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RELATIVE PREDICATIVITY AND DEPENDENT RECURSION

IN SECOND-ORDER SET THEORY AND HIGHER-ORDER THEORIES

SATO KENTARO

Abstract. This article reports that some robustness of the notions of predicativity

and of autonomous progression is broken down if as the given infinite total entity we

choose some mathematical entities other than the traditional ω. Namely, the equivalence

between normal transfinite recursion scheme and new dependent transfinite recursion

scheme, which does hold in the context of subsystems of second order number theory, does

not hold in the contexts of subsystems of second order set theory where the universe V of

sets is treated as the given totality (nor in the context of those of n+3-th order number or

set theories, where the class of all n+2-th order objects is treated as the given totality).

§1. Introduction. Predicativism is a mathematical standpoint which could
be said to be between Platonism and Constructivism, and whose origin goes back
to Poincaré and Russell. While natural numbers are accepted as a totality, other
infinite entities are not and so-called “vicious circles”, those definitions which
depend on the totality of the class the defined sets belong to, are rejected. Thus,
traditionally, ω is the only infinite entity whose totality is accepted. However,
Feferman [3, p.617] stated that the predicativity is a relative notion, and we can
consider other kinds of predicativity, relative to various structures. Among them,
Feferman mentioned “predicativity given the notion of the cumulative hierarchy
of sets” as an example. This seems to be an extreme case because the totality
of it might contradict the standard view of open-endedness. We can however
consider also predicativity given (the totality of) P(ω) (i.e., real numbers) and
predicativity given P(P(ω)) (or equivalently, the class of all functions).

What kinds of mathematical discussion can be justified from these predicative
standpoints? There have been so many arguments for the traditional one:

(A) Feferman [3, p.605] took as the limit of predicativity (in the traditional sense)
the closure under autonomous progression of ramified hierarchy, each level Rα

of which consists of all those sets (of natural numbers) definable by quantifiers
over lower levels (in modern terms, Rα+1 = P(ω) ∩Def(Rα)). Thus the class of
all sets of natural numbers is not given as a totality, but always being generated.
Since all the (meaningful) formulae must be formalized in the ramified way, the
quantifiers varying over the whole ramified hierarchy make no sense.

(B) Since the ramified hierarchy can be simulated by iterated elementary com-
prehension by the use of universal formula, and since the latter is defined in the
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former, autonomous progression of ramified hierarchy could be identified with
the autonomous progression of iterated elementary comprehension:

since the totality of ω is accepted, number quantifiers make sense and
so elementary comprehension should be accepted; once it is accepted,
iterated application of it along a primitive recursive ordinal α should
be accepted, provided a well-orderedness proof of α is accepted.

As the aforementioned constraint in (A), the schematic axiom (i.e., induction)
for the formulae containing second order quantifiers not bound by levels of the
ramified hierarchy should not a priori be accepted. Since those quantifiers with
such bounds are coded by first order quantifiers (for detail, see §5, especially
before Definition 17), the schemata are restricted to elementary ones1.

(C) One can argue that the well-orders are not necessarily coded by primitive
recursive relations, but can be any elementary formulae with free variables, pro-
vided that the well-orderedness is proved universally (see Footnote 6 for detail).

(D) One can further argue that the rule “..., provided a well-orderedness proof is
accepted” can be replaced by an implication “..., if it is a well-order”. The result-
ing axiom should be called internalized autonomous progression of elementary
comprehension. In the literature (e.g., [15]), it is called transfinite recursion.

We are not discussing which is right here. Whichever we choose, we can say:

if we have the well-orderedness of α1 by means of iterated (elementary)
comprehension along ω, and if we have the well-orderedness of α2

by means of iterated comprehension along α1, ..., then the iterated
comprehension along αn should be accepted (for standard n). 2

However, the natural question arises: even if we agree that predicativity should
posses some of these closure properties, why is it sufficient? Is there another type
of progression that should be accepted predicatively? Particularly,

(E) Once having accepted (internalized) autonomous progression, should not we
accept also autonomous progression of autonomous progression itself? Namely,

If the well-orderedness of α and of β0 has been accepted and if, only by
already accepted reasonings, we have a derivation, uniformly in ξ ∈ α,
from iterated comprehension along

∑
η<ξ βη to the well-orderedness

of βξ, then iterated comprehension along
∑

ξ∈α βξ should be accepted.

Why is this called autonomous progression of autonomous progression? In one
step of autonomous progression (of iterated elementary comprehension) men-
tioned above, the progression from αi to αi+1 is given by the elementary com-
prehension iterated along the given well-order αi. Now the one step progression
from α to

∑
ξ∈α βξ is given by the simple autonomous progression (from

∑
η<ξ βη

to βξ) iterated along the given well-order α.

(F) There seems to be no reason to stop at (E) “2-fold autonomous progression”.
We should also accept 3-fold one (namely, autonomous progression of (E)), 4-fold
one, and so on.

1This restriction does not affect the proof-theoretic strength, but it does with the following
relaxations.

2Moreover, it was shown that, by this process, the limit of such αn’s is Feferman-Schütte
ordinal Γ0, whichever from (A)-(D) (actually, from all (A)-(F’) defined below) we choose.
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(B’)-(F’) Or, “elementary” in (B)-(F) could be replaced by ∆1
e, (i.e., essentially

∆1
1), since it is “recognizable invariance” [3, p.606] during the generating process.

Nevertheless, the question which of (A)-(F) (or -(F’)) is the right one does not
affect the limit of the fragment of mathematics justifiable from the traditional
predicativity. For, we can prove the proof-theoretic equivalence (or equiconsis-
tency) between the system associated with the apparently strongest, namely the
internalized version of (F’), and that with (A), if we employ plausible formu-
lations as we will below (and, moreover, internalized versions of (D), (E), (F),
(D’), (E’) and (F’) are all logically equivalent, not only proof-theoretically).

This is the robustness that we will show to break down in the contexts of the
other kinds of predicativity listed at the beginning. It seems possible to claim
that this robustness is a special feature of ω, and that, in the general case, it
breaks down. We will see other special features of ω, as byproducts of the proof.
More precisely, the contents of the present article are as follows.
First, we are working in the frameworks of (a) second order set theory, whose

language is L2
S and of (b) n+2-th order number (and set) theory, whose language

is Ln+2
N (and Ln+2

S ) for n ≥ 1. As base theories, in each framework we employ

(a) Neumann-Bernays-Gödel set theory (or NBG for short), which contains:
– Zermelo-Fraenkel set theory (with and without choice) with separation

and replacement schemata applied to elementary L2
S-formulae,

– the comprehension schema for elementary L2
S-formulae,

for the requirement that the universe V of sets is a given totality; and,
(b) so-called the Bernays-Gödel extension (or, sometimes, predicative exten-

sion) of full n+1-th order number (and set) theory, which contains:
– all the axioms of full n+1-th order number (or set) theory with all the

schemata applied to any n+1-th order Ln+2-formulae,
– comprehension schema (yielding subclasses of the given totality, namely
n+2-th order objects) for all n+1-th order Ln+2-formulae,

for the requirement that n+1-th and lower order objects are all given (where
“n+1-th order” means containing no n+2-th order quantifiers).

Note that if we allow n = 0 then (b) includes both (a) and the framework of
second order number theory with the base theory ACA0, as special cases.
In these frameworks, we define: the transfinite recursion scheme ∆n+1

0 -TR,
which allows iteration of ∆n+1

0 -comprehension (i.e., elementary comprehension in
(a); and n+1-th order comprehension in (b)) along any well-order whose domain
is (included in) the given totality, as a formalization of “single-fold” internal-
ized autonomous progression of the comprehension; and a dependent transfinite

recursion scheme ∆n+1
0 -TR♯ as a formalization of the simplest non-trivial in-

stance of multi-fold internalized autonomous progression; as well as those for
∆n+1

e . (Note that ∆1
0-TR in L2

N is called ATR.) We will see that any of Πn+1
1 -

reduction and ∆n+1
0 positive fixed point axioms, which both have been known

to be predicatively justifiable in L2
N , imply ∆n+1

0 -TR♯.

As our main theorem, we prove that ∆n+1
0 -TR♯ (actually the “external” ver-

sion of it) implies the consistency of ∆n+1
0 -TR (without ♯) with the base theo-

ries. (Since “internalized” ∆n+1
0 -TR obviously implies the “external” counter-

part, the separation between single- and multi-fold ones is now established for
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both internal and external versions.) We also see the underivability of ∆n+1
1 -

comprehension from ∆n+1
0 -TR (without ♯). These proofs are uniform for (a) and

(b), whereas ∆1
e-TR♯, ∆1

e-TR, ∆1
0-TR♯ and ∆1

0-TR are all equivalent (so imply
∆1

1-comprehension) in L2
N . The basis of this difference will also be discussed.

Thus the relations among the central notions in the traditional predicativity
heavily depend on the special feature of ω. We conclude that relative predica-
tivity requires more studies than the trivial analogy to the traditional one.

§2. Definitions of formal systems. Though we will obtain the results in
both (a) second-order set theory, and (b) higher order number and set theories,
we will work in one language with one base theory in the actual technicality. In
this section, we give formal definitions of the languages Ln+2

N and Ln+2
S and base

theory ∆n+1
0 -CA0, explain the way to treat (a) and (b) uniformly, and, in §4,

define in this way several axiom schemata, to be added to the base theory.

Definition 1. (i) The language L2
S of second order set theory (or L2

N of
second order number theory) is two-sorted one, which contains the language of
first order set theory (or first order number theory, respectively) as the fragment
of the first sort, and which has a relation symbol ∈ between the two sorts.
(ii) For n ≥ 1, the languages Ln+2

N and Ln+2
S of n+2-th order number and set

theories are n+2-sorted ones, which contain L2
N and L2

S , respectively, as the
fragments of the first two sorts, and which have equalities =k for k+1-th order
for k < n+1 and relation symbols ∈k between k-th and k+1-th sorts for any k.

Equality is not primitive for the highest order, but is defined by extensionality.

Here k+1-th order objects are intended to represent sets of k-th order ones.
We omit the subscripts ‘N ’ and ‘S’ when it is clear from the context or not
important. When we need to know the orders of variables, we shall provide
superscripts to variables. The superscript k in ∈k is omitted when it is clear.
In what follows, we assume n ≥ 0 and treat Ln+2

N and Ln+2
S uniformly, by the

convention: upper-case Latin letters denote n+2-th order objects, and lower-case
ones without superscripts denote those of the lower (i.e., ≤ n+1-th) orders.

Definition 2. For k ≤ n, an Ln+2-formula is said to be k+1-th order (or

elementary if k = 0) or ∆k+1
0 , if it contains no k+2-th nor higher order quanti-

fiers (but it may contain k+2-th and higher order parameters). An elementary
formula is called ∆0

0 if it contains no unbounded quantifiers.
For k ≤ n+1, an Ln+2-formula is called Πk

1 or Σk
1 if it is of the form (∀xk)ψ(x)

or (∃xk)ψ(x) respectively, where ψ is ∆k
0 and xk is of k+1-th order. An ∆k+1

0 -
formula ϕ is Πk

e (essentially Πk
1) if all k+1-th order quantifiers in ϕ are either

positive universal or negative existential, and is Σk
e if ¬ϕ is Πk

e .
For a class Γ of formulae, the relativizations, e.g., Πm

k (Γ ), are defined as usual.

Here we can find some conflict between the two counting systems: “n+1-th
order” objects are also called “type n” objects. The term “n-th order number
theory” and Ln+2 are from the former, and Σk

j ’s and xk are from the latter.
Since both have been firmly standard, we have to get along with this conflict.
The most important feature of Ln+2 is the ability to code pairs of lower order,

by which we have the usual contraction rules on quantifiers.
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Definition 3. (i) The first order (or type-0) pairing 〈x, y〉0 denotes Gödel’s
pairing (x + y)(x + y + 1)/2 + y in Ln+2

N , and Mostowski pairing {{x, y}, {x}},
in Ln+2

S , of first order x and y.
(ii) The k+2-th order (or type-k+1) pairing is defined (with Extensionality) by

u ∈k+1 〈x, y〉k+1 ↔ (∃vk ∈k+1 x)(u = 〈0, w〉k) ∨ (∃wk ∈k+1 y)(u = 〈1, w〉k),

where 0 and 1 are fixed distinct k+1-th order objects.
(iii) For k+1-th order u and k-th order z, (u)z denotes {xk−1 | 〈z, x〉k−1 ∈ u}.
(iv) Similarly, for n+1-th order y, (X)y denotes the “class” {zn | 〈y, z〉n ∈ X}.

Here “class” means a collection of those objects satisfying a fixed formula (or
what is called an abstract). The use of this term might cause a confusion, since
in the context of second order set theory, it also refers to “objects of second
order”. In the present article, however, we never make the use of the latter kind.
For formulae ϕ(X) and ψ(x), ϕ({xn |ψ(x)}) denotes the result of replacing all

those subformulae of the form t ∈ X by ψ(t) in ϕ(X).

Definition 4. WF(W ) is defined as (∀Y )TI[Y ](W ), where

TI[Y ](W ) ≡ (∀xn)[(∀yn∈(W )x)(y∈Y ) → x∈Y ] → (∀xn)(x∈Y ).

This expresses the well-foundedness of an n+2-th order relation W . This is a
priori Πn+1

1 , and the question if it is equivalently ∆n+1
0 will be crucial.

Definition 5. ∆n+1
0 -CA0 denotes the Ln+2

N - or Ln+2
S -theory, consisting of

(0) Extensionality for lower order: for k < n
(∀xk+1, yk+1)[(∀uk)(u ∈k+1 x↔ u ∈k+1 y) → x =k+1 y];

(1) ∆n+1
0 -CA: (∃Z)(∀zn)(z ∈ Z ↔ ϕ(z)) for a ∆n+1

0 -formula ϕ free from Z;
(2) k+2-th order ∆n+1

0 comprehension: for k < n:
(∃uk+1)(∀yk)(y ∈k+1 u↔ ϕ(y)) for any ∆n+1

0 -formula ϕ free from u;
(3) the global well-order among n+1-th order objects:

(∃W )[WF(W ) ∧ (∀xn, yn)(〈x, y〉n ∈W ∨ x = y ∨ 〈y, x〉n ∈W )];
(4) axioms for the first order part:

(in Ln+2
N )

– the axiom of discrete-ordered semi-ring;
– [ϕ(0) ∧ (∀s0)(ϕ(s) → ϕ(s+1))] → (∀s0)ϕ(s), for any ∆n+1

0 -formula ϕ;
(in Ln+2

S )
– the axioms of extensionality, empty set, pair, union, power set, infinity;
– (∀u0)[(∀v0 ∈ u)ϕ(v) → ϕ(u))] → (∀u0)ϕ(u), for any ∆n+1

0 -formula ϕ;
– (∀u0∈y0)(∃!v0)ϕ(u, v, y) → (∃z0)(∀u0∈y)(∃v0∈z)ϕ(u, v, y) for any ∆n+1

0 -
formula ϕ free from z and

– (∃z0)(∀u0)[u∈z ↔ u∈y ∧ϕ(u, y)], for any ∆n+1
0 -formula ϕ free from z.

Remark 6. ∆1
0-CA0 is ACA0 in L2

N and is Neumann-Bernays-Gödel set the-
ory NBG in L2

S , which are known to be conservative over Peano arithmetic PA
and Zermelo-Fraenkel set theory with choice ZFC respectively. More generally,
∆n+1

0 -CA0 we have defined is what is known as the Bernays-Gödel extension of
(so, conservative over) the full n+1-th order number or set theory.

The restriction in our base theory of all the schematic axioms to ∆n+1
0 , i.e.,

the formulae without n+2-th order quantifiers can be explained as follows: since
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we accepted the totality of the class of all n+1-th order objects, the formulae
containing only n+1-th and lower order quantifiers are meaningful, whereas those
containing n+2-th order quantifiers are undermined, as discussed in (B) of §1.

Remark 7. The terminology ‘∆n+1
0 -CA0’ comes from the fact that the “char-

acteristic axiom” is ∆n+1
0 -CA. Actually, this is the only “essentially non-∆n+1

0 ”
axiom: Axioms (0), (2) and (4) are (the universal closures of) ∆n+1

0 -formulae,
and, with a new constant for the global well-order, Axiom (3) can also be.

Remark 8. By the canonical injection from k+1-th order part (k ≤ n) into
n+1-th order part, defined as iterated singleton x 7→ {x}n−k, we have global
well-orders wk+1 = {〈x, y〉k | 〈{x}n−k, {y}n−k〉n ∈W} among the k+1-th order.

§3. Global well-ordering and normal form theorem. It might seem
strange that the higher order number and set theories contain Axiom (3). While
the former has been investigated for a long time, it is unclear if the axiom is
included in the standard formulation, since those of consistency strength above
full second order number theory Z2 (but below Zn for a fixed n) have not been
considered so much (with few exceptions, e.g., Friedman’s [6] famous result on
determinacy, which deals with the higher order number theory in a variant of
Gödel’s constructible hierarchy). Though it could be claimed that the axiom is
directly justified by our notion of “set of set of ... numbers”, the author is not
confident and, rather, would like to argue against it.

Remark 9. However, from the viewpoint of proof-theoretic (or consistency)
strength, this does not matter: The author is preparing a work [14] which es-
tablishes the equiconsistency between ∆n+1

0 -CA0 (augmented by the additional
axioms treated in the present article) with and without the axiom (3).

Moreover, for n = 0, we will not use (3): in L2
N it is redundant because of the

usual order < on ω, and in L2
S the replacement scheme (or, more precisely, the

reflection principle) can substitute (3) in our discussion, as shown in §8.

Our first essential use of this axiom is in the proof of normal form theorem.

Proposition 10. Let k ≤ n+1. Any Σk
1-formula is equivalent, over ∆n+1

0 -CA0,
to one in the following form, where f : Pk → Pk denotes (∀yk)(∃!zk)(〈y, z〉k ∈ f)
and where Qi’s are alternating (Qi ≡ ∃ if k − i is even, and Qi ≡ ∀ otherwise):

(∃fk : Pk−1 → Pk−1)︸ ︷︷ ︸
k+1-th order q.f.

· · · (Q1h
1 : P0 → P0)︸ ︷︷ ︸
2nd

(Q0z
0)︸ ︷︷ ︸

1st

ϕ(f ; g; · · · ;h; z)︸ ︷︷ ︸
∆0

0 part

Proof. By Remark 8, we have the axiom of choice for all orders except the
highest: for k < n and for any ∆n+1

0 -formula ϕ,

∆n+1
0 -CA0 ⊢ (∀~x, ~X)[(∀yk)(∃uk+1)ϕ(y, u, ~x, ~X) ↔ (∃uk+1)(∀yk)ϕ(y, (u)y, ~x, ~X)].

By this and dual, any Σk
1- formula is equivalent to one in the form:

(∃yk) (Q1x
k−1
1 ) · · · (Qkx

k−1
m )︸ ︷︷ ︸

k-th order q.f.

· · · (Q1z
0
1) · · · (Qlz

0
l )︸ ︷︷ ︸

1st order q.f.

ϕ(y;x1, · · · , xm; · · · ; z1, · · · , zl)︸ ︷︷ ︸
∆0

0 part

.

(⋆)
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The well-orders also allow us to use the method of Skolem function on each
order ≤ n+1. By generalizing the proof in second order number theory (see

[15, Lemma V.1.4]), we have: for any j ≤ n and Σj+1
1 -formula ϕ(~x, ~X),

∆n+1
0 -CA0 ⊢ (∀~x, ~X)[ϕ(~x, ~X) ↔ (∃f j+1 : Pj → Pj)(∀yj)ψ(f, y, ~x, ~X)]

holds for some ∆j
0-formula ψ(f j+1, yj , ~x, ~X). By taking the negation, we have a

similar result for Πj+1
1 -formula. By applying these results to (⋆) from outside,

we have the desired result. ⊣

Definition 11. Let σ and π be universal Σ0
1- and Π0

1-formulae respectively.

Υk
1(c, ~x, ~X) ≡ (∃fk : Pk−1 → Pk−1) · · · (Q1h

1 : P0 → P0)υ(c, fk; · · · ;h1; ~x, ~X)

where Qi’s are alternating and where υ ≡ π for odd k; υ ≡ σ otherwise.

Corollary 12. Let k ≤ n+1. For any Σk
1-formula ϕ(~x, ~X), there is pϕq ∈ ω

such that
∆n+1

0 -CA0 ⊢ (∀~x, ~X)[Υk
1(pϕq, ~x,

~X) ↔ ϕ(~x, ~X)].

§4. Additional axiom schemata. Following the convention on the distinc-
tion of upper and lower cases, we can define several axiom schemata uniformly.

Definition 13. For a class Γ of formulae, define the following axiom schemata:

Γ -CA: (∃Z)(∀zn)(z ∈ Z ↔ ϕ(z)),
∆(Γ )-CA: (∀zn)(ϕ(z) ↔ ¬ψ(z)) → {ϕ}-CA,
Γ -FP: (∃Z)(∀zn)(z ∈ Z ↔ ϕ(z, Z)) if Y occurs only positively in ϕ(z, Y ),
Γ -Red:3 (∀zn)(ϕ(z)∨ψ(z)) → (∃Z)(∀zn)[(z ∈ Z → ϕ(z))∧(z /∈ Z → ψ(z))],
Γ -Coll: (∀zn)(∃Y )ϕ(z, Y ) → (∃Z)(∀zn)(∃yn)ϕ(z, (Z)y)

for Γ formulae ϕ(z, Y ) and ψ(z, Y ) in which Z does not occur (but parameters
might). ∆m

• stands for ∆(Πm
• ) which we will treat as if it were a class of formulae.

Definition 14. 4 (∆n+1
0 )− is the class of all those ∆n+1

0 -formulae that have

no n+2-th order parameters. ÎDn+1
1 is the system ∆n+1

0 -CA0 + (∆n+1
0 )−-FP.

The proof of (ii) below is literally the same, by the virtue of our abbreviations,
as that in the second order case, e.g., in [7, Proposition 4.5].

Lemma 15. Over ∆n+1
0 -CA0, (i) Γ -CA implies Γ -Red, (ii) Σn+1

1 -Coll im-
plies Σn+1

1 -Red and (iii) Γ -Red implies ∆(Γ )-CA.

Proof. Since (i) and (iii) are trivial, we prove (ii) by working in ∆n+1
0 -CA0.

Let ϕ and ψ be ∆n+1
0 and (∀z)[(∃X)ϕ(z,X)∨(∃X)ψ(z,X)), i.e., (∀z)(∃Y )[ϕ(z, Y )∨

ψ(z, Y )]. By Σn+1
1 -Coll, (∀z)(∃y)[ϕ(z, (Z)y) ∨ ψ(z, (Z)y)] for some Z. Now,

(∃y)ϕ(z, (Z)y) → (∃X)ϕ(z,X) and ¬(∃y)ϕ(z, (Z)y) → (∃X)ψ(z,X).

Thus X = {z | (∃y)ϕ(z, (Z)y)}, yielded by ∆n+1
0 -CA, is what is required. ⊣

3This is equivalent, in classical logic, to what is called (¬Γ )-Sep in Simpson’s book [15].
Since the term “separation” is confusing in the present context, we use “reduction” instead.

4Strictly ÎDn+1
1 should be formulated in an extension of Ln+1 with predicates, rather than

Ln+2. If we identify the predicates with the n+2-th order objects required in the scheme

(∆n+1
0 )−-FP, the two formulations are equivalent.
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§5. Formalizing (internalized) autonomous progression. We give some
formalizations of autonomous progression, and discuss them in our new setting.
First recall the standard formulation of iterated comprehension.

Definition 16. Assume WF(W ). H is said to code the iterated comprehen-
sion with a formula ϕ along W , if Hier[ϕ](H,W ) holds where

Hier[ϕ](H,W ) ≡ (∀wn)[(H)w = {yn |ϕ(w, y, (H)Wx,W )}],

and where (H)Wx denotes {〈w′, z〉n ∈ H |w′ ∈ (W )w}.

We see briefly how the iterated comprehension simulate the ramified hierar-
chies relative to P(ω), P2(ω), V etc., in the same way as that relative to ω.

Assume Hier[Φ](H,W ), where Φ(w, y, Y,W ; ~x, ~X) is the following Σn
2 -formula:

(∃zn)(∃c ∈ ω)[y = 〈c, z〉n ∧ (“w is limit in W” → Υn
1 (c, z, Y ; ~x, ~X)) ∧

(∃w′n)(“w is succ. of w′ in W” → (∃un)(∀vn)(〈u, 〈v, z〉n〉n ∈ ((Y )w′)c))].

Here c ∈ ω is regarded, via the canonical injection, as an n+1-th order object.
Assume for convenience that W is a linear order. If w is a limit in W ,

(H)w = {y |Φ(w, y, (H)Ww,W ; ~x, ~X)} = {〈c, z〉n |Υn
1 (c, z, (H)Ww; ~x, ~X))},

and so ((H)w)pϕq = {zn |ϕ(z, (H)Ww; ~x, ~X)}. If w+ is the successor of w,

(H)w+ = {〈c, z〉n | (∃un)(∀vn)(〈u, 〈v, z〉n〉n ∈ ((H)w)c},

and so ((H)w+)pϕq = {zn | (∃un)(∀vn)ϕ(〈u, 〈v, z〉n〉n, (H)Ww; ~x, ~X)}. Iterating
this process, we can see that any n+2-th order object definable by a Σn

2i+1-

formula with parameters (H)Ww, ~x and ~X can be described by ((H)w+i)c for
some c ∈ ω. Thus, if the next limit point w+ω exists, all those n+2-th order
objects ∆n+1

0 -definable with the parameters are of the form (((H)Ww+ω )x)y.
This means that the first level of the ramified hierarchy relative to the param-

eters (H)Ww, ~x and ~X is exactly {(((H)Ww+ω )x)y |x, y ∈ Pn} (where Pn is the
“class” of all n+1-th order objects) and that the quantifiers ranging over the first
level of the ramified hierarchy can be coded by n+1-th order quantifiers. Thus
the second level of the hierarchy is {(((H)Ww+ω·2)x)y |x, y ∈ Pn}, provided the
next limit w+ω·2 exists.
Therefore we can conclude that iterated ∆n+1

0 -comprehension (i.e., compre-
hension for n+1-order formulae) can simulate the “ramified hierarchy given the
totality of the class of all the n+1-th order objects”, in such a way that n+2-
th order quantifiers bounded by levels of the hierarchy are coded by n+1-order
quantifiers. Conversely, H, required in Hier[ϕ](H,W ), is in the level o.t.(W )+1
of the ramified hierarchy. 5 Now we can safely move from (A) to (B).

The next question is how to formalize autonomous progression of iterated
comprehension. The most naive way to do this seems to be ∆n+1

0 -TR, where

Definition 17. Γ -TR: WF(W ) → (∃H)Hier[ϕ](H,W ),
∆(Γ )-TR: (∀w, y, Y )[ϕ(w, y, Y,W )↔¬ψ(w, y, Y,W )] → {ϕ}-TR,

for any Γ formulae ϕ and ψ both with no occurrences of H.

5In the terminology introduced below, this discussion also shows that, over ∆n+1
0 -CA0,

∆n+1
0 -TR or -TRR is equivalent to Σn

2 -TR or -TRR. Note that “w is limit in W” is Πn
2 .
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However, here was a difficulty in L2
N : the notion of well-foundedness (formal-

ized as WF(W )) is not predicative, since the class of all ω-chains is not given as
a totality. One idea to avoid this was to use the following rule with Γ = ∆n+1

0 .

Γ -TRR: For any Γ -formulae ϕ and ψ (identified with {〈x, y〉n |ψ(x, y)}) free
from Y and H, from a proof of TI[Y ](ψ), we can deduce (∃H)Hier[ϕ](H,ψ).

Why was this claimed to avoid the difficulty? As explained in [3, p.605, ll.9-26]
in a slightly different formulation, if we have a proof of TI[Y ](ψ) without any
undischarged assumptions, we can substitute any formula into the undetermined
variable Y , and so the well-foundedness holds at any (later) stages of generating
process of sets. Now it seems reasonable to consider ∆n+1

0 -TRR and ∆n+1
0 -TR

as the formalizations of (C) autonomous progression (because ψ may contain
free variables)6, and of (D) internalized autonomous progression respectively. It
is known that, in L2

N , these two are proof-theoretically equivalent.
However, the difficulty above does not seem to be a real difficulty in our

setting (except L2
N ), and seems to be special to the traditional predicativity. It

is true that WF(W ) is Πn+1
1 and that, in general, Πn+1

1 -formulae are illegitimate
from the predicative viewpoint. Nonetheless, the Πn+1

1 -ness of well-foundedness
is only because of our choice of formulation. Actually, in our setting (except
L2
N ), the well-foundedness can be expressed in a ∆n+1

0 way as we will see in §8,
and so it is legitimate in our context.7 Once it is legitimately accepted, there
seems to be no reason that forces us to formalize autonomous progression in the
roundabout sort of way by the rule, but it seems reasonable to formalize it in a
simple implication ∆n+1

0 -TR, the same as internalized autonomous progression.

Remark 18. Anyway “internalized” ∆n+1
0 -TR is Πn+1

1 -conservative over “ex-
ternal” ∆n+1

0 -TRR in general Ln+2. To the one-sided sequent calculus, we add:

⊢ Γ, φ
Axiom

⊢ Γ,¬Hier[ϕ](H,W )

⊢ Γ,¬WF(W )
TR

where (the universal closure of) φ is an axiom of ∆n+1
0 -CA0, and where the

eigenvariable condition applies to TR: H does not occur in the lower sequent.
Since ∆n+1

0 -CA follows from ∆n+1
0 -TR and hence from the rule TR, φ in Axiom

can be restricted to ∆n+1
0 -formulae, by the reason mentioned in Remark 7.

If we have a proof ending in a ∆n+1
0 -formula with free variables, then, by the

usual partial cut elimination method, we have a proof ending in the same formula,
in which all the cut rules are immediate after the axiom or of the following form:

⊢ Γ1,¬Hier[ϕ](H,W )

⊢ Γ1,¬WF(W )
TR

⊢ Γ2,TI[Y ](W )

⊢ Γ2,WF(W )
∀

⊢ Γ1,Γ2
Cut

.

6Concerning (B) which requires orders to be primitive recursive, there seems to be no reason

for such restriction, since any order expressed by a ∆n+1
0 -formula (with free set variables) is

predicatively legitimate. The justification for the use of a free set variable Y in TI[Y ](-) (in

the standard formulation of autonomous progression) seems to apply also to this allowance of
free variables in the formula defining the order.

7 One might argue that the ∆n+1
0 -ness of well-foundedness in our setting is a coincidence

and that the well-foundedness is a priori Πn+1
1 . However, as a matter of fact, the Πn+1

1

formalization (∀Y )TI[Y ](W ) of well-foundedness itself is questionable, as discussed in §6.
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Therefore, Γ1,Γ2 here must consist only of ∆n+1
0 -formulae. Define ψ(x, y,W ) by

ψ(x, y,W ) ≡ (〈x, y〉 ∈W ) ∧ (¬ ∨ Γ2).

If ∨Γ2 holds then ψ represents the trivial well-founded relation ∅; and if ∨Γ2

does not, it represents W . Thus we can replace it by the following derivation:

⊢ Γ1,¬Hier[ϕ](H,W )

⊢ Γ1,¬(∃H)Hier[ϕ](H,W )
∀

⊢ Γ2,TI[Y ](W )
... Λ1

⊢ TI[Y ](ψ)

⊢ (∃H)Hier[ϕ](H,ψ)
... Λ2

⊢ Γ2, (∃H)Hier[ϕ](H,W )

TRR

⊢ Γ1,Γ2
Cut

.

§6. Formalizing problem of WF. Following the referee’s suggestion, we
devote one section to the argument triggered by Footnote 7. As mentioned
there, the fact the well-foundedness can be a legitimately expressible property
in our predicative setting (except L2

N ) leads us to a more fundamental question:
if our formulation (∀Y )TI[Y ](W ) of well-foundedness is appropriate or not.

The basic idea of Feferman’s analysis of traditional predicativity could be
summarized that the well-foundedness of an order guarantees the iterability of
accepted operation along the order and that the taking ramified hierarchy is
among such accepted operations to be iterated. It seems quite plausible that
well-foundedness is a notion along which we can iterate operations. Nonetheless,
why can we formalize it as (∀Y )TI[Y ](W ), transfinite induction for set variables?
Why does (∀Y )TI[Y ](W ) guarantee the iterability of accepted operations?
It is true that, in the presence of full comprehension axiom, it guarantees

that, because the property “we can iterate the operation up to α” of α can be
substituted to the variable Y .8 In our predicative standpoint, however, such a
comprehension is not allowed and, particularly, the property “we can have the
ramified hierarchy up to α” of α is not eligible to form a second order object,
nor to be substituted to the variable Y .9 For this reason, Feferman’s argument
might be said a “begging of question” from the impredicative standpoint.

This problem seems to be applied even to older principles called bar induction

or bar recursion, whose origins go back to Brouwer. In modern terms, these
principles are formulated as follows: if there is no infinite path through a tree,
the transfinite induction or recursion along the reversed tree order is possible. In
the presence of full comprehension, again, there is no problem, since we can use
the property applied to induction or the property “recursion up to t is possible”
of a node t to define an infinite path, assuming the induction or recursion fails.
However, in the absence of relevant comprehension, it is not clear why the non-
existence of infinite path is enough for induction and recursion (except strange
Brouwer’s “proof”, a confusion with the meta-level from the modern perspec-
tive). Again, this seems “question-begging” from the impredicative standpoint.10

8Thus, we no longer need to add the rule, since it is derivable from definitions and axioms.
9The question if this variable Y is bounded by degree or not is irrelevant in this context.
10Intuitionistically, it seems to contain also “begging” from reductio ad absurdum.
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To overcome this problem, what is necessary is an argument justifying that
(∀Y )TI[Y ](W ) is the appropriate formalization of well-foundedness as the no-
tion along which we can iterate accepted operations. Up to the author’s best
knowledge, there is no such an argument. Nevertheless, since the aim of the
present paper is not criticism against Feferman’s analysis of traditional predica-
tivity but the analogous analysis for relative predicativity, we just claim that
the formulation (∀Y )TI[Y ](W ) is an approximation of the real well-foundedness,
based on a partial help of the impredicative standpoint. Once we admit that
this is nothing more than an approximation, one can ask: why do not we use an
elementary approximation which would allow us to avoid the roundabout way
by rule even for traditional predicativity? We simply do not know such a nice
approximation, and the Π1

1 completeness of well-foundedness in number theory
implies that no such approximation can coincide with the real well-foundedness
even on the impredicative standpoint. The author has to admit, however, that
there is no guarantee that there is no better approximation of the notion. We
use the formulation only because we (temporarily) resign ourselves to do so.

§7. Dependent transfinite recursion. Here we try to formalize (E) “au-
tonomous progression of autonomous progression” (or “2-fold autonomous pro-
gression”) from §1 in the simplest case, and obtain some basic results.
First, our formalization is the following.

Definition 19. For k ∈ ω, Y ↾k denotes {〈〈j, w〉n, x〉n ∈ Y | j < k}, and

⊕k∈ω≺
k
Y is defined by: 〈j, w〉(⊕k∈ω≺

k
Y )〈j

′, w′〉 ≡ j<j′ ∨ (j = j′ ∧ w≺j
Y w

′).

Γ -TR♯: (∀Y )(∀k ∈ ω)WF(≺k
Y ↾k) → (∃H)Hier[ϕ](H,⊕k∈ω≺

k
H↾k),

Γ -TRR♯: From a proof of TI[Z](≺k
Y ↾k), we can infer (∃H)Hier[ϕ](H,⊕k∈ω≺

k
H↾k),

both for any Γ -formula ϕ(〈k,w〉, y, Y,W ; ~x, ~X) free from H and for any

w ≺k
Y w′ defined by a Γ -formula θ(w,w′, k, Y ; ~x, ~X) free from H and Z.

Analogously ∆(Γ )-TR♯ is defined (additionally with complementedness for θ).

Here the well-founded relation ⊕k∈ω≺
k
H↾k depends on the resulting H in the

following manner: since H↾0 = ∅, ≺0
H↾0 is fixed at first, not depending on H.

Then, by (usual) transfinite recursion along ≺0
H↾0, (H)〈0,x〉’s are (thus H↾1 is)

determined, and so is ≺1
H↾1. Then again, by usual recursion along it, H↾2 is

determined, and so on. This is why we call such a scheme dependent transfinite

recursion. This argument shows “being unique if existing” below.

Lemma 20. In the same syntactic situation of the previous definition,

∆n+1
0 -CA0 ⊢ (∀X∀k∈ω)WF(≺k

X↾k) → (∃≤1H)Hier[ϕ](H,⊕k∈ω≺
k
H↾k).

Lemma 21. Γ -TR+∆n+1
1 (Γ )-CA+Σn+1

1 (Γ )-Ind implies Γ -TR♯.

Proof. By the discussion before Lemma 20, Γ -TR + Σn+1
1 (Γ )-Ind proves

(∃!H)Hier[ϕ](H,⊕j≤k≺
j
H↾j) for all k. Thus ∆

n+1
1 (Γ )-CA yields

{〈〈k,w〉n, x〉n | ∃H(Hier[ϕ](H,⊕j≤k≺
j
H↾j) ∧ 〈〈k,w〉, x〉 ∈ H)},

as a n+2-th order object, which is what we require for ϕ ∈ Γ in Γ -TR♯. ⊣
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Corollary 22. (a) In ∆n+1
0 -CA0+Σn+1

1 (Γ )-Ind, ∆n+1
1 (Γ )-TR implies Γ -TR♯.

(b) Thus, ∆n+1
e -TR♯ and ∆n+1

e -TR are equivalent over ∆n+1
0 -CA0+Σn+1

e -Ind.

Why can this be seen as the simplest non-trivial instance of (internalized) “au-
tonomous progression of autonomous progression” (from §1) of comprehension?
Let us try to formalize the following situation: ≺k+1 is definable from Hk; Hk

defined by transfinite recursion along ≺k; and all these definitions are uniform
11 in k ∈ ω. ≺k should be defined (uniformly in k) by a formula which may
contain H↾k (≈ H0 ⊕ · · · ⊕Hk−1), and recursions along ≺k’s must be uniform,
and so expressible by single Hier[ϕ] along the sum ≺0 ⊕ ≺1 ⊕ · · · .

This is the simplest among non-trivial ones, in the sense that the “preceding”
order is restricted to ω (since if the “preceding” order is a standard number n
the statement is implied by non-dependent Γ -TR, as n-step autonomous pro-
gression). We will give a formalization of general 2-fold one in §10.

Proposition 23. Over ∆n+1
0 -CA0, Π

n+1
1 (Γ )-Red implies Γ -TR♯.

Proof. Following [15, Theorem V.5.1]. Let ϕ be Γ , and define ϕ+ and ϕ−:

ϕ±(k,w, y) ≡ (∀A)

(
Hier[ϕ](A, (⊕j<k≺

j
A↾j)⊕(≺k

A↾k↾w))

→ ±ϕ(〈k,w〉, y, (A)(⊕j≤k≺
j
A↾j

)〈k,w〉, ~x,
~X)

)
.

Intuitively, ϕ±(k,w, y) assert that, for any attempt A of the hierarchy up to
〈k,w〉, ϕ(k,w, y,Ak,w) or ¬ϕ(k,w, y,Ak,w), respectively, holds, where Ak,w =

(A)(⊕j≤k≺
j
A↾j

)〈k,w〉. For fixed k,w, y, by Lemma 20 applied to ≺′j
Y defined below,

such A is unique if exists and so (∀k,w, y)(ϕ+(k,w, y) ∨ ϕ−(k,w, y)).

≺′j
Y = ≺j

Y (j < k) ≺′j
Y = (≺j

Y ↾ w) (j = k) ≺′j
Y = ∅ (j > k).

Since ϕ± are Πn+1
1 (Γ ), by Πn+1

1 (Γ )-Red we have H such that, for any k,w, y,

〈〈k,w〉, y〉 ∈ H → ϕ+(k,w, y) and 〈〈k,w〉, y〉 /∈ H → ϕ−(k,w, y).(♭)

We shall prove by induction on 〈k,w〉 along ⊕k∈ω≺
k
H↾k that

H〈k,w〉 = {y |ϕ(〈k,w〉, y, (H)(⊕k∈ω≺k
H↾k

)〈k,w〉, ~x, ~X)}.

Thus the induction hypothesis is Hier[ϕ](A, (⊕j<k≺
j
H↾j)⊕ (≺k

H↾k↾w)) where

A =(H)≺H〈k,w〉 ∪ {〈〈j, w′〉, y〉 |ϕ(〈j, w′〉, y, ∅, ~x, ~X)&¬ (〈j, w′〉 ≺H 〈k,w〉)},

11(∀X, k)WF(≺k
X↾k

) (uniform well-foundedness) might be too restricted. An alternative

is ProgWF[≺](X) ≡ (∀j<k)WF(≺j
X↾j

) ∧ Hier[ϕ](X↾k,⊕j<k≺
j
X↾j

) → WF(≺k
X↾k

) (progres-

sive well-foundedness). If (∀X)ProgWF[≺](X) and Hier[ϕ](H,⊕k∈ω≺
k
H↾k

), then ∆n+1
0 (WF)-

induction implies (∀j<k)WF(≺j
H↾j

) and WF(⊕k∈ω≺
k
H↾k

), which suffices for discussions below.

However, in L2
N
, the induction is Π1

1-Ind essentially and so beyond ACA0. The notion
ProgWF itself seems impredicative and the avoidance of the difficulty by rules does not work.

If WF(-) is ∆n+1
0 (which is the case except in L2

N
as shown in §8), these two formulations

are equivalent for Γ = ∆n+1
0 , since ProgWF[≺](X) is just (∀k)WF(≺′k

X↾k) where:

≺′k
X =

{
≺k

X
if (∀j<k)WF(≺j

X↾j
)∧Hier[ϕ](X↾k,⊕j<k≺

j
X↾j

)

∅ otherwise
.
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with ≺H = ⊕k∈ω≺
k
H↾k, since, if ¬(〈j, w

′〉≺H〈k,w〉) holds, 〈j, w′〉 is minimal in

the sense of (⊕j<k≺
j
H↾j)⊕(≺k

H↾k↾w). Note that for j≤k, by A↾j = H↾j,

Ak,w = (A)(⊕j≤k≺
j
A↾j

)〈k,w〉 = (A)(⊕j≤k≺
j
H↾j

)〈k,w〉 = (H)(⊕j≤k≺
j
H↾j

)〈k,w〉.(♯)

Let ±(y ∈ H〈k,w〉), i.e., ±(〈〈k,w〉, y〉 ∈ H). Then, by (♭), we have ϕ±(k,w, y)

and so ±ϕ(〈k,w〉, y, Ak,w, ~x, ~X), which completes the induction by (♯). ⊣

Corollary 24. Over ∆n+1
0 -CA0, Π

n+1
e -Red implies ∆n+1

e -TR♯.

Remark 25. (i) This works well not only for 2-fold (internalized) autonomous
progression with the preceding order ω, but also for general multi-fold one.
(ii) In L2

N , since Π1
e-Red and ∆1

0-TR are equivalent (see [15, Theorems V.5.1

and V.8.3]), ∆1
0-TR, ∆1

0-TR♯, ∆1
e-TR and ∆1

e-TR♯ are all equivalent.
(iii) Thus relaxations (E) and (F’) from §1 (urged by multi-fold ones) do not

change the limit of traditional predicativity, for ∆1
0-TRR♯ is clearly embeddable

in ∆1
0-TR♯. This will turn out to be not the case for other kinds of predicativity.

Proposition 26. Over ∆n+1
0 -CA0, ∆

n+1
0 (Γ )-FP implies Γ -TR♯.

Proof. Following [2, Theorem 3.1]. For a given Γ -formula ϕ(〈k,w〉n, y, Y ),
let ϕ± be the result of replacing as follows in ϕ(〈k,w〉n, y, (Y )(⊕k∈ω≺k

Y ↾k
)〈k,w〉n):

replace positive t ∈ Y replace negative t ∈ Y
for ϕ+ by 〈1, t〉n ∈ F by 〈0, t〉n /∈ F
for ϕ− by 〈0, t〉n /∈ F by 〈1, t〉n ∈ F

F occurs only positively in ϕ+ and negatively in ϕ−. For all k,w, Y and F ,

((F )1)(⊕j∈ω≺j
Y ↾j

)〈k,w〉 = ((F )0
c
)(⊕j∈ω≺j

Y ↾j
)〈k,w〉 = (Y )(⊕j∈ω≺j

Y ↾j
)〈k,w〉

→ ∀y[ϕ+(k,w, y, F )↔ϕ−(k,w, y, F )↔ϕ(〈k,w〉, y, (Y )(⊕k∈ω≺k
Y ↾k

)〈k,w〉)],(♮)

where c denotes complement, for the premise implies (F )1↾k = (F )0
c
↾k = Y ↾k.

Consider the positive ∆n+1
0 (Γ )-operator form ψ defined below:

ψ(〈i, 〈〈k,w〉, y〉〉, Z) ≡ (i = 1 ∧ ϕ+(k,w, y, Z)) ∨ (i = 0 ∧ ¬ϕ−(k,w, y, Z)).

∆n+1
0 (Γ )-FP yields F such that (∀u)(u ∈ F ↔ ψ(u, F )), i.e., for any k,w, y,

〈〈k,w〉, y〉∈(F )1 ↔ ϕ+(k,w, y, F ); 〈〈k,w〉, y〉∈(F )0 ↔ ¬ϕ−(k,w, y, F ).(⋄)

Letting H = (F )1, we prove the following, by induction along ⊕k∈ω ≺k
H↾k:

((F )1)〈k,w〉 = ((F )0
c
)〈k,w〉 = (H)〈k,w〉.

Now the induction hypothesis is the premise of (♮) with Y = H, and so we have
the conclusion of (♮) with Y = H, which implies, with (⋄), the statement. Now

〈〈k,w〉, y〉 ∈ H = (F )1 ↔ ϕ+(k,w, y, F ) ↔ ϕ(〈k,w〉, y, (H)(⊕k∈ω≺k
H↾k

)〈k,w〉),

holds for all k,w, y, which is the required equivalence. ⊣

Remark 27. (i) Again, the proof works well also for general multi-fold one.
(ii) Avigad [2] provides a nice overview on the proof of the equivalence between
∆1

0-FP and ∆1
0-TR in L2

N , and thus this gives another proof of the equivalence

between ∆1
0-TR and ∆1

0-TR♯ in second order number theory.
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(iii) Since the parameters play no role in the proof, ÎDn+1
1 proves (∆n+1

0 )−-TR♯

with the preceding order ω replaced by any provably well-founded relation.

§8. Well-foundedness and well-orderedness. So far, our uniform treat-
ment works so well that we do not need to take care of the difference among
Ln+2’s in the technical discussions. In this section, we are pointing out the basis
which will cause all the differences among them in the later section.

The next lemma is what makes L2
N be exceptional, since the well-foundedness

of relations whose domain is (included in) ω is Π1
1-complete in L2

N .

Lemma 28 (except L2
N ). WF(R) is equivalent in ∆n+1

0 -CA0 to a ∆
n+1
0 -formula.

By Axiom (3), WF(R) is equivalent to the non-existence of R-descending ω-
chain. Since an ω-chain of n+1-th order objects can be coded by an n+1-th
order object, WF(R) can be free from n+2-th order quantifiers, i.e., in ∆n+1

0 .

Proof. We prove that ¬WF(R) is equivalent to the following:

(∃fn)(∀k ∈ ω)[〈(f)k, (f)k+1〉
n ∈ R],

where elements of ω are regarded as n-th order objects via the canonical injection
and (f)u = {vn−1 | 〈u, v〉n−1 ∈n f} if n ≥ 1 and where (f)u = f(u) in the usual
sense of first order set theory, if n = 0.

If (∀k ∈ ω)[〈(f)k, (f)k+1〉
n ∈ R], then X = {x | (∃k ∈ ω)(x = (f)k)} satisfies

(∀x)[x ∈ X → (∃y ∈ (R)x)(y ∈ X)](∗)

and so X ′ = {x |x /∈ X} witnesses ¬WF(R) since X is not empty.
Conversely, let X ′ witness ¬WF(R) and let X = {x |x /∈ X ′}. Then we can

take g ∈ X and (∗) holds. Induction on k ∈ ω shows (∃!hn)(∃fn)ψ(h, f, k),
where

ψ(h, f, k) ≡ (f)0 = g ∧ (f)k = h ∧ (∀j < k)[〈(f)j , (f)j+1〉 ∈ R ∧

(∀x)(〈(f)j , x〉 ∈ R → (x = (f)j+1 ∨ 〈x, (f)j+1〉 ∈W )].

Then f ′ defined below satisfies (∀k ∈ ω)[〈(f ′)k, (f
′)k+1〉

n ∈ R]:

f ′ =

{
{〈k, u〉n−1 | k ∈ ω ∧ (∃hn, fn)(ψ(h, f, k) ∧ u ∈n h} if n ≥ 1

{〈k, u〉0 | k ∈ ω ∧ (∃h0, f0)(ψ(h, f, k) ∧ u = h)} if n = 0
.

Here, if n = 0, we need the replacement scheme (and the axiom of infinity) to
prove that f ′ exists as a first order object. ⊣

The need of replacement at the end explains why this lemma does not hold in
L2
N . Actually, the replacement can substitute Axiom (3) of global well-order:

Lemma 29. WF(W ) is equivalently ∆1
0 in NBG minus Axiom (3).

Proof. We prove the equivalence to (†) below. Clearly WF(W ) implies (†).

(∀z)[(∀x)((∀y ∈ (W )x)(y /∈ z) → x /∈ z) → (∀x)(x /∈ z)].(†)

Let ¬WF(W ), say x0 /∈ X and X is progressive along W . Here notice that the
reflection principle for ∆1

0 formulae can be proved in the same way as in ZF (see
[11, 7.4 Theorem]), since all the axiom schemata are (especially the replacement
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is) now available for all ∆1
0 formulae with second order parameters. Thus, we

have a ∋ x0 with (a, a∩X, a∩W ) ≺Σ2
(V,X,W ). Then a\X witnesses ¬(†). ⊣

Remark 30. Feferman (by private communication) raised up a question on
the role of the foundation scheme in the elementarity of well-foundedness: does
the lemma hold even in the absences of the foundation? Actually, the foundation
scheme seems necessary to obtain the reflection principle, and, from some of the
plausible notions of the universe of sets, the foundation scheme is not necessarily
valid.
The answer is: again from the viewpoint of proof-theoretic strength (or con-

sistency strength), foundation plays no role, because we can prove the equicon-
sistency between NBG, minus Axiom (3) of global well-order, augmented by
some of the aforementioned additional axioms with and without the foundation
scheme, by the relativization of the first and second order parts to, respectively,

WF = {u | (∀z)[(∀x)((∀y ∈ x)(y /∈ z) → x /∈ z) → (u /∈ z)]} and {X |X ⊂ WF}.

Obviously, the relativization interprets NBG minus Axiom (3) of global well-
order and minus foundation, into itself, since elementary formulae are interpreted
as elementary formulae. It also interprets the foundation scheme: for elementary
ϕ, if (∀y ∈ x)ϕWF(y) → ϕWF(x) holds for all x ∈ WF, then, for any u ∈ WF,
z = {y ∈ trcl(u ∪ {u}) | ¬ϕWF(y)}, yielded by the separation scheme, satisfies
(∀x)((∀y ∈ x)(y /∈ z) → x /∈ z) and so, by u ∈ WF, u /∈ z, i.e., ϕWF(u).
Let us show, for example, that ∆1

0-FP is interpreted by this relativization
into the systems with ∆1

0-FP: if X occurs only positively in ϕ(y,X), then
also in ϕWF(y,X ∩ WF) and hence ∆1

0-FP yields F such that (∀y)[y ∈ F ↔
ϕWF(y, F ∩WF)], i.e., WF |= (∀y)[y ∈ F ′ ↔ ϕ(y, F ′)], for F ′ = F ∩WF.

One might ask if the right L2
S-analogue of well-foundedness is the different no-

tion, the non-existence of descending Ord-chains (called weak-well-foundedness in
[4]). Though this new notion plays some roles played in L2

N by well-foundedness,
this does not allow definitions by recursion. (While Flumini [4] invented weak

induction schema along weak-well-founded relations, an analogue for recursion
is hopeless as shown by Flumini and Sato [5].) Thus it seems impossible to argue
against the privileged status of the notion of well-foundedness, even in L2

S (and
in Ln+2 for n ≥ 1).
Let us close this section, by pointing out that a similar phenomenon is known

in higher order recursion theory: the theory of type-n functional for n ≥ 3 is
quite different from that of type-2 functional, as explained, e.g., in Chapter VII
“Recursion in Type-3 Functional” from Hinman [8], where he wrote:

...this chapter is not the second in an infinite sequence. Although there
are several important differences between the theories of recursion
relative to functionals of types 2 and 3, most of the theory of recursion
relative to functionals of types greater than 3 can be obtained from
type-3 theory with essentially only notational changes. [8, p.343]

The basis for this discrepancy is that the property of well-foundedness
for type-2 relations is ∆2

1 (in fact ∆1
(ω), Lemma VI.7.11), whereas well-

foundedness for type-1 relations is Π1
1 but not ∆1

1. [8, p.355]
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§9. Main result. In this section, we prove the main result: “external” 2-
fold autonomous progression proves the consistency of boldface “internalized”
single autonomous progression ∆n+1

0 -TR with several axiomatic schemata, if
well-foundedness is ∆n+1

0 . Thus the former system is proof-theoretically strictly
stronger than the latter and that the latter does not imply ∆n+1

1 -CA.
The key notion is coded lower order parts sharing (LOPS, for short) model,

which generalizes the notion of coded ω-model in L2
N (see [15, VII.2]).

Definition 31. A coded LOPS model is a n+2-th order object M , viewed as
encoding the Ln+2-structure whose k-th order part consists of

{xk−1 |x = x} for 0 < k ≤ n+1; {(M)x |x ∈ Pn} for k = n+2.

Remark 32. “M |= ϕ” is ∆n+1
0 for any Ln+2-formula ϕ, sinceM |= (QX)ϕ(X)

is (Qxn)(M |= ϕ((M)x)). Thus, any LOPS-model satisfies (i) in Ln+2
N , the full

induction (Ln+2
N -Ind); (ii) in Ln+2

S , the full induction, foundation, separation

and replacement (Ln+2
S -Ind, -Found, -sep, -repl); (iii) in the both, k+1-th or-

der Ln+2 comprehension for k ≤ n+1 (i.e., Axiom (2) extended to all formulae).

Theorem 33 (except L2
N ). ∆n+1

0 -CA0+(∆n+1
0 )−-TRR♯ proves the existence

of a coded LOPS-model of ∆n+1
0 -CA0 +∆n+1

0 -TR.

We will define LOPS models Mk’s recursively as follows. Given Mk, let ⊏
k
Mk

be the disjoint union of all well-founded relations in Mk, which are, by abso-
luteness, “really” well-founded. Let Mk+1 consist of all the sets obtainable by
∆n+1

0 transfinite recursion along ⊏k
Mk

. Mk+1 is definable by a single transfinite
recursion with the universal Σn

2 -formula Υn
2 , induced by Υn

1 . M =
⋃

k<ωMk

is yielded by ∆n+1
0 -TRR♯ along some ≺k

X (such that ≺k+1
M↾k=⊏k

Mk
) and is the

required model.

Proof. Let Υn
2 (y, Y, Z) be the universal Σn

2 -formula with two n+2-th order

variables. By ∆n+1
0 -TRR♯ we have H with Hier[ψ](H,⊕k∈ω≺

k
H↾k), where:

ψ(〈k, x〉, 〈c, a〉, X) ↔ Υn
2 (c, 〈x, a〉, {〈y, b〉 | 〈〈k, y〉, 〈c, b〉〉 ∈ X}, X↾k);

Mk(X) = {〈〈2j, c〉, 〈x, a〉〉, 〈〈2j + 1, 〈c, x〉〉, a〉 | j < k ∧ a ∈ ((X)〈j,x〉)c};

x ≺k
X y ↔ (∃a, x′, y′)[WF((Mk(X))a) ∧ x=〈a, x′〉 ∧ y=〈a, y′〉 ∧ 〈x′, y′〉∈(Mk(X))a].

We can seeMk(H) =Mk(H↾k), which we denote byMk, andMk’s are increasing
as a sequence of LOPS models. Let M =

⋃
k∈ωMk. Hier[ψ](H,⊕k∈ω≺

k
H↾k) is:

(H)〈k,x〉= {〈c, a〉 |Υn
2 (c, 〈x, a〉, {〈y, b〉 | 〈〈k, y〉, 〈c, b〉〉∈H(⊕j∈ω≺j

H↾j
)〈k,x〉}, H↾k)}

= {〈c, a〉 |Υn
2 (c, 〈x, a〉, {〈y, b〉 | 〈c, b〉 ∈ (H)〈k,y〉, y ≺k

H↾k x}, H↾k)}.(z)

For a Σn
2 -formula ϕ with parameters fromMk, since parameters are Σn

1 -definable
from H↾k, there is c such that (∀x, a)(ϕ(x, a, Y ) ↔ Υn

2 (c, 〈x, a〉, Y,H↾k)).
Let us first consider the case where Y does not occur in ϕ. (z) implies

(Mk+1)〈2k+1,〈c,x〉〉 = ((H)〈k,x〉)c = {a |Υn
2 (c, 〈x, a〉, -, H↾k)} = {a |ϕ(x, a)}.

Thus, by the absoluteness of ∆n+1
0 -formulae,M |= Σn

2 -CA and soM |= ∆n+1
0 -CA0.
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For G = (Mk+1)〈2k,c〉 = {〈x, a〉 | a ∈ ((H)〈k,x〉)c} in Mk+1, (z) implies

(G)x = {a |ϕ(x, a, {〈y, b〉 | b ∈ ((H)〈k,y〉)c, y ≺k
H↾k x})} = {a |ϕ(x, a, (G)≺k

H↾k
x)},

i.e., Hier[ϕ](≺k
H↾k, G). Then M |= (∃G′)Hier[ϕ](W,G′) for any W with WF(W )

fromMk, sinceW is included in≺k
H↾k. Thus, by Footnote 5,M |= ∆n+1

0 -TR. ⊣

If iterated comprehension (even only up to ω) for ∆n+1
0 -formula containing M

as a parameter is available, we can define the truth predicate relative to M , by
which we can prove the consistency of the theory satisfied by M . Thus,

Corollary 34 (except L2
N ). For schemata ‘-Sch’ mentioned in Remark 32,

∆n+1
0 -CA0 +∆n+1

0 -TR♯ ⊢ Con(∆n+1
0 -CA0 +∆n+1

0 -TR+ Ln+2-Sch).

Remark 35. Since we need transfinite recursion to define the truth predicate
ofM after M is defined, (∆n+1

0 )−-TRR♯ does not seem to prove the consistency.

However, if we replace the “preceding order” ω in (∆n+1
0 )−-TRR♯ by ω+1 (i.e.,

if we allow ω+1-th iteration of non-dependent transfinite recursion; see also
Γ -TR2 in §10), then the consistency can be proved. As mentioned in Remark

27 (iii), ÎDn+1
1 implies (∆n+1

0 )−-TRR♯ with preceding order ω+1. Thus, we
have

ÎDn+1
1 ⊢ Con(∆n+1

0 -CA0 +∆n+1
0 -TR+ Ln+2-Sch).

Note that ÎDn+1
1 can be interpreted in ∆n+1

0 -CA0+Σn+1
1 -Coll+∆n+1

0 (Σn+1
1 )-Sch

by diagonalizing Υn+1
1 in the same way as in L2

N (see [1]).

Remark 36. The theorem can be generalized for Γ -TR♯ and Γ -TR if (i) Γ
includes all those formulae elementary in well-foundedness; (ii) Γ -formulae is
absolute for the LOPS models. In L2

N , the condition (i) prevents us from having
the result for ∆1

0. However, for Π1
1 in L2

N , because of Kleene’s basis theorem
[15, VII.1.8], the LOPS model in the proof is a β-model and so the two conditions

are satisfied. Thus ACA0 +Π1
1-TR♯ ⊢ Con(ACA0 +Π1

1-TR+L2-Sch) in L2
N .

Corollary 37 (except L2
N ). ∆n+1

0 -CA0+∆n+1
0 -TR+Ln+2-Sch 6⊢ ∆n+1

1 -CA.

Proof. Let T be the system. If T ⊢ ∆n+1
1 -CA, since T includes Σn+1

1 -Ind,

by Lemma 21, T ⊢ ∆n+1
0 -TR♯ and, by the theorem, T ⊢ Con(T ). ⊣

By Lemma 15, ∆n+1
0 -CA0 + ∆n+1

0 -TR + Ln+2-Sch 6⊢ Σn+1
1 -Coll follows,

contrasting with the known result ACA0+∆1
0-TR ⊢ Σ1

1-Coll (e.g., [15, V.8.3]).

Remark 38. Proof-theoretically, however, Σn+1
1 -Coll (nor ∆n+1

1 -CA) does
not affect ∆n+1

0 -CA0+∆n+1
0 -TR. More generally, for a ∆n+1

0 -formula Ψ(X,Y ),
we can establish the Πn+1

2 -conservation of adding Σn+1
1 -Coll to ∆n+1

0 -CA0 +
(∀X)(∃Y )Ψ(X,Y ), when ∆n+1

0 -CA0+∀X∃YΨ(X,Y ) ⊢ ∀X∃Y ∀zΨ((X)z, (Y )z),
in the same way as the proof of [15, IX.4.4] with “TJ(An) = An+1” replaced by
“TJ(A2n)=A2n+1 ∧ (∀z)Ψ((A2n+1)z, (A2n+2)z) ∧ ∀x∃y(An)x = (An+1)y”. Note

that the proof of our main theorem shows how to obtain such Ψ for ∆n+1
0 -TR.
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§10. Further problems. Since dependent transfinite recursion is a new kind
of axiom scheme, there are many questions open. For example,

• Since the proof of Theorem 33 does not work for classes other than ∆n+1
0

(except Π1
1 in L2

N as discussed in Remark 36), we have no idea if Πn+1
k+1-TR♯

is strictly stronger than Πn+1
k+1-TR. This problem survives in L2

N for n ≥ 2,
while we have Propositions 23 and 26.

• While Corollaries 24 and 22 (a) position ∆n+1
e -TR (or with ♯) between

Πn+1
1 -Red + Σn+1

1 -Coll and ∆n+1
0 -TR♯ (in the presence of sufficient in-

duction), is it properly between? Or what are the relations with ∆n+1
0 -FP

or with Πn+1
1 -Red (alone)?

• Autonomous progression can be considered not only for comprehension but
also for other constructions. Among them, Strahm [16] considered au-
tonomous progression of fixed-point principle for positive elementary oper-
ators and its “internalized version” FTR. It is natural to ask if FTR♯ is
stronger than FTR both in number and set theories, and the same question
in general Ln+2 for positive Πn+1

k operators.

However, the most important problem seems to be: to capture (or to give a
formulation to) the whole scope of dependent transfinite recursion (or, multi-
fold autonomous progression). As remarked several times, in the definition of

Γ -TR♯, n’s in ≺n
Y can be replaced by any ordinal, or ω in ⊕n∈ω ≺n

Y ↾n can be
replaced by any well-founded relation. This can be formalized as follows.

Γ -TR2: WF(≺(1))∧(∀w,X)WF(≺
(0),w
X↾w ) →(∃H)Hier[ϕ](H,⊕w∈fd(≺(1))≺

(0),w
H↾w ),

for any Γ -formulae ≺(1) and ≺
(0),w
Y and for any Γ -formula ϕ.

≺(1) was called “preceding order” in Remarks 25, 27 and 35. We can further
generalize it by allowing ≺(1) to depend on H. Iterating this generalization,

Γ -TRk+1: (∀~w, Y )
∧

j≤kWF(≺
(j),wk,··· ,wj+1

Y ↾〈wk,··· ,wj+1〉
) → (∃H)Hier[ϕ](H,Πj≤k≺

(j)
H )

for any Γ -formulae ϕ and ≺
(j),wk,··· ,wj+1

Y (for j < k), where ~w(Πj≤k≺
(j)
H )~v is

defined as (wk≺
(k)vk) ∨ · · · ∨ (wk=vk ∧ · · · ∧ w1=v1 ∧ w

0≺
(0),wk,··· ,w1

H↾〈wn,··· ,w1〉
v0).

Furthermore we can define Γ -TRω, by considering ω-sequences f such that, for

all but finite k ∈ ω, f(k) is the minimum in ≺
f↾(ω\(k+1))
X (like Veblen hierarchy),

and we can replace this ω by any well-order, which, again, depends on the
intermediate stage of resulting hierarchy H, and so on. Notice that all these
extensions are implied both by Πn+1

1 (Γ )-Red and ∆n+1
0 (Γ )-FP, since the proofs

of Propositions 23 and 26 survive as reminded before whereas, in order to let
Corollary 22 survive, we need to replace Σn+1

e -Ind by Σn+1
e -TI.

How can we formalize all these extensions in one schema? Such a scheme
should be called the full dependent transfinite recursion and denoted by -DTR.
To capture the limit of relative predicativity, we need such one, if we agree that
multi-fold autonomous progressions are also accepted in relative predicativity.
However, for this we need an invention as breakthrough as the extraction of well-
orderedness from “transfiniteness” or processes going beyond length ω (although
the invention has not been made properly yet, as discussed in §6.)
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§11. Conclusions. We have seen that the traditional predicativity, namely
“predicativity given ω”, is quite different from “predicativity given the totality of
all real numbers”, from “predicativity given the totality of all functions” and from
“predicativity given the universe of sets”, in the following sense: the relations
among the central notions, i.e., single and multi-fold autonomous progressions
of ∆n+1

0 and ∆n+1
e comprehension, are completely different, and the predicative

reducibility of some axioms, i.e., Πn+1
1 reduction and ∆n+1

0 fixed point, holds
to traditional predicativity but seems to fail to the other kinds of predicativity:
the dependent autonomous progression is bounded from above by parameter-
free version of Πn+1

1 reduction (which we do not officially define) and that of

∆n+1
0 fixed point (namely ÎDn+1

1 ), which must be strictly weaker than the usual
parameter-allowed versions.
Differences are summarized in Table 1, where the base theory is ∆n+1

0 -CA0+

Γ -TI for any Γ ⊂ Ln+2, except that Γ ⊃ Σn+1
e when ∆n+1

e -TR(♯) is concerned.

in L2
N in Ln+2

N (n ≥ 1) and Ln+2
S (n ≥ 0)

∆1
e-TR(♯) ↔ ∆1

0-TR♯ ↔ ∆1
0-TR ∆n+1

e -TR(♯),∆n+1
0 -TR♯ → Con(∆n+1

0 -TR)

Π1
1-Red ↔ ∆1

0-FP ↔ ∆1
0-TR Πn+1

1 -Red,∆n+1
0 -FP → Con(∆n+1

0 -TR)

∆1
0-TR → Con(ÎD1

1) ÎDn+1
1 → Con(∆n+1

0 -TR)

∆1
0-TR → ∆1

1-CA,Σ1
1-Coll ∆n+1

0 -TR 6→ ∆n+1
1 -CA,Σn+1

1 -Coll

Table 1. the difference between L2
N and the other Ln+2’s

These results suggest a new trend of research: to answer the following question.

Among the known results in L2
N , which hold in general Ln+2 and

which are specific to L2
N (i.e., do not hold in Ln+2 other than L2

N ).

More finely, which holds in which instance of Ln+2? Indeed, this trend, restricted
to L2

S , has already mentioned in Krähenbühl [10], Fujimoto [7] and Flumini [4],
and actually been executed in several papers (e.g., Jäger and Krähenbühl [9],
as well as [10], [7] and [4]). Though one might think that these results are
straightforward generalizations of results known in L2

N , our results in the present
paper show that the trend of research cannot be trivial.
Related to this trend, one interesting question is: what is the right analogue of

ACA or of general “naught-less” L2
N -theories? Jäger and Krähenbühl [9] employ

the view that “naught-less” in L2
N corresponds to “adding full foundation” in L2

S

and show that this view works very well particularly in the context of infinitary
proof systems. On the other hand, Fujimoto [7, Remark 1] claims that it should
correspond to “adding the foundation, separation and replacement schemata for

the full language”, which works well for, e.g., the embedding of ÎDn+1
1 mentioned

at the end of Remark 35. The difference occurs clearly in the case of Σ1
1-Coll:

(I) by Remark 38, NBG+Σ1
1-Coll is Π1

2-conservative over NBG;
(II) [10] shows that NBG+Σ1

1-Coll+L2
S-Found is Π1

2-conservative over what
they call NBG<E0

, whose strength is between NBG and NBG+∆1
0-TR;

(III) Remark 35 (and the final remark of Section 6 in [7]) asserts NBG +
Σ1

1-Coll+ L2
S-Sch is strictly stronger than NBG0 +∆1

0-TR.

It seems plausible that all these results hold in general Ln+2, except L2
N .
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Finally, the author would like to emphasize that this new trend of research
can be seen as a continuation of his previous researches [12] and [13] on the
comparison among second order frameworks, since Ln+2’s can be seen as second
order frameworks by considering objects of less than n+2-th order as first order
objects and objects of n+2-th order as second order ones.

Acknowledgments. The author greatly appreciates very stimulating discus-
sions with Solomon Feferman and Kentaro Fujimoto, an ex-student of Fefer-
man’s. He would like to appreciate the hospitality of members of Logic and
Theory Group at Institut für Informatik und angewandte Mathematik, Univer-
sität Bern, during his stay at which he obtained most results of this article,
especially discussions with Gerhard Jäger, Thomas Strahm and Dandolo Flu-
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