes. Proofs Without Syntax. Annals of Mathematics, 143(3):1065–1076, November 2006.
18. Dominic J.D. Hughes. A minimal classical sequent calculus free of structural rules. Archived as math.LO/0506463

at arXiv.org, July 2010.
19. F Lamarche and L Strassburger. Naming proofs in classical logic. In Proceedings of TLCA ’05. Springer-Verlag,

2005.
20. Francois Lamarche and Lutz Strassburger. Constructing free boolean categories. In LICS ’05: Proceedings of

the 20th Annual IEEE Symposium on Logic in Computer Science, pages 209—218, Washington, DC, USA, 2005.
IEEE Computer Society.

21. Patrick Lincoln and Timothy Winkler. Constant-only multiplicative linear logic is np-complete. Theoretical
Computer Science, 135:135–155, 1992.

22. Richard McKinley. Proof nets for herbrands theorem. Accepted for publication, ACM Transactions on Compu-
tational Logic.

23. Richard McKinley. Expansion nets: proof-nets for propositional classical logic. In Proceedings of the 17th in-
ternational conference on Logic for programming, artificial intelligence, and reasoning, LPAR’10, pages 535–549,
Berlin, Heidelberg, 2010. Springer-Verlag.

24. Dale Miller. A compact representation of proofs. Studia Logica, 46(4):347–370, 1987.
25. Edmund Robinson. Proof nets for classical logic. Journal of Logic and Computation, 13(5):777–797, 2003.
26. Rdiger Thiele. Hilbert’s twenty-fourth problem. American Mathematical Monthly, 110:2003, 2001.
27. Todd Trimble. Linear logic, bimodules, and full coherence for autonomous categories. PhD thesis, Rutgers

University, 1994.

36

