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This paper explores Herbrand’s theorem as the source of a natural notion of abstract proof object
for classical logic, embodying the “essence” of a sequent calculus proof. We we see how to view a

calculus of abstract Herbrand proofs (“Herbrand nets”) as an analytic proof system with syntactic
cut-elimination. Herbrand nets can also be seen as a natural generalization of Miller’s expansion

tree proofs to a setting including cut. We demonstrate sequentialization of Herbrand nets into

a sequent calculus LKH ; each net corresponds to an equivalence class of LKH proofs under
natural proof transformations. A surprising property of our cut-reduction algorithm is that it is

non-confluent, despite not supporting the usual examples of non-confluent reduction in classical

logic.
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1. INTRODUCTION6

This paper is part of a program [Robinson 2003; Führmann and Pym 2006; 2007;7

Lamarche and Strassburger 2005a; 2005b; Hughes 2006; Bellin et al. 2006] to un-8

derstand or uncover the “essence” of proofs in classical logic; the mathematical ob-9

jects represented by syntactic proofs. This problem traces its roots back to Hilbert’s10

omitted 24th problem [Thiele 2001], which was concerned with “develop(ing) a the-11

ory of mathematical proof in general”. Such a theory exists and is well-understood12

for intuitionistic logic; it is provided by the Curry-Howard isomorphism and inter-13

pretation in cartesian-closed categories [Lambek and Scott 1986]. Understanding14

the mathematical theory of classical proof in a similar fashion is still an open15

problem. Proofs in standard calculi, like the sequent calculus, do not satisfy as16

mathematical objects, because the essence of a proof is hidden by “bureaucracy”:17

proofs can differ by inessential matters such as the order of in which inferences are18

applied. For this reason, one approach to uncovering the mathematical structure of19

proofs is to find “abstract proofs” for classical logic, such that two abstract proofs20

differ only if the arguments they embody are different. One important part of the21

study of abstract proofs is cut-elimination: given an abstract proof of A implies B,22

and an abstract proof of B implies C, is there an algorithm yielding an abstract23
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proof of A implies C? Without discussing in detail the background of this problem1

(we refer interested readers to the references above), we note that a large part of2

the problem of representing this operation comes from the unrestricted power of3

weakening in classical sequent calculus: the so-called “Lafont example” (described4

in the appendices of [Girard et al. 1989]) uses weakening and cut-elimination as an5

essential ingredient of an argument that there is exactly one classical proof of every6

theorem. Avoiding this “collapse” is the first hurdle to be overcome in giving an7

abstract notion of classical proof with cut-elimination.8

Attention in these matters has been paid chiefly to the propositional fragment of9

classical logic, but this paper looks instead at first-order logic, for which a notion of10

“essence” is already given by one of the fundamental theorems of logic: Herbrand’s11

theorem [Herbrand 1930]. In its simplest form, Herbrand’s theorem states that a12

formula of first-order logic ∃x.A, where A is quantifier free, is provable if and only13

if there exist ground terms M1, . . .Mn such that14

� A[x := M1] ∨ · · · ∨A[x := Mn].

This simple form of Herbrand’s theorem gives a counterpart in classical logic to the15

existence property of intuitionistic logic: a classical proof of an existential statement16

does not consist of a single witness, but a (multi)set of candidate witnesses, plus17

a proof that at least one of them is an actual witness. From a given proof of an18

existential statement we can extract such a multiset of witnesses, and terms of19

the “essence” of proofs, it is the point of view of this paper that two proofs of an20

existential statement have the same essential content if and only if they yield the21

same multiset of witnesses.22

It is well known that a more general “Herbrand’s theorem” for formulae in prenex23

normal form follows directly from Gentzen’s cut-elimination theorem [Gentzen24

1934], or more properly the midsequent theorem (see for example [Troelstra and25

Schwichtenberg 1996]). The midsequent theorem is usually stated in terms of per-26

mutability of inference rules, but it can be more succinctly stated as follows:27

Theorem 1.1 Midsequent theorem. The cut-free sequent system given in28

Fig. 1 is complete for sequents of prenex formulae.29

(This statement of the midsequent theorem seems to be novel, although a similar30

sequent system containing weakening occurs in [Heijltjes 2010]) A proof of a prenex31

formula q1. . . . .qn.B in this calculus yields a set of instantiated versions of B whose32

disjunction is a tautology: thus the completeness of this calculus can be seen, in33

itself, as a statement of Herbrand’s theorem for prenex formulae. Indeed, a proof34

in LKH is, essentially, the same as an Herbrand proof as formulated by Buss [Buss35

1995].36

It can be argued (see for example [Hetzl et al. 2008]) that all the mathematically37

interesting information in a proof in first-order logic is contained in the witnesses38

used to instantiate the existential quantifiers, and that all other information in39

the proof is irrelevant to that essence. In particular, two proofs differing only by40

permuting instances of rules have the same essence. In [Miller 1987], expansion-41

tree proofs were introduced as a formalization of this informal notion of essence:42

a “Compact Representation of Proofs” in which the inessential details regarding43

the order of application of rules is discarded. In this paper, we take expansion-tree44

2



�
∨
Pi

` P1, . . . , Pn

` Γ, A[x := a]
∀

` Γ,∀x.A

` Γ, A[x := M ]
∃

` Γ, ∃x.A

` Γ, ∃x.A, ∃x.A
C∃

` Γ,∃x.A

Fig. 1. A “midsequent calculus” LKαε
H , sound and complete for prenex classical logic (here the

Pi are quantifier-free formulae)

proofs (for first-order logic) and study them as abstract proof objects in the spirit1

of the program mentioned above.2

Classical sequent proofs are very badly behaved under cut-elimination. Cut-3

elimination is neither confluent nor (and this is more serious) strongly normalizing,4

and because of this a proof may in general have infinitely many syntactically dif-5

ferent normal forms, where normal means cut-free. Without a notion of equality6

on proofs (which would be given by a good notion of essence) it is difficult to say7

whether these different normal forms correspond to genuinely different proofs. On8

the other hand, the typical examples of bad behaviour in Gentzen’s system (as de-9

tailed in [Girard et al. 1989] and [Girard 1991]) arise where both cut-formulae are10

the main formula of a structural rule, leading to critical pairs. Observing LKH ,11

we can see that such an opposition of structural rules cannot occur: weakening is12

absent, and contraction applies only on existentially quantified formulae. We might13

hope, therefore, that cut-elimination in the Herbrand setting is better behaved than14

in the general setting — in particular, we cannot form the Lafont example in LKH .15

We study this question, in this paper, by considering expansion-tree proofs con-16

taining cuts, for the restricted case of first-order logic. These proofs with cuts are17

an example of proof nets [Girard 1996], in the sense that they can be studied using18

the standard toolkit of techniques for dealing with Linear Logic proof nets [Danos19

and Regnier 1989]. We call this calculus of proof nets Herbrand nets. We show that20

these nets correspond to proofs in LKH , giving a correctness criterion for Herbrand21

nets and a sequentialization theorem. We then develop the theory of cut-elimination22

inside the Herbrand nets calculus, showing weak normalization, and demonstrate23

a new counterexample to confluence of cut-reduction which does not rely on the24

opposition of structural rules in a cut. Since cut-reduction in Herbrand nets lifts25

to LKH , the counterexample applies there too, showing that the orientation of26

critical pairs in classical logic is not enough to guarantee confluence: one must also27

restrict the permutability of inference steps as in the CBV and CBN fragments of28

λ̄µµ̃ [Curien and Herbelin 2000], and in LKtq [Danos et al. 1997].29

1.1 Related work30

Strassburger [Strassburger 2009] has adapted expansion tree proofs to give a notion31

of proof net for second-order propositional MLL. Proof objects similar to those32

we present here are also studied in Heijltjes (under the name “Forest proofs”)33
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[Heijltjes 2010], but from a rather different perspective. We will discuss in depth1

the differences in these two pieces of work later: for now we simply state that our2

two approaches represent two different ways to repair an intuitive but flawed idea for3

cut-elimination in expansion-tree proofs. Similar connections between Herbrand’s4

theorem and abstract proof objects for predicate logic were suggested in [Hughes5

2006].6

2. PRELIMINARY DEFINITIONS7

2.1 Prenex formulae of classical first-order logic8

A signature Σ = (VS,FS,PS) consists of a countable set VS of variable symbols,9

a countable set FS of function symbols, together with a function ar (arity) from10

FS to the natural numbers, and a countable set PS of predicate symbols, together11

with a function Ar from PS to the natural numbers. A constant of a signature Σ is12

a function symbol with arity zero. We will use metavariables x, y, z, a, b to denote13

variable symbols, f, g to denote function symbols, and p, q to denote predicate14

symbols. The first-order terms of Σ are given by the following grammar:15

M ::= x | f(M1, . . .Mar(f)).

Given a term M , the free variables of M (written free(M)) are defined as follows:16

free(x) = {x},
17

free(f(M1, . . .Mn)) = free(M1) ∪ · · · ∪ free(Mn).

An atomic formula is a tuple consisting of a polarity from {+,−}, a predicate18

symbol p of arity n, and n terms M1, . . .Mn. We will write an atomic formula19

(+, p,M1, . . . ,Mn) as p(M1, . . .Mn), and an atomic formula (−, q,N1, . . . , Nn) as20

q̄(N1, . . . Nn).21

The quantifier-free formulae (QFFs) are generated from the atomic formulae22

using the connectives ∧ and ∨:23

P,Q := p(M1, . . .MAr(p)) | p̄(M1, . . .MAr(p)) | (P ∨Q) | (P ∧Q)

Notice that we give no explicit connective for negation; instead we present formulae24

in negation normal form. Each formula A has a dual formula Ā defined by De25

Morgan duality :26

p(M1, . . .Mn) = p̄(M1, . . .Mn) p̄(M1, . . .Mn) = p(M1, . . .Mn)
27

(P ∨Q) := (P̄ ∧ Q̄), P ∧Q := P̄ ∨ Q̄.

A formula in prenex normal form (or prenex formula for short) is a member of28

the following grammar, where x ranges over the variables in VS and P over QFFs:29

A ::= P | ∃x.A | ∀x.A

The dual of a prenex formula is defined, as for QFFs, using De Morgan duality:30

∀x.A := ∃x.Ā, ∃x.A := ∀x.Ā

The rank of a prenex formula is the number of quantifier instances in its prefix.31

The bound and free variables of a prenex formula are defined as usual: we use the32
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notation free(A) and bound(A) to denote the sets of free and bound variables of1

a formula A. Notice that, because of the way prenex formulae are built, for any2

prenex formula A we have free(A) ∩ bound(A) = ∅. We will use the notation3

A[x := M ] for the usual notion of substitution of a first-order term M for a variable4

x in a formula A.5

3. EXPANSION TREES AND αε-FORESTS6

As representations of proofs, sequent proofs (for example in LKH) are unsatisfac-7

tory in the sense that they lack canonicity. This manifests in the order of appli-8

cation of rules; we can find two proofs of the same formula which differ only by9

a permutation of two non-interfering rules. Miller’s expansion-trees [Miller 1987]10

provide a better notion of abstract proof, where the linear ordering on quantifier11

occurrences induced by an LKH derivation is replaced by a dependency relation12

induced by quantifier nesting and variable dependencies. An expansion-tree forms13

an expansion-tree proof of a prenex formula if the dependency relation induced is14

irreflexive: that is, irreflexivity of the dependency relation is a correctness crite-15

rion for expansion-tree proofs. Expansion-tree proofs provide a form of abstract16

proof only for cut-free proofs, and there is no existing notion of cut-reduction on17

expansion-tree proofs. In the following section, we give a reformulation of expan-18

sion tree proofs (restricted to the case of first-order prenex formulae), extended to19

account for multiple conclusions and the presence of cuts. We call this extended20

calculus Herbrand nets, since as we will see they are closely related to Girard’s21

proof nets for linear logic. We discuss in the conclusion of the paper the possibility22

of extending this generalization to the full range of logics captured by expansion-23

tree proofs (including non-prenex formulae and higher-order quantification). In24

the presence of cuts, acyclic dependency is not enough to check correctness; in the25

section following this one, we will use an adapted form of proof-net correctness to26

identify the correct proofs.27

3.1 αε terms28

In this section we define αε-terms, which consist of the expansion-trees (a refor-29

mulation of Miller’s expansion trees for the prenex first-order fragment of classical30

logic), cuts, and witnessing terms. These trees will form the basis of the Herbrand31

nets we will define later.32

Definition 3.1 αε terms. Let Σ = (VS,FS,PS) be a signature, and let I be a33

countable set of indices. The αε terms t, . . . over (Σ, I) (consisting of the expansion34

trees p, . . . , cuts c, . . . , and witnessing terms w, . . . ) are given by the following35

grammars:36

t := e | w | c
37

p := S | α[a].e | (w + · · ·+ w)
38

w := ε[M ].e
39

c := e ./ e

where S is a nonempty finite set of indices, M is a first-order term over the signature,40

a ∈ VS, and (w+ · · ·+w) denotes a finite nonempty formal sum (a member of the41
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free commutative semigroup over w). A non-cut term is either an expansion tree1

or a witnessing term.2

Remark 3.2. Expansion-tree proofs were introduced to give a higher-order ana-3

logue of Herbrand’s theorem (where one cannot rely on Skolem functions or a4

restriction to formulae in prenex normal form). Why then do we only consider5

expansion-trees for first-order prenex formulae? Our goal is to find abstract proofs6

which can be seen as the underlying objects of a sequent calculus, and on which7

operations such as cut-reduction can be performed directly, without needing to8

translate back to the sequent calculus. This works for prenex formulae, because9

there is a strong connection between LKH derivations and expansion trees. This10

strong connection is lost once we move to the setting of full first-order logic: a11

sequent calculus corresponding to general Herbrand proofs require some deep con-12

traction (contraction of existential subformulae; this can be seen in Miller’s original13

paper), about which very little can be said in terms of structural proof theory; cer-14

tainly, syntactic cut-elimination for such a system would be very challenging. For15

this reason, we concentrate on the prenex fragment in this paper. We give some16

perspectives on moving beyond that fragment in the conclusions of the paper.17

The witnessing terms represent the components of (generalized) Herbrand dis-18

junctions. We make an explicit distinction between the witnessing term ε[M ].t and19

the expansion tree (ε[M ].t). We will refer to a witnessing term not in the scope of20

a semigroup + as a naked witness.21

Remark 3.3. The reader might wonder why we have a commutative semigroup22

rather than commutative monoid structure on expansion trees: why are we not23

allowed to form the empty formal sum as a expansion tree? Nontrivial expansions24

(containing more than one witness) correspond to contraction in the sequent cal-25

culus: similarly, allowing empty expansions would amount to explicit weakening in26

our sequent calculus, and in the proof nets we will form from αε terms. Weakening27

is notoriously difficult to handle well in proof nets; in this setting explicit weaken-28

ing is not necessary, and we avoid the problems that weakening usually causes for29

classical proof nets.30

3.2 Typing αε-terms31

We now assign types to these terms. Note that a typing judgement t : A should32

not be seen as a proof of A, just as a proof-structure in MLL with conclusion Γ is33

not a proof of Γ. The type of an expansion tree is always a prenex formula. The34

witnessing terms and cuts receive special non-logical types:35

Definition 3.4. A type over a signature Σ = (VS,FS,PS) is either36

(a) A logical type: a formula of classical predicate logic in prenex normal form over37

the signature; or38

(b) a non-logical type, of which there are two kinds:39

i A witness type, written 〈∃x.A〉, where ∃x.A is a formula in prenex normal40

form; or41

ii A cut type: a pair of dual formulae of classical logic in prenex normal form,42

written A ./ Ā.43
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i1, . . . in ∈ I

{i1, . . . in} : P

t : A[x := a]

α[a].t : ∀x.A

t : A[x := M ]

ε[M ].t : 〈∃x.A〉

w1 : 〈∃x.A〉, . . . , wn : 〈∃x.A〉

(w1 + · · ·+ wn) : ∃x.A

t : A s : Ā

t ./ s : A ./ Ā

Fig. 2. Typing derivations for αε terms

We will occasionally need to refer to a type without specifying if it is logical or1

non-logical: in that case we will use a capital T , reserving A,B, . . . for those types2

which are prenex formulae.3

We use the witness types to distinguish between a witness, ε[M ].s, which receives4

a witness type, and the expansion tree (ε[M ].s), which receives a logical type. We5

make this distinction because it will force our proof-nets to have canonical n-ary6

contractions. Each non-logical type has an underlying logical type:7

Definition 3.5. The underlying type of a witness type 〈∃x.A〉 is ∃x.A. The under-8

lying type of A ./ Ā is A. The free/bound variables free and bound of a witness/cut9

type are the free/bound variables of its underlying type. We define substitution10

into witness/cut types in the obvious way11

〈∃x.A〉[y := M ] = 〈∃x.A[y := M ]〉
12

(A ./ Ā)[y := M ] = A[y := M ] ./ Ā[y := M ]

Definition 3.6. A typed term is a pair t : T of a term t and a type T , derivable13

in the typing system given in Fig. 2.14

There are some terms that cannot be typed, for simple reasons. For example, the15

term α[a].t ./ α[b].s can never be well-typed: a type for a term beginning with an16

α must be a formula of the form ∀x.A, and two such formulae can never be dual.17

Example 3.7. The following is a well-typed term, which will be an important18

example for us for the rest of the paper. Its type is the drinker’s formula(“in every19

bar, there is a patron such that, if she drinks, then everyone drinks”): for that20

reason we will call it D, the drinker’s term:21

D = (ε[c].α[a].{1} + ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

The construct α[a] should be thought of as binding a: thus we have the notion22

of α-bound and α-free variables:23
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Definition 3.8. Let t : T be a typed term. We define two sets of variables1

boundα(t : T ) (the variables α-bound in t : T ) and freeα(t : T ) (the α-free variables2

of t : T ) as follows:3

(a) The variable a is a member of boundα(t : T ) if and only if t has a subterm of4

the form α[a].s.5

(b) The set freeα(t : T ) is defined as follows:6

—freeα(S : P ) = free(P )7

—freeα(α[a].t : ∀x.A) = freeα(t : A[x := a]) \ {a}8

—freeα(ε[M ].t : 〈∃x.B〉) = freeα(t : B[x := M ]) ∪ free(M)9

—freeα((t1 + · · ·+ tn) : ∃x.B) = freeα(t1 : 〈∃x.B〉) ∪ · · · ∪ freeα(tn : 〈∃x.B〉)10

—freeα(t ./ s : A ./ Ā) = freeα(t : A) ∪ freeα(s : Ā)11

Example 3.9. For the typed expansion tree t : A below,12

t : A = (ε[b].α[a].(ε[a].{1})) : ∃x.∀y.∃z.P (x, y, z, w)

if {x, y, z, w} is the set of free variables of the QFF P (x, y, z, w), then freeα(t : A) =13

{b, w} and boundα(t : A) = {a}.14

An expansion-tree proof, in the sense of Miller, is a single tree t and proves a15

single formula A. We will need to extend this idea to forests of expansion trees, or16

more generally, forests of expansion-trees, witnesses and cuts. Such forests of typed17

terms will play for us the role of proof-structures; objects which locally have the18

structure of a proof, but which might not satisfy our correctness criterion. However,19

not every forest of typed terms can be regarded as a proof structure: for example,20

the correctness criterion we define will rely on there being at most one subterm of21

the form α[a].t for each variable a — that is, we will need a form of eigenvariable22

condition. The following definition pins down our notion of proof-structure, the23

αε-forests:24

Definition 3.10. Let F be a forest built from typed terms.25

(a) A variable a is α-bound in F (a ∈ boundα(F )) if it is in boundα(t : A), for some26

term (t : A) in F .27

(b) The variable a is α-free in F (a ∈ freeα(F )) if it is in freeα(t : A), for some28

term (t : A) in F , and not α-bound in F .29

(c) F is an αε-forest if30

i each occurrence of α[a] in F is associated with a unique eigenvariable a,31

and32

ii for each non-cut root t : A of F , boundα(F ) ∩ free(A) = ∅.33

Each αε-forest has a type: the multiset consisting of the types of its non-cut roots.34

Given an αε-forest, denote by IndF the set of tautology indices occurring in F .35

We consider αε-forests modulo the renaming of eigenvariables, and also modulo the36

renaming of tautology indices. We use the notation [a← b] to denote the renaming37

of an α-bound variable, and [i← j] for the renaming of an index i.38

We use the shorthand (t : T )[a ← b] for t[a ← b] : T [a := b] (note that a may39

only appear in T if T is a cut type; otherwise t and t[a ← b] have the same40
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type). Define the renaming of a variable in an αε-forest pointwise on its roots: if1

F = t1 : T1, . . . , tn : Tn is an αε-forest, then2

F [a← b] := (t1 : T1)[a← b], . . . , (tn : Tn) : [a← b]

and3

F [i← j] := (t1 : T1)[i← j], . . . , (tn : Tn) : [i← j].

We will use the following notation for renaming a set of variables/indices occurring4

in an αε forest:5

Definition 3.11. Let V = v1, . . . , vn be a set of variable symbols, and I =6

i1, . . . , im a set of tautology indices occurring in an αε forest. Let Vi = v1j , . . . , v
n
j7

be sets of variable symbols and Ij = i1j , . . . , i
m
j be sets of indices, for j ∈ {0, 1} such8

that V0 ∩ V1 = ∅, I0 ∩ I1 = ∅, and such that no member of Vj or Ij occurs in F .9

Then define10

τj(t) := t[v1 ← v1j ] . . . [vn ← vnj ][i1 ← i1j ] . . . [i
m ← imj ]

Suppose that F is an αε-forest containing a cut α[a].t ./ (ε[M ].s). The intuitive11

explanation of the cut is a pending communication: during cut-elimination, the12

witness M , will be substituted everywhere for the eigenvariable a.13

Definition 3.12. Let F be a αε-forest, a a variable with a /∈ boundαF , and M a14

term with free(M) ∩ boundα(F ) = ∅. We define an operation [a := M ] (substitute15

M for a) on αε-forests F such that a /∈ boundα(F ). On witnessing terms, of the16

form ε[N ].t, the substitution applies inside the instantiating first-order term M and17

in the remaining subterm t:18

ε[N ].t [a := M ] = ε[N [a := M ]].(t[a := M ])

Substitution is pushed past all the other term constructors, as follows:

S[a := M ] = S

(α[d].t)[a := M ] = α[d].(t[a := M ])

(t1 + · · ·+ tn)[a := M ] = (t1[a := M ] + · · ·+ tn[a := M ])

(t ./ s)[a := M ] = t[a := M ] ./ s[a := M ]

Finally, F [a := M ] is defined as the pointwise substitution of M for a in each term19

of F .20

By induction on the structure of typing derivations, we obtain:21

Proposition 3.13. If t can be assigned type T , then t[a := M ] can be assigned22

type T [a := M ].23

4. HERBRAND NETS24

The correctness problem for a class of proof structures is the problem of providing25

an algorithm singling out just those structures arising from a sequential derivation26

– a correctness criterion. In our setting, this amounts to giving a function from27

LKH derivations to αε-forests, and a criterion identifying just those αε-forests28

9



arising from an LKH derivation. In this section, we define such a criterion, and1

prove it has the sequentialization property: from any F satisfying our criterion, we2

can recover a sequent derivation yielding F . The techniques we use are, in most3

cases, minor variations on standard techniques for first-order MLL without units;4

where proofs are more than a few lines long, we present them in Appendix A.5

4.1 αε-forests as proof structures6

We consider proof structures to be forests with links – a relation on the subtrees of7

the forest. The links on an MLL proof net are simply the axiom links connecting8

dual atoms. The linking structure on an αε-forest is given using jumps [Girard9

1996]. If the variable x appears free in a first-order term M , there is a jump from10

each ε[M ] to the alpha node binding x. This jump indicates that, in a sequent11

derivation of F , the existential rule introducing the ε[M ] must occur above the12

universal rule introducing the α[a] in any sequentialization. Less obviously, we13

also need jumps from cuts: if the variable a is free in the type of a cut, then14

that cut must occur above the rule binding a. The usual axiom links of proof15

nets, linking two dual formulae, are replaced in Herbrand nets by something more16

general: the information contained at the leaves of an αε-forest plays the role of17

generalized axiom links. This generalization is two-fold: each “tautology link” (each18

index appearing in a set at some leaf) may have an arbitrary (finite) number of19

conclusions, and (because of contraction) each leaf may be connected to several20

such links. We also represent this information with jumps, which behave similarly21

to the quantifier jumps. We will call this graph with jumps the dependency graph22

of the forest.23

Definition 4.1. Let F be an αε-forest with the eigenvariable property. The de-24

pendency graph Dep(F ) of F is a labelled directed graph whose vertices are:25

(a) The occurrences of subterms of F , plus26

(b) one tautology node for each tautology index i ∈ IndF , labelled with i.27

The edges of Dep(F ) are the edges of F considered as a directed graph (with28

edges directed toward the roots), plus the jumps:29

—An edge from ε[M ].s to α[a].t whenever a ∈ free(M);30

—An edge from t ./ s : A ./ Ā to α[a].u whenever a ∈ free(A)31

—An edge from the vertex i to each leaf S of F with i ∈ S.32

When drawing the dependency graph, we use red curved arrows to represent33

jumps and red labels for the tautology vertices; the black, straight arrows and34

black vertices represent the underlying forest structure. We refer to the vertices35

of the dependency graph as nodes. The nodes fall into several families; S is a36

propositional node, α[a].t an α-node, ε[M ].t an ε-node, and (w1 + · · · + wn) an37

expansion node.38
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Example 4.2. The dependency graph of the drinker’s term D is1

1

{1} {1}

α[a] α[b]

ε[c] ε[a]

+

∃x.∀y.(Ā(x) ∨A(y))

Example 4.3. The dependency graph of the αε-forest2

{1, 2} : P, {1, 2} : P̄ , P ./ P̄

is3

1 2

{1, 2} {1, 2} {1} {2}

./

P P̄ P ./ P̄

The dependency graph induces a relation (which we call dependency) on the4

nodes of an αε-forest: we will write t C s when t and s are subtrees of F and there5

is a directed path from s to t in the dependency graph of F .6

4.2 Correctness7

We use a variation on the well-known ACC (ACyclic Connected) criterion [Danos8

and Regnier 1989] to define correctness. The criterion as given is exponential (we9

can decide in exponential time if a given αε-forest is ACC correct), but it is known10

that correctness for this kind of proof-net is actually NL-complete [de Naurois and11

Mogbil 2007]. Of course, checking that a given F is an Herbrand net can be much12

worse than polynomial, depending on the theory over which we work: in particular,13

if there are no non-logical axioms in our theory then checking correctness is co-NP14

complete.15

The crucial notions in ACC correctness are the switching and the switching graph,16

which in our setting are defined for strict typed forests (and not just annotated17

sequents) as follows:18

Definition 4.4. Let F be an αε-forest.19

(a) The switched nodes of F are the subterms of the form α[a].t′, (t1 + · · · + tn),20

or S. All other nodes of F are unswitched.21

11



�
n∨
j=1

Pj

i
{i} : P1, . . . , {i} : Pn

F, t : A[x := a]
∀

F, α[a].t : ∀x.A

F, t : A[x := M ]
∃

F, (ε[M ].t) : ∃x.A

F, t : ∃x.A, s : ∃x.A
C∃

F, t+ s : ∃x.A

F, S : P, T : P
CP

F, S ∪ T : P

F, t : A G, s : Ā
Cut

F, G, t ./ s : A ./ Ā

Fig. 3. LKαε
H : An annotated sequent calculus for prenex classical logic

(b) A switching σ of F is a choice of, for each switched link t of F , exactly one1

incoming edge for t in Dep(F ).2

(c) The switching graph Fσ of a switching σ is the undirected graph derived from3

Dep(F ) by deleting, for each switched node t, all edges coming into t except4

that chosen by the switching, and then forgetting directedness of edges.5

Definition 4.5. an αε-forest F is ACC-correct (or just ACC), if for each switching6

σ, Fσ is connected and acyclic.7

In addition to checking ACC correctness, we also need to check that the disjunc-8

tion of the formulae arising from a tautology index is really a tautology:9

Definition 4.6. Let F be an αε-forest, and let i be a tautology index appearing10

in F . The formula Fi is defined as follows:11

Fi =
∨
{A | (S) : A is a propositional node in F, i ∈ S}

Definition 4.7. An annotated sequent F is an Herbrand net if is ACC-correct,12

has no naked witnesses, and if for each tautology index i in F , we have T � Fi.13

Proposition 4.8. (a) F, α[a].t : ∀x.A is ACC correct iff F, t : A[x := a] is ACC14

correct and a /∈ freeα(F ).15

(b) F, (w1 + · · ·wn) : ∃x.A is ACC correct iff F,w1 : 〈∃x.A〉, . . . wn〈∃x.A〉 is ACC16

correct.17

(c) F, S : P is ACC correct iff F is ACC correct.18

Proof. An easy application of the definition of correctness; in each case, we19

add/remove a switched node which is a root. This cannot affect either connected-20

ness or cyclicity of the switching graph.21

12



4.3 Decorating sequent derivations with terms1

To make explicit the connection between sequential proofs and proof nets, we must2

give a function from sequent proofs to proof nets. We do this by using αε terms3

to decorate the formulae appearing in sequent proofs, similarly to how one may4

assign lambda terms to proofs of intuitionistic logic. This annotated LKH is given5

in Fig. 3. The rules of annotated LKαε
H operate not on sequents, but on αε-forests6

whose types are classical sequents. In order to ensure that the conclusion of a7

sequent proof s an αε-forest, we must use eigenvariables strictly : each instance of8

the universal quantifier should have a unique associated eigenvariable, and that9

eigenvariable should appear free only in the subproof above the rule introducing10

that quantifier. We must also insist that each instance of the tautology rule has a11

unique index.12

Definition 4.9. A derivation in LKαε
H is a tree built from rule instances from13

Fig. 3, with instances of the tautology rule at the leaves. A derivation Φ is strict if14

(i) each tautology rule in Φ is labelled with a distinct index i,15

(ii) An eigenvariable a does not appear free in the type of any sequent outside the16

subproof above the rule introducing α[a].17

We write LKαε
H ` F if there is a strict derivation in LKαε

H of F .18

Note that case (ii) in the above definition ensures that eigenvariables are used19

strictly in the usual sense, and additionally enforces the usual variable restriction20

on the rule for the universal quantifier.21

Remark 4.10. The annotated system LKαε
H provides a canonical function from22

LKH proofs to αε-forests (modulo renaming of indices). Such a canonical function23

does not exist for Robinson’s proof nets [Robinson 2003], owing to the presence of24

weakening; by working in the absence of weakening, we avoid this problem.25

Example 4.11. Let Σ contain the unary predicate A and a constant symbol c.26

Recall the drinker’s term D (Example 3.7):27

D = (ε[c].α[a].{1}+ ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y)) (1)

D is the conclusion of the derivation below:28

1
{1} : Ā(c) ∨A(a), {1} : Ā(a) ∨A(b)

∀R
{1} : Ā(c) ∨A(a), α[b].{1} : ∀yĀ(a) ∨A(y)

∃R
{1} : Ā(c) ∨A(a), (ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

∀R
α[a].{1} : ∀y(Ā(c) ∨A(y)), (ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

∃R
(ε[c]α[a].{1}) : ∃x.∀y(Ā(x) ∨A(y)), (ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

C∃
(ε[c].α[a].{1} + ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

(2)

The following result immediately gives completeness of Herbrand nets with respect29

to prenex classical logic:30

Proposition 4.12. The conclusion of any LKαε
H derivation is an Herbrand net.31

13



Proof. By induction on the tree-structure of an LKαε
H proof.1

Two derivations in annotated LKαε
H derive the same Herbrand net if and only if2

they can be derived from each other by a sequence of natural proof transformations:3

Theorem 4.13. If Φ and Ψ are annotated LKαε
H derivations of the same Her-4

brand net F , then there is a sequence Φ0 = Φ,Φ1, . . . ,Φn = Ψ of derivations of F5

such that Φn differs from Φn+1 by either6

—a permutation of two consecutive, non-interfering sequent rules:7

—the re-association of two consecutive contraction rules8

F, s : ∃x.A, t : ∃x.A, u : ∃x.A
C

F, s+ t : ∃x.A, u : ∃x.A
C

F, s+ t+ u : ∃x.A

−→

F, s : ∃x.A, t : ∃x.A, u : ∃x.A
C

F, s+ u : ∃x.A, t : ∃x.A
C

F, s+ t+ u : ∃x.A
and similarly for contractions on QFFs9

—the absorption of a contraction on a QFF into a tautology rule, or its reverse10

i
G, {i} : P, {i} : P

C
G, {1} : P

←→ i
G, {i} : P

Proof. Suppose Φ and Ψ are not identical sequent derivations. Then there is a11

branch D of Φ on which Ψ does not agree. Let ρ0 be the last rule instance on D,12

counting from the root of Φ, for which Φ and Ψ agree, and let ρ′, the first rule on13

D on which Φ and Ψ disagree, introduce the term t : A. Assume first (since this14

case is easier) that ρ′ is not a contraction. Since Φ and Ψ agree up to ρ, there is a15

rule instance ρn above ρ in Ψ introducing t, with rule instances ρ1 . . . ρn−1 between16

ρn and ρ. We prove the lemma by induction on the largest such n, for any branch17

of Φ. First, suppose that ρn is a universal inference; then it can clearly be moved18

below ρn−1. Now suppose ρn is a cut. If ρn−1 is a cut or an existential inference,19

then ρn can be moved below ρn−1. If ρn−1 is a universal inference, then it can be20

moved above ρn if and only if its eigenvariable a is not free in the main formulae21

of ρn. But the corresponding rule to ρn− 1 in Φ appears above ρ′; by strictness22

a cannot appear free in the premise of ρ′, and so also cannot appear free in the23

premise of ρn. A similar argument works where ρn is an existential inference.24

Now suppose that ρ′ is a contraction on an existentially quantified formula, in-25

troducing an n-ary expansion t = (w1 + · · ·+wn). We can permute the contraction26

inferences in Φ involving the wi’s down until they all occur, in a block, ending with27

ρ′ – call this proof Φ′. We can do the same with Ψ, and then apply re-association28

and of contractions so that the contraction inferences above t is the same as in29

Φ′ – call this proof Ψ′. Φ′ and Ψ′ now agree on a the block of contractions, and30

we may apply the induction hypothesis to find a sequence of permutations and31

re-associations from Φ′ to Ψ′.32

Finally, suppose that ρ′ is a contraction on a QFF. Let S, the term ρ introduces,33

be a set containing indices i1, . . . in. As above, permute all the contractions on34

ancestors of S down, so they occur in a block above rho0, both in Φ and in Ψ; call35

these proofs Φ′ and Ψ′. The Herbrand net derived before the block of contractions36

14



is, in both proofs: a context G and then a number of copies of each {ij}; however,1

the number of copies of {ij} may be different in the different proofs. Now re-2

associate the contractions appearing in Φ′ and Ψ′, so that at first we only perform3

contractions of the form4

G, {i} : P, {i} : P
C

G, {i} : P
(3)

Call these proofs Φ′′ and Ψ′′. This leads, in both proofs, to a block of contractions5

of the kind shown in (3), with conclusion G, {i1} : P, . . . {in} : P , containing only6

one copy of P for each tautology index. The contractions of the form shown in (3)7

can be pushed towards the tautology links, where they can be removed by absorbing8

them into the tautology. This then leaves n− 1 instances of contraction above ρ0,9

which can be re-associated so they give the same contraction tree in both proofs.10

4.4 Subnets of Herbrand Nets11

We now define an analogue of the notion of subproof for Herbrand nets. While the12

definition of subnet is rather easy for MLL− proof nets, the presence of contraction13

leads to a less intuitive notion for Herbrand nets.14

Definition 4.14 Subnet. Let F be an αε-forest which is ACC-correct. A subnet15

of F is a subforest G of F closed under dependency (if s ∈ G and s C t then t ∈ G)16

which itself satisfies ACC. Each root of G inherits a type from the typing derivation17

of the term of which it is a subterm; the type of a subnet is the multiset consisting18

of the types of its non-cut roots.19

Notice that we do not require that a subnet of an Herbrand net is an Herbrand20

net; it might contain naked witnesses, and its indices need not yield tautologies.21

For example, Fig. 4 shows three subnets of the drinker’s term, none of which are22

Herbrand nets. As another example, consider the following immediate consequence23

of the definition of subnet24

Proposition 4.15. Let F be an ACC-correct αε-forest, and let {i} be a leaf of25

F . Then the subforest consisting of just the node {i} is a subnet of F .26

There is a strong connection between subnets of an Herbrand net and subproofs of27

its sequentializations, which we will see once we have proved sequentialization.28

The largest and smallest subnets containing a particular subterm are of particular29

interest:30

Definition 4.16. Let F be an ACC-correct αε-forest, and let t be a node in F .31

The empire e(t) of t in F is the largest subnet of F having t as a root. The kingdom32

k(t) of t in F is the smallest subnet having t as a root.33

The following is proved in Appendix A:34

Corollary 4.17. Every node in F has a kingdom and an empire.35

The kingdom of a node has a particular structure:36

Proposition 4.18. Let t be a node of an ACC-correct αε-forest F , and let G, t37

be its kingdom. Then the roots of G are either witnesses or cuts.38

15



{1} {1}

α[a] α[b]

ε[c] ε[a]

+

∃x.∀y.(Ā(x) ∨A(y))

{1} {1}

α[a] α[b]

ε[c] ε[a]

+

∃x.∀y.(Ā(x) ∨A(y))

{1} {1}

α[a] α[b]

ε[c] ε[a]

+

∃x.∀y.(Ā(x) ∨A(y))

Fig. 4. Three subnets of the drinker’s term

Proof. By Prop. 4.8, if a root of G has any other form, we can find an ACC-1

correct subforest of G, t with t as a root, contradicting minimality of the king-2

dom.3

The following relation will be the key to our sequentialization and cut-elimination4

results.5

Definition 4.19. Let F be an ACC-correct αε-forest. We define a relation � on6

the nodes of F as follows: t� s if t ∈ k(s).7

If t is a node of an Herbrand net F , we can think of the nodes s such that s� t8

as the inference steps that must occur in any sequent derivation of F above the9

rule introducing t.10

Proposition 4.20. The relation � is a partial order on the subterms of an11

ACC-correct αε-forest.12

Proof. See Appendix A.13

4.5 Sequentialization14

We now establish that every Herbrand net arises as the conclusion of an LKαε
H15

derivation. The proof that this is the case will be an induction using the following16

measures:17

Definition 4.21. Let F be an Herbrand net.18

(a) The size s(F ) of F is the number of α, ε and ./ nodes in F .19

(b) The width w(t) of an expansion node t = (w1 + · · ·+wn) in F is n. The width20

w(s) of a propositional node s = S in F is the cardinality of S.21

The w-rank w(F ) of an Herbrand net F is
∑
t(w(t) − 1), where t ranges over all22

expansion nodes and propositional nodes of F .23

We show that all nets may be sequentialized by induction on s(F ) + w(F ). Our24

base case is where s(F ) = 0 (in which case w(F ) is also 0):25

Proposition 4.22. If F is an Herbrand net of size 0 (i.e. it contains no α, ε26

or ./ nodes) it is the conclusion of the tautology rule of LKαε
H .27

16



Proof. Since F contains no ./ nodes, and is a net, it can contain only one1

tautology index i. So F has the form {1} : P1, . . . , {1} : Pn, with
∨
Pi a tautology2

(since F is an Herbrand net).3

In cases of non-zero measure, we look for a rule of LKαε
H whose conclusion is4

F and whose premisses are also Herbrand nets – the form of the rules of LKαε
H5

guarantees that the measure of each of the premisses is lower than the measure of6

the conclusion.7

Definition 4.23. Let F be an Herbrand net, and let t : A be a root of F . The8

root t is a gate of F if and only if there is a rule instance of LKαε
H , with F as9

conclusion, with t : A as the active root in the conclusion, and with premisses that10

are also Herbrand nets.11

If the sequent F contains a formula introduced by a universal inference rule or a12

contraction, then that formula is always a gate of F .13

Proposition 4.24. Let F be an Herbrand net.14

(a) If F = F ′, α[a].t : ∀x.A is an Herbrand net, then G = F ′, t : A[x := a] is also15

an Herbrand net.16

(b) If F = F ′, s1 + s2 : ∃x.A, then G = F ′, s1 : ∃x.A, s2 : ∃x.A is also an Herbrand17

net.18

(c) If F = F ′, S1 ∪ S2 : P then G = F ′, S1 : P, S2 : P is also an Herbrand net.19

Proof. Follows immediately from Prop. 4.8.20

The difficulty lies in knowing when to apply the non-invertible rules of LKαε
H : the21

existential rule and the cut-rule. The main work of the rest of this section will be22

to show that each Herbrand net has a gate. We will use the notions of kingdom,23

empire, and the relation �, defined in the previous section. The backbone of the24

proof is the following characterization of the gates of an Herbrand net:25

Proposition 4.25. Let F, t : T be an Herbrand net26

(a) If t is of the form α[a].t, {w1, . . . wn} or a non-singleton set S, it is a gate.27

(b) if t is of the form s1 ./ s2 is a gate if and only if it is �-maximal.28

(c) if t is of the form (ε[M ].s) : ∃x.A, it is a gate if and only if ε[M ].s : 〈∃x.A〉 is29

�-maximal in F, ε[M ].s : 〈∃x.A〉.30

We can immediately see that (a) holds, by Prop. 4.24. Before proving parts (b)31

and (c), let us observe that this characterization of gates is enough to show that32

every net of nonzero size has a gate:33

Proposition 4.26. Let F be an Herbrand net. Either F is the conclusion of34

the tautology rule, or it has a gate.35

Proof. If F has size zero and width zero, F is a conclusion of the tautology rule.36

Now assume that F has nontrivial size/width; by Lemma A.6, � is a partial order37

on the nodes of F , so F has at least one �-maximal node t: this node is also, by38

definition, a root of F . If t is a gate, we are done. Suppose that t is not a gate: then39

by Proposition 4.25 and Proposition 4.18 it is of the form {i} or (ε[M ].t). Suppose40

17



the former: since F = G, {i} : P has nonzero size, so does G. G is ACC-correct by1

Proposition 4.8: thus G has a gate t : A. This is also a gate of F , since t /∈ k({i}).2

Finally, suppose that all �-maximal nodes of F are of the form (ε[Mi].si), for3

1 ≤ i ≤ n; so4

F = G, (ε[M1].s1) : ∃x1.A1, . . . , (ε[Mn].sn) : ∃xn.An
The ACC-correct αε-forest5

F ′ = G, ε[M1].s1 : 〈∃x1.A1〉, . . . , ε[Mn].sn〈∃xn.An〉

has an�-maximal node, and it must be ε[Mj ].sj : 〈∃xj .Aj〉, for some j. This node6

is also �-maximal in7

G, (ε[M1].s1) : ∃x1.A1, . . . , ε[Mj ].sj : 〈∃xj .Aj〉, . . . , (ε[Mn].sn) : ∃xn.An,

(where we have placed a + below all the naked witnesses but ε[Mj ].sj) and so8

(ε[Mj ].sj) : ∃xj .Aj is a gate of F .9

From this, we derive the main theorem of this section:10

Theorem 4.27 Sequentialization. An annotated sequent F is an Herbrand11

net if and only if it is the endsequent of an LKαε
H derivation π. We call π a12

sequentialization of F .13

Proof. One direction is given by Prop. 4.12. For the other direction, proceed14

by induction on s(F )+w(F ). If this measure is zero, F is the conclusion of the tau-15

tology rule. Otherwise, F has a gate, and there is a sequent rule which decomposes16

F into one or more smaller Herbrand nets, each of which can be sequentialized by17

the induction hypothesis.18

The following cases of Prop. 4.25 remain to be proved:19

Lemma 4.28 Splitting ./. Let F = F ′, t ./ s : A ./ Ā be ACC-correct; then20

t ./ s is �-maximal in F iff there is a partition F ′ = F1, F2 such that F1, t : A and21

F2, s : Ā are ACC-correct. If, further, F is an Herbrand net, then F1, t : A and22

F2, s : Ā are Herbrand nets.23

Proof. This is a variation on the standard “splitting tensor” theorem for MLL24

proof nets: see Section A for the proof.25

Lemma 4.29. Let F = G, (ε[M ].t) : ∃x.A be ACC-correct (resp. an Herbrand26

net). Then F ′ = G, t : A[x := M ] is also ACC-correct (resp. an Herbrand net) if27

and only if ε[M ].t : 〈∃x.A〉 is �-maximal in F ′′ = G, ε[M ].t : 〈∃x.A〉.28

Proof. Suppose that F is ACC-correct, and that F ′ is also ACC-correct, and29

suppose for a contradiction that ε[M ].t is a member of k(X) for some other node30

X of F ′′. But then consider K ′, the kingdom of X in F ′. K ′ is also a subnet of F ′′,31

and smaller than F since it does not contain ε[M ].t. This contradicts minimality32

of the kingdom.33

Suppose now that F ′′ = G, ε[M ].t : 〈∃x.A〉 is ACC with�-maximal node ε[M ].t :34

ε[M ].t : 〈∃x.A〉. We show that F ′ is ACC. Since F ′ is a subgraph of F ′′, all its35

switching graphs are acyclic: we must show that they are also connected. Observe36

that free(M) ⊆ freeα(F ). For otherwise, there is a variable a with a ∈ free(M),37

18



a /∈ freeα(F ); then there is a node of F of the form α[a].s, and (ε[M ].t) ∈ k(α[a].s),1

contradicting the fact that (ε[M ].t) is a gate. Thus the node ε[M ].t is connected2

to each switching graph only by its unique successor in the forest structure of F ′′,3

and so removing it cannot disconnect any switching graph.4

Finally, notice that F and F ′ have the same leaves, and so each tautology index5

in F ′ gives rise to a tautology.6

The following will be useful in connecting cut-reduction in Herbrand nets with7

cut-reduction in LKαε
H :8

Proposition 4.30. Let F be an Herbrand net, and let G be a subnet of F . Then9

there is a sequentialization Φ of F containing a subproof which corresponds to G in10

the following sense: the α, ε and cut terms of F introduced in the subproof above t11

are precisely those which are members of G.12

Proof. Sequentialize F , as in the proof of the sequentialization theorem, with13

the caveat that no node contained in G cannot be removed: they are not considered14

gates of F . The algorithm will fail at the point where the remaining net H to be15

sequentialized has no gate to remove: all gates of H must therefore be members of16

G, or, in the case of a gate of the form (ε[M ].s), it is possible that only the witness17

ε[M ].s is a member of G. Every member of G is, of course, contained in H. On18

the other hand, suppose that t is a ε, α or cut node in H. Then t is contained in19

the kingdom of some gate s of H: but then t is a member of G, since every gate of20

H is a member of G, or of the form (ε[M ].s), where ε[M ].s is a member of G.21

5. CUT-ELIMINATION22

The cut-free completeness of LKH gives an immediate, but nonconstructive, proof23

of cut-elimination for Herbrand nets. In this section we will show a system of24

reductions (“Kingdom reduction”) such that any Herbrand net may be transformed25

into a cut-free Herbrand net using these reductions.26

Cut-reduction in sequent calculus works on subproofs. By analogy, cut-reduction27

on Herbrand nets works on subnets. This introduces three complications to the28

definition of cut-reduction. First, subnets are not necessarily Herbrand nets, and29

so cut-reduction will need to be defined on any ACC-correct αε-forest. Secondly,30

while the operation of replacing a subtree of a sequent proof is easy to define, it31

is a little harder to define replacing a subnet by its reduct, and in addition we32

must check that this replacement preserves correctness. Thirdly, when reducing a33

cut, we might have several choices of subnet to duplicate. We choose to always34

duplicate the kingdom of the α[a].s term in such a cut: this corresponds, in LKH35

(by Lemma 4.30 and Theorem 4.13) to always duplicating the subproof obtained36

by first permuting all inferences that can be below the cut.37

We turn first to the question of when we may replace a subnet F of an ACC-38

correct αε-forest with another ACC-correct αε-forest F ′. We begin by considering39

replacing a subterm t of an αε term s : T with another term t′, in such a way that40

we preserve typing. Clearly, if t has type R in the typing derivation of s : T , then41

replacing t with any other term with type R yields a correct typing derivation. In42

addition, suppose that w is a subterm of s of type 〈∃x.A〉, and that t′ has type ∃x.A.43

Then, if w appears in an expansion r = (w+w1+· · ·+wn) (recall that an expansion44
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is a formal sum, and so we can without loss of generality write w as the first term1

in the sum), replacing w by t′ amounts to replacing r by t′+ (w1 + · · ·+wn). That2

is, we can replace an expansion tree by any other expansion tree with the same3

type, and we can in addition replace a witness of type 〈∃x.A〉 by an expansion of4

type ∃x.A.5

To replace a subnet F by another subnet F ′ is to replace each term of F by a6

corresponding term of F ′. The following gadget will allow us to know when we can7

do that while maintaining correctness:8

Definition 5.1. Let F be an ACC-correct αε-forest. A substitution triple for F9

is a triple (F ′, froot, ftaut), where F ′ is an ACC-correct αε-forest, ftaut is a function10

from the tautology indices of F ′ to the tautology indices of F such that11

F ′i ↔ Fftaut(i).

and froot is a bijection from the non-cut roots of F to the non-cut roots of F ′ such12

that either f(t) and t have the same type, or f(t) has type 〈∃x.A〉 and f(t) has13

type ∃x.A.14

Notice that, if F is an Herbrand net, and (F ′, ftaut, froot) is a substitution triple15

for F , then F ′ is an Herbrand net. On the other hand, if an αε forest F occurs16

as a subnet of an αε forest G, the type-preserving properties of froot allow that we17

may replace each root t of F by f(t) in G (provided that the α bound variables of18

F ′ do not occur in G: we can guarantee this by alpha-conversion). In the following19

lemma, recall that IndF denotes the tautology indices occurring in F :20

Lemma 5.2. Let G be an ACC αε-forest, and let F be a subnet of G. Let21

(F ′, froot, ftaut) be a substitution triple for F . Let22

gtaut : (IndG \ IndF ) ∪ IndF ′ → IndG

be the function defined as follows: gtaut(i) = ftaut(i) if i ∈ IndF ′ , and gtaut(i) = i23

otherwise. Let G[F ′/F ] be the αε-forest defined as follows24

—Replace each root of F with its image under froot;25

—Replace each leaf S of G not in F with its inverse image under gtaut.26

Let groot be the obvious function from non-cut roots of G[F ′/F ] to non-cut roots of27

G. Then (G[F ′/F ], groot, gtaut) is a substitution triple for G.28

Proof. The only difficult detail to check is that G[F ′/F ] is ACC-correct. Sup-29

pose that it is not: then there is a switching σ for G[F ′/F ] such that the resulting30

switching graph is either disconnected or has a cycle. Suppose that some switching31

graph of G[F ′/F ] is disconnected: then since F ′ is ACC correct there must be two32

nodes outside of F ′ which lie in separate components of the switching graph, from33

which it follows easily that some switching graph of G is disconnected. Suppose34

now that some switching graph of G[F ′/F ] has a cycle. Then that cycle cannot35

be contained in the subnet F ′ of G[F ′/F ], since F ′ is ACC-correct. So the cycle36

passes through the complement of G[F ′/F ] and F ′. Let t′ and s′ be two nodes of37

the switching graph G[F ′/F ]σ such that there is a switching path between them38

outside of F ′. Then t′, s′ are either roots of F ′ or tautology indices found in F ′.39

Using ftaut and froot we can find corresponding nodes t and s, and a switching40
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σ′ for F (which chooses t and s if their predecessors are switched, and otherwise1

agrees with σ) such that there is a switching path from t to s in G, outside of F .2

But, since t and s appear in the switching graph of F , there is also a path from3

t to s within F , for any switching. Thus, we find a switching cycle in a switching4

graph of G, contradicting that G is ACC-correct.5

The substitution triples we are interested in are those that arise from the cut-6

reduction operations of communicating a witness and duplicating a subproof, closed7

under reducing in a subnet and under composition: we will call these triples8

reduction-triples.9

Definition 5.3 Reduction Triples. The basic reduction triples are the following,10

where F1, α[a].t : ∀x.A and F2, s : ∃x.Ā are ACC forests and11

F = F1, F2, α[a].t ./ s : ∀x.A ./ ∃x.Ā :

(i.e., the cut displayed splits F )12

(a) (Identity) (F, idroot, idtaut) is a reduction triple for F , where idroot and idtaut13

are the identity functions on the non-cut roots/tautology indices of F .14

(b) (Communication) if s = ε[M ].s′, then15

(F1[a := M ], F2, t[a := M ] ./ s′ : A[x := M ] ./ Ā[x := M ], froot, ftaut)

is a reduction triple for F , where froot and ftaut are the evident bijections16

between the roots/indices.17

(c) (Duplication) if s is a nontrivial expansion, if we can decompose s into s0 + s1,
and if F1 = w1, . . . wn, G, where the wi are witnesses and G contains only cuts,
then (F ′, froot, ftaut) is a reduction triple for F , where

F ′ = (τ0(w1) + τ1(w1)), . . . , (τ0(wn) + τ1(wn)), τ0(G), τ1(G), F2

τ0(α[a].t) ./ s0 : ∀x.A ./ ∃x.Ā, τ1(α[a].t) ./ s1 : ∀x.A ./ ∃x.Ā

where froot is the evident bijection between non-cut roots of F and F ′, ftaut18

maps indices i0, i1 to i if i is duplicated by the reduction, and is the identity19

otherwise, and τ0, τ1 are the renaming functions of Definition 3.11, where V =20

freeα(F1, α[a].t) and I is the set of tautology indices in F1, α[a].t21

New reduction triples can be built in two ways:22

(a) (composition) If (F ′, froot, ftaut) is a reduction triple for F , and (F ′′, f ′root, f
′
taut)23

is a reduction triple for F ′, then (F ′′, f ′root ◦ froot, ftaut ◦ f ′taut) is a reduction24

triple for F .25

(b) (reduction in a subnet) If G is a subnet of F , and (G′, froot, ftaut) is a reduction26

triple for K, then (F [G′/G], groot, gtaut), as defined in Lemma 5.2 is a reduction27

triple for F .28

Lemma 5.4. Every reduction triple is a substitution triple.29

Proof. It is trivial that the identity reduction triple is a substitution triple, and30

that the composition of two substitution triples is a substitution triple. A simple31

application of the ACC criterion shows that Communication and Duplication yield32

substitution triples – notice that in a Duplication triple froot maps naked witnesses33
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wi to expansions (τ0(wi) + τ1(wi)). Reduction in a subnet preserves the property1

of being a substitution triple, by Lemma 5.2.2

As an example of the above, we will look at the reduction of a structural cut3

(a cut against contraction) in an Herbrand net F which does not split its context.4

This corresponds to reducing a cut in the sequent calculus which is not the last rule5

in the proof. For this to work, we need to find a subnet G of F containing the cut6

to be reduced such that the cut splits G. Such a subnet always exists: we can take7

the kingdom of the cut. The following is an immediate consequence of Prop. 4.20:8

Proposition 5.5. A node t in an ACC-correct αε-forest F is �-maximal in9

k(t).10

Now simply recall Lemma 4.28: a cut is splitting if and only if it is �-maximal.11

Let X denote the cut to be reduced. Since in X splits k(X), and since all the12

roots of k(X) are either naked witnesses or cuts, by Lemma 4.18 there is a basic13

reduction triple from k(X) to a net K ′. By a subsequent application of reduction14

in a subnet, we can obtain a reduction triple for F embodying a one step of cut-15

reduction applied to F . Since this is an important operation on Herbrand nets, we16

will take the trouble unpack this definition:17

Definition 5.6 The duplication reduction Dup. Let G = F, α[a].t ./X (s1 + s2) :18

A ./ Ā be an Herbrand net. Let K = k(α[a].t), the kingdom of α[a].t in G. Let V19

be the variables bound in α binders in K, and I be the tautology nodes in K. Let20

the functions τ0 and τ1 be renaming functions as before for the sequences V and I.21

Then G Dup-reduces to22

Da(F ), α[x0].τ0(t) ./ s0 : A ./ Ā, α[a1].τ1(t) ./ s1 : A ./ Ā,

where Da is a function defined pointwise on the members of F as follows:

Da(S) = τ0(S) ∪ τ1(S)

Da(t ./ s) =

{
Da(t) ./ Da(s) t ./ s /∈ K
τ0(t ./ s), τ1(t ./ s) t ./ s ∈ K

Da(α[a].t) = α[a].Da(t)

Da(t1 + · · ·+ tn) = Da(t1) + · · ·+Da(tn)

Da(ε[M ].t) =

{
(ε[M ].Da(t)) ε[M ].t /∈ K
τ0(ε[M ].t) + τ1(ε[M ].t) ε[M ].t ∈ K

5.1 The principal lemma for partial cut-elimination23

In this section we state and prove the following reduction lemma:24

Lemma 5.7. Let F = G, t ./ s : A ./ Ā be an ACC-correct αε-forest, where all25

cuts appearing in G are of rank 0. Then F has a reduction triple (F ′, froot, ftaut)26

such that F ′ contains only cuts of rank 0.27

This is a generalization of the following, which says that we can remove a single28

cut of non-zero rank from a net:29
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Corollary 5.8. Let F = G, t ./ s : A ./ Ā be an Herbrand net, and let G1

contain only cuts of rank 0. There is an Herbrand net F ′, with the same type as2

F , containing only cuts of rank 0.3

Proof. As remarked before, (F ′, froot, ftaut) is a substitution triple for an Her-4

brand net F only if F ′ is an Herbrand net of the same type as F .5

The proof of the reduction lemma is strikingly close to Gentzen’s original demon-6

stration of cut-elimination for the classical sequent calculus, with two adjustments.7

These adjustments both arise from the lack of tree structure in a proof. First, we8

can no longer speak of the “topmost” cut in a proof; instead, we eliminate cuts9

which are potentially topmost:10

Definition 5.9. Let F be an αε-forest. A cut X is an �-topmost cut of rank11

n in F if each cut Y with Y � X has rank < n: in other words, each cut in the12

kingdom of X has smaller rank than X.13

Second, we cannot use any notion of height as an induction measure: instead we use14

a more natural measure of the complexity of a cut: the number of witnesses taking15

place in it (its “width”). On the other hand, the proof improves on Gentzen’s in16

that there is no need to extend the language of proofs with a multicut rule.17

Proof. (Of Lemma 5.1) Our proof proceeds by an induction over three mea-18

sures, ordered lexicographically: the first is the size of the ACC-correct αε-forest,19

meaning the number of nodes it has. The second is the rank of the unique non-20

zero rank cut X appearing in the ACC-correct αε-forest. The final measure is the21

“width” of the cut: if the cut-term decorating the cut is α[a].t ./ s, then the width22

of the cut is the width of s – otherwise the width of the cut is 0.23

Our base case is where all cuts are of rank 0; there is no work to be done, and24

we can set F = F ′ and both functions froot and ftaut to be the identity.25

Suppose now that X has rank n, but that F is not the kingdom of X. Then we26

can find a smaller ACC-correct αε-forest k(X) containing the cut. By the induction27

hypothesis, we obtain a reduction triple (K ′, froot, ftaut) for K, where K ′ contains28

only cuts of rank zero; by reduction in a subnet we obtain a reduction triple for F29

with the required property.30

Now suppose that F is the kingdom of X. Then we may write F as31

F1, α[a].t ./ s : ∀x.A ./ ∃x.Ā, F2

where F1, α[a].t : A and F2, s : Ā are also ACC, with gates α[a].t and s respectively.32

We proceed by case analysis on the structure of s.33

If s = (ε[M ].s′), there is a basic reduction triple between F and34

E = F1[a := M ], t[a := M ] ./ s′ : A[x := M ] ./ Ā[x := M ], F2

which has measure less than that of F . By the induction hypothesis, there is a35

reduction triple (E′, groot, gtaut) for E, where E′ contains no nonzero cuts. By36

composition, there is a reduction triple between F and E′.37

Finally, suppose that s has the form ε[M1].s1 + · · ·+ ε[Mn].sn. Since the relation38

� is a partial order on the nodes of F , there must be an ε[Mi].si which is �-39

minimal among the components of s; then we can write s as ε[Mi].si + s′. There is40
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a basic reduction triple between F and1

E = E′, α[a0].t0 ./Y ε[Mi].si, α[a1].t1 ./Z s
′.

Consider now the kingdom k(Z) of the cut Z in E. Since we picked ε[Mi].si2

to be �-minimal among the components of S, it does not appear in k(s′), and3

thus does not appear in k(Z). Since ε[Mi].si is not a member of k(Z), neither4

is the cut Y . k(Z) is, therefore, an ACC-correct αε-forest of lower measure than5

F (it contains a single cut of nonzero rank, with the same rank but lower width6

than the cut appearing in F ) and thus by the induction hypothesis there is a re-7

duction triple (K ′, groot, gtaut) for k(Z), such that K ′ contains only cuts of rank8

zero. By reduction-in-a-subnet, there is an ACC-correct αε-forest E[K ′/k(Z)]9

and functions hroot and htaut forming a reduction-triple for E. The ACC-correct10

αε-forest E[K ′/k(Z)] now contains a single nonzero-rank cut of width 1: since11

ε[Mi].si was not in k(Z), the width of this cut in E[K ′/k(Z)] is the same as that12

in E. E[K ′/k(Z)] is thus subject to the induction hypothesis, which yields a triple13

(F ′, hroot, htaut) for E[K ′/k(Z)], where F ′ contains pnly cuts of rank 0. We may14

now compose these three reduction triples to obtain the required reduction triple15

for F .16

As a corollary to the principal lemma, we obtain partial cut-elimination.17

Theorem 5.10 Partial cut-elimination. Let F be an Herbrand net. There18

is an Herbrand net F ′, containing only cuts of rank zero, with the same type as F .19

Proof. By induction on the number of nonzero-rank cuts in an Herbrand net20

F . If there are none, we are done. Now suppose we may remove the nonzero-rank21

cuts from an ACC-correct αε-forest containing n− 1 nonzero-rank cuts, and let F22

contain n nonzero-rank cuts. Let X be a �-topmost nonzero-rank cut in F , and23

consider k(X), it’s kingdom. By the previous lemma, there is a reduction triple24

(K ′, froot, ftaut) for k(X), such that k(X) contains only cuts of rank zero. The25

ACC-correct αε-forest F [K ′/k(X)] has the same type as F (since F has no naked26

witnesses), but has n − 1 nonzero-rank cuts. Furthermore, by the properties of27

substitution triples every tautology index of F [K ′/k(X)] yields a tautology. Thus28

F [K ′/k(X)] is an Herbrand net, and we may apply the induction hypothesis to29

obtain an Herbrand net containing only cuts of rank zero.30

5.2 From Partial to Full cut-elimination31

Usually, when one performs partial cut-elimination, it is because the remaining32

cuts cannot be eliminated. Here this is not the case: the cuts of rank zero may33

very easily be eliminated, but in a way that interferes with the notion of reduction34

triple. The reader might suspect that here we find a source of nondeterminism in35

the reductions: a term S : P where S has cardinality n > 1, represents an n−1-fold36

contraction. Since we may form cuts S ./ T , one might expect to have to make37

duplications to reduce these cuts, and to have to choose a direction in which the38

cut should be reduced. In fact, for weak normalization we can avoid such issues,39

owing to the following lemma:40

Lemma 5.11. Let F = G, S ./ T : P ./ P̄ be an Herbrand net, with G cut-free:41

then S and T are disjoint singleton sets.42
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Proof. A simple application of the correctness that criterion: alternatively, ob-1

serve that as F is an Herbrand net it must be the conclusion of an LKαε
H derivation2

containing one cut, and thus two branches, each containing precisely one tautology3

rule.4

Such cuts are easy to eliminate5

Lemma 5.12. Let F, {i} ./ {j} be an Herbrand net. Then F [i ← j] is an Her-6

brand net.7

Proof. By induction on the height of a derivation of F, {i} ./ {j} in LKαε
H .8

Since the derivation contains a cut, it cannot have height 1 - the minimal height is9

2, with the proof having the form10

i
{i} : P1, . . . , {i} : Pn, {i} : P

j
{j} : Q1, . . . , {j} : Qm, {j} : P̄

Cut
{i} : P1, . . . , {i} : Pn, {j} : Q1, . . . , {j} : Qm, {i} ./ {j} : P ./ P̄

It follows that
∨
k Pk ∨

∨
lQl is a tautology, and so11

{i} : P1, . . . , {i} : Pn, {i} : Q1, . . . , {i} : Qm

is the conclusion of a tautology rule. The remainder of the proof is a simple induc-12

tion on the height of a proof, relying on the fact that any other rule in LKαε
H can13

be pushed below a cut of the form {i} ./ {j}.14

Corollary 5.13. Let F be an Herbrand net containing only cuts of rank 0.15

Then there is an Herbrand net F ′ of the same type which is cut-free, which can be16

obtained by applying the transformation17

Prop : F, {i} ./ {j}; F [i := j]

Proof. By induction on the number of cuts in F . Suppose that we may remove18

n−1 cuts of zero rank from a net. Then if F contains n cuts, it in particular contains19

one cut of the form {i} ./ {j}, which may be removed by the above lemma. The20

remaining proof contains n−1 cuts and so falls under the induction hypothesis.21

This is enough to obtain full cut-elimination for Herbrand nets. To write this22

theorem in a form which does not mention reduction triples, we use the defined23

Dup reduction from Definition 5.6: this precisely captures the kind of duplications24

occurring in the proof of Lemma 5.7. We will call the system of reductions com-25

prising Dup, Comm and Prop Kingdom reduction, since at each stage requiring a26

duplication only the kingdom (the smallest possible subproof) is duplicated.27

Theorem 5.14 Weak Normalization. Let F be an Herbrand net with type28

Γ. By applying rules from Fig. 5 we may produce a cut-free Herbrand net F ′, also29

with type Γ.30

6. KINGDOM REDUCTION IS NOT CONFLUENT31

Gentzen style cut-reduction is very badly behaved on proofs in classical logic. In32

particular, cut-reduction is highly non-confluent: the Weakening–Weakening exam-33

ple, due to Lafont [Girard et al. 1989] constructs, given arbitrary proofs Φ and Ψ34

of a sequent Γ, a third proof Φ ∗Ψ of Γ which reduces to both Φ and Ψ.35
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Prop : F, {i} ./ {j}; F [i := j]

Comm : F, α[a].t ./ {ε[M ].s}; F [a := M ], t[a := M ] ./ s

Dup : F, α[x].t ./ (s0 + s1) ; Dx(F ), α[x0].τ0(t) ./ s0, α[x1].τ1(t) ./ s1

Fig. 5. Kingdom reduction on Herbrand nets

Such an easy counterexample to confluence is hard to reconstruct in Herbrand1

nets, as we have no weakening. We cannot even replicate the similar Contraction–2

Contraction example of Girard [Girard 1991], since at most one cut formula in3

a given nontrivial cut can be the conclusion of a contraction. Our cut-reduction4

system contains no critical pairs arising from the direction in which a single cut5

is reduced. Nevertheless, the minimal reduction system on Herbrand nets is non-6

confluent: the non-confluence arises between, not within, cuts: that is, the choice7

we are asked to make is not how to reduce one particular cut, but instead which8

cut we should reduce. This section is devoted to an example of this behaviour.9

We work over a signature and theory axiomatizing a successor function: Σ =10

(X , {0, s}, {iszero}) with 0 a constant, s a unary function symbol, and iszero a unary11

relation symbol. The universal axiom set T for this theory consists of the single12

open formula ¬iszero(s(x)). Let A be the formula ∃x.∀y.(iszero(x)⇒ iszero(y)), and13

let B be the formula ∃z.(¬iszero(s(z))). We give a proof with cuts of the sequent14

B,B, containing two cuts on the formula A: depending on the order we reduce the15

cuts, we can obtain different witnesses above the two copies of B. Our example16

Herbrand net is the following:17

1 2 3

{2} {1} {1} {2} {2} {3} {3} {2}

α[a] α[b] ε[h] ε[g] α[d] α[e]

ε[0] ε[s(a)] + + ε[0] ε[s(d)]

ε[g] + α[g] α[h] + ε[h]

+ ./ ./ +

B A ./ Ā Ā ./ A B

(The grey regions indicate the kingdom of the node α[g]: we will later use this18

subnet to begin the elimination of cuts from this net). We leave it as a simple19

exercise to check that this is an Herbrand net over Σ, T . To begin, we reduce the20
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net by a Dup-reduction applied to the left-hand cut, which duplicates the shaded1

subnet, the kingdom of the node α[g]. The following net is the result:2

{21} {22} {1} {1} {21} {22} {21} {22} {3} {3} {21, 22 }

α[a] α[b] ε[h] ε[h] ε[g1] ε[g2] α[d] α[e]

ε[0] ε[s(a)] + + + ε[0] ε[s(d)]

ε[g1] ε[g2] + + α[g1] α[g2] α[h] + ε[h]

+ ./ ./ ./ +

Notice that the rightmost leaf of the forest in the reduct, labelled {2}, is not in the3

kingdom of the cut reduced, but that the tautology index 2 is duplicated by the4

reduction: hence, in the reduct, this index is replaced by {21, 22}.5

To continue the reduction of this net, we perform four Comm reductions, in which6

the ε nodes transmit their first-order terms to the corresponding α nodes. Two sub-7

sequent applications of the Prop reduction leave a net with only one cut remaining,8

replacing the three tautologies 1, 21 and 22 with a single tautology 1.9

{1} {1} { 1 } {1} {3} {3} {1}

ε[0] ε[s(h)] ε[0] ε[s(h)] α[d] α[e] ε[h]

+ + ε[0] ε[s(d)] +

α[h] +

./

To reduce the remaining cut, we must first duplicate the kingdom of α[h], yielding10
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two cuts. Eliminating one of those cuts, we arrive at the following net:1

{1} {1} {3} {1} {1} {3} {1} {3}

ε[0] ε[s(h)] ε[s(s(d))] ε[0] ε[s(h)] α[d] ε[h] ε[s(d)]

+ + ε[0] +

α[h] +

./

We now communicate the term 0 into the eigenvariable h1:2

{1} {1} {3} {1} {1} {3} {1} {3}

ε[0] ε[s(0)] ε[s(s(d))] ε[0]ε[0] ε[s(0)] α[d] ε[0] ε[s(d)]

+ + +

./

One application of Dup, two applications of Comm and two applications of Prop3

result in a cut-free net: intuitively, we substitute both of the terms 0 and s0 for d:4

{3} {3} {3} {3}

ε[0] ε[s(0)] ε[s(s(0)))] ε[s(s(s(0))))]

+

{3} {3} {3}

ε[0] ε[s(0)] ε[s(s(0))]

+

We obtain a cut-free proof in which the left-hand conclusion has four witnesses,5

and the right-hand conclusion three witnesses. Clearly, by swapping the order in6

which the cuts are reduced, we could arrive at a sequence of reductions in which the7

left-hand conclusion has three witnesses and the right-hand four witnesses. Thus8

Kingdom reduction on Herbrand nets is not confluent.9

6.1 The counterexample in sequent calculus10

A natural question to ask is whether the phenomenon displayed by the example11

in the previous section relies on some property of Herbrand nets, or whether it12

can also be exhibited in the sequent calculus. The answer depends, of course, on13

what one means by cut-elimination in the sequent calculus. Proposition 4.30 tells14
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us that every kingdom-duplication step on a net F can be simulated in the sequent1

calculus: there is some sequentialization of F such that the relevant kingdom arises2

as a subproof. Theorem 4.13 tells us that, given enough permutations, we can freely3

move between those sequentializations, and thus carry out the cut-elimination steps4

with the sequent calculus. The counterexample given above relies on ambiguity in5

the order of the two cuts; in sequent calculus we are forced to choose one cut to6

be above the other, while in proof nets both cuts can be “topmost”, in the sense7

that neither is contained in the others kingdom. Using the permutations induced8

by proof-nets one can always move the cuts past one another, but one does not9

need the full set of rule permutations to prove cut-elimination: in particular it is10

possible to eliminate all cuts from any LKH derivation without ever permuting a11

cut past another cut (by always reducing a cut which is uppermost in the sequent12

tree). Whether or not this counterexample can be recreated in sequent calculus13

depends, therefore, on which proof-transformations one allows (in particular, freely14

moving a cut above another cut is not allowed in LKtq).15

7. OTHER KINDS OF REDUCTION16

Kingdom duplication took some effort to define. Moreover the notion of kingdom,17

while natural, is little known outside the circle of specialists in proof nets. In this18

section we address (and reject) two seemingly natural alternatives to duplicating the19

kingdom, which would take less machinery to define but which are unsatisfactory20

for our purposes.21

7.1 Copying too little: dependent subforests22

Given an annotated sequent of the form23

F, α[a].t ./ s1 + s2 : A ./ Ā

if we are to copy the subterm α[a].t, to provide two copies to cut against s1 and24

s2, we must at least copy the dependent subforest, consisting of all the subterms25

t′ such that α[a].t C t′ – how does that reduction behave? Since subnets are also26

closed under dependency, we would never copy more than the kingdom, but in27

general we copy much less. In addition, since the tautology jumps play no part28

in the dependency relation, we can simply drop them, (being sure to replace the29

condition on being an Herbrand net with some other tautology checking condition).30

Such a reduction was studied by the author, and independently by Heijltjes (and31

others before us); it is seductively simple and holds the promise of an elegant ab-32

stract representation of classical proofs, but has a fatal flaw: as observed by Heijlt-33

jes [Heijltjes 2010], by duplicating dependent subforests we may reduce the example34

from the previous section to a forest containing a cut of the form α[a] ./ ε[M(a)],35

where there is a jump “across the cut”. Such a “proof” can, of course, never arise as36

the annotation of a sequent derivation, due to strictness. This suggests, as is indeed37

the case, that the dependent-subforest duplicating reduction does not preserve the38

property of being an Herbrand net.39

While we rejected this reduction in favour of Kingdom reduction, which preserves40

correctness with respect to the sequent calculus, Heijltjes opts in [Heijltjes 2010]41

instead to treat cuts with jumps across them as “garbage”, and adds an extra42

garbage collection reduction to remove them. Since the structure at tautology43
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1 2 3

{1} {1} {2} {2} {3} {3} {2}

ε[s(s(0))] ε[s(0)] ε[s(s(0))] ε[s(0)]

+ α[g] α[h] + ε[h]

./ ./ +

B ./ B̄ B̄ ./ B B

Fig. 6. A counterexample to strong normalization of Empire reduction

nodes is not needed for dependent subforest duplication, Heijltjes’s “Proof Forests”1

can be derived from our αε-forests by forgetting the structure at the leaves. His2

correctness criterion is such that (the forgetful projection of) any Herbrand net3

is a correct Proof Forest. Moreover, his strategy for weak normalization seems to4

yield the same results as Kingdom reduction, since it always reduces an�-topmost5

cut (where the kingdom and dependent subforest coincide). Nonetheless, there are6

correct Proof Forests containing no “garbage” cuts and yet corresponding to no7

sequent-derivation. In the way they behave and are handled, Heijltjes’s forests8

are rather similar to Lamarche and Strassburger’s N-nets for propositional classical9

logic [Lamarche and Strassburger 2005b]; in both cases, correctness with respect10

to sequent-calculus proofs is replaced by a weaker notion of correctness: the gain11

is a simpler notion of cut-reduction, but the loss is that there are “correct” proofs12

which do not correspond to sequential proofs.13

7.2 Copying too much: empires14

The very natural concept of kingdom is little-mentioned in the proof-net literature.15

The concept of empire, by contrast, appears in almost all introductions to the16

theory of proof nets for MLL−, and played a central role in their development.17

Moreover, the empire of a node is easy to calculate; for MLL− nets, for example, it18

can be calculated in time linear in the size of the net (while calculating the kingdom19

is quadratic).20

It is natural to ask, therefore, if this more familiar notion can be the basis of a21

cut-elimination for Herbrand nets. The following counterexample shows this is not22

possible. Let the underlying theory be as for the counterexample to confluence, and23

let B = ∃z.(¬iszero(z)). In the net shown in Figure 7.1, the shaded subnet is the24

copyable part of the empire of α[g]; the largest subnet of the empire of α[g] whose25

roots, other than α[g], are all cuts or naked witnesses.26

The reader can verify that, if this subnet is copied in the obvious way, and the27

resulting Comm/Prop redices reduced, the resulting net contains the original redex28

as a subnet, and indeed, it is not hard to prove that this net has no finite sequence29
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of reductions ending in a cut-free net, if we insist on always duplicating the empire1

rather than the kingdom.2

8. CONCLUSIONS AND FURTHER WORK3

We have shown, in this paper, a system of proof nets for classical first-order logic in4

prenex normal form, derived from Herbrand’s theorem. The system has the minimal5

set of properties one might expect of a proof system for classical logic — it is sound,6

complete, and like Gentzen’s LK it has weakly normalizing cut-elimination. We7

hope, of course, for more. Surprisingly, given the restrictions on structural rules,8

(and thus the avoidance of the contraction-contraction and weakening-weakening9

problems detailed in [Girard 1991]) cut-reduction in this system is not confluent.10

We seek, therefore, confluent subsystems. We conjecture, but as yet have no proof,11

that minimal reduction is strongly normalizing.12

Similar structures to our annotated sequents arise as strategies for Coquand’s13

game theoretical treatment of classical arithmetic [Coquand 1995]. Coquand gives14

a way to play a strategy containing cuts, which amounts to a non-associative compo-15

sition on proofs, and it would be interesting to compare this with the non-confluent16

behavior of Kingdom reduction.17

We look also to extend our system beyond prenex normal form, first to encompass18

a treatment of the propositional connectives. The papers [McKinley 2010; 2011]19

gives a multiplicative treatment of classical propositional proof nets which improves20

on [Robinson 2003] by replacing contraction (binary, defined on all formulae) by21

expansion (n-ary, defined only on positive formulae). It is possible to extend these22

nets, with the work of this paper, to full first-order logic and in addition the presen-23

tation of the axioms links can be changed so that both quantifier and axiom jumps24

are mediated by the α/ε of the current paper. Higher-order quantifiers could almost25

certainly be handled, with weak normalization being established by an adaptation26

of the method of reducibility candidates.27
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A. SUBNETS OF HERBRAND NETS46

The proofs contained in the appendix are very minor variations on the proofs of47

similar properties for MLL− proof nets, as presented in [Bellin and van de Wiele48

1995]. They are presented here for the sake of completeness.49

The subnets of an ACC-correct αε-forest are closed under the following operations:50

Proposition A.1. Let G1 and G2 be subnets of an ACC forest.51

32



(a) G1 ∩G2 is a subnet of F if and only if it is nonempty.1

(b) If G1 ∩G2 is nonempty, then G1 ∪G2 is a subnet.2

Proof. (a) Suppose G = G1 ∩ G2 to be nonempty but not a subnet of F . It3

is clearly closed under dependency, so to fail to be a subnet there must be a4

switching σ for which Gσ is disconnected. But then either G1σ or G2σ must be5

disconnected.6

(b) Now suppose that G1 ∩G2 is nonempty, but that G = G1 ∪G2 is not a subnet7

of F . Again, there must be a switching σ for which Gσ is disconnected. But8

since G = G1 ∩ G2 is nonempty, there is a node t in Gσ present in both G1σ9

and G2σ, and thus connected to each node of Gσ.10

11

By Prop. A.1, if the set of subnets having a node t as a root is nonempty, t has12

an empire and a kingdom.13

Definition A.2. Let F be an ACC-correct αε-forest, t a node of F , and σ a14

switching of F . Remove from Fσ the edge from t to its parent in F , if t is not a15

root. F (t, σ) is the connected component of this graph containing t.16

Proposition A.3. Let e =
⋂
σ F (t, σ), where σ ranges over all switchings of F17

and t is a node of F . Let e(t) be the intersection of e with the nodes of F . e(t) is18

a subnet of F , and t is a root of e(t).19

Proof. We must first see that e(t) is closed under the dependency relation C.20

This is easy to see when passing from an unswitched node to its unique successor.21

Suppose now that r is a switched node in e(t), and that one of its immediate C-22

successors s is not in e(t). Then there is a switching σ such that r ∈ F (σ, t) and23

s /∈ F (σ, t). Thus there is a path p from t to r in Fσ, and a path p′ from the parent24

of t to s, also in Fσ. By changing the switching σ to a switching σ′, where r chooses25

s and the parent of t chooses t (if the parent of t is switched) and leaving all other26

switches unchanged, we obtain a cyclic switching graph F ′σ. Hence e(t) is closed27

under dependency.28

We next observe that e(t) is an ACC-correct αε-forest: let σ be a switching of29

the nodes in e(t), and let σ′ be an extension of that switching to F . The graph30

e(t)σ is acyclic; if not there would be a cyclic switching graph of F . To see that31

e(t)σ is connected, observe that it is the intersection of two connected graphs.32

Suppose now that t is not a root of e(t). Then there is a s in e(t) such that s ≤ t.33

Choose a switching σt of F such that whenever r is a switched node with s ≤ r ≤ t,34

we choose a switching u for r such that u ≤ t.35

Because of these choices, the unique path from t to s in Fσt
uses the edge from36

t to its parent, and because of this does not provide a path from t to s in F (t, σt).37

If s is in e(t), then there is some other path from t to s in Fσt
, but this contradicts38

the fact that F is correct (acyclicity of Fσt
).39

Proposition A.4. The subnet e(t) is the largest subnet of F having t as a root.40

Proof. Suppose otherwise. Let G be a C-closed subforest of F , with t as a root,41

which is larger than e(t). Then there is a node Z of G, and a switching σ, such42
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that Z /∈ F (σ, t). But then there is no path from t to Z in Gσ, and so G is not1

ACC correct.2

The following technical lemma will be crucial:3

Lemma A.5. Let F be an Herbrand net, and let s and t be distinct nodes of F ,4

such that t ∈ e(s). Let s′ be the parent of s and t′ the parent of t. Then5

s′ ∈ e(t) iff t′ /∈ k(s′)

6

Proof. We have that7

G1 = e(t) ∩ k(s′) G2 = e(t) ∪ k(s′)

are ACC (since G1 is nonempty). If s′ ∈ e(t), t′ ∈ k(s′) then G1 has s′ as a root8

and does not contain t′, and so is a subnet with s′ as a root smaller than k(s′) –9

contradiction. Similarly, if t′ /∈ e(s), s′ /∈ k(t′) then G2 has t as a root and contains10

s′, in contradiction of the definition of empire.11

This allows us to show that the relation � is a partial order on the nodes of a12

structure.13

Lemma A.6. Let F be an Herbrand net, and let t, s be nodes of F such that14

t� s and s� t. Then t = s.15

Proof. Suppose that t and s are not the same node. We have that k(t) =16

k(t) ∩ k(s) = k(s), by minimality of the kingdom.17

(a) If t is an α node, or expansion node, then removing t from k(s) yields a smaller18

subnet with s as a root, contradicting minimality of k(s).19

(b) If t is an ε node with unique successor t′, then its kingdom is equal to k(t′)∪{t},20

and so s ∈ k(t′). This contradicts the previous lemma, which says that s /∈ e(t′).21

Similarly for ./ nodes.22

23

24
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