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Abstract

In this thesis we examine and optimize backward proof search for two widely
used propositional non-monotonic logics: circumscription and default logic.
While only one calculus is taken into account for circumscription, we ex-
amine two calculi for default logic, one for skeptical the other for credulous
entailment. Since the two calculi for default logic depend on a residue cal-
culus — a calculus for the justification-free fragment of default logic — we
also examine proof search for this fragment.

We show for all four calculi that simple provers based on backward rule
application inherit certain redundancies. For these redundancies we develop
algorithms to detect and prevent them.

For the circumscription, residue and skeptical default calculus we success-
fully adapt the use-check method from proof search in classical propositional
logic. This method aims at deducing the provability of one premise of a
branching rule by analyzing the proof found for the other premise. If the
search tree can be successfully reduced the proving process can be sped up
considerably.
We furthermore show how to encode use-check into the different calculi by
providing modified versions of the circumscription and residue calculus with
inbuilt use-check.

To compare the different optimization techniques we test our algorithms
on several scalable problems and also compare the backward proof search
algorithms with other approaches. For circumscription we compare them to
the approach of expressing circumscription in classical logic while for default
logic we compare them to an extension based proving technique.

The developed optimization techniques lead to good results for certain prob-
lems while having little or no impact on others. In general, their impact on
the circumscription prover is higher than on provers for default logic and
use-check proves to be the most valuable optimization technique.
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Heartfelt thanks go to Kai Brünnler for proof reading and correcting my
work, for many fruitful discussions that led to new ideas and clarifications,
for his moral support and most of all for his friendship.

Writing a thesis always goes with having too little time for your family
and friends. I thank them all for being there when in need and for their
understanding in times when I made myself rare. My deepest thanks go
to Anuschka who kept me grounded with her love and her encouraging and
charming way during the most intensive times.

Last but not least, my thanks also go to the current and former members
of the logic and theory group at the University of Bern, especially to Alain
Heuerding and Stefan Schwendimann for initiating the Logics Workbench
in which I have implemented my algorithms.

iii





Contents

1 Classical Propositional Logic 5
1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Core Language . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Meta Symbols . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Syntactic Abbreviations . . . . . . . . . . . . . . . . . 6
1.1.4 Precedence of Connectives . . . . . . . . . . . . . . . . 6
1.1.5 Further Syntactic Definitions . . . . . . . . . . . . . . 7

1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 General Notion of a Sequent Calculus . . . . . . . . . . . . . 9

1.3.1 Deduction Rules . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Classical Propositional Calculus . . . . . . . . . . . . . . . . . 11
1.4.1 Classical Sequents . . . . . . . . . . . . . . . . . . . . 11
1.4.2 The Rules of the Classical Propositional Calculus . . . 12

1.5 Classical Refutation Calculus . . . . . . . . . . . . . . . . . . 15
1.5.1 The Rules of the Classical Refutation Calculus . . . . 15
1.5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Proof Search in Classical Logic 21
2.1 A Proof Search Algorithm . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Some Rule Properties . . . . . . . . . . . . . . . . . . 21
2.1.2 A Naive and Inefficient Proof Search Algorithm . . . . 22

2.2 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Formula Classification . . . . . . . . . . . . . . . . . . 25
2.2.2 Use-Check . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 A Calculus With Use-Check . . . . . . . . . . . . . . . . . . . 36
2.3.1 The Calculus CPC2 . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Soundness and Completeness . . . . . . . . . . . . . . 40
2.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Refutation Search . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 The Pigeonhole Principle . . . . . . . . . . . . . . . . 46
2.5.2 Urquhart’s Formula . . . . . . . . . . . . . . . . . . . 47

v



CONTENTS

3 Propositional Circumscription Logic 53

3.1 Introductory Example . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Propositional Circumscription Logic . . . . . . . . . . . . . . 54

3.2.1 Some Properties of Minimal Models . . . . . . . . . . 55

3.2.2 Syntactic Definition . . . . . . . . . . . . . . . . . . . 58

3.3 A Sequent Calculus for Circumscription . . . . . . . . . . . . 61

4 Proof Search in Circumscription 67

4.1 Proving in Classical Logic . . . . . . . . . . . . . . . . . . . . 67

4.2 Backward Proof Search . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 A Simple Proof Search Algorithm . . . . . . . . . . . . 69

4.2.2 General Improvements . . . . . . . . . . . . . . . . . . 70

4.2.3 Use-Check . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.4 A Modified Calculus for Use-Check . . . . . . . . . . . 86

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Problem 1: A Single Minimal Model . . . . . . . . . . 91

4.3.2 Problem 2: Fixed Variables . . . . . . . . . . . . . . . 95

4.3.3 Problem 3: Fixed Variables Revisited . . . . . . . . . 98

4.3.4 Problem 4: Number of Minimal Models Grow Linearly 99

4.3.5 Problem 5: Number of Minimal Models Grow Expo-
nentially . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.6 Problem 6: Graph Problem . . . . . . . . . . . . . . . 103

4.3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Propositional Default Logic 109

5.1 Definition of Default Logic . . . . . . . . . . . . . . . . . . . . 109

5.1.1 Default Entailment . . . . . . . . . . . . . . . . . . . . 113

5.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Sequent Calculi for Default Logic . . . . . . . . . . . . . . . . 114

5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.2 Propositional Residue Calculus . . . . . . . . . . . . . 115

5.2.3 Credulous Propositional Default Calculus . . . . . . . 120

5.2.4 Skeptical Propositional Default Calculus . . . . . . . . 122

5.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Proof Search for Residue Sequents 127

6.1 Backward Proof Search . . . . . . . . . . . . . . . . . . . . . 127

6.1.1 A Simple Prover . . . . . . . . . . . . . . . . . . . . . 128

6.1.2 General Improvement . . . . . . . . . . . . . . . . . . 128

6.1.3 Use-Check . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2 Proving Residue Sequents Differently . . . . . . . . . . . . . . 147

6.2.1 Computing Cl(W,R) . . . . . . . . . . . . . . . . . . . 147

6.2.2 Computing Cl(W,R) Partially . . . . . . . . . . . . . 152

6.2.3 Computing Minimal Quasi-Supports . . . . . . . . . . 163

vi



CONTENTS

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 183
6.3.1 Problem 1: Chain of Residues . . . . . . . . . . . . . . 184
6.3.2 Problem 2: Short Chains of Residues . . . . . . . . . . 196
6.3.3 Problem 3: Chain of Residues With Dead Ends . . . . 203
6.3.4 Problem 4: Grid With Dead Zones . . . . . . . . . . . 206
6.3.5 Problem 5: Grid Without a Start . . . . . . . . . . . . 210
6.3.6 Problem 6: Grid Ripped Apart . . . . . . . . . . . . . 213
6.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 216

7 Proof Search in Default Logic 217
7.1 Proof Search in Credulous Default Logic . . . . . . . . . . . . 217

7.1.1 A Simple Prover . . . . . . . . . . . . . . . . . . . . . 217
7.1.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 222
7.1.3 Residual Improvement . . . . . . . . . . . . . . . . . . 225

7.2 Proof Search in Skeptical Default Logic . . . . . . . . . . . . 229
7.2.1 A Simple Prover . . . . . . . . . . . . . . . . . . . . . 230
7.2.2 Residual Improvement . . . . . . . . . . . . . . . . . . 237
7.2.3 Use-Check . . . . . . . . . . . . . . . . . . . . . . . . . 241

7.3 Extension Based Proving . . . . . . . . . . . . . . . . . . . . 245
7.3.1 Computing Extensions . . . . . . . . . . . . . . . . . . 248

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 251
7.4.1 Problem 1: Chain of Defaults . . . . . . . . . . . . . . 253
7.4.2 Problem 2: Short Chains of Defaults . . . . . . . . . . 262
7.4.3 Exponentially Many Extensions . . . . . . . . . . . . . 265
7.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 270

8 Conclusion 273

vii





List of Figures

1.1 Deduction rules of CPC . . . . . . . . . . . . . . . . . . . . . 12

1.2 Deduction rules of CPRC . . . . . . . . . . . . . . . . . . . . 16

2.1 Example proof search run . . . . . . . . . . . . . . . . . . . . 23

2.2 Proof to example run of Figure 2.1 . . . . . . . . . . . . . . . 25

2.3 Improved example proof search run . . . . . . . . . . . . . . . 26

2.4 Proof corresponding to run of Figure 2.3 . . . . . . . . . . . . 26

2.5 Processing branching rules first might lead to shorter proofs . 27

2.6 An example proof illustrating the use-check method . . . . . 28

2.7 Use-Check example search . . . . . . . . . . . . . . . . . . . . 28

2.8 Multiple formula occurrences in a sequent . . . . . . . . . . . 30

2.9 Example proof to illustrate formula labeling . . . . . . . . . . 30

2.10 Deduction rules of CPC2 . . . . . . . . . . . . . . . . . . . . . 38

2.11 Macro-rules of CPC2 . . . . . . . . . . . . . . . . . . . . . . . 43

2.12 Proving time of urquhart(n) with and without use-check . . . 47

2.13 Proving statistics of urquhart2(n) . . . . . . . . . . . . . . . . 48

2.14 Proving time of urquhart2(n) . . . . . . . . . . . . . . . . . . 48

2.15 Proving statistics of urquhart2(n) . . . . . . . . . . . . . . . . 51

3.1 Circumscription rules of PCC . . . . . . . . . . . . . . . . . . 62

4.1 Invocations of cpcProvable in circumscription prover . . . 72

4.2 Invocations of cpcRefutable in circumscription prover . . . 72

4.3 Use-check in circumscription . . . . . . . . . . . . . . . . . . . 85

4.4 Deduction rules of CPRC2 . . . . . . . . . . . . . . . . . . . . 87

4.5 Circumscription rules of PCC2 . . . . . . . . . . . . . . . . . 88

4.6 Proving time of T1(n) ⊃P1(n) A1(n) . . . . . . . . . . . . . . . 93

4.7 Proving time of T1(n) ⊃P1(n) A1(n) . . . . . . . . . . . . . . . 93

4.8 Proving time of T1(n) ⊃P1(n) ¬p1 . . . . . . . . . . . . . . . . 94

4.9 Proving time of T1(n) ⊃P1(n) ¬pn . . . . . . . . . . . . . . . . 95

4.10 Proving time of T2(n) ⊃P2(n);R2(n) A2(n) . . . . . . . . . . . . 96

4.11 Proving time of T2(n) ⊃P2(n);R2(n) A2(n) . . . . . . . . . . . . 97

4.12 Proving time of T3(n) ⊃P3(n);R3(n) A3(n) . . . . . . . . . . . . 99

ix



LIST OF FIGURES

4.13 Proving time of T4(n) ⊃P4(n) A4(n) . . . . . . . . . . . . . . 100

4.14 Proving time of T4(n) ⊃P4(n) B4(n) . . . . . . . . . . . . . . 101

4.15 Proving time of T5(n) ⊃P5(n) A5(n) . . . . . . . . . . . . . . . 102

4.16 Proving time of T5(n) ⊃P5(n) B5(n) . . . . . . . . . . . . . . . 104

5.1 Residue rules of PRC . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Residue rules of PRRC . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Default deduction rules of cPDC . . . . . . . . . . . . . . . . 121

5.4 Default deduction rules of sPDC . . . . . . . . . . . . . . . . 123

5.5 Proof of “Nixon Diamond” . . . . . . . . . . . . . . . . . . . 126

5.6 Proof in theory without extension . . . . . . . . . . . . . . . . 126

6.1 irrelevance of processing order . . . . . . . . . . . . . . . . . . 129

6.2 Sequents encountered in backward proof search . . . . . . . . 130

6.3 Residue rules of PRC2 . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Combining general improvement and use-check . . . . . . . . 145

6.5 Example with successful loop check . . . . . . . . . . . . . . . 159

6.6 Example with successful loop check . . . . . . . . . . . . . . . 161

6.7 Deduction rules of CPC4 . . . . . . . . . . . . . . . . . . . . . 167

6.8 Proving time of T1(n) ⊃ pn
2

+1 (sorted order) . . . . . . . . . . 186

6.9 Proving time of T1(n) ⊃ pn
2

+1 (random order) . . . . . . . . . 186

6.10 Proving time of T1(n) ⊃ pn+1 (sorted order) . . . . . . . . . . 188

6.11 Proving time of T1(n) ⊃ pn+1 (random order) . . . . . . . . . 188

6.12 Proving time of T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (sorted order) . . . . 190

6.13 Proving time of T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (random order) . . . 190

6.14 Proving time of T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (sorted order) . . . . 191

6.15 Proving time of T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (random order) . . . 191

6.16 Proving time of T1(n) ⊃ pn+1 ∨ · · · ∨ p2 (sorted order) . . . . 193

6.17 Proving time of T1(n) ⊃ pn+1 ∨ · · · ∨ p2 (random order) . . . 193

6.18 Proving time of T1(n) ⊃ p2 ∧ · · · ∧ pn+1 (sorted order) . . . . 194

6.19 Proving time of T1(n) ⊃ p2 ∧ · · · ∧ pn+1 (random order) . . . 194

6.20 Proving time of T2(n) ⊃ p1,6 ∨ · · · ∨ pn,6 (sorted order) . . . . 197

6.21 Proving time of T2(n) ⊃ p1,6 ∨ · · · ∨ pn,6 (random order) . . . 197

6.22 Proving time of T2(n, 5) ⊃ p1,6 ∨ · · · ∨ pn,6 (sorted order) . . . 199

6.23 Proving time of T2(n, 5) ⊃ p1,6 ∨ · · · ∨ pn,6 (random order) . . 199

6.24 Proving time of T2(n, 5) ⊃ p1,6 ∧ · · · ∧ pn,6 (sorted order) . . . 201

6.25 Proving time of T2(n, 5) ⊃ p1,6 ∧ · · · ∧ pn,6 (random order) . . 201

6.26 Proving time of T3(n) ⊃ pn,n (sorted order) . . . . . . . . . . 204

6.27 Proving time of T3(n) ⊃ pn,n (random order) . . . . . . . . . 204

6.28 Proving time of T5(n) ⊃ (sorted order) . . . . . . . . . . . . . 208

6.29 Proving time of T4(n) ⊃ pn,n (random order) . . . . . . . . . 208

6.30 Proving time of T6(n) ⊃ (sorted order) . . . . . . . . . . . . . 211

6.31 Proving time of T6(n) ⊃ (random order) . . . . . . . . . . . . 211

6.32 Proving time of T6(50) ⊃ q1,1 (sorted order) . . . . . . . . . . 215

x



LIST OF FIGURES

6.33 Proving time of T6(n) ⊃ q1,1 (random order) . . . . . . . . . . 215

7.1 Redundancies in the simple prover . . . . . . . . . . . . . . . 232
7.2 Use-check in sPDC . . . . . . . . . . . . . . . . . . . . . . . . 243
7.3 Example run of extensions(W,D,D, Dout) . . . . . . . . . . 252
7.4 Proving time of ;T1(n) ⊃ pn

2
+1 (sorted order). . . . . . . . . 255

7.5 Proving time of T1(n) ⊃ pn
2

+1 (sorted order). . . . . . . . . . 255
7.6 Proving time of ;T1(n) ⊃ pn

2
+1 (sorted order). . . . . . . . . 257

7.7 Proving time of ;T1(n) ⊃ pn
2

+1 (sorted order). . . . . . . . . 257
7.8 Proving time of ;T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (sorted order). . . . 259
7.9 Proving time of ;T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (random order). . . 259
7.10 Proving time of ;T1(n) ⊃ pn+1 ∨ · · · ∨ p2 (sorted order). . . . 261
7.11 Proving time of ;T1(n) ⊃ p2 ∧ · · · ∧ pn+1 (sorted order). . . . 261
7.12 Proving time of ;T2(n) ⊃ p1,6 ∨ · · · ∨ pn,6 (sorted order). . . 263
7.13 Proving time of ;T2(n) ⊃ p1,6 ∧ · · · ∧ pn,6 (sorted order). . . 263
7.14 Proving time of T3(n) ⊃ q1 (sorted order). . . . . . . . . . . 266
7.15 Proving time of T3(n) ⊃ q1 (random order). . . . . . . . . . 266
7.16 Proving time of T3(n) ⊃ q1 (sorted order). . . . . . . . . . . 268
7.17 Proving time of T3(n) ⊃ q1 (random order). . . . . . . . . . 268
7.18 Proving time of T3(n) ⊃ pn

2
+1 ∨ qn

2
+1 (sorted order). . . . . 269

7.19 Proving time of T3(n) ⊃ pn
2

+1 ∨ qn
2

+1 (sorted order). . . . . 270
7.20 Proving time of T3(n) ⊃ pn

2
+1 ∨ qn

2
+1 (random order). . . . . 270

xi





List of Tables

2.1 Figures of proving pigeonhole(n) with and without use-check 46

4.1 Proving time of Thc(G, n) ⊃P (n) ¬noncircuit . . . . . . . . . . 106

6.1 Figures of proving T1(20) ⊃ p11 (sorted order) . . . . . . . . . 186

6.2 Figures of proving T1(20) ⊃ p11 (random order) . . . . . . . . 186

6.3 Figures of proving T1(1000) ⊃ p501 (sorted order) . . . . . . . 188

6.4 Figures of proving T1(1000) ⊃ p501 (random order) . . . . . . 188

6.5 Figures of proving T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (sorted order) . . . 190

6.6 Figures of proving T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (random order) . . 190

6.7 Figures of proving T1(1000) ⊃ p2 ∨ · · · ∨ p1001 (sorted order) . 191

6.8 Figures of proving T1(1000) ⊃ p2 ∨ · · · ∨ p1001 (random order) 191

6.9 Figures of proving T1(1000) ⊃ p1001 ∨ · · · ∨ p2 (sorted order) . 193

6.10 Figures of proving T1(1000) ⊃ p1001 ∨ · · · ∨ p2 (random order) 193

6.11 Figures of proving T1(1000) ⊃ p2 ∧ · · · ∧ p1001 (sorted order) . 194

6.12 Figures of proving T1(1000) ⊃ p2 ∧ · · · ∧ p1001 (random order) 194

6.13 Figures of proving T2(5, 5) ⊃ p1,6 ∨ · · · ∨ p5,6 (sorted order) . . 197

6.14 Figures of proving T2(5, 5) ⊃ p1,6 ∨ · · · ∨ pn,6 (random order) . 197

6.15 Figures of proving T2(2000, 5) ⊃ p1,6∨· · ·∨p2000,6 (sorted order)199

6.16 Figures of proving T2(2000, 5) ⊃ p1,6∨ · · · ∨pn,6 (random order)199

6.17 Figures of proving T2(500, 5) ⊃ p1,6 ∧ · · · ∧ p500,6 (sorted order)201

6.18 Figures of proving T2(500, 5) ⊃ p1,6∧· · ·∧p500,6 (random order)201

6.19 Figures of proving T3(100) ⊃ p100,100 (sorted order) . . . . . . 204

6.20 Figures of proving T3(100) ⊃ p100,100 (random order) . . . . . 204

6.21 Figures of proving T4(50) ⊃ p50,50 (sorted order) . . . . . . . 208

6.22 Figures of proving T4(n) ⊃ pn,n (random order) . . . . . . . . 208

6.23 Figures of proving T5(20) ⊃ p20,20 (sorted order) . . . . . . . 211

6.24 Figures of proving T5(20) ⊃ p20,20 (random order) . . . . . . . 211

6.25 Figures of proving T6(20) ⊃ q1,1 (sorted order) . . . . . . . . 215

6.26 Figures of proving T6(50) ⊃ q1,1 (random order) . . . . . . . . 215

7.1 Sequents encountered when partitioning the defaults . . . . . 234

7.2 Figures of proving T1(15) ⊃ p8 (sorted order) . . . . . . . . . 255

xiii



LIST OF TABLES

7.3 Figures of proving T1(500) ⊃ p251 (sorted order) . . . . . . . . 255
7.4 Figures of proving T1(15) ⊃ p8 (sorted order) . . . . . . . . . 257
7.5 Figures of proving T1(300) ⊃ p151 (sorted order) . . . . . . . . 257
7.6 Figures of proving T1(300) ⊃ p2 ∨ · · · ∨ p301 (sorted order) . . 259
7.7 Figures of proving T1(500) ⊃ p2 ∨ · · · ∨ p501 (random order) . 259
7.8 Figures of proving T1(500) ⊃ p501 ∨ · · · ∨ p2 (sorted order) . . 261
7.9 Figures of proving T1(300) ⊃ p2 ∧ · · · ∧ p301 (sorted order) . . 261
7.10 Figures of proving T2(5) ⊃ p1,6 ∨ · · · ∨ p5,6 (sorted order) . . . 263
7.11 Figures of proving T2(50) ⊃ p1,6 ∧ · · · ∧ p50,6 (sorted order) . . 263
7.12 Figures of proving T3(5) ⊃ q1 (sorted order) . . . . . . . . . . 266
7.13 Figures of proving T3(200) ⊃ q1 (sorted order) . . . . . . . . . 268

xiv



List of Algorithms

1 cpcProvable: Simple proof search in CPL . . . . . . . . . . 24

2 cpcProvableUC: Proof search with use-check in CPL . . . . 33

3 circProvable-1: Simple proof search in PCL . . . . . . . . 70

4 circProvable-2: Simple proof search in PCL . . . . . . . . 71

5 circProvableUC: Proof search with use-check in PCL . . . 84

6 prcProvable: Simple proof search for residue sequents . . . 129

7 prcProvableG: Proof search with general improvement for
residue sequents . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 prc2Provable: Proof search with use-check for residue se-
quents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9 prc2ProvableG: Proof search with general improvement
and use-check for residue sequents . . . . . . . . . . . . . . . 146

10 Cl’: Computing Cl′(W,R) . . . . . . . . . . . . . . . . . . . . 151

11 Cl’2: Alternative to compute Cl′(W,R) . . . . . . . . . . . . 151

12 prcProvableQS: Using minimal quasi-supports to prove
residue sequents . . . . . . . . . . . . . . . . . . . . . . . . . . 155

13 prcProvableQSC: Using cached minimal quasi-supports to
prove residue sequents . . . . . . . . . . . . . . . . . . . . . . 159

14 prcProvableQSCL: Using cached minimal quasi-supports
and loop check to prove residue sequents . . . . . . . . . . . . 162

15 minFilters: Computing minimal filters . . . . . . . . . . . . 180

16 credDefProvable: Simple proof search for credulous de-
fault logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

17 credDefProvable’: Partition based proof search for cred-
ulous default logic . . . . . . . . . . . . . . . . . . . . . . . . 221

18 credDefProvableMR: Proof search for credulous default
logic using minimal requirements . . . . . . . . . . . . . . . . 223

19 minSupports: Computing minimal supports . . . . . . . . . 225

20 cD123MRG: Residual improvement for proof search in cred-
ulous default logic . . . . . . . . . . . . . . . . . . . . . . . . 227

21 skepDefProvable: Simple proof search for skeptical de-
fault logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

xv



LIST OF ALGORITHMS

22 skepDefProvable’: Partition based proof search for skep-
tical default logic . . . . . . . . . . . . . . . . . . . . . . . . . 236

23 sD123R: Residual improvement in proof search for skeptical
default logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

24 maxDefChains: Computing maximal default-chains . . . . . 249
25 extensions: Computing extensions of a default theory . . . 250

xvi



Introduction

In this thesis we inspect proof search for propositional circumscription and
credulous and skeptical propositional default logic. We identify redundancies
in proof search and give methods to avoid them. This results in doing less
backtracking and reducing the search trees. One of these methods is called
use-check. When this thesis started, use-check was successfully implemented
for classical propositional logic in the logics workbench LWB. Because use-
check is designed for monotonic logic, the main issues of this thesis is to
adapt it to non-monotonic logics or to develop other methods that take up
the idea of use-check.

The calculi we use for our proof search have been developed by Bonatti
and Olivetti [2] [3] [4]. They all rely on two calculi for classical logic, the
one deduces valid the other invalid sequents. Furthermore the two calculi for
default logic rely on a residue calculus, which operates over residue sequents,
these are sequents that contain formulas and justification-free defaults.

We take on these calculi and modify some of them to include use-check,
namely the circumscription calculus and the residue calculus. In order that
these modified calculi obtain the necessary use-check information from the
calculi they rely on, we furthermore give a sequent calculus for classical
default logic with inbuilt use-check.

For credulous default logic use-check is not applicable since the two rules
that process proper defaults do not branch and use-check aims at omitting
such branches. For this calculus we use a preprocessing step to limit the
search tree and obtain like this a method that is in the sense of use-check.

For skeptical default logic use-check is again applicable. However, for this
calculus we do without a modified calculus that does use-check but show
how to apply and implement use-check.

The algorithms presented in the thesis are implemented in the LWB. We test
our algorithms on some selected scalable formulas to compare the different
optimization methods discussed in this thesis.

1



INTRODUCTION

Outline

In Chapter 1 we introduce classical propositional logic together with the
general notion of a sequent calculus. We furthermore give a well known
Gentzen-style sequent-calculus for classical logic together with the corre-
sponding refutation calculus from Bonatti and Olivetti [4] which is used
in their calculi for propositional circumscription and propositional default
logic.

In Chapter 2 we discuss proof search in classical propositional logic and
show up optimization techniques. Among them is the well known method
called use-check which allows us to cut down the search tree. We sketch a
proof search algorithm with use-check and show how to encode use-check
into the calculus given in the previous chapter. This encoding serves us
as an archetype to encode use-check in further calculi. At the end of the
chapter we show the impact of use-check on the pigeonhole formula and the
impact of allowing negation on non-atoms on Urquhart’s formula [26].

In Chapter 3 we introduce the semantic definition of circumscription on
the notion of minimal models. Then we inspect the syntactic definition
of propositional circumscription logic which expresses circumscription in a
single propositional formula and thus offers the possibility to use a prover for
classical proposition logic to validate whether a formula is minimally entailed
by a theory. Finally we give the calculus for propositional circumscription
logic from Bonatti and Olivetti [2].

Chapter 4 covers automatic proving in propositional circumscription. We
discuss two approaches to prove minimal entailment. The first approach
uses the syntactic definition of circumscription logic. We show some en-
hancements that can be of use to reduce the resulting circumscription the-
ory. The second approach is based on backward proof search. We start with
a simple prover and point out some easy methods to omit redundant clas-
sical proofs and refutations. Then we take up the idea of use-check for our
prover and identify the necessary conditions to predict for branching rules
the provability of one premise from the information gained in the proof of
the other premise. From this result we then create a sequent calculus that
includes use-check by encoding the necessary information we need for use-
check into the deduction rules. Finally we evaluate our optimizations on
some scalable problems. There we compared three main approaches. The
first is to use the syntactic definition of circumscription logic, the second
is to use a prover that backward applies the deduction rules and prefers
branching to non-branching rules, the third is the complement of the second
prover, i.e. one that prefers non-branching to branching rules. We compare
our provers to mm [22], a prover that is restricted to sets of clauses.
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In Chapter 5 we introduce propositional default logic with some well known
examples. Then we recall the calculi of Bonatti and Olivetti for credulous
and skeptical default logic [3] together with two calculi for the justification-
free fragment of default logic.

In Chapter 6 we investigate two approaches to prove a residue sequent.
The first approach is based on backward proof search. We start with a sim-
ple prover, identify redundancies in the proof search tree and show how to
avoid them. This leads to the optimization we have named general improve-
ment. The name is derived from the fact that the method depends only on
the position on nodes in the search tree and not on the sequent that is to
prove. The implementation of general improvement is defined on a partial
relation on paths in the search tree. We show that if a path is in relation
to another then the nodes encountered at the corresponding positions are in
a subsequent relation. This allowed us to implement general improvement
on comparing two positions in the search tree instead of comparing two se-
quents. Then we develop use-check for the residue sequent calculus. We
first present a calculus that encodes use-check and derive from it the corre-
sponding algorithm. Finally we show how to combine general improvement
with use-check.
The second approach is based on calculating the closure of the residue the-
ory. Since the closure operator defines an infinite set of formulas we first
show how to compute a finite set of formulas that defines the closure. In a
further step we then aim at computing only a partial closure that contains
the formula that is to prove. To do so we introduced so called (minimal)
quasi-supports with the intention to extend them to supports, these are
sets of residues that correspond to closed subtheories of the closure. Before
discussing the calculation of minimal quasi-supports we first present a prov-
ing algorithm that bases on them and point out some redundancies which
can be resolved by caching intermediate results. Then we turn towards the
problem of computing the minimal quasi-supports. The approach we choose
is based on a modified version of the use-check calculus for classical logic.
By extending the sequents with additional information to distinct formulas
in the base theory from formulas that derive from residues, we succeed in
computing minimal quasi-supports based on the modified calculus.
At the end of the chapter we evaluate our algorithms and optimization tech-
niques on some scalable problems. There we investigate four kind of provers.
Two of them do backward proof search and prefer to either apply the non-
branching rule or the branching rule first. The other two base on calculating
the closure. One of them calculates the full closure while the other follows
the approach based on the quasi-supports.

In Chapter 7 we investigate backward proof search in default logic.
We start with a simple prover of the calculus for credulous entailment, iden-
tify obvious redundancies of that prover and show that they can be avoided
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if we base the prover on partitioning the set of defaults instead of backward
applying the deduction rules. In a next step we introduce a preprocess-
ing step that may lead to a reduced proof search. This preprocessing is
based on computing the so called minimal supports of a default theory. We
show how the minimal supports can be computed from the minimal quasi-
supports. Then we point out that we can use information gained in the
proof of residue sequents to predict the validity of yet unprocessed residue
sequents. This leads again to a method which caches intermediate results
to speed up proof search.
Then we continue with a simple prover of the calculus for skeptical entail-
ment. There we have again redundancies that can be avoided if we base the
prover on partitioning the set of defaults instead of backward applying the
deduction rules. Then we show as in the credulous case that we can reuse
intermediate results gained in the proof of residue sequents to predict the
validity or invalidity of yet unprocessed residue sequents. Finally we develop
use-check for the skeptical prover.
To have a comparison with an other approach we then also develop an al-
gorithm to compute the extensions of a default theory. It is a refinement of
an algorithm given by Marek and Truszczyński [19].
We close the chapter by comparing our optimizations and approaches on
some scalable problems.

4



Chapter 1

Classical Propositional Logic

Classical propositional logic is needed for the definition and the calculi of
the two non-monotonic logics presented later in this thesis. In this chapter
we give the syntactic and semantic definitions of classical propositional logic
and an abstract notion of a sequent calculus. We close the chapter with the
definition of two sequent calculi for classical propositional logic: the classical
propositional calculus CPC and the classical propositional refutation calculus
CPRC.

1.1 Syntax

In this section we define the language L of propositional logic and some
syntactic abbreviations and properties used in all logics. Furthermore we
define some notation conventions, e.g. what symbols we use to represent
formulas or theories.

1.1.1 Core Language

Definition 1.1 (language of propositional logic)
The language L(V) of propositional logic is based on a countable set V
of propositional variables, the truth symbol > (true), the connectives ¬
(negation), ∧ (conjunction) and ∨ (disjunction), and the parentheses ‘(’ and
‘)’.

The elements of L(V) are called formulas and defined inductively as follows:

1. > ∈ L(V) and p ∈ L(V) for all p ∈ V.

2. (¬>) ∈ L(V) and (¬p) ∈ L(V) for all p ∈ V.
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3. If A ∈ L(V) and B ∈ L(V) then (A ∧B) ∈ L(V) and (A ∨B) ∈ L(V).

Formulas of the first form are called atomic.

A formula A is called a literal if it is of the first or second form. We
distinguish between positive (p,>) and negative (¬p,¬>) literals.

Given a set of variables P we sometimes write ¬P to denote {¬p : p ∈ P}.

1.1.2 Meta Symbols

In unambiguous situations we normally write L instead of L(V).

We use the symbols p, q, r, s, t to denote propositional variables and A, B,
C, D to denote formulas. The symbols may be subscripted.

1.1.3 Syntactic Abbreviations

To keep L(V) small, the connectives for implication (→) and equation (↔)
are not part of the languages and negation is currently only defined on
atomic formulas. To use those constructs anyway, we define them in the
usual way.

We drop double negation on atomic formulas and define ⊥ to be an abbre-
viation of ¬>.

Definition 1.2 (⊥ and double negations)

(¬(¬p)) := p (¬(¬>)) := > ⊥ := (¬>)

Using De Morgan’s rules we inductively define negation on a disjunction
and conjunction and can thus define implication and equation on arbitrary
formulas.

Definition 1.3 (negation on non-variables, → and ↔)

(¬(A ∧B)) := ((¬A) ∨ (¬B)) (¬(A ∨B)) := ((¬A) ∧ (¬B))

(A→ B) := ((¬A) ∨ (B)) (A↔ B) := ((A→ B) ∧ (B → A))

1.1.4 Precedence of Connectives

Outer parentheses in formulas are normally omitted, e.g. we write A ∧ B
instead of (A ∧ B). To omit further parentheses we define the following
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precedence for the connectives: ¬ < ∧ < ∨ < → < ↔, so

¬p ∨ q ∧ r ↔ s→ q = ((¬p) ∨ (q ∧ r))↔ (s→ q).

Furthermore we define ∨,∧ and↔ to associate to the left and→ to associate
to the right, so

p1 ∨ p2 ∨ p3 = (p1 ∨ p2) ∨ p3 p1 → p2 → p3 = p1 → (p2 → p3).

Given a set or multiset of formulas Γ = {A1, . . . , An} we use the following
abbreviations:∨

Γ := A1 ∨A2 ∨ . . . ∨An
∧

Γ := A1 ∧A2 ∧ . . . ∧An

Remark 1.4 (multisets of formulas)
For proof search we use calculi without weakening rules. Because of this we
sometimes need multiple occurrences of formulas in a sequent and hence use
multisets instead of sets in the sequents of these calculi.

1.1.5 Further Syntactic Definitions

Definition 1.5 (substitution)
For A,B0, B1, . . . , Bn ∈ L we write A[B0/p0, B1/p1, . . . , Bn/pn] to denote
the formula in which all occurrences of pi are simultaneously replaced by
Bi.

Definition 1.6 (formula length, subformulas, variables)
Let ? denote any of the binary connectives ∨ or ∧.

The lengthlen(A) of a formula A ∈ L is defined inductively as follows:

len(p) := 1 len(¬A) := len(A) + 1

len(>) := 1 len(A ? B) := len(A) + len(B) + 1

The multiset of subformulas sub(A) of a formula A ∈ L is defined inductively
as follows:

sub(p) := {p} sub(¬A) := sub(A) ∪ {¬A}
sub(>) := {>} sub(A ? B) := sub(A) ∪ sub(B) ∪ {A ? B}

The set of variables vars(A) of a formula A ∈ L is defined inductively as
follows:

vars(p) := {p} vars(¬A) := vars(A)

vars(>) := ∅ vars(A ? B) := vars(A) ∪ vars(B)

7



CHAPTER 1. CLASSICAL PROPOSITIONAL LOGIC

1.2 Semantics

The language of propositional logic as given above is used for many logics,
which all differ by their semantical interpretations. Classical propositional
logic (CPL) is one of them. In this section we introduce the semantics of
CPL together with some definitions and properties.

Definition 1.7 (interpretation, validity, model)
An interpretation I of L(V) is a mapping I : V → {0, 1}.

The extension Î : L → {0, 1} of an interpretation I is defined inductively as
follows:

Î(>) := 1 Î(¬>) := 0 Î(p) := I(p) Î(¬p) := 1− I(p)

Î(A ∨B) :=

{
0 if Î(A) = 0 and Î(B) = 0

1 otherwise

Î(A ∧B) :=

{
1 if Î(A) = 1 and Î(B) = 1

0 otherwise

A formula A ∈ L is valid in I if Î(A) = 1. We then write I � A and call I
a model of A.
Accordingly we define a set of formulas T ⊆ L to be valid in I if I � A for
all A ∈ T . I is then also called a model of T .

A formula A ∈ L is a logical consequence of a set of formulas T if I � A for
all models I of T . We then write T 
 A. Furthermore we define Th(T ) :=
{A ∈ L : T 
 A} to be the set of all logical consequences of T .

If a formula A ∈ L is valid in all interpretations of L we call it a tautology
and write � A.

Notation 1.8 (symbols used for interpretations, 2)
We use the symbols I, J,M and N for interpretations.
Furthermore we write I 2 A if A is not valid in I, I 2 T if I is not a model
of T , T 1 A if A is not a logical consequence of T and 2 A if A is not a
tautology.

We sometimes define an interpretation through the set of variables for which
it returns 1, i.e. we write I := {p1, p2, . . . , pn} to define an interpretation I
that maps pi to 1 for 1 ≤ i ≤ n and all other propositional variables to 0.

Lemma 1.9 (properties of �)
Let I be an interpretation and A and B be formulas.

1. I � A if and only if I 2 ¬A.
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2. If I � A then I � A ∨B.

3. If I � A ∨B then I � B ∨A.

4. I � A and I � B if and only if I � A ∧B.

1.3 General Notion of a Sequent Calculus

The proof search algorithms for classical propositional logic in the LWB are
based on two-sided sequent calculi, also called Gentzen-style calculi. In this
section we give some general definitions which are common to each individual
calculus used in this work.
Since the sequents used in a calculus depend on the calculus itself, we use
the word ’sequent’ as a placeholder for a term which is to be defined when
giving the definition of the specific calculus.

1.3.1 Deduction Rules

Definition 1.10 (deduction rule, sequent calculus)
A deduction rule R is a pair 〈S,S〉 where S = {S1, . . . ,Sn} is a possibly
empty finite set of sequents schemes called premises and S is a sequent
scheme called conclusion. Formally we write

S1 S2 . . . Sn
S

(R).

Deduction rules without premises are called axioms, the others are called
proper rules.

A finite set of deduction rules C = {R1,R2, . . . ,Rn} is called a sequent
calculus.

Deduction rules consist of sequent schemes. These are abstract sequents that
may contain variables for different kinds of objects (e.g. formulas, formula
sets, natural numbers). Sequents are obtained from sequent schemes by
instantiating them, which means that all variables in the sequent scheme are
substituted with corresponding objects. If we have for example a sequent
scheme of the form A ⊃ A ∨B then a possible instance might be p0 ∨ p1 ⊃
(p0 ∨ p1) ∨ p2, provided that p0, p1 and p2 are in the set of variables of our
language.

Accordingly a rule instance, as used in proofs, is obtained from a deduction
rule R by instantiating its sequents. A deduction rule thus stands for all
rule instances that can be obtained from it.
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In the following we often speak of a deduction rule or rule when referring to
an instance of it.

Example 1.11 (deduction rule as rule instances)
To illustrate the remark above, we give two examples for a sequent calculus
for the language L(V). For clarity the rule instances are written without
rule name.

¬¬p
p

(¬¬) =

{
¬¬p
p

: p ∈ V
}

A B

A ∧B
(∧) =

{
A B

A ∧B
: A ∈ L, B ∈ L

}

1.3.2 Proofs

Definition 1.12 (deducible sequent)
Let C be a sequent calculus. We then define a sequent S to be deducible in
C (formally C ` S) as follows:

1. If S is the conclusion of an axiom of C then C ` S.

2. If S1, . . . ,Sn are the premises of a deduction rule of C that has S as its
conclusion and C ` Si for all 1 ≤ i ≤ n then C ` S.

A deduction of a sequent S has the form of a tree. The axioms thereby
represent the leaves of the tree and the resulting sequent the root of it.
Such a deduction tree of a sequent S with respect to C is called a proof of S
in C.

Often we prove properties using the depth of a proof, which, roughly said,
is the number of proper rules the longest branch in the proof contains. The
precise definition is given below.

Definition 1.13 (depth of a proof)
Let P be a proof of a sequent S, R be the last deduction rule of P having
the premises S := {S1, . . . ,Sn} and the conclusion S, and P1, . . . ,Pn be the
proofs of S1, . . . ,Sn in P.
Then the depth depth(P) of P is defined inductively as follows:

depth(P) :=

{
0 if S is empty,

max(depth(P1), . . . ,depth(Pn)) + 1 otherwise.

When doing proof search using backward rule application we sometimes need
to backtrack in the algorithm. Some rules have the nice property that they
are invertible and no backtracking is necessary when applying those rules
backwards.
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Definition 1.14 (invertible rules)
Let R be a proper rule of a calculus C having S := {S1, . . . ,Sn} as premises
and S as conclusion. Then R is called invertible if the following holds:

If C ` S then C ` Si, for all Si ∈ S

1.4 Classical Propositional Calculus

In this section we introduce a two-sided sequent calculus CPC for classical
propositional logic. Since the calculus is known to be complete, we omit
soundness and completeness proofs. In the next chapter we use the calculus
to introduce proof search and an optimization technique called “use-check”.

1.4.1 Classical Sequents

Definition 1.15 (CPC sequent)
A CPC sequent is a pair of multisets of formulas 〈Γ,∆〉 denoted by Γ ⊃ ∆.
We call Γ the antecedent and ∆ the succedent of the sequent.

Definition 1.16 (length of a sequent)
The length of a sequent Γ ⊃ ∆ is defined to be the sum of the length of its
formulas.

len(Γ ⊃ ∆) :=
∑

A∈Γ∪∆

len(A)

Since Γ and ∆ are multisets their union Γ∪∆ is to be understood as multiset-
union, i.e. multiple occurrences of formulas are relevant for this definition.

Definition 1.17 (valid sequent)
A sequent Γ ⊃ ∆ is defined to be valid if �

∧
Γ→

∨
∆. We write � Γ ⊃ ∆

to denote the validity of a sequent.

Remark 1.18 (countermodel)
Given a sequent Γ ⊃ ∆ we call an interpretation M a countermodel of Γ ⊃ ∆
if M � Γ and M 2

∨
∆.

A sequent has a countermodel if and only if it is not valid.

If Γ′ ⊆ Γ and ∆′ ⊆ ∆ and M is a countermodel of Γ ⊃ ∆ then M is also a
countermodel of Γ′ ⊃ ∆′.

Proposition 1.19 (monotonicity)
If � Γ ⊃ ∆ then � Γ,Γ′ ⊃ ∆,∆′.
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p,Γ ⊃ p,∆
(id)

Γ ⊃ >,∆
(>)

Γ ⊃ ∆, A

Γ,¬A ⊃ ∆
(¬⊃)

Γ, A ⊃ ∆

Γ ⊃ ∆,¬A
(⊃¬)

Γ, A,B ⊃ ∆

Γ,A ∧B ⊃ ∆
(∧⊃)

Γ ⊃ ∆, A Γ ⊃ ∆, B

Γ ⊃ ∆,A ∧B
(⊃∧)

Γ, A ⊃ ∆ Γ, B ⊃ ∆

Γ,A ∨B ⊃ ∆
(∨⊃)

Γ ⊃ ∆, A,B

Γ ⊃ ∆,A ∨B
(⊃∨)

Figure 1.1: Deduction rules of CPC

1.4.2 The Rules of the Classical Propositional Calculus

We are now ready to give the sequent calculus CPC for classical proposi-
tional logic. The calculus is cut-free and thus well suited for proof search
algorithms which are based on backward application of the rules of a cal-
culus. Since we are using a two-sided calculus, we have rules for negations
on non-atomic formulas. To have more compact proof representations we
furthermore introduce macro-rules for the defined connectives → and ↔.

Definition 1.20 (CPC)
We define the classical propositional sequent calculus CPC to have the de-
duction rules as given in Figure 1.1.

>,p,¬A,A ∧B and A ∨B are called principal formulas, A and B are called
active formulas in the premise.

It is well known that CPC is sound and complete, we therefore omit the
proof of the corresponding theorem.

Theorem 1.21 (soundness and completeness of CPC)

CPC ` Γ ⊃ ∆ iff � Γ ⊃ ∆.

Proposition 1.22 (invertibility of CPC)
The proper rules of CPC are invertible.

Proof. We only show that the rule (∨ ⊃) is invertible and leave it up to the
reader to verify that the other rules are invertible, too.
Suppose that Γ, A ∨ B ⊃ ∆ is deducible in CPC and let P be a proof of
Γ, A ∨B ⊃ ∆. We show our claim by induction on d := depth(P ).

• d = 0: Then Γ, A ∨ B ⊃ ∆ is an axiom and hence Γ, A ⊃ ∆ and
Γ, B ⊃ ∆ are axioms, too.
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• d > 0: We make a case distinction on the last rule of P:

–
Γ, A ⊃ ∆ Γ, B ⊃ ∆

Γ, A ∨B ⊃ ∆
(∨⊃)

Then trivially Γ, A ⊃ ∆ and Γ, B ⊃ ∆ are deducible in CPC.

–
Γ, A ∨B ⊃ ∆′, C Γ, A ∨B ⊃ ∆′, D

Γ, A ∨B ⊃ ∆′, C ∧D︸ ︷︷ ︸
∆

(⊃∧)

By induction hypothesis we know that the following four sequents
are deducible in CPC.

Γ, A ⊃ ∆′, C (1) Γ, B ⊃ ∆′, C (2)

Γ, A ⊃ ∆′, D (3) Γ, B ⊃ ∆′, D (4)

With (⊃ ∧) we can hence deduce Γ, A ⊃ ∆′, C ∧D from (1) and
(3) and Γ, B ⊃ ∆′, C ∧D from (2) and (4).

The other cases are similar to the last case.

Since we are using multisets in our sequents we do not have automatic
contraction. According to the following lemma we know that a contraction
rule is not needed.

Lemma 1.23 (contraction)
1. If CPC ` Γ ⊃ ∆, A,A then CPC ` Γ ⊃ ∆, A.
2. If CPC ` Γ, A,A ⊃ ∆ then CPC ` Γ, A ⊃ ∆.

Proof. We show the two claims simultaneously by induction on len(A).
Let P be a CPC-proof of Γ ⊃ ∆, A,A (contraction in the antecedent is shown
accordingly).

len(A) = 1 .
Then A := p or A := >. We only show the first case.

• A := p. Since p is atomic, any sequent in P is of the form
Γ′ ⊃ ∆′, p, p and p does not occur as principal formula in any
structural rule of P. If p is used as principal formula in an axiom
Γ′,p ⊃ ∆,p, p of P, then Γ′,p ⊃ ∆,p is an axiom, too. We thus
obtain a proof P ′ of Γ ⊃ ∆, p from P if in every antecedent of P
one occurrence of p is removed.

len(A) > 1 .
We make a case distinction on the form of A but only show two cases,
since the other cases are similar.

13
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• A := ¬B
Since (¬ ⊃) is invertible we know that Γ, B ⊃ ∆,¬B is provable in
CPC. For the same reason we know that Γ, B,B ⊃ ∆ is provable in
CPC. By induction hypothesis we furthermore know that Γ, B ⊃
∆ is provable in CPC. Using (¬ ⊃) we can deduce Γ ⊃ ∆,¬B.

• A := B ∧ C
Since (∧ ⊃) is invertible we know that Γ ⊃ ∆, B ∧ C,B and
Γ ⊃ ∆, B∧C,C are provable in CPC. For the same reason we know
that Γ ⊃ ∆, B,B, Γ ⊃ ∆, C,B, Γ ⊃ ∆, B,C, and Γ ⊃ ∆, C, C are
provable in CPC. By induction hypothesis we furthermore know
that Γ ⊃ ∆, B and Γ ⊃ ∆, C are provable in CPC. Using (∧ ⊃)
we can deduce Γ ⊃ ∆, B ∧ C.

Macro-Rules

For efficiency reasons we operate for proof search over an extended language
L+ in which the connectives→ and↔ are part of the language. An extension
of an interpretation I of L+(V) is defined straightforward, i.e. Î(A→ B) =
Î(¬A ∨B) and Î(A↔ B) = Î((A→ B) ∧ (B → A)).

For L+ we need an extended calculus CPC+ that contains the following
additional rules.

Γ ⊃ ∆, A Γ, B ⊃ ∆

Γ,A→ B ⊃ ∆
(→⊃)

Γ, A ⊃ ∆, B

Γ ⊃ ∆,A→ B
(⊃→)

Γ, A,B ⊃ ∆ Γ ⊃ ∆, A,B

Γ,A↔ B ⊃ ∆
(↔⊃)

Γ, A ⊃ ∆, B Γ, B ⊃ ∆, A

Γ ⊃ ∆,A↔ B
(⊃↔)

These rules can be seen as macro-rules built from CPC rules. While (→⊃
), (⊃→) and (⊃↔) are pure macro-rules (two examples are given below) the
rule (↔⊃) contains an implicit simplification that drops two premises of
which we know that they are valid.

Γ ⊃ ∆, A

Γ,¬A ⊃ ∆
(¬⊃)

Γ, B ⊃ ∆

Γ,¬A ∨B︸ ︷︷ ︸
A→B

⊃ ∆
(∨⊃)

Γ, A ⊃ ∆, B

Γ ⊃ ∆,¬A, B
(⊃¬)

Γ ⊃ ∆,¬A ∨B︸ ︷︷ ︸
A→B

(⊃∨)
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Γ ⊃ ∆, A,B
valid

Γ, A ⊃ ∆, A

Γ,B→ A ⊃ ∆, A
(→⊃)

valid
Γ, B ⊃ ∆, B Γ, B,A ⊃ ∆

Γ, B,B→ A ⊃ ∆
(→⊃)

Γ,A→ B, B → A ⊃ ∆
(→⊃)

Γ, (A→ B) ∧ (B→ A)︸ ︷︷ ︸
A↔B

⊃ ∆
(∧⊃)

Since the macro rules only reflect applications of several core rules, the
results about soundness and completeness of CPC are not affected when
adding those rules to it. Furthermore, since all rules of CPC are invertible,
the macro rules that do not contain an implicit simplification also have that
property. That this is also the case for the rule (↔⊃) can easily be verified.

1.5 Classical Refutation Calculus

The calculi we use for propositional circumscription and propositional de-
fault logic make use of a classical propositional calculus and a refutation
calculus for classical propositional logic developed by Bonatti [5]. The refu-
tation calculus is converse to the sequent prover in that it is used to show
non-provability.
In this section we introduce this calculus and close with some examples.

In contrast to the definitions in the paper of Bonatti we speak of sequents
instead of anti-sequents. As a consequence we speak of refuted sequents
instead of provable anti-sequents and therefore renamed Bonatti’s calculus
from ‘anti-sequent calculus’ to ‘refutation calculus’. The rules themselves
are left unchanged.

1.5.1 The Rules of the Classical Refutation Calculus

Below we give the definition of the refutation calculus CPRC. As in CPC we
have rules for negation on non-atomic formulas and have macro rules for
the defined connectives → and ↔. Since CPRC is not a standard calculus
we give the proofs for soundness and completeness of it, i.e. we show that
if a sequent is refutable in CPRC then it is not valid and if a sequent is not
valid, then it is refutable in CPRC.

Definition 1.24 (the calculus CPRC)
We define the classical propositional refutation calculus CPRC to have the
deduction rules as given in Figure 1.2.

Since we use the calculus to refute a sequent, the rule (aax) is called an
anti-axiom.

15
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Γ ⊃ ∆
(aax) with Γ ⊆ V ∪ {>} ,∆ ⊆ V and Γ ∩∆ = ∅

Γ ⊃ ∆, A

Γ,¬A ⊃ ∆
(¬6⊃)

Γ, A ⊃ ∆

Γ ⊃ ∆,¬A
( 6⊃¬)

Γ, A,B ⊃ ∆

Γ,A ∧B ⊃ ∆
(∧6⊃)

Γ ⊃ ∆, A,B

Γ ⊃ ∆,A ∨B
(6⊃∨)

Γ, A ⊃ ∆

Γ,A ∨B ⊃ ∆
(·∨6⊃)

Γ ⊃ ∆, A

Γ ⊃ ∆,A ∧B
(6⊃·∧)

Γ, B ⊃ ∆

Γ,A ∨B ⊃ ∆
(∨·6⊃)

Γ ⊃ ∆, B

Γ ⊃ ∆,A ∧B
(6⊃∧·)

Figure 1.2: Deduction rules of CPRC

The sequents used in the refutation calculus are equivalent to those of the
calculus CPC. If it is unclear from the context, we write CPC ` Γ ⊃ ∆ and
CPRC ` Γ ⊃ ∆ to denote that a sequent is provable and refutable, respec-
tively.

Definition 1.25 (refutable sequent, refutation)
A CPC sequent is called refutable if it is deducible in CPRC. We thus normally
speak of a refutation instead of a proof in CPRC.

Theorem 1.26 (soundness)
If a CPC sequent Γ ⊃ ∆ is refutable then it is not valid.

Proof. Suppose we have a refutation P of a sequent Γ ⊃ ∆ in CPRC. We
show by induction on the depth of P, that Γ ⊃ ∆ is not valid.

• depth(P) = 0.

Then Γ ⊃ ∆ is an anti-axiom of CPRC, i.e. Γ ⊂ V ∪ {>} ,∆ ⊂ V and
Γ∩∆ = ∅. Let M := Γ∩V, then M � Γ, M � > and (since Γ∩∆ = ∅)
M 2 p for all p ∈ ∆, thus Γ ⊃ ∆ is not valid.

• depth(P) = n+ 1.

Suppose the last step of the refutation is:

–
Γ′ ⊃ ∆, A

Γ′,¬A ⊃ ∆
(¬6⊃)

By induction hypothesis Γ′ ⊃ ∆, A is not valid. Let M be a
countermodel of it. Then M 2 A and by Lemma 1.9 we know
M � ¬A. Hence M is also a countermodel of Γ′,¬A ⊃ ∆ which
is thus not valid.
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–
Γ, A ⊃ ∆′

Γ ⊃ ∆′,¬A
( 6⊃¬)

By induction hypothesis Γ, A ⊃ ∆′ is not valid. Let M be a
countermodel of it. Then M � A and by Lemma 1.9 we know
M 2 ¬A, furthermore M is also a model of Γ. Hence M is also a
countermodel of Γ ⊃ ∆′,¬A which is thus not valid.

–
Γ′, A,B ⊃ ∆

Γ′, A ∧B ⊃ ∆
(∧6⊃)

By induction hypothesis Γ′, A,B ⊃ ∆ is not valid. Let M be
a countermodel of it. Then M � A and M � B and by Lemma
1.9 we know M � A ∧B. Hence M is also a countermodel of
Γ′, A ∧B ⊃ ∆ which is thus not valid.

–
Γ ⊃ ∆′, A

Γ ⊃ ∆′, A ∧B
(6⊃·∧)

By induction hypothesis Γ ⊃ ∆′, A is not valid. Let M be a
countermodel of it. Then M 2 A and by Lemma 1.9 we know
M 2 A ∧B for any formula B. Hence M is also a countermodel
of Γ ⊃ ∆′, A ∧B which is thus not valid.

–
Γ ⊃ ∆′, B

Γ ⊃ ∆′, A ∧B
(6⊃∧·)

Analogous to the previous case.

–
Γ′, A ⊃ ∆

Γ′, A ∨B ⊃ ∆
(·∨6⊃)

By induction hypothesis Γ′, A ⊃ ∆ is not valid. Let M be a
countermodel of it. Then M � A and by Lemma 1.9 we know
M � A ∨B for any formula B. Hence M is also a countermodel
of Γ′, A ∨B ⊃ ∆ which is thus not valid.

–
Γ′, B ⊃ ∆

Γ′, A ∨B ⊃ ∆
(∨·6⊃)

Analog to the previous case.

–
Γ ⊃ ∆′, A,B

Γ ⊃ ∆′, A ∨B
(6⊃∨)

By induction hypothesis Γ ⊃ ∆′, A,B is not valid. Let M be
a countermodel of it. Then M 2 A and M 2 B and by Lemma
1.9 we know M 2 A ∨B. Hence M is also a countermodel of
Γ ⊃ ∆′, A ∨B which is thus not valid.
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Lemma 1.27 (properties of 2)
Let Γ ⊃ ∆ be a CPC sequent and A and B be formulas.

1. If 2 Γ,¬A ⊃ ∆ then 2 Γ ⊃ ∆, A.

2. If 2 Γ ⊃ ∆,¬A then 2 Γ, A ⊃ ∆.

3. If 2 Γ, A ∧B ⊃ ∆ then 2 Γ, A,B ⊃ ∆.

4. If 2 Γ ⊃ ∆, A ∧B then 2 Γ ⊃ ∆, A or 2 Γ ⊃ ∆, B.

5. If 2 Γ, A ∨B ⊃ ∆ then 2 Γ, A ⊃ ∆ or 2 Γ, B ⊃ ∆.

6. If 2 Γ ⊃ ∆, A ∨B then 2 Γ ⊃ ∆, A,B.

Proof. Analogous to the proof of the previous theorem.

Theorem 1.28 (completeness)
If a CPRC sequent is not valid, then it is refutable in CPRC.

Proof. Suppose Γ ⊃ ∆ is not valid and let M be a countermodel of it. We
show by induction on len(Γ ⊃ ∆) that is it refutable in CPRC.

• len(Γ ⊃ ∆) = |Γ|+ |∆|.

Then Γ and ∆ contain only atomic formulas. Since M � Γ and for all
p ∈ ∆, M 2 p, the multisets Γ and ∆ are disjoint, furthermore > 6∈ ∆.
Thus Γ ⊃ ∆ is an anti-axiom of CPRC.

• len(Γ ⊃ ∆) > |Γ|+ |∆|.

Then there exists a formula A ∈ Γ ∪∆ with len(A) > 1.
We distinguish by the form and position of A:

– A ≡ ¬p Γ ⊃ ∆ ≡ Γ′,¬p ⊃ ∆.

Then Γ′ ⊃ ∆, p is not valid (Lemma 1.27) and thus refutable by
induction hypothesis. Using (¬ 6⊃) we can deduce Γ ⊃ ∆ from
Γ′ ⊃ ∆, p.

– A ≡ B ∨D Γ ⊃ ∆ ≡ Γ′, B ∨ C ⊃ ∆.

Then either Γ′, B ⊃ ∆ or Γ′, C ⊃ ∆ is not valid (Lemma 1.27)
and thus refutable by induction hypothesis. We can then deduce
Γ ⊃ ∆ either from Γ, B ⊃ ∆ with (·∨ 6⊃) or from Γ, C ⊃ ∆ with
(∨· 6⊃).

The other cases are analogous.
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Macro-Rules

As in CPC we define macro-rules for the connectives → and ↔ for more
compact refutation representations. There is no implicit simplifications in
any of those rules.

Γ ⊃ ∆, A

Γ,A→ B ⊃ ∆
(·→6⊃)

Γ, B ⊃ ∆

Γ,A→ B ⊃ ∆
(→·6⊃)

Γ, A ⊃ ∆, B

Γ ⊃ ∆,A→ B
( 6⊃→)

Γ, A,B ⊃ ∆

Γ,A↔ B ⊃ ∆
(
ll↔6⊃)

Γ, B ⊃ ∆, A

Γ ⊃ ∆,A↔ B
(6⊃ rl↔)

Γ ⊃ ∆, A,B

Γ,A↔ B ⊃ ∆
(
rr↔6⊃)

Γ, A ⊃ ∆, B

Γ ⊃ ∆,A↔ B
(6⊃ lr↔)

Again, these rules are but macros built from CPRC rules:

Γ ⊃ ∆, A

Γ,¬A ⊃ ∆
(¬6⊃)

Γ,¬A ∨B︸ ︷︷ ︸
A→B

⊃ ∆
(·∨6⊃)

Γ, B ⊃ ∆

Γ,¬A ∨B︸ ︷︷ ︸
A→B

⊃ ∆
(∨·6⊃)

Γ, A ⊃ ∆, B

Γ ⊃ ∆,¬A, B
( 6⊃¬)

Γ ⊃ ∆,¬A ∨B︸ ︷︷ ︸
A→B

(6⊃∨)

Γ, A,B ⊃ ∆

Γ,A→ B, A ⊃ ∆
(→·6⊃)

Γ, A→ B,B→ A ⊃ ∆
(→·6⊃)

Γ, (A→ B) ∧ (B→ A)︸ ︷︷ ︸
A↔B

⊃ ∆
(∧6⊃)

Γ, B ⊃ ∆, A

Γ ⊃ ∆,B→ A
(6⊃→)

Γ ⊃ ∆, (A→ B) ∧ (B→ A)︸ ︷︷ ︸
A↔B

( 6⊃∧·)

Γ ⊃ ∆, A,B

Γ,A→ B ⊃ ∆, B
(·→6⊃)

Γ, A→ B,B → A ⊃ ∆
(·→6⊃)

Γ, (A→ B) ∧ (B→ A)︸ ︷︷ ︸
A↔B

⊃ ∆
(∧6⊃)

Γ, A ⊃ ∆, B

Γ ⊃ ∆,A→ B
(6⊃→)

Γ ⊃ ∆, (A→ B) ∧ (B→ A)︸ ︷︷ ︸
A↔B

( 6⊃·∧)

As in the case of the calculus CPC, adding the macro to the calculus CPRC
does not affect the result about soundness and completeness, since the rules
only reflect applications of several core rules.

1.5.2 Examples

We give two simple examples to get a better understanding of the refutation
calculus.
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In the following example we look for a refutation of p1 ∨ p2, p3 → p4 ⊃ q1 →
q2. Since the antecedent and the succedent have no variables in common,
it is clear that the succedent is not a logical consequence of the antecedent,
hence our sequent is not valid.
We have four different classes of countermodels of our sequent:

{M : M � p1, q1,M 2 p3, q2} {M : M � p1, p4, q1,M 2 q2}
{M : M � p2, q1,M 2 p3, q2} {M : M � p2, p4, q1,M 2 q2}

Below there are four possible refutations of p1 ∨ p2, p3 → p4 ⊃ q1 → q2.
Each of it has an axiom that reflects one of the classes of models given
above. There are other refutations of this sequent, but they will all use one
of the axioms given below and vary only in the order of how the different
rules are applied.

p1, q1 ⊃ p3, q2

p1 ∨ p2, q1 ⊃ p3, q2
(·∨6⊃)

p1 ∨ p2,p3 → p4, q1 ⊃ q2
(·→6⊃)

p1 ∨ p2, p3 → p4 ⊃ q1 → q2
( 6⊃→)

p1, p4, q1 ⊃ q2

p1 ∨ p2, p4, q1 ⊃ q2
(·∨6⊃)

p1 ∨ p2,p3 → p4, q1 ⊃ q2
(→·6⊃)

p1 ∨ p2, p3 → p4 ⊃ q1 → q2
(6⊃→)

p2, q1 ⊃ p3, q2

p1 ∨ p2 ⊃ p3, q2
(∨·6⊃)

p1 ∨ p2,p3 → p4, q1 ⊃ q2
(·→6⊃)

p1 ∨ p2,p3 → p4 ⊃ q1 → q2
( 6⊃→)

p2, p4, q1 ⊃ q2

p1 ∨ p2, p4, q1 ⊃ q2
(∨·6⊃)

p1 ∨ p2,p3 → p4, q1 ⊃ q2
(→·6⊃)

p1 ∨ p2,p3 → p4 ⊃ q1 → q2
(6⊃→)

In the second example we give the refutation of the sequent p1 ∨ p2, p2 ↔
p3, p3 → ¬p4 ⊃ ¬p4. Supposing that V := {p1, p2, p3, p4}, we have four
possible models of the antecedent:

M1 := {p1, p2, p3} M2 := {p1, p4} M3 := {p1} M4 := {p2, p3}

The model M2 is the only countermodel of our sequent. The proof (having
an axiom reflecting M2) is given below.
This example also points out the need of multisets in the sequent. Without
the multiple occurrence of p3 in the succedent of the axiom, we would not
be able to refute the sequent in CPRC.

p1, p4 ⊃ p2, p3, p3

p1 ⊃ p2, p3, p3,¬p4
(6⊃¬)

p1 ∨ p2 ⊃ p2, p3, p3,¬p4
(·∨6⊃)

p1 ∨ p2,p2 ↔ p3 ⊃ p3,¬p4
(
rr↔6⊃)

p1 ∨ p2, p2 ↔ p3,p3 → ¬p4 ⊃ ¬p4
(·→6⊃)
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Chapter 2

Proof Search in Classical
Logic

In this chapter we discuss automatic proving in classical propositional logic.
The chapter has three main sections. In the first section introduce a naive
and inefficient proof search algorithm. Afterward we show two optimization
techniques we use to improve our algorithm. In the third section we intro-
duce a calculus which is especially tailored for proof search and that reflects
one of the optimization techniques.

2.1 A Proof Search Algorithm

Besides being invertible, the deduction rules of CPC also enjoy the so called
strong subformula property. These two properties allow us to write down
a simple but naive proof search algorithm that needs no backtracking and
which is known to terminate.

2.1.1 Some Rule Properties

Invertible Rules

When searching for a proof of a given sequent, it is desirable to only have
rules that are invertible. If a rule is not invertible, all possibilities to apply
the rule backwards must be taken into consideration to find the premises of
the rule that lead to a given conclusion. Take for example the following pair
of rules

Γ ⊃ ∆, A

Γ ⊃ ∆, A ∨B
(⊃·∨)

Γ ⊃ ∆, B

Γ ⊃ ∆, A ∨B
(⊃∨·)
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which are obviously not invertible. Using backward rule application for proof
search would in this case result in an algorithm which needs backtracking
for principal formulas of the form A ∨B in the succedent.

As we have shown in the previous chapter, the rules of CPC are all invertible.

Subformula Property

For proof search another advantageous property of a deduction rule is the
so called strong subformula property. If all rules of a calculus enjoy this
property, a proof search algorithm relying on backward rule application is
known to terminate.

Definition 2.1 (subformulas of a sequent, strong subformula prop-
erty)
We define the multiset of subformulas of a CPC sequent Γ ⊃ ∆ as follows:

sub(Γ ⊃ ∆) :=
⋃

A∈Γ∪∆

sub(A).

A CPC rule
S1 . . . Sn

S
(R) is said to have the strong subformula property if

sub(Si) ( sub(S) for all i with 1 ≤ i ≤ n.

Since sub(A) is defined to be a multiset, the union operator in the definition
above is to be understand as a multiset-union. We point this out because
this is crucial for sequents made of multisets. Take for example the rule
instance

p ⊃ p ∨ q, p, q
p ⊃ p ∨ q, p ∨ q

(∨⊃).

Then we have sub(p ⊃ p∨q, p, q) = {p, p ∨ q, p, q, p, q} and sub(p ⊃ p∨q, p∨
q) = {p, p ∨ q, p, q, p ∨ q, p, q} and thus this rule enjoys the strong subformula
property. If we had used normal set union in the previous definition, both
sets would be equal and thus this rule would not enjoy the strong subformula
property.

2.1.2 A Naive and Inefficient Proof Search Algorithm

Since the rules of CPC are all invertible we obtain a correct provability
algorithm by taking the sequent that is to be proved and then applying the
rules backwards until an axiom is found or no more rule can be applied
backwards. Termination is guaranteed because each rule of CPC enjoys the
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cpcProvable(p ∧ q → r,p→ q ⊃ ¬p ∨ r)
1. cpcProvable(p ∧ q→ r ⊃ ¬p ∨ r, p)
1.1. cpcProvable(⊃ ¬p ∨ r, p,p ∧ q)
1.1.1. cpcProvable(⊃ ¬p ∨ r, p, p)

cpcProvable(⊃ ¬p, r, p, p)
cpcProvable(p ⊃ r, p,p)

1.1.2. cpcProvable(⊃ ¬p ∨ r, p, q)
cpcProvable(⊃ ¬p, r, p, q)
cpcProvable(p ⊃ r,p, q)

1.2. cpcProvable(r ⊃ ¬p ∨ r, p)
cpcProvable(r ⊃ ¬p, r, p)

2. cpcProvable(p ∧ q→ r, q ⊃ ¬p ∨ r)
2.1. cpcProvable(q ⊃ ¬p ∨ r,p ∧ q)
2.1.1. cpcProvable(q ⊃ ¬p ∨ r, p)

cpcProvable(r, q ⊃ ¬p, r, p)
cpcProvable(r, q,p ⊃ r,p)

2.1.2. cpcProvable(r,q ⊃ ¬p ∨ r,q)
2.2. cpcProvable(r, q ⊃ ¬p ∨ r)

cpcProvable(r, q ⊃ ¬p, r)

Figure 2.1: Example proof search run

strong subformula property and thus with each backward application of a
rule the complexity of the sequents that need to be proved is reduced. The
pseudo code of this simple algorithm is given in Algorithm 1. We have
chosen to also backward-apply the macro-rules.

Figure 2.1 shows a possible run of the proof search of the sequent p ∧ q →
r, p → q ⊃ ¬p ∨ r. The formulas printed in bold are the principal formulas
that have been chosen arbitrarily by the algorithm. The indentation repre-
sents the recursion depth of the algorithm. If there are two recursive calls
— i.e. for branching rules — then they are enumerated accordingly.

2.2 Optimization Techniques

In this section we present two optimization techniques that are used to
improve the naive proof search algorithm. We first analyze a simple exam-
ple to show that certain rules are to be prioritized. As a consequence the
first improvement of our algorithm is then to process non-branching before
branching rules. We have named this technique the classification of for-
mulas. Afterward we have a detailed look at branching rules and will see
that with a heuristic technique called use-check we are able to omit proving

23



CHAPTER 2. PROOF SEARCH IN CLASSICAL LOGIC

Algorithm 1 Simple proof search in classical logic

1: function cpcProvable(Γ ⊃ ∆)
2: if Γ ⊃ ∆ is an axiom then
3: result := true
4: else if Γ,∆ is atomic then
5: result := false
6: else if Γ is not atomic then
7: choose A ∈ Γ which is not atomic
8: Γ′ := Γ \ {A}
9: if A = ¬B then

10: result := cpcProvable(Γ′ ⊃ ∆, B)
11: else if A = B ∨ C then
12: result := cpcProvable(Γ′, B ⊃ ∆) and
13: cpcProvable(Γ′, C ⊃ ∆)
14: else if A = B ∧ C then
15: result := cpcProvable(Γ′, B,C ⊃ ∆)
16: else if A = B → C then
17: result := cpcProvable(Γ′ ⊃ ∆, B) and
18: cpcProvable(Γ′, C ⊃ ∆)
19: else if A = B ↔ C then
20: result := cpcProvable(Γ′, B,C ⊃ ∆) and
21: cpcProvable(Γ′ ⊃ ∆, B,C)

22: else
23: choose A ∈ ∆ which is not atomic
24: ∆′ := ∆ \ {A}
25: if A = ¬B then
26: result := cpcProvable(Γ, B ⊃ ∆′)
27: else if A = B ∨ C then
28: result := cpcProvable(Γ ⊃ ∆′, B,C)
29: else if A = B ∧ C then
30: result := cpcProvable(Γ ⊃ ∆′, B) and
31: cpcProvable(Γ ⊃ ∆′, C)
32: else if A = B → C then
33: result := cpcProvable(Γ, B ⊃ ∆′, C)
34: else if A = B ↔ C then
35: result := cpcProvable(Γ, B ⊃ ∆′, C) and
36: cpcProvable(Γ, C ⊃ ∆′, B)

37: return result
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p ⊃ r, p,p(id)

⊃ ¬p, r, p, p
(⊃¬)

⊃ ¬p ∨ r, p, p
(⊃∨)

p ⊃ r,p, q(id)

⊃ ¬p, r, p, q
(⊃¬)

⊃ ¬p ∨ r, p, q
(∨⊃)

⊃ ¬p ∨ r, p,p ∧ q
(∧⊃)

r ⊃ ¬p, r, p(id)

r ⊃ ¬p ∨ r, p
(⊃∨)

p ∧ q→ r ⊃ ¬p ∨ r, p (→⊃)

(1)

r, q,p ⊃ r,p(id)

r, q ⊃ ¬p, r, p
(⊃¬)

q ⊃ ¬p ∨ r, p
(⊃∨)

r,q ⊃ ¬p ∨ r,q(id)

q ⊃ ¬p ∨ r,p ∧ q
(⊃∧)

r, q ⊃ ¬p, r(id)

r, q ⊃ ¬p ∨ r
(⊃∨)

p ∧ q→ r, q ⊃ ¬p ∨ r (→⊃)

(2)

(1)
p ∧ q→ r ⊃ ¬p ∨ r, p

(2)
p ∧ q→ r, q ⊃ ¬p ∨ r

p ∧ q → r,p→ q ⊃ ¬p ∨ r (⊃→)

Figure 2.2: Proof to example run of Figure 2.1

certain branches.

2.2.1 Formula Classification

Let us look at the example run of Figure 2.1. The corresponding proof is
given in Figure 2.2. A close examination of this simple example reveals that
the formula ¬p ∨ r appears five times as principal formula. This is because
some branching rules are applied backwards before ¬p∨r is processed. How-
ever, since ¬p∨r does not require a branching rule to be deduced and ¬p∨r
is already a member of the antecedent of the sequent that is to be proved, it
is better to first process ¬p ∨ r and its subformulas and then continue with
those formulas that require branching rules to be deduced. The resulting
run is shown in Figure 2.3, the corresponding proof is given in Figure 2.4.
Comparing the two proofs shows that the new proof contains only one rule
having ¬p ∨ r as principal formula. As a further consequence of processing
¬p∨ r first, p is already part of the antecedent when the first branching rule
has to be applied backwards and thus the left branch of the proof is reduced
to an identity axiom.

The Idea of Formula Classification

The example above illustrates a general simple technique to improve the
algorithm.
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cpcProvable(p ∧ q → r, p→ q ⊃ ¬p ∨ r)
cpcProvable(p ∧ q → r, p→ q ⊃ ¬p, r)
cpcProvable(p ∧ q → r,p→ q, p ⊃ r)
1. cpcProvable(p ∧ q → r,p ⊃ r,p)
2. cpcProvable(p ∧ q→ r, q, p ⊃ r)
2.1. cpcProvable(q, p ⊃ r,p ∧ q)
2.1.1. cpcProvable(q,p ⊃ r,p)
2.1.1. cpcProvable(q, p ⊃ r,q)
2.2. cpcProvable(r, q, p ⊃ r)

Figure 2.3: Improved example proof search run

p ∧ q → r,p ⊃ r,p(id)

q,p ⊃ r,p(id)
q, p ⊃ r,q(id)

q, p ⊃ r,p ∧ q
(⊃∧)

r, q, p ⊃ r
(id)

p ∧ q→ r, q, p ⊃ r (→⊃)

p ∧ q → r,p→ q, p ⊃ r (→⊃)

p ∧ q → r, p→ q ⊃ ¬p, r
(⊃¬)

p ∧ q → r, p→ q ⊃ ¬p ∨ r
(⊃∨)

Figure 2.4: Proof corresponding to run of Figure 2.3

Formulas that are obtained by non-branching rules are to be processed before
others.

We have named this technique formula classification. It is clear, that this
heuristic technique will not generally result in shorter proofs. A correspond-
ing example is shown in Figure 2.5. However, for those cases there are two
remarks in favor of this technique. First, following this strategy will not
introduce additional branches to the search tree. Second, in an implemen-
tation using heuristics as introduced later, the costs of applying a non-
branching rule backwards are very small compared to the costs of applying
branching rules backwards. This is because in contrast to non-branching
rules, the state of the prover has to be saved before the premises of branch-
ing rules can be proved. As a consequence very little overhead is produced
in cases where it is better to process a “branching” formula first.

2.2.2 Use-Check

Besides the obvious improvements there is another heuristic technique called
use-check. With this technique we are able to omit whole search branches in
certain circumstances. Based on an example we show how use-check works
and have a look at the speedup it can lead to.
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p, p1, p2, p3 ⊃ q,p
(id)

p, p1, p2, p3,q ⊃ q
(id)

p, p1, p2, p3,p→ q ⊃ q (→⊃)

p,p1 ∧ p2, p3, p→ q ⊃ q(∧⊃)

p,p1 ∧ p2 ∧ p3, p→ q ⊃ q(∧⊃)

p, p1 ∧ p2 ∧ p3 ⊃ q,p
(id)

p, p1 ∧ p2 ∧ p3,q ⊃ q
(id)

p, p1 ∧ p2 ∧ p3,p→ q ⊃ q (→⊃)

Figure 2.5: Backward application of the branching rule leads in
this example case into a shorter proof than the general strategy
to apply non-branching rules first. The number of axioms in the
proof stays the same

Motivation

With each backward application of a branching rule the prover potentially
doubles the costs of finding a proof. Proof search can thus be accelerated
when branchings are avoided. In some cases formula classification can avoid
branchings, as the example above illustrates. However, those cases are lim-
ited to nodes where a backward rule application results in propositional
variables. In larger proofs this normally happens very deep in the search
tree. It is therefore obvious that only very small subproofs can be avoided
with this technique.

The Idea of Use-Check

To accelerate proof search more efficiently it is desirable to avoid branchings
very early in the search tree. A way to achieve this is the use-check tech-
nique. It allows us to omit proving the second premise of a branching rule.
Use-Check is based on the fact that analyzing the proof of the first premise
allows us in certain cases to conclude the provability of the second premise.
The idea of the method is illustrated on the following example:
Suppose there is a backward rule application in the proof search of the form

...
Γ ⊃ ∆, A

...
Γ ⊃ ∆, B

Γ ⊃ ∆,A ∧B
(⊃∧)

and the proof search procedure is successful in the left branch. If analyzing
this proof reveals that already Γ ⊃ ∆ is valid, then by monotonicity (Propo-
sition 1.19) we know that Γ ⊃ ∆, B is valid and thus there is no need to
search for a proof of it.
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p, r, s ⊃ p, q
(id)

p ∧ r, s ⊃ p, q(∧⊃)
q, s ⊃ p,q(id)

p ∧ r ∨ q, s ⊃ p, q (∨⊃)

p, r, t ⊃ p, q
(id)

p ∧ r, t ⊃ p, q(∧⊃)
q, t ⊃ p,q(id)

p ∧ r ∨ q, t ⊃ p, q (∨⊃)

p ∧ r ∨ q, s ∨ t ⊃ p, q (∨⊃)

Figure 2.6: An example proof illustrating the use-check method

cpcProvable(p ∧ r ∨ q, s ∨ t ⊃ p, q)
1. cpcProvable(p ∧ r ∨ q, s ⊃ p, q)
1.1. cpcProvable(p ∧ r, s ⊃ p, q)

cpcProvable(p, r, s ⊃ p, q)
relevant: p ⊃ p

active formula p is relevant, mark principal formula as relevant
relevant: p ∧ r ⊃ p

active formula p ∧ r is relevant, need to prove right branch
1.2. cpcProvable(q, s ⊃ p,q)

relevant: q ⊃ q
active formula q is relevant, merge information about relevant formulas
relevant: p ∧ r ∨ q ⊃ p, q

active formula s is not relevant, no need to prove second branch
relevant: p ∧ r ∨ q ⊃ p, q
2. cpcProvable(p ∧ r ∨ q, t ⊃ p, q) omitted (is provable)

Figure 2.7: An example proof search where use-check succeeds

Algorithmic Aspects

For an efficient algorithm it is important to combine the analysis of the proof
with the proof search. We will explain on an example proof how this can
be done and what kind of information we must store during proof search for
the use-check method.

The proof in Figure 2.6 represents a possible run of the simple prover for
the sequent p ∧ r ∨ q, s ∨ t ⊃ p, q.
In the subproof of the first left branch we see that the formula s is not used
as principal formula in any axiom of the proof of p ∧ r ∨ q, s ⊃ p, q. We
say that s is not relevant for proving this sequent. The use-check method
is based on this relevance of formulas. The idea is to mark the relevant
formulas in the axioms and to propagate this information towards the root
of the search tree when returning from the recursive function call. The
example above would result in the search shown in Figure 2.7.
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Propagating Relevance Information

The way we propagate the information about relevant formulas along the
search tree is straightforward. When encountering an axiom we mark its
principal formulas as being relevant. Then this relevance is passed along
every rule application of the proof that we have found:

• For non-branching rules we mark the principal formula as relevant if
any of its active formula in the premise is marked as relevant.

• For branching rules we have the following cases:

1. In both branches an active formula in the premise is marked as
relevant.
In that case we merge the information about relevant formulas
and mark the principal formula as relevant.

2. In the left branch no active formula in the premise is marked as
relevant.
In that case we can omit proving the right branch and take over
the information about relevant formulas from the proof of the left
premise.

3. In the left branch but not in the right branch an active formula
in the premise is marked as relevant.
In that case we could have omitted proving the left branch. We
therefore take over the information about relevant formulas from
the proof of the right premise.

Remark 2.2 (dependency of formulas)
The propagation of relevance information represents the dependency of for-
mulas in the proof. Clearly, for each rule R in a proof the active formulas in
the premises of R depend directly on the principal formula of R. Dependency
is then defined as the transitive extension of direct dependency.

The Problem of Multiple Formula Occurrence

In each sequent of the example proof above there are no multiple occurrences
of the same formula on the antecedent or succedent. Unfortunately this is
not generally the case. As a consequence the structure of a formula is not
sufficient to decide its dependency, as the example in Figure 2.8 illustrates.

It is thus necessary to add additional information to our sequents in order
to derive the formula-dependencies. This can for example be achieved by
labeling each formula with a dependency information.
Since for our purpose only the branchings are of importance, it is sufficient
for us to know of each formula from which branchings in the search tree
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p, r,p, r ⊃ p
(id)

p, r, p, r ⊃ r
(id)

p, r, p, r ⊃ p ∧ r
(⊃∧)

p, r, s, r ⊃ p
(id)

p, r, s, r ⊃ r
(id)

p, r, s, r ⊃ p ∧ r
(⊃∧)

p, r,p ∨ s, r ⊃ p ∧ r (∨⊃)

p ∧ r, p ∨ s, r ⊃ p ∧ r(∧⊃)

Figure 2.8: In this example proof there are multiple occurrences
of formulas in the antecedent of several sequent. Since sequents
are based on multisets, it is not possible to decide the dependency
of certain formulas without further information.

...

Γ′,
n+1
p

n+1
⊃ ∆

...

Γ′,
n+1
q

n+1
⊃ ∆

Γ,
l

A→ B,
n

p ∨ q
n
⊃ ∆

(∨⊃)

...

Γ,
n
r,

n
s

n+1
⊃ ∆,

n+1
A

...

Γ,
n+1
B ,

n
r,

n
s

n+1
⊃ ∆

Γ,
l

A→ B,
n
r,

n
s

n
⊃ ∆

(→⊃)

Γ,
l

A→ B,
n

r ∧ s
n
⊃ ∆

(∧⊃)

Γ,
l

A→ B,
m

(p ∨ q) ∨ (r ∧ s)
n−1
⊃ ∆

(∨⊃)

Γ′ := Γ,
l

A→ B

Figure 2.9: Example proof to illustrate formula labeling

it depends of. We therefore label each formula in a proof with a natural
number that corresponds to the branching depth of the search tree in which
it was created. We do this the following way:

• The initial branching depth is set to 0 and all formulas of the sequent
that is to be proved are labeled with it.

• When a non-branching rule is processed, the active formulas in the
premise inherit the label of the principal formula.

• When a branching rule is processed, the value assigned to the current
branching depth is incremented and the active formulas in the premises
are labeled with this new value.

The example proof in Figure 2.9 illustrates this proceeding. p→ q and r∧ s
are active formulas in the premise of a branching rule and thus labeled with
the natural number assigned to the branching depth — denoted by the label
on the sequent separator. r and s inherit the label of r ∧ s since they result
from the non-branching rule (∧ ⊃). A and B then are again labeled with
the number assigned to the corresponding branching depth.

For the moment we use labeled formulas in sequents informally but will give
a correct definition in a later section where we introduce the calculus CPC2.
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Using Sets to Store Dependencies

Having labeled formulas it is no longer necessary to mark the formulas as
being used. Instead we keep with each sequent Γ ⊃ ∆ a set D holding the
labels of those formulas that are relevant in the proof found for Γ ⊃ ∆. Each

sequent in our proof is thus of the form D; Γ
n
⊃ ∆, where n denotes the value

of the current branching depth.

With this kind of sequents, the information about relevant formulas is prop-
agated in an easier way:

• For a non branching rule
D; Γ′

n
⊃ ∆′

D; Γ
n
⊃ ∆

(R), D is left unchanged.

• For a branching rule
D1; Γ1

n
⊃ ∆1 D2; Γ2

n
⊃ ∆2

D; Γ
n−1
⊃ ∆

(R) whose principal

formula carries the label m, we have the following cases:

1. n ∈ D1 and n ∈ D2 and D = (D1 ∪ D2 ∪ {m}) \ {n}.
In that case in the proofs of both premises at least one active
formula in the premise is relevant, i.e. the branching is necessary.
D must thus contain all labels in D1 and D2 and the label of the
principal formula m. The information about the branching depth
of the premises can be dropped since it is of no interest anymore
and according to our procedure of labeling the formulas, there
are no other formulas in the conclusion carrying this label.

2. n 6∈ D1 and D = D1.
In that case, no active formula in the premise is relevant in the
proof of the first premise. We take over the relevance information
of the first premise and omit proving the second premise.

3. n ∈ D1 and n 6∈ D2 and D = D2.
In that case no active formula in the premise is relevant in the
proof of the second premise. As in the second case we take over
the relevance information of the second premise

The Importance of the Axioms for Use-Check

When encountering an axiom in the proof search procedure, there will be
generally more than one possibility to choose the principal formulas. Since
propagating the information about relevant formulas is based on the axioms,
the choice of the principal formulas in the axioms fully determines at which
branch in the proof search use-check will succeed.
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Suppose we have the following situation:

Γ,
n
p

n
⊃ ∆,

k1
p , . . . ,

kl
p

(id)

...

Γ,
n
q

n
⊃ ∆,

k1
p , . . . ,

kl
p

Γ,
m

p ∨ q
n−1
⊃ ∆,

k1
p , . . . ,

kl
p

(∨⊃)

...

This leaves us to chose
n
p together with any element of

{
k1
p , . . . ,

kl
p

}
.

In such a case, there are several simple strategies of how to choose.

1. Choose the p that depends on the least branching nodes.

With this strategy we concentrate on fewer branchings and therefore
raise the probability that a use-check will succeed.

2. Choose the p with the smallest label.

A p with a small label is created first in the search tree. Thus this p
will probably appear in more axioms of the proof than the other p’s
do. Chances that the same p is also used as a principal formula in
other axioms are therefore high.

For any other p there is a certain probability that it depends on the
same node as a p with a bigger label does. By choosing the one with
the smallest label this will never be the case.

3. Choose the p with the largest label.

With this strategy we concentrate on the branching nodes that occur
late in the search tree. Like that we increase the chances that use-check
succeeds in a branching node early in the search tree.

A Proof Search Algorithm With Use-Check

We close this section with an algorithm that does use-check. The pseudocode
is given in Algorithm 2 and consists of three function whose arguments are
all passed by value. For multiset of labeled formulas we here use the symbols
Γ and ∆.

cpcProvableUC This is the interface function. Its arguments are two
multisets of formulas representing the antecedent and succedent. At
first the formulas in the given sequent are all labeled with 0. Then
classify is called to start the backward proof search. This call will
then either return ∅ or {0} which is equal to non-validity and validity
of the sequent.
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Algorithm 2 Proof search with use-check in classical logic

1: function cpcProvableUC(Γ, ∆)

2: Γ := {
0
A : A ∈ Γ}; ∆ := {

0
A : A ∈ ∆}

3: D := classify(Γ, ∆, ∅, ∅, ∅, ∅)
4: return D = ∅ ? false : true

5:

6: function classify( Γc, ∆c, Γb, ∆b, Γa, ∆a)
7: if Γc ∪∆c 6= ∅ then
8: if Γc 6= ∅ then

9: choose
n
A ∈ Γc; Γc := Γc \ {

n
A}

10: if
n
A =

n
¬B then ∆c := ∆c ∪ {

n
B}

11: else if
n
A =

n
B ∧ C then Γc := Γc ∪ {

n
B,

n
C}

12: else if
n
A is atomic then Γa := Γa ∪ {

n
A}

13: else Γb := Γb ∪ {
n
A} .

n
A =

n
B ∨ C

14: else proceed analogously with ∆c

15: if Γa ⊃ ∆a is an axiom then
16: select principal formulas of axiom

17: D := {n :
n
A is principal formula of axiom}

18: else
19: D := classify(Γc, ∆c, Γb, ∆b, Γa, ∆a)

20: else if Γb ∪∆b 6= ∅ then
21: D := branch(Γb, ∆b, Γa, ∆a)
22: else D := ∅ . only atoms left but no axiom

23: return D
24:

25: function branch(Γb, ∆b, Γa, ∆a)
26: n := max(labels(Γb ∪∆b ∪ Γa ∪∆a)) + 1
27: if Γb 6= ∅ then

28: choose
m
A ∈ Γb; Γb := Γb \

m
A .

m
A =

m
B ∨ C

29: D1 := classify({
n
B}, ∅, Γb, ∆b, Γa, ∆a)

30: if n ∈ D1 then . use-check not successful

31: D2 := classify({
n
C}, ∅, Γb, ∆b, Γa, ∆a)

32: if n ∈ D2 then . use-check not successful
33: D := (D1 ∪ D2 ∪ {m}) \ {n}
34: else D := D2 . use-check successful in right branch

35: else D := D1 . use-check successful in left branch

36: else proceed analogously with ∆b

37: return D
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classify This function does the classification of the formulas and checks for
axioms. Its arguments are 6 multisets of labeled formulas representing
three groups of formulas in the antecedent (Γx) and succedent (∆x).
Γc and ∆c hold the formulas that need yet to be classified, Γb and ∆b

hold the formulas that require a branching rule to be deduced and Γa
and ∆a hold the atomic formulas.
For lack of space we only give the pseudocode for the formulas in
the antecedent. The processing of the formulas in the succedent is
analogical.
The function has a first triple case distinction.

1. If there are still formulas to classify, an arbitrary chosen formula
from Γc or ∆c is classified (lines 7–14). This means that de-
pending on the form of the chosen formula we either apply the
non-branching rule backwards (lines 10 and 11), put the formula
into the corresponding set of atomic formulas (line 12) or into the
corresponding set of formulas that require a branching rule (line
13).
To keep the pseudocode simple we process formulas in the an-
tecedent first (line 8). In an implementation a good strategy is to
select the formula alternating from the antecedent and succedent.
After classifying the chosen formula we check whether we have
reached an axiom1.
If an axiom is reached we are free to select the principal formulas
of our axiom. The set D holding the labels that we return is then
initialized to the labels of those formulas that we have selected
as principal formulas (lines 15–17).
The selection of the principal formulas can be arbitrary or ac-
cording to one of the previously given strategies. For the case
where we would like to select the formula depending on the least
branching nodes, further information needs to be passed to our
function for a proper selection of the principal formulas. The
other strategies (smallest/largest label) can be followed without
additional information.
If no axiom is reached we continue by recursively call classify
(lines 18 and 19).

2. If there are no more formulas to classify but formulas that require
a branching rule, we continue by calling branch (lines 20 and
21).

3. If neither formulas to classify nor formulas that require a branch-
ing rule are left, the prover failed and will set our result D to an

1Checking for an axiom is in fact only necessary if any formulas have been added to
Γa or ∆a, but for simplicity it is written this way
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empty set. (line 22).

branch This function applies the two branching rules (∨ ⊃) and (⊃ ∧)
backwards. Its arguments are the same as the last four arguments
of the function classify. A call to it is only done if there are still
formulas left that must be deduced with a branching rule and no more
formulas need to be classified.
For lack of space we only give the pseudocode for the formulas in the
antecedent. The processing of the formulas in the succedent is analog-
ical.
First we calculate the label n which the active formulas in the premise
will carry (line 26). It is easy to see that according to our labeling this
is the current branching depth of the search tree.
Then an arbitrary branching formula is chosen (line 27). As in clas-
sify we process formulas in the antecedent first to keep the pseudocode
simple. Also here, a good strategy in an implementation would be to
select the formula alternating from the antecedent and succedent.
What now follows is according to the case distinction on page 31.
We first try to prove the left premise by calling classify (line 29). The
set of labels D1 we get in return either contains n (the label of the

active formula in the premise
n
B) or not.

• n 6∈ D1: Then either the left premise was not provable or it was

provable but no atomic formula that has origin in
n
B was used as

principal formula in any of the axioms of the proof we have found.
The second possibility of this case corresponds to case 2 on page
31. We thus simply return the use-set returned by classify (line
35).

• n ∈ D1: Then the left premise was provable and an atomic for-

mula that has origin in
n
B was used as principal formula in the

proof that we have found for it. In this case we have to search
for a proof of the right premise (line 31). According to the set D2

returned by classify we then again have two cases depending
on whether n is in D2 or not.

– n 6∈ D2: Then either the premise was not provable or it was

provable but no atomic formula that has origin in
n
C was used

as principal formula in any of the axioms of the proof we have
found. The second possibility of this case corresponds to case
3 on page 31. We thus simply return the use-set returned by
classify (line 34).

– n ∈ D2: Then the right premise was provable and an atomic

formula that has origin in
n
C was used as principal formula
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in the proof that we have found for it. This corresponds to
case 1 on page 31. We calculate the set of labels to return
accordingly (line 33).

2.3 A Calculus With Use-Check

In this section we present a calculus for classical propositional logic which is
tailored to our proof search algorithm. The calculus makes use of sequents
that contain the heuristic information we need for the use-check method.

Besides further illustrating the method of use-check, the calculus is mainly
presented to give a formal proof of the soundness of use-check. Later in
this section we also show that the calculus can be used to compute minimal
sequents, which are of interest for doing proof search in default logic.

2.3.1 The Calculus CPC2

In the previous section we have introduced labeled formulas informally. We
now give the formal definitions of a labeled formula and a labeled sequent.

Definition 2.3 (labeled formula)

A labeled formula is a pair 〈A,n〉 ∈ L × N denoted by
n
A where n is called

the label of the formula.

We write LN to denote the set of all labeled formulas.

Definition 2.4 (labels(Γ))
Let Γ be a (multi)set of labeled formulas. We define the set of labels of Γ
as:

labels(Γ) :=

{
n :

n
A ∈ Γ for some A

}
.

Since the calculus CPC2 encloses use-check, we need sequents that contain
the heuristic information about which of the formulas is relevant in the
proof. We do this, as in the previous section, by extending the sequent with
a use-set that may only contain labels that occur in the labeled formulas of
the sequent.

In the previous section we also used to have a label on the sequent itself. This
label represented the current branching depth in the proof search algorithm
and was mainly used for illustration. Since there is no need for such a label
in the calculus CPC2, our definition of a labeled sequent does not contain it.

Definition 2.5 (labeled sequent)
A CPC2 sequent or labeled sequent is a triple

〈
D,Γ,∆

〉
consisting of two

multisets Γ ⊆ LN and ∆ ⊆ LN and the use-set D ⊆ labels(Γ ∪∆).
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We write D; Γ ⊃ ∆ to denote a labeled sequent and use the symbols Γ and
∆ for (multi-)sets of LN-formulas.

Given the natural numbers n1, . . .nm and sets D1 ⊂ N,D2 ⊂ N we normally
write

D1,D2, n1, . . . ,nm; Γ ⊃ ∆ for D1 ∪ D2 ∪ {n1, . . . ,nm} ; Γ ⊃ ∆ and

n1, . . . ,nm; Γ ⊃ ∆ for {n1, . . . ,nm} ; Γ ⊃ ∆.

The use-set in a labeled sequent holds the labels of those formulas that are
relevant for the proof. We use it to transform the labeled sequent into a
CPC sequent such that formulas that carry labels which are in the use-set
will occur in the transformed sequent. Validity of a labeled sequent is then
defined as validity of the corresponding CPC sequent.

Definition 2.6 (Γ↓D,
n
Γ)

Given a (multi)-set of labeled formulas Γ ⊂ LN and a set D ⊂ N we write

Γ↓D for the (multi)-set

{
A : there exists n ∈ D such that

n
A ∈ Γ

}
.

Given a (multi)-set of formulas Γ ⊂ L and a natural number n we write
n
Γ

to denote the (multi)-set

{
n
A : A ∈ Γ

}
.

Definition 2.7 (length of a labeled sequent)
The length of a labeled sequent is defined to be the sum of the length of its
formulas.

len(D; Γ ⊃ ∆) := len(Γ↓N ⊃ ∆↓N)

Definition 2.8 (valid labeled sequent)
A labeled sequent D; Γ ⊃ ∆ is defined to be valid if Γ↓D ⊃ ∆↓D is valid.
We denote this as usual with

� D; Γ ⊃ ∆.

It is important to see, that D is relevant for a labeled sequent to be valid.
We have for example

� 1, 2;⊃
1
A,

2
¬A whereas 2 1;⊃

1
A,

2
¬A.

Definition 2.9 (the calculus CPC2)
We define the classical sequent calculus CPC2 to have the deduction rules
as given in Figure 2.10.

The main difference between CPC2 and CPC is that for rules with two
premises there are two additional rules with just one premise but with
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D,n,m; Γ,
n
p ⊃ ∆,

m
p

(id)

D,n; Γ ⊃ ∆,
n
>

(>)

D; Γ ⊃ ∆,
n
A

D; Γ,
n
¬A ⊃ ∆

(¬⊃)
D; Γ,

n
A ⊃ ∆

D; Γ ⊃ ∆,
n
¬A

(⊃¬)

D; Γ,
n
A ⊃ ∆

D; Γ,
m

A ∨B ⊃ ∆
(·∨⊃)a

D; Γ ⊃ ∆,
n
A,

n
B

D; Γ ⊃ ∆,
n

A ∨B
(⊃∨)

D; Γ,
n
B ⊃ ∆

D; Γ,
m

A ∨B ⊃ ∆
(∨·⊃)a

D; Γ ⊃ ∆,
n
A

D; Γ ⊃ ∆,
m

A ∧B
(⊃·∧)a

D; Γ,
n
A,

n
B ⊃ ∆

D; Γ,
n

A ∧B ⊃ ∆
(∧⊃)

D; Γ ⊃ ∆,
n
B

D; Γ ⊃ ∆,
m

A ∧B
(⊃∧·)a

D1, n; Γ,
n
A ⊃ ∆ D2, n; Γ,

n
B ⊃ ∆

D1,D2,m, n∗; Γ,
m

A ∨B ⊃ ∆
(∨⊃)b

D1, n; Γ ⊃ ∆,
n
A D2, n; Γ ⊃ ∆,

n
B

D1,D2,m, n∗; Γ ⊃ ∆,
m

A ∧B
(⊃∧)b

a n 6∈ D
b n 6∈ D1 ∪ D2
∗ if n ∈ labels(Γ ∪∆), otherwise without n

Figure 2.10: Deduction rules of CPC2
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implicit weakening. These rules reflect exactly the use-check method as
described on page 31. The rules (∨ ⊃), (·∨ ⊃) and (∨· ⊃) for example corre-
spond to the cases 1,2 and 3 of how relevance information is propagated in
proof search. In exactly these rules an arbitrary formula label is introduced
for the principal formula. This corresponds to the procedure of labeling the
active formulas in the premises of a branching rule with the value assigned
to the current branching depth.

We have chosen to share some rule names between the calculi CPC and
CPC2. However, when referring to a name of a rule it is normally clear from
the context which calculus we refer to.

It is important that an arbitrary label is introduced for the principal formula
in the rules (·∨ ⊃), (∨· ⊃), (∨ ⊃). If the principal formula would inherit the
label of the active formulas in the premises, unwanted dependencies would be
introduces. Consider for example the following situation where the principal
formula inherits the label of the active formulas in the premises.

....

D1; Γ ⊃ ∆,
m
A,

m
C

....

D2; Γ ⊃ ∆,
m
B,

m
C

D1,D2; Γ ⊃ ∆,
m

A ∧B,
m
C

(⊃∧)

D1,D2; Γ ⊃ ∆,
m

(A ∧B) ∨ C
(⊃∨)

Then m ∈ D1, that is we have principal formulas in the axioms of the

subproof of D1; Γ ⊃ ∆,
m
A,

m
C that originate in formulas carrying the label

m. We can not distinguish whether they originate in
m
A or

m
C and are thus

not certain, whether
m
A is really needed since it is possible that all of them

originate in
m
C.

In the right premise we have a similar situation.

By allowing different labels for the active formulas in the premise and the
principal formula we can get rid of this uncertainty.

....

D1; Γ ⊃ ∆,
n
A,

m
C

....

D2; Γ ⊃ ∆,
n
B,

m
C

D; Γ ⊃ ∆,
m

A ∧B,
m
C

(⊃∧)

D; Γ ⊃ ∆,
m

(A ∧B) ∨ C
(⊃∨)

Provided that we have the same structure in the subproof of D1; Γ ⊃ ∆,
n
A,

m
C

as in the subproof of D1; Γ ⊃ ∆,
m
A,

m
C, it is now possible that m ∈ D1 but
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n 6∈ D1. Then instead of (⊃ ∧) we would have to use (⊃ ·∧) to deduce

D; Γ ⊃ ∆,
m

A ∧B,
m
C and can so omit the right premise.

In the right premise we a similar situation.

2.3.2 Soundness and Completeness

In this section we show that CPC2 is sound and complete. We start by
showing the soundness of the rules. Then we give an auxiliary lemma that
shows that certain rules of CPC2 are invertible if the labels of the principal
and active formulas in the premise are equal. Based on that lemma we then
show the completeness of CPC2.

Theorem 2.10 (soundness of CPC2)
If a labeled sequent D; Γ ⊃ ∆ is deducible in CPC2 then it is valid.

Proof. It is obvious that the axioms of CPC2 are sound. Since the other
rules can be grouped into rules of similar form, we only show soundness for
two rules and leave it up to the reader to verify the other rules.

• D1, n; Γ,
n
A ⊃ ∆ D2, n; Γ,

n
B ⊃ ∆

D1,D2,m,n∗; Γ,
m

A ∨B ⊃ ∆
(∨⊃) (cf. Figure 2.10 for requirements)

Suppose � D1, n; Γ,
n
A ⊃ ∆ and � D2,n; Γ,

n
B ⊃ ∆. From the definition

of validity we then know that

� Γ↓D1∪{n}, A ⊃ ∆↓D1∪{n} � Γ↓D2∪{n}, B ⊃ ∆↓D2∪{n}.

We distinguish two cases:

– n ∈ labels(Γ ∪∆)

Then let D := D1 ∪ D2 ∪ {n}. Since n ∈ D and D1 and D2 are
subsets of D we know Γ↓Di∪{n} ⊆ Γ↓D and ∆↓Di∪{n} ⊆ ∆↓D for
i ∈ {1, 2}. By monotonicity we obtain

� Γ↓D, A ⊃ ∆↓D � Γ↓D, B ⊃ ∆↓D.

Hence � Γ↓D, A ∨B ⊃ ∆↓D and thus D,m; Γ,
m

A ∨B ⊃ ∆, which

is equivalent to D1,D2,m, n; Γ,
m

A ∨B ⊃ ∆, is valid.

– n 6∈ labels(Γ ∪∆)

Then let D := D1∪D2. Since n 6∈ labels(Γ∪∆) and D1 and D2 are
subsets of D we know Γ↓Di∪{n} = Γ↓Di ⊆ Γ↓D and ∆↓Di∪{n} =

∆↓Di ⊆ ∆↓D for i ∈ {1, 2}. By monotonicity we obtain

� Γ↓D, A ⊃ ∆↓D � Γ↓D, B ⊃ ∆↓D.
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Hence � Γ↓D, A ∨B ⊃ ∆↓D and thus D,m; Γ,
m

A ∨B ⊃ ∆, which

is equivalent to D1,D2,m; Γ,
m

A ∨B ⊃ ∆, is valid.

• D; Γ,
n
A ⊃ ∆

D; Γ,
m

A ∨B ⊃ ∆
(·∨⊃) n 6∈ D

Suppose D; Γ,
n
A ⊃ ∆ is valid. Since n 6∈ D we know from the definition

of validity � Γ↓D ⊃ ∆↓D. By monotonicity we also know � Γ↓D, A ∨
B ⊃ ∆↓D. Thus, whether m is an element of D or not, we know that

D; Γ,
m

A ∨B ⊃ ∆ is valid.

Definition 2.11 (semantically invertible rule)
A rule is called semantically invertible if the validity of the conclusion implies
the validity of its premises.

Some of the rules of CPC2 are semantically invertible while the two branch-
ing rules are only semantically invertible if the principal formula and the
active formulas in the premises carry the same label and the use-set in the
premises is the same as the one in the conclusion.

Lemma 2.12 (semantically invertible rules of CPC2)

1. The CPC2-rules (¬ ⊃), (⊃ ¬), (∧ ⊃) and (⊃ ∨) are semantically
invertible.

2. If � D; Γ,
n

A ∨B ⊃ ∆ then � D; Γ,
n
A ⊃ ∆ and � D; Γ,

n
B ⊃ ∆.

3. If � D; Γ ⊃ ∆,
n

A ∧B then � D; Γ ⊃ ∆,
n
A and � D; Γ ⊃ ∆,

n
B.

Proof.

1. Suppose � D; Γ,
n
¬A ⊃ ∆ and let Π := Γ↓D, Σ := ∆↓D.

n 6∈ D: Then obviously � D; Γ ⊃ ∆,
n
A.

n ∈ D: Then we know � Π,¬A ⊃ Σ from which we immediately obtain

� Π ⊃ Σ, A, i.e. � D; Γ ⊃ ∆,
n
A.

The proof of the other rules is accordingly.

2. Suppose � D; Γ,
n

A ∨B ⊃ ∆ and let Π := Γ↓D, Σ := ∆↓D.

n 6∈ D: As in point 1.

n ∈ D: Then � Π, A ∨B ⊃ Σ.
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This implies � Π, A ⊃ Σ and � Π, B ⊃ Σ, hence � D; Γ ⊃ ∆,
n
A

and � D; Γ ⊃ ∆,
n
B.

3. Analog to the proof of the previous rule.

Theorem 2.13 (completeness of CPC2)
If a labeled sequent D; Γ ⊃ ∆ is valid then it is deducible in CPC2.

Proof. Let D; Γ ⊃ ∆ be a valid labeled sequent. We show our claim by
induction on len(D; Γ ⊃ ∆).

• len(D; Γ ⊃ ∆) = |Γ|+ |∆|.

Then Γ and ∆ contain only atomic formulas. Since D; Γ ⊃ ∆ is valid
we know that Γ↓D ⊃ ∆↓D is valid and must be an axiom. Therefore
D; Γ ⊃ ∆ is an axiom, too and thus deducible in CPC2.

• len(D; Γ ⊃ ∆) > |Γ|+ |∆|.

Then there exists a non-atomic formula
n
A in Γ ∪ ∆. We distinguish

on the form and position of
n
A.

– D; Γ ⊃ ∆ = D; Γ
′
,

n
¬B ⊃ ∆.

Then by Lemma 2.12 D; Γ
′ ⊃ ∆,

n
B is valid and by induction

hypothesis deducible in CPC2. Using (¬ ⊃) we can deduce our
sequent.

D; Γ
′ ⊃ ∆,

n
B

D; Γ
′
,

n
¬B ⊃ ∆

(¬⊃)

– D; Γ ⊃ ∆ = D; Γ
′
,

n
B ∨ C ⊃ ∆.

Then by Lemma 2.12 D; Γ
′
,

n
B ⊃ ∆ and D; Γ

′
,

n
C ⊃ ∆ are valid

and by induction hypothesis deducible in CPC2. If n 6∈ D then
we use (·∨ ⊃) to deduce our sequent, otherwise we use (∨ ⊃) to
deduce it.

D; Γ
′
,

n
B ⊃ ∆

D; Γ
′
,

n
B ∨ C ⊃ ∆

(·∨⊃)
D; Γ

′
,

n
B ⊃ ∆ D; Γ

′
,

n
C ⊃ ∆

D; Γ
′
,

n
B ∨ C ⊃ ∆

(∨⊃)

The other cases can be proved analogously.
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D; Γ ⊃ ∆,
n
A

D; Γ,
m

A→ B ⊃ ∆
(·→⊃)a

D; Γ,
n
A ⊃ ∆,

n
B

D; Γ ⊃ ∆,
n

A→ B
(⊃→)

D; Γ,
n
B ⊃ ∆

D; Γ,
m

A→ B ⊃ ∆
(→·⊃)a

D1, n; Γ ⊃ ∆,
n
A D2, n; Γ,

n
B ⊃ ∆

D1,D2,m,n∗; Γ,
m

A→ B ⊃ ∆
(→⊃)b

D; Γ,
n
A,

n
B ⊃ ∆

D; Γ,
m

A↔ B ⊃ ∆
(
ll↔⊃)

a D; Γ,
n
A ⊃ ∆,

n
B

D; Γ ⊃ ∆,
m

A↔ B
(⊃ lr↔)

a

D; Γ ⊃ ∆,
n
A,

n
B

D; Γ,
m

A↔ B ⊃ ∆
(
rr↔⊃)

a D; Γ,
n
B ⊃ ∆,

n
A

D; Γ ⊃ ∆,
m

A↔ B
(⊃ rl↔)

a

D1,n; Γ,
n
A,

n
B ⊃ ∆ D2, n; Γ ⊃ ∆,

n
A,

n
B

D1,D2,m,n∗; Γ,
m

A↔ B ⊃ ∆
(↔⊃)b

D1,n; Γ,
n
A ⊃ ∆,

n
B D2, n; Γ,

n
B ⊃ ∆,

n
A

D1,D2,m,n∗; Γ ⊃ ∆,
m

A↔ B
(⊃↔)b

a n 6∈ D
b n 6∈ D1 ∪ D2
∗ if n ∈ labels(Γ ∪∆), otherwise without n

Figure 2.11: Macro-rules of CPC2

Macro-Rules

As in CPC we define macro-rules for the connective → and ↔ for more
compact proofs representations. The rules are given in Figure 2.11. Again
the rules for introducing an equation in the antecedent contain an implicit
simplification.

2.3.3 Examples

We would like to illustrate the calculus CPC2 a little bit more by giving
three different proofs for the same labeled sequent.
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The labeled sequent we would like to give proofs of is

D;
0

p ∧ r ∨ q, 1
r→ s ⊃ 2

p,
3
q

In order to have a reference when explaining the proofs, we first give a
complete proof tree having no concrete use-sets

D11;
5
p,

5
r ⊃ 2

p,
3
q,

4
r
(id)

D11;
5

p ∧ r ⊃ 2
p,

3
q,

4
r

(∧⊃)

D12;
5
q ⊃ 2

p,
3
q,

4
r
(id)

D1;
0

p ∧ r ∨ q ⊃ 2
p,

3
q,

4
r

(∨⊃)

D21;
5
p,

5
r,

4
s ⊃ 2

p,
3
q
(id)

D21;
5

p ∧ r, 4s ⊃ 2
p,

3
q

(∧⊃)

D22;
5
q,

4
s ⊃ 2

p,
3
q
(id)

D2;
0

p ∧ r ∨ q, 4s ⊃ 2
p,

3
q

(∨⊃)

D;
0

p ∧ r ∨ q, 1
r → s ⊃ 2

p,
3
q

(→⊃)

The first proof makes use of the fact that
4
s is not used as principal formula

in any axiom of the right proof branch. We can thus use the rule (→ · ⊃)

to deduce
1

r → s and omit the left proof branch.

This proof is obtained with the use-check method if the left branch has been

calculated and
4
r has been chosen as principal formula in the left most axiom.

When proving the right branch the algorithm will notify that
4
s was not used

in the proof and can thus drop the relevance information of the left branch.

As a result
1

r → s is known as not being relevant since 1 is not in the use-set
of the resulting sequent.

2, 5;
5
p,

5
r,

4
s ⊃ 2

p,
3
q

(id)

2, 5;
5

p ∧ r,
4
s ⊃ 2

p,
3
q

(∧⊃)

3, 5;
5
q,

4
s ⊃ 2

p,
3
q

(id)

0, 2, 3;
0

p ∧ r ∨ q,
4
s ⊃ 2

p,
3
q

(∨⊃)

0, 2, 3;
0

p ∧ r ∨ q, 1
r→ s ⊃ 2

p,
3
q

(→·⊃)

(1)

The second proof makes use of the fact that in the left most axiom
4
r is not

necessarily needed as principal formula since we have the choice to use
2
p

and
5
p as principal formulas. Like that the algorithm does not need to prove

the right branch and can apply (· →⊃).

2, 5;
5
p,

5
r ⊃ 2

p,
3
q,

4
r

(id)

2, 5;
5

p ∧ r ⊃ 2
p,

3
q,

4
r

(∧⊃)

3, 5;
5
q ⊃ 2

p,
3
q,

4
r

(id)

0, 2, 3;
0

p ∧ r ∨ q ⊃ 2
p,

3
q,

4
r

(∨⊃)

0, 2, 3;
0

p ∧ r ∨ q, 1
r→ s ⊃ 2

p,
3
q

(·→⊃)

(2)

The last proof does not follow the use-check method but uses a use-set in
the right most axiom that contains the label 4 and is thus not minimal.
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By using
4
r in the leftmost axiom as principal formula, we get thus a proof

similar to the one that would be done in CPC.

4, 5;
5
p,

5
r ⊃ 2

p,
3
q,

4
r

(id)

4, 5;
5

p ∧ r ⊃ 2
p,

3
q,

4
r

(∧⊃)

3, 5;
5
q ⊃ 2

p,
3
q,

4
r

(id)

0, 3, 4;
0

p ∧ r ∨ q ⊃ 2
p,

3
q,

4
r

(∨⊃)

2, 5;
5
p,

5
r,

4
s ⊃ 2

p,
3
q

(id)

2, 5;
5

p ∧ r,
4
s ⊃ 2

p,
3
q

(∧⊃)

3, 4, 5;
5
q,

4
s ⊃ 2

p,
3
q

(id)

0, 2, 3, 4;
0

p ∧ r ∨ q,
4
s ⊃ 2

p,
3
q

(∨⊃)

0, 1, 2, 3;
0

p ∧ r ∨ q,
1

r→ s ⊃ 2
p,

3
q

(→⊃)

(3)

2.4 Refutation Search

Since CPRC is converse to CPC, a sequent Γ ⊃ ∆ is refutable if and only if
the sequent Γ ⊃ ∆ is not valid. We can therefore use the CPC prover with
its enhancements to verify whether a sequent is refutable.

By adding an additional axiom to CPC2 we obtain a calculus which can be
used to prove and refute sequents.

Let CPC3 be the calculus with the rules of CPC2 and the additional axiom

∅; Γ ⊃ ∆
(6⊃)

where Γ↓N ⊆ V ∪ {>} ,∆↓N ⊆ V ∪ {⊥} and Γ↓N ∩∆↓N = ∅.

A sequent Γ ⊃ ∆ is then defined to be refutable if ∅;
m
Γ ⊃

m
∆ is deducible in

CPC3 for any label m.

2.5 Experimental Results

In this section we have a look at two scalable formulas. One of them, the
pigeonhole formula, is used to investigate the efficiency of use-check. The
other formula, the one of Urquhart, is used for two aspects. On the one hand
we use it to measure the overhead produced by the use-check mechanism.
On the other hand we use it to show that for proof search it is advantageous
to operating over an extended language L+ in which the connectives→ and
↔ are defined to be part of the language.

We used Debian Linux 4.0 on an AMD Sempron 2600+ and 1.5 GB RAM
to run our tests.
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without use-check with use-check
n axioms time (h:m:s) axioms time (m:s)

1 2 < 0:01 2 < 0:01
2 48 < 0:01 14 < 0:01
3 33.531 < 0:01 136 < 0:01
4 3.630.464.872 8:17:02 1.601 < 0:01
5 21.479 < 0:01
6 298.579 0:05
7 4.523.139 1:30
8 71.163.129 29:07

Table 2.1: Figures of proving pigeonhole(n) with and without use-check

2.5.1 The Pigeonhole Principle

The pigeonhole principle states that if there are m objects that are to be
put into n boxes and n is less than m, then there is a box containing at
least two objects. The name of the principle is inspired by pigeons that sit
in their holes.

The problem we investigate is about n+1 pigeons and n holes. Formally we
use a language L+(V) with V = {pij : 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n}. The
interpretation of the propositional variable pij thereby states whether pigeon
i sits in hole j or not. We use the following formula to specify the principle.

pigeonhole(n) :=
n+1∧
i=1

n∨
j=1

pij →
n∨
j=1

∨{
pij ∧ pi′j : 1 ≤ i < i′ ≤ n+ 1

}
In this formula the left part of the implication states for each pigeon i that it
sits in one of the holes while the right part of the implication states that two
different pigeons sit in the same hole. This specification of the pigeonhole
principle seems a bit inexact since the left part of the implication evaluates
also to true if some pigeons sit in more than one hole. But because we also
cover the case where each pigeon sits in exactly one hole, the principal is
specified correctly.

In table 2.1 the time used to prove pigeonhole(n) together with the number
of axioms used during proof search are given. The number of axioms thereby
is equivalent to the number of branchings + 1. We see that with use-check
pigeonhole(4) can be proved in less than a second while without use-check
it takes more than eight hours. Apparently this is because with use-check
we are able to reduce the number of branchings dramatically. To prove
pigeonhole(4) for example we reach less that 2.000 axioms in the prover
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Figure 2.12: Proving time of urquhart(n) with and without use-check

that implements use-check while in the prover without use-check we end up
with over 3 billion axioms.

2.5.2 Urquhart’s Formula

The next formula we want to investigate is the one proposed by Urquhart
[26]. It consists of nested equivalences and is of the following form.

urquhart(n) := p1 ↔ p2 ↔ . . .↔ pn ↔ p1 ↔ p2 ↔ . . .↔ pn

Since ((A ↔ B) ↔ C) is equivalent to (A ↔ (B ↔ C)) we know that
urquhart(n) is equivalent to (p1 ↔ . . . ↔ pn) ↔ (p1 ↔ . . . ↔ pn) and thus
obviously a tautology.

The formula is well suited to test the overhead produced by use-check for
two reasons. Firstly because the prover is unable to omit any branch when
proving this formula and secondly because the prover has to deal only with
branching rules.
The time used to prove urquhart(n) is shown in figure 2.12. The overhead
produced by use-check for urquhart(n) is about 50%. This seems rather
much but compared to the speedup we can gain with use-check it is a small
price to pay.

The formula is also well suited to show that operating over the extended lan-
guage L+ is reasonable. Suppose urquhart2(n) is the formula urquhart(n) in
which we replace all formulas of the form A↔ B with (A→ B)∧(B → A). If
we compare the length of the two formulas we have len(urquhart(n)) = 4n−1
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Figure 2.13: Proving statistics of urquhart2(n)
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Figure 2.14: Proving time of urquhart2(n)

while len(urquhart2(n)) = 3 · 4n − 5. Hence by replacing the connective ↔
with an equivalent definition the length of the formula grows exponentially.

In contrast to when proving urquhart(n), use-check helps us to omit branches
when proving urquhart2(n). For urquhart2(14) for example we can omit
proving the second branch in about 30% of the roughly 80 million pro-
cessed branching rules (see Figure 2.13). However, this is not sufficient to
prove urquhart2(n) in about the same time as urquhart(n), since to prove
urquhart(14) we only need less than 250.000 branchings. In Figure 2.14 you
see the time used to prove urquhart2(n). While urquhart(22) can be proved
in ten minutes, we already need 15 minutes to prove urquhart2(14). More-
over, because of the exponentially growing formula length, we already run
out of memory when trying to prove urquhart2(15).
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It seems odd that the number of branchings in the proofs of the two equiv-
alent formulas differ so much. The difference bases mainly on the chosen
proving strategy, the implicit simplification that we have put into the rule
(↔⊃) (s. page 14) and the fact that the principal formulas in the identity
axioms must be atomic.

To obtain proofs for Γ, A ↔ B ⊃ ∆ and Γ, (A → B) ∧ (B → A) ⊃ ∆ with
similar complexity we would have to allow identity axioms with non-atomic
principal formulas. Furthermore our prover would then need to find a proof
of the following form.

...
Γ ⊃ ∆, A,B Γ, A ⊃ ∆, A

(id)

Γ,B→ A ⊃ ∆, A
(→⊃)

Γ, B ⊃ ∆, B
(id)

...
Γ, B,A ⊃ ∆

Γ, B,B→ A ⊃ ∆
(→⊃)

Γ,A→ B, B → A ⊃ ∆
(→⊃)

Γ, (A→ B) ∧ (B→ A) ⊃ ∆
(∧⊃)

However, our prover is working in a way that after applying a rule backwards
we continue by processing the active formulas in the premises. Therefore
we process A and B before B → A and obtain thus a proof of the following
form.

...
Γ, B → A ⊃ ∆,A

...
Γ,B, B → A ⊃ ∆

Γ,A→ B, B → A ⊃ ∆
(→⊃)

Γ, (A→ B) ∧ (B→ A) ⊃ ∆
(∧⊃)

Unless A and B are atomic we will thus not encounter the sequents Γ, A ⊃
∆, A or Γ, B ⊃ ∆, B during proof search.

Using a Prover History

In the example above we can not prevent that the formula A is processed
first if we want to hold on to our proving strategy. But we have the option
to remember that A was in the succedent during proof search. If we later
process B → A then the second premise of that backward application will
have A in its antecedent. Before proving that premise we then first verify
whether A ever appeared in the succedent of the proof, which will be the
case in our example. Therefore we can immediately return with success for
that premise.

In general this means that we have to remember all formulas that appear in
the sequents of our proof during proof search. To establish this we add to
our prover a sequent holding the so called prover history. Whenever a rule is
applied backwards, we add the active formulas in the premise to the prover
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history.2 Before proceeding with processing the side formulas we then first
check whether the same formula is already present on the other side of the
prover sequent. If it is, we know that the premise is provable and can stop
proof search with success. The formula we check for in the prover history
is thereby generally not present on the other side of the sequent that is
still to prove. We can therefore say that this mechanism goes further than
allowing identity axioms with non-atomic principal formulas. To illustrate
this approach we have a closer look at the example from above.

We initially set the prover history to the sequent we want to prove, i.e.
Γ, (A → B) ∧ (B → A) ⊃ ∆. When applying (∧ ⊃) backwards we first
check whether A→ B or B → A is in the succedent of the prover history. If
this is the case then we have found an axiom and may return with success.
If this is not the case then we add A→ B and B → A to the antecedent of
the prover history and proceed with processing the formula A→ B.
For the left branch we first check whether A is present in the antecedent of
the prover history and return with success if it is. If it is not we add A to
the succedent of the prover history and proceed by processing A. Later we
will eventually process the formula B → A in that branch. In the second
premise of that backward rule application we will then be successful in test-
ing whether A is in the succedent of the prover history. Hence processing A
can then be omitted and we can return with success.

We have implemented such a prover history using hashed sets of formulas.
Although we could heavily reduce the number of branchings used in proof
search (see Figure 2.15), the results were discouraging. Because of the addi-
tional memory needed by the prover history, we already ran out of memory
when trying to prove urquhart2(14). Furthermore the overhead produced
by the prover history negated the advantage of having less branchings and
we ended up with about the same proving times as with the prover without
prover history (see Figure 2.14).

This example makes it clear that operating over an extended language L+

can be crucial for the time the prover needs for certain problems. As a
consequence we may state that a compact notation of formulas can result
in more efficient proof search.

2For branching rules we obtain different prover histories for the right and left premise
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Figure 2.15: Proving statistics of urquhart2(n)
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Chapter 3

Propositional
Circumscription Logic

We start this chapter with an example showing the main idea of circum-
scription and continue with the definition of propositional circumscription
logic (PCL). Then we inspect several kind of changes under which the so
called minimal models remain minimal. We continue by showing how a
circumscription theory can be expressed in CPL such that proving can be
done using classical propositional logic. Afterward we recall the sequent
calculus for PCL by Bonatti and Olivetti [2] and close with the proof of the
introductory example.

3.1 Introductory Example

We are going to introduce circumscription on one of the most famous ex-
amples in non-monotonic logic: The case of “Tweedy” the penguin. The
example is about the fact that birds generally fly. Nobody would deduce
that a bird can not fly unless it is known that the bird is in some way
abnormal. For example if the bird is a penguin.

We model this situation using a variable abn indicating that the object in
question is abnormal. Our knowledge base Γ consists then of three formulas,
the first states that a bird that is not abnormal can fly, the second states
that a penguin is a bird and can not fly, the third states that the object in
question is a bird.

Γ := {bird ∧ ¬abn→ fly, penguin→ ¬fly ∧ bird, bird}

Using classical logic the only fact we can deduce is that a penguin is abnor-
mal, it is not possible to apply general knowledge that our bird can fly.

53



CHAPTER 3. PROPOSITIONAL CIRCUMSCRIPTION LOGIC

The idea of circumscription logic is to minimize abnormal objects by con-
sidering only those models that are minimal regarding abnormal properties.
In our simple example this is rather easy. Let us look at the four different
models of Γ.

M0 M1 M2 M3

bird 1 1 1 1
abn 0 1 1 1
penguin 0 0 0 1
fly 1 0 1 0

Now model M0 is the only model where abn is not valid. Regarding the
variable abn it is thus the only minimal model and hence the only model
that is considered for deduction in circumscription logic. Since fly holds in
M0 we thus conclude in circumscription logic that the object in question can
fly.

In circumscription logic we have the further possibility to restrict the com-
parison of two models. We do this by requiring that two models are only
comparable if they do not differ in their interpretation of certain variables.
Suppose we further require in our example that the models are only com-
parable if they do not differ in their interpretation of the variable penguin.
Then M3 is no longer comparable with the other models. We thus end up
with the two minimal models M0 and M3. As a consequence we can no
longer deduce fly. This approach reflects the situation where we model two
kind of worlds, one without penguins and one containing only penguins.

Our example also illustrates that circumscription is non-monotonic. Con-
sider the case where all models are comparable. If we add penguin to Γ —
that is we add the information that our object is a penguin — then the
only model of Γ is M3. Thus, although we are given more information than
before, we can no longer deduce fly.

3.2 Propositional Circumscription Logic

Propositional circumscription logic is defined semantically on the notion
of minimal models. This notion is based on a partial order on the set of
interpretations of L. Among the several known forms of circumscription we
present in this section the most common form where variables are allowed
to vary and more than one propositional variable is minimized.

The partial order on the interpretations of L is based on a set P of proposi-
tional variables that are to minimize and a set R of propositional variables
in which the interpretations may not vary in order to be comparable. The
two sets P and R implicitly define the set Q of propositional variables which
are allowed to be interpreted differently by two comparable interpretations.
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Definition 3.1 (I ≤P ;R J)
For P ⊂ V and R ⊂ V with P ∩ R = ∅ we define a partial order ≤P ;R on
the set of interpretations of L(V).

I ≤P ;R J :⇐⇒ P ∩ I ⊆ P ∩ J and R ∩ I = R ∩ J

We write I <P ;R J if I ≤P ;R J and not J ≤P ;R I.

Elements of P are called minimized variables, those of R are called fixed
variables. All other propositional variables, that is elements of Q := VL \
(P ∪R), are called varied variables.

The notion of a (P ;R)-minimal model of a set of formulas Γ is based on the
partial order ≤P ;R. The central definition is that of a (P ;R)-minimally en-
tailed formula. It is defined analogous to the notion of a logical consequence
in CPL.

Definition 3.2 ((P ;R)-minimal model)
A model M of a set of formulas Γ is called a (P ;R)-minimal model of Γ if
there is no model N of Γ such that N <P ;R M . We then write M �P ;R Γ.
Accordingly we write M 2P ;R Γ to denote that M is not a (P ;R)-minimal
model of Γ.

Definition 3.3 (minimal entailment)
A set of formulas Γ (P ;R)-minimally entails a formula A if A is valid in all
(P ;R)-minimal models of Γ. We then write Γ 
P ;R A.

If R is empty we normally write ≤P , <P , �P and 
P , respectively and speak
of P -minimal models.

3.2.1 Some Properties of Minimal Models

The property of being (P ;R)-minimal for a multiset of formulas Γ does not
change for a model M if a formula that is valid in M is added to Γ.

Lemma 3.4 (add valid formulas to the knowledge base)
If M �P ;R Γ and M � A then M �P ;R A,Γ.

Proof. Let M be a (P ;R)-minimal model of Γ with M � A, then M � A,Γ.
Suppose there exists a model N of A,Γ such that N <P ;R M . Then also
N � Γ which contradicts to M �P ;R Γ.

If Γ entails a propositional variable p or its negation ¬p then p is of no
importance for the property of being (P ;R)-minimal. This is because p
evaluates to the same value in every model of Γ and has thus no influence
on the operator ≤P ;R.
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Corollary 3.5 (extend minimal or fixed variables)
Let P and R be two sets of variables such that P ∩Q = ∅ and let p 6∈ P ∪R.
Furthermore let Γ be a (multi)set of formulas such that Γ 
 p or Γ 
 ¬p.
Then the following holds:

M �P ;R Γ ⇐⇒ M �P,p;R Γ ⇐⇒ M �P ;R,p Γ.

And as an immediate consequence we have for every formula A under the
given preconditions

Γ 
P ;R A ⇐⇒ Γ 
P,p;R A ⇐⇒ Γ 
P ;R,p A.

The following two lemmas are special cases of the corollary above but use
weaker preconditions. Lemma 3.6 states that a (P, p;R)-minimal model M
of Γ is also (P ;R)-minimal if p is valid in M .
Lemma 3.7 says that the set of (P ;R)-minimal models of Γ is contained in
the set of (P ;R, r)-minimal models of Γ. This is because by having less fixed
variables we increase the number of comparable models. Thus the number
of minimal models can decrease.

Lemma 3.6 (drop minimized variables)
If M �P,p;R Γ and M � p then M �P ;R Γ.

Proof. Let M �P ;R Γ (1) and M � p (2)
Suppose M is not (P ;R)-minimal for Γ. Then there exists a model N of Γ
such that N <P ;R M , that is N ∩ P (M ∩ P . We know

N ∩ (P ∪ {p}) ⊆ (N ∩ P ) ∪ {p} ( (M ∩ P ) ∪ {p} (2)
= M ∩ (P ∪ {p})

Thus N <P,p;R M which contradicts to (1).

Lemma 3.7 (add fixed variables)
If M �P ;R Γ and r 6∈ P then M �P ;R,r Γ.

And as an immediate consequence we have: If Γ 
P ;R,r A then Γ 
P ;R A.

Proof. Suppose M �P ;R Γ (∗) and r 6∈ P . We distinguish to cases.

1. r ∈ R: Then trivially M �P ;R,r Γ.

2. r 6∈ R: Suppose M 2P ;R,r Γ.
Then there exists a model N of Γ with N <P ;R,r M , i.e. N∩P (M∩P
and N ∩ (R∪ {r}) = M ∩ (R∪ {r}). Thus N ∩R = M ∩R and hence
N <P ;R M which contradicts to (∗).

The following corollary is a consequence of Lemma 3.4 and Corollary 3.5
and shows how to drag out a minimized variable into Γ.
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Corollary 3.8 (drag out minimized variables)

1. If M �P,p;R Γ and M � p then M �P ;R p,Γ.

2. If M �P,p;R Γ and M � ¬p then M �P ;R ¬p,Γ.

Proof.

1. Suppose M �P,p;R Γ and M � p. Then we obtain M �P,p;R Γ, p with
Lemma 3.4 and with Corollary 3.5 we get M �P ;R Γ, p.

2. Analogous to 1.

It is also possible to drag propositional variables from Γ into the set of
minimized variables, but only if they are negative.

Lemma 3.9 (drag in minimized variables)
If M �P ;R ¬p,Γ and p 6∈ R then M �P,p;R Γ.

Proof. Let P ′ := P ∪ {p}, M �P ;R ¬p,Γ (∗). Then M � Γ and M � ¬p (1).
Suppose M is not a (P ′;R)-minimal model of Γ. Then there exists a model
N � Γ (2) such that N <P ′;R M (3). With (1) and (3) we obtain N � ¬p.
Using (2) we know N � ¬p,Γ which contradicts to (∗).

There are two similar lemmas for dragging out fixed variables into Γ and
dragging in variables from Γ into R.

Lemma 3.10 (drag out fixed variables)

1. If M �P ;R,r Γ and M � r then M �P ;R r,Γ.

2. If M �P ;R,r Γ and M � ¬r then M �P ;R ¬r,Γ.

Proof.

1. If M �P ;R,r Γ and M � r then we obtain M �P ;R,r r,Γ with Lemma
3.4. With Lemma 3.6 we then obtain M �P ;R r,Γ.

2. Analogous to 1.

Lemma 3.11 (drag in fixed variables)

1. If M �P ;R Γ, r and r 6∈ P then M �P ;R,r Γ.

2. If M �P ;R Γ,¬r and r 6∈ P then M �P ;R,r Γ.

Proof.
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1. Let M �P ;R Γ, r (1), r 6∈ P and suppose that M 2P ;R,r Γ. Then there
exists a model N of Γ such that N <P ;R,r M . We know N∩(R∪{r}) =
M ∩ (R ∪ {r}), thus N � Γ, r which contradicts to (1).

2. Analogous to 1.

3.2.2 Syntactic Definition

Propositional circumscription can also be defined syntactically. To obtain
the minimal models of a formula A, we define a set of formulas that contains
A and formulas to filter out the non-minimal models of A. The models of
that set are then exactly the minimal models of A. We first illustrate this
mechanism on three examples.

Example With One Minimized Variable

Let A be a formula, p be the variable that is to minimize and let the set
of varied variables be empty, i.e. R = vars(A) \ {p}. A model M of A is
(p;R)-minimal in two cases: If it does not contain p or if it contains p and
if the interpretation M ′ := M \ {p} is not a model of A. It is easy to see
that the following formula expresses this requirement.

B := p→ ¬A[⊥/p]

Hence the models of {A,B} are the (p;R)-minimal models of A.

Example With Two Minimized Variables

The next example is similar to the previous but with two minimized variables
P := {p0, p1} and no varied variables, i.e. R := vars(A) \ P . A model of A
may contain p0 and p1, either p0 or p1, or neither p0 nor p1. According to
these cases we define the following formulas.

B11 := p0 ∧ p1 → ¬A[>/p0,⊥/p1] ∧ ¬A[⊥/p0,>/p1] ∧ ¬A[⊥/p0,⊥/p1]

B10 := p0 ∧ ¬p1 → ¬A[⊥/p0,⊥/p1]

B01 := ¬p0 ∧ p1 → ¬A[⊥/p0,⊥/p1]

B00 := ¬p0 ∧ ¬p1 → >

Consider the formula B11 together with an interpretation M . If M does not
contain p0 and p1 then it is a model of B11.
If M contains p0 and p1 then it is only a model of B11 if it fulfills the right
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part of the implication. It is easy to see that this is only the case if A is not
valid in any interpretation M ′ with M ′ <P ;R M .
B11 thus filters out those models of p0 ∧ p1 for which a lesser model exists
in which A is valid.

The formulas B10 and B01 do a similar job for the models of p0 ∧ ¬p1

and ¬p0 ∧ p1, respectively. The formula B00 is only given for the sake of
completeness, since a model that fulfills ¬p0 ∧ ¬p1 is trivially P -minimal.

Now A need not be valid in a model of B11, B10 or B01. To obtain the
P -minimal models of A we must intersect the models of A with those of
B11, B10 and B01. Hence the models of {A,B11, B10, B01} are exactly the
(P ;R)-minimal models of A.

Examples With Varied Variables

If Q is not empty, we have to encode additional information into our for-
mulas. Since interpretations are now also comparable if they differ in their
interpretation of the varied variables, we must consider every possible inter-
pretation of the varied variables in the right side of our implications.

For the case where P = {p}, Q = {q} and R := vars(A)\(P ∪Q) the formula
B then looks as follows.

B := p→ ¬A[⊥/p,>/q] ∧ ¬A[⊥/p,⊥/q]

For the case where P = {p1, p2}, Q := {q} and R := vars(A) \ (P ∪Q) our
formulas then look as follows.

B11 := p0 ∧ p1 → ¬A[>/p0,⊥/p1,>/q] ∧ ¬A[>/p0,⊥/p1,⊥/q] ∧
¬A[⊥/p0,>/p1,>/q] ∧ ¬A[⊥/p0,>/p1,⊥/q] ∧
¬A[⊥/p0,⊥/p1,>/q] ∧ ¬A[⊥/p0,⊥/p1,⊥/q]

B10 := p0 ∧ ¬p1 → ¬A[⊥/p0,⊥/p1,>/q] ∧ ¬A[⊥/p0,⊥/p1,⊥/q]
B01 := ¬p0 ∧ p1 → ¬A[⊥/p0,⊥/p1,>/q] ∧ ¬A[⊥/p0,⊥/p1,⊥/q]
B00 := ¬p0 ∧ ¬p1 → >

General Definition

We now give the general case. To formalize it we need some auxiliary defi-
nitions.

We write B to denote the set {0, 1} and Bn for the set of n-tuples of B.
Given an element i ∈ Bn we write ik to denote the k-th element ik of i, that
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is i := 〈i1, i2, . . . , in〉. The < operator on Bn ×Bn is defined pointwise, that
is i < j if ik ≤ jk for every 1 ≤ k ≤ n and ik 6= jk for at least one k. The

interpretation ı̂ of i ∈ B is done straightforward, that is 0̂ := ⊥ and 1̂ := >.
Given a propositional variable p we define p0 to be the formula ¬p and p1

to be the formula p.

Definition 3.12 (CIRC(A,P,Q))
Let A be a formula and let the variables vars(A) of A be partitioned into 3
disjoint subsets P , R and Q with P := {p1, . . . , pn} and Q := {q1, . . . , qm}.
Then we define for every i ∈ Bn the formula Bi(A,P,Q) as follows:

If Q is empty then

Bi(A,P,Q) :=
n∧
k=1

pikk →
∧
j<i

¬A[̂1/p1, . . . , ̂n/pn]

else

Bi(A,P,Q) :=

n∧
k=1

pikk →
∧
j<i

∧
k∈Bm

¬A[̂1/p1, . . . , ̂n/pn, k̂1/q1, . . . , k̂m/qm]

The circumscription theory CIRC(A,P,Q) is then defined as

CIRC(A,P,Q) := A ∪
{
Bi(A,P,Q) : i ∈ Bn

}
.

For a finite set of formulas Γ the circumscription theory is defined as the
circumscription theory of its conjunction.

CIRC(Γ, P,Q) := CIRC(
∧

Γ, P,Q)

To understand the idea of CIRC(A,P,Q) consider the formula Bi(A,P,Q).

The left side of its implication is valid in all interpretations I that correspond
to i regarding their interpretation of P , i.e. interpretations in which pk is
valid if ik = 1 and in which ¬pk is valid if ik = 0.

The right side of the implication consists of a conjunction of modified for-
mulas basing on ¬A. The modification is done by substituting the variables
P ∪Q with > or ⊥. Thereby we have for each

〈
j, k
〉
∈ Bn × Bm with j < i

a modified version of ¬A in which each variable of P and Q is substituted
with the value that corresponds to j and k, respectively.

Now take an interpretation I that corresponds to i regarding its interpreta-
tion of P and choose

〈
j, k
〉
∈ Bn×Bm with j < i. Let J be the interpretation

that corresponds to j and k regarding its interpretation of P and Q and that
interprets the fixed variables R as I does.
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Then ¬A[̂1/p1, . . . , ̂n/pn, k̂1/q1, . . . , k̂m/qm] is valid in I iff it is valid in J .
It is easy to see that J <P ;R I. The conjunction on the right side of the im-
plication of Bi contains all combinations of j ∈ Bm with j < i and k ∈ Bm.
The formula Bi is therefore valid in an interpretation I if

1. I does not correspond to i regarding its interpretation of P , or

2. I corresponds to i regarding its interpretation of P and A is not valid
in any interpretation J <P ;R I.

The following theorem is according to McCarthy [20] who defines the syn-
tactical equivalence for first order logic.

Theorem 3.13 (syntactical equivalence)
Let Γ be a set of formulas and P,R,Q be a disjoint partition of vars(Γ).
Then

Γ 
P ;R A ⇐⇒ CIRC(Γ, P,Q) 
 A

Proof. Let AΓ :=
∧

Γ and the set of minimized, fixed and varied variables
be P = {p1, . . . , pn}, R and Q = {q1, . . . qm}.
It is sufficient to show M �(P ;R) Γ iff M � CIRC(Γ, P,Q). To do so we
distinguish two cases.

M 2 Γ: Then we know M 2 CIRC(Γ, P,Q) because
∧

Γ ∈ CIRC(Γ, P,Q).

M � Γ: Let i ∈ Bn be such that it corresponds to the interpretation of P in
M , i.e. M �

∧n
k=1 p

ik
k . We distinguish two cases.

Suppose that M is not (P ;R)-minimal for Γ. Then there exists a model
N of AΓ with N <P ;R M . Let j ∈ Bn and k ∈ Bm be such that they
correspond to the interpretation of P and Q in N , respectively. Hence
M � AΓ[̂1/p1, . . . , ̂n/pn, k̂1/q1, . . . , k̂m/qm], therefore M 2 Bi and we thus
know that M is not a model of CIRC(Γ, P,Q).
Suppose that M is (P ;R)-minimal for Γ (1). If i does not correspond to the
interpretation of P in M then we know that M � Bi. So let i correspond
to the interpretation of P in M and

〈
j, k
〉
∈ Bn × Bm with j < i. The

interpretation of AΓ[̂1/p1, . . . , ̂n/pn, k̂1/q1, . . . , k̂m/qm] in M is then equal
to the interpretation of it in some N <P ;R M . Because of (1) we then know

that N 2 AΓ[̂1/p1, . . . , ̂n/pn, k̂1/q1, . . . , k̂m/qm] for all 〈i, k〉 ∈ Bn×Bm with

j < i. Hence M � ¬AΓ[̂1/p1, . . . , ̂n/pn, k̂1/q1, . . . , k̂m/qm] for all 〈i, k〉 ∈
Bn × Bm with j < i and thus M � Bi.

3.3 A Sequent Calculus for Circumscription

In this section we introduce a sequent calculus for propositional circumscrip-
tion logic of Bonatti and Olivetti [2]. To obtain a good understanding of it
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CPRC ` Γ,¬P ⊃ p
Σ,p; Γ ⊃P ;∅ ∆

(C1)
Σ, p; Γ ⊃P ;R ∆ Σ; Γ,¬p ⊃P ;R ∆

Σ; Γ ⊃P,p;R ∆
(C3)

CPC ` Σ,Γ ⊃ ∆

Σ; Γ ⊃P ;R ∆
(C2)

Σ; Γ, r ⊃P ;R ∆ Σ; Γ,¬r ⊃P ;R ∆

Σ; Γ ⊃P ;R,r ∆
(C4)

Figure 3.1: Circumscription rules of PCC

we give the original proof for soundness and a modified proof of complete-
ness.

The calculus relies on the calculi CPC and CPRC and therefore uses CPC
and CPRC sequents. Apart from that special circumscription sequents are
used.

Definition 3.14 (PCC-sequent)
A PCC-sequent or circumscription sequent is a quintuple 〈Γ,∆,Σ, P,R〉 de-
noted by Σ; Γ ⊃P ;R ∆ where Γ and ∆ are multisets of formulas and Σ, P
and R are disjoint subsets of V.

As usual Γ and ∆ are called the antecedent and succedent and P and R are
called the minimized and fixed variables. The elements of Σ are called the
constraints of the sequent.

Definition 3.15 (valid circumscription sequent)
A PCC-sequent Σ; Γ ⊃P ;R ∆ is defined to be valid if every (Σ∪P ;R)-minimal
model of Γ which satisfies

∧
Σ satisfies

∨
∆.

Definition 3.16 (the calculus PCC)
We define the propositional circumscription calculus PCC to have the de-
duction rules given in Figure 3.1.
In (C1) we call p the principal constraint. The minimized variable p and the
fixed variable r are called the principal formula of (C3) and (C4), respec-
tively.

The deduction rules (C1) and (C2) lead over to the calculus CPRC and CPC,
respectively.
The intended meaning of the rules is given below.

(C1) If there is a P -minimal model of Γ which does not satisfy all con-
straints, then any formula is P -minimally entailed by Γ under those
constraints.

(C2) The classical consequences of Γ are preserved under minimal entail-
ment.

(C3) This rule allows to infer the validity of the sequent in the conclusion
by distinguishing the different interpretations of a minimized variable.
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(C4) This rule allows to infer the validity of the sequent in the conclusion
by distinguishing the different interpretations of a fixed variable.

Compared to rule (C4) rule (C3) is not symmetric in its premises. The
right premise of (C3) corresponds to Lemma 3.9 which says that a negated
variable can be dragged into the list of minimal variables. Since there is
no corresponding lemma for positive variables we can not put p into the
antecedent. This is where we need the mechanism of constraints. So instead
of putting p into the antecedent we define it to be a constraint for the left
premise.

We now show that PCC is sound. Then we prove that the two branching rules
(C3) and (C4) are invertible and can use this result to show completeness
of PCC.

Theorem 3.17 (soundness)
If Σ; Γ ⊃P ;R ∆ is deducible in PCC, then it is valid.

Proof. We show our claim by induction on the number of applications of
circumscription rules

• Let S := Σ, p; Γ ⊃P ∆ be deduced by (C1).

CPRC ` Γ,¬P ⊃ p
Σ, p; Γ ⊃P ;∅ ∆

(C1)

Then Γ,¬P ⊃ p is refutable in CPRC (1).
Suppose S is not valid. Then there exists a model M �Σ,p,P ;∅ Γ such
that M � Σ, p and M 2

∨
∆ (2). Since CPRC is sound we know from

(1) that there exists a model N � Γ,¬P with p 6∈ N . Thus

N ∩ P = ∅ ⊆M ∩ P N ∩ Σ ⊂ Σ = M ∩ Σ p ∈M \N

which implies N <Σ,p,P M . This contradicts to (2) since N is also a
model of Γ. Hence S is valid.

• Let Σ; Γ ⊃P ;R ∆ be deduced by (C2). Then Σ,Γ ⊃ ∆ is deducible
in CPC and thus valid, that is

∨
∆ is valid in every model of Γ that

satisfies Σ.

• Let S := Σ; Γ ⊃P,p;R ∆ be deduced by (C3).

Σ, p; Γ ⊃P ;R ∆ Σ; Γ,¬p ⊃P ;R ∆

Σ; Γ ⊃P,p;R ∆
(C3)

Suppose S is not valid. Then there exists a model M �Σ,P,p;R Γ with
M � Σ and M 2

∨
∆ (1). We distinguish two cases:

1. M � p: Then M � Σ, p which together with (1) contradicts to the
induction hypothesis that Σ, p; Γ ⊃P ;R ∆ is valid.
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2. M 2 p: Then Corollary 3.8 yields M �Σ,P ;R Γ,¬p. With (1) this
contradicts to the induction hypothesis that Σ; Γ,¬p ⊃P ;R ∆ is
valid.

Hence S is valid.

• Let S := Σ; Γ ⊃P ;R,r ∆ be deduced by (C4)

Σ; Γ, r ⊃P ;R ∆ Σ; Γ,¬r ⊃P ;R ∆

Σ; Γ ⊃P ;R,r ∆
(C4)

Suppose S is not valid. Then there exists a model M �Σ,P ;R,r Γ with
M � Σ and M 2

∨
∆ (1). We distinguish two cases:

1. M � r: Then Lemma 3.10 yields M �Σ,P ;R Γ, r. With (1) this
contradicts to the induction hypothesis that Σ; Γ, r ⊃P ;R ∆ is
valid.

2. M � ¬r: Then Lemma 3.10 yields M �Σ,P ;R Γ,¬r. With (1) this
contradicts to the induction hypothesis that Σ; Γ,¬r ⊃P ;R ∆ is
valid.

Hence S is valid.

To show completeness of PCC we use the fact that its branching rules are
semantically invertible (see Definition 2.11).

Lemma 3.18 (semantically invertible rules)
The deduction rules (C3) and (C4) are semantically invertible.

Proof. Both rules are of the form

Σ1; Γ1 ⊃P1;R1 ∆ Σ2; Γ2 ⊃P2;R2 ∆

Σ; Γ ⊃P ;R ∆
(CX)

Consider the following sets of models.

M := {M : M �Σ,P ;R Γ and Σ ⊂M}
M1 := {M1 : M1 �Σ1,P1;R1 Γ1 and Σ1 ⊂M1}
M2 := {M2 : M2 �Σ2,P2;R2 Γ2 and Σ2 ⊂M2}

We need to prove that if the conclusion is valid then so are the premises. The
conclusion is valid if M �

∨
∆ for any M ∈M. By showing that M1 ⊆M

and M2 ⊆M we then know that for any M1 ∈M1 and M2 ∈M2 we have
M1 �

∨
∆ and M2 �

∨
∆ and thus know that the premises are valid, too.
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•
Σ, p; Γ ⊃P ;R ∆ Σ; Γ,¬p ⊃P ;R ∆

Σ; Γ ⊃P,p;R ∆
(C3)

Suppose Σ; Γ ⊃P,p;R ∆ is valid and let

M := {M : M �Σ,P,p;R Γ and (Σ ∪ p) ⊂M}

– Left premise (Σ, p; Γ ⊃P ;R ∆):

Let M1 �Σ,P,p;R Γ and Σ ∪ {p} ⊂ M1. It is then trivial that
M1 ∈M.

– Right premise (Σ,¬p; Γ ⊃P ;R ∆):

Let M2 �Σ,P ;R Γ,¬p and Σ ⊂ M2. Since p 6∈ R we know by
Lemma 3.9 that M2 �Σ,P,p;R Γ hence M2 ∈M.

•
Σ; Γ, r ⊃P ;R ∆ Σ; Γ,¬r ⊃P ;R ∆

Σ; Γ ⊃P ;R,r ∆
(C4)

Suppose Σ; Γ ⊃P ;R,r ∆ is valid and let

M := {M : M �Σ,p;R,r Γ and Σ ⊂M}

– Left premise (Σ; Γ, r ⊃P ;R ∆):

Let M2 �Σ,P ;R Γ, r and Σ ⊂M2. Since r 6∈ P we know by Lemma
3.11 that M �Σ,P ;R,r Γ hence M2 ∈M.

– Right premise (Σ; Γ,¬r ⊃P ;R ∆):

Analogous to the previous case.

The other two circumscription rules are not semantically invertible. Take
for example the sequent p1; p1 ∨ p2 ⊃p2 ¬p2. This sequent is valid but
p1 ∨ p2,¬p2 ⊃ p1 is not refutable and hence valid and p1, p1 ∨ p2 ⊃ ¬p2 is
not provable and hence invalid.

Theorem 3.19 (completeness)
If Σ; Γ ⊃P ;R ∆ is valid, then it is deducible in PCC.

Proof. Suppose that Σ; Γ ⊃P ;R ∆ is valid. Then we show our claim by
induction on |P |+ |R|.

• |P |+ |R| = 0
Suppose Σ; Γ ⊃∅ ∆ (∗) is valid. We distinguish two cases:

1. Γ 1 Σ
Choose p ∈ Σ such that Γ 1 p. Then Γ ⊃ p is refutable and we
can deduce (∗) with (C1)

65



CHAPTER 3. PROPOSITIONAL CIRCUMSCRIPTION LOGIC

2. Γ 
 Σ
Then every model M of Γ fulfills Σ, thus Γ ⊃ ∆ is valid and by
monotonicity Σ,Γ ⊃ ∆ is also valid and hence deducible in CPC.
Using (C2) we can deduce Σ; Γ ⊃∅ ∆

• |P |+ |R| > 0
Suppose P 6= ∅, p ∈ P and let P ′ := P \{p}. Since (C3) is semantically
invertible we then know that Σ, p; Γ ⊃P ′;R ∆ and Σ; Γ,¬p ⊃P ′;R ∆ are
valid and deducible by induction hypothesis and can thus use (C3) to
deduce Σ; Γ ⊃P ′,p;R ∆.
If P is empty then there exists r ∈ R. Let R′ := R \ {r}. Since
(C4) is semantically invertible we then know that Σ; Γ, r ⊃P ′;R ∆ and
Σ; Γ,¬r ⊃P ′;R ∆ are valid and deducible by induction hypothesis and
can thus use (C4) to deduce Σ; Γ ⊃P ;R′,r ∆.

Birds Can Fly

We close this chapter with the proof of the example given in the previous
section showing that if our bird is not a penguin then it can fly.

Let Γ := {bird ∧ ¬abn→ fly, penguin→ ¬fly ∧ bird, bird}, P := {abn}. Then
the proof that our bird can fly is as follows.

fly, bird ⊃ abn, penguin

fly, penguin→ (¬fly ∧ bird), bird ⊃ abn
(·→6⊃)

CPRC ` Γ ⊃ abn
(→·6⊃)

abn; Γ ⊃∅ fly
(C1)

CPC ` Γ,¬abn ⊃ fly

; Γ,¬abn ⊃∅ fly
(C2)

; Γ ⊃abn fly
(C3)

The left branch of the proof covers the P -minimal models of Γ that contain
abn. Since there are no such models we use the refutation calculus to show
that abn does not follow from Γ and can then deduce the corresponding
circumscription sequent with (C1).
The right branch of the proof covers the P -minimal models of Γ that do not
contain abn. Assuming that our bird is not abnormal we can show in CPC
that it can fly (we have omitted that part of the proof here). From that we
can then deduce the corresponding circumscription sequent with (C2).
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Chapter 4

Proof Search in
Circumscription

This chapter covers automatic proving in propositional circumscription logic.
We discuss two approaches.

First we have a look at the approach to compute CIRC(A,P,Q) and then
use a classical prover to verify whether a circumscription sequent is valid.
We will see that there is some additional information we can put into the
circumscription theory in order to reduce its size. However, the computation
of the circumscription theory itself is very time consuming since the size of
the resulting theory is exponential in the number of minimized and varied
variables. The approach is thus not very well suited for bigger problems.

Afterward we have a look at proof search in PCC. We first give two naive
provers. The first of them prefers the invertible branching rules to the non-
invertible non-branching rule, the second prover is doing it the other way
round. Then we take a closer look at the second prover and introduce some
general improvements that allow us to omit certain calls to the CPC and
the CPRC prover. Afterward we develop use-check for the circumscription
prover, present a modified calculus for proposition circumscription with im-
plicit use-check and close the chapter with some experimental results.

4.1 Proving in Classical Logic

We have seen that it is possible to express circumscription using classical
propositional logic (Definition 3.12 on page 60). To verify whether a formula
is (P ;R)-minimally entailed by a formula A is thus equivalent to verifying
whether it is a logical consequence of CIRC(A,P,Q), where Q := vars(A) \
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(P ∪R).

The main advantage of this approach is obvious. There is no need to write
an additional prover for circumscription and we can rely on our prover of
classical propositional logic. All we need is to compute CIRC(A,P,Q).

However, this method has the disadvantage of the complexity of the circum-
scription theory CIRC(A,P,Q). The number of formulas in CIRC(A,P,Q)
grows exponentially with the number of variables in P . Furthermore we are
adding formulas of the form Ci → Di

1 to the antecedent. In proof search,
each of the formulas is thus a potential branch. Moreover Ci is a conjunc-
tion of literals. When applying (→⊃) backwards Ci will be put into the
succedent of the left premise. This means |P | more potential branchings for
each Bi we are adding.

Looking at the other part of the implication we see that the size of Di

depends on i and the number of varied formulas. We can enhance those
formulas easily.

Enhancement 1
Since we are substituting in Di the minimized and varied variables
with > and ⊥, we can use some basic boolean algebra to simplify those
formulas. For example we can replace an occurrence of p → ⊥ with
¬p or p∧⊥ with ⊥ and so on. Like that we can reduce the complexity
of Di in certain circumstances enormously, for example if most of the
variable are being minimized or varied. From an algorithmic point of
view this is not much of an overhead since the simplification is done
simultaneously to substituting the variables.

Enhancement 2
Regarding the validity of Bi we know that Di must only be valid in
a model M if Ci is valid in M , too. Since the interpretation of the
minimized formulas is determined through Ci, we can add A[i/P ] to
the conjunct in Di without affecting the circumscription theory.

Bi(A,P,Q) :=
∧
pikk → A[i/P ] ∧

∧
j<i

∧
k∈Bm

¬A[j/P, k/Q]

The advantage here is that we put more detailed information into the
circumscription theory. The best case is when we can use the method
of point 1 to simplify A[i/P ] to ⊥ and thus reduce Bi to ¬

∧
pikk .

Enhancement 3
The third way to enhance Bi is similar to the second way but goes

1Ci :=
∧
p
ik
k and Di :=

∧
¬A[j/P, k/Q]
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further in that the varied variables are also taken into account.

Bi(A,P,Q) :=
∧
pikk →

 ∨
k∈Bm

A[i/P, k/Q]

 ∧∧
j<i

∧
k∈Bm

¬A[j/P, k/Q]

The advantage is the same as in 2. But since also the varied variables
are substitute with truth values, we might get a better simplification of
the formula. However, we also have to add and minimize 2m additional
formulas.

These enhancements may certainly reduce the size of the circumscription
theory. However, generally they will not prevent its the exponential growth.

4.2 Backward Proof Search

A more promising approach is that of backward proof search. As in the
classical case we start with a very simple proof search algorithm that does
nothing more than backward application of the rules. On an example we
show that there are redundancies in this procedure and give a method how
to detect them and how they can be avoided.

4.2.1 A Simple Proof Search Algorithm

The rules we have for circumscription sequents are either branching rules
that have the nice property of being invertible or non-branching rules which
are not invertible and will thus require backtracking. Algorithmically we
can thus prefer branching rules to non-branching rules or vice versa.

When preferring branching to non-branching rules we are sure that no back-
tracking needs to be done as long as the set of minimized or fixed variables
are not empty. However, if we use this approach for valid sequents then we
end up with 2n nodes, where n is the number of minimized and fixed vari-
ables. In each of those nodes we can then apply (C2) and (C1) backwards.
This reflects exactly the approach of defining the circumscription theory in
classical propositional logic. The pseudocode of this approach is given in Al-
gorithm 3. As you see this is a very compact algorithm. Branching is done
in lines 4 and 8. A minor modification has been done to rule (C1) (line 12).
Instead of looping over the constraints we let the refutation function carry
this out by adding the conjunction of the constraints to the succedent. This
leads to situations where we allow (C1) to be applied backwards if the set
of constraints is empty. However, this is still correct, since then the empty
conjunction evaluates to > and thus the sequent will not be refutable.

69



CHAPTER 4. PROOF SEARCH IN CIRCUMSCRIPTION

Algorithm 3 Simple proof search for circumscription preferring branching
rules to non-branching rules

1: function circProvable-1(Σ; Γ ⊃P ;R ∆)
2: if R 6= ∅ then
3: choose r ∈ R and let R′ := R \ {r}
4: success := circProvable-1(Σ; Γ, r ⊃P ;R′ ∆) and
5: circProvable-1(Σ; Γ,¬r ⊃P ;R′ ∆)
6: else if P 6= ∅ then
7: choose p ∈ P and let P ′ := P \ {p}
8: success := circProvable-1(Σ, p; Γ ⊃P ′;R ∆) and
9: circProvable-1(Σ; Γ,¬p ⊃P ′;R ∆)

10: else
11: success := cpcProvable(Σ,Γ ⊃ ∆) or
12: cpcRefutable(¬P,Γ ⊃

∧
Σ)

13: return success

When preferring non-branching to branching rules — the pseudocode is
given in Algorithm 4 — we will need backtracking (lines 3 and 10). However,
with this approach we can avoid branchings in the proof search if a non-
branching rule succeeds for a sequent that has a non-empty set of minimized
or fixed variables. The pseudocode also shows that we prefer rule (C4) to
rule (C3). This is because (C1) can not be applied backwards if the set
of fixed variables is not empty. Since our aim is to avoid branching in the
proof search, we make certain that both non-branching rules can be applied
as early as possible by having this preference. We also use the modified rule
(C1) that lets the refutation function do the looping over the constraints
(line 9).

Since circProvable-2 allows us to omit branches during proof search it
seems as if it is to favor over circProvable-1. However, with additional
improvements circProvable-1 can be quite efficient for certain problems.
We have thus implemented both variants and point out the differences be-
tween them at the end of this chapter.

4.2.2 General Improvements

We now have a look at some improvements of the algorithm which are in-
dependent of the sequent that is to prove. These improvements help us to
omit superfluous calls of cpcProvable and cpcRefutable and are mainly
aimed at the algorithm circProvable-2. In the following we therefore only
inspect circProvable-2 but will mention if a method is also applicable for
circProvable-1.
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Algorithm 4 Simple proof search for circumscription preferring non-
branching rules to branching rules

1: function circProvable-2(Σ; Γ ⊃P ;R ∆)
2: success := cpcProvable(Σ,Γ ⊃ ∆)
3: if not success then
4: if R 6= ∅ then
5: choose r ∈ R and let R′ := R \ {r}
6: success := circProvable-2(Σ; Γ, r ⊃P ;R′ ∆) and
7: circProvable-2(Σ; Γ,¬r ⊃P ;R′ ∆)
8: else
9: success := cpcRefutable(Γ,¬P ⊃

∧
Σ)

10: if not success and P 6= ∅ then
11: choose p ∈ P and let P ′ := P \ {p}
12: success := circProvable-2(Σ, p; Γ ⊃P ′;R ∆) and
13: circProvable-2(Σ; Γ,¬p ⊃P ′;R ∆)

14: return success

For the general improvements we analyze the order of the calls of cpcProv-
able and cpcRefutable, respectively. An example is given in Figure 4.1
and Figure 4.2. In both figures the left columns contain the sequents that
are passed to circProvable-2. The right columns show the sequents that
are passed to cpcProvable and cpcRefutable, respectively. Recursive
calls are enumerated according to their position in the proof search tree.

Omitting CPC proofs

We first investigate the calls of cpcProvable. Suppose the algorithm
reaches point 2, i.e. it does not fail for the first left branch. Then we know
that the classical prover failed in the root node, that is 0 Γ ⊃ ∆. Now the
provability of the CPC sequent at position 2 needs only be verified if the
prover previously failed in proving the CPC-sequent at position 1. If the
prover succeeded for Γ, r ⊃ ∆ (position 1), then Γ,¬r ⊃ ∆ (position 2) can
not be provable since otherwise we could deduce that Γ ⊃ ∆ is provable,
which is, as we know at this point, not the case.

Omitting CPC refutations

While we use only one general method to omit calls of cpcProvable we use
three obvious, easy to implement methods to omit calls of cpcRefutable.

1. As mentioned before, we use a modified version of the deduction rule
(C1) that has the conjunction of all constraints in the succedent of the
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; Γ ⊃p1,p2;r ∆ Γ ⊃ ∆
1 ; Γ, r ⊃p1,p2 ∆ Γ, r ⊃ ∆
1.1 p1; Γ, r ⊃p2 ∆ p1,Γ, r ⊃ ∆
1.1.1 p1, p2; Γ, r ⊃∅ ∆ p1, p2,Γ, r ⊃ ∆
1.1.2 p1; Γ, r,¬p2 ⊃∅ ∆ p1,Γ, r,¬p2 ⊃ ∆
1.2 ; Γ, r,¬p1 ⊃p2 ∆ Γ, r,¬p1 ⊃ ∆
1.2.1 p2; Γ, r,¬p1 ⊃∅ ∆ p2,Γ, r,¬p1 ⊃ ∆
1.2.2 ; Γ, r,¬p1,¬p2 ⊃∅ ∆ Γ, r,¬p1,¬p2,⊃ ∆
2 ; Γ,¬r ⊃p1,p2 ∆ Γ,¬r ⊃ ∆
2.1 p1; Γ,¬r ⊃p2 ∆ p1,Γ,¬r ⊃ ∆
2.1.1 p1, p2; Γ,¬r ⊃∅ ∆ p1, p2,Γ,¬r ⊃ ∆
2.1.2 p1; Γ,¬r,¬p2 ⊃∅ ∆ p1,Γ,¬r,¬p2 ⊃ ∆
2.2 ; Γ,¬r,¬p1 ⊃p2 ∆ Γ,¬r,¬p1 ⊃ ∆
2.2.1 p2; Γ,¬r,¬p1 ⊃∅ ∆ p2,Γ,¬r,¬p1 ⊃ ∆
2.2.2 ; Γ,¬r,¬p1,¬p2 ⊃∅ ∆ p2,Γ,¬r,¬p1,¬p2 ⊃ ∆

Figure 4.1: Invocations of cpcProvable in circumscription prover

; Γ ⊃p1,p2,p3; ∆ Γ,¬p1,¬p2,¬p3 ⊃ >
1 p1; Γ ⊃p2,p3; ∆ Γ,¬p2,¬p3 ⊃ p1

1.1 p1, p2; Γ ⊃p3; ∆ Γ,¬p3 ⊃ p1 ∧ p2

1.1.1 p1, p2, p3; Γ ⊃; ∆ Γ ⊃ p1 ∧ p2 ∧ p3

1.1.2 p1, p2; Γ,¬p3 ⊃; ∆ Γ,¬p3 ⊃ p1 ∧ p2

1.2 p1; Γ,¬p2 ⊃p3; ∆ Γ,¬p2,¬p3 ⊃ p1

1.2.1 p1, p3; Γ,¬p2 ⊃; ∆ Γ,¬p2 ⊃ p1 ∧ p3

1.2.2 p1; Γ,¬p2,¬p3 ⊃; ∆ Γ,¬p2,¬p3 ⊃ p1

2 ; Γ,¬p1 ⊃p2,p3; ∆ Γ,¬p1,¬p2,¬p3 ⊃ >
2.1 p2; Γ,¬p1 ⊃p3; ∆ Γ,¬p1,¬p3 ⊃ p2

2.1.1 p2, p3; Γ,¬p1 ⊃; ∆ Γ,¬p1 ⊃ p2 ∧ p3

2.1.2 p2; Γ,¬p1,¬p3 ⊃; ∆ Γ,¬p1,¬p3 ⊃ p2

2.2 ; Γ,¬p1,¬p2 ⊃p3; ∆ Γ,¬p1,¬p2,¬p3 ⊃ >
2.2.1 p3; Γ,¬p1,¬p2 ⊃; ∆ Γ,¬p1,¬p2 ⊃ p3

2.2.2 ; Γ,¬p1,¬p2,¬p3 ⊃; ∆ Γ,¬p1,¬p2,¬p3 ⊃ >

Figure 4.2: Invocations of cpcRefutable in circumscription prover
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premise. If there are no constraints, this leads to sequents having >
as succedent. It is clear that such sequents are not refutable so we can
omit trying to refute them.

2. We see that we have equivalent sequents at the positions 1, 1.2, 1.2.2,
2.1, 2.1.2 and 2.2.1. It is thus sufficient to verify refutability only at
one of those position, for example at position 1.
The positions in which this method can be applied are easy to identify
since they are exactly those where the constraints of the circumscrip-
tion sequent consists of a single variable.

3. We also see that the sequent in the call of the prover in the right
branch is always equal to the sequent of its father node (positions
1.1.2 with father node 1.1 for example). It is therefore superfluous to
verify refutability in the node of the right son if a backward-application
of the rule (C1) was possible, and thus unsuccessful, in its father node.

The methods 1 and 2 are also applicable for circProvable-1.

A fourth method to omit calls of the refutation function relies on the fol-
lowing variant of monotonicity given in Proposition 1.19 on page 11.

Proposition 4.1 (monotonicity)
Let Γ,Γ′,∆,∆′ be multisets of formulas. Then the following holds.

If � Γ ⊃
∧

(∆ ∪∆′) then � Γ,Γ′ ⊃
∧

∆.

In contrast to Proposition 1.19 we have a succedent with a conjunction of
formulas instead of a disjunction of formulas. If we remove the formulas ∆′

from that conjunction then the sequent will trivially still be valid. Together
with monotonicity in the antecedent we obtain the proposition above.

The sequents we are trying to refute are all of the form Γ,¬R0, R1,¬P0 ⊃∧
P1, where (R0, R1) is a disjoint partition of the fixed variables R and

(P0, P1) is a disjoint partition of the minimized variables P .
From the proposition above we thus know that if refuting Γ,¬R0, R1,¬P0 ⊃∧
P1 failed then refuting Γ,¬R0, R1,¬P ′0 ⊃

∧
P ′1 will also fail if P ′1 ⊆ P1.

One such situation may for example be encountered at position 1.2.1 if
refutation failed at position 1.1.1.

It is also clear how to identify the situations in which this fourth improve-
ment can be applied. The variables in the conjunction of the succedent we
try to refute are exactly the constraints of the corresponding circumscrip-
tion sequent. It is thus sufficient to remember for each partition of R those
sets of constraints for which backward application of (C1) failed. If we later
encounter a circumscription sequent whose set of constraints is contained in
one of the previously remembered sets of constraints, we will know that it
will also fail for this sequent and can omit calling cpcRefutable.
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This method also covers method 3 presented above and can, in contrast to
method 3, also be applied in circProvable-1. For circProvable-2 it is
therefore possible to drop method 3 in favor for it. However, compared to
method 4 it is much easier to apply method 3 and dropping it is thus not
advisable.

4.2.3 Use-Check

With the methods presented in the section above, we can mainly improve
circProvable-2 with rather easy methods. The methods will however not
be useful to prevent that circProvable-1 has to process a complete bi-
nary search tree for valid sequents. In this section we present a use-check
method for propositional circumscription with which we can detect super-
fluous branchings. The method is not bound to a certain search strategy
and thus applicable for both prover variants.

The underlying idea of the use-check method for propositional circumscrip-
tion is similar to that of use-check in classical propositional logic. That is by
analyzing the proof of one of the premises we may conclude the provability
of the other premise. Since the calculus PCC includes the rule of CPC and
CPRC, use-check can already be used for the subproofs that are done in
these calculi. This leaves us with the question of how to avoid branchings
for the rules (C3) and (C4)

Σ, p; Γ ⊃P ;R ∆ Σ; Γ,¬p ⊃P ;R ∆

Σ; Γ ⊃P,p;R ∆
(C3)

Σ; Γ, r ⊃P ;R ∆ Σ; Γ,¬r ⊃P ;R ∆

Σ; Γ ⊃P ;R,r ∆
(C4)

Let us have a look at (C4). An approach that is similar to use-check in CPC
would be to check whether r is really needed in the proof of Σ; Γ, r ⊃P ;R ∆.
However, if r is not needed then knowing the provability of Σ; Γ ⊃P ;R ∆
is of little use since circumscription is non-monotonic and we can then not
deduce the provability of Σ; Γ,¬r ⊃P ;R ∆ from it.
The approach we use for these two rules is to transform a proof of one
premise into a proof of the other one.

Since we use the calculus CPC2 for proof search, we work in this section
with a slightly modified version of PCC whose only difference to the original
is that it is using labeled formulas and that (C1) and (C2) are rewritten as

follows, where in (C1) the label n of
n
p is an arbitrary natural number.

CPRC ` Γ↓N,¬P↓N ⊃ p
Σ,

n
p; Γ ⊃P ;R ∆

(C1)
CPC2 ` D; Σ,Γ ⊃ ∆

Σ; Γ ⊃P ;R ∆
(C2)
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A labeled circumscription sequent Σ; Γ ⊃P ;P ∆ is then defined to be valid

if the circumscription sequent Σ↓N; Γ↓N ⊃P↓N;R↓N ∆↓N is valid. It should
be clear that these modification do not change anything elementary in the
calculus.

The following lemmas provide a basis for our proof transformations and
consider deductions in CPC2 and CPRC.

Lemma 4.2 (switch side of irrelevant variables in CPC2-sequents)

1. If D; Γ,
n
p ⊃ ∆ is valid and n 6∈ D then D; Γ ⊃ ∆,

n
p is valid.

2. If D; Γ,¬n
p ⊃ ∆ is valid and n 6∈ D then D; Γ,

n
p ⊃ ∆ is valid.

Proof. The claim follows directly from the definition of the validity of a
CPC2-sequent.

Lemma 4.3 (switch side of variable in refutations)

1. Let P be a refutation of Γ, p ⊃ ∆ and PΓ, p ⊃ P∆ be the anti-axiom
of P. If p 6∈ PΓ then there exists a refutation of Γ ⊃ ∆, p having the
anti-axiom PΓ ⊃ P∆, p.

2. Let P be a refutation of Γ ⊃ ∆, p and PΓ ⊃ P∆, p be the anti-axiom
of P. If p 6∈ P∆ then there exists a refutation of Γ, p ⊃ ∆ having the
anti-axiom PΓ, p ⊃ P∆.

Proof.

1. Let P be a refutation of Γ, p ⊃ ∆ having the anti-axiom PΓ, p ⊃ P∆.
If p 6∈ PΓ then PΓ ⊃ P∆, p is also an anti-axiom. Since p is atomic and
therefore not deducible by any rule, it will appear in every antecedent
of P and we obtain thus a refutation of Γ ⊃ ∆, p having the anti-axiom
PΓ ⊃ P∆, p if we remove p from every antecedent of P and add p to
every succedent of P.

2. Analogous.

Lemma 4.4 (remove negation on variables in refutations)
Let P be a refutation of Γ,¬p ⊃ ∆ and PΓ ⊃ P∆, p be the anti-axiom of P.
If p 6∈ P∆ then there exists a refutation of Γ, p ⊃ ∆ having the anti-axiom
PΓ, p ⊃ P∆.

Proof. Suppose P is a refutation of Γ,¬p ⊃ ∆ and PΓ ⊃ P∆, p its anti-axiom
with p 6∈ P∆. We show our claim by induction on depth(P).
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• depth(P) = 1. (Since ¬p is not atomic, the depth of P is at least 1.)

Then Γ ⊃ ∆, p is the anti-axiom of P. Since p 6∈ ∆ we know that
Γ, p ⊃ ∆ is an anti-axiom, too.

• depth(P) = n+ 1.

We make a case distinction on the last rule of P.

–
Γ ⊃ ∆, p

Γ,¬p ⊃ ∆
(¬6⊃)

Then there exists a refutation of Γ ⊃ ∆, p that has PΓ ⊃ P∆, p
as its anti-axiom. According to Lemma 4.3 there exists thus a
refutation of Γ, p ⊃ ∆ that has PΓ, p ⊃ P∆ as its anti-axiom.

–
Γ,¬p ⊃ ∆′, A

Γ,¬p ⊃ ∆′, A ∧B
(6⊃·∧) with ∆′ := ∆ \ {A ∧B}.

By induction hypothesis there exists a refutation of Γ, p ⊃ ∆′, A
having PΓ, p ⊃ P∆ as anti-axiom. With ( 6⊃ ·∧) we can thus
deduce Γ, p ⊃ ∆′, A ∧B.

The other cases are similar to the last case.

Lemma 4.5 (drop negative literals in refutation)
Let P be a refutation of Γ,¬p ⊃ ∆ and PΓ ⊃ P∆, p be the anti-axiom of P.
Then there exists a refutation of Γ ⊃ ∆, p having the anti-axiom PΓ ⊃ P∆, p.

Proof. Suppose P is a refutation of Γ,¬p ⊃ ∆ and PΓ ⊃ P∆, p its anti-axiom.
We show our claim by induction on depth(P).

• depth(P) = 1. (Since ¬p is not atomic, the depth of P is at least 1.)

Then Γ ⊃ ∆, p is the anti-axiom of P and the refutation we are looking
for.

• depth(P) = n+ 1.

We make a case distinction on the last rule of P.

–
Γ ⊃ ∆, p

Γ,¬p ⊃ ∆
(¬6⊃)

Then Γ ⊃ ∆, p is trivially refutable with the required anti-axiom.

–
Γ,¬p ⊃ ∆′, A

Γ,¬p ⊃ ∆′, A ∧B
(6⊃·∧) with ∆′ := ∆ \ {A ∧B}.

By induction hypothesis there exists a refutation of Γ ⊃ ∆′, A, p
having PΓ ⊃ P∆, p as anti-axiom. With ( 6⊃ ·∧) we can thus
deduce Γ ⊃ ∆′, A ∧B, p.
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The other cases are similar to the last case.

We can remove a proposition variable from a refutation if it is part of the
refuted sequent.

Lemma 4.6 (monotonicity in refutations)
Let P be a refutation of Γ, p ⊃ ∆ (Γ ⊃ ∆, p) and PΓ, p ⊃ P∆ (PΓ ⊃ P∆, p)
be the anti-axiom of P. Then there exists a refutation of Γ ⊃ ∆ having the
anti-axiom PΓ ⊃ P∆.

Proof. We know by monotonicity that PΓ ⊃ P∆ is refutable. We thus obtain
a refutation of Γ ⊃ ∆ if we remove one occurrence of p from the antecedent
(succedent) of every sequent of P.

We can add a proposition variable to a refutation if it does not occur on the
other side of its anti-axiom.

Lemma 4.7 (add variables to refutations)
Let P be a refutation of Γ ⊃ ∆ and PΓ ⊃ P∆ be the anti-axiom of P.

1. If p 6∈ PΓ then there exists a refutation of Γ ⊃ ∆, p which has PΓ ⊃
P∆, p as its anti-axiom.

2. If p 6∈ P∆ then there exists a refutation of Γ, p ⊃ ∆ which has PΓ, p ⊃
P∆ as its anti-axiom.

Proof.

1. Since p 6∈ PΓ we know that PΓ ⊃ P∆, p is an anti-axiom. We thus
obtain a refutation of Γ ⊃ ∆, p with that anti-axiom if we add p to
every succedent of the refutation of Γ ⊃ ∆

2. Analogous.

The following theorem gives us the conditions that must be fulfilled in the
proof of the left premise of (C3) to omit proving the right premise.

Theorem 4.8 (omit right premise of (C3))

If there exists a proof P of Σ,
n
p; Γ ⊃P ;R ∆ such that

1. n 6∈ D for every CPC2-sequent D; Γ′ ⊃ ∆ of a (C2)-rule application in
P,

2. p does not appear in the antecedent of any anti-axiom of P,

77



CHAPTER 4. PROOF SEARCH IN CIRCUMSCRIPTION

3. there is no step of the form
CPRC ` Γ′↓N,¬P ′↓N ⊃ p

Σ′,
n
p; Γ′ ⊃

P
′ ∆′

(C1) in P,

then Σ; Γ,
n¬p ⊃P ;R ∆ is provable, too.

Proof. Let P be a proof of Σ,
n
p; Γ ⊃P ;R ∆ that has the properties as given

above. We show our claim by induction on the number c of circumscription
rules in P.

• c = 1:

Then the last rule of P was either (C1) or (C2):

–
CPRC ` Γ,¬P ⊃ s

Σ,
n
p; Γ ⊃P ∆

(C1) with
m
s ∈ Σ and

n
p 6∈ Σ.

Let PΓ ⊃ P∆ be the anti-axiom of the refutation of Γ,¬P ⊃ s.

Since p 6∈ PΓ we know by Corollary 4.7 that Γ,¬P ⊃ s, p is
refutable. With (¬ 6⊃) and (C1) we can infer Σ; Γ,¬n

p ⊃P ∆.

–
CPC2 ` D; Σ,

n
p,Γ ⊃ ∆

Σ,
n
p; Γ ⊃P ;R ∆

(C2) with n 6∈ D.

Since n 6∈ D we know by Lemma 4.2 that D; Σ,Γ ⊃ ∆,
n
p is valid.

With (¬ ⊃) and (C2) we can infer Σ; Γ,
n¬p ⊃P ;R ∆.

• c > 1:

Then the last rule of P was either (C3) or (C4):

–
Σ,

n
p,

m
q ; Γ ⊃

P
′
;R

∆ Σ,
n
p; Γ,

m¬q ⊃
P
′
;R

∆

Σ,
n
p; Γ ⊃

P
′
,
m
q ;R

∆
(C3) with P = P

′
,

m
q .

Then Σ,
m
q ; Γ,

n¬p ⊃
P
′
,R

∆ and Σ; Γ,
m¬q, n¬p ⊃

P
′
,R

∆ are provable

by induction hypothesis. With (C3) we can infer Σ; Γ,
n¬p ⊃

P
′
,
m
q ;R

∆.

–
Σ,

n
p; Γ,

m
r ⊃

P ;R
′ ∆ Σ,

n
p; Γ,

m¬r ⊃
P ;R

′ ∆

Σ,
n
p; Γ ⊃

P ;R
′
,
m
r

∆
(C4) with R = R

′
,

m
r .

Then Σ; Γ,
n¬p,m

r ⊃
P ;R

′ ∆ and Σ;
n¬p, m¬r,Γ ⊃

P ;R
′ ∆ are provable

by induction hypothesis. With (C4) we can infer Σ; Γ,
n¬p ⊃

P ;R
′
,
m
r

∆.
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The following theorem gives us the conditions that must be fulfilled in the
proof of the right premise of (C3) to omit proving the left premise.

Theorem 4.9 (omit left premise of (C3))

If there exists a proof P of Σ; Γ,
n¬p ⊃P ;R ∆ such that n 6∈ D for every CPC2-

sequent D; Γ
′ ⊃ ∆

′
of a (C2)-rule application in P, then Σ,

n
p; Γ ⊃P ;R ∆ is

provable, too.

Proof. Let P be a proof of Σ; Γ,
n¬p ⊃P ;R ∆ that has the properties as given

above. We show our claim by induction on the number c of circumscription
rules in P.

• c = 1:

Then the last rule of P was either (C1) or (C2):

–
CPRC ` Γ,¬p,¬P ⊃ s

Σ; Γ,
n¬p ⊃P ∆

(C1) with
m
s ∈ Σ.

From the premise we know by Lemma 4.5 and Corollary 4.6 that
Γ,¬P ⊃ p is refutable. With (C1) we can infer Σ,

n
p; Γ ⊃P ∆.

–
CPC2 ` D; Σ,Γ,

n¬p ⊃ ∆

Σ; Γ,
n¬p ⊃P ;R ∆

(C2) with n 6∈ D.

Since n 6∈ D we know by Lemma 4.2 that D; Σ,Γ,
n
p ⊃ ∆ is prov-

able. With (C2) we can infer Σ,
n
p; Γ ⊃P ;R ∆.

• c > 1:

Then the last rule of P was either (C3) or (C4):

–
Σ,

m
q ; Γ,

n¬p ⊃
P
′
;R

∆ Σ; Γ,
n¬p, m¬q ⊃

P
′
;R

∆

Σ; Γ,
n¬p ⊃

P
′
,
m
q ;R

∆
(C3) with P = P

′
,

m
q .

Then Σ,
n
p,

m
q ; Γ ⊃

P
′
,R

∆ and Σ,
n
p; Γ,

m¬q ⊃
P
′
,R

∆ are provable by

induction hypothesis. With (C3) we can infer Σ,
n
p; Γ ⊃

P
′
,
m
q ;R

∆.

–
Σ; Γ,

n¬p,m
r ⊃

P ;R
′ ∆ Σ; Γ,

n¬p, m¬r ⊃
P ;R

′ ∆

Σ; Γ,
n¬p ⊃

P ;R
′
,
m
r

∆
(C4) with R = R

′
,

m
r .

Then Σ,
n
p; Γ,

m
r ⊃

P ;R
′ ∆ and Σ,

n
p; Γ,

m¬r ⊃
P ;R

′ ∆ are provable by

induction hypothesis. With (C4) we can infer Σ,
n
p; Γ ⊃

P ;R
′
,
m
r

∆.
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The following theorem gives us the conditions that must be fulfilled in the
proof of the left premise of (C4) to omit proving the right premise.

Theorem 4.10 (omit right premise of (C4))

If there exists a proof P of Σ; Γ,
n
r ⊃P ;R ∆ such that

1. n 6∈ D for every CPC2-sequent D; Γ ⊃ ∆ of a (C2)-rule application in
P,

2. r occurs only once in each antecedent of the anti-axioms of P,

then Σ; Γ,
n¬r ⊃P ;R ∆ is provable, too.

Proof. Let P be a proof of Σ; Γ,
n
r ⊃P ;R ∆ that has the properties as given

above. We show our claim by induction on the number c of circumscription
rules in P.

• c = 1:

Then the last rule of P was either (C1) or (C2):

–
CPRC ` Γ, r,¬P ⊃ s

Σ; Γ,
n
r ⊃P ∆

(C1) with
m
s ∈ Σ.

Since r occurs only once in the antecedent of the anti-axiom of the
refutation of Γ, r,¬P ⊃ s, we know by Lemma 4.3 that Γ,¬P ⊃
s, r is refutable. With (¬ 6⊃) and (C1) we can infer Σ; Γ,

n¬r ⊃P ∆.

–
CPC2 ` D; Σ,Γ,

n
r ⊃ ∆

Σ; Γ,
n
r ⊃P ;R ∆

(C2) with n 6∈ D.

Since n 6∈ D we know by Lemma 4.2 that D; Σ,Γ ⊃ ∆,
n
r is prov-

able. With (¬ ⊃) and (C2) we can infer Σ; Γ,
n¬r ⊃P ;R ∆.

• c > 1:

Then the last rule of P was either (C3) or (C4):

–
Σ,

m
p; Γ,

n
r ⊃

P
′
;R

∆ Σ; Γ,
n
r,

m¬p ⊃
P
′
;R

∆

Σ; Γ,
n
r ⊃

P
′
,
m
p ;R

∆
(C3) with P = P

′
,

m
p.

Then Σ,
m
p; Γ,

n¬r ⊃
P
′
,R

∆ and Σ; Γ,
n¬r, m¬p ⊃

P
′
,R

∆ are provable

by induction hypothesis. With (C3) we can infer Σ; Γ,
n¬r ⊃

P
′
,
m
p ;R

∆.

–
Σ; Γ,

n
r,

m
q ⊃

P ;R
′ ∆ Σ; Γ,

n
r,

m¬q ⊃
P ;R

′ ∆

Σ; Γ,
n
r ⊃

P ;R
′
,
m
q

∆
(C4) with R = R

′
,

m
q .
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Then Σ; Γ,
n¬r,m

q ⊃
P ;R

′ ∆ and Σ; Γ,
n¬r, m¬q ⊃

P ;R
′ ∆ are provable

by induction hypothesis. With (C4) we can infer Σ; Γ,
n¬r ⊃

P ;R
′
,
m
q

∆.

The following theorem gives us the conditions that must be fulfilled in the
proof of the right premise of (C4) to omit proving the left premise.

Theorem 4.11 (omit left premise of (C4))

If there exists a proof P of Σ; Γ,
n¬r ⊃P ;R ∆ such that

1. n 6∈ D for every CPC2-sequent D; Γ ⊃ ∆ of a (C2)-rule application in
P,

2. r occurs only once in each succedent of the anti-axioms of P,

then Σ; Γ,
n
r ⊃P ;R ∆ is provable, too.

Proof. Let P be a proof of Σ; Γ,
n¬r ⊃P ;R ∆ that has the properties as given

above. We show our claim by induction on the number c of circumscription
rules in P.

• c = 1:

Then the last rule of P was either (C1) or (C2):

–
CPRC ` Γ,¬r,¬P ⊃ s

Σ; Γ,
n¬r ⊃P ∆

(C1) with
m
s ∈ Σ.

Since r occurs only once in the succedent of the axiom of the refu-
tation of Γ,¬r,¬P ⊃ s, we know by Lemma 4.4 that Γ, r,¬P ⊃ s
is refutable. With (C1) we can infer Σ; Γ,

n
r ⊃P ∆.

–
CPC ` D; Σ,Γ,

n¬r ⊃ ∆

Σ; Γ,
n¬r ⊃P ;R ∆

(C2) with n 6∈ D

Since n 6∈ D we know by Lemma 4.2 that D; Σ,Γ,
n
r ⊃ ∆ is prov-

able. With (C2) we can infer Σ; Γ,
n
r ⊃P ;R ∆.

• c > 1:

Then the last rule of P was either (C3) or (C4):

–
Σ,

m
p; Γ,

n¬r ⊃
P
′
;R

∆ Σ; Γ,
n¬r, m¬p ⊃

P
′
;R

∆

Σ; Γ,
n¬r ⊃

P
′
,
m
p ;R

∆
(C3) with P = P

′
,

m
p.
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Then Σ,
m
p; Γ,

n
r ⊃

P
′
,R

∆ and Σ; Γ,
n
r,

m¬p ⊃
P
′
,R

∆ are provable by

induction hypothesis. With (C3) we can infer Σ; Γ,
n
r ⊃

P
′
,
m
p ;R

∆.

–
Σ; Γ,

n¬r,m
q ⊃

P ;R
′ ∆ Σ; Γ,

n¬r, m¬q ⊃
P ;R

′ ∆

Σ; Γ,
n¬r ⊃

P ;R
′
,
m
q

∆
(C4) with R = R

′
,

m
q .

Then Σ; Γ,
n
r,

m
q ⊃

P ;R
′ ∆ and Σ; Γ,

n
r,

m¬q ⊃
P ;R

′ ∆ are provable by

induction hypothesis. With (C4) we can infer Σ; Γ,
n
r ⊃

P ;R
′
,
m
q

∆.

A Proof Search Algorithm With Use-Check

The theorems that allow us to omit proving one of the premises of (C3) or
(C4) rely on three properties of the proof of the already proven premise:

1. The use-sets of the (C2) rules.

2. The minimized or fixed variables that occur in the anti-axioms.

3. The principal constraints of the (C1) rules.

To apply use-check for (C3) and (C4) it is therefore sufficient to know the
set of anti-axioms, the use-sets of the (C2)-rule applications and the set of
principal constraints of the (C1)-rules. When using labeled formulas the
latter information can also be stored in the use-set that is computed from
the (C2)-rules (see below).

The theorems rely on transforming the proof of one premise into the proof
of the other premise. These proof transformations have two important prop-
erties.

1. They do not change the use-sets of the CPC2-sequents.

2. The changes done to the anti-axioms are of a very specific nature.
We move one propositional variable from one side of the sequent to
the other. Since the propositional variable that we move in the anti-
axioms corresponds to the principal constraint of the circumscription
rule in question, the anti-axioms of the transformed proof will not
add additional information that will be of relevance for use-check in
another circumscription rule.

Because of these two properties additional information from the transformed
proof need not be taken into account for use-check.

Based on the theorems above we can now write down a proof-search al-
gorithm doing use-check. It is given in Algorithm 5. Besides the circum-
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scription sequent the functions take two additional arguments: A use-set D
holding the united use-sets of the (C2)-rule applications and the labels of
the principal constraints of the (C1)-rules, and a set of sequents S holding
the anti-axioms.

In the algorithm we call the functions cpc2Provable and cpcRefutable
whose pseudo-code is not given. We assume that the use-set of the CPC2-
proof is returned through the additionally given argument D. Furthermore
we assume that cpcRefutable stores the anti-axiom in the additionally
given argument S. In all functions D, S and S are passed by reference while
the other arguments are passed by value.
Use-check is done in lines 19 (Theorem 4.8), 22 (Theorem 4.9), 33 (Theorem
4.10) and 36 (Theorem 4.11).

Example

To discuss some aspects of the algorithm we look at a proof of the sequent
3

r → q,
3

q ∧ r → s,
3¬q → s ⊃

P ;
1
q,

2
r

3
s. A part of a possible proof that could

be found by the algorithm is given in Figure 4.3. In the figure we have
omitted the set of anti-axioms since we do not make use of refutations in
this example.

We see that in the first backward application of the rule (C4) use-check is

successful because of the label of
1
q is not element of the use-set2. Looking

at the CPC2-axioms we see that in the axiom ({4, 7} ;
4
q,

3
r ∨ s, 1

q,
2
r ⊃ 3

s,
7
q) we

had the choice between
4
q or

1
q to form the identity axiom. Choosing

4
q lead to

a successful use-check for (C4). We could as well have chosen
1
q to form the

axiom in which case use-check would have failed. The choice of the principal
formula in the CPC2-axioms can therefore be crucial for use-check. To have
the highest chance that use-check in the circumscription rules succeeds we
should therefore choose in the CPC2-axioms those principal formulas which
do not originate from the set of minimized or fixed variables.

To maximize the benefit of use-check, all formulas in the circumscription
sequent should be labeled with a different value. The CPC2 prover should
then also use fresh labels for formulas resulting from branching rules. Like
this no spurious dependencies are introduced for use-check.

2since the set of anti-axioms is empty, the second condition of Theorem 4.11 is also
fulfilled
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Algorithm 5 Proof search with use-check for circumscription

1: function circProvableUC(S;D; Σ; Γ ⊃P ;R ∆)

2: success := cpc2Provable(D; Σ,Γ ⊃ ∆)
3: if not success then
4: if R 6= ∅ then
5: success = c4(S;D; Σ; Γ ⊃P ;R ∆)
6: else
7: for all

n
s ∈ Σ do

8: success := cpcRefutable(S; Γ↓N,¬P↓N ⊃ s)
9: if success then

10: D := {n} and S := {S}
11: break
12: if not success and P 6= ∅ then
13: success := c3(S;D; Σ; Γ ⊃P ;R ∆)

14: return success

15: function c3(S;D; Σ; Γ ⊃P ;R ∆)

16: choose
n
p ∈ P and let P

′
:= P \

{
n
p
}

17: success := circProvableUC(S;D; Σ,
n
p; Γ ⊃P

′
;R ∆)

18: if success then
19: if n ∈ D or p ∈ Γ′ for a Γ′ ⊃ ∆′ ∈ S then

20: success := circProvableUC(S ′;D′; Σ; Γ,
n¬p ⊃P ′;R ∆)

21: if success then
22: if n ∈ D′ then
23: D := D ∪D′ and S := S ∪ S ′
24: else
25: D := D′ and S := S ′
26: else
27: D := ∅ and S := ∅
28: return success

29: function c4(S;D; Σ; Γ ⊃P ;R ∆)

30: choose
n
r ∈ R and let R

′
:= R \

{
n
r
}

31: success := circProvableUC(S;D; Σ; Γ,
n
r ⊃P ;R

′ ∆)
32: if success then
33: if n ∈ D or count(Γ′, r) > 1 for a Γ′ ⊃ ∆′ ∈ S then

34: success := circProvableUC(S ′;D′; Σ; Γ,
n¬r ⊃P ;R

′ ∆)
35: if success then
36: if n ∈ D′ or count(∆′, r) > 1 for a Γ′ ⊃ ∆′ ∈ S ′ then
37: D := D ∪D′ and S := S ∪ S ′
38: else
39: D := D′ and S := S ′
40: else
41: D := ∅ and S := ∅
42: return success
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{2
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}

;
3

q
∧
r
→
s,

3
r
∨
s,

1 q,
2 r
⊃

3 s,
4 r(i

d
)
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}

;
4 q
,

3
r
∨
s,

1 q,
2 r
⊃

3 s,
7 q

(i
d
)
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}
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4 q,

3
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1 q,
2 r
⊃

3 s,
7 r(i

d
)
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3
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∨
s,

1 q,
2 r
⊃

3 s,
6
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(⊃
∧
)

{3
,6
}

;
4 q,

3
r
∨
s,

6 s,
1 q,

2 r
⊃

3 s(i
d
)

{2
,3
,4
}

;
4 q,

3
q
∧
r
→

s,
3

r
∨
s,

1 q,
2 r
⊃

3 s

(→
⊃
)

{2
,3
}

;
3

r
→

q
,

3
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3
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3
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∧
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⊃
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The Order of Processing the Minimized or Fixed Variables

The previous example also shows that the order in which we processed the
minimized and fixed variables matters.

In the example the search strategy of the algorithm is to first apply (C2)

backwards, which fails for the sequent
3

r → q,
3

q ∧ r → s,
3¬q → s ⊃

P ;
1
q,

2
r

3
s

(not shown in the proof). Then (C4) is applied backwards and we chose
1
q

as principal formula. In the left premise we then try again to apply (C2)

backwards, which fails again. Then again (C4) is applied backwards with
2
r

as principal formula.

It is obvious that selecting
2
r as principal formula in the first backward

application of (C4) would have been the better choice, since doing so would
have lead to a successful backward application of (C2) in the left premise.

However, although
1
q was a bad choice, the mechanism of use-check prevents

us here from proving the right branch and thus somehow corrects our bad
choice.

4.2.4 A Modified Calculus for Use-Check

According to the algorithm we now create a calculus PCC2 which bases on
the calculus PCC and is intended for proof search. This calculus is necessary
because the information we need for use-check can not be extracted from
the standard sequents of CPC, CPRC and PCC.

A Modified Refutation Calculus

From the CPRC parts of our proofs, we need to know the anti-axiom which
they use. We therefore extend the sequents used in the refutation calculus to
hold the axiom of the proof. This is easily done by taking pairs of sequents
instead of the sequent in the anti-axiom and by passing over this additional
argument unchanged from the premise to the conclusion of every structural
rule.

For the notation we use sequents holding this additional argument.

Definition 4.12 (CPRC2-sequent)
A CPRC2-sequent is a triple 〈S,Γ,∆〉 denoted by S; Γ ⊃ ∆ where S is a
CPC-sequent and Γ and ∆ are multisets of formulas.

Definition 4.13 (refutable CPRC2-sequent)
A CPRC2-sequent S; Γ ⊃ ∆ is refutable if there exists a refutation of Γ ⊃ ∆
having S as its anti-axiom.
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Γ ⊃ ∆; Γ ⊃ ∆
(aax)a

S; Γ ⊃ ∆, p

S; Γ,¬p ⊃ ∆
(¬6⊃)

S; Γ, p ⊃ ∆

S; Γ ⊃ ∆,¬p
( 6⊃¬)

S; Γ, A,B ⊃ ∆

S; Γ,A ∧B ⊃ ∆
(∧6⊃)

S; Γ ⊃ ∆, A,B

S; Γ ⊃ ∆,A ∨B
(6⊃∨)

S; Γ, A ⊃ ∆

S; Γ,A ∨B ⊃ ∆
(·∨6⊃)

S; Γ ⊃ ∆, A

S; Γ ⊃ ∆,A ∧B
(6⊃·∧)

S; Γ, B ⊃ ∆

S; Γ,A ∨B ⊃ ∆
(∨·6⊃)

S; Γ ⊃ ∆, B

S; Γ ⊃ ∆,A ∧B
(6⊃∧·)

aΓ ⊆ V ∪ {>} ,∆ ⊆ V ∪ {⊥} ,Γ ∩∆ = ∅

Figure 4.4: Deduction rules of CPRC2

The corresponding calculus (Figure 4.4) is equivalent to the calculus CPC
because we just tag the sequents of a refutation with its axiom. Hence
CPRC2 is sound and complete.

Definition 4.14 (count(Γ, A))
Given a multiset of formulas Γ and a formula A we write count(Γ, A) to
denote the number of occurrences of A in Γ.

Definition 4.15 (the calculus CPRC2)
We define the calculus CPRC2 to have the deduction rules given in Figure
4.4.

A Modified Circumscription Calculus

Regarding the circumscription rules we have to extend the sequents in such
a way that the information we obtain from the CPC2 and CPRC2 deductions
can be passed through the deduction rules. We thus extend the standard
circumscription sequent with a use-set D and a set S of sequents representing
the anti-axioms of the proof. Furthermore we need to use labeled formulas
in order to apply use-check.

Definition 4.16 (PCC2-sequent)
A PCC2-sequent is a septuple

〈
S,D,Σ,Γ,∆, P ,R

〉
and is denoted with

S;D; Σ; Γ ⊃P ;R ∆. It consists of two finite multisets Γ ⊂ LN and ∆ ⊂ LN,

three disjunctive sets of labeled variables Σ, P and R, a set of CPC-sequents
S and a use-set D ⊆ labels(Γ ∪∆ ∪ P ∪R).

In order to make use of the additional information gained from the CPC2-
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CPRC2 ` S; Γ↓N,¬P↓N ⊃ p
{S} ; {n} ; Σ,

n
p; Γ ⊃P ∆

(C1)
CPC2 ` D; Σ,Γ ⊃ ∆

∅;D; Σ; Γ ⊃P ;R ∆
(C2)

S;D; Σ,
n
p; Γ ⊃P ;R ∆

S;D; Σ; Γ ⊃
P ,

n
p;R

∆
(C31)a

S;D; Σ; Γ,¬n
p ⊃P ;R ∆

S;D; Σ; Γ ⊃
P ,

n
p;R

∆
(C32)b

S1;D1; Σ,
n
p; Γ ⊃P ;R ∆ S2;D2; Σ; Γ,¬n

p ⊃P ;R ∆

S1 ∪ S2;D1 ∪ D2; Σ; Γ ⊃
P ,

n
p;R

∆
(C3)c

S;D; Σ; Γ,
n
r ⊃P ;R ∆

S;D; Σ; Γ ⊃
P ;R,

n
r

∆
(C41)d

S;D; Σ; Γ,¬n
r ⊃P ;R ∆

S;D; Σ; Γ ⊃
P ;R,

n
r

∆
(C42)e

S1;D1; Σ; Γ,
n
r ⊃P ;R ∆ S2;D2; Σ; Γ,¬n

r ⊃P ;R ∆

S1 ∪ S2;D1 ∪ D2; Σ; Γ ⊃
P ;R,

n
r

∆
(C4)f

an 6∈ D and p 6∈ Γ for all Γ ⊃ ∆ ∈ S.
bn 6∈ D.
cn ∈ D1 or there exists Γ ⊃ ∆ ∈ S1 such that p ∈ Γ, and n ∈ D2.
dn 6∈ D and count(Γ, p) = 1 for all Γ ⊃ ∆ ∈ S.
en 6∈ D and count(∆, p) = 1 for all Γ ⊃ ∆ ∈ S.
fn ∈ D1 or there exists Γ ⊃ ∆ ∈ S1 such that count(Γ, r) > 1, and n ∈ D2 or there

exists Γ ⊃ ∆ ∈ S2 such that count(∆, r) > 1.

Figure 4.5: Circumscription rules of PCC2

and CPRC2-sequents, we modify the circumscription rules to process this
additional information.

Definition 4.17 (the calculus PCC2)
We define the calculus PCC2 to have the deduction rules given in Figure 4.5.

Regarding the non-branching circumscription rules the modifications are
more or less straightforward.

(C1) We initialize the set of anti-axioms with the anti-axiom of the refuta-
tion of the premise and register the label of the principal constraint in
the use-set of the conclusion.

(C2) We take over the use-set D from the CPC2-sequent and set an empty
set of anti-axioms.

Regarding the branching circumscription rules we need — as in the calculus
CPC2 — three rules that replace a branching rule. One for the case where
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both premises need to be proved and two rules for the cases where one of
the premises can be omitted. The conditions to apply the rules are given
in the footnotes of Figure 4.5. Since we use the use-set D to test whether
a variable was used in a classical axiom and whether a minimized variable
was used as principal constraint in a (C1)-rule application, the conditions
are a little bit easier than in the corresponding theorems.

(C31) This rule reflects Theorem 4.8. The conditions to apply the rule are
accordingly. That is n must not be in D (conditions 1 and 3) and there
is no occurrence of p in the antecedent of any element of S (condition
2).

(C32) This rule reflects Theorem 4.9. The conditions to apply the rule are
accordingly. That is n must not be in D.

(C3) This rule reflects the case where use-check can not be applied. As
conditions to apply the rule we thus have that n is in D1 or p occurs
in the antecedent of an element of S1 (negated conditions of (C31))
and that n is in D2 (negated condition of (C32)).

(C41) This rule reflects Theorem 4.10. The conditions to apply the rule
are accordingly. That is n must not be in D (condition 1) and there
is no multiple occurrence of p in the antecedent of any element of S
(condition 2).

(C42) This rule reflects Theorem 4.11. The conditions to apply the rule
are accordingly. That is n must not be in D (condition 1) and there
is no multiple occurrence of p in the succedent of any element of S
(condition 2).

(C4) This rule reflects the case where use-check can not be applied. As
conditions to apply the rule we thus have that n is in D1 or p occurs
manifold in the antecedent of an element of S1 (negated conditions of
(C41)) and that n is in D2 or p occurs manifold in the succedent of an
element of S2 (negated conditions of (C42)).

Soundness and Completeness of PCC2

The calculus PCC2 is sound and complete. Soundness is obtained from the
theorems 4.8–4.11. Since we can convert any proof of PCC into a proof of
PCC2 by labeling the formulas in the circumscription and classical sequents
with an arbitrary value n, completeness is also easily obtained.

Theorem 4.18 (soundness of PCC2)
If S;D; Σ; Γ ⊃P ;R ∆ is deducible in PCC2 then Σ↓N; Γ↓N ⊃P ↓N;R ↓N ∆↓N is
valid.
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Proof. Follows directly from the theorems 4.8–4.11.

Theorem 4.19 (completeness of PCC2)
If Σ; Γ ⊃P ;R ∆ is valid then there exists a set of anti-axioms S such that

S; {n} ;
n
Σ;

n
Γ ⊃ n

P ;
n
R

n
∆ is deducible in PCC2 for any label n.

Proof. Let Σ; Γ ⊃P ;R ∆ be valid and P be a PCC-proof of it. We show our
claim by induction on the number c of circumscription rule applications in
P.

• c = 1:

Then the last rule of P was either (C1) or (C2):

–
CPRC ` Γ,¬P ⊃ p

Σ′, p; Γ ⊃P ∆
(C1)

If S is the anti-axiom of the refutation of Γ,¬P ⊃ p then the
CPRC2-sequent S; Γ,¬P ⊃ p is refutable in CPRC2. Using (C1)

we can deduce {n} ; S;
n

Σ′,
n
p;

n
Γ ⊃ n

P

n
∆ for any label n.

–
CPC ` Σ,Γ ⊃ ∆

Σ; Γ ⊃P ;R ∆
(C2)

Then {n} ;
n
Σ,

n
Γ,⊃

n
∆ is provable in CPC2 for any label n. Using

(C2) we obtain a proof of {n} ; ∅;
n
Σ,

n
p;

n
Γ ⊃ n

P ;
n
R

n
∆.

• c > 1:

Then the last rule of P was either (C3) or (C4). Since both cases are
similar to prove we only show one case:

–
Σ, p; Γ ⊃P ′;R ∆ Σ; Γ,¬p ⊃P ′;R ∆

Σ; Γ ⊃P ′,p;R ∆
(C3) with P = P ′ ∪ {p}.

By induction hypothesis there exist two set of anti-axioms S1 and

S2 such that {n} ;S1;
n
Σ,

n
p;

n
Γ ⊃ n

P ′;
n
R

n
∆ and {n} ;S2;

n
Σ,

n¬p;
n
Γ ⊃ n

P ′;
n
R

n
∆ are provable in PCC2 for any label n. Using (C3) we obtain a

proof of {n} ;S1 ∪ S2;
n
Σ,

n
p;

n
Γ ⊃ n

P ;
n
R

n
∆.
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4.3 Experimental Results

In this section we compare the different proving approaches with different
stages of enhancement on some scalable circumscription problems. The
problems mainly aim to point out the advantages and disadvantages of the
different approaches and enhancements. All problems were computed under
Debian Linux 4.0 on an AMD Sempron 2600+ with 1.5 GB RAM.

To prove whether a formula A is (P ;R)-minimally entailed by Γ we have
investigated three main approaches.

1. Use the CPC prover to prove the sequent CIRC(Γ, P,Q) ⊃ A, where
Q := vars(Γ)\ (P ∪R) (cf. definition 3.12 on page 60). For calculating
the circumscription theory, we apply enhancement 1 from section 4.1.
When referring to this approach we speak of the prover PRc.
As variants we have also looked at the other enhancements given in
Section 4.1. But for the sequent for which we have investigated this
approach, those enhancements were of little use or even lead to worse
results.

2. Do backward application of the deduction rules and prefer to apply
branching rules (cf. Algorithm 3 on page 70). For this approach we
have investigated the prover PR1, implementing no improvements, and
PR1u, implementing use-check.

3. Do backward application of the deduction rules and prefer to apply
non-branching rules (cf. Algorithm 4 on page 71).
For this approach we have taken the general improvements and use-
check into account. To show the impact of the different improvements
we have investigated the provers PR2, implementing no improvements,
PR2g, implementing the general improvements, and PR2gu, imple-
menting the general improvements and use-check.

We also compare our implementation with the prover mm, a prolog imple-
mentation of Niemelä’s tableau calculus for minimal models [22]. Now mm
is restricted to theories consisting of clauses, therefore some problems that
we investigate can not be specified in the same short form for mm. A direct
comparison with mm is thus not possible for those problems.

4.3.1 Problem 1: A Single Minimal Model

We start with a very simple theory that is defined as follows.
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T1(n) := {qi, pi ∨ qi : 1 ≤ i ≤ n}
P1(n) := {pi : 1 ≤ i ≤ n}
Q1(n) := {qi : 1 ≤ i ≤ n}
R1(n) :=∅

An interpretation I is then a model of T1(n) if and only if Q1(n) ⊆ I. The
interpretation of the variables in P1(n) is arbitrary for any model of T1(n).
If we minimizing P1(n) then M := Q1(n) is the only P1(n)-minimal model
of T1(n).

Proving T1(n) ⊃P1(n)

∨
¬P1(n)

The first problem we investigate is that the following formula is P1(n)-
minimally entailed by T1(n).

A1(n) :=
∨
¬P1(n)

This should be rather easy to accomplish since we only have to show that
the negation of an arbitrary minimized variable is valid in the single minimal
model.

When using PRc to prove T1(n) ⊃P1(n) A1(n) we examine that the proving
time grows exponentially with n (cf. Figure 4.6). Proving T1(n+1) ⊃P1(n+1)

A1(n+1) takes about four times as long as proving T1(n) ⊃P1(n) A1(n). This
is quite what could be expected since with each variable that we minimize or
vary, we double the size of the circumscription theory. And by increasing the
problem size by one we add one minimized and one varied variable, hence
the factor of 4.

With the prover PR1 we have slightly better results, but we still have strong
exponential growth. This is also what could be expected since the number of
nodes of the search tree in which we start to apply (C1) and (C2) backwards
is doubled when incrementing the problem size by 1.

The prover PR1u performs better than PRc and PR1 but is far from the
performance of the other provers (see below). The reason for this is that
in the classical axioms the prover chooses different principal formulas and
hence use-check does not work in an optimal way. Still there are a lot of
nodes where use-check can be applied. For n = 50 for example use-check is
successful in 791.421 of 908.346 backward applications of (C4). But this is
not enough to come close to the performance of the other provers.
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Figure 4.6: Proving time of T1(n) ⊃P1(n) A1(n)
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Figure 4.7: Proving time of T1(n) ⊃P1(n) A1(n)
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Figure 4.8: Proving time of T1(n) ⊃P1(n) ¬p1

As already indicated we have a much better behavior if we use a prover that
prefers non-branching to branching rules (cf. Figure 4.7).

This is not really astonishing if we look at the proof that we find with our
algorithms. It is, independently of the problem size, of the following form.

...
CPRC ` T1(n),¬p2, . . . ,¬pn ⊃ p1

p1;T1(n) ⊃p2,...,pn A1(n)
(C1)

...
CPC ` T1(n),¬p1 ⊃ A1(n)

T1(n),¬p ⊃p2,...,pn A1(n)
(C2)

T1(n) ⊃p1,...,pn A1(n)
(C3)

A closer look at the algorithms shows that for this example there are very
few backward applied circumscription rules that fail. For PR2 we have two
backward applications of (C2) that fail until we find a proof. For the other
provers we have, due to the easy general improvements, only one failed
backward application of (C2). Since all provers find the same proof it is not
astonishing that they all show more or less the same performance.

The prover mm also shows a good performance, but it is clearly worse than
the provers that prefer non-branching to branching rules.

Proving T1(n) ⊃P1(n) ¬pk

Instead of proving that the negation of an arbitrary minimized variable is
valid in our minimal model we can also prove the validity of the negation of
a specific minimized variable pk.

For k = 1 the provers PR2, PR2u and PR2gu show the same performance as
for the previous problem (cf. Figure 4.8). The prover PR1u also shows good
results and comes close to the performance of the other provers because of
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Figure 4.9: Proving time of T1(n) ⊃P1(n) ¬pn

optimal use-check (for n = 10.000 use-check is successful in 19.998 of 19.999
branchings). Though the prover mm does not reach the proving times of our
provers it shows a good performance.

For k = n the picture changes completely. While PR1u still performs as
good as for k = 1 the other provers perform definitely worse (cf. Figure
4.9). The prover mm is also stable and thus clearly better than PR2, PR2g
and PR2gu but not as good as PR1u.

The reason for the loss of performance is up to the order in which the
minimized variables are processed. Our provers start by applying (C3) with
principal formula p1 backwards. Then they try to backward apply (C2)
before continuing with (C3) and principal formula p2. We thus have for all
provers considerably more failed (C2) backward applications and this results
in a clear loss of performance.

Compared to the results of the previous problem we now also have differ-
ences in the performance of PR2, PR2u and PR2gu. PR2 is clearly slower
than PR2g which itself performs worse than PR2gu. Looking at the prover
statistics we see that for n = 1.000 the general improvements allow us to
omit 999 backward applications of (C1) and one of (C2). With use-check we
can omit 999 times proving the second premise of (C3) which results that
in comparison to PR2g only 1.001 instead of 2.000 backward applications of
(C2) are processed. Therefore PR2gu is almost twice as fast as PR2g.

4.3.2 Problem 2: Fixed Variables

For the theory of the previous section we obtain the same single minimal
model if we set the non minimized variables to be fixed. However, with fixed
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Figure 4.10: Proving time of T2(n) ⊃P2(n);R2(n) A2(n)

variables we have a lot more of work to do for backward proof search. We
investigate this with the following theory.

T2(n) := {¬¬ri, pi ∨ ri : 1 ≤ i ≤ n}
P2(n) := {pi : 1 ≤ i ≤ n}
Q2(n) :=∅
R2(n) := {ri : 1 ≤ i ≤ n}

Besides the change in the fixed variables there is another minor modification
in our theory, it contains ¬¬ri instead of ri. The reason for this is that
we want to avoid that the following simple improvement in our algorithms
succeeds.

When applying (C4) backwards, we check whether the formula (a pos-
sibly negated fixed variable) that we want to add to our sequent, is
already present. If it is, we simply ignore that fixed variable and pro-
ceed with the next fixed or minimized variable.

The formula we prove is the same as in the first example.

A2(n) :=
∨
¬P2(n)

For the prover PRc it could be expected that the performance is now better
since there are no more varied variables and hence CIRC(T2(n), P2(n), ∅)
should be easier to calculate. Nonetheless we have about the same proving
times as with varied variables (cf. Figure 4.10). A closer look at the behavior
of the prover reveals that our expectation is not wrong. Computing Γ1 :=
CIRC(T1(11), P1(11), Q1(11)) takes about 18 seconds while computing Γ2 :=
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Figure 4.11: Proving time of T2(n) ⊃P2(n);R2(n) A2(n)

CIRC(T2(11), P2(11), ∅)) takes only 5 seconds. It is the complexity of the
resulting circumscription theory that matters. For our example we have∑
{len(A) : A ∈ Γ1} = 56.331 while

∑
{len(A) : A ∈ Γ2} = 2.805.033. The

consequence of this is that proving Γ1 ⊃ A1(n) takes only a split second
while proving Γ2 ⊃ A2(n) takes about 16 seconds.

The prover PR1 shows a worse performance. While for no fixed variables
PR1 could prove the test sequent in less than a minute for n = 22, it now
already breaks the one minute limit for n > 11. This is not astonishing. By
increasing the problem size from n to n+1 we now not only add an additional
minimized but also an additional fixed variable. The consequence of that is
that we no longer double but quadruple the number of nodes in which we
start to backward apply (C1) and (C2).

Compared to PRc and PR1, the prover PR1u now shows the best perfor-
mance. The reason is that it can successfully apply use-check in backwards
application of (C4). For n = 10 for example we can omit proving the sec-
ond branch in 45 of 55 (C4) nodes and backward apply (C3) 11.263 times.
Compared to PR1 which has 1.023 (C4) and 1.047.552 (C3) backwards ap-
plications this is quite an improvement.

The proving times of PR2, PR2g, PR2gu and mm are given in Figure 4.11.
While mm performs best3, the other provers show about the same perfor-
mance. They are clearly faster than PR1u but significantly slower than for
the theory without fixed variables. Obviously use-check is with the chosen
proving strategy not able to detect that having fixed variables is superfluous.
The reason for this can be seen on the proof for n = 1.

3For mm specifying a double negation on the fixed variables was not possible, we thus
operated on the theory T2(n) := {ri, pi ∨ ri : 1 ≤ i ≤ n}.
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CPC ` ¬p, r, r, r ∨ p ⊃ ¬p
¬p, r, r, r ∨ p ⊃ ¬p (C2)

CPRC ` r, r, r ∨ p ⊃ p
p; r, r, r ∨ p ⊃ ¬p (C1)

r, r, r ∨ p ⊃p ¬p
(C3)

CPC ` ¬r, r, r ∨ p ⊃ ¬p
¬r, r, r ∨ p ⊃p ¬p

(C2)

r, r ∨ p ⊃p;r ¬p
(C4)

In the left most branch we end up in a (C3) rule branching to a (C2) and
(C1) rule. In the corresponding anti-axiom, all fixed variables occur twice,
therefore use-check can not succeed for any (C4) rule. Processing the right
premise of a (C4) rule immediately leads to a successful backward application
of (C2). The number of necessary non-branching rules thus linearly grows
with the problem size. Our analysis is confirmed by the statistics of the
prover. For n = 1.000 we have 1 successfully processed (C1) rule and 2.002
processed (C2) rules of which 1.001 fail. There are no second premises that
can be omitted through use-check.

The question arises if it is not possible to filter out those fixed variables which
are known to have the same value in all models of a theory. In order to do
so we would need a preprocessing step which checks for each fixed variable
whether the variable itself or its negation is a classically consequence of the
antecedent of the circumscription sequent. However, the time used for such
a preprocessing step would be more or less equivalent to the additional time
we need when not doing the preprocessing. Hence there was no reason for
us to implement this.

4.3.3 Problem 3: Fixed Variables Revisited

In this section we present an example where use-check is successful in (C4)
applications for provers that prefer non-branching to branching rules. In the
previous example the fixed variables were part of the theory, had thus a mul-
tiple occurrence in the anti-axioms and therefore use-check never succeeded.
In the following theory this is not case.

T3(n) := {r2i−1 ∨ r2i, pi ∨ r2i−1 ∨ r2i : 1 ≤ i ≤ n}
P3(n) := {pi : 1 ≤ i ≤ n}
Q3(n) :=∅
R3(n) := {ri : 1 ≤ i ≤ 2n}

A model M of T3(n) is (P3(n);R3(n))-minimal, if P ∩M = ∅ and r2i−1 ∈M
or r2i ∈M for 1 ≤ i ≤ n. T3(n) has thus 3n (P3(n);R3(n))-minimal models.
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Figure 4.12: Proving time of T3(n) ⊃P3(n);R3(n) A3(n)

The formula we prove is the same as in the first example.

A3(n) :=
∨
¬P3(n)

The results are given in figure 4.12. First of all we see that the proving time
already raises considerably with a small problem size. A cause for this is
that most of the right premises of the (C4) rules are no longer easily provable
with a (C2) applications. Hence the proof tree branches out much heavier.

The provers without use-check behave worst. Although the general improve-
ments are of some use they don’t make a great difference. For n = 12 they
are good to omit 531.441 of 2.657.203 backward applications of (C2), none
of the 531.441 (C1) applications can be omitted.

PR1u performs better. Compared to the 797.160 (C4) rules that PR2 and
PR2g need, it only processes 20.451 such rules and can omit proving the
second premise in 12.261 cases. However, it needs much more (C3) rules.
PR2 and PR2g process 531.441 of them while PR1u has to fully process
1.089.454 out of 6.389.078.

PR2gu performs best. It needs 12.285 (C4) rules and can omit proving the
second branch in 4.095 cases. Of the 4.096 processed (C3) rules it can never
omit proving the second premise.

The prover mm performs better than the prover with no or only general
improvements, is not as good as PR1u and clearly worse than PR2u.

4.3.4 Problem 4: Number of Minimal Models Grow Linearly

With the next theory we are going to investigate use-check in (C3) for a
theory whose number of minimal models linearly grows with the problem
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Figure 4.13: Proving time of T4(n) ⊃P4(n) A4(n)

size.

T4(n) :=
∨
{pi : 1 ≤ i ≤ n}

P4(n) := {pi : 1 ≤ i ≤ n}
Q4(n) :=∅
R4(n) :=∅

The models of T4(n) are exactly those that contain at least one variable
of P4(n). The P4(n)-minimal models of T4(n) are thus those that contain
exactly one p ∈ P4(n), i.e. M1 = {p1} , . . . ,Mn = {pn}.

Proving T4(n) ⊃P4(n) ¬(p1 ∧ pn)

The first problem we investigate is that no minimal model contains p1 and
pn

A4(n) :=¬(p1 ∧ pn)

The results (cf. Figure 4.13) resemble those of proving T1(n) ⊃P1(n) pn and
in spite of the growing number of minimal models we have in fact more or
less the same situation. mm performs best, PR1u is close behind. They both
need less than a second to prove the problem for n = 3000.

Let us look at the prover statistics for n = 1.000. With the general improve-
ments we can halve the number of (C1) rules. PR2 processes 1.998 such rules
while PR2g gets along with 1.000. For PR1u and PR2gu use-check works in
an optimal way for (C3). PR1u can omit proving the second branch in 1.996
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Figure 4.14: Proving time of T4(n) ⊃P4(n) B4(n)

of 1.999 cases, PR2gu can do so in 999 of 1.000 branching rules. The reason
why PR2gu performs worse than PR1u is again to find in its strategy to pre-
fer non-branching rules. For PR2gu this leads to 999 unsuccessful backward
applications of (C2) while in PR1u only one is not successful.

Proving T4(n) ⊃P4(n)

∧
{¬(pi ∧ pj) : 1 ≤ i < j ≤ n}

The next problem we investigate is that at most one minimized variable is
valid in every minimal model.

B4(n) :=
∧
{¬(pi ∧ pj) : 1 ≤ i < j ≤ n}

The results are given in Figure 4.14. All provers preferring non-branching
rules show about the same performance. The reason for this is that with
the chosen proving strategy we can only omit processing about n (C1) and
n (C2) rules. In addition use-check can never successfully be applied. Nev-
ertheless, for n = 50 only 1.275 of the 250 − 1 potential branchings are
processed. This is mainly due to the proving strategy. If the set of con-
straints contains two elements, backward application of (C1) is successful.
We can thus cut off a big part of the search tree such that the number of
processed branching rules only grows quadratically to the problem size.

PR1u performs best and needs about half as long as the other provers. One
of the reasons is that there are only half as many backward applied (C2)
rules than in the other provers (for n = 50 it is 1.225 compared to 2.499).
The other reason is that use-check is again very successful. For n = 50 the
prover encounters 20.875 branchings but can omit in 19.600 cases proving
the second premise. Compared to the other provers there is thus just one
additional branching rule which it has to fully process.
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Figure 4.15: Proving time of T5(n) ⊃P5(n) A5(n)

Since B4(n) is not in disjunctive normal form, it can not be specified this
way in mm. A direct comparison is therefore not possible.

4.3.5 Problem 5: Number of Minimal Models Grow Expo-
nentially

For the next theory we are testing, the number of minimal models exponen-
tially grows with the problem size. The theory is as follows.

T5(n) := {p3i−2 ∨ p3i−1 ∨ p3i : 1 ≤ i ≤ n}
P5(n) := {pi : 1 ≤ i ≤ 3n}
Q5(n) :=∅
R5(n) :=∅

For p3i−2∨p3i−1∨p3i to be valid, either p3i−2, p3i−1 or p3i must be valid. Since
T5(n) contains n formulas of this form, there exist 8n models of T5(n). The
(P5(n))-minimal models are then those, that contain exactly one element of
{p3i−2, p3i−1, p3i} for 1 ≤ i ≤ n. T5(n) thus has 3n minimal models.

The first problem that we are going to investigate is that no minimal model
contains p3i−2 and p3i−1.

A5(n) :=
∧
{¬(p3i−2 ∧ p3i−1) : 1 ≤ i ≤ n}

The results are given in Figure 4.15. We see that proving time increases
very rapidly such that the reasonable range of the problem size that can

102



4.3. EXPERIMENTAL RESULTS

be examined is quite small. This is clearly an effect of the exponentially
growing number of models.

PR2g is about 20 percents faster than PR2 due to the general improvements.
For n = 7 they allow us to reduce the number of failed (C1) applications
from 459.679 to 137.983 and the number of failed (C2) applications from
781.379 to 643.393. Both provers process about 22 percent of the potentially
branchings rules. For n = 7 that are 459.682 of 2.097.151.

The provers with use-check show much better performance. For n = 7 the
prover PR2gu gets along with 11.662 branchings rules and can omit 2.733
times proving the second premise.

PR1u encounters 25.716 such rules and can omit proving the second branch
in 13.309 cases. It thus has to fully process 3.478 more branching rules than
PR2gu. Nevertheless it is faster and this is again to the intermediate non-
branching rules which it does not apply. It therefore processes 5.103 (C1)
and 12’408 (C2) rules while PR2gu encounters 8927 (C1) and 16’785 (C2)
rules.

As for the previous problem we can not make a direct comparison with mm
since B5(n) is not in disjunctive normal form.

Changing Order of Processed Variables

How do the provers behave if we change in this example the order in which
he minimized variables are processed. We can investigate this easily with a
minor change of the formula we prove.

B5(n) :=
∧
{¬(p3i−1 ∧ p3i) : 1 ≤ i ≤ n}

The results are given in Figure 4.16. The provers without use-check are
marginally slower in proving B5(n) because they now process a small per-
centage of additional circumscription rules.

Both provers with use-check show quite a drop of performance. The minor
change in the proven formula causes use-check to be considerable less effec-
tive. For proving B5(n) both provers now process about 11 times as many
(C1), (C2) and (C3) rules as for proving A5(n).

4.3.6 Problem 6: Graph Problem

Dix, Furbach and Niemelä [9] suggest to produce benchmarks from graph
problems. The problems they suggest are given in terms of normal logic
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Figure 4.16: Proving time of T5(n) ⊃P5(n) B5(n)

programs with the stable model semantics. We investigate the Hamiltonian
circuit problem4 specified by them as follows.

As an example where the expressivity of nonmonotonic logics
provides compact representation we consider the Hamiltonian
circuit problem, i.e., the problem of finding a path that visits each
vertex of a given graph exactly once and returns to the starting
vertex. The corresponding logic program is constructed as fol-
lows: (i) a set of atomic fact of the form vertex(v) and arc(v, u,)
corresponding to the vertices and arcs is taken, (ii) the following
rules are included

hcircuit(V1, V2)← arc(V1, V2), not otherroute(V1, V2)

otherroute(V1, V2)← arc(V1, V2), hcircuit(V1, V3), not(V2 = V3)

otherroute(V1, V2)← arc(V1, V2), hcircuit(V3, V2), not(V1 = V3)

reached(V2)← hcircuit(V1, V2), reached(V1)

reached(V2)← hcircuit(V1, V2), initialnode(V1)

noncircuit← vertex(V ), not reached(V )

p← not p, noncircuit

and (iii) one of the vertices v is taken as the starting vertex
(initialnode(v) is added). The resulting program has a stable
model if and only if the graph has a Hamiltonian circuit. Again,
a stable model of the program provides directly a Hamiltonian
circuit by the facts of the form hcircuit(v, u) true in the model
A benchmark for query-evaluation can be obtained by removing
the last rule. Then the graph has a Hamiltonian circuit if and

4A Hamiltonian circuit is a route through a directed graph G that visits every vertex
of G and ends at its starting point.
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only if the resulting program has a stable model not containing
noncircuit.

Their logic program can be directly translated into propositional logic:

Let G := (V,E) be a finite directed graph with V ∈ N and E ⊆ V × V. Our
language then consists of the following variables.

• {hcircuitij : (i, j) ∈ E}: The edge (i, j) is part of our route.

• {otherrouteij : (i, j) ∈ E}: The edge (i, j) is not part of our route.

• {reachedi : i ∈ V}: Vertex i is visited by our route.

• {initialnodei : i ∈ V}: Our route starts at vertex i.

• noncircuit: Our route is not a hamilton circuit.

The problem of a hamilton circuit is then define as follows.

Thc(G) := {¬otherrouteij → hcircuitij : (i, j) ∈ E} (4.1)

∪{hcircuitij → otherrouteik : (i, j), (i, k) ∈ E and j 6= k} (4.2)

∪{hcircuitij → otherroutekj : (i, j), (k, j) ∈ E and i 6= k} (4.3)

∪{hcircuitij ∧ reachedi → reachedj : (i, j) ∈ E} (4.4)

∪{hcircuitij ∧ initialnodei → reachedj : (i, j) ∈ E} (4.5)

∪{¬reachedi → noncircuit : i ∈ V} (4.6)

The intended meaning of the formulas is straight forward. 4.1 expresses that
an edge is either part of our route or not. 4.2 and 4.3 make sure that if (i, j)
is an edge of our route then any other edge with starting point i or end point
j is not part of our route. 4.4 and 4.5 express that if a vertex i is either the
starting point or know to be reached and (i, j) is part of our route, then j is
reached, too. Finally 4.6 says that if not all vertices are reached, then our
route is not a hamilton circuit.

The starting point can be freely chosen for any n ∈ V

Thc(G, n) :=Thc(G) ∪ {initialnoden}

We can use circumscription to verify whether there exists a hamilton circuit
in a given graph G. The variables that are to minimize are

P := {otherrouteij : (i, j) ∈ E} ∪ {reachedi : i ∈ V} .

A graph G then has a Hamiltonian circuit with starting point n if and
only if there exists a P -minimal model M of Thc(G, n) that does not contain
noncircuit. To verify whether there exists a Hamiltonian circuit with starting
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n PR1u PR2 PR2g PR2gu mm

2 0:00 0:00 0:00 0:00 0:00
3 0:21 0:02 0:01 0:01 0:00
4 1:06:36 0:40 0:31 0:15 0:00
5 - 14:30 11:30 4:07 0:00

Table 4.1: Proving time of Thc(G, n) ⊃P (n) ¬noncircuit

point n for a graph G we thus need to verify whether noncircuit is not P -
minimally entailed by Thc(G, n).

We have tested our provers on 2×n grid graphs with initial node on one of its
corners. For n = 2 the routes that correspond to minimal models are given
below. We use the symbols • and · to represent reached and not reached
nodes, respectively. Models that do not contain noncircuit are labeled with
the symbol ◦ in the middle of the graph.

· // ·oo

· ·

· // ·oo

· // •

· // ·oo

• // •oo

·

��

·

��
· ·

OO • ·

��
·

OO

·

OO •

��

·

��
•

OO

·

OO

· // ·

��
· ·oo

• ·

��
·

OO

·oo

• // •

·

OO

·oo

• // •

��
·

OO

•

• // •

��
•

OO

•oo

• // •

��
•

OO

•oo

◦

·

��

·oo

· ·

OO ·

��

·oo

· // •

·

��

•

· // •

OO • •oo

· // •

OO •

��

•oo

• // •

OO •

��

•oo

• // •

OO
◦

The proving times of the different provers are given in Table 4.1.

First of all we notice that mm is amazingly fast. In this case the prover of
the LWB can not compete with it. However, the countermodels that mm
finds to prove that noncircuit is not minimally entailed are not minimal. A
comparison with mm is thus useless.

Let us look at the prover in the LWB. The proving strategy of PR1u is
for this problem clearly disadvantageous. We look at the prover statistics
for n = 4. PR1u encounters over 22 millions branching rules and can omit
proving the second premise in only 20.231 cases. This lead to over 22 millions
processed (C2) rules. Compared to that the 252 processes (C1) rules are of
no consequence.

The other provers perform much better. PR2 and PR2g encounter 2.362
(C3) rules, PR2gu only 1.537. The general improvements allow PR2g to
reduce the number of processed (C1) and (C2) rules from 2.898 to 2.354
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and 4.717 to 2.900, respectively. Use-check allows PR2gu to omit 193 times
proving the second premise. It thus ends up with 1.336 (C1) and 1.789 (C2)
rules.

Compared to the previous problem, the number of processed rules is clearly
smaller. Still we have longer proving times. The main case is that we
no longer have easy CPC proofs or refutations, hence applying (C1) or (C2)
backwards is more time intensive. This points out that reducing the number
of branchings is of great importance.

4.3.7 Conclusions

Eiter and Gottlob [11] have shown that propositional circumscription is ΠP
2 -

complete. For worst-case problems it was thus not to expect that our im-
provements would lead to a major difference in proving times. Nevertheless,
compared to the naive approach we were able to reduce proving time for
selected problems to a certain degree.

The first two examples have shown that the approach to use the classical
prover together with the circumscription theory CIRC(Γ, P,Q) is only rea-
sonable if there are few minimize and fixed variables. The same holds for
PR1.

The prover PR1u leaves an ambivalent mark. For some problems it performs
amazingly fast. However, its performance depends highly on the choice of
the principal formulas in the CPC axioms and also on the order in which
the fixed and minimized variables are processed. The prover can show a
heavy drop in performance if these two factors don’t fit. Unless there is a
way to influence these factors positively, PR1u is in our view not suited as
a stand-alone prover in the LWB. It is however a good candidate if several
proving strategies are executed simultaneously.

The provers that prefer non-branching to branching rules are less influenced
by the order in which the minimized and fixed variables are processed and by
the choice of the principal formulas in the CPC axioms. This robustness is
sometimes paid with a certain overhead of backward applied non-branching
rules. However, we have in such cases only a moderate drop in performance.
Therefore we have chosen PR2gu as the standard prover for circumscription
in the LWB.
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Chapter 5

Propositional Default Logic

In this chapter we give the definition of propositional default logic together
with some well known examples. Then we recall the sequent calculi for
credulous and skeptical propositional default logic developed by Bonatti
and Olivetti [4] and give some examples of sequents derived in those calculi.

For convenience we show the proofs for soundness and completeness of the
calculi according to Bonatti and Olivetti. To show completeness of the
residue calculus we use a slightly different approach.

5.1 Definition of Default Logic

Default logic was introduced 1980 by Reiter [24] to formalize default as-
sumptions. It is based on the notion of a default rule which expresses that
something is true by default, unless it is known to be an exception. The
central definition in default logic is that of an extension of a default theory.
Reiter defines it as a least fixed point. Besides this, he gives an equivalent,
semi-iterative characterization of an extension, which is of more use for our
work.

A propositional default rule resembles a classical deduction rule with the dif-
ference that besides a prerequisite and a consequent it contains an additional
set of justifications which must be met by the end result (the extension) in
order that the default can be applied.

Definition 5.1 (propositional default rule)
We define a propositional default rule δ to be a triple 〈A, {B1, . . . , Bn} , C〉
denoted by

A : B1, . . . , Bn
C

or A : B1, . . . , Bn/C
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where A is called the prerequisite, {B1, . . . , Bn} the justification and C the
consequent of δ.

Given a default rule δ we write pre(δ) for the prerequisite, jus(δ) for the
justification and con(δ) for the consequent of it.

For a set of default rules D we write pre(D), jus(D) and con(D) to denote
the set of prerequisites, justifications and consequents of all elements of D.

We often speak of a default instead of a default rule.

Definition 5.2 (special default rules)
A propositional default with an empty justification is called a residue. Oth-
erwise we call it a proper default . We often omit the colon and write A/B

or
A

B
to denote a residue.

A propositional default δ is called normal if jus(δ) = {con(δ)}, semi-normal
if jus(δ) 
 con(δ), and categorical or prerequisite-free if pre(δ) is empty or
a tautology. For categorical defaults we often omit the prerequisite in the
notation, e.g. : B1, . . . , Bn/C.

That is
A :

B
is a residue,

A : B

B
and

> : A

A
are normal defaults,

A : B ∧ C
B ∨ C

and
> : A↔ B

B → A
are semi-normal defaults, and

: A

B
and

A ∧B → A ∨B : C

D
are categorical or prerequisite-free defaults.
It is clear that every normal default is also semi-normal and that a normal
or semi-normal default can also be categorical.

A default theory consists of a set of propositional formulas and a set of de-
fault rules. Intuitively the two sets represent some incomplete facts about
a world and a set of beliefs. The latter is used to further extend the incom-
plete given facts. The intuitive meaning of an extension of a default theory
is then a maximal extension of the given facts. Formally an extension of a
default theory is defined to be the least fixed point of a certain operator Γ.

Definition 5.3 (default theory, residue theory)
A default theory over a language of propositional logic L(V) is a pair 〈W,D〉
consisting of a set of formulas W ⊆ L called the background theory and a
set of default rules D.

A default theory 〈W,D〉 is called normal , semi-normal or categorical if the
elements of D are normal, semi-normal or categorical, respectively.

We speak of a residue theory if all elements of D are residues.

Definition 5.4 (extension)
Let 〈W,D〉 be a default theory over L(V). For any set of formulas S ⊆ L(V)
let Ψ(S) be the smallest set of formulas satisfying the following properties:
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1. Ψ(S) = Th(Ψ(S)).

2. W ⊆ Ψ(S).

3. If A : B1, . . . , Bn/C ∈ D, A ∈ Ψ(S) and ¬B1 6∈ S, . . . ,¬Bn 6∈ S, then
C ∈ Ψ(S).

A set of formulas E ⊆ L is called an extension of 〈W,D〉 if and only if
E = Ψ(E). We write Ext(W,D) for the set of extensions of 〈W,∆〉.

A default theory 〈W,D〉 may have an arbitrary number of extensions. Un-
fortunately there are default theories that have no extension at all, as an
example below shows. This is due to point 3 of the definition which demands
that the consequent of a default must be in an extension E if E contains
its prerequisites and the justifications are consistent with the E. However,
adding the consequent may invalidate justifications of previously applied
defaults, therefore the existence of an extension is not guaranteed.

Reiter [24] shows that if a default theory contains only normal defaults,
then an extension is guaranteed to exists. He mentions that he knows of no
naturally occurring default which can not be represented in normal form.
Therefore being limited to normal default theories should not be much of a
restriction.

Besides the above definition of an extension, Reiter gives an equivalent, semi-
iterative characterization of a extension. This theorem is interesting from
an algorithmic point of view since it shows us how to compute an extension.

To compute an extension E we start with the background theory E0 and
extend it step by step. In each step we add the consequent of those defaults
to Ei+1 whose prerequisites are entailed by Ei and whose justifications are
all consistent with the end result E.

The computation is called semi-iterative because the justifications must be
consistent with the result E and backtracking is thus necessary.

Theorem 5.5 (extension construction)
A set of formulas E ⊆ L is an extension of the default theory 〈W,D〉 if and
only if E =

⋃∞
i=0Ei, where

E0 := W

Ei+1 := Th(Ei) ∪ {con(δ) : δ ∈ D,pre(δ) ∈ Th(Ei) and E ∩ ¬jus(δ) = ∅}

Proof. We quote the proof as given in the paper of Reiter [24].

We begin by observing that
⋃∞
i=0Ei enjoys the following properties:

D1’. W ⊆
∞⋃
i=0

Ei
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D2’. Th(
∞⋃
i=0

Ei) =
∞⋃
i=0

Ei

D3’. If
A : B1, . . . , Bm

C
∈ D and A ∈

∞⋃
i=0

Ei and ¬B1, . . . ,¬Bn 6∈ E, then

C ∈
∞⋃
i=0

Ei.

Hence by the minimality of Ψ(E), we have Ψ(E) ⊆
∞⋃
i=0

Ei (1).

(⇒) We inductively prove Ei ⊆ E for all i ≥ 0, whence
⋃∞
i=0Ei ⊆ E.

Clearly, since E = Ψ(E), E0 ⊆ E. Assume Ei ⊆ E and consider C ∈ Ei+1.
If C ∈ Th(Ei), then since Ei ⊆ E we have C ∈ Th(E) = E. Otherwise there
is a default A : B1, . . . Bn/C ∈ D, where A ∈ Ei and ¬B1, . . . ,¬Bn 6∈ E.
Then since Ei ⊆ E, A ∈ E = Ψ(E). Hence C ∈ Ψ(E) by point 3 of
Definition 5.4 and since Ψ(E) = E, we have C ∈ E.

Thus
⋃∞
i=0Ei ⊆ E. By (1) and the fact that E = Ψ(E) we have E =⋃∞

i=0Ei.

(⇐) We inductively prove Ei ⊆ Ψ(E) for all i ≥ 0, whence E =
⋃∞
i=0Ei ⊆

Ψ(E). By invoking (1) we will then have E = Ψ(E) whence E is an extension
of 〈W,D〉.

Clearly E0 ⊆ Ψ(E), so assume Ei ⊆ Ψ(E) and consider C ∈ Ei+1. If C ∈
Th(Ei), then since Ei ⊆ Ψ(E) we have C ∈ Th(Ψ(E)) = Ψ(E). Otherwise
there is a default A : B1, . . . Bn/C ∈ D, where A ∈ Ei and ¬B1, . . . ,¬Bn 6∈
E. Then since Ei ⊆ Ψ(E), A ∈ Ψ(E). Hence C ∈ Ψ(E) by point 3 of
Definition 5.4. Hence Ei+1 ⊆ Ψ(E).

Reiter also shows that an extension is the closure of the background theory
together with the consequents of its generating defaults.

Definition 5.6 (generating default)
A default δ is called generating for a set of formulas E ⊆ L if pre(δ) ∈ E
and ¬jus(δ) ∩ E = ∅.

For a set of defaults D we define the set GD(D,E) of generating defaults of
D for E accordingly.

GD(D,E) := {δ ∈ D : δ is generating for E} .

Theorem 5.7 (generating defaults as extension)
Suppose E is an extension of a default theory 〈W,D〉. Then

E = Th(W ∪ con(GD(D,E)))
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For a proof of the theorem we again refer to the paper of Reiter [24].

5.1.1 Default Entailment

As a circumscription theory may have an arbitrary number of minimal mod-
els, a default theory may have an arbitrary number of extensions. In the
original paper about default reasoning Reiter defined a formula A to be valid
in a default theory 〈W,D〉 if A was contained in an extension of 〈W,D〉.
Nowadays two kind of entailment have been established for default logic, a
skeptical and a credulous one.

Definition 5.8 (skeptical and credulous entailment)
A default theory 〈W,D〉 skeptically entails a formula A if A is contained in
every extension of 〈W,D〉.

A default theory 〈W,D〉 credulously entails a formula A if A is contained in
an extension of 〈W,D〉.

5.1.2 Examples

Nixon Diamond

The first example we present is called Nixon Diamond and was introduced
by Reiter and Criscuolo [25]. It is about Richard Nixon1 who is a republic
and a quaker. Now usually quakers are pacifists while republics are not.
The situation is modeled with the following default theory.

〈W,D〉 :=

〈
{q, r} ,

{
r : ¬p
¬p

,
q : p

p

}〉

The background theory contains the facts that Nixon is a quaker (q) and a
republic (r). The default rules express that “if Nixon is a republic then, if
possible, assume that he is not a pacifist” and “if Nixon is a quaker then, if
possible, assume that he is a pacifist”.

It is easy to verify that 〈W,D〉 has two extensions: E1 := Th({q, r, p}) and
E2 := Th({q, r,¬p}). This is because if the first default rule is applied then
this excludes the second from being applied and vice versa.

In skeptical entailment, neither p nor ¬p would be deducible while in the
credulous case both formulas could be derived.

1The original example was not about Richard Nixon but about John.
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Default theory without extension

The second example is about a default theory without extension.

〈W,D〉 :=

〈
∅,
{

: p

¬p
,

}〉
It is easy to see that this theory has no extension. Suppose there exists an
extension E of this theory. Then δ := : p/¬p is either generating for E or
not. Suppose it is, then ¬p ∈ E = Th({¬p}) (Theorem 5.7) but then δ
is not generating for E since ¬jus(δ) ∩ E = {¬p} which is a contradiction
to our supposition. Thus δ is not generating for E. Then GD(D,E) = ∅,
i.e. E = Th(∅) (Theorem 5.7). But then : p/¬p is generating for E, which
contradicts our supposition again.

In skeptical entailment this default theory would entail any formula. In the
credulous case however, for lack of a witness, nothing could be entailed.

5.2 Sequent Calculi for Default Logic

In this section we recall the sequent calculi for propositional default logic
developed by Bonatti and Olivetti [4]. There are two variants, one for skep-
tical and one for credulous default logic. Both variants make use of the so
called propositional residue calculus, a calculus used for residue theories.
We first introduce that calculus and then continue with the definition of the
credulous and skeptical propositional default calculus.

5.2.1 Preliminaries

For residue and default sequents we use the enriched languages Lres and
Ldef.
Definition 5.9 (Lres,Ldef)
We define the language of propositional residue logic Lres to consists of the
language of propositional logic and the set of propositional residues.

Lres := L ∪
{
A

C
: A ∈ L, C ∈ L

}

The language of propositional default logic Ldef is defined accordingly.

Ldef := L ∪
{
A : B1, . . . , Bn

C
: A ∈ L, Bi ∈ L for 1 ≤ i ≤ n,C ∈ L

}
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5.2.2 Propositional Residue Calculus

The calculi for skeptical and credulous default logic presented later are based
on the propositional residue calculus PRC and the propositional residue refu-
tation calculus PRRC2. Residue theories have the property that they have
exactly one extension which can be calculated iteratively.
In this section we first introduce the closure operator on residue theories and
give some useful properties that are needed for the main result. Then we
give two lemmas that show how default rules can be eliminated or simplified
to residues. These lemmas are later used to show soundness and complete-
ness of the default calculi. We close the section with the introduction of
PRC and PRRC and show that both calculi are sound and complete.

Definition 5.10 (Res(D,E))
Given a set of default rules D and a set of formulas E ⊆ L we define

Res(D,E) := {pre(δ)/con(δ) : δ ∈ D and E ∩ ¬jus(δ) = ∅}

The definition Res(D,E) is similar to the one GD(D,E). The differences
are that Res(D,E) returns a set of residues by cutting off the justifications
of the defaults and that the condition that pre(δ) ∈ E must not be met, i.e.
{δ ∈ Res(D,E) : pre(δ) ∈ E} = {pre(δ)/con(δ) : δ ∈ GD(D,E)}.
Definition 5.11 (closure Cl(W,R))
Given a set of formulas W ⊂ L and a set of residues R we define the closure
Cl(W,R) as follows:

Cl(W,R) :=
∞⋃
i=0

Cli(W,R)

where

Cl0(W,R) := W

Cli+1(W,R) := Th(Cli(W,R)) ∪ {C : A/C ∈ R and A ∈ Th(Cli(W,R))} .

The similarity between the definition of the closure operator and the semi-
iterative definition of an extension is obvious. If E is an extension of the
default theory 〈W,D〉 then it is easy to see that Ei = Cli(W,Res(D,E)).
This leads immediately to the following proposition.

Proposition 5.12 (closure as extension)
E is an extension of 〈W,D〉 if and only if E = Cl(W,Res(D,E)).

The proof of this proposition can be found in the paper of Bonatti and
Olivetti [4].

2Olivetti and Bonatti [4] define only one calculus but make use of so called anti-sequents
such that proving and refuting a sequent is done in the same calculus. To us it seemed
more natural to introduce two calculi, one for proving a sequent an one for refuting it.
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The following lemma states some important properties of the closure oper-
ator. More precisely, that it is monotonic with respect to both parameters,
contains the background theory, is closed under classical entailment and
contains the consequent of a residue if it contains its prerequisite.

Lemma 5.13 (monotony of Cl(W,R))
Let 〈W,R〉 and 〈W ′, R′〉 be residue theories. Then the following holds.

1. If W ⊆W ′ and R ⊆ R′, then Cl(W,R) ⊆ Cl(W ′, R′).

2. W ⊆ Cl(W,R).

3. Th(Cl(W,R)) ⊆ Cl(W,R).

4. If A ∈ Cl(W,R ∪ {A/B}), then B ∈ Cl(W,R ∪ {A/B}).

The proof of this lemma can be found in the paper of Bonatti and Olivetti
[4].

The following lemma is of use to show completeness and soundness of PRC
and PRRC. It is according to a lemma in the paper of Bonatti and Olivetti
but has been extended with an additional claim which we use to proof com-
pleteness of PRC and PRRC.

Lemma 5.14 (properties of Cl(W,R))
For a residue theory 〈W,R〉 the following holds.

1. If A ∈ Cl(W,R), then Cl(W,R ∪ {A/B}) = Cl(W ∪ {B} , R).

2. If A 6∈ Cl(W,R), then Cl(W,R ∪ {A/B}) = Cl(W,R).

3. Cl(W,R ∪ {A/B}) ⊆ Cl(W ∪ {B} , R).

4. If A ∈ Cl(W,R ∪ {A/C}) then A ∈ Cl(W,R)

Proof. For the proofs of claim 1, 2 and 3 we refer to the paper of Olivetti
and Bonatti [4]. We only show claim 4.
Suppose A ∈ Cl(W,R ∪ {A/C}) but A 6∈ Cl(W,R). Then according to 2.
Cl(W,R) = Cl(W,R ∪ {A/C}) 63 A which contradicts to our supposition.

The default calculi presented later make use of constraints that are used to
deduce defaults from residues. In the two lemmas that follow we show how
to eliminate default rules or simplify them to residues. These lemmas are
later used to show soundness and completeness of the default calculi.

Lemma 5.15 (eliminating defaults)
Let E ⊆ L. If E ∩ ¬jus(δ) 6= ∅, then E is an extension of 〈W,D ∪ {δ}〉 if
and only if E is an extension of 〈W,D〉.
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Γ ⊃ ∆

Γ, A/C ⊃ ∆
(Res1)

Γ ⊃ A Γ, C ⊃ ∆

Γ, A/C ⊃ ∆
(Res2)

Figure 5.1: Residue rules of PRC

Γ ⊃ ∆ Γ ⊃ A
Γ, A/C ⊃ ∆

(Res3)
Γ, C ⊃ ∆

Γ, A/C ⊃ ∆
(Res4)

Figure 5.2: Residue rules of PRRC

Lemma 5.16 (defaults as residues)
Let E ⊆ L. If E ∩ ¬jus(δ) = ∅, then E is an extension of 〈W,D ∪ {δ}〉 if
and only if E is an extension of 〈W,D ∪ {pre(δ)/con(δ)}〉.

For the proofs of the above lemmas we refer to the paper of Bonatti and
Olivetti [4].

It is well known, that the default theory 〈W, ∅〉 has exactly one extension.
For a residue theory 〈W,R〉 this also holds.

Theorem 5.17 (uniqueness of Cl(W,R))
Let 〈W,R〉 be a residue theory. Then Cl(W,R) is the unique extension of
〈W,R〉.

A proof of this theorem can be found in the paper of Bonatti and Olivetti
[4].

The calculi for skeptical and credulous default calculi rely on provability and
refutability of residue sequents. Their definition is straightforward.

Definition 5.18 (residue sequent)
A residue sequent is a pair 〈Γ,∆〉 denoted by Γ ⊃ ∆, consisting of a finite
multiset Γ ⊆ Lres and a finite multiset of formulas ∆ ⊆ L.

Γ ⊃ ∆ is defined to be valid if
∨

∆ ∈ Cl(Γ ∩ L,Γ \ L). We denote this as
usual with � Γ ⊃ ∆.

Definition 5.19 (PRC)
We define the propositional residue calculus PRC to have the deduction rules
of CPC and those given in Figure 5.1. In both rules we call A/C the principal
residue. The formulas A and C are called active formulas in the premise.

Definition 5.20 (PRRC)
We define the propositional residue refutation calculus PRRC to have the
deduction rules of CPRC and those given in Figure 5.2. In both rules we call
A/C the principal residue. The formulas A and C are called active formulas
in the premise.

We say that a residue sequent is refutable if it is deducible in PRRC.
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Remark 5.21 (ambiguity regarding residue calculi)
In the sequent calculi for credulous and skeptical default logic we rely on
the provability and the refutability of a residue sequent. To distinct this
we write PRC ` Γ ⊃ ∆ and PRRC ` Γ ⊃ ∆ in a deduction rule to indicate
that to apply the rule a residue sequent has to be provable and refutable,
respectively.

Remark 5.22 (CPC and CPRC rules in PRC and PRRC)
The rules of CPC and CPRC in PRC and PRRC, respectively, may only be
applied on pure CPC sequents, i.e. sequents that do not have a residue in its
antecedent.
Consider the valid residue sequent p, p/q ⊃ q. Applying (⊃ ¬) on it results
in the invalid residue sequent p/q ⊃ ¬p, q.

The deduction rules of the two calculi reflect some lemmas defined above.
(Res1) for example reflects the monotonicity of the closure operator while
the rules (Res2), (Res3) and (Res4) reflect Lemma 5.14.1, 5.14.2 and 5.14.3,
respectively.

Theorem 5.23 (soundness of PRC)
Let Γ ⊃ ∆ be a residue sequent.

If Γ ⊃ ∆ is deducible in PRC then it is valid.

Proof. Let W := Γ∩L and R := Γ \ L. We show our claim by induction on
|R|.

|R| = 0: Then the claim follows from the soundness of CPC.

|R| = n + 1: Then R is of the form R′, A/C and the last rule in the proof
was either (Res1) or (Res2).

If the last rule was (Res1) then we know by induction hypothesis that
∨

∆ ∈
Cl(W,R′). By Lemma 5.13.1 we thus obtain

∨
∆ ∈ Cl(W,R).

If the last rule was (Res2) then we know by induction hypothesis that
∨

∆ ∈
Cl(W ∪ {C} , R′) and A ∈ Cl(W,R′). With Lemma 5.14.1 we then know
Cl(W,R′ ∪ {A/C}) = Cl(W ∪ {C} , R′) 3

∨
∆.

Theorem 5.24 (completeness of PRC)
Let W be a finite set of formulas and R be a finite set of residues.

If
∨

∆ ∈ Cl(W,R) then W,R ⊃ ∆ is deducible in PRC.

Proof. We show our claim by induction on |R|.

Suppose
∨

∆ ∈ Cl(W,R).

|R| = 0: Then the claim follows from the completeness of CPC.
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|R| = n+ 1: Let A/C ∈ R and R′ := R \ {A/C}.
We distinguish two cases.

A ∈ Cl(W,R): Then according to Lemma 5.14.4 A ∈ Cl(W,R′). Further-
more by Lemma 5.14.3 we know Cl(W ∪ {C} , R′) ⊇ Cl(W,R). Thus by
induction hypothesis W,R′ ⊃ A and W,C,R′ ⊃ ∆ are deducible in PRC.
With (Res2) we can deduce W,R ⊃ ∆.

A 6∈ Cl(W,R): Then by Lemma 5.13.1 we know A 6∈ Cl(W,R′). With
Lemma 5.14.2 we obtain Cl(W,R′) = Cl(W,R). Thus W,R′ ⊃ ∆ is de-
ducible in PRC by induction hypothesis. Using (Res1) we can derive W,R ⊃
∆.

Theorem 5.25 (soundness of PRRC)
Let Γ ⊃ ∆ be a residue sequent.

If Γ ⊃ ∆ is refutable then it is not valid.

Proof. Let W := Γ∩L and R := Γ \ L. We show our claim by induction on
|R|.

|R| = 0: Then Cl(W,R) = Th(W ) and the claim follows from the soundness
of CPRC.

|R| = n + 1: Then R is of the form R′, A/C and the last rule in the proof
was either (Res3) or (Res4).

If the last rule was (Res3) then we know by induction hypothesis that∨
∆ 6∈ Cl(W,R′) and A 6∈ Cl(W,R′). With Lemma 5.14.2 we then know

Cl(W,R′ ∪ {A/C}) = Cl(W,R′) 63
∨

∆.

If the last rule was (Res4) then we know
∨

∆ 6∈ Cl(W ∪ {C} , R′) by in-
duction hypothesis. With Lemma 5.14.3 we obtain Cl(W,R′ ∪ {A/C}) ⊆
Cl(W ∪ {C} , R′) 63

∨
∆.

Theorem 5.26 (completeness of PRRC)
Let W be a finite set of formulas and R be a finite set of residues.

If
∨

∆ 6∈ Cl(W,R) then W,R ⊃ ∆ is refutable.

Proof. We show our claim by induction on |R|.

Suppose
∨

∆ 6∈ Cl(W,R).

|R| = 0: Then the sequent is refutable since CPRC is complete.

|R| = n+ 1: Let A/C ∈ R and R′ := R \ {A/C}. We distinguish two cases.

A ∈ Cl(W,R): Then according to Lemma 5.14.4 A ∈ Cl(W,R′). With
Lemma 5.14.1 we obtain Cl(W,R) = Cl(W ∪ {C} , R′). Thus W,C,R′ ⊃ ∆
is refutable by induction hypothesis. With (Res4) we can deduce W,R ⊃ ∆.
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A 6∈ Cl(W,R): With Lemma 5.13.1 we then know A 6∈ Cl(W,R′) and by
Lemma 5.14.2 we obtain Cl(W,R′) = Cl(W,R). Therefore W,R′ ⊃ A and
W,R′ ⊃ ∆ are refutable by induction hypothesis. Using (Res3) we can
derive W,R ⊃ ∆.

5.2.3 Credulous Propositional Default Calculus

Now we present the sequent calculus cPDC of Bonatti and Olivetti [4] which
we use for proof search in credulous propositional default logic. The term
“credulous” is according to Definition 5.8 on page 113 which defines a default
theory 〈W,D〉 to credulously entail a formula A if A is contained in at least
one extension of 〈W,D〉.
We start by defining the kind of sequents the calculus makes use of, continue
with the definition of cPDC and close the section with the proofs of soundness
and completeness of cPDC.
The definitions and proofs in this section are all according to Bonatti and
Olivetti [4].

The calculi for propositional default logic make use of constraints on ex-
tension. We use an additional operator to distinguish them from normal
formulas.

Definition 5.27 (constraints)
A constraint is a formula of the form LA or ¬LA, where A ∈ L.

LA is fulfilled by a set of formulas Γ if Γ 
 A. Accordingly ¬LA is fulfilled
by Γ if Γ 1 A.
A set Σ of constraints is fulfilled by Γ if it fulfills all elements of Σ.

Definition 5.28 (default sequent)
A default sequent is a triple 〈Σ,Γ,∆〉 denoted by Σ; Γ ⊃ ∆ where Σ is a
finite multiset of provability constraints, Γ is a finite multiset containing a
default theory (consisting of formulas and default rules) and ∆ is a finite
multiset of formulas.

Definition 5.29 (credulously valid default sequent)
A default sequent Σ; Γ ⊃ ∆ is defined to be credulously valid if there exists
an extension E of Γ such that E fulfills Σ and

∨
∆ ∈ E. We then call E a

witness for Σ; Γ ⊃ ∆.

Definition 5.30 (cPDC)
We define the credulous propositional default calculus cPDC to have the
deduction rules given in Figure 5.3.

The deduction rules (cD1), (cD2) and (cD3) can be regarded as interfacing
rules from residue sequents to default sequents. (cD4) and (cD5) reflect
Lemma 5.16 and 5.15, respectively.
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PRC ` Γ ⊃ ∆

; Γ ⊃ ∆
(cD1)∗

PRC ` Γ ⊃ A Σ; Γ ⊃ ∆

Σ,LA; Γ ⊃ ∆
(cD2)∗

PRRC ` Γ ⊃ A Σ; Γ ⊃ ∆

Σ,¬LA; Γ ⊃ ∆
(cD3)∗

Σ,L¬Bi; Γ ⊃ ∆

Σ; Γ,
A : B1, . . . , Bn

C
⊃ ∆

(cD4)

Σ,¬L¬B1, . . . ,¬L¬Bn; Γ,
A

C
⊃ ∆

Σ; Γ,
A : B1, . . . , Bn

C
⊃ ∆

(cD5)

∗ Γ ⊆ Lres

Figure 5.3: Default deduction rules of cPDC

Theorem 5.31 (soundness of cPDC)
If a default sequent is deducible in cPDC then it is credulously valid.

Proof. Since PRC and PRRC are sound it is sufficient to show for the rules
(cD1) – (cD5) that if all their premises are credulously valid then so is their
conclusion. In the following let W := Γ ∩ L and D := Γ \ L.

(cD1): Suppose that Γ ⊃ ∆ is valid (1) and let E := Cl(W,D) be the unique
extension of Γ. From (1) we know

∨
∆ ∈ E. Hence the conclusion is

credulously valid.

(cD2): Suppose that Γ ⊃ A is valid (1), Σ; Γ ⊃ ∆ is credulously valid (2)
and let E := Cl(W,D) be the unique extension of Γ. From (2) we
know that

∨
∆ ∈ E and that E fulfills Σ. From (1) we furthermore

know that E also fulfills LA. Thus Σ,LA; Γ ⊃ ∆ is valid, too.

(cD3): Suppose that Γ ⊃ A is not valid (1), Σ; Γ ⊃ ∆ is valid (2) and let
E := Cl(W,D) be the unique extension of Γ. From (2) we know that∨

∆ ∈ E and that E fulfills Σ. From (1) we furthermore know that E
also fulfills ¬LA. Thus Σ,¬LA; Γ ⊃ ∆ is credulously valid, too.

(cD4): Suppose Σ,L¬Bi; Γ ⊃ ∆ is credulously valid. Then there exists a
witness E for it. Since E fulfills L¬Bi we know that ¬Bi ∈ E ∩
{¬B1, . . . ,¬Bn}. Thus, by Lemma 5.15, E is also an extension of
Γ∪{A : B1, . . . , Bn/C} and therefore also a witness for the conclusion
Σ; Γ, A : B1, . . . , Bn/C ⊃ ∆.

(cD5): Suppose Σ,¬L¬B1, . . . ,¬L¬Bn; Γ, A/C ⊃ ∆ is credulously valid.
Then there exists a witness E for it. Since E fulfills ¬L¬Bi for all
1 ≤ i ≤ n we know that E ∩ {¬B1, . . . ,¬Bn} = ∅. Thus, by Lemma
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5.16, E is also an extension of Γ ∪ {A : B1, . . . , Bn/C} and therefore
also a witness for the conclusion Σ; Γ, A : B1, . . . , Bn/C ⊃ ∆.

Theorem 5.32 (completeness of cPDC)
If a default sequent Σ; Γ ⊃ ∆ is credulously valid then it is deducible in
cPDC.

Proof. Let W := Γ ∩ L and D := Γ \ L and suppose that Σ;W,D ⊃ ∆ is
credulously valid and E a witness for it. We show our claim by induction on
the number d of proper defaults of D, i.e. d := | {δ : δ ∈ D and jus(δ) 6= ∅} |.

• d = 0: Then E := Cl(W,D).
We proceed by a nested induction on |Σ|.

– |Σ| = 0: Since PRC is complete and
∨

∆ ∈ E we can derive
W,D ⊃ ∆ in PRC. Using (cD1) we can derive ;W,D ⊃ ∆.

– |Σ| > 0: Let σ be an arbitrary element of Σ. If σ is of the form
LA [¬LA] then A ∈ Cl(W,D) [A 6∈ Cl(W,D)]. Thus W,D ⊃ A
is deducible in PRC [PRRC]. Furthermore E is also a witness
for Σ \ {σ} ;W,D ⊃ ∆ which is deducible by (nested) induction
hypothesis. Using (cD2) [(cD3)] we can thus derive Σ;W,D ⊃ ∆.

• d > 0: Let A : B1, . . . , Bn/C be an arbitrary element of D and let
D′ := D \ {A : B1, . . . , Bn/C}. We distinguish two cases:

– E ∩ {B1, . . . , Bn} 6= ∅.
Then E fulfills L¬Bi for some 1 ≤ i ≤ n. Furthermore, by Lemma
5.15, E is an extension of 〈W,D′〉. Thus Σ,L¬Bi;W,D′ ⊃ ∆ is
deducible in cPDC by induction hypothesis. Using (cD4) we can
derive Σ;W,D ⊃ ∆ from it.

– E ∩ {B1, . . . , Bn} = ∅.
Then E fulfills ¬L¬Bi for all 1 ≤ i ≤ n. Furthermore, by Lemma
5.16, E is an extension of 〈W,D′ ∪ {A/C}〉. By induction hypoth-
esis Σ,¬L¬B1, . . . ,¬L¬Bn;W,D′, A/C ⊃ ∆ is thus deducible in
cPDC. Using (cD5) we can derive Σ;W,D ⊃ ∆ from it.

5.2.4 Skeptical Propositional Default Calculus

We now present the sequent calculus sPDC of Bonatti and Olivetti [3] which
we use for proof search in skeptical propositional default logic. The term
“skeptical” is according to Definition 5.8 on page 113 which defines a default
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PRC ` Γ ⊃ ∆

Σ; Γ ⊃ ∆
(sD1)

∗

PRC ` Γ ⊃ A
Σ,¬LA; Γ ⊃ ∆

(sD2)
∗ PRRC ` Γ ⊃ A

Σ,LA; Γ ⊃ ∆
(sD3)

∗

Σ,¬L¬B1, . . . ,¬L¬Bn; Γ,
A

C
⊃ ∆ Σ,L¬B1; Γ ⊃ ∆ . . . Σ,L¬Bn; Γ ⊃ ∆

Σ; Γ,
A : B1, . . . , Bn

C
⊃ ∆

(sD4)

∗ Γ ⊆ Lres

Figure 5.4: Default deduction rules of sPDC

theory 〈W,D〉 to skeptically entail a formula A if A is contained in every
extension of 〈W,D〉.
We first give the definition of the sPDC and then show soundness and com-
pleteness of it.
The definitions and proofs in this section are all according to Bonatti and
Olivetti [3].

Definition 5.33 (skeptically valid default sequent)
A default sequent Σ; Γ ⊃ ∆ is defined to be skeptically valid if

∨
∆ ∈ E for

every extension E of Γ that fulfills Σ.

Definition 5.34 (sPDC)
We define the skeptical propositional default calculus sPDC to have the
deduction rules of PRC, PRRC and those given in Figure 5.4.

The deduction rules (sD1), (sD2) and (sD3) can be regarded as interfacing
rules from residue sequents to default sequents. In contrast to the credulous
case the constraints are not built up element-wise by those rules. On the
one hand we have the rule (sD1) which aims at a default sequent whose
succedent is in the extension of its default theory and thus (for any set of
constraints) valid, on the other hand we have the rules (sD2) and (sD3) that
aim at default sequents whose constraints are not fulfilled by any extension
of their default theory.
The single non-interfacing deduction rule (sD4) reflects Lemmas 5.15 and
Lemma 5.16 together.

Theorem 5.35 (soundness of sPDC)
If a default sequent is deducible in sPDC then it is skeptically valid.

Proof. Since PRC and PRRC are sound it is sufficient to show soundness for
the rules (sD1) – (sD4) that if their premises are (skeptically) valid then so
is their conclusion. In the following let W := Γ ∩ L and D := Γ \ L.
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(sD1): Suppose that Γ ⊃ ∆ is valid (1) and let E := Cl(W,D) be the
unique extension of W,D. From (1) we know

∨
∆ ∈ E. Therefore the

conclusion is skeptically valid, independent of whether Σ is fulfilled by
E or not.

(sD2): Suppose that Γ ⊃ A is valid (1) and let E := Cl(W,D) be the
unique extension of Γ. From (1) we know that A ∈ E. Therefore E
fulfills ¬LA not. Since E is the only extension of Γ we thus know that
Σ,¬LA; Γ ⊃ ∆ is skeptically valid for any set of formulas ∆ ⊆ L.

(sD3): Suppose that Γ ⊃ A is not valid (1) and let E := Cl(W,D) be the
unique extension of Γ. From (1) we know that A 6∈ E. Therefore E
fulfills LA not. Since E is the only extension of Γ we thus know that
Σ,LA; Γ ⊃ ∆ is skeptically valid for any set of formulas ∆ ⊆ L.

(sD4): Suppose that this rule is not sound, that is, there exists a default
sequent Σ; Γ, δ ⊃ ∆ with δ = A : B1, . . . , Bn/C such that

(a) Σ,¬L¬B1, . . . ,¬L¬Bn; Γ, A/C ⊃ ∆ is skeptically valid

(b) Σ,L¬Bi; Γ ⊃ ∆ is skeptically valid for all 1 ≤ i ≤ n.

(c) Σ; Γ, δ ⊃ ∆ is not skeptically valid.

According to (c) there exists an extension E of Γ ∪ {δ} that fulfills Σ
and that does not contain

∨
∆.

Suppose that E fulfills ¬L¬B1, . . . ,¬L¬Bn, then E ∩ ¬jus(δ) = ∅.
Thus, by Lemma 5.16, E is also an extension of Γ ∪ {A/C}. Since E
also fulfills Σ it contains

∨
∆ according to (a), which is a contradiction

to (c).
Thus E fulfills L¬Bi for some 1 ≤ i ≤ n. That is E ∩¬jus(δ) 6= ∅ and
thus, by Lemma 5.16, E is also an extension of Γ. Since E fulfills Σ
and L¬Bi it contains

∨
∆ according to (b), which again contradicts

to (c).

Theorem 5.36 (completeness of sPDC)
If a default sequent Σ; Γ ⊃ ∆ is skeptically valid then it is deducible in
sPDC.

Proof. Suppose that the sequent S := Σ; Γ ⊃ ∆ is skeptically valid and let
W := Γ∩L and D := Γ\L. We show our claim by induction on the number
d of proper defaults in D, i.e. d := | {δ : δ ∈ D and jus(δ) 6= ∅} |.

• d = 0: Then E := Cl(W,D) is the unique extension of Γ. We distin-
guish two cases.
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(a)
∨

∆ ∈ E. Then Γ ⊃ ∆ is deducible in PRC and with (sD1) we
can deduce Σ; Γ ⊃ ∆ from it.

(b)
∨

∆ 6∈ E. Then Γ ⊃ ∆ is not valid. Since Σ; Γ ⊃ ∆ is skeptically
valid there must thus be a constraint σ ∈ Σ which is not fulfilled
by E.
If σ is of the form ¬LA then A must be an element of E, thus
Γ ⊃ A is deducible in PRC and with (sD2) we can deduce Σ; Γ ⊃
∆ from it.
If σ is of the form LA then A is not an element of E, thus Γ ⊃ A
is refutable and with (sD3) we can deduce Σ; Γ ⊃ ∆ from it.

• d = n+ 1: Then Γ is of the form Γ′ ∪ δ with δ = A : B1, . . . , Bn/C.
Since d > 0 the proof of S must end with an instance of (sD4). Now
suppose that S is not deducible in sPDC. Then one of the premises of
the last deduction rule is not deducible in sPDC.
Suppose that S0 := Σ,¬L¬B1, . . . ,¬L¬Bn; Γ′, A/C ⊃ ∆ is not de-
ducible in sPDC and thus by induction hypothesis not skeptically valid.
Therefore there exists an extension E of Γ′ ∪ {A/C} that fulfills the
constraints of S0 but does not contain

∨
∆. Thus E∩¬jus(δ) = ∅ and

so by Lemma 5.16 E is also an extension of Γ′, δ. Since E fulfills Σ,
this contradicts to our supposition that S is skeptically valid.
Hence a premise of the form Si := Σ,L¬Bi; Γ′ ⊃ ∆ is not deducible in
sPDC and thus by induction hypothesis not skeptically valid. There-
fore there exists an extension E of Γ′ that fulfills the constraints of
Si but does not contain

∨
∆. Thus ¬Bi ∈ E ∩ ¬jus(δ) 6= ∅ and so

by Lemma 5.15 E is also an extension of Γ′, δ. Since E fulfills Σ, this
contradicts to our supposition that S is skeptically valid.

5.2.5 Examples

We close this chapter with two example proofs which use the two example
default theories presented in a previous section.

The first proof is about the “Nixon Diamond” example and shows that the
corresponding theory credulously entails that Nixon is not a pacifist. We
have omitted the residue part of the proof. The proof is given in Figure 5.5.

The second proof is about the default theory without extension and shows
that in such a theory an arbitrary set of formulas ∆ is skeptically entailed.
The proof is given in Figure 5.6.
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...

PRC ` q, r, r
¬p
⊃ ¬p

...

PRRC ` q, r, r
¬p
⊃ ¬¬p

...

PRC ` q, r, r
¬p
⊃ ¬p

; q, r,
r

¬p
⊃ ¬p

(cD1)

¬L¬¬p; q, r, r
¬p
⊃ ¬r

(cD3)

L¬p,¬L¬¬p; q, r, r
¬p
⊃ ¬r

(cD2)

L¬p; q, r, r : ¬p
¬p

⊃ ¬p
(cD5)

; q, r,
r : ¬p
¬p

,
q : p

p
⊃ ¬p

(cD4)

Figure 5.5: Proof of “Nixon Diamond”

⊃ >

p ⊃ p(id)

¬p, p ⊃(⊃¬)

¬p ⊃ ¬p(⊃¬)

PRC ` >/¬p ⊃ ¬p
(Res2)

¬L¬p;>/¬p ⊃ ∆
(sD2)

p ⊃(aax)

PRRC `⊃ ¬p
(6⊃¬)

L¬p;⊃ ∆
(sD3)

;> : p/¬p ⊃ ∆
(sD4)

Figure 5.6: Proof in theory without extension
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Chapter 6

Proof Search for Residue
Sequents

In this chapter we investigate two techniques for proving a residue sequent
W,R ⊃ A.
We first inspect backward proof in the residue calculus from Bonatti and
Olivetti [4]. For this prover we point out the redundancies and show how to
use them to cut down the search tree. In a further step we develop use-check
for the prover and present a calculus which implements it.
Then we discuss the second approach that relies on calculating the partial
closure by calculating the minimal subsets of R whose consequents have to
be added to W in order to classically prove A. A further result of the second
approach is a prover that calculates the closure of a residue theory to prove
a residue sequent.
We close the chapter with some experimental results to compare the different
approaches and optimizations.

6.1 Backward Proof Search

In this section we investigate a prover that verifies the validity of a residue
sequent by backward applying the residue rules. We start with a simple
prover, show a general improvement that makes use of redundancies in the
search tree and close with introducing use-check for backward proof search.

Although the calculi for default logic contain the rules of the calculi PRC
and PRRC, we focus in this chapter only on the calculus PRC. We do so
because PRC and PRRC are dual to each other. From an algorithmic point
of view it is thus equivalent whether we fail to find a proof of a residue
sequent or whether we find a refutation of it. The statements given for the
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calculus PRC can thus also be formulated in a dual sense for the calculus
PRRC.

6.1.1 A Simple Prover

The calculus PRC contains only two rules to conclude residues and both
rules conclude sequents of the same kind. It is thus not astonishing that the
rules of PRC are not invertible.

Remark 6.1 (invertibility)
(Res1) and (Res2) are not invertible.

Consider the residue sequent p, p/q, r/s ⊃ q. It is easy to see that this se-
quent is valid. However, neither p, r/s ⊃ q (premise of (Res1) with principal
residue p/q) nor p, p/q ⊃ r (left premise of (Res2) with principal residue
r/s) are valid.

When backward applying (Res2) then the antecedent of the left premise is
replaced with the precondition of the principal residue. It is hence nearby
to assume that the order in which we process the residues is of relevance.
Luckily this is not the case.

Proposition 6.2 (irrelevance of processing order)
Let W,R,A/C ⊃ ∆ be a residue sequent.
If �W,R,A/C ⊃ ∆ then �W,R ⊃ ∆, or �W,R ⊃ A and �W,C,R ⊃ ∆.

The proof of this proposition follows directly from the induction step in the
proof of Theorem 5.24.

Consider the residue sequent p1,
p1

p2
,
p2

p3
⊃ p1 ∧ p3. For this sequent the

proposition implies that there exist two proofs. One that concludes in its last
deduction rule the residue p1/p2 and one that concludes p2/p3 (cf. Figure
6.1).

Knowing that the rules (Res1) and (Res2) are not invertible but that the
order in which we process the residues is not important, we can give a simple
proof search algorithm (see Algorithm 6).

6.1.2 General Improvement

During proof search we gain information about the provability of certain
nodes in the search tree. The general improvement discussed in this sec-
tion aims at deducing from this information the provability of other nodes.
Thereby we do not use information about the sequent that we try to prove
but only structural information of the search tree.
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p1 ⊃ p1

p1,
p2

p3
⊃ p1

(Res1)
p1,p2 ⊃ p2

p1, p2, p3 ⊃ p1 p1, p2,p3 ⊃ p3

p1, p2, p3 ⊃ p1 ∧ p3
(⊃∧)

p1, p2,
p2

p3
⊃ p1 ∧ p3

(Res2)

p1,
p1

p2
,
p2

p3
⊃ p1 ∧ p3

(Res2)

p1 ⊃ p1 p1,p2 ⊃ p2

p1,
p1

p2
⊃ p2

(Res2)

p1, p3 ⊃ p1 p1,p3 ⊃ p3

p1, p3 ⊃ p1 ∧ p3
(⊃∧)

p1,
p1

p2
, p3 ⊃ p1 ∧ p3

(Res1)

p1,
p1

p2
,
p2

p3
⊃ p1 ∧ p3

(Res2)

Figure 6.1: irrelevance of processing order

Algorithm 6 Simple proof search for residue sequents

1: function prcProvable(W,R ⊃ ∆)
2: if R = ∅ then
3: success := cpcProvable(W ⊃ ∆)
4: else
5: choose δ ∈ R and let R′ := R \ {δ}
6: success := prcProvable(W,R′ ⊃ ∆)
7: if not success then
8: success := prcProvable(W,R′ ⊃ pre(δ)) and
9: prcProvable(W, con(δ), R′ ⊃ ∆)

10: return success
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W,R ⊃ ∆

W,R,
A2

C2
⊃ ∆

s
44

r //

l

**

W,R,C2 ⊃ ∆

W,R ⊃ A2

W,R,C1 ⊃ ∆

W,R,
A1

C1
,
A2

C2
⊃ ∆

s

<<

r //

l

""

W,R,C1,
A2

C2
⊃ ∆

s 44

r //

l
**

W,R,C1, C2 ⊃ ∆

W,R,C1 ⊃ A2

W,R ⊃ A1

W,R,
A2

C2
⊃ A1

s
44

r //

l

**

W,R,C2 ⊃ A1

W,R ⊃ A2

Figure 6.2: Sequents encountered in backward proof search
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To discuss our approach we have depicted the sequents we encounter in proof
search in Figure 6.2. Each arrow represents the processing of a premise of a
residue rule. The labels s (as skip), l and r stand for the premise of (Res1),
the left premise of (Res2) and the right premise of (Res2), respectively.
The dotted lines connect those nodes of the same depth that have common
succedents and whose antecedents are in a subset relationship.

Now the improvement we discuss is based on the monotonicity of residue
theories.

Definition 6.3 (subsequent, supersequent)
Let S1 := Γ1 ⊃ ∆1 and S2 := Γ2 ⊃ ∆2 be two residue sequents. Then S1 is
a subsequent of S2 and S2 is a supersequent of S1 if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2.

Proposition 6.4 (monotonicity)
Let Γ ⊃ ∆ be a residue sequent and Γ′ ⊃ ∆′ be a subsequent of it.

If � Γ′ ⊃ ∆′ then � Γ ⊃ ∆

Proof. The claim follows directly from Lemma 5.13.1 on page 116.

Suppose that S1 is a subsequent of S2. From the previous proposition we
then know that if S1 is provable, then S2 is provable, too. Vice versa we
know that if S2 is refutable then so is S1. The dotted lines in Figure 6.2
thus depict situations where monotonicity can be of use to omit proving a
sequent.

Two Search Strategies

The information that we gain about provable or refutable sequents during
proof search can be used to omit proving other sequents. In what way this
can be done depends on the proof search strategy. We illustrate this on two
examples.

1. Consider the algorithm where we prioritize (Res1) to (Res2) and pro-
cess the right premise of (Res2) before the left one. Then reading
the sequents of Figure 6.2 top-down gives us the order in which we
encounter them during proof search.

Suppose that proving W,R ⊃ ∆ (path (s, s)) fails, proving W,R,C2 ⊃
∆ (path (s, r)) succeeds and proving W,R ⊃ A2 (path (s, l)) fails.
Then W,R,A2/C2 ⊃ ∆ is not provable and we backtrack at the root
of the search tree.
If then proving W,R,C1 ⊃ ∆ (path (r, s)) fails we continue with the
sequent W,R,C1, C2 ⊃ ∆ (path (r, r)) of which the sequent at path
(s, r) is a subsequent. Since this subsequent is known to be valid, we
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know that W,R,C1, C2 ⊃ ∆ is valid, too. Hence proving it can be
omitted and we continue with sequent W,R,C1 ⊃ A2 (path (r, l)).

It is easy to see that with this proof search strategy only information
about provable sequents are of use to omit proving other sequents.

2. Consider the algorithm where we prioritize (Res2) to (Res1) and pro-
cess the right premise of (Res2) before the left one. Then reading the
sequents of Figure 6.2 middle-down-up gives us the order in which we
encounter them during proof search.
Suppose that proving W,R,C1, C2 ⊃ ∆ (path (r, r)) fails. Since the
sequent at path (r, s) is a subsequent of the one at path (r, r) it is
known to be refutable, too. Hence W,R,C1, A2/C2 ⊃ ∆ (path (r)) is
refutable. We thus backtrack and continue with the sequent at path
(s). Now the sequent there is a subsequent of the one at path (r).
Hence proving it can be omitted since it is known to be refutable, too.

It is easy to see that with this proof search strategy only information
about refutable sequents are of use to omit proving other sequents.

Considering Other Search Strategies

Of course we are not bound to these two kind of proof search strategies. An
obvious variation for example is to process the left premise of (Res2) before
the right one.

Then there has to be no predetermined priority of what rule is firstly applied
backwards. The choice which rule is to prioritize can for example be made
on additional, possibly heuristic, information. Doing so could lead to an
algorithm in which information about provable as well as refutable sequents
might be of use to omit proving other sequents.

Furthermore the order in which the residues are processed must not be pre-
determined. In the two search strategies given above, we implicitly assume
otherwise, but according to Algorithm 6 (line 5) this is not mandatory. As-
sume that when trying to prove the sequent W, δ,R ⊃ ∆ we chose δ as
principal residue and backward apply (Res1) first. We choose an arbitrary
principal residue δs ∈ R when trying to prove the premise W,R ⊃ ∆. If
later backtracking is necessary, we must backward apply (Res2) with prin-
cipal residue δ. However, we may choose different principal residues δl ∈ R
and δr ∈ R when proving the left and right premise. This choice may also
be based on additional, possibly heuristic, information.
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Implementation of General Improvement

In our implementation we use a predetermined order to process the residues.
In this section we thus only describe that special case. However, adapting
it to the general case is possible and easy to implement.

We have seen that during proof search we may encounter sequents that
are in a subsequent relation to previously processed sequents. If we have a
predetermined order in which the residues are processed then we can decide
solely on the paths of two nodes in a proof search tree, whether such a
relation exists between the two sequents of that nodes.

A path to a node is formally defined as a vector of the letters s, l and
r, indicating the premise of the rule that was chosen at the corresponding
branching depth (cf. Figure 6.2).

Definition 6.5 (PRC path)
A vector ~p ∈ {s, l, r}n with n ∈ N is called a PRC path. We denote it with
~p := (p1, p2, . . . , pn).

We write len(~p) to denote the length of ~p and ~p[i] to denote the i’th element
of ~p, where 1 ≤ i ≤ len(p).

For two paths ~p := (p1, p2, . . . , pn) and ~q := (q1, q2, . . . , qm) we write ~p ◦ ~q
to denote their concatenation (p1, p2, . . . , pn, q1, q2, . . . , qm).

In our implementation we use a vector ~R of residues that we process from its
first to its last element. This way we have a given order in which the residues
are processed. ~R corresponds to a set R of residues, i.e. len(~R) = |R| and

R =
{
~R[i] : 1 ≤ i ≤ len(~R)

}
. Our algorithms thus operate over sequents of

the form W, ~R ⊃ ∆. In the following we use ~R in a sequent to indicate a
predetermined order in which the residues are processed.

During proof search of a residue sequent S the sequent at a given path ~p of
the search tree can be computed from S and ~p. This is done according to
three cases.

1. When processing the premise of (Res1) (an s in ~p), we remove the
principal residue.

2. When processing the left premise of (Res2) (an l in ~p), we remove the
principal residue and set its prerequisite as the new succedent.

3. When processing the right premise of (Res2) (an r in ~p), we replace
the principal residue with its consequent.

The following definition is used to compute the sequent at a given path from
the sequent that is to prove.
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Definition 6.6 (ant(~p), suc(~p))
For a PRC path ~p := (p1, . . . , pn) we define:

ant(~p) := {i : 1 ≤ i ≤ len(~p) and p[i] = r}
suc(~p) := max({i : 1 ≤ i ≤ len(~p) and p[i] = l} ∪ {0})

The function ant(~p) returns for a path ~p the indices of those elements in ~R,
whose consequent replace the corresponding residue in S.

The function suc(~p) serves to calculate the succedent. If it is equal to 0 then
it indicates that the succedent is the same as in S. Otherwise it gives us the
index of that element in ~R, whose prerequisite forms the succedent.

We use ant(~p) and suc(~p) to calculate from a path ~p in the search tree of
the proof of W, ~R ⊃ ∆ the sequent Γ~p(W, ~R) ⊃ ∆~p(∆) encountered at ~p.

Definition 6.7 (Γ~p(W, ~R), ∆~p(∆, ~R))

Let W and ∆ be sets of formulas, ~R a vector of residues and ~p a PRC path
with len(~p) ≤ len(~R). Then we define the multisets Γ~p(W, ~R) ⊆ Lres and

∆~p(∆, ~R) ⊆ L as follows.

Γ~p(W, ~R) := W ∪
{

con(~R[i]) : i ∈ ant(~p)
}
∪
{
~R[i] : len(~p) < i ≤ len(~R)

}
∆~p(∆, ~R) :=

{
∆ if suc(~p) = 0

pre(~R[suc(~p)]) otherwise

This definition leads to a relation on paths which reflects the subsequent
relation of the sequents in the search tree.

Definition 6.8 (~p ≤ ~q)
For two PRC paths ~p and ~q we define the relation ≤ as follows:

~p ≤ ~q iff ant(~p) ⊆ ant(~q), suc(~p) = suc(~q) and len(~p) ≥ len(~q).

Now if for two paths ~p and ~q we have ~p ≤ ~q then we know that the sequent
at ~p is a subsequent of the one at ~q.

Theorem 6.9 (~p ≤ ~q implies a subsequent relation)
Let W and ∆ be sets of formulas, ~R be a vector of residues and ~p and ~q be
PRC paths with len(~p) ≤ len(~R) and len(~q) ≤ len(~R).

If ~p ≤ ~q then Γ~p(W, ~R) ⊃ ∆~p(∆, ~R) is a subsequent of Γ~q(W, ~R) ⊃ ∆~q(∆, ~R).

Proof. Let ~p ≤ ~q (1). Then we know that ant(~p) ⊂ ant(~q) and len(~p) ≥
len(~q), hence Γ~p(W, ~R) ⊆ Γ~q(W, ~R). From (1) we also know that suc(~p) =

suc(~q), hence ∆~p(W, ~R) = ∆~q(W, ~R).
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The inverse of this theorem is not valid. The following situation reflects such
a case in which the sequents at the paths (s) and (l) are in a subsequent
relation but we neither have (s) ≤ (l) nor (l) ≤ (s).

W ⊃ A

W,
A

C
⊃ A

s
66

r //

l
((

W,C ⊃ A

W ⊃ A

This example raises the question why we use only structural information for
the general improvement. Using the sequents themselves instead of their
paths could indeed lead to more situations where proving a sequent can be
omitted. However, there are some points in favor of using paths. First,
to compare sequents efficiently, we would need to sort them, e.g. with the
help of sorted containers. Now inserting an element into a sorted container
is more time-consuming than updating a path. Second, comparing two se-
quents means comparing their formulas, which is also more time-consuming
than comparing two paths. Third, instead of storing the paths of the nodes
that are known to be provable or refutable we would have to perform the
more complex task to store the corresponding sequents. All in all these were
good arguments to use the solution presented above.

Algorithm 7 Proof search with general improvement for residue sequents

1: function prcProvableG(W, ~R ⊃ ∆,~p, pos)
2: if ~q ≤ ~p for some ~q ∈ pos then
3: return true
4: else if len(~R) = len(~p) then
5: success := cpcProvable(Γ~p(W, ~R) ⊃ ∆~p(∆, ~R))
6: else
7: success := prcProvableG(W, ~R ⊃ ∆,~p ◦ (s) , pos)
8: if not success then
9: success := prcProvableG(W, ~R ⊃ ∆,~p ◦ (r) , pos) and

10: prcProvableG(W, ~R ⊃ ∆,~p ◦ (l) , pos)

11: if success then
12: pos := pos ∪ {~p}
13: return success

The pseudocode of the first search strategy above is given in Algorithm
7. As already mentioned, only information about provable sequents are of
importance for this search strategy. The proving function therefore takes
as arguments the sequent W, ~R ⊃ ∆ that is to prove, the current position
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~p in the search tree and a set pos of paths whose sequents are know to be
provable. Path ~p is passed by value and pos is passed by reference.

On line 2 we check whether the sequent at the given position is know to be
provable. If it is, we immediately return with success. Otherwise we continue
with the proof search process. If there are no residues left in the sequent
(line 4) we call the CPC prover (line 5). Otherwise we backward apply the
non-branching rule (line 7) and if this does not succeed the branching rule
(lines 9+10). If the sequent at the current path ~p is provable, we add ~p to
the set pos of provable paths (lines 11–12).

6.1.3 Use-Check

In this section we present use-check for the calculus PRC. As in use-check
for CPC we take advantage of the fact that the fragment of default logic
restricted to residues is monotonic (see Proposition 6.4 on page 131). Be-
cause of that, use-check for PRC turns out to be more or less equivalent to
use-check for CPC.

We start with an introductory example to discuss some aspects of our ap-
proach. Then we present a modified calculus with inbuilt use-check which
is based on labeled residue sequents. We close this section by pointing out
how to combine use-check and the general improvement.

Introductory Example

Use-check for the residue sequent calculus concerns rule (Res2) and is similar
to use-check for the classical calculus. Suppose that in our proof search there
is a backward rule application of (Res2).

...
W,R ⊃ A

...
W,R,C ⊃ ∆

W,R,A/C ⊃ ∆
(Res2)

Then there are two cases where use-check can successfully be applied.

1. The proof search procedure is successful in proving the left premise.
If analyzing this proof reveals that already W,R ⊃ is valid, then by
monotonicity we know that the conclusion W,R,A/C ⊃ ∆ is valid.
Hence proving the right premise can be omitted.

2. The proof search procedure is successful in proving the right premise.
If analyzing this proof reveals that already W,R ⊃ ∆ is valid, then
by monotonicity we know that the conclusion W,R,A/C ⊃ ∆ is valid.
Hence proving the left premise can be omitted.
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If use-check is successful in the first case, i.e. if W,R ⊃ is known to be
valid, then the validity of the non-proven premise W,R,C ⊃ ∆ follows by
monotonicity.
We have a different situation in the second case. If use-check is successful
in the right premise, i.e. if W,R ⊃ ∆ is known to be valid, then we can not
conclude the validity of the left premise W,R ⊃ A from it. Nevertheless
we know that the conclusion is valid. This case reflects the situation where
(Res1) instead of (Res2) should be used.

To detect whether use-check can be applied, we follow the same approach
as in classical logic. Regarding the first case this means that use-check is
applicable if no formula originating in A is used as principal formula in an
axiom.

Consider the following proof fragment.

...
Γ, p, p→ q ⊃ A

Γ,p, s ⊃ p, q
(id)

Γ, p,q, s ⊃ q
(id)

Γ, p,p→ q, s ⊃ q
(→⊃)

Γ, p, p→ q,A/s ⊃ q
(Res2)

The variable s is not used in the axioms of the proof of the right premise. In
this simple example we can just remove s from all of its sequents and obtain
like this a proof of Γ, p, p → q ⊃ q. Using (Res1) we then obtain a proof of
Γ, p, p→ q, A/s ⊃ q.

Γ,p ⊃ p, q
(id)

Γ, p,q ⊃ q
(id)

Γ, p,p→ q ⊃ q
(→⊃)

Γ, p, p→ q,A/s ⊃ q
(Res1)

A More Efficient Residue Calculus

Because of multiple formula occurrences it is not always clear from which
formula or default rule a principal formula in an axiom originates. This
problem is already known from classical logic (see page 29). To avoid that
ambiguity we use the same approach as in classical logic. That is we put
labels on residues and formulas and store the information about relevant
formulas and residues in a set of labels. Like this, use-check for the residue
calculus can be implemented analogous to classical logic (see page 31).

Since the mechanism of use-check for the residue calculus is the same as
for the classical propositional calculus, we do without further explanations
and proceed with the necessary definitions for a residue calculus with inbuilt
use-check.
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Definition 6.10 (labeled default rule)
A labeled default rule is a pair 〈δ, n〉 consisting of a default rule δ and a

natural number n ∈ N, called the label. It is denoted by
n
δ.

A labeled default rule with an empty justification is called a labeled residue.

We write LresN to denote the set of labeled formulas and labeled residues and

LdefN to denote the set of labeled formulas and labeled defaults.

To write down a labeled default with its prerequisite, justifications and con-
sequent we use the same notation as for default rules but with a label on
top of the colon separating the prerequisite from the justifications.

A
1
: B1, B2

C
A

1
: B1, B2/C

2
: B1, B2

C

2
: B1, B2/C

A
3
:

C
A

3
:/C

To denote sets or multisets of labeled defaults we write R and D. For sets
or multisets of labeled formulas and defaults we use the symbol Γ.

Definition 6.11 (labels(Γ), Γ↓D)

Let Γ ⊆ LdefN be a set of multiset of labeled formulas and defaults. We define
the set labels(Γ) of labels of Γ as:

labels(Γ) := labels(Γ ∩ LN) ∪
{

n :
n
δ ∈ Γ \ LN for some n ∈ N

}
.

Furthermore we define the set Γ↓D ⊆ Ldef as

Γ↓D := (Γ ∩ LN)↓D ∪
{
δ : there exists n ∈ D such that

n
δ ∈ Γ \ LN

}
.

Definition 6.12 (labeled default sequent)
A labeled default sequent is a triple

〈
D,Γ,∆

〉
consisting of a finite multiset

Γ ⊂ LdefN , a finite multiset ∆ ⊂ LN and a use-set D ⊆ labels(Γ ∪∆).

We write D; Γ ⊃ ∆ to denote a labeled default sequent.

D; Γ ⊃ ∆ is called a labeled residue sequent if Γ is a finite multiset of LresN .

Definition 6.13 (valid labeled default sequent)
A labeled default sequent D; Γ ⊃ ∆ is defined to be valid if Γ↓D ⊃ ∆↓D is
valid. We denote this as usual with � D; Γ ⊃ ∆.

Definition 6.14 (the calculus PRC2)
We define the residue calculus PRC2 to have the deduction rules of CPC2
and those given in Figure 6.3.

The motivation of the four residue rules of PRC2 is as follows.
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D; Γ ⊃ ∆

D; Γ,
A

m
:

C
⊃ ∆

(Res1)
D; Γ ⊃

n
A

D; Γ,
A

m
:

C
⊃ ∆

(Res2p)a
D; Γ,

n
C ⊃ ∆

D; Γ,
A

m
:

C
⊃ ∆

(Res2c)a

D1,n; Γ ⊃
n
A D2,n; Γ,

n
C ⊃ ∆

D1,D2,m,n∗; Γ,
A

m
:

C
⊃ ∆

(Res2)b

a n 6∈ D
b n 6∈ D1 ∪ D2
∗ if n ∈ labels(Γ ∪∆), otherwise without n

Figure 6.3: Residue rules of PRC2

• (Res1): This rule is equivalent to the rule of the same name of PRC.

• (Res2p) and (Res2c): these rules reflect successful use-checks in the
left and right premise of (Res2), respectively. The condition to apply
these rules is therefore that the label n of the active formula in the
premise must not occur in the use-set D.

• (Res2): This rule reflects the case where use-check is not successful. In
both its premises the label n of the active formula in the premise occurs
in the corresponding use-set. To form the use-set of the conclusion
we merge the two use-sets of the premises and add the label of the
principal formula. The label n of the active formulas in the premises
is only added to the use-set of the conclusion if it occurs on other
formulas in the premises.

Remark 6.15 (CPC2 rules in PRC2)
The rules of CPC2 in PRC2 may only be applied on pure CPC2-sequents, i.e.
on sequents that do not have a labeled residue in its antecedent.

Theorem 6.16 (soundness of PRC2)
If a labeled residue sequent D; Γ ⊃ ∆ is deducible in PRC2 then is it valid.

Proof. Let D; Γ ⊃ ∆ be a labeled residue sequent deduced in PRC2, W the
labeled formulas of Γ and R the labeled residues of Γ.
We show our claim by induction on the number r of residues in Γ.

r = 0: Then the validity of D; Γ ⊃ ∆ follows from the soundness of CPC2.

r = k + 1: Then Γ is of the form Γ
′
, A

m
: /C. We distinguish on the last rule

in the proof.
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• D; Γ
′ ⊃ ∆

D; Γ
′
, A

m
: /C ⊃ ∆

(Res1)

Then D; Γ
′ ⊃ ∆ is valid by induction hypothesis and we thus

know by definition that Γ
′↓D ⊃ ∆↓D is valid. From Proposition

6.4 we then know that Γ
′↓D, A/C ⊃ ∆↓D is valid. Hence, inde-

pendent of whether m is an element of D or not, we know that
the conclusion D; Γ

′
, A

m
: /C ⊃ ∆ is valid.

• D; Γ
′ ⊃

n
A

D; Γ
′
,
A

m
:

C
⊃ ∆

(Res2p), with n 6∈ D

Since n 6∈ D we know � Γ
′↓D ⊃. With Proposition 6.4 we obtain

� Γ
′↓D ⊃ ∆↓D and � Γ

′↓D, A/C ⊃ ∆↓D. Hence, independent of
whether m is an element of D or not, we know that the conclusion
D; Γ

′
, A

m
: /C ⊃ ∆ is valid.

• D; Γ
′
,

n
C ⊃ ∆

D; Γ
′
,
A

m
:

C
⊃ ∆

(Res2c), with n 6∈ D

Analogous to the previous case.

• D1, n; Γ
′ ⊃

n
A D2,n; Γ

′
,

n
C ⊃ ∆

D1,D2,m, n∗; Γ
′
, A

m
: /C ⊃ ∆

(Res2), cf. Figure 6.3 for requirements

Then D1,n; Γ
′ ⊃

n
A and D2, n; Γ

′
,

n
C ⊃ ∆ are valid by induction

hypothesis. By definition we thus know

� Γ
′↓D1∪{n} ⊃ A (1) and � Γ

′↓D2∪{n}, C ⊃ ∆↓D2∪{n} (2).

Let D :=

{
D1 ∪ D2 ∪ {m, n} if n ∈ labels(Γ

′ ∪∆) ,

D1 ∪ D2 ∪ {m} if n 6∈ labels(Γ
′ ∪∆) .

From (1) and (2) we obtain with Proposition 6.4 that Γ
′↓D ⊃ A

and Γ
′↓D, C ⊃ ∆↓D are valid, hence Γ

′↓D, A/C ⊃ ∆↓D is valid

and therefore D; Γ
′
, A

m
: /C ⊃ ∆ is valid, too.

Theorem 6.17 (completeness of PRC2)
Let D; Γ ⊃ ∆ be a labeled residue sequent.

If D; Γ ⊃ ∆ is valid, then it is deducible in PRC2.
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Proof. Let D; Γ ⊃ ∆ be a valid labeled residue sequent, W the labeled
formulas of Γ and R the labeled residues of Γ.
We show our claim by induction on |R|.

|R| = 0: Then we know from the completeness of CPC2 that D; Γ ⊃ ∆ is
deducible.

|R| = r + 1: Let A
m
: /C ∈ R and R

′
:= R \

{
A

m
: /C

}
. Furthermore let

W := W↓D, R := R↓D, and R′ := R
′↓D.

From the validity of D;W,R ⊃ ∆ we know by definition that W,R ⊃
∆ is valid.

We distinguish two cases

• m 6∈ D: Then R = R′, i.e. W,R ⊃ ∆ and W,R′ ⊃ ∆ are equal.

Hence D;W,R
′
,

n
C ⊃ ∆ is valid (especially for n 6∈ D) and by

induction hypothesis deducible in PRC2. With (Res2c) we can
deduce D;W,R ⊃ ∆.

• m ∈ D: Then W,R′, A/C ⊃ ∆ is valid. This is equivalent to∨
∆ ∈ Cl(W,R′ ∪ {A/C}) (∗).

We distinguish two cases:

– A 6∈ Cl(W,R′): Then by Lemma 5.14 Cl(W,R′ ∪ {A/C}) =

Cl(W,R′). Hence � W,R′ ⊃ ∆ and thus D;W,R
′
,

n
C ⊃ ∆

is valid, especially for n 6∈ D. The latter is deducible in
PRC2 by induction hypothesis. With (Res2p) we can deduce

D;W,R
′
, A

m
: /C ⊃ ∆.

– A ∈ Cl(W,R′): Then � W,R′ ⊃ A (1). Hence, by Lemma
5.14, we know Cl(W,R′ ∪ {A/C}) = Cl(W ∪ {C} , R′) and
therefore from (∗) �W,R′, C ⊃ ∆ (2).

Let D′ := D\{n}. From (1) and (2) we get � D′,n;W,R
′ ⊃

n
A

and � D′,n;W,R
′
,

n
C ⊃ ∆. By induction hypothesis these

two labeled residue sequents are deducible in PRC2. With
(Res2) we can deduce D;W,R

′
, A

m
: /C ⊃ ∆

Remark 6.18 (superfluous rules)
In the proof of the completeness of PRC2 we do not use rule (Res1). This
rules is in fact superfluous and only present in PRC2 because one of the proof
search strategies we investigate is to skip residues before taking them into
consideration and there we need rule (Res1) because backward applying it
represents skipping a residue.
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A Proof Search Algorithm With Use-Check

From the calculus PRC2 we can easily extract a proof search algorithm that
does use-check (cf. Algorithm 8).

Algorithm 8 Proof search with use-check for residue sequents

1: function prc2Provable(D;W,R ⊃ ∆)
2: if R = ∅ then
3: success := cpc2Provable(D;W ⊃ ∆)
4: else
5: choose A

m
: /C ∈ R and let R

′
:= R \

{
A

m
: /C

}
6: success := prc2Provable(D;W,R

′ ⊃ ∆)
7: if not success then
8: choose a fresh label n ∈ N
9: success := prc2Provable(D1;W,R

′ ⊃
n
A)

10: if n 6∈ D1 then
11: D := D1

12: else

13: success := prc2Provable(D2;W,R
′
,

n
C ⊃ ∆)

14: if n 6∈ D2 then
15: D := D2

16: else
17: D := (D1 ∪ D2 ∪ {m}) \ {n}
18: return success

The recursive prover function takes as argument the labeled residue sequent
that is to prove. The use-set D is thereby computed when returning from
the recursive calls.

The layout of the algorithm is as follows.

The first block (lines 2–3) treats the base case of the recursion. If there are
no residues in the sequent to prove, we call the CPC2 prover. If it succeeds
we obtain a use-set D with the labels of those formulas that are needed for
the proof, otherwise D is empty.

The second block (lines 4–17) treats the recursion step, i.e. proof search on
the residue rules. We choose an arbitrary principal residue (line 5) and try
to apply rule (Res1) backwards with a recursive function call (line 6). If this
fails (line 7) we backtrack and try to apply rule (Res2) backwards. There
we choose a label n ∈ N for the active formulas in the premises (line 8). For
optimal use-check this should be a number that is not yet used as a label
in the given sequent. We start by trying to prove the left premise (line 9).
Now depending on the use-set D1 obtained from the recursive function call,
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we distinguish two cases.

1. If n 6∈ D1 (line 10) then either proving the left premise failed (D1 = ∅)
or proving it succeeded and use-check is successful (rule (Res2p)). In
both cases we set D to be D1 and return from the function.

2. If n ∈ D1 (line 12) then the left premise was provable and use-check
is not successful. We must continue with proving the right premise
(line 13). Again we distinguish two cases depending on the use-set D2

obtained from the recursive function call.

(a) If n 6∈ D2 (line 14) then either proving the right premise failed
(D2 = ∅) or proving it succeeded and use-check is successful (rule
(Res2c)). In both cases we set D to be D2 and return from the
function.

(b) If n ∈ D2 (line 16) then the right premise was provable and use-
check is not successful (rule (Res2)). We calculate the use-set D
accordingly and return from the function.

Algorithmic Strategies

In the previously sketched algorithms we prefer rule (Res1) to rule (Res2).
We do not know of an optimal strategy telling us when to prioritize the one
rule above the other. However, with the use-check mechanism we tend to
prioritize (Res2) for the following reasons.

Suppose that we want to prove Γ, A/C ⊃ ∆ and choose A/C as principal
residue. Dependent on the validity of the sequent, we have different optimal
or advantageous proof strategies.

• Γ, A/C ⊃ ∆ is valid.

Then we have two cases.

1. Γ ⊃ ∆ is valid: Then applying (Res1) first is optimal.

Together with use-check, applying (Res2) first may also be a good
choice. In this case the proof of the right premise Γ, C ⊃ ∆ is
known to succeed and since Γ ⊃ ∆ is valid, it is possible that
use-check is successful here. If use-check succeeds, we end up
with about the same proving effort as in the optimal case. If
use-check fails then we need to prove the left premise and may
need to backtrack.

2. Γ ⊃ ∆ is not valid: Then applying (Res2) first is optimal.
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In this case we know that the two premises Γ ⊃ A and Γ, C ⊃ ∆
are valid and that use-check will fail in both proofs. Whether we
first try to prove the left or the right premise does not matter.

• Γ, A/C ⊃ ∆ is not valid.

Then we know that Γ ⊃ ∆ is not valid, and Γ ⊃ A or Γ, C ⊃ ∆ are
not valid.

If we start with the right premise Γ, C ⊃ ∆ of (Res2) and proving it
fails, then we know that proving Γ ⊃ ∆ will fail, too. We can thus
omit backtracking.

If we start with the left premise Γ ⊃ A of (Res2) and proving it fails,
then proving the right premise can be omitted. However, we have to
backtrack and try rule (Res1).

If we start with rule (Res1) then this will fail and we will have to
backtrack and try one of the two premises of (Res2). This either fails
or succeeds. In the former case we can return with failure, in the latter
case we will have to try to prove the other premise, too.

In this case it is hence advantageous to try proving the right premise
of rule (Res2) first.

Combining General Improvement And Use-Check

The general improvement and use-check may be combined. When omitting
a proof of a sequent due to general improvement we must take care that we
provide a use-set for the sequent whose proof has been omitted.
We illustrate this on a proof of A1, C1 → A2, A1/C1, A2/C2 ⊃ C2 and con-
sider a top down search strategy according to Figure 6.2 on page 130. Some
of the sequents we prove during proof search are given in figure 6.4.

Proving
1
A1,

2
C1 → A2, A2

4
:/C2 ⊃

5
C2 (path (s)) fails because the sequents at

path (s.s) and (s.l) are invalid. However, proving the sequent at path (s.r)
succeeds with use-set Dsr = {4, 5}. We have to backtrack.

First proving
1
A1,

2
C1 → A2,

3
C1 ⊃

5
C2 (path (r, s)) fails. Then the sequent at

path (r, r) is known to be valid because it is a supersequent of the one at
path (s, r). We hence do not prove it and thus do not obtain a use-set for
it. Proving the sequent at path (r, l) succeeds with use-seq Drl = {1, 4}.
Hence the sequent at path (r) is valid. In order to compute a use-set for
it we need a use-set of the sequent at path (r, r). Since the sequent there
is a supersequent of the one at path (s, r) it is easy to see, that Dsr is an
appropriate use-set for it. We can hence not only inherit the validity but
also the use-set of the sequent at position (s, r).
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1
A1,

2
C1 → A2, A1

3
:/C1, A2

4
:/C2 ⊃

5
C2

(s)
1
A1,

2
C1 → A2, A2

4
:/C2 ⊃

5
C2

(s, s)
1
A1,

2
C1 → A2 ⊃

5
C2 ⊥

(s, r)
1
A1,

2
C1 → A2,

4
C2 ⊃

5
C2 > Dsr = {4, 5}

(s, l)
1
A1,

2
C1 → A2,⊃

4
A2 ⊥

(r)
1
A1,

2
C1 → A2,

3
C1, A2

4
:/C2 ⊃

5
C2

(r, s)
1
A1,

2
C1 → A2,

3
C1 ⊃

5
C2 ⊥

(r, r)
1
A1,

2
C1 → A2,

3
C1,

4
C2 ⊃

5
C2 (>) Drr = Dsr = {4, 5}

(r, l)
1
A1,

2
C1 → A2,

3
C1 ⊃

4
A2 > Drl = {1, 4}

...

Figure 6.4: Combining general improvement and use-check

The following proposition expresses the situation formally.

Proposition 6.19 (monotonicity of labeled residue sequent)

Let D; Γ ⊃ ∆ and D′; Γ
′ ⊃ ∆

′
be labeled residue sequents.

If � D; Γ ⊃ ∆, D ⊆ D′, Γ ⊆ Γ
′

and ∆ ⊆ ∆
′

then � D′; Γ
′ ⊃ ∆

′
.

Proof. Trivial.

When combining the general improvement with use-check we have to access
the use-sets of the sequents that are known to be valid. From an algorithmic
point of view we thus have to store those use-sets together with the path
they belong to. We can do this for example with an array that stores a
use-set for a path in the proof tree. An example is given in Algorithm 9.

Algorithm 9 is a combination of the algorithms 7 and 8. Its arguments

are the labeled residue sequent D;W, ~R ⊃ ∆ that is to prove, the current
position ~p in the search tree, the set pos of paths whose sequents are known to
be valid and an array D that holds for each element of pos the corresponding
use-set. In the sequent that is to prove we use a vector of labeled residues
~R to imply that we have a given order in which we process the residues.

The combination of the two algorithms is more or less straight forward.
General improvement is done at the beginning and the end of the algorithm.
We thereby get the appropriate use-set from D if general improvement is
successful (lines 2–4) and store newly found use-sets into D (line 24).
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Algorithm 9 Proof search with general improvement and use-check for
residue sequents

1: function prc2ProvableG(D;W, ~R ⊃ ∆, ~p, pos, D)
2: if ~q ≤ ~p for some ~q ∈ pos then
3: D := D[~q]
4: return true
5: if len(~R) = 0 then
6: success := cpc2Provable(D;W ⊃ ∆)
7: else
8: let A

m
: /C be the first element of ~R

9: let ~R ′ be ~R without its first element
10: success := prc2ProvableG(D;W, ~R ′ ⊃ ∆, ~p ◦ (s), pos, D)
11: if not success then
12: choose a fresh label n ∈ N
13: success := prc2ProvableG(Dr;W, ~R ′,

n

C ⊃ ∆, ~p ◦ (r), pos, D)
14: if n 6∈ Dr then
15: D := Dr

16: else

17: success := prc2ProvableG(Dl;W, ~R ′ ⊃
n

A, ~p ◦ (l), pos, D)
18: if n 6∈ Dl then
19: D := Dl

20: else
21: D := (Dl ∪ Dr ∪ {m}) \ {n}
22: if success then
23: pos := pos ∪ {~p}
24: D[~p] := D
25: return success
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6.2 Proving Residue Sequents Differently

Besides backward proof search we examine two approaches to verify the
validity of a residue sequent W,R ⊃ ∆. Both approaches are based on
Theorem 5.7 which says that Cl(W,R) = Th(W ∪ con(GD(R,Cl(W,R)))).
This implies that W,R ⊃ ∆ is valid if W, con(GD(R,Cl(W,R))) ⊃ ∆ is
valid.

In the first approach we compute Cl(W,R). Since the definition of the
closure operator is not suited for its computation we use an alternative,
equivalent definition of it.

The second approach takes the succedent that is to be proven into account.
There we concentrate on those residues in our theory that are relevant to
prove the succedent. That is we search for a subset R′ ⊆ R such that
W,R′ ⊃ ∆ is valid.

The second approach requires the computation of the so called minimal
quasi-supports of a formula on a residue theory. They can be computed
with a modified CPC prover. We examine this prover at the end of this
section.

6.2.1 Computing Cl(W,R)

Cl(W,R) is defined iteratively on the sets Cli(W,R). For finite residue the-
ories, it can be shown that the iteration ends after finitely man steps. How-
ever, since Cli+1(W,R) contains Th(Cli(W,R)), the sets Th(Cli(W,R)) are
all infinite for i > 0. Computing Cl(W,R) according to its definition is thus
not practicable. In this section we give an alternative, equivalent definition
of Cl(W,R) which is better suited for computations.

Definition 6.20 (Cl′(W,R))
For a residue theory 〈W,R〉 we define

Cl′(W,R) :=
∞⋃
i=0

Cl′i(W,R)

where

Cl′0(W,R) := W

Cl′i+1(W,R) := W ∪
{
C : A/C ∈ R and A ∈ Th(Cl′i(W,R))

}
.

The definition above is such that Cl′(W,R) is a subset of W ∪ con(R) and
thus finite for finite residue theories.

The following two lemmas are used to show that for finite residue theories
Cl′(W,R) can be calculated in finitely many steps.
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Lemma 6.21 (monotonicity of Cl′i(W,R))
Let 〈W,R〉 be a residue theory and i ∈ N. Then

Cl′i(W,R) ⊆ Cl′i+1(W,R).

Proof. We show our claim by induction on i.

i = 0: Then Cl′0(W,R) = W ⊆ W ∪ {C : A/C ∈ R and A ∈ Th(W )} =
Cl′1(W,R)

i = n + 1: Let Tn := Th(Cl′n(W,R)) and Tn+1 := Th(Cl′n+1(W,R)). By
induction hypothesis we know Cl′n(W,R) ⊆ Cl′n+1(W,R). Hence Tn ⊆ Tn+1.
Now

Cl′n+1(W,R) = W ∪ {Γ : A/Γ ∈ R and A ∈ Tn} and

Cl′n+2(W,R) = W ∪ {Γ : A/Γ ∈ R and A ∈ Tn+1} .

Since Tn ⊆ Tn+1 we know Cl′n+1(W,R) ⊆ Cl′n+2(W,R)

Lemma 6.22 (stagnation in Cl′i(W,R))
Let 〈W,R〉 be a residue theory and i ∈ N.
If Cl′i(W,R) = Cl′i+1(W,R) then Cl′i+1(W,R) = Cl′i+2(W,R).

Proof. Suppose Cl′i(W,R) = Cl′i+1(W,R). Then

Cl′i+2(W,R) = W ∪
{

Γ : A/C ∈ R and A ∈ Cl′i+1(W,R)
}

= W ∪
{

Γ : A/C ∈ R and A ∈ Cl′i(W,R)
}

= Cl′i+1(W,R)

The previous two lemmas imply the following corollary.

Corollary 6.23 (maximal Cl′i(W,R))
Let 〈W,R〉 be a residue theory and i ∈ N. If Cl′i(W,R) = Cl′i+1(W,R) then

1. Cl′i(W,R) = Cl′j(W,R) for j ≥ i.

2. Cl′(W,R) = Cl′i(W,R).

Cl′(W,R) can be computed in finitely many steps if 〈W,R〉 is finite.

Theorem 6.24 (finite computability of Cl′(W,R))
Let 〈W,R〉 be a finite residue theory.
Then there exists i ≤ |R| such that Cl′(W,R) = Cl′i(W,R).

Proof. Let 〈W,R〉 be a finite residue theory, m = |W | and n = |R|. We know
that Cl′j(W,R) ⊆W ∪con(R) for all j ∈ N. Hence m ≤ |Cl′j(W,R)| ≤ m+n
for all j ∈ N. Furthermore we know that Cl′j(W,R) ⊆ Cl′j+1(W,R) for all j ∈
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N. Thereforem = |Cl′0(W,R)| ≤ |Cl′1(W,R)| ≤ · · · ≤ |Cl′n+1(W,R)| ≤ m+n.
There must thus exist i ≤ n such that |Cl′i(W,R)| = |Cl′i+1(W,R)| ≤ m+n.
Since Cl′i(W,R) ⊆ Cl′i+1(W,R) we thus know Cl′i(W,R) = Cl′i+1(W,R) from
which our claim follows with Corollary 6.23

For a residue theory 〈W,R〉 with infinitely many residues, Cl′(W,R) may
not be computed in finitely many steps. Consider for example 〈W,R〉 with
W := {p0} and R := {pi/pi+1 : i ∈ N}. Then Cl′i(W,R) = {pj : 0 ≤ j ≤ i}
and hence Cl′i(W,R) ( Cl′i+1(W,R) for all i ∈ N.

It remains to show that Th(Cl′(W,R)) = Cl(W,R). We start by showing
that Cl(W,R) also evolves monotonically.

Lemma 6.25 (monotonicity of Cli(W,R))
Let 〈W,R〉 be a residue theory and i ∈ N. Then

Cli(W,R) ⊆ Cli+1(W,R).

Proof. We know that Cli(W,R) ⊆ Th(Cli(W,R)). Furthermore we know
that Th(Cli(W,R)) ⊆ Cli+1(W,R). Hence Cli(W,R) ⊆ Cli+1(W,R).

With the previous lemma and Lemma 6.21 we can give alternative definitions
of Cl(W,R) and Cl′(W,R).

Proposition 6.26 (Cl′i(W,R) and Cli(W,R) as limits)
Let 〈W,R〉 be a residue theory. Then

Cl′(W,R) = lim
n→∞

Cl′n(W,R) and Cl(W,R) = lim
n→∞

Cln(W,R)

Proof. The claims follow directly from Lemma 6.21 and 6.25 and the defi-
nitions of Cl′(W,R) and Cl(W,R).

The following lemma shows how Cli(W,R) and Cl′i(W,R) correlate. With
the previous proposition we may then conclude the main theorem of this
section.

Lemma 6.27 (correlation of Cli(W,R) and Cl′i(W,R))
Let 〈W,R〉 be a residue theory. Then

Th(Cli(W,R)) = Th(Cl′i(W,R))

Proof. We show our claim by induction in i.

i = 0: This case is clear since Cl0(W,R) = Cl′0(W,R) = W .
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i = n+ 1: We know Th(Cln(W,R)) = Th(Cl′n(W,R)) by induction hypoth-
esis and thus have

Th(Cln+1(W,R)) =

Th(Th(Cln(W,R)) ∪ {C : A/C ∈ R and A ∈ Th(Cln(W,R))}) =

Th(Th(Cl′n(W,R)) ∪
{
C : A/C ∈ R and A ∈ Th(Cl′n(W,R))

}
) =

Th(Cl′n(W,R) ∪
{
C : A/C ∈ R and A ∈ Th(Cl′n(W,R))

}
)

It is now sufficient to show that

Cl′n(W,R) ∪
{
C : A/C ∈ R and A ∈ Th(Cl′n(W,R))

}
= Cl′n+1(W,R).

For this we distinguish two cases.

n = 0: Then

Cl′n(W,R)︸ ︷︷ ︸
= W

∪
{
C : A/C ∈ R and A ∈ Th(Cl′n(W,R))

}
= Cl′n+1(W,R)

n > 0: Then we know by definition of Cl′n(W,R) that

Cl′n(W,R) ∪
{
C : A/C ∈ R and A ∈ Th(Cl′n(W,R))

}
=

W ∪
{
C : A/C ∈ R and A ∈ Th(Cl′n−1(W,R))

}
∪{

C : A/C ∈ R and A ∈ Th(Cl′n(W,R))
}

Since Cl′n−1(W,R) ⊆ Cl′n(W,R) (Lemma 6.21) this is equal to

W ∪
{
C : A/C ∈ R and A ∈ Th(Cl′n(W,R))

}
= Cl′n+1(W,R).

Theorem 6.28 (equality of Cl(W,R) and Cl′(W,R) )
Let 〈W,R〉 be a residue theory. Then

Cl(W,R) = Th(Cl′(W,R))

Proof. The claim follows directly from Lemma 6.27, Proposition 6.26 and
Lemma 5.13.3.

The closure of a finite residue theory is according to Theorem 6.24 and
Theorem 6.28 computable in finitely many steps. To verify whether a
residue sequent W,R ⊃ ∆ is valid we hence verify whether the CPC sequent
Cl′(W,R) ⊃ ∆ is valid.
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Algorithm 10 Computing Cl′(W,R)

1: function Cl’(W,R)
2: repeat
3: R′ := ∅
4: for all δ ∈ R do
5: if cpcProvable(W ⊃ pre(δ)) then
6: R′ := R′ ∪ {δ}
7: W := W ∪ con(R′)
8: R := R \R′
9: until R′ = ∅

10: return W

Two Algorithms to Compute Cl′(W,R)

An algorithm to compute Cl′(W,R) can easily be derived from its definition
(see Algorithm 10).

For better performance we use a slightly modified version (see Algorithm
11). The difference to Algorithm 10 is that we add the consequent of a
residue to W as soon as we know that its prerequisite is in Th(W ) (line 7).
Consider for example the residue theory 〈W,Rn〉 with W := {p1} and Rn :=
{pi/pi+1 : 1 ≤ i ≤ n}. Algorithm 10 needs to call the CPC prover (n2 +n)/2
times. The performance of Algorithm 11 depends on the order in which the
residues are processed. In the best case it gets along with calling the CPC
prover n times. The worst case behavior is equivalent to that of Algorithm
10.

Algorithm 11 Alternative to compute Cl′(W,R)

1: function Cl’2(W,R)
2: repeat
3: done := true
4: for all δ ∈ R do
5: if cpcProvable(W ⊃ pre(δ)) then
6: done = false
7: W := W ∪ {con(δ)}
8: R := R \ {δ}
9: until done

10: return W
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6.2.2 Computing Cl(W,R) Partially

Given a residue theory 〈W,R〉 and a formula A, it is often sufficient to verify
for a subset R′ ( R whether A ∈ Cl(W,R′).

Consider the residue theory 〈W,Rn〉 where Rn := {pi/pi+1 : 0 ≤ i ≤ n} and
W := {p1}. Then p2 ∈ Cl(W,Rn) for n ≥ 2.
According to Lemma 5.13 Cl(W,Rn) is a subset of Cl(W,Rm) if n ≤ m.
To verify for n ≥ 2 whether p2 is in Cl(W,Rn) it is thus sufficient to verify
whether p2 is in Cl(W,R2). The advantage is obvious. Algorithm 11 would
have to call the function cpcProvable between 10 and 55 times to compute
Cl′(W,R10) and only 2 or 3 times to compute Cl′(W,R2).

In this section we investigate an approach with which such redundancies
may be avoided. We illustrate it first on a simple example.

Introductory Example

Let W := {p1, p2}, R :=

{
p1

q1
,
p2

q2
,
s

r
,
q1 ∨ q2

r
,
q2

t

}
and suppose that we want

to verify whether r ∈ Th(Cl′(W,R)), i.e. whether W,R ⊃ r is valid.

In our approach we concentrate on the consequents of the residues. That is
instead of calculating Cl′(W,R) we check the validity of W, con(R) ⊃ r. If
this fails, then we know that the residue sequent is not valid, otherwise we
have to take further steps to decide its validity.
In our example W, con(R) ⊃ r is valid. With some additional work in the
CPC prover we can calculate those subsets of con(R) that are minimally
needed in order for the sequent to be valid. In our example there is just
one such subset: {r}. Now r can either originate from s/r or q1 ∨ q2/r, i.e.
one of those residues is crucial for the proof of the residue sequent. Hence
the prerequisite of at least one of those residues must be in Cl(W,R). This
is equivalent to s ∈ Cl(W,R \ {s/r}) or q1 ∨ q2 ∈ Cl(W,R \ {q1 ∨ q2/r})
(Lemma 5.14).

We consider the first choice and proceed as before. Let R1 := R \ {s/r}.
ProvingW, con(R1) ⊃ s fails, thus s 6∈ Th(W ∪ con(R1)). Since Cl(W,R1) ⊆
Th(W ∪ con(R1)) we know s 6∈ Cl(W,R1).
Hence the second choice remains and we let R2 := R \ {q1 ∨ q2/r}. Proving
W, con(R2) ⊃ q1 ∨ q2 succeeds and p1/q1 or p2/q2 turn out to be crucial for
its validity.

Again we consider the first choice and proceed as before. Let R21 := R2 \
{p/q1}. Proving W, con(R21) ⊃ p succeeds and no residue of R21 is crucial
for its proof. Considering the second choice is thus not necessary and we
know that p ∈ Cl(W, {p/q1, q1 ∨ q2/r}) ⊆ Cl(W,R).
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Proving ends here and we hence know that W,R ⊃ r is valid.

Quasi-Supports

In this section we investigate our approach formally. A central point in the
introductory example is to identify those sets of residues, whose conclusions
are crucial for the validity of the CPC sequents. Formally they correspond
to so called quasi-supports.

Definition 6.29 (quasi-support, support)
Let 〈W,R〉 be a residue theory and A a formula.

R′ is called a quasi-support of A for 〈W,R〉 if A ∈ Th(W ∪ con(R′)) and
R′ ⊆ R.
It is called minimal if A 6∈ Th(W ∪ con(R′′)) for all R′′ ( R′.

R′ is called a support of A for 〈W,R〉 if A ∈ Cl(W,R′) and R′ ⊆ R.
It is called minimal if A 6∈ Cl(W,R′′) for all R′′ ( R′.

We write minqs(A, 〈W,R〉) to denote the minimal quasi-supports of A for
〈W,R〉.

Given a residue theory 〈W,R〉 and δ ∈ R we often say that δ has a support or
is supported (in 〈W,R〉) if there exists a support of pre(δ) for 〈W,R \ {δ}〉.
Remark 6.30 (quasi-support vs. support)
If R′ is a quasi-support of A for 〈W,R〉 then this does not imply that A ∈
Cl(W,R′). However, if R′ is a support of A for 〈W,R〉 then this implication
holds (Lemma 5.13.1). Consider the introductory example. There R′ :=
{s/r} is a quasi-support of r for 〈W,R〉 but r 6∈ Cl(W,R′).

A support of A for 〈W,R〉 is always also a quasi-support of it. If the empty
set is a quasi-support of A for 〈W,R〉 then it is also a support of it.

Remark 6.31 (use-set as support)

Given a valid labeled default sequent D;W,R ⊃
n
A it is easy to see that

R↓D corresponds to a support of A for 〈W,R〉, where A, W and R are the

label-less versions of
n
A, W and R.

The following lemma states that the prerequisites and conclusions of a min-
imal support of A for 〈W,R〉 are in Cl(W,R).

Lemma 6.32 (minimal support as closed subtheory)
Let R′ be a minimal support of A for 〈W,R〉. Then

1. pre(δ) ∈ Cl(W,R) for all δ ∈ R′.

2. con(δ) ∈ Cl(W,R) for all δ ∈ R′.
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Proof. Let R′ be a minimal support of A for 〈W,R〉 (∗).
For R′ = ∅ the claim follows immediately. So suppose that R′ 6= ∅.

1. Let δ ∈ R′ and suppose that pre(δ) 6∈ Cl(W,R), hence pre(δ) 6∈ Cl(W,R′).
Then we know by Lemma 5.14.2 that Cl(W,R′) = Cl(W,R′ \ {δ}). This
contradicts to (∗), hence pre(δ) ∈ Cl(W,R).

2. This claim follows immediately from the first claim and Lemma 5.13.4.

The following proposition is central for our approach. It ensures that inves-
tigating the minimal quasi-supports is sufficient to verify validity.

Proposition 6.33 (existence of extensible minimal quasi-support)
Let 〈W,R〉 be a residue theory and A a formula.

If A ∈ Cl(W,R) then there exists R′ ∈ minqs(A, 〈W,R〉) such that pre(δ) ∈
Cl(W,R \ {δ}) for all δ ∈ R′.

Proof. Suppose that A ∈ Cl(W,R). Then there exists a minimal support of
A for 〈W,R〉. Let R′′ be such a minimal support (∗) and let R′ be a minimal
quasi-support of A for 〈W,R′′〉. Then R′ is also a minimal quasi-support
of A for 〈W,R〉. From (∗) we know by the previous Lemma that pre(δ) ∈
Cl(W,R′′) ⊆ Cl(W,R) for all δ ∈ R′′ ⊇ R′. Hence pre(δ) ∈ Cl(W,R) for all
δ ∈ R′. Our claim follows with Lemma 5.14.4.

The following proposition ensures that a quasi-support can be extended to
a support if it fulfills the properties mentioned in the previous proposition.

Proposition 6.34 (extensible quasi-support)
Let R′ be a quasi-support of A on 〈W,R〉.

If pre(δ) ∈ Cl(W,R \ {δ}) for all δ ∈ R′, then A ∈ Cl(W,R).

Proof. Let R′ be a quasi-support of A for 〈W,R〉 (1) and suppose that
pre(δ) ∈ Cl(W,R \ {δ}) for all δ ∈ R′. Then we know by Lemma 5.13.4 that
con(δ) ∈ Cl(W,R \ {δ}) for all δ ∈ R′. Since Cl(W,R \ {δ}) ⊆ Cl(W,R)
(Lemma 5.13.1) and W ⊆ Cl(W,R) (Lemma 5.13.2) we hence know W ∪
con(R′) ⊆ Cl(W,R) (2). From (1) we know A ∈ Th(W ∪ con(R′)) and
from (2) and Lemma 5.13.3 we obtain Th(W ∪ con(R′)) ⊆ Th(Cl(W,R)) ⊆
Cl(W,R). Hence A ∈ Cl(W,R).

From the previous proposition we can easily derive an algorithm to verify
whether A is in Cl(W,R).

We calculate the minimal quasi-supports of A for 〈W,R〉 and try whether
one of them can be extended to a support of A. This can be done recursively.
Given a minimal quasi-support R′ of A for 〈W,R〉 we try for each residue
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δ ∈ R′ whether one of the quasi-supports of pre(δ) for 〈W,R \ {δ}〉 can be
extended to a support of it. The recursion ends if no minimal quasi-support
is found or if the empty set is the one and only minimal quasi-support. The
pseudocode is given in Algorithm 12.

Algorithm 12 Using minimal quasi-supports to prove residue sequents

1: function prcProvableQS(〈W,R〉 , A)
2: R := minQuasiSupports(〈W,R〉 , A)
3: success := false
4: while not success and R 6= ∅ do
5: select Rmqs ∈ R and let R := R \ {Rmqs}
6: success := true
7: for all δ ∈ Rmqs do
8: R′ := Rmqs \ {δ}
9: A′ := pre(δ)

10: success := success and prcProvableQS(〈W,R′〉 , A′)
11: return success

Remark 6.35 (calculate support found by algorithm)
On success prcProvableQS does not supply us with the support that it
found. But it is easy to obtain the support. We can remember the quasi-
supports Rmqs for which the functions calls were successful, join them on
success and obtain like that a support for the proven sequent.

We are left with the problem to compute the minimal quasi-supports of A
for 〈R,W 〉. Before we investigate this problem we show a variant of the
given algorithm in which the results about the minimal quasi-supports can
be reused.

Caching Intermediate Results

Algorithm 12 contains certain redundancies. In its recursive calls we calcu-
late the minimal quasi-supports of A′ for 〈W,R′〉, where A′ is a prerequisite
of some residue δ ∈ R and R′ ( R. Thereby it is possible that we encounter
in different recursive calls the same prerequisite A′ together with different
subsets R′ and R′′ of R.

If R′′ ⊆ R′ then we can compute the minimal quasi-supports of A′ for
〈W,R′′〉 from the minimal quasi-supports of A′ for 〈W,R′〉.
Proposition 6.36 (minimal quasi-support in subtheories)
Let 〈W,R〉 be a residue theory and R′ ⊆ R.

1. If RA is a minimal quasi-support of A for 〈W,R′〉 then RA is a minimal
quasi-support of A for 〈W,R〉.
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2. If RA is a minimal quasi-support of A for 〈W,R〉 and RA ⊆ R′ then
RA is a minimal quasi-support of A for 〈W,R′〉.

Proof. The claim follows from the definition of a minimal quasi-support.

Hence, if R is the set of quasi-supports of A for 〈W,R′〉 and R′′ ⊆ R′, then
{RA ∈ R : RA ⊆ R′′} is the set of quasi-supports of A for 〈W,R′〉.

We illustrate this on the following example.

W := {q1 ∨ q3 → p1, q1 → p2, p3, q1 ∧ q2 → p} R :=

{
p1

q1
,
p2

q2
,
p3

q3

}
A := p

A possible run of Algorithm 12 could result in calculating the minimal quasi-
supports as follows.

minQuasiSupports(〈W, {p1/q1, p2/q2, p3/q3}〉 , p) = {{p1/q1, p2/q2}}
One minimal quasi-support, start with p1/q1.
1 minQuasiSupports(〈W, {p2/q2, p3/q3}〉 , p1) = {{p2/q2} , {p3/q3}}

Two minimal quasi-supports. Continue with first.
1.1 a minQuasiSupports(〈W, {p3/q3}〉 , p2) = ∅

No success, try second quasi-support.
1.1 b minQuasiSupports(〈W, {p2/q2}〉 , p3) = {∅}
Success for p1/q1, continue with p2/q2.
2 minQuasiSupports(〈W, {p1/q1, p3/q3}〉 , p2) = {{p1/q1}}
2.1 minQuasiSupports(〈W, {p3/q3}〉 , p1) = {{p3/q3}}
2.1.1 minQuasiSupports(〈W, ∅〉 , p3) = {∅}

At 1 we compute the minimal quasi-supports of p1 for 〈W, {p2/q2, p3/q3}〉
and obtain {{p2/q2} , {p3/q3}}. Later at 2.1 we compute the minimal quasi-
supports of p1 for 〈W, {p3/q3}〉 and obtain {{p3/q3}} which is a subset of
the previously computed one. In this case we can compute the latter set
from the former one.

At 1.1 we compute the minimal quasi-supports of p2 for 〈W, {p3/q3}〉 and
obtain an empty set. Later at 2 we compute the minimal quasi-supports of
p2 for 〈W, {p1/q1, p3/q3}〉 and obtain {{p3/q3}}. In this case the proposition
is of no use because {p3/q3} is not a superset of {p1/q1, p3/q3}.

To reuse the information about minimal quasi-supports in Algorithm 12
we can store the calculated quasi-supports together with the corresponding
residues. Then before calculating the minimal quasi-supports of A for 〈W,R〉
we check whether we have already calculated them for a superset of R. If
this is the case, then we calculate the minimal quasi-supports according to
the previous proposition.
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Now instead of calculating the minimal quasi-supports of pre(δ) for some
subset R′ of the original set of residues R, we can calculate them directly
for the maximal subset of R in question, i.e. for R \{δ}. Like this we do not
have to check whether we have calculated them for a superset of the current
set of residues already, but only whether we have calculated them already
or not. This strategy turned out to be very useful for the residue sequents
we have tested. A corresponding algorithm is given in Algorithm 13.

prcProvableQSC(〈W,R〉 , A) This function initiates proof search. It cre-
ates the global map MQS[] that maps from a residue to its calculated
minimal quasi-supports, calculates the minimal quasi-supports of the
given residue sequent and starts proving by calling prcProvable-
QSC(〈W,R〉, Rout, R).

prcProvableQSC(〈W,R〉, Rout, R) This function does recursive proof
search. Its arguments are a residue theory 〈W,R〉, a set of excluded
residuesRout ⊆ R and a set of minimal quasi-supportsR. The function
checks whether an element of R is extensible as follows.
It loops over the given set of minimal quasi-supports (lines 7–14) and
recursively tries to extend one of them to a support (lines 10–15).
Thereby it computes the minimal quasi-supports for a residue only if
needed (lines 11–12) and calculates the minimal quasi-supports that
fits to R \Rout from the cached results (line 13).

Avoiding Superfluous Loops

When testing residue sequents that had a lot of circular dependencies in the
antecedent, our prover sometimes started to loop without calculating new
minimal quasi-supports. This looping had two reasons.

First, when selecting R′ on line 8, it often selected a minimal quasi-support
that contained only elements for which it had already cached the minimal
quasi-supports. To avoid this we prioritize in that selection those minimal
quasi-supports R that contain open residues, i.e. residues for which we have
not yet calculated the minimal quasi-supports. Furthermore we prioritize
open residues in the loop on lines 10–14.

Second, when trying to prove invalid sequents the prover reached a point
where no more minimal quasi-supports could be calculated, i.e. where we
have reached a saturation of necessary information. Nevertheless it kept on
backtracking and looping over the minimal quasi-supports. To avoid this
we use a method to detect whether all relevant minimal quasi-supports have
been calculated and stop the proof search if this is the case.
The method uses a global set of residues Ropen that contains those residues
that we encountered in the proof search algorithm but for which we did not
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try to calculate a support. Adding items to Ropen thereby happens in two
cases.

1. Extending a minimal quasi-support R′ to a support fails and not all
residues in R′ were processed.

Consider the residue theory 〈{p} , {q/q1, p/p1, p1/p2}〉 and the minimal
quasi-support R1 = {q/q1, p1/p2}.
Finding a support of q/q1 fails, therefore we do not try to find a support
of p1/p2, the second element of R1. We hence add it to Ropen.

2. Extending a minimal quasi-support R′ to a support succeeds and there
are still minimal-quasi supports left that we can try to extend to a
support.

Consider the same residue theory as above and the minimal quasi-
supports R = {R1, R2} with R1 = {p1/p2} and R2 = {q/q1, p/p1}.
Extending R1 to a support succeeds and in that process we calculate
the minimal quasi-supports of p/p1. Because R1 could be extended to
a support we do not need to process R2. Nevertheless it contains yet
unprocessed residues that may be relevant for the overall proof. We
therefore add the elements of R2 for which we have not yet calculated
the minimal-quasi supports to Ropen. In our example this is q/q1.

Loop detection is done before we try to extend a minimal quasi-support R′

to a support. If there Ropen is empty and R′ contains only elements for
which we have already calculated the minimal quasi-supports, we know that
there are no more relevant residues left to extend R′ to a support.
Now if we stop proof search in such a situation it may be that a valid sequent
is not yet verified as being valid. Consider the following example.

W := {p} R :=

{
p

p1
,
p1

p2
,
p2

p3
,
p3

p4

}
A := p2 ∧ p4

Then minqs(A, 〈W,R〉) = {{p1/p2, p3/p4}}. If we start to process p1/p2 first
then the algorithm runs as sketched in Figure 6.5.

The columns in Figure 6.5 contain the recursion level, the list of excluded
residues where the currently selected residue is highlighted in bold face, the
minimal quasi-supports and the keys of the elements stored in MQS before
the recursion. Ropen is not listed because it remains empty.
The algorithm succeeds in finding a support of p1/p2. Then at recursion level
1.2 it starts to search for a support of p3/p4. At level 1.2.1 we add the last
remaining residue to MQS and hence we have a saturation of information at
level 1.2.1.1. We therefore stop proof search and thus skip verifying whether
p/p1 has a support.
In this case we know that the residue has a support (recursion level 1.1.1).
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Algorithm 13 Using cached minimal quasi-supports to prove residue se-
quents

1: function prcProvableQSC(〈W,R〉 , A)
2: create the global map MQS[]
3: R := minQuasiSupports(〈W,R〉, A)
4: return prcProvableQSC(〈W,R〉, ∅, R)

5: function prcProvableQSC(〈W,R〉, Rout, R)
6: result := false
7: while not result and R 6= ∅ do
8: select R′ ∈ R and let R := R \ {R′}
9: result := true

10: for all δ ∈ R′ do
11: if not exists MQS[δ] then
12: MQS[δ] := minQuasiSupports(〈W,R \ {δ}〉, pre(δ))

13: Rδ := {Rδ ∈ MQS[δ] : Rδ ∩Rout = ∅}
14: result := result and
15: prcProvableQSC(〈W,R〉, Rout ∪ {δ}, Rδ)
16: return result

Rout R keys(MQS)

1. ∅
{{

p1

p2
,
p3

p4

}}
∅

1.1

{
p1

p2

} {{
p

p1

}} {
p1

p2

}
1.1.1

{
p

p1
,
p1

p2

}
{∅}

{
p

p1
,
p1

p2

}
1.2

{
p3

p4

} {{
p2

p3

}} {
p

p1
,
p1

p2
,
p3

p4

}
1.2.1

{
p2

p3
,
p3

p4

} {{
p1

p2

}} {
p

p1
,
p1

p2
,
p2

p3
,
p3

p4

}
1.2.1.1

{
p1

p2
,
p2

p3
,
p3

p4

} {{
p

p1

}}
→ saturation

Figure 6.5: Example with successful loop check
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To detect this we keep record of those residues for which a support was
found in a set Rsprt. In this example we put p/p1 into Rsprt at level 1.1.1.
As a consequence p1/p2 turns out to have a support, we also put it into
Rsprt. Hence recursion level 1.2.1.1 can be verified to be successful and the
proof succeeds.

The mechanism with Rsprt is not sufficient to decide provability on loop
detection. Consider the following example.

W := {p} R :=

{
p

p1
,
p1

p2
,
p2

p1
,
p2

p3
,
p3

p4
,
p4

p2

}
A := p2 ∧ p4

The minimal quasi-supports of A for 〈W,R〉 are

{{
p1

p2
,
p3

p4

}
,

{
p4

p2
,
p3

p4

}}
.

We can depict the theory as a graph. A residue A/B is represented by an
arrow from A to B, formulas of the base theory are encircled.

p3

��

p // p1
))
p2ii

11

p4

aa

In this simple example proof search can be regarded as finding a way back
from p2 to p and from p4 to p without visiting an arrow more than once.
The situation we would like to point out is where we first go back along
the path p2–p1–p2–p4–p3–p2. There we detect a loop, backtrack to p1 and
succeed in going the alternative to p. Because of the extra loop all minimal
quasi-supports are calculated. Furthermore we know only that p/p1 and
p1/p2 have a support, that is Rsprt = {p/p, p1/p2}. Now if we try to find a
way back from p4 to p we have information saturation. Deciding according
to Rsprt that p3/p4 has a support fails because the only minimal support of
p3/p4 is {p2/p3} and its element is not in Rsprt. With the second minimal
quasi-support of A we run into the same problem if we start with searching
for a support of p4/p2. This situation is given in Figure 6.6. The minimal
quasi-supports in the third column that are canceled are those that have
been filtered according to Rout.

To decide whether a residue has a support in such a situation we can compute
the residues that have support from the calculated minimal quasi-supports.
The procedure is similar to calculating Cl′n(W,R). Given the map of minimal
quasi-supports MQS we start with the set Sprt0(MQS) of residues for which
MQS[δ] is {∅}. These are the residues whose prerequisites are valid in the
base theory. Then we iteratively calculate the other residues that have
support according to the following schema.

Sprt0(MQS) := {δ : MQS[δ] = {∅}}
Sprti+1(MQS) := {δ : R ∈ Sprti(MQS) for some R ∈ MQS[δ]}
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Rout R keys(MQS)

1 ∅
{{

p1

p2
,
p3

p4

}{
p4

p2
,
p3

p4

}}
∅

1.1

{
p1

p2

} {{
p2

p1

}
,

{
p

p1

}} {
p1

p2

}
1.1.1

{
p1

p2
,
p2

p1

} {
�
�
�

{
p1

p2

}
,

{
p4

p2

}} {
p1

p2
,
p2

p1

}
1.1.1.1

{
p1

p2
,
p2

p1
,
p4

p2

} {{
p3

p4

}} {
p1

p2
,
p2

p1
,
p4

p2

}
1.1.1.1.1

{
p1

p2
,
p2

p1
,
p3

p4
,
p4

p2

} {{
p2

p3

}} {
p1

p2
,
p2

p1
,
p3

p4
,
p4

p2

}
1.1.1.1.1.1

{
p1

p2
,
p2

p1
,
p2

p3
,
p3

p4
,
p4

p2

} {
�

�
�

{
p1

p2

}
,

�
�
�

{
p4

p2

}} {
p1

p2
,
p2

p1
,
p2

p3
,
p3

p4
,
p4

p2

}
1.1.2

{
p

p1
,
p1

p2

}
{∅}

{
p

p1
,
p1

p2
,
p2

p1
,
p2

p3
,
p3

p4
,
p4

p2

}
1.2

{
p3

p4

} {{
p2

p3

}}
→ saturation

2.1

{
p3

p4

} {{
p2

p3

}}
→ saturation

Figure 6.6: Example with successful loop check

We can stop the iteration if no new residues turn out to have a support,
that is if Sprti+1(MQS) = Sprti(MQS).

The improved algorithm is given in Algorithm 14.

prcProvableQSCL(〈W,R〉, A) initiates proof search. It calculates the
minimal quasi-supports of A for 〈W,R〉, initializes the global variables
and starts proof search by calling prcProvableQSCL(〈W,R〉, Rout,
R)

prcProvableQSCL(〈W,R〉, Rout, R) does proof search based on a given
set of minimal quasi-supports R. Besides the residue theory and R it
takes the set of excluded residues Rout as arguments. This argument
is passed unmodified to prcProvableQSCL(〈W,R〉, Rout, R

′).
The function first checks whether one of the given minimal quasi-
supports is already known to be supported (line 8). If not it checks
for each element of R whether it can be extended to a support (lines
9–11). When returning from the recursive calls it updated the set of
open residues accordingly (line 12).

prcProvableQSCL(〈W,R〉, Rout, R
′) tries to extend the given minimal

quasi-support R′ to a support taking the set of excluded residues Rout

into account.
The function first does the loop check (lines 15–17). If there are no
open residues and the minimal quasi-supports of all residues in R′ have
been calculated it updates the set of supported residues by calling
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Algorithm 14 Using cached minimal quasi-supports and loop check to
prove residue sequents

1: function prcProvableQSCL(〈W,R〉, A)
2: R := minQuasiSupports(〈W,R〉, A)
3: clear the global map MQS[] of minimal quasi-supports
4: clear the global set Rsprt of supported residues
5: clear the global set Ropen of open residues
6: return prcProvableQSCL(〈W,R〉, ∅, R)

7: function prcProvableQSCL(〈W,R〉, Rout, R)
8: if {R′ ∈ R : R ⊆ Rsprt} 6= ∅ then return true

9: for all R′ ∈ R do a

10: result := prcProvableQSCL(〈W,R〉, Rout, R
′)

11: if result then break
12: Ropen := Ropen ∪ {δ ∈

⋃
R : δ 6∈ keys(MQS)}

13: return result

14: function prcProvableQSCL(〈W,R〉, Rout, R
′)

15: if Ropen = ∅ and {δ ∈ R′ : δ 6∈ keys(MQS)} = ∅ then
16: updateSupported
17: return R′ ⊆ Rsprt

18: result := true
19: for all δ ∈ R′ do b

20: if δ 6∈ keys(MQS) then
21: MQS[δ] := minQuasiSupports(〈W,R \ {δ}〉, pre(δ))

22: Rδ := {Rδ ∈ MQS[δ] : Rδ ∩Rout = ∅}
23: result := prcProvableQSCL(〈W,R〉, Rout ∪ {δ}, Rδ)
24: if result then Rsprt := Rsprt ∪ {δ}
25: else break
26: return result

27: function updateSupported
28: repeat
29: for all δ ∈ keys(MQS) do
30: if {R′ ∈ MQS[δ] : R′ ⊆ Rsprt} 6= ∅ then Rsprt := Rsprt ∪ {δ}
31: until Rsprt was not extended anymore

aprefer R′ that has open residues
bprefer δ ∈ Ropen

162



6.2. PROVING RESIDUE SEQUENTS DIFFERENTLY

updateSupported (line 16) and returns with success if R′ holds only
supported residues (line 17).
If the loop check is not successful it checks whether all residues in R′

have a support (lines 19–25) and adds those that turn out to have a
support to Rsprt (line 24).

updateSupported updates the set of supported residues according to the
schema discussed above.

Further Improvements

To improve loop check we can remove the residues that are checked on
the current recursion level from the set of open residues, that is we let
Ropen := Ropen \{δ ∈ R′ : δ 6∈ keys(MQS)} before checking the residues (line
19). Like this we may obtain information saturation earlier in the search
tree.

We can reuse the information that a residue has no support on the current
recursion level. Suppose that the set of minimal quasi-supports passed to
prcProvableQSCL(〈W,R〉, Rout, R) contains n minimal quasi-supports,
that is R = {R1, R2, . . . , Rn} and that when trying to extend R1 it turns
out that δ ∈ R1 has no support. Then δ will have no support in any
attempt to extend the remaining minimal quasi-supports R2, . . . , Rn to a
support. We can therefore mark δ as unsupported and use that information
later to prevent redundant proving. It is important to unmark δ if we leave
the recursion level in which it was marked as unsupported (line 13) because
afterward Rout is no longer a superset of this recursion level’s set of excluded
residues and therefore δ is no longer known to have no support.

6.2.3 Computing Minimal Quasi-Supports

When discussing the introductory example on page 152 we mentioned that
the minimal quasi-supports of A for 〈W,R〉 can be computed if some addi-
tional work is done in the CPC prover. In this section we investigate this
approach.

Let us first revisit the definition of a minimal quasi-support. R′ ⊆ R is
a minimal quasi-support of A for 〈W,R〉 if W, con(R′) ⊃ A is valid and
W, con(R′′) ⊃ A is not valid for all proper subsets of R′.
Hence the set Γ′ := con(R′) has the property that W,Γ′ ⊃ A is valid and
that W,Γ′′ ⊃ A is not valid for any Γ′′ ( Γ′. We say that Γ′ is a minimal
enlargement of W for A.
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The idea we follow is to find all subsets of con(R) that are minimal enlarge-
ments of W for A. From each such subset we then identify the corresponding
minimal quasi-support. Consider the following example:

W := {p1, p2, p3} R :=

{
p1

q1
,
p2

q2
,
p3

q3

}
A := q1 ∨ q2 ∧ q3.

The subsets of con(R) that are minimal enlargements of W for A are Γ1 :=
{q1} and Γ2 := {q2, q3}. Their corresponding minimal quasi-supports are
R1 := {p1/q1} and R2 := {p2/q2, p3/q3}.

Now different residues may have the same consequent. For a formula A ∈
con(R) it is thus in general not clear from which residue it derives. We
therefore label our residues consecutively with natural numbers and pass
their labels to their consequents when calculating con(R). Consider the
following example:

W :=
{

0
p1,

0
p2

}
R :=

{
p1

1
:

q1
,
p2

2
:

q2
,
p3

3
:

q2

}
0
A :=

0
q1 ∧ q2.

Here the quasi-supports are
{
p1

1
:/q1, p2

2
:/q2

}
and

{
p1

1
:/q1, p3

3
:/q2

}
. When

calculating con(R) we label the consequents with the label of the correspond-

ing residue and obtain con(R) =
{

1
q1,

2
q2,

3
q2

}
.

Because we distinguish between
2
q2 and

3
q2 there are two minimal enlarge-

ments of W for
0
A:

{
1
q1,

2
q2

}
and

{
1
q1,

3
q2

}
. They represent the minimal

quasi-supports
{
p1

1
:/q1, p2

2
:/q2

}
and

{
p1

1
:/q1, p3

3
:/q2

}
.

We also use the labels to distinguish between formulas from W and con(R).
In the example above formulas carrying label 0 are from W all other formulas
are from con(R).

The following definition formalizes this distinction.

Definition 6.37 (L-sequent)
An L-sequent is a quadruple

〈
L,D,Γ,∆

〉
denoted by L;D; Γ ⊃ ∆ where Γ

and ∆ are finite multisets of labeled formulas, L is a finite subset of N and
D ⊆ L ∩ labels(Γ ∪∆).

We call L the partitioner and D the filter of the L-sequent. Γ and ∆ are
called antecedent and succedent .

For an L-sequent L;D; Γ ⊃ ∆ we define its filtered sequent as

Γ↓Lc ,Γ↓D∩L ⊃ ∆↓Lc ,∆↓D∩L,

where Lc denotes the complement of L, i.e. Lc := N \ L.
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Definition 6.38 (length of an L-sequent)
The length of an L-sequent is defined to be the sum of the length of its
formulas.

len(L;D; Γ ⊃ ∆) := len(Γ↓N ⊃ ∆↓N)

Definition 6.39 (valid L-sequent, minimal L-sequent)
An L-sequent L;D; Γ ⊃ ∆ is defined to be valid if its filtered sequent is valid.
We denote this with � L;D; Γ ⊃ ∆. Furthermore we write 2 L;D; Γ ⊃ ∆ to
denote that an L-sequent is not valid.

L;D; Γ ⊃ ∆ is defined to be minimal if it is valid and if L;D′; Γ ⊃ ∆ is not
valid for all proper subsets D′ of D.

The intention of the definition above is that L contains the labels of the
consequents of a residue theory and the filter D defines a subset of all conse-
quents according to their labels. The antecedent of the filtered sequent then
consists of W and the subset of consequents selected by D. We illustrate
this on the previous example.

Let S := {1, 2, 3} ;D;
0
p1,

0
p2,

1
q1,

2
q2,

3
q2 ⊃

0
q1 ∧ q2.

D := {1}: Then p1, p2, q1 ⊃ q1 ∧ q2 is the filtered sequent of S. In this case
S is not valid and thus also not L-minimal.

D := {1, 2}: Then p1, p2, q1, q2 ⊃ q1 ∧ q2 is the filtered sequent of S. In this
case S is valid and also minimal.

D := {1, 2, 3}: Then p1, p2, q1, q2, q2 ⊃ q1 ∧ q2 is the filtered sequent of S. In
this case S is valid but not minimal.

The following two lemmas indicates how two L-sequents relate according to
their filtered sequent.

Lemma 6.40 (subsequent relation of filtered sequents)

Let L;D; Γ ⊃ ∆ and L′;D′; Γ
′ ⊃ ∆

′
be two L-sequents, Γ ⊃ ∆ and Γ′ ⊃ ∆′

their filtered sequents.

If L ⊇ L′, D ⊆ D′, Γ ⊆ Γ
′

and ∆ ⊆ ∆ then Γ ⊃ ∆ is a subsequent of
Γ′ ⊃ ∆′.

Proof. The claim follows directly by definition.

Lemma 6.41 (equality of filtered sequents)

Let L,n;D; Γ ⊃ ∆ be a L-sequent, and
n
Γ and

n
∆ be two multisets of formulas

carrying label n.

1. The filtered sequents of L;D; Γ ⊃ ∆ and L,n;D; Γ ⊃ ∆ are equal iff
n ∈ L or n 6∈ labels(Γ ∪∆).
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2. The filtered sequents of L,n;D; Γ ⊃ ∆ and L,n;D; Γ,
n
Γ ⊃ ∆,

n
∆ are

equal iff n 6∈ D.

Proof. The two claims follow by definition.

The following lemma discusses minimal L-sequents. It consists of two parts.
The first part states that an L-sequent remains minimal if labels that do not
appear in its formulas are added to or removed from its partitioner. The
second part states that an L-sequent remains minimal if we add or remove
formulas carrying labels that are in its partitioner but not in its filter.

Lemma 6.42 (minimal L-sequents)

Let L,n;D; Γ ⊃ ∆ be a L-sequent, and
n
Γ and

n
∆ be two multisets of formulas

carrying label n.

1. If n 6∈ labels(Γ ∪∆) then L;D; Γ ⊃ ∆ is minimal iff L,n;D; Γ ⊃ ∆ is
minimal.

2. If n 6∈ D then L,n;D; Γ ⊃ ∆ is minimal iff L,n;D; Γ,
n
Γ ⊃ ∆,

n
∆ is

minimal.

Proof.
1. ⇒: Suppose that n 6∈ labels(Γ ∪ ∆) (1) and that L;D; Γ ⊃ ∆ is mini-
mal (2). From (1) we know by Lemma 6.41.1 that the filtered sequents of
L;D′; Γ ⊃ ∆ and L,n;D′; Γ ⊃ ∆ are equal for any D′. With (2) we thus
know that L,n;D; Γ ⊃ ∆ is minimal.
1. ⇐: analogously.

2. ⇒: Suppose that n 6∈ D (1) and that L,n;D; Γ ⊃ ∆ is minimal (2). From
(1) we know that n 6∈ D′ for D′ ⊆ D. Hence we know by Lemma 6.41.2 that

L,n;D′; Γ ⊃ ∆ and L,n;D′; Γ,
n
Γ ⊃ ∆,

n
∆ are equal for D′ ⊆ D. With (2) we

thus know that L,n;D; Γ,
n
Γ ⊃ ∆,

n
∆ is minimal.

2. ⇐: analogously.

To calculate minimal L-sequents we use a calculus that is especially tailored
for that purpose.

Definition 6.43 (the calculus CPC4)
We define the classical sequent calculus CPC4 to have the deduction rules
as given in Figure 6.7.

Remark 6.44 (filter vs. use-set)
In CPC4 the meaning of the filter D is different to the meaning of the use-set

D in the calculus CPC2. If L;D; Γ ⊃ ∆,
n
A is valid and n 6∈ D then this does

in general not imply that
n
A is not needed to prove the sequent and that

hence L;D; Γ ⊃ ∆,
n
B is valid. The sequent 0; 0;

0
p ⊃ 1

p for example is valid
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L;D; Γ,
n
p ⊃ ∆,

m
p

(id)(a,b)

L;D; Γ ⊃ ∆,
n
>

(>)(a)

L;D; Γ,
n
⊥ ⊃ ∆

(⊥)(a)

L;D; Γ ⊃ ∆,
n
A

L;D; Γ,
n
¬A ⊃ ∆

(¬⊃)
L;D; Γ,

n
A ⊃ ∆

L;D; Γ ⊃ ∆,
n
¬A

(⊃¬)

L;D; Γ,
n
A,

n
B ⊃ ∆

L;D; Γ,
n

A ∧B ⊃ ∆
(∧⊃)

L;D; Γ ⊃ ∆,
n
A,

n
B

L;D; Γ ⊃ ∆,
n

A ∨B
(⊃∨)

Lm̄n̄;D1; Γ,
n
A ⊃ ∆ Lm̄n̄;D2; Γ,

n
B ⊃ ∆

Lm̄n̄;D1,D2; Γ,
m

A ∨B ⊃ ∆
(∨⊃)

Ln̄m̄;D1; Γ ⊃ ∆,
n
A Ln̄m̄;D2; Γ ⊃ ∆,

n
B

Ln̄m̄;D1,D2; Γ ⊃ ∆,
m

A ∧B
(⊃∧)

L,m,n;Dn̄; Γ,
n
A ⊃ ∆

L,m;Dn̄; Γ,
m

A ∨B ⊃ ∆
(L;·∨⊃)(c)

L,m, n;Dn̄; Γ,
n
B ⊃ ∆

L,m;Dn̄; Γ,
m

A ∨B ⊃ ∆
(L;∨·⊃)(c)

L,m,n;Dn̄; Γ ⊃ ∆,
n
B

L,m;Dn̄; Γ ⊃ ∆,
m

A ∧B
(L;⊃·∧)(c)

L,m, n;Dn̄; Γ ⊃ ∆,
n
B

L,m;Dn̄; Γ ⊃ ∆,
m

A ∧B
(L;⊃∧·)(c)

L,m, n;D1, n; Γ,
n
A ⊃ ∆ L,m,n;D2,n; Γ,

n
B ⊃ ∆

L,m;D1,D2,m; Γ,
m

A ∨B ⊃ ∆
(L;∨⊃)(c)

L,m, n;D1, n; Γ ⊃ ∆,
n
A L,m, n;D2,n; Γ ⊃ ∆,

n
B

L,m;D1,D2,m; Γ ⊃ ∆,
m

A ∧B
(L;⊃∧)(c)

m,n 6∈ Lm̄n̄

m,n 6∈ Dn̄
a n 6∈ L or n ∈ D
b m 6∈ L or m ∈ D
c n 6∈ labels(Γ ∪∆)

Figure 6.7: Deduction rules of CPC4

167



CHAPTER 6. PROOF SEARCH FOR RESIDUE SEQUENTS

but 0; 0;
0
p ⊃ 1

q is not.
However, it can easily be verified that the implication holds if n ∈ L, i.e. for
formulas carrying a label n ∈ L the calculus does use-check.

Theorem 6.45 (soundness of CPC4)
If an L-sequent L;D; Γ ⊃ ∆ is deducible in CPC4 then it is valid.

Proof. Since the rules can be grouped into rules of similar form, we show
soundness only for some selected rules.

•
L;D; Γ,

n
p ⊃ ∆,

m
p

(id), where n ∈ L or n ∈ D, and m ∈ L or m ∈ D.

Let Π ⊃ Σ be the filtered sequent of the conclusion. Since n ∈ L or
n ∈ D, and m ∈ L or m ∈ D we know by definition that p ∈ Π and
p ∈ Σ, hence Π ⊃ Σ is valid and thus L;D; Γ,

n
p ⊃ ∆,

m
p is valid, too.

• L;D; Γ,
n
A,

n
B ⊃ ∆

L;D; Γ,
n

A ∧B ⊃ ∆
(∧⊃).

Suppose that L;D; Γ,
n
A,

n
B ⊃ ∆ is valid and let Π ⊃ Σ be its filtered

sequent. We distinguish two cases.

1. n 6∈ D and n ∈ L:
Then Π ⊃ Σ is also the filtered sequent of the conclusion, hence
it is valid.

2. n ∈ D or n 6∈ L:
Then Π ⊃ Σ is of the form Π′, A,B ⊃ Σ. Thus Π′, A ∧ B ⊃ Σ
is valid, too. It is easy to see that this is the filtered sequent of

L;D; Γ,
n

A ∧B ⊃ ∆. Hence the conclusion is valid.

• Lm̄n̄;D1; Γ,
n
A ⊃ ∆ Lm̄n̄;D2; Γ,

n
B ⊃ ∆

Lm̄n̄;D1,D2; Γ,
m

A ∨B ⊃ ∆
(∨⊃), n,m 6∈ Lm̄n̄.

Let Lm̄n̄;D1; Γ,
n
A ⊃ ∆ and Lm̄n̄;D2; Γ,

n
B ⊃ ∆ be valid. Then accord-

ing to Lemma 6.40 Lm̄n̄;D1,D2; Γ,
n
A ⊃ ∆ and Lm̄n̄;D1,D2; Γ,

n
B ⊃ ∆

are valid. Let Π, A ⊃ Σ and Π, B ⊃ Σ be their filtered, valid sequents.
Then Π, A ∨ B ⊃ Σ is valid, too. It is easy to see that this is the

filtered sequent of Lm̄n̄;D1,D2; Γ,
m

A ∨B ⊃ ∆. Hence the conclusion is
valid.

• L,m, n;Dn̄; Γ,
n
A ⊃ ∆

L,m;Dn̄; Γ,
m

A ∨B ⊃ ∆
(L;·∨⊃), n 6∈ Dn̄ and n 6∈ labels(Γ ∪∆).

Let L,m, n;Dn̄; Γ,
n
A ⊃ ∆ be valid, Π ⊃ Σ be its filtered sequent (1),

n 6∈ Dn̄ (2) and n 6∈ labels(Γ ∪∆) (3).
From (1) and (2) we know by Lemma 6.41.2 that Π ⊃ Σ is also the
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filtered sequent of L,m, n;Dn̄; Γ ⊃ ∆. From this and (3) we ob-
tain with Lemma 6.41.1 that Π ⊃ Σ is also the filtered sequent of
L,m;Dn̄; Γ ⊃ ∆. From Lemma 6.40 we know that Π ⊃ Σ is a sub-

sequent of the filtered sequent of L,m;Dn̄; Γ,
m

A ∨B ⊃ ∆. Hence the
conclusion is valid.

• L,m,n;D1,n; Γ,
n
A ⊃ ∆ L,m,n;D2,n; Γ,

n
B ⊃ ∆

L,m;D1,D2,m; Γ,
m

A ∨B ⊃ ∆
(L;∨⊃), n 6∈ labels(Γ∪

∆).

Let L,m,n;D1,n; Γ,
n
A ⊃ ∆ and L,m, n;D2, n; Γ,

n
B ⊃ ∆ be valid and

n 6∈ labels(Γ ∪∆) (1).

Then we know from Lemma 6.40 that L,m, n;D1,D2, n; Γ,
n
A ⊃ ∆

and L,m,n;D1,D2,n; Γ,
n
B ⊃ ∆ are valid, too. Let Π, A ⊃ Σ and

Π, B ⊃ Σ be their filtered, valid sequents. Then Π, A ∨ B ⊃ Σ is
valid, too. Because of (1) we know that this is the filtered sequent of

L,m;D1,D2,m; Γ,
m

A ∨B ⊃ ∆. Hence the conclusion is valid.

Soundness for the other rules is similar to prove.

To show completeness of CPC4 we first introduce three lemmas. The first
states that four of the rules are semantically invertible, the second shows a
general relation between the validity of the premises and conclusion of the
branching rules and the last one considers validity in the context of relabeled
formulas.

Lemma 6.46 (semantically invertible rules of CPC4)
The CPC4-rules (¬ ⊃), (⊃ ¬), (∧ ⊃) and (⊃ ∨) are semantically invertible.

Proof. We show our claim only for rule (¬ ⊃). For the other rules the claim
can be proved analogously.

Suppose that L;D; Γ,
n
¬A ⊃ ∆ is valid. We distinguish two cases.

n ∈ L and n 6∈ D: Then the filtered sequents of the premise and the conclu-
sion are equal, hence the premise is valid, too.

n 6∈ L, or n ∈ L and n ∈ D: Then let Π,¬A ⊃ Σ be the filtered, valid
sequent of the conclusion. Hence Π ⊃ Σ, A is valid, too. Since this is the
filtered sequent of the premise, we thus know that the premise is valid.

Remark 6.47 (not semantically invertible rules of CPC4)
The rules of CPC4 that conclude a disjunction in the antecedent or a con-
junction in the succedent are not semantically invertible.

For rules with two premises the reason for this is mainly to find in the
arbitrary partitioning of the filter of the conclusion. Consider for example
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the L-sequent L;D1,D2;
0

p ∨ q ⊃ 2
p,

1
q with L := {1, 2}, D1 := {1} and D2 :=

{2}. That L-sequent is valid but neither L;D1;
0
p ⊃ 2

p,
1
q nor L;D2;

0
q ⊃ 2

p,
1
q is

valid.

For rules with one premise the reason for this is mainly to find in the
relabeling of the active formula in the premise. Consider the L-sequent

L, 1;Dn̄;
1

p ∨ q ⊃
1

p ∨ q with L := ∅ and Dn̄ := {1}. That L-sequent is valid

but L, 1, 2;Dn̄;
2
p ⊃

1
p ∨ q for example is not.

If we label the active formulas in the premises with the same label as the
principal formula and if we do not partition the filter of the conclusion, then
the premises of a branching rule are valid if and only if the conclusion is
valid.

Lemma 6.48 (validity in branching rules)
Let L;D; Γ ⊃ ∆ be an L-sequent. Then

1. � L;D; Γ,
n

A ∨B ⊃ ∆ iff � L;D; Γ,
n
A ⊃ ∆ and � L;D; Γ,

n
B ⊃ ∆.

2. � L;D; Γ ⊃ ∆,
n

A ∧B iff � L;D; Γ ⊃ ∆,
n
A and � L;D; Γ ⊃ ∆,

n
B.

Proof. We only show the first claim and of this only one direction. The
other claim and direction can be proved analogously.

Let L;D; Γ,
n

A ∨B ⊃ ∆ be valid and Π ⊃ Σ be its filtered, valid sequent.
We distinguish two cases.

n ∈ L and n 6∈ D: Then Π ⊃ Σ is also the filtered sequent of L;D; Γ,
n
A ⊃ ∆

and L;D; Γ,
n
B ⊃ ∆ which are hence valid.

n 6∈ L, or n ∈ L and n ∈ D: Then Π ⊃ Σ is of the form Π′, A∨B ⊃ Σ. Thus
Π′, A ⊃ Σ and Π′, B ⊃ Σ are valid. It is easy to see that they are the filtered

sequents of L;D; Γ,
n
A ⊃ ∆ and L;D; Γ,

n
B ⊃ ∆ which are hence valid.

If we change the label of a formula in an L-sequent then we have to extend
the partitioner and the filter in order to be sure that a valid L-sequent
remains valid.

Lemma 6.49 (validity in the context of relabeled formulas)
Let Γ and ∆ be two multisets of labeled formulas, Γ and ∆ be two mul-

tisets of formulas, n,m ∈ N,
n
Γ :=

{
n
A : A ∈ Γ

}
,

n
∆ :=

{
n
A : A ∈ ∆

}
,

m
Γ :=

{
m
A : A ∈ Γ

}
and

m
∆ :=

{
m
A : A ∈ ∆

}
.

If � L;D; Γ,
n
Γ ⊃ ∆,

n
∆ then � L,m;D,m; Γ,

m
Γ ⊃ ∆,

m
∆.
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Proof. The claim follows directly from the fact that the filtered sequent of

L;D; Γ,
n
Γ ⊃ ∆,

n
∆ is a subsequent of the one of L,m;D,m; Γ,

m
Γ ⊃ ∆,

m
∆.

The other direction of this lemma does not hold.
Let Γ := ∆ := ∅ and Γ := ∆ := {p}. Then � n,m; m;

m
p ⊃ m

p but 2 n; ∅; n
p ⊃ n

p.

Theorem 6.50 (completeness of CPC4)
If an L-sequent L;D; Γ ⊃ ∆ is valid then it is derivable in CPC4.

Proof. Let L;D; Γ ⊃ ∆ be valid and Π ⊃ Σ be its filtered, valid sequent.
We show our claim by induction on len(L;D; Γ ⊃ ∆).

• len(L;D; Γ ⊃ ∆) = |Γ|+ |∆|.

Then Γ and ∆ contain only atomic formulas, hence Π ⊃ Σ is an axiom.
It is therefore either of the form Π′, p ⊃ Σ′, p or Π′,⊥ ⊃ Σ or Π ⊃ Σ′,>.

Let Π ⊃ Σ be of the form Π′, p ⊃ Σ′, p. Then there exist

1.
n
p ∈ Γ such that n 6∈ L, or n ∈ L and n ∈ D,

2.
m
p ∈ ∆ such that m 6∈ L, or m ∈ L and m ∈ D.

Hence L;D; Γ ⊃ ∆ is derivable by (id).

The other cases are similar to prove.

• len(L;D; Γ ⊃ ∆) > |Γ|+ |∆|

Then there exists a non-atomic formula
n
A in Γ ∪ ∆. We distinguish

on the form and position of
n
A. Since the different cases are similar to

prove, we only show two cases.

– L;D; Γ ⊃ ∆ = L;D; Γ
′
,

n
¬B ⊃ ∆.

Then we know by Lemma 6.46 that L;D; Γ
′ ⊃ ∆,

n
B is valid and

by induction hypothesis thus derivable in CPC4. With (¬ ⊃) we

can derive L;D; Γ
′
,

n
¬B ⊃ ∆.

– L;D; Γ ⊃ ∆ = L;D; Γ
′
,

n
B ∨ C ⊃ ∆.

Then we know that L;D; Γ
′
,

n
B ⊃ ∆ and L;D; Γ

′
,

n
C ⊃ ∆ are valid

(Lemma 6.48). We distinguish two cases.

∗ n 6∈ L: By induction hypothesis we know that L;D; Γ
′
,

n
B ⊃

∆ and L;D; Γ
′
,

n
C ⊃ ∆ are derivable in CPC4. With (∨ ⊃)

we can derive L;D; Γ
′
,

n
B ∨ C ⊃ ∆.
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∗ n ∈ L: Then let m ∈ N such that m 6∈ labels(Γ
′ ∪∆) (1). We

distinguish two cases.

· n ∈ D: Then we know that L,m;D,m; Γ
′
,

m
B ⊃ ∆ and

L,m;D,m; Γ
′
,

m
C ⊃ ∆ are valid (Lemma 6.49). By induc-

tion hypothesis they are thus derivable in CPC4. With

(L;∨ ⊃) we can derive L;D; Γ
′
,

n
B ∨ C ⊃ ∆.

· n 6∈ D: Then let Π ⊃ Σ be the filtered sequent of

L;D; Γ
′
,

n
B ∨ C ⊃ ∆.

Because n ∈ L we know by Lemma 6.41.2 that Π ⊃ Σ is
also the filtered sequent of L;D; Γ

′ ⊃ ∆.
From this and (1) we know by Lemma 6.41.1 that Π ⊃ Σ

is also the filtered sequent of L,m;D; Γ
′ ⊃ ∆.

Because of (1) we know by definition that m 6∈ D. We
thus know by Lemma 6.41.2 that Π ⊃ Σ is also the fil-

tered sequent of L,m;D; Γ
′
,

m
B ⊃ ∆.

Hence L,m;D; Γ
′
,

m
B ⊃ ∆ is valid. By induction hypoth-

esis we know that it is derivable in CPC4. With (L; ·∨ ⊃)

we can derive L;D; Γ
′
,

n
B ∨ C ⊃ ∆.

Minimality in CPC4

The idea we now follow is to use backward proof search in CPC4 to calculate
all minimal L-sequents. We thereby rely on two properties.

• In non-branching rules the conclusion is minimal if and only if the
premise is minimal.

• In branching rules minimal conclusion can always be obtained from
two minimal premises.

These two properties allow us to concentrate only on minimal sequents dur-
ing proof search in order to calculate all minimal sequents.
We first show that for non-branching rules the minimal sets of the premise
is equal to those of its conclusion.

The CPC4-rules (¬ ⊃), (⊃ ¬), (∧ ⊃) and (⊃ ∨) respect minimality. This
means that if the premise of a rule is minimal then the conclusion is also
minimal and vice versa.

Theorem 6.51 (minimality in (¬ ⊃), (⊃ ¬), (∧ ⊃) and (⊃ ∨))
Let L;D; Γ ⊃ ∆ be an L-sequent. Then
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1. L;D; Γ,
n
A ⊃ ∆ is minimal iff L;D; Γ ⊃ ∆,

n
¬A is minimal.

2. L;D; Γ ⊃ ∆,
n
A is minimal iff L;D; Γ,

n
¬A ⊃ ∆ is minimal.

3. L;D; Γ,
n

A ∧B ⊃ ∆ is minimal iff L;D; Γ,
n
A,

n
B ⊃ ∆ is minimal.

4. L;D; Γ ⊃ ∆,
n

A ∨B is minimal iff L;D; Γ ⊃ ∆,
n
A,

n
B is minimal.

Proof. Since we can prove all claims analogously we only show claim 1.

⇒: Let L;D; Γ,
n
A ⊃ ∆ be minimal.

Then � L;D; Γ,
n
A ⊃ ∆ (1) and 2 L;D′; Γ,

n
A ⊃ ∆ for all D′ ( D (2).

From (1) we know by soundness of CPC4 that � L;D; Γ ⊃ ∆,
n
¬A. From (2)

we know by contraposition of Lemma 6.46 that 2 L;D′; Γ ⊃ ∆,
n
¬A for all

D′ ( D. Hence L;D; Γ ⊃ ∆,
n
¬A is minimal.

⇐: Let L;D; Γ ⊃ ∆,
n
¬A be minimal.

Then � L;D; Γ ⊃ ∆,
n
¬A (1) and 2 L;D′; Γ ⊃ ∆,

n
¬A for all D′ ( D (2).

From (1) we know by Lemma 6.46 that � L;D; Γ,
n
A ⊃ ∆. From (2) we

know by soundness of CPC4 that 2 L;D′; Γ,
n
A ⊃ ∆ for all D′ ( D. Hence

L;D; Γ,
n
A ⊃ ∆ is minimal.

Those rules of CPC4 that deduce a disjunction in the antecedent or a con-
junction in the succedent do not respect minimality.

Consider for example the rule (L; ·∨ ⊃). Applying it on a minimal premise
does in the following example not result in a minimal conclusion.

{1, 2, 3} ; {1, 2} ;
1
p,

3
p ⊃

2
p ∨ q

{1, 2} ; {1, 2} ;
1
p,

2
p ∨ q ⊃

2
p ∨ q

(L;·∨⊃)

Regarding rule (L;∨ ⊃) consider the following example, in which a non-
minimal conclusion is deduced from two minimal premises.

{1, 2, 3, 4} ; {1, 4} ;
4
p ⊃

1
p ∨ q,

2
q ∨ r {1, 2, 3, 4} ; {2, 4} ;

4
q ⊃

1
p ∨ q,

2
q ∨ r

{1, 2, 3} ; {1, 2, 3} ;
3

p ∨ q ⊃
1

p ∨ q,
2

q ∨ r
(L;∨⊃)

A similar example can be given for rule (∨ ⊃).

{1, 2} ; {1} ;
4
p ⊃

1
p ∨ q,

2
q ∨ r {1, 2} ; {2} ;

4
q ⊃

1
p ∨ q,

2
q ∨ r

{1, 2} ; {1, 2} ;
3

p ∨ q ⊃
1

p ∨ q,
2

q ∨ r
(∨⊃)
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However, we can show that for these rules a minimal conclusion can always
be computed from minimal premises. We start with the rules (∨ ⊃) and
(⊃ ∧).

Proposition 6.52 (minimality in CPC4 (i))
Let Lm̄n̄;D; Γ ⊃ ∆ be an L-sequent, m 6∈ Lm̄n̄ and n 6∈ Lm̄n̄.

1. If Lm̄n̄;D; Γ,
m

A ∨B ⊃ ∆ is minimal then there exist D1 and D2 such

that Lm̄n̄;D1; Γ,
n
A ⊃ ∆ and Lm̄n̄;D2; Γ,

n
B ⊃ ∆ are minimal and D =

D1 ∪ D2.

2. If Lm̄n̄;D; Γ ⊃ ∆,
m

A ∧B is minimal then there exist D1 and D2 such

that Lm̄n̄;D1; Γ ⊃ ∆,
n
A and Lm̄n̄;D2; Γ ⊃ ∆,

n
B are minimal and D =

D1 ∪ D2.

Proof. Both claims are similar to proof. We only show the first one.

Suppose that Lm̄n̄;D; Γ,
m

A ∨B ⊃ ∆ is minimal (1), m 6∈ Lm̄n̄ and n 6∈ Lm̄n̄.

Then Lm̄n̄;D; Γ,
n
A ⊃ ∆ and Lm̄n̄;D; Γ,

n
B ⊃ ∆ are valid. Let D1,D2 ⊆ D

be such that Lm̄n̄;D1; Γ,
n
A ⊃ ∆ and Lm̄n̄;D2; Γ,

n
B ⊃ ∆ are minimal. Then

Lm̄n̄;D1,D2; Γ,
m

A ∨B ⊃ ∆ is valid. Furthermore D1 ∪D2 ⊆ D. From (1) we
know D1 ∪ D2 = D.

We now show for the rules (L;∨ ⊃), (L; ·∨ ⊃), (L;∨· ⊃), (L;⊃ ∧), (L;⊃ ·∧)
and (L;⊃ ∧·) that a minimal conclusion can always be derived from minimal
premises. To do so we distinguish between the label of the principal formula
being in the filter of the conclusion or not.

The case where the label of the principal formula is in the filter of the
conclusion is covered by the following proposition.

Proposition 6.53 (minimality in CPC4 (ii))
Let L,m;Dm̄; Γ ⊃ ∆ be an L-sequent, m 6∈ Dm̄ and n 6∈ labels(Γ ∪∆).

1. If L,m;Dm̄,m; Γ,
m

A ∨B ⊃ ∆ is minimal then it can be derived in CPC4
from minimal premises.

2. If L,m;Dm̄,m; Γ ⊃ ∆,
m

A ∧B is minimal then it can be derived in CPC4
from minimal premises.

Proof. Both claims are similar to prove. We only show the first claim.

Let L,m;Dm̄,m; Γ,
m

A ∨B ⊃ ∆ be minimal (1), m 6∈ Dm̄ (2), n 6∈ labels(Γ ∪
∆) (3). We distinguish three cases.

1. m 6∈ labels(Γ ∪∆) (a).
Then because of (2) we know that the filtered sequents of L,m;Dm̄; Γ ⊃ ∆
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and L,m;Dm̄; Γ,
m

A ∨B ⊃ ∆ are equal. From (1) we know that the latter
L-sequent is not valid, hence 2 L,m;Dm̄; Γ ⊃ ∆ (b).

From (1) we know � L,m;Dm̄,m; Γ,
m

A ∨B ⊃ ∆, hence

� L,m, n;Dm̄,m,n; Γ,
n
A ⊃ ∆ and � L,m,n;Dm̄,m, n; Γ,

n
B ⊃ ∆.

With (a) we obtain

� L,m, n;Dm̄, n; Γ,
n
A ⊃ ∆ (c) and � L,m, n;Dm̄, n; Γ,

n
B ⊃ ∆ (d).

Let D1,D2 ⊆ Dm̄ ∪ {n} be such that

L,m, n;D1; Γ,
n
A ⊃ ∆ and L,m,n;D2; Γ,

n
B ⊃ ∆ are minimal (e).

We claim that n ∈ D1 and n ∈ D2 and show our claim for the first case.
Suppose that n 6∈ D1 (f). Then we know that the filtered sequent of

L,m,n;D1; Γ,
n
A ⊃ ∆ is equal to the one of L,m,n;D1; Γ ⊃ ∆. With (f)

we obtain D1 ⊆ Dm̄. With (b) we thus know that those two L-sequents are
not valid. This conflicts to (e), hence n ∈ D1.

So D1 and D2 are of the form D1n̄ ∪ {n} and D2n̄ ∪ {n}, with n 6∈ D1n̄ and
n 6∈ D2n̄. We hence can use rule (L;∨ ⊃) on them:

L,m,n;D1n̄,n; Γ,
n
A ⊃ ∆ L,m,n;D2n̄, n; Γ,

n
B ⊃ ∆

L,m;D1n̄,D2n̄,m; Γ,
m

A ∨B ⊃ ∆

(L;∨⊃)

Now D1n̄,D2n̄ ⊆ Dm̄, hence D1n̄∪D2n̄ ⊆ Dm̄. With (1) we know D1n̄∪D2n̄ =
Dm̄.

2. m ∈ labels(Γ ∪∆) (a) and 2 L,m;Dm̄,m; Γ ⊃ ∆ (b).
From (1) we know

� L,m, n;Dm̄,m,n; Γ,
n
A ⊃ ∆ and � L,m,n;Dm̄,m, n; Γ,

n
B ⊃ ∆.

Let D1,D2 ⊆ Dm̄ ∪ {n,m} be such that

L,m, n;D1; Γ,
n
A ⊃ ∆ and L,m,n;D2; Γ,

n
B ⊃ ∆ are minimal (c).

We claim that n ∈ D1 and n ∈ D2 and show our claim for the first case.
Suppose that n 6∈ D1 (d).

Then we know that the filtered sequent of L,m, n;D1; Γ,
n
A ⊃ ∆ is equal to

the one of L,m, n;D1; Γ ⊃ ∆. From (d) we obtain D1 ⊆ Dm̄ ∪ {m}. With
(b) we thus know that those two L-sequents are not valid. This conflicts to
(c), hence n ∈ D1.

So D1 and D2 are of the form D1n̄ ∪ {n} and D2n̄ ∪ {n}, with n 6∈ D1n̄ and
n 6∈ D2n̄. We hence can use rule (L;∨ ⊃) on them:

L,m,n;D1n̄,n; Γ,
n
A ⊃ ∆ L,m,n;D2n̄, n; Γ,

n
B ⊃ ∆

L,m;D1n̄,D2n̄,m; Γ,
m

A ∨B ⊃ ∆

(L;∨⊃)
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Now D1n̄,D2n̄ ⊆ Dm̄ ∪ {m}, hence D1n̄ ∪ D2n̄ ∪ {m} ⊆ Dm̄ ∪ {m}. With (1)
we obtain D1n̄ ∪ D2n̄ ∪ {m} = Dm̄ ∪ {m}.

3. m ∈ labels(Γ ∪∆) (a) and � L,m;Dm̄,m; Γ ⊃ ∆ (b).
With (1) and (b) it is easy to see that L,m;Dm̄,m; Γ ⊃ ∆ is minimal (c).
From (2) and (a) we know that n 6= m (d).
From (3) we know by definition that n 6∈ Dm̄ (e).
With Lemma 6.42.1 we know from (c) and (3) that L,m;Dm̄,m,n; Γ ⊃ ∆ is
minimal.

From (d) and (e) we then know by Lemma 6.42.2 that L,m, n;Dm̄,m; Γ,
n
A ⊃

∆ is minimal. With (L; ·∨ ⊃) we can derive L,m;Dm̄,m; Γ,
n
A ⊃ ∆ from

it.

The case where the label of the principal formula is not in the filter of the
conclusion is covered by the following proposition.

Proposition 6.54 (minimality in CPC4 (iii))

Let L,m,n;Dm̄n̄; Γ ⊃ ∆ be an L-sequent,
n
Γ,

n
∆ and

m
Γ,

m
∆ be multisets of

formulas carrying label n and m, respectively, n 6∈ labels(Γ ∪∆) and n,m 6∈
Dm̄n̄.

Then L,m, n;Dm̄n̄; Γ,
n
Γ ⊃ ∆,

n
∆ is minimal iff L,m;Dm̄n̄; Γ,

m
Γ ⊃ ∆,

m
∆ is

minimal.

Proof. Let m, n 6∈ Dm̄n̄ (1) and n 6∈ labels(Γ ∪∆) (2).

From (1) we know by Lemma 6.42.2 that L,m,n;Dm̄n̄; Γ,
n
Γ ⊃ ∆,

n
∆ is min-

imal iff L,m, n;Dm̄n̄; Γ ⊃ ∆ is minimal. From (2) and Lemma 6.42.1 we
know that this is equivalent to L,m;Dm̄n̄; Γ ⊃ ∆ being minimal. From (1)

and Lemma 6.42.2 we know that this is equivalent to L,m;Dm̄n̄; Γ,
m
Γ ⊃ ∆,

m
∆

being minimal.

The three propositions above lead to the following theorem. It states that
for those rules that do not respect minimality, a minimal conclusion can be
deduced from minimal premises.

Theorem 6.55 (minimality in CPC4))
Let Γ and ∆ be two multisets of formulas.

1. If L;D; Γ,
m

A ∨B ⊃ ∆ is minimal then it can be derived in CPC4 from
minimal premises.

2. If L;D; Γ ⊃ ∆,
m

A ∧B is minimal then it can be derived in CPC4 from
minimal premises.
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Proof. Both claims are similar to prove. We only show claim 1.

Let L;D; Γ,
m

A ∨B ⊃ ∆ be minimal. Then we distinguish three cases.

m 6∈ L: Then the claim follows from proposition 6.52.

m 6∈ D: Then we know from Proposition 6.54 that L,m,n;D; Γ,
n
A ⊃ ∆ is

minimal. With (L; ·∨ ⊃) we can derive L,m;D; Γ,
m

A ∨B ⊃ ∆ from it.

m ∈ D: Then the claim follows from proposition 6.53.

From the theorem above we know how to recursively calculate minimal se-
quents for rules that do not respect minimality. We show this on an example
where we deduce a disjunction in the antecedent. Let

D :=

{
D : L;D; Γ,

m
A ∨B ⊃ ∆ is minimal

}
and n be a fresh label. We then consider two cases.

1. m 6∈ L: This case reflects rule (∨ ⊃). Let

D1 :=

{
D1 : L;D1; Γ,

n
A ⊃ ∆ is minimal

}
,

D2 :=

{
D2 : L;D2; Γ,

n
B ⊃ ∆ is minimal

}
,

D12 := {D1 ∪ D2 : D1 ∈ D1,D2 ∈ D2} .

D1 and D2 contain those filters that make the left and right premise
minimal. According to the theorem above we know that D ⊆ D12. Fur-

thermore we know from the correctness of CPC4 that L;D; Γ,
m

A ∨B ⊃
∆ is valid for D ∈ D12. Hence

D = {D ∈ D12 : D is minimal regarding ⊆ in D12} .

2. m ∈ L: This case reflects rule (L;∨ ⊃), (L; ·∨ ⊃) or (L;∨· ⊃). Let

D1 :=

{
D1 : L,n;D1; Γ,

n
A ⊃ ∆ is minimal

}
,

D2 :=

{
D2 : L,n;D2; Γ,

n
B ⊃ ∆ is minimal

}
,

D1n := {D ∈ D2 : n ∈ D} , D2n := {D ∈ D1 : n ∈ D} ,
D1n̄ := {D ∈ D1 : n 6∈ D} , D2n̄ := {D ∈ D2 : n 6∈ D} .

D12 := {((D1 ∪ D2) \ {n}) ∪ {m} : D1 ∈ D1n,D2 ∈ D2n} ∪ D1n̄.

D1n and D2n contain those filters that make the left and right premise
of rule (L;∨ ⊃) minimal. D1n̄ and D2n̄ contain those filters that make
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the premise of rule (L; ·∨ ⊃) or (L;∨· ⊃) minimal. According to
Lemma 6.42.2 we know that D1n̄ = D2n̄.

Now D12 contains those filters that derive from a deduction on minimal
premises. Its first part reflects rule (L;∨ ⊃), its second part reflects
the other two rules.
With the same argumentation as in case 1 we obtain

D = {D ∈ D12 : D is minimal regarding ⊆ in D12} .

Minimal Axioms

We now know how to compute the minimal conclusions from the minimal
premises. The problem that remains is to compute the minimal axioms. To
find these we need a different approach than the one we use for normal proof
search.

In normal proof search we return with success as soon as an axiom is found.
In general we don’t find all minimal axioms with this approach. Consider
the following example.

1; 1;
0
p,

0
q ⊃ 1

p,
1
q,

0
p ∧ q

1; 1;
0
p,

0
q ⊃

1
p ∨ q,

0
p ∧ q

(⊃∨)

Here we encounter a non-minimal axiom. We have still a non-atomic formula
in that axiom. If we process it we end up with two sequents containing only
atomic formulas. For these sequents we can then choose those filters that
make them minimal. In our example the empty filter is the only such filter.

1; ;
0
p,

0
q ⊃ 1

p,
1
q,

2
p 1; ;

0
p,

0
q ⊃ 1

p,
1
q,

2
q

1; ;
0
p,

0
q ⊃ 1

p,
1
q,

0
p ∧ q

(⊃∧)

1; ;
0
p,

0
q ⊃

1
p ∨ q,

0
p ∧ q

(⊃∨)

The general approach to find the minimal filters is thus to continue to back-
ward apply rules until we end up in a sequent that contains only atomic
formulas. We may stop processing formulas if we encounter an axiom with
an empty filter, because then we know that this is the only filter that turns
the sequent minimal.

An Algorithm to Compute Minimal Sequents

We now have a method to find the minimal axioms and know how to compute
the minimal sequents of the conclusion of a rule from the minimal sequents
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of its premises and can thus give an algorithm that computes the filters D
that make a sequent minimal.

The pseudocode is given in Algorithm 15 and is split up into two functions
whose arguments are all passed by value.

minFilters is used as interface function and to classify formulas. It takes
as arguments a partitioner L and two multisets of labeled formulas
representing the sequent for which we want to find the minimal filters.
For lack of space we only give the pseudocode for formulas in the
antecedent. The processing of formulas in the succedent is analogical.

First (lines 2–4) we partition the given sequent into the pairs
〈
Γa,∆a

〉
(atomic formulas),

〈
Γb,∆b

〉
(formulas that need a branching rule to

be deduced) and
〈
Γc,∆c

〉
(formulas that need a non-branching rule to

be deduced).

Then we decide on the result of the partitioning how to proceed.

If there is an axiom with an empty filter we return the set containing
the empty set (lines 5–6).
If there are formulas left to classify, we classify one of them by calling
minFilters again with the premises of the backward applied rule
(lines 7–12).
If there are no formulas left to classify but formulas that require a
branching rule to be deduced we call branch to backward apply a
branching rule (lines 13 + 14).
If only atomic formulas are left we return all filters D that for which
the given sequent is minimal (lines 15 + 16).

branch applies a branching rules backwards. Its arguments are equal to
those of minFilters.
For lack of space we only give the pseudocode for the formulas in
the antecedent. The processing of the formulas in the succedent is
analogical.

First we calculate a fresh label n with which to label the active formulas
in the premise and calculate the formulas that need a branching rule
to be deduced (lines 20 + 21).

We select a branching formula (line 22). If the label of that formula is
not in L then we backward apply rule (∨ ⊃), call minFilters for the
premises and calculate the set D12 of filters that result from applying
the rule onto minimal premises (lines 23–26). If the label of that
formula is in L then we proceed analogously (lines 27–33). Then we
calculate the set D of minimal filters of the current sequent (line 34).
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Algorithm 15 Computing minimal filters

1: function minFilters(L, Γ, ∆)

2: Γa := {
n
A ∈ Γ :

n
A is atomic}; ∆a := {

n
A ∈ ∆ :

n
A is atomic}

3: Γb := {
n
A ∈ Γ :

n
A =

n
B ∨ C}; ∆b := {

n
A ∈ ∆ :

n
A =

n
B ∧ C}

4: Γc := Γ \ (Γa ∪ Γb); ∆c := ∆ \ (∆a ∪∆b)
5: if L; ∅; Γa ⊃ ∆a is an axiom then
6: return {∅}
7: if Γc 6= ∅ then choose

n
A ∈ Γc

8: if
n
A =

n
¬B then

9: D := minFilters(L, Γ \ {
n
A}, ∆ ∪ {

n
B})

10: else .
n
A =

n
B ∧ C

11: D := minFilters(L, (Γ \ {
n
A}) ∪ {

n
B,

n
C}, ∆)

12: else if ∆c 6= ∅ then proceed analogously with ∆c

13: else if Γb ∪∆b 6= ∅ then
14: D := branch(L, Γ, ∆)
15: else . only atoms left
16: D := {D : L;D; Γ ⊃ ∆ is minimal}
17: return D
18:

19: function branch(L, Γ, ∆)
20: n := max(labels(Γ ∪∆)) + 1

21: Γb := {
m
A ∈ Γ :

m
A =

m
B ∨ C}; ∆b := {

m
A ∈ ∆ :

m
A =

m
B ∧ C}

22: if Γb 6= ∅ then choose
m
A ∈ Γb .

m
A =

m
B ∨ C

23: if m 6∈ L then

24: D1 := minFilters(L, (Γ \ {
m
A}) ∪ {

n
B}, ∆)

25: D2 := minFilters(L, (Γ \ {
m
A}) ∪ {

n
C}, ∆)

26: D12 := {D1 ∪ D2 : D1 ∈ D1,D2 ∈ D2}
27: else

28: D1 := minFilters(L ∪ {n}, (Γ \ {
m
A}) ∪ {

n
B}, ∆)

29: D2 := minFilters(L ∪ {n}, (Γ \ {
m
A}) ∪ {

n
C}, ∆)

30: D1n̄ := {D ∈ D1 : m 6∈ D}
31: D1n := D1 \ D1n̄

32: D2n := D2 \ D1n̄

33: D12 := {((D1 ∪ D2) \ {n}) ∪ {m} : D1 ∈ D1n and D2 ∈ D2n}∪
34: D1n̄

35: D := {D ∈ D12 : D is minimal in D12 regarding set inclusion}
36: else proceed analogously with ∆b

37: return D
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A Simple Example

We illustrate our algorithm on the sequent 1, 2, 3;D;
1
p,

1
¬p ∨ r,

2
¬p ∨ r ⊃ 3

r.

We call minFilters({1, 2, 3} ,
{

1
p,

1
¬p ∨ r,

2
¬p ∨ r

}
,
{

3
r
}

) to calculate the fil-

ters that make the sequent minimal.
Since the given sequent is not an axiom and all its non-atomic formulas
require a branching rule to be deduced we call branch with the given ar-
guments (line 14).

There we calculate a fresh label n = 4 (line 20), choose the formula
1

¬p ∨ r
from Γb and call minFilters to calculate D1 (line 28).

• minFilters({1, 2, 3, 4} ,
{

1
p,

4¬p,
2

¬p ∨ r
}
,
{

3
r
}

)

The given sequent is no axiom but has the formula
4¬p that needs to

be classified. We thus apply (¬ ⊃) (line 9) and call

minFilters({1, 2, 3, 4} ,
{

1
p,

2
¬p ∨ r

}
,
{

3
r,

4
p
}

)

Now we encounter an axiom. But since we still have non-atomic for-

mulas in our sequent and 1, 2, 3, 4; ∅; 1
p,

2
¬p ∨ r ⊃ 3

r,
4
p is not valid, we

continue and call branch with the given arguments (line 14).
There we calculate a fresh label n = 5 (line 20), choose the formula

2
¬p ∨ r from Γb and call minFilters to calculate D1 (line 28).

– minFilters({1, 2, 3, 4, 5} ,
{

1
p,

5¬p
}
,
{

3
r,

4
p
}

)

Since 1, 2, 3, 4, 5; ∅; 1
p,

5¬p ⊃ 3
r,

4
p is not valid and the formula

5¬p is
left to classify we apply (¬ ⊃) (line 9) and call

minFilters({1, 2, 3, 4, 5} ,
{

1
p
}
,
{

3
r,

4
p,

5
p
}

)

Now there are only atomic formulas left. We calculate the mini-
mal filters D of the given sequent and return them (lines 16–17).

We obtain D1 = {{1, 4} , {1, 5}} from minFilters (line 28) and call it
again to calculate D2 (line 29).

– minFilters({1, 2, 3, 4, 5} ,
{

1
p,

5
r
}
,
{

3
r,

4
p
}

)

Since there are only atomic formulas in this sequent we calculate
the minimal filters D and return them.

We obtain D2 = {{1, 4} , {3, 5}} from minFilters (line 29).
Now we calculate D12 (lines 30–33) for n = 5 and m = 2. D1n =
{{1, 5}}, D1n̄ = {{1, 4}}, D2n = {{3, 5}}, D12 = {{1, 2, 3} , {1, 4}}
Then we calculate the minimal sets D = {{1, 2, 3} , {1, 4}} (line 34)
and return them.
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The two sets of D correspond to the following three deductions where
we write L1n to denote the set {1, 2, . . . , n}.

L15; 1, 4;
1
p ⊃ 3

r,
4
p,

5
p

(id)

L15; 1, 4;
1
p,

4¬p ⊃ 3
r,

5
p

(¬⊃)

L14; 1, 4;
1
p,

2
¬p ∨ r ⊃ 3

r,
4
p

(L;·∨⊃)
L15; 1, 4;

1
p,

5
r ⊃ 3

r,
4
p

(id)

L14; 1, 4;
1
p,

2
¬p ∨ r ⊃ 3

r,
4
p

(L;∨·⊃)

L15; 1, 5;
1
p ⊃ 3

r,
4
p,

5
p

(id)

L15; 1, 5;
1
p,

5¬p ⊃ 3
r,

4
p

(¬⊃)

L15; 3, 5;
1
p,

5
r ⊃ 3

r,
4
p

(id)

L14; 1, 2, 3;
1
p,

2
¬p ∨ r ⊃ 3

r,
4
p

(L;∨⊃)

We obtain D1 = {{1, 2, 3} , {1, 4}} from minFilters and call it again to
calculate D2 (line 29).

• minFilters({1, 2, 3, 4} ,
{

1
p,

4
r,

2
¬p ∨ r

}
,
{

3
r
}

)

Since there are non-atomic formulas in the given sequent and because

1, 2, 3, 4; ∅; 1
p,

4
r,

2
¬p ∨ r ⊃ 3

r is not valid we continue and call branch
with the given arguments (line 14). There we calculate a fresh label

n = 5 (line 20), choose the formula
2

¬p ∨ r from Γb and call minFilters
to calculate D1 (line 28).

– minFilters({1, 2, 3, 4, 5} ,
{

1
p,

4
r,

5¬p
}
,
{

3
r
}

)

Since 1, 2, 3, 4, 5; ∅; 1
p,

4
r,

5¬p ⊃ 3
r is not valid and the formula

5¬p is
left to classify we apply (¬ ⊃) (line 9) and call

minFilters({1, 2, 3, 4, 5} ,
{

1
p,

4
r
}
,
{

3
r,

5
p
}

)

Now there are only atomic formulas left. We calculate the mini-
mal filters D of the given sequent and return them (lines 16–17).

We obtain D1 = {{1, 5} , {3, 4}} from minFilters (line 28) and call it
again to calculate D2 (line 29).

– minFilters({1, 2, 3, 4, 5} ,
{

1
p,

4
r,

5
r
}
,
{

3
r
}

)

Since there are only atomic formulas in this sequent we calculate
the minimal filters D and return them.

We obtain D2 = {{3, 4} , {3, 5}} from minFilters (line 29).
Now we calculate D12 (lines 30–33) for n = 5 and m = 2. D1n =
{{1, 5}}, D1n̄ = {{3, 4}}, D2n = {{3, 5}}, D12 = {{1, 2, 3} , {3, 4}}
Then we calculate the minimal sets D = {{1, 2, 3} , {3, 4}} (line 34)
and return them.
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The two sets of D correspond to the following three deductions where
we write L1n to denote the set {1, 2, . . . , n}.

L15; 3, 4;
1
p,

4
r ⊃ 3

r,
5
p

(id)

L15; 3, 4;
1
p,

4
r,

5¬p ⊃ 3
r

(¬⊃)

L14; 3, 4;
1
p,

4
r,

2
¬p ∨ r ⊃ 3

r

(L;·∨⊃)
L15; 3, 4;

1
p,

4
r,

5
r ⊃ 3

r
(id)

L14; 3, 4;
1
p,

4
r,

2
¬p ∨ r ⊃ 3

r

(L;∨·⊃)

L15; 1, 5;
1
p,

4
r ⊃ 3

r,
5
p

(id)

L15; 1, 5;
1
p,

4
r,

5¬p ⊃ 3
r

(id)

L15; 3, 5;
1
p,

4
r,

5
r ⊃ 3

r
(id)

L14; 1, 2, 3;
1
p,

4
r,

2
¬p ∨ r ⊃ 3

r

(L;∨⊃)

We obtain D2 = {{1, 2, 3} , {3, 4}} from minFilters (line 29). Now we
calculate D12 (lines 30–33) for n = 4 and m = 1. D1n = {{1, 4}}, D1n̄ =
{{1, 2, 3}}, D2n = {{3, 4}}, D12 = {{1, 3} , {1, 2, 3}}.
Then we calculate from D12 the minimals sets D = {{1, 3}} and thus know

that the only minimal sequent is 1, 2, 3; 1, 3;
1
p,

1
¬p ∨ r,

2
¬p ∨ r ⊃ 3

r.

6.3 Experimental Results

In this section we compare the different proving approaches on some scal-
able problems. The problems mainly aim to point out the advantages and
disadvantages of the approaches. All problems were computed under Debian
Linux 4.0 on an AMD Sempron 2600+ with 1.5 GB RAM.

To prove whether a residue sequent is valid we have investigated four main
approaches.

1. Backward apply the deduction rules and prefer rule (Res1) to (Res2).
For this approach we have investigated the following provers. PR1,
implementing no improvements (cf. Algorithm 6, p. 129). PR1g, im-
plementing general improvement (cf. Algorithm 7, p. 135). PR1u,
implementing use-check (cf. Algorithm 7, p. 142). PR1gu, implement-
ing general improvement and use-check (cf. Algorithm 9, p. 146).

2. Backward apply of the deduction rules and prefer rule (Res2) to (Res1).
For this approach we have investigated the following provers. PR2
implementing no improvements. PR2g implementing general improve-
ment. PR2u implementing use-check. PR2gu implementing general
improvement and use-check.
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3. Calculate Cl′(W,R) and use the CPC prover to verify the validity of
the sequent (cf. Algorithm 11 on page 151). When referring to this
approach we speak of the prover PRcl.

4. Compute the minimal quasi-supports to calculate Cl′(W,R) partially
and then use the CPC prover to verify the validity of the sequent (cf.
Algorithm 13, p. 159). When referring to this approach we speak of
the prover PRqs.

For each problem we investigate a sorted and a random scenario. That is
we use a sorted and a random order in which the residues are processed. To
have comparable results for the random scenario we initialize the random
number generator with the number of residues in the theory before shuffling.

For most problems the prover PR1, PR1g, PR1gu, PR2 and PR2g turn out to
be slow. We therefore examine those provers only for the first few problems
and mention them in later problems only if they perform similar or better
than the other provers.

We use graphics to visualize the given residue theories. To depict the residue
A/B we use arrows: A // B . To depict that the formula A is in a

theory we draw a circle around it: A . We combine the two elements. The

following graph for example depicts the theory A,A/B,B/A: A oo // B .

6.3.1 Problem 1: Chain of Residues

We start with a very simple residue theory that is defined as follows.

T1(n) := {p1} ∪
{

pi
pi+1

: 1 ≤ i ≤ n
}

In this theory we have a chain of residues and thus an easy closure of T1(n),
Th({p1, p2, . . . , pn+1}). Hence the prerequisites of all residues are in the
extension. Depicted as a graph T1(n) looks as follows.

p1 // p2
// · · · // pn

In the sorted scenario we use the index of the prerequisite as sort key.

Proving T1(n) ⊃ pn
2

+1

The first problem is set in a way that we have n residues and need half of
them to prove the sequent.
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Slow Provers
PR1, PR1g, PR1gu, PR1u, PR2 and PR2g show similar bad performances
(cf. Figure 6.8 and 6.9). We analyze these provers for n = 20 (cf. Table 6.1
and 6.2).

PR1 and PR1u perform equally. Use-check never succeeds for this problem.
The analysis therefore reveals the same figures for both provers.
In the sorted scenario we backward apply each residue rule about 3 million
times and the provers succeed in about 10 000 cases for (Res1) and in about
500 cases for (Res2). There are about 3 million calls of the CPC prover and
about 1000 of them succeed.
In the random scenario the figures for these two provers are a little bit better.
We backward apply each rule about 1 million times and the provers succeeds
in about 65 000 cases for (Res1) and in 10 cases for (Res2). There are about
1 million calls of the CPC prover and about 40 000 of them succeed.

PR1g and PR1gu perform marginally better than PR1.
In the sorted scenario general improvement is successful in 45 cases. We
backward apply each residue rule about 1 million times. Thereby (Res1)
succeeds in 155 and (Res2) in 10 cases. There are about 1 million calls of
the CPC prover and only 11 of them succeed.
In the random scenario general improvement succeeds in about 40 000 cases.
We backward apply each residue rule about 1 million times. Thereby (Res1)
succeeds in 104 and (Res2) in 10 cases. There are about 1 million call of the
CPC prover and only 11 of them succeed.

The fact that PR1 performs so bad is not astonishing since half of the residues
of the theory are needed to prove the problem and the strategy of the prover
is to drop the residues before taking it into consideration. This way a lot of
backtracking has to be done. Since the improvements we implemented are
of little use, the poor performance of those provers is also not astonishing.

PR2 shows the worst performance. This is not astonishing since this prover
branches for every residue it processes and therefore proving time increases
exponentially.
In the sorted scenario we backward apply each residue rule about 5 million
times. Thereby both rules succeed in about 500’000 cases. There are about
6 million calls of the CPC prover and about 1 million of them succeed.
In the random scenario the figures become even worse. We backward apply
(Res1) again about 5 million and (Res2) about 6 million times and succeed in
about 800 000 cases for (Res1) and about 1 million cases for (Res2). There
are about 7 million calls of the CPC prover and about 2 million of them
succeed.

PR2g behaves marginally better than PR2.
In the sorted scenario general improvement succeeds in half a million cases.
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Figure 6.8: Proving time of T1(n) ⊃ pn
2

+1 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR1/PR1u 2.9e6 2.9e6 – –/0 2.9e6
PR1g/PR1gu 1.0e6 1.0e6 45 –/0 1.0e6
PR2 5.0e6 5.5e6 – – 6.0e6
PR2g 524e3 1.0e6 524e3 – 1.0e6

Table 6.1: Figures of proving T1(20) ⊃ p11 (sorted order)
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Figure 6.9: Proving time of T1(n) ⊃ pn
2

+1 (random order)

Res1 Res2 gen.imp. use-check CPC
PR1/PR1u 1.0e6 0.9e6 – –/0 1.0e6
PR1g/PR1gu 0.9e6 0.9e6 41e3 –/0 0.9e6
PR2 5.1e6 6.1e6 – – 7.1e6
PR2g 525e3 1.1e6 525e3 – 1.1e6

Table 6.2: Figures of proving T1(20) ⊃ p11 (random order)
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We backward apply (Res1) about half a million (Res2) about a million times
and succeed in all but 171 cases for (Res1) and about half a million cases
for (Res2). There are about a million calls of the CPC prover of which all
but 19 succeed.
In the random scenario we have similar numbers.

Fast Provers
We have much better performance for PR2u, PR2gu, PRqs and PRcl (cf.
Figure 6.10). We analyze these provers for n = 1000 (cf. Table 6.3 and 6.4).

PR2u and PR2gu perform similar good. The analysis reveals that use-check
is responsible for the good performance. General improvement is of no use
here in combination with use-check. We backward apply (Res1) never and
(Res2) 375 750 times in the sorted and 247 487 times in the random scenario.
In both scenarios none of those backward applications fails. Use-check is
successful in all but 500 cases. There are 501 calls of the CPC prover and
all of them succeed.

PRqs performs very well. Since there are only atomic formulas involved, the
task of the algorithm for this problem is not much more than to find n times
a minimal axiom. The analysis confirms this. In both scenarios there are
501 calls of the CPC prover and all of them succeed.
The performance of the prover drops a little bit if the residues are processed
in a random order.

PRcl performs best if the residues are processed in sorted order. It performs
so well because this order is optimal for that prover.
At first the residue p1/p2 is processed. Since p1 is provable from W = {p1}
we add p2 to our theory and continue with the residue p2/p3. Now p2 is
provable from {p1, p2} and we add p3 to our theory. This scheme continues
until all residues are processed.
The analysis confirms this. There are 1001 calls of the CPC prover and none
of them fails.
The prover performs worse if the residues are processed in a random and
therefore not optimal order. Now there are about 250 000 calls of the CPC
prover of which only 1001 succeed.

Observation
For this problem we observe that PRcl depends heavily on the order in
which it processes the residues. The provers PR2u, PR2gu and PRqs are less
independent on the processing order and behave similar in both scenarios.
Use-check is especially useful for the provers that prioritize the branching
residue rule.

187



CHAPTER 6. PROOF SEARCH FOR RESIDUE SEQUENTS

 0

 20

 40

 60

 80

 100

 120

 0  1000  2000  3000  4000  5000

P
ro

v
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

n

PR2u
PR2gu

PRqs
PRcl

Figure 6.10: Proving time of T1(n) ⊃ pn+1 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 376e3 0/– 375e3 501
PRcl – – – – 1001
PRqs – – – – 501

Table 6.3: Figures of proving T1(1000) ⊃ p501 (sorted order)
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Figure 6.11: Proving time of T1(n) ⊃ pn+1 (random order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 248e3 0/– 247e3 501
PRcl – – – – 256e3
PRqs – – – – 501

Table 6.4: Figures of proving T1(1000) ⊃ p501 (random order)
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Proving T1(n) ⊃ p2 ∨ · · · ∨ pn+1

The second problem is set in a way that we have n residues and need at
least one and at most all of them to prove the sequent.

Slow Provers
For this problem we have similar results for the slower provers (cf. Figure
6.12). PR2 is still slowest followed by PR2g. Both provers don’t show much
change in performance when processing the residues randomly. PR1, PR1g,
PR1u, and PR1gu all perform equally. Their performance improves strongly
when the residues are processed in random order. However, the improvement
does not hold for all orders. In our tests there are some cases where the
proving time is as bad as with a sorted processing order.

We analyze the problem for these provers for n = 20. For PR2 and PR2g we
have exactly the same figures as for the previous problem.
The figures of the other provers for the sorted case are identical for PR1,
PR1g, PR1u, and PR1gu. Each residue rule is applied about half a million
time. For (Res1) the provers are successful in 209 cases, for (Res2) in just
one case. Neither general improvement nor use-check is successful. The CPC
prover is called half a million times and succeeds in 21 cases.
Randomizing the processing order leads in most cases to much better perfor-
mance. The figures of all provers are similar. Rule (Res1) is applied about
100 and succeeds in about 40 cases. Rule (Res2) is applied 64 times and
succeeds in one case. General improvement is successful in 3 cases for PR1g
and PR1gu. The CPC prover is called about 70 times and succeeds in about
10 cases.

Fast Provers
Again we have much better performance for PR2u, PR2gu, PRqs and PRcl
(cf. Figure 6.14 and 6.15). We analyze the provers for n = 1000 (cf. Table
6.7 and 6.8).

The performance of PRcl is equal to the previous problem. This was to be
expected since the calculation of the closure remains the same. Compared to
the other provers PRcl is again best with a sorted but worst with a random
processing order of the residues.

PRqs is in the midfield of the fast provers. In contrast to the previous
problem we now have n minimal quasi-supports instead of 1. Therefore the
prover performs worse than for the first problem. The processing order has
again only a marginal effect on its performance.

PR2u and PR2gu perform more or less equally.
In contrast to the provers that base on PR1 the figures for both scenarios are
equal. This has a simple reason. After all the first premises are processed
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Figure 6.12: Proving time of T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR1/PR1u 524e3 524e3 – –/0 524e3
PR1g/PR1gu 524e3 524e3 0 –/0 524e3
PR2 5.0e6 5.5e6 – – 6.0e6
PR2g 524e3 1.0e6 524e3 – 1.0e6

Table 6.5: Figures of proving T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (sorted order)
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Figure 6.13: Proving time of T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (random order)

Res1 Res2 gen.imp. use-check CPC
PR1/PR1u 108 64 – –/0 76
PR1g/PR1gu 105 64 3 –/0 73
PR2 5.1e6 6.1e6 – – 7.1e6
PR2g 525e3 1.1e6 525e3 – 1.1e6

Table 6.6: Figures of proving T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (random order)
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Figure 6.14: Proving time of T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 501e3 0/– 500e3 1001
PRcl – – – – 1001
PRqs – – – – 1001

Table 6.7: Figures of proving T1(1000) ⊃ p2 ∨ · · · ∨ p1001 (sorted order)
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Figure 6.15: Proving time of T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (random order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 501e3 0/– 500e3 1.0e3
PRcl – – – – 256e3
PRqs – – – – 1.0e3

Table 6.8: Figures of proving T1(1000) ⊃ p2 ∨ · · · ∨ p1001 (random order)
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the prover reaches the sequent p1, . . . , pn+1 ⊃ p2 ∨ · · · ∨ pn+1. It then calls
the CPC prover which backward applies (⊃ ∨) and succeeds with the axiom
p1, . . . ,pn+1 ⊃ p2 ∨ · · · ∨ pn,pn+1. Choosing that axiom results in have
the last residue in the chain marked as used. Therefore we have to show
for all the residues in our theory that the prerequisite is in the closure.
Because of use-check we then only branch where necessary and get the same
performance for both scenarios.

Rewriting the Succedent
The picture changes if we rewrite the formula in the succedent to pn+1 ∨
· · ·∨p2. When processing the residues in sorted order the prover now shows
the best performance and a steady behavior (cf. Figure 6.16). When using
a random order the prover performs equally good or better but shows an
unsteady behavior (cf. Figure 6.17).
The unsteady behavior has a simple reason. After all first premises are
processed the prover reaches an axiom with p2 as principal formulas. Hence
the first residue in the chain will be marked as used. Use-check will then
succeed in all nodes but the one where p1/p2 is processed. In that node
the prover has to prove the second premise. Now the closer this node is
to the root node of the search the more residues have to be processed in
the second branch and the longer the proof of the second branch will take.
Processing p1/p2 in the root node — as in the sorted scenario — is thus the
worst case for the chosen axiom. In the random scenario p1/p2 is processed
at an arbitrary position, therefore proving time may vary and does not grow
steadily.

Observation
For this problem we observe that PRqs drops in performance when the num-
ber of quasi-supports grows. Nevertheless, when processing the residues
randomly it still performs better than PRcl.
PR2gu and PR2u perform better than PRqs. A random processing order can
improve the performance of these provers if use-check is successful in most
of the cases.

Proving T1(n) ⊃ p2 ∧ · · · ∧ pn+1

The last problem we are going to analyze for T1(n) is the conjunction of all
its residues consequents. There is one minimal quasi-support and we need
the consequents of all residues to prove the validity of T1(n) ⊃ p2∧· · ·∧pn+1.

Fast Provers
Since PR2, PR2g and the provers based on PR1 perform as bad as before,
we only discuss the results of the other provers (cf. Figure 6.18 and 6.19).
We analyze the provers for n = 1000 (cf. Table 6.11 and 6.12).
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Figure 6.16: Proving time of T1(n) ⊃ pn+1 ∨ · · · ∨ p2 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 1999 0/– 1998 2
PRcl – – – – 1001
PRqs – – – – 2

Table 6.9: Figures of proving T1(1000) ⊃ p1001 ∨ · · · ∨ p2 (sorted order)
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Figure 6.17: Proving time of T1(n) ⊃ pn+1 ∨ · · · ∨ p2 (random order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 1386 0/– 1385 2
PRcl – – – – 256e3
PRqs – – – – 2

Table 6.10: Figures of proving T1(1000) ⊃ p1001 ∨ · · · ∨ p2 (random order)
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Figure 6.18: Proving time of T1(n) ⊃ p2 ∧ · · · ∧ pn+1 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 501e3 0/– 500e3 1001
PRcl – – – – 1001
PRqs – – – – 1001

Table 6.11: Figures of proving T1(1000) ⊃ p2 ∧ · · · ∧ p1001 (sorted order)
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Figure 6.19: Proving time of T1(n) ⊃ p2 ∧ · · · ∧ pn+1 (random order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 2.8e6 0/– 2.8e6 6.1e3
PRcl – – – – 256e3
PRqs – – – – 1.0e3

Table 6.12: Figures of proving T1(1000) ⊃ p2 ∧ · · · ∧ p1001 (random order)
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PRcl shows the same performance as for the previous problems.
PRqs performs better than for the previous problem. This is not astonishing,
since for this problem we only have one quasi-support. With a random
processing order the performance is even a bit better.
PR2u and PR2gu perform in the sorted scenario equally well as when proving
p2 ∨ · · · ∨ pn+1. However, for the random scenario the proving times are
doubled and the provers show the same performance as PRcl. The figures
confirm this observation. For n = 1000 there are nearly 2.8 million backward
applications of (Res2) in the random scenario while in the sorted scenario
there are only half a million. Because of use-check this results only in about
5000 more calls of the CPC prover.

Observation
For this problem we observe that although all residue are necessary, we can
avoid a lot of redundancies with to use-check. The impact of it is not as
strong as with problems where not all residues are needed. Nevertheless
PR2u and PR2gu can still compete with PRcl in the random scenario.
Furthermore this problem confirms an observation of the previous problem,
i.e. that PRqs works better if there are few quasi-supports.
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6.3.2 Problem 2: Short Chains of Residues

We continue with a simple residue theory that is defined as follows.

T2(n,m) := {pi,1 : 1 ≤ i ≤ n} ∪
n⋃
i=1

{
pi,j
pi,j+1

: 1 ≤ j ≤ m
}

In this theory we have n chains of m + 1 residues. Depicted as a graph
T2(n,m) looks as follows.

p1,1 // p1,2
// · · · // p1,m+1

p2,1 // p2,2
//

...

· · · // p2,m+1

pn,1 // pn,2 // · · · // pn,m+1

The closure of T2(n,m) contains as in the previous theory all consequents
of its residues. In the sorted scenario we use the prerequisite as primary
and the consequent as secondary sort key. The sorting of the propositions
is done lexicographically according to their indexes, i.e. for n = m = 3 we
process the residues in the following order:

p1,1

p1,2
,
p1,2

p1,3
,
p1,3

p1,4
,
p2,1

p2,2
,
p2,2

p2,3
,
p2,3

p2,4
,
p3,1

p3,2
,
p3,2

p3,3
,
p3,3

p3,4

Proving T2(n, 5) ⊃ p1,6 ∨ · · · ∨ pn,6

The first problem for T2(n,m) is set in a way that we need one of the n
chains of residues to prove it.
The problem resembles proving T1(n) ⊃ p2 ∨ · · · ∨ pn but the performances
results for the fast provers are turned upside down and three previously slow
provers turn out to be fast for one scenario.

Unsteady Provers

Fast in Sorted Scenario In the sorted scenario PR1, PR1g and PR1u
show the best performance (together with PR2u and PR2gu). PR1gu lags
a bit behind because of the overhead produced by using to improvement
methods (c.f. Figure 6.22).
PR1, PR1g, PR1u and PR1gu perform so good because of the sorted pro-
cessing order. The provers at first skip all residues until they end up in
the invalid CPC sequent p1,1, p2,1, . . . , pn,1 ⊃ p1,6 ∨ p2,6 ∨ · · · ∨ pn,6. Then
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Figure 6.20: Proving time of T2(n) ⊃ p1,6 ∨ · · · ∨ pn,6 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR2 168e6 185e6 – – 201e6
PR2g 16e6 34e6 16e6 – 34e6

Table 6.13: Figures of proving T2(5, 5) ⊃ p1,6 ∨ · · · ∨ p5,6 (sorted order)
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Figure 6.21: Proving time of T2(n) ⊃ p1,6 ∨ · · · ∨ pn,6 (random order)

Res1 Res2 gen.imp. use-check CPC
PR1/PR1u 357e3 353e3 – –/0 354e3
PR1g/PR1gu 353e3 353e3 1123 –/0 352e3
PR2 116e6 138e6 – – 174e6
PR2g 17e6 34e6 17e6 – 34e6

Table 6.14: Figures of proving T2(5, 5) ⊃ p1,6 ∨ · · · ∨ pn,6 (random order)

197



CHAPTER 6. PROOF SEARCH FOR RESIDUE SEQUENTS

they have to backtrack. Because a block of five consecutive residues is suf-
ficient to prove the sequent, they only need to backtrack five levels in the
proof search tree. The figures for n = 2000 confirm this (c.f. Table 6.15).
T2(2000, 5) contains 10 000 residues and for PR1 and PR1u we have about
the same number of applications of (Res1) and 48 applications of (Res2).
Most important, we get along with only 80 calls of the CPC prover. The
figures for PR1g and PR1gu are similar.

Slow in Random Scenario In the random scenario (c.f. Figure 6.21)
the provers based on PR1 drop heavily in performance because the residues
that are minimally needed to prove the sequent are no longer in consecutive
order. As a consequence the provers mark other residues as proved and
therefore have do a lot of backtracking. The figures for n = 5 confirm this
(c.f. Table 6.14). There are about 350 000 applications of each residue rule
and also as many calls of the CPC prover.

Fast Provers
PR2gu, PR2u, PRcl and PRqs perform comparably good. In both scenarios
PR2gu and PR2u perform best followed by PRcl and PRqs (c.f. Figure 6.22
and 6.23). We analyze the provers for n = 2000 (c.f. Table 6.15 and 6.16).

PRqs shows the same performance in both scenarios. For this problem we
have n quasi-supports which can all be extended to a support.

PRcl has for this problem a smaller drop in performance than for the previous
problem when changing to random processing order. This is due to the short
chains of residues of which the theory is built. Because there are at most 4
residues needed to prove the prerequisite of each residue, the prover has to
loop at most 5 times over the residues. Therefore the effect of the random
processing order is not as bad as with the previous theory. The figures
confirm this observation. There are only twice the number of CPC prover
calls in the random scenario compared to the sorted scenario. And this given
the fact that for the sorted scenario PRcl shows its best case behavior.

PR2gu and PR2u show the best performance for this problem. This is due
to the small number of residues that are minimally needed for the proof.
The sorted scenario leads to the best case behavior of the provers because the
five lastly processed residues form a chain that is minimally needed to prove
the sequent and in the first call of the CPC prover the algorithm chooses the
consequent of the lastly processed residue as principal formula. As a result
use-check succeeds in all but the last 5 nodes of the search tree. The figures
confirm this (c.f. Table 6.15).
In the random scenario the performance does not drop as dramatically as for
the provers based on PR1. This is because with use-check proving the second
premise can be omitted in most of the cases. However, the residues that are
minimally needed are now to find at arbitrary positions in the search tree.
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Figure 6.22: Proving time of T2(n, 5) ⊃ p1,6 ∨ · · · ∨ pn,6 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR1/PR1u 10e3 48 – –/0 80
PR1g/PR1gu 10e3 31 10 –/0 37
PR2gu/PR2u 0 10e3 0/– 10e3 6
PRcl – – – – 10e3
PRqs – – – – 6

Table 6.15: Figures of proving T2(2000, 5) ⊃ p1,6∨· · ·∨p2000,6 (sorted order)
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Figure 6.23: Proving time of T2(n, 5) ⊃ p1,6 ∨ · · · ∨ pn,6 (random order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 34e3 0/– 34e3 6
PRcl – – – – 20e3
PRqs – – – – 6

Table 6.16: Figures of proving T2(2000, 5) ⊃ p1,6 ∨ · · · ∨ pn,6 (random order)
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Therefore backtracking is done closer to the root of the search tree and thus
more residue rules have to be processed. Nevertheless, the figures show that
because of use-check we still call the CPC prover only 6 times (c.f. Table
6.16).

Observation
For this problem we observe that the provers based on PR1 can compete with
the other provers if only few residues are necessary to prove the sequent and
if they are processed in a optimal order.
The provers based on PR2u are similar fast here. The reason for this is also
because there are only few residues needed for the proof. Compared to the
prover based on PR1 the non-optimal processing order of the residues does
not have such a heavy impact.
The problem also shows that the drop in performance of PRcl for the random
scenario is not so heavy if for every residue’s prerequisite there’s a support
with only little elements, i.e. if we have short chains of residues.

Proving T2(n, 5) ⊃ p1,6 ∧ · · · ∧ pn,6

The second problem we investigate for the theory T2(n, 5) is to prove the
conjunction p1,6 ∧ · · · ∧ pn,6. To prove this sequent all residues of the theory
are necessary.

The provers PR2, PR2g and those based on PR1 perform bad. For n = 5
all of them exceed the 2 minutes limit by far. We therefore only discuss the
results of the other prover (c.f. Figure 6.24 and 6.25). The analysis is done
for n = 500 (c.f. Table 6.17 and 6.18).

Fast Provers
PRcl shows the same performance as for the previous problem because the
calculation of the closure remains the same and proving the succedent when
knowing the closure is easy. In both scenarios it performs best among the
fast provers.
Although there is now only one minimal quasi-support, the performance
of PRqs drops by a factor of about 4. This is because that quasi-support
contains all the ending elements of the residue chains. The prover therefore
has to calculate the quasi-supports for every residue’s precondition. The
figure for T2(500, 5) confirm this. There are 2501 calls of the CPC prover.
One to calculate the minimal quasi-supports of p1,6∧· · ·∧pn,6 and the others
to calculate the minimal quasi-supports for each residue’s prerequisite. If we
compare the figures for the sorted scenario with those of PRqs, then we see
that we have the same number of calls of the CPC prover. However, PRqs
uses the more efficient standard CPC prover while PRqs uses the modified
CPC prover that calculates the quasi-supports. Therefore PRqs shows a
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Figure 6.24: Proving time of T2(n, 5) ⊃ p1,6 ∧ · · · ∧ pn,6 (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 3.1e6 0/– 3.1e6 2501
PRcl – – – – 2501
PRqs – – – – 2501

Table 6.17: Figures of proving T2(500, 5) ⊃ p1,6 ∧ · · · ∧ p500,6 (sorted order)
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Figure 6.25: Proving time of T2(n, 5) ⊃ p1,6 ∧ · · · ∧ pn,6 (random order)

Res1 Res2 gen.imp. use-check CPC
PR2gu/PR2u 0 3.1e6 0/– 3.1e6 2501
PRcl – – – – 5043
PRqs – – – – 2501

Table 6.18: Figures of proving T2(500, 5) ⊃ p1,6∧ · · ·∧p500,6 (random order)
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much better performance.

PR2gu and PR2u perform worst among the fast provers. The reason becomes
obvious if we consult the figures for these provers. A fifth of the residues
turn out to be needed in the first call of the CPC prover. Hence a lot
of backtracking is required. For T2(500, 5) we end up in over 3 million
applications of (Res2). Although use-check is successful in most of the cases
— we end up in only 2501 calls of the CPC prover — the numerous residue
rule applications have their impact on the performance of the prover.
In the random scenario it is interesting to see that we have exactly the
same figures as in the sorted scenario. The order in which the residues are
processed doesn’t seems to be of great importance for this problem.

Observation
This problem shows that the performance of PR2gu and PR2u is worse if
more residues are needed for the proof of the sequent. It thus confirms the
observation made in the previous problem that those provers are fast if there
are few residues needed for the proof.
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6.3.3 Problem 3: Chain of Residues With Dead Ends

The next theory we inspect is defined as follows.

T3(n) := {p1,1} ∪
n−1⋃
i=1

{
pi,i
pi+1,j

: 1 ≤ j < i+ 1

}

This theory defines a chain of residues from p1,1 to pn,n. Furthermore from
each proposition pi,i (1 ≤ i < n) there are residues that lead to the proposi-
tions pi+1,1, . . . pi+1,i. Since there are no residues that allow us to go further
from that proposition we speak of them as dead ends. Depicted as a graph
the theory looks as follows.

p1,1

�� ""
p2,1 p2,2

{{ �� ""
p3,1 p3,2 p3,3

uu || �� ""
p4,1 p4,2 p4,3 p4,4

ss uu || �� ""
pn,n

The closure of T3(n) consists of p1,1 and all its residue’s consequents. In the
sorted scenario we use the prerequisite as primary and the consequent as
secondary sort key. The sorting of the propositions is done lexicographically
according to their indexes.

Proving T3(n) ⊃ pn,n

The problem we investigate for T3(n) is to prove pn,n, i.e. the last element
in the chain of residues going from p1,1 to pn,n.

The provers PR2, PR2g and those based on PR1 perform bad. In both
scenarios all of them already exceed the 2 minutes limit for n = 7. We
therefore omit discussing them.

Fast Provers
In the sorted scenario PRqs performs best followed by PRcl and PR2u to-
gether with PR2gu (cf. Figure 6.26 and Table 6.19). We analyze the provers
for n = 100.
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Figure 6.26: Proving time of T3(n) ⊃ pn,n (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR2gu 0 333e3 0 333e3 100
PR2u 0 333e3 – 333e3 100
PRcl – – – – 5050
PRqs – – – – 100

Table 6.19: Figures of proving T3(100) ⊃ p100,100 (sorted order)
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Figure 6.27: Proving time of T3(n) ⊃ pn,n (random order)

Res1 Res2 gen.imp. use-check CPC
PR2gu 0 267e3 0 267e3 100
PR2u 0 267e3 – 267e3 100
PRcl – – – – 167e3
PRqs – – – – 100

Table 6.20: Figures of proving T3(100) ⊃ p100,100 (random order)
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The good performance of PRqs has two reasons. Firstly there is only one
minimal quasi-support {pn,n} for the problem. Secondly there is just one
path leading from p1,1 to pn,n. Therefore all the prover has to do is follow
that path backwards. The figures for n = 100 confirm this. The prover
calls the CPC prover exactly 100 times. Once to calculate the minimal
quasi-supports of the sequent that is to prover and 99 times to calculate the
quasi-supports of a residue’s prerequisite.
PRcl calculates the whole closure and therefore has to verify for each residue
whether its prerequisite is in the closure. The sorted order is optimal for
this prover, i.e. it has to loop only once over the residues. Nevertheless it
can not compete with PRqs. The reason is because the dead ends grow
quadratically while the path from p1,1 to pn,n grows only linearly with n.
The figures confirm the claim about the optimal order. T3(100) contains
50 049 residues and PRcl calls the CPC prover 50 050 times. The extra call
is done to show that the succedent is provable from the closure of T3(n).
PR2gu and PR2u perform worst among the fast provers. The reason is also
to find in the quadratically growing number of residues. Although we can
omit proving the second premise in most of the cases, we have to process all
of them. This leads to a lot of overhead and thus to a worse performance.
The figures confirm this. For n = 100 we apply (Res2) over 300 000 times.
In all but 99 cases we can omit proving the second premise and end up in
calling the CPC prover 100 times, which is optimal for that problem.

In the random scenario PRqs, PR2gu and PR2u show similar good perfor-
mances. The random processing order even seems to improve their perfor-
mance a little bit.
PRcl drops in performance. This is because the residues are no longer pro-
cessed in an optimal order. The prover therefore has to process most of the
residues several times. The figures confirm this. For n = 100 there are now
over 160 000 calls of the CPC prover while in the optimal case there were
just about 5000 such calls.

Observation
This problem shows that PRqs outmatches the other provers if there is a
single minimal support containing only a small fraction of the residues and
most or all the residues prerequisite are in the closure of the theory.
We also see that PRcl depends the most on the order in which the residues
are processed.
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6.3.4 Problem 4: Grid With Dead Zones

The next theory we inspect is defined as follows.

T5(n) := {p1,1} ∪
{

pi,j
pi−1,j

: 1 < i ≤ n, 1 ≤ j ≤ n and j 6= i− 2

}
∪
{

pi,j
pi,j−1

: 1 ≤ i ≤ n, 1 < j ≤ n and j 6= i+ 2

}
∪
{

pi,j
pi,j+1

: 1 ≤ i ≤ n, 1 ≤ j < n and j 6= i− 2

}
∪
{

pi,j
pi+1,1

: 1 ≤ i < n, 1 ≤ j ≤ n and j 6= i+ 2

}
This theory defines a grid consisting mainly of bidirectional and some uni-
directional connections.
Following a unidirectional connection on a path starting at p1,1 leads into a
zone where no path to pn,n exists, we therefore call them dead zones.
There are 2n−1 paths of length 2n− 2 from p1,1 to p2,2. They all run along
a diagonal that consists of bidirectional connections. From that diagonal
there are unidirectional connections into the two dead zones.
The number of connections in the diagonal grows linearly with n while the
number of connections in the dead zone grows quadratically with n.
Depicted as a graph the theory T4(6) looks as follows. We use thick arrows
for the connections in the diagonal, dotted arrows for the connections lead-
ing to the dead zones and normal arrows for bidirectional connections inside
the dead zones.

p1,1 ks +3
KS

��

p1,2
//

KS

��

p1,3
oo //

OO
p1,4
oo //

OO

��

p1,5
oo //

OO

��

p1,6OO

��
p2,1
ks +3

��

p2,2
ks +3

KS

��

p2,3
//

KS

��

p2,4
oo //

OO
p2,5
oo //

OO

��

p2,6OO

��
p3,1
oo

OO

��

p3,2
ks +3

��

p3,3
ks +3

KS

��

p3,4
//

KS

��

p3,5
oo //

OO
p3,6OO

��
p4,1
oo //

OO

��

p4,2
oo

OO

��

p4,3
ks +3

��

p4,4
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KS

��

p4,5
//

KS

��

p4,6OO

p5,1
oo //

OO

��

p5,2
oo //

OO

��

p5,3
oo

OO
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p5,4
ks +3

��

p5,5
ks +3
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��

p5,6KS

��
p6,1
oo // p6,2

oo // p6,3
oo // p6,4

oo p6,5
ks +3 p6,6

The closure of T4(n) consists of p1,1 and all its residue’s consequents. In
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contrast to the previous theory there is no immediate dead-end as soon as
the dead zone is reached.
In the sorted scenario we use the prerequisite as primary and the consequent
as secondary sort key. The sorting of the propositions is done lexicographi-
cally according to their indexes.

Proving T4(n) ⊃ pn,n

The problem we investigate for T4(n) is to prove pn,n, i.e. we check whether
there’s a path from the top left to the down right position in our grid.

Fast Provers
The provers PR2, PR2g and those based on PR1 all perform bad. In both
scenarios all of them already exceed the 2 minutes limit for n = 4.

Compared to the previous problem, there are now exponentially many mini-
mal supports. PRqs performs best followed by PRcl and PR2u together with
PR2gu (cf. Figure 6.28 and Table 6.21).

PRqs performs best because with its strategy it does not enter the dead
zones. It tracks back just along the diagonal but has to process most of the
residues that span the diagonal due to the bidirectional connections. The
figures for n = 50 confirm this. There are 8(n− 1) = 392 residues that span
the diagonal and the prover requires 390 calls of the CPC prover. But that
is little compared to the 4(n2 − 2n− 2) = 9608 residue the theory has.
According to the figures the chosen processing order of the residues is opti-
mal for PRcl, i.e. it loops just once over the residues. Nevertheless it performs
worse than PRqs because in contrast to PRqs it processes all residues.
PR2gu and PR2u also enter the dead zone in their search and end up with
many superfluous rule applications. For n = 50 they apply rule (Res2) al-
most 500 000 times. Because of use-check only 99 calls of the CPC prover are
necessary, which is in fact the minimally needed number of calls. Still, the
overhead produced by processing that many residues leads to a performance
that is not as good as the other two provers.

For the random scenario PRqs performs equally good while PRcl drops in
performance and PR2gu and PR2u show an unsteady and poor performance.
For PRcl the processing order is no longer optimal, the performance thus
drops. The figures are accordingly: In contrast to the optimal case the
prover now has to process most of the residues several times and ends up in
calling the CPC prover over 140 000 time, that’s about 15 times more than
in the optimal case (cf. Table 6.22).
Using a random processing order is crucial for PR2gu and PR2u. It takes
PR2u over 20 hours to prove the problem for n = 5. Because of general
improvement PR2gu behaves better. Nevertheless for n = 25 it processes

207



CHAPTER 6. PROOF SEARCH FOR RESIDUE SEQUENTS

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100

P
ro

v
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

n

PR2u
PR2gu

PRqs
PRcl

Figure 6.28: Proving time of T5(n) ⊃ (sorted order)

Res1 Res2 gen.imp. use-check CPC
PR2gu 0 486e3 0 486e3 99
PR2u 0 486e3 – 486e3 99
PRcl – – – – 9609
PRqs – – – – 390

Table 6.21: Figures of proving T4(50) ⊃ p50,50 (sorted order)
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Figure 6.29: Proving time of T4(n) ⊃ pn,n (random order)

n Res1 Res2 gen.imp. use-check CPC
PR2gu 25 65e3 8.8e6 65e3 8.8e6 10e3
PRcl 50 – – – – 142e3
PRqs 50 – – – – 390

Table 6.22: Figures of proving T4(n) ⊃ pn,n (random order)
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nearly 9 million residue rules and ends up in about 10 000 calls of the CPC
prover.

Observation
Besides confirming the observations of the previous problem this problem
shows that general improvement can be of use in combination with use-
check. In the previous problems the provers PR2u and PR2gu performed
always similarly good while for this problem their performance differs for
the random scenario.
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6.3.5 Problem 5: Grid Without a Start

The next theory we inspect is defined as follows.

T5(n) := {p} ∪
n⋃
i=2

n⋃
j=1

{
pi,j
pi−1,j

}
∪

n⋃
i=1

n⋃
j=2

{
pi,j
pi,j−1

}

∪
n⋃
i=1

n−1⋃
j=1

{
pi,j
pi,j+1

}
∪
n−1⋃
i=1

n⋃
j=1

{
pi,j
pi+1,1

}

This theory defines a bidirectional grid with a starting point outside the
grid. It consists of 4(n2−n) residues. Depicted as a graph the theory T5(n)
looks as follows.

p p1,1
oo //

OO

��

p1,2
oo //

OO

��

p1,n−1
oo //

OO

��

p1,nOO

��
p2,1
oo //

OO

��

p2,2
oo //

OO

��

p2,n−1
oo //

OO

��

p2,nOO

��
pn−1,1

oo //
OO

��

pn−1,2
oo //

OO

��

pn−1,n−1
oo //

OO

��

pn−1,nOO

��
pn,1 oo // pn,2 oo // pn,n−1

oo // pn,n

Because from p we can not deduce the prerequisite of any residue in T5(n),
the closure of T5(n) is simply Th(p).
In the sorted scenario we use the prerequisite as primary and the consequent
as secondary sort key. The sorting of the propositions is done lexicographi-
cally according to their indexes.

Refuting T5(n) ⊃ pn,n

The problem we investigate for T5(n) is to refute pn,n.

Slow Provers
The provers PR2, PR2g, PR2gu and those based on PR1 all perform bad. In
both scenarios they exceed the 2 minutes limit already for n = 3 or n = 4.
Because of the combination of global improvement and use-check PR2gu
performs a little bit better and exceeds the 2 minutes limit for n = 7.

Fast Provers The picture for PRcl and PRqs is similar for both scenarios.
Although both provers call the CPC prover equally often PRcl performs by
far better than PRqs (c.f. Figure 6.30 and 6.31).
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Figure 6.30: Proving time of T6(n) ⊃ (sorted order)

CPC CPC > CPC ⊥
PRcl 1521 0 1521
PRqs 1521 1521 0

Table 6.23: Figures of proving T5(20) ⊃ p20,20 (sorted order)
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Figure 6.31: Proving time of T6(n) ⊃ (random order)

CPC CPC > CPC ⊥
PRcl 1521 0 1521
PRqs 1521 1521 0

Table 6.24: Figures of proving T5(20) ⊃ p20,20 (random order)
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The difference is easy to explain.
PRcl loops once over the residues to find out that no prerequisite is derivable
from p. The sequents it encounters are all of the form p ⊃ pi,j and easy to
refute.
PRqs starts with pn,n and tries to find its minimal supports. To do so
it scans through the grid calculating for every residue’s prerequisite the
minimal quasi-supports only to find out that there is no support for pn,n.
The sequents it encounters contain n2 propositions and calculating their
minimal quasi-support is much harder than refuting a very simple sequent.

Observation
In the previous two problems we have seen that the strategy of PRqs can
be advantageous. This problem shows that this strategy can as well be
disadvantageous. However, PRqs performs better than all provers that do
backward proof search.
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6.3.6 Problem 6: Grid Ripped Apart

The last theory we inspect is defined as follows.

T6(n) := {p1,1} ∪
n⋃
i=2

n+1−i⋃
j=1

{
pi,j
pi−1,j

}
∪

n⋃
i=2

n+1−i⋃
j=1

{
qi,j
qi−1,j

}

∪
n⋃
i=1

n+1−i⋃
j=2

{
pi,j
pi,j−1

}
∪

n⋃
i=1

n+1−i⋃
j=2

{
qi,j
qi,j−1

}

∪
n⋃
i=1

n−i⋃
j=1

{
pi,j
pi,j+1

}
∪

n⋃
i=1

n−i⋃
j=1

{
qi,j
qi,j+1

}

∪
n⋃
i=1

n−i⋃
j=1

{
pi,j
pi+1,1

}
∪

n⋃
i=1

n−i⋃
j=1

{
qi,j
qi+1,1

}

This theory defines a bidirectional grid that is ripped apart. It consists of
4(n2 − n) residues. Depicted as a graph the theory T6(n) looks as follows.

p1,1 oo //
OO

��

p1,2
oo //

OO

��

p1,3
oo //

OO

��

p1,n−2
oo //

OO

��

p1,n−1
oo //

OO

��

p1,n

p2,1
oo //

OO

��

p2,2
oo //

OO

��

p2,3
oo //

OO

��

p2,n−2
oo //

OO

��

p2,n−1 qn,1OO

��
p3,1
oo //

OO

��

p3,2
oo //

OO

��

p3,3
oo //

OO

��

p3,n−2 qn−1,2
oo //

OO

��

qn−1,1OO

��
pn−2,1

oo //
OO

��

pn−2,2
oo //

OO

��

pn−2,3 qn−2,3
oo //

OO

��

qn−2,2
oo //

OO

��

qn−2,1OO

��
pn−1,1

oo //
OO

��

pn−1,2 q3,n−2
oo //

OO

��

q3,3
oo //

OO

��

q3,2
oo //

OO

��

q3,1OO

��
pn,1 q2,n−1

oo //
OO

��

q2,n−2
oo //

OO

��

q2,3
oo //

OO

��

q2,2
oo //

OO

��

q2,1OO

��
q1,n

oo // q1,n−1
oo // q1,n−2

oo // q1,3
oo // q1,2

oo // q1,1

The closure of T6(n) is Th({pi,j : 1 ≤ i, j ≤ n and i+ j ≤ n+ 1}).
In the sorted scenario we use the prerequisite as primary and the consequent
as secondary sort key. The sorting of the propositions is done primary
according to their indexes and secondary according to their base name.

213



CHAPTER 6. PROOF SEARCH FOR RESIDUE SEQUENTS

Refuting T6(n) ⊃ q1,1

The problem we investigate for T6(n) is to refute q1,1. It is constructed in
a way that a bottom up and top down strategy lead to a similar amount of
work.

Slow Provers
The provers PR2, PR2g, PR2u and those based on PR1 all perform bad. In
both scenarios they exceed the 2 minutes limit already for n = 3, n = 4 or
n = 5. Because of the combination of global improvement and use-check
PR2gu performs a little bit better and exceeds the 2 minutes limit for n = 7.

Fast Provers
In the sorted scenario PRcl is clearly faster than PRqs (c.f. Figure 6.32).
This is mainly because the sorting order is close to optimal for PRcl. It
loops only twice through the residues and needs to process only half of the
residues in the second pass. The figures for n = 50 confirm this (c.f. Table
6.25). There are 14 701 calls of the CPC prover of which 4900 succeed.
PRqs has less calls of the CPC prover but it uses a CPC prover that calculates
the minimal quasi-supports, it is slower than PRqs.

In the random scenario the provers are closer together because the processing
order is now no longer optimal for PRcl (c.f. Figure 6.33). Nevertheless PRcl
is still faster than PRqs but the gap between the two provers is smaller than
for the sorted scenario. The figures confirm this observation (c.f. Table 6.26).
While PRqs is stable and has the same number of calls to the CPC prover,
PRcl now calls the CPC prover about 150 000 times.

Observation
When presenting a problem that leads to a similar amount of work for PRqs
and PRcl both provers show a good performance. The performance of PRcl
depends on the order in which the residues are processed. Nevertheless it
performs in both scenarios better than PRqs.
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Figure 6.32: Proving time of T6(50) ⊃ q1,1 (sorted order)

CPC CPC > CPC ⊥
PRcl 14 701 4900 9801
PRqs 4901 4901 0

Table 6.25: Figures of proving T6(20) ⊃ q1,1 (sorted order)
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Figure 6.33: Proving time of T6(n) ⊃ q1,1 (random order)

CPC CPC > CPC ⊥
PRcl 150e3 4900 145e3
PRqs 4901 4901 0

Table 6.26: Figures of proving T6(50) ⊃ q1,1 (random order)
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6.3.7 Conclusion

The experimental results show that the provers based on PR1 are generally
slow. They only perform good if little residues are needed for the proof and
the residues are processed in an optimal order.

The provers PR2 and PR2g perform bad for all problems we have examined.
General improvement is useful for some problems but its impact is rather
weak.

PR2gu and PR2u show good performances for most of the valid problems we
have inspected. The good performance is thereby mainly due to use-check.
The only valid problem where they perform poor is the random scenario of
problem 4. They perform best if only few of the residues are needed for
the proof and show their best behavior if these residues are processed lastly.
Both provers show a rather stable behavior when changing the processing
order of the residues. For the two harder to solve invalid problems presented
at the end they show a poor performance.

PRqs performs good for most problems. For all but its worst case scenario
(problem 5) it can compete with the other provers and performs best for
several of the examined problems. It performs best if few of the residues
are to be considered when calculating the minimal support. Furthermore,
because the underlying CPC prover uses sorted containers the processing
order of the residue has little influence on its performance.

PRcl performs good for all problems and can compete with the other provers.
It performs best for several of the examined problems but is often heavily
influenced by the order in which the residues are processed.

In summary we observe that PR2gu, PR2u, PRqs and PRcl are good enough
to check the validity of a residue sequent. The latter two seem to perform
better for the less trivial problems. And from these two, PRqs proves to be
the most stable regarding the processing order of the residues.
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Chapter 7

Proof Search in Default
Logic

For automatic proving in propositional default logic we investigate two ap-
proaches. We start with backward proof search in credulous and skeptical
default logic and refine the presented algorithms step by step. Then we
present an algorithm to compute extensions to have a comparison with ex-
tension based proving. We end the chapter with some experimental results.

7.1 Proof Search in Credulous Default Logic

In this section we investigate backward proof search for credulous default
logic. We start with a simple prover that just backward applies the rules of
cPDC and then improve it by avoiding obvious redundancies. Afterward we
further improve our algorithm by a preprocessing step to narrow the search
tree. For this improvement we use the minimal supports of the corresponding
residue theory. We close the section with the introduction of an improvement
technique that is similar to the general improvement of the residue prover.

7.1.1 A Simple Prover

A simple backward proof search algorithm for credulous default logic can
easily be given. The rules (cD1), (cD2) and (cD3) are invertible while (cD4)
and (cD5) are not. Backtracking is thus only necessary for the latter two
rules.

Lemma 7.1 ((cD1), (cD2) and (cD3) are invertible)
The rules (cD1), (cD2) and (cD3) are invertible.
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Proof. The claims follow directly from the proof of soundness and complete-
ness of cPDC.

Remark 7.2 ((cD4) and (cD5) are not invertible)
The rules (cD4) and (cD5) are not invertible.

For (cD4) consider the default sequent ∅;A, A : B

B
⊃ B. It is credulously

valid while the corresponding premise L¬B;A ⊃ B is not.

For (cD5) consider the default sequent ∅;A, > : ¬A
¬A

⊃ A. It is credulously

valid while the corresponding premise ¬LA;A,
>
¬A
⊃ A is not.

It is obvious that the order in which we process the defaults is not impor-
tant. We therefore can give a simple algorithm for backward proof search
in credulous default logic (see Algorithm 16).

The algorithm consists of three functions.

credDefProvable initiates the proof search. The given arguments are a
default theory 〈W,D〉 and the formula A that is to prove. The function
first splits D into residues R and proper defaults D′ (lines 2+3) and
then starts proof search by calling cD45 (line 4).

cD45 applies the rules (cD4) and (cD5). The given argument is a default
sequent Σ;W,R,D ⊃ A, where R holds the residues and D the proper
defaults of the sequent.
The function first checks whether any proper defaults are left in the
given sequent (line 6). If not it calls cD123 to apply the rules (cD1),
(cD2) and (cD3). Otherwise it selects a proper default δ, applies (cD4)
with δ as principal formula and recursively calls cD45 with the cor-
responding premise (lines 9–13). If necessary backtracking is done by
using a different justifications of δ as active formula in the premise.
If none of the (cD4) rule applications succeeds rule (cD5) is applied
(lines 15–17).

cD123 applies the rules (cD1), (cD2) and (cD3). Its arguments is a default
sequent that contains only residues. For simplicity the function does
not recursively call itself but just loops over the constraints Σ and tries
to verify them (lines 21–25). If all constraints are fulfilled the validity
of the succedent A is verified (line 26).

Avoiding Obvious Redundancies

The loop on lines 11–14 in function cD45 produces redundant problems.
Consider the default sequent Σ;W,D, δ ⊃ A with jus(δ) := {B1, . . . , Bn}.
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Algorithm 16 Simple proof search for credulous default logic

1: function credDefProvable(〈W,D〉, A)
2: R := {δ ∈ D : jus(δ) = ∅}
3: D′ := {δ ∈ D : jus(δ) 6= ∅}
4: return cD45(;W,R,D′ ⊃ A)

5: function cD45(Σ;W,R,D ⊃ A)
6: if D = ∅ then . only residues left, apply (cD2) and (cD3)
7: result := cD123(Σ;W,R ⊃ A)
8: else . have proper defaults, apply (cD4), (cD5)
9: choose δ ∈ D and let D′ := D \ {δ}

10: result := false
11: for B ∈ jus(δ) do . apply (cD4) for each justification
12: Σ′ := Σ ∪ {L¬B}
13: result := cD45(Σ′;W,D′, R ⊃ A)
14: if result then break . exit loop on success

15: if not result then . apply (cD5)
16: Σ′ := Σ ∪ {¬L¬B : B ∈ jus(δ)}

17: result := cD45(Σ′;W,D′, R ∪
{

pre(δ)

con(δ)

}
⊃ A )

18: return result

19: function cD123(Σ;W,R ⊃ A)
20: result = true
21: for σ ∈ Σ do
22: if σ is of the form L¬B then . left premise of (cD2)
23: result := result and resProvable(W,R ⊃ ¬B)
24: else . left premise of (cD3)
25: result := result and resRefutable(W,R ⊃ ¬B)

26: return result and resProvable(W,R ⊃ A) . right premise
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In the worst case the loop leads to the following function calls.

cD45(Σ,L¬B1;W,D ⊃ A)
cD45(Σ,L¬B2;W,D ⊃ A)
...
cD45(Σ,L¬Bn;W,D ⊃ A).

Besides checking for each extension of 〈W,D〉 whether it fulfills L¬Bi for
1 ≤ i ≤ n we also check n times instead of just once whether it fulfills Σ.

This redundancy can be avoided if we shift that loop down the search tree to
the nodes where only residues are left. An easy way to do this is to classify
the processed defaults according to the applied rule into the sets D4 and D5.
The set of constraints is thereby no longer necessary since we can construct
the constraints from D4 and D5. For δ4 ∈ D4 we know that L¬B must be
fulfilled for an arbitrary B ∈ con(δ4). For δ5 ∈ D5 we know that ¬L¬B
must be fulfilled for all B ∈ con(δ5), that is ¬L¬B must be fulfilled for all
B ∈ con(D5). The corresponding algorithm is given in Algorithm 17.

credDefProvable’ initiates the proof search. The function splits the
given defaults into residues and proper defaults and then starts proof
search by calling cD45’.

The residues of D are not passed separately to cD45’. Since they have
no justifications it is correct to regard them as defaults for which rule
(cD5) has been applied.

cD45’ applies the rules (cD4) and (cD5). Its argument is a default sequent
without constraints but with a disjoint partition (D,D4, D5) of the
defaults. D holds the defaults that are yet to be processed, D4 and
D5 hold the defaults for which (cD4) and (cD5) have been applied.

The function is similar to cD45 of Algorithm 16 but when applying
(cD4) is does not loop over the justification of the chosen default but
simply moves the chosen default to D4 (line 10). Looping is later done
in function cD123’. Applying (cD5) is done in a similar way (line 12).

cD123’ applies the rules (cD1), (cD2) and (cD3). Its argument is a default
sequent without constraints where the defaults are classified into two
sets according to the rule that has been applied to them. The function
first creates the set of residues R5 according to the classification (line
15). Then it creates and verifies the constraints. For each default
δ4 ∈ D4 it checks whether L¬B is fulfilled for one B ∈ jus(δ4) (lines
17–21) and for each default δ5 ∈ D5 it checks whether ¬L¬B is fulfilled
for all B ∈ jus(δ5) (lines 22–23). In the end it verifies the succedent,
i.e. whether W,R5 ⊃ A is valid.
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Algorithm 17 Partition based proof search for credulous default logic

1: function credDefProvable’(〈W,D〉, A)
2: R := {δ ∈ D : jus(δ) = ∅}
3: D′ := {δ ∈ D : jus(δ) 6= ∅}
4: return cD45’(W,D′, ∅, R ⊃ A)

5: function cD45’(W,D,D4, D5 ⊃ A)
6: if D = ∅ then . only residues left, apply (cD2) / (cD3)
7: result := cD123’(W,D4, D5 ⊃ A)
8: else . proper defaults left, apply (cD4) / (cD5)
9: choose δ ∈ D and let D′ := D \ {δ}

10: result := cD45’( W,D′, D4 ∪ {δ} , D5 ⊃ A ) . (cD4)
11: if not result then
12: result := cD45’( W,D′, D4, D5 ∪ {δ} ⊃ A ) . (cD5)

13: return result

14: function cD123’(W,D4, D5 ⊃ A)

15: R5 :=

{
pre(δ)

con(δ)
: δ ∈ D5

}
. residues from (cD5)

16: result := true
17: for δ ∈ D4 do . check if positive constraints are fulfilled
18: result := false . at least one constraint must hold
19: for B ∈ jus(δ) do
20: result := result or resProvable(W,R5 ⊃ ¬B)

21: if not result then break
22: for B ∈ jus(D5) do . check if negative constraints are fulfilled
23: result := result and resRefutable(W,R5 ⊃ ¬B)

24: return result and resProvable(W,R5 ⊃ A)
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7.1.2 Preprocessing

To prove the default sequent ;W,D ⊃ A the recursion done in Algorithm 17
more or less checks for each subset D5 of D whether cD123’(W,D\D5, D5 ⊃
A) is successful. With a preprocessing step we try to limit the subsets D5

of D that we have to consider. It bases on the application of (cD1). Given
D5 ⊆ D, and with it R5 := {pre(δ)/con(δ) : δ ∈ D5}, we verify in each
call of cD123’ whether W,R5 ⊃ A is valid. Thereby R5 is a subset of
R := {pre(δ)/con(δ) : δ ∈ D}. We know that W,R5 ⊃ A is only valid if
R5 contains a minimal support of 〈W,R〉 for A. The set of defaults that
corresponds to a minimal support is called a minimal requirement.

Definition 7.3 (minimal requirement)

Let 〈W,D〉 be a default theory, A ∈ L and R :=

{
pre(δ)

con(δ)
: δ ∈ D

}
.

A set D′ is called a minimal requirement of A for 〈W,D〉 if D′ ⊆ D and

R′ :=

{
pre(δ)

con(δ)
: δ ∈ D′

}
is a minimal support of A for 〈W,R〉.

The idea we follow is to calculate the minimal requirements of A for 〈W,D〉
and use them to omit applying (cD4). Suppose that Dmin is such a minimal
requirement. Then the corresponding set of residues of Rmin is a minimal
support of A. We hence know that proving A will be successful if we apply
(cD5) on the elements of Dmin. For the previous algorithm this means that
we can classify the elements of a minimal requirement as being processed by
(cD5) before we even start the proof search. The corresponding algorithm
is given in Algorithm 18.

credDefProvableMR initiates the proof search. Its difference to cred-
DefProvableMR is that it calculates the minimal requirements of
A for 〈W,D〉 and then uses them to preselect them as being processed
by (cD5) before initiating the proof search.

cD45MR is similar to cD45’. In contrast to it the formula A that is to
prove is not passed as argument. This is because we know that the
residues R5 computed from D5 in cD123’ are sufficient to prove A.

cD123MR is similar to cD123’. For the same reason as given above is does
not take the formula A that is to prove as argument. As a consequent
trying to prove A is omitted.

Calculating the Minimal Requirements

In this section we discuss how to calculate minimal requirements.
According to its definition, calculating the minimal requirements of A for
〈W,D〉 is almost equivalent to calculating the minimal supports of A for
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Algorithm 18 Proof search for credulous default logic using minimal re-
quirements

1: function credDefProvableMR(;W,D ⊃ A)
2: D5 := {δ ∈ D : jus(δ) = ∅}
3: D′ := {δ ∈ D : jus(δ) 6= ∅}
4: Dmin := minRequirements(〈W,D〉, A)
5: for Dmin ∈ Dmin do
6: result := result or cD45MR(W , D′ \Dmin, ∅, D5 ∪Dmin)

7: return result

8: function cD45MR(W , D, D4, D5)
9: if D = ∅ then . only residues left, apply (cD2) / (cD3)

10: result := cD123MR(W , D4, D5)
11: else . proper defaults left, apply (cD4) / (cD5)
12: choose δ ∈ D and let D′ := D \ {δ}
13: result := cD45MR(W , D′, D4 ∪ {δ}, D5) . (cD4)
14: if not result then
15: result := cD45MR(W , D′, D4, D5 ∪ {δ}) . (cD5)

16: return result

17: function cD123MR(W , D4, D5)

18: R5 :=

{
pre(δ)

con(δ)
: δ ∈ D5

}
. residues from (cD5)

19: result := true
20: for δ ∈ D4 do . check if positive constraints are fulfilled
21: result := false . at least one constraint must hold
22: for B ∈ jus(δ) do
23: result := result or resProvable(W,R5 ⊃ ¬B)

24: if not result then break
25: for B ∈ jus(D5) do . check if negative constraints are fulfilled
26: result := result and resRefutable(W,R5 ⊃ ¬B)

27: return result
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〈W,R〉, where R = {pre(δ)/con(δ) : δ ∈ D}.
The difference is that two minimal requirements D′1 and D′2 may have the
same corresponding minimal support R′. This is because two default rules
δ1 and δ2 may only differ in their justifications and are therefore interchange-
able in a minimal requirement.
Since constructing the minimal requirements of A for 〈W,D〉 from the min-
imal supports of A for 〈W,R〉 is easy we only discuss how to compute the
minimal supports.

The following proposition is central to our algorithm for computing minimal
supports.

Proposition 7.4 (computing minimal supports)
Let RA be a minimal support of A for 〈W,R〉.
Then there exists a minimal quasi-support R′A = {δ1, . . . , δn} of A for 〈W,R〉
and for 1 ≤ i ≤ n minimal supports Ri of pre(δi) for 〈W,R \ {δi}〉 such that
RA =

⋃n
i=1Ri ∪R′A.

Proof. Let RA be a minimal support of A for 〈W,R〉 (1). From Lemma 6.32
we know that pre(δ) ∈ Cl(W,RA) ⊆ Cl(W,R) for δ ∈ RA (i).
Let R′A = {δi, . . . , δn} be a minimal quasi-support of A for 〈W,RA〉 (2).
Then R′A ⊆ RA (ii) and R′A is also a minimal quasi-support of A for 〈W,R〉
(iii).
Let δ ∈ R′A. With (i) and (ii) we obtain from Lemma 5.14.4 that pre(δ) ∈
Cl(W,RA \ {δ}). Hence RA \ {δ} is a support of pre(δ) for 〈W,RA \ {δ}〉
and thus there exists a minimal support Rδ of pre(δ) for 〈W,R \ {δ}〉 with
Rδ ⊆ RA \ {δ}.
Now for 1 ≤ i ≤ n let Ri be a minimal support of pre(δi) for 〈W,R \ {δi}〉
with Ri ⊆ RA \ {δi} (iv). Let R1n :=

⋃n
i=1Ri ∪ R′A. From (ii) and (iv)

we know R1n ⊆ RA (v). Furthermore we know from (2) and (iv) that
A ∈ Cl(W,R1n). With (v) and (1) we thus obtain RA = R1n.

Proposition 7.4 gives us a recipe how to compute the minimal supports of A
for 〈W,R〉 from the corresponding minimal quasi-supports and the minimal
supports of the residues in those minimal quasi-supports.
We have seen that minimal quasi-supports correspond to L-minimal sequents
and have given an algorithm to compute them (cf. Algorithm 15 on page
180). Furthermore we know that if ∅ is a minimal quasi-support then it is
also a minimal support. This gives us the recursion base to compute mini-
mal supports.
We hence have everything to write down an algorithm to compute the min-
imal supports of A for 〈W,R〉 (cf. Algorithm 19).

The algorithm first computes the minimal quasi-supports of A for 〈W,R〉
(line 2).
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If there exists no minimal quasi-supports or the only minimal quasi-support
is the empty set, then we’re done and can return the result (lines 3–4).
Otherwise we recursively calculate for each residue δ that is part of a minimal
quasi-support the minimal supports ms[δ] of pre(δ) for 〈W,R \ {δ}〉 (lines
5–6). The recursion is known to terminate because the set of residues is
reduced with each step.
From the recursively calculated minimal supports ms[δ] we then calculate
according to Proposition 7.4 the set of supports S[A] of which we know that
it contains all minimal supports of A for 〈W,R〉 (lines 8–12). From S[A] we
remove the non-minimal elements and obtain like this the minimal supports
of A for 〈W,R〉.

Algorithm 19 Computing minimal supports

1: function minSupports(〈W,R〉, A)
2: MQS := minQuasiSupports(〈W,R〉, A)
3: if MQS = ∅ or MQS = {∅} then . recursion base
4: return MQS

5: for δ ∈
⋃

MQS do . calculate min. supports of residues in MQS
6: ms[δ] := minSupports(〈W,R \ {δ}〉, pre(δ))

7: S[A] := ∅
8: for mqs ∈ MQS do . extend min. quasi supports to supports
9: S[mqs] := mqs

10: for δ ∈ mqs do
11: S[mqs] := {S[mqs] ∪ ms : ms ∈ ms[δ]}
12: S[A] := S[A] ∪ S[mqs]

13: MS := {s ∈ S : s minimal in S regarding ⊆}
14: return MS

7.1.3 Residual Improvement

The idea we follow with residual improvement takes place in the function
cD123’ and cD123MR, respectively. There we calculate R5 from D5. De-
pending on whether a default δ is in D4 or D5 we have the following cases.

δ ∈ D4: Then we check if W,R5 ⊃ ¬B is provable for some B ∈ jus(δ).

If this succeeds then we know that is also succeeds for a set of residues
R′5 with R5 ⊆ R′5, i.e. for a partition (D′4, D

′
5) with D5 ⊆ D′5.

If this fails then we know that is also fails for a set of residues R5 with
R′5 ⊆ R5, i.e. for a partition (D′4, D

′
5) with D′5 ⊆ D5.

δ ∈ D5: Then we check if W,R5 ⊃ ¬B is refutable for all B ∈ jus(δ).
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If this succeeds then we know that it also succeeds for a set of residues
R′5 with R′5 ⊆ R5, i.e. for a partition (D′4, D

′
5) with D′5 ⊆ D5.

If this fails then we know that it also fails for a set of residues R′5 with
R5 ⊆ R′5, i.e. for a partition (D′4, D

′
5) with D5 ⊆ D′5.

The two cases are dual to each other. That is W,R5 ⊃ ¬B is provable for
some B ∈ jus(δ) iff W,R5 ⊃ ¬B is not refutable for all B ∈ jus(δ). We
therefore treat the two cases in a dual sense.

The idea of residual improvement is to first check according to the cases
above whether the provability or refutability of a residue sequent is known
from previously gained results.

The function cD123MRG given in Algorithm 20 illustrates proof search
based on minimal requirement and residual improvement.

cD123MRG loops over the defaults of D4 and D5 and uses the function
verifySkippedDefault to check the constraints produced by the
default.

verifySkippedDefault verifies whether the given default δ is skippable
for the given residue theory 〈W,R〉. We say that a default is skippable
for 〈W,R〉, if one of its justifications is not fulfilled in 〈W,R〉.

The function uses the global maps skippable[] and nonskippable[].
They map from a default δ to a set of sets of residues {R1, . . . , Rn} and
hold the information for which set of residues Ri a default’s justifica-
tions are know to be not met and met in 〈W,Ri〉, respectively. Hence
if R ∈ skippable[δ] then W,R ⊃ ¬B is provable for some B ∈ jus(δ). If
R ∈ nonskippable[δ] then W,R ⊃ ¬B is not provable for all B ∈ jus(δ).

The function first checks whether R is a superset of a set R′ of which
we know that the given default is skippable for 〈W,R′〉 (lines 10–11).
If it is then we know that the given default is also skippable for the
given theory and can return with success.

The function then checks whether R is a subset of a set R′ of which we
know that the given default is not skippable for 〈W,R′〉 (lines 12–13).
If it is then we know that the given default is also not skippable for
the given theory and can return with failure.

If the previous two checks did not reveal any information the function
verifies whether all positive constraints derived from δ are met (lines
15–16) and caches the result accordingly (lines 17–20).

verifyPosConstraint verifies whether the positive constraint LA, given
by the formula A, is fulfilled in the given residue theory 〈W,R〉.
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Algorithm 20 Residual improvement for proof search in credulous default
logic

1: function cD123MRG(W , D4, D5)

2: R5 :=

{
pre(δ)

con(δ)
: δ ∈ D5

}
3: result := true
4: for δ ∈ D4 do
5: result := result and verifySkippedDefault(W , R5, δ)

6: for δ ∈ D5 do
7: result := result and not verifySkippedDefault(W , R5, δ)

8: return result

9: function verifySkippedDefault(W , R, δ)
10: if {R′ ∈ skippable[δ] : R′ ⊆ R} 6= ∅ then
11: return true
12: if {R′ ∈ nonskippable[δ] : R′ ⊇ R} 6= ∅ then
13: return false
14: result := false
15: for B ∈ jus(δ) do
16: result := result or verifyPosConstraint(W , R, ¬B)

17: if result then
18: skippable[δ] += R
19: else
20: nonskippable[δ] += R

21: function verifyPosConstraint(W , R, A)
22: if {R′ ∈ fulfilled[A] : R′ ⊆ R} 6= ∅ then
23: return true
24: if {R′ ∈ unfulfilled[A] : R′ ⊇ R} 6= ∅ then
25: return false
26: result := ResProvable(W,R ⊃ A)
27: if result then
28: fulfilled[A] += R
29: else
30: unfulfilled[A] += R

31: return result
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The function uses the global maps fulfilled[] and unfulfilled[]. They
map from a formula A to a set of sets of residues {R1, . . . , Rn} and
hold the information for which set of residues Ri the constraint LA is
known to be fulfilled and not fulfilled in 〈W,Ri〉, respectively. Hence if
R ∈ fulfilled[A] then W,R ⊃ A is provable. If R ∈ unfulfilled[A] then
W,R ⊃ A is not provable.

The function first check whether R is a superset of a set R′ for which
we know that LA is fulfilled in 〈W,R′〉. If it is then we know that LA
is also fulfilled in the given theory and return with success.

The function then checks whether R is a subset of a set R′ for which
we know that LA is not fulfilled in 〈W,R′〉. If it is then we know that
LA is also not fulfilled in the given theory and return with failure.

If the previous two checks did not reveal any information the function
verifies whether the constraint is fulfilled (line 26) and then caches the
result accordingly (lines 27–30).

Improving Cached Results

We can narrow down the set of residues for which a constraint LA holds if
we use in verifyPosConstraint a residue prover that provides us with a
support Rsprt ⊆ R of A for 〈W,R〉. That is instead of adding R to fulfilled[A]
we add the possibly smaller set Rsprt to it.

We can narrow down the set of residues in skippable[δ] accordingly. That
is if W,R ⊃ ¬B is valid for a justification B ∈ jus(δ) and Rsprt ⊆ R is a
support of it for 〈W,R〉 then we add Rsprt instead of R to skippable[δ].

Implementation Remarks

In our implementation we use vectors to store the defaults of a theory and
to store the justifications of a default. We therefore identify a default or
residue of a theory by its index and a justification of a default of a theory
by a pair of indexes, i.e. the index of its default and its index in the vector
of justifications. For the four global maps we use these indexes to identify
the defaults and justifications. Hence skippable[] and nonskippable[] map
from an index d, representing a default, to a set of indexes {r1, . . . , rn},
representing a set of residues, and fulfilled[] and unfulfilled[] map from a
pair of indexes 〈d, j〉, representing the j’s justification of the d’s default to
a set of indexes {r1, . . . , rn}, representing a set of residues.

With such maps the algorithm may be less effective because two equal jus-
tifications from different residues will have different map entries.
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Furthermore two different defaults may have the same residual part. A set
of residues may thus be a subset of another one while the corresponding sets
of indexes are not in a subset relation.

Proof Search for Normal Default Theories

Reiter [24] shows that if a default theory is normal then an extension is
known to exist. If a normal default theory has a consistent base theory then
the extensions are known to be consistent, otherwise L is its only extension.

For proof search we take advantage of this fact. Let 〈W,D〉 be a normal
default theory. To prove whether 〈W,D〉 credulously entails A we first verify
whether W ⊃ A is valid. If it is valid then we know — independent of
whether the base theory is consistent or not — that A is in all extensions of
〈W,D〉 and can return with success.

If W does not entail A then W must be consistent. We then calculate the
minimal requirements Dmin of A for 〈W,D〉. Now let Dmin ∈ Dmin.

• If W ∪ con(Dmin) is consistent then it is easy to see that there exists
an extension E with Dmin ⊆ GD(D,E).

• If W ∪ con(Dmin) is not consistent for Dmin ∈ Dmin then we know,
because all extensions are consistent, that no extension E exists such
that GD(D,E) contains Dmin.

We thus know that A is credulously entailed by 〈W,D〉 iff W ∪ con(Dmin) is
consistent for some Dmin ∈ Dmin.

7.2 Proof Search in Skeptical Default Logic

In this section we investigate backward proof search for skeptical default
logic. We start with a simple prover that backward applies the rules of
sPDC. As in the credulous case this prover has obvious redundancies and
we show how to avoid them by reducing the branching grade. Then we
introduce residual improvement for skeptical default logic. That is we show
how to use the provability or refutability of residue sequents encountered in
proof search to decide provability or refutability of other, yet unprocessed
residue sequents encountered in proof search. We close the section with
use-check for skeptical default logic.
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7.2.1 A Simple Prover

A simple backward proof search algorithm for skeptical default logic can
easily be given. Rule (sD4) is invertible while (sD1), (sD2) and (sD3) are
not. Backtracking is thus only necessary for the rules that are defined on
residue sequents.

Lemma 7.5 ((sD4) is invertible)
The rule (sD4) is invertible.

Proof. Because (sD4) is the only rule that deduces proper defaults, the claim
follows directly from the soundness and completeness of sPDC.

Remark 7.6 ((sD1), (sD2) and (sD3) are not invertible)
It is obvious that the rules (sD1), (sD2) and (sD3) are not invertible.

(sD1) Consider ¬Lp; p ⊃ q. This sequent is skeptically valid but p ⊃ q is
not valid.

(sD2) Consider ¬Lq; p ⊃ p. This sequent is skeptically valid but p ⊃ q is
not valid.

(sD3) Consider Lp; p ⊃ p. This sequent is skeptically valid but p ⊃ p is
valid, i.e. not refutable.

According to the previous lemma and remark we can give a simple algorithm
for backward proof search in skeptical default logic (see Algorithm 21).

The algorithm consists of three functions.

skepDefProvable initiates the proof search. The given arguments are a
default theory 〈W,D〉 and the formula A that is to prove.
The function first splits D into residues R and proper defaults D′ (lines
2+3) and then starts proof search by calling sD4 (line 4).

sD4 applies rule (sD4). Its argument is a default sequent that has its de-
faults split into residues R and proper defaults D.
If D is empty then the function applies (sD1) (line 7) and if this is not
successful calls sD23 to apply the rules (sD2) and (sD3).
If D is not empty then the function selects a proper default δ ∈ D as
principal formula and recursively tries to prove the most left premise
(line 13) and the other premises (lines 14–15).

sD23 applies rules (sD2) and (sD3). Its arguments is a default sequent that
contains only residues.
The function simply checks whether for one of the given constraints
the appropriate rule succeeds (lines 20–23).
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Algorithm 21 Simple proof search for skeptical default logic

1: function skepDefProvable(〈W,D〉, A)
2: R := {δ ∈ D : jus(δ) = ∅}
3: D′ := {δ ∈ D : jus(δ) 6= ∅}
4: return sD4(;W,R,D′ ⊃ A)

5: function sD4(Σ;W,R,D ⊃ A)
6: if D = ∅ then . only residues left, apply (sD1), (sD2), (sD3)
7: result := resProvable(W,R ⊃ A)
8: result := result or sD23(Σ;W,R ⊃ A)
9: else . have proper defaults, apply (sD4)

10: choose δ ∈ D
11: D′ := D \ {δ}
12: R′ := R ∪ {pre(δ)/con(δ)}
13: result := sD4(Σ ∪ {¬L¬B : B ∈ jus(δ)} ;W,R′, D′ ⊃ A)
14: for B ∈ jus(δ) do
15: result := result and sD4(Σ ∪ {L¬B} ;W,R,D′ ⊃ A)

16: return result

17: function sD23(Σ;W,R ⊃ A)
18: result := false
19: for σ ∈ Σ do
20: if σ is of the form ¬L¬B then
21: result := result or resProvable(W,R ⊃ ¬B) . (sD2)
22: else
23: result := result or resRefutable(W,R ⊃ ¬B) . (sD3)

24: return result
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;W,
A1 : B11, B12

C1
,
A2 : B21, B22

C2
⊃ ∆

0 ¬L¬B11,¬L¬B12;W,
A1

C1
,
A2 : B21, B22

C2
⊃ ∆

0.0 ¬L¬B11,¬L¬B12,¬L¬B21,¬L¬B22;W,
A1

C1
,
A2

C2
⊃ ∆

0.1 ¬L¬B11,¬L¬B12,L¬B21;W,
A1

C1
⊃ ∆

0.2 ¬L¬B11,¬L¬B12,L¬B22;W,
A1

C1
⊃ ∆

1 L¬B11;W,
A2 : B21, B22

C2
⊃ ∆

1.0 L¬B11,¬L¬B21,¬L¬B22;W,
A2

C2
⊃ ∆

1.1 L¬B11,L¬B21;W ⊃ ∆

1.2 L¬B11,L¬B22;W ⊃ ∆

2 L¬B12;W, δ2 ⊃ ∆

2.0 L¬B12,¬L¬B21,¬L¬B22;W,
A2

C2
⊃ ∆

2.1 L¬B12,L¬B21;W ⊃ ∆

2.2 L¬B12,L¬B22;W ⊃ ∆

Figure 7.1: Redundancies in the simple prover

Avoiding Obvious Redundancies

The simple prover given above has redundancies. To illustrate this consider
the residue sequents inspected by it for

S =;W,
A1 : B11, B12

C1
,
A2 : B21, B22

C2
⊃ ∆.

Suppose that S is skeptically valid. Then the prover will encounter nine
different sequents that contain only residues (cf. Figure 7.1). For each of
them applying either (sD1), (sD2) or (sD3) will succeed.

Consider rule (sD1). This rule uses only the non-constraint part of the
sequent. If we remove the constraints from the nine sequents in question
then we obtain only four different sequents:

W,
A1

C1
,
A2

C2
⊃ ∆, W,

A1

C1
⊃ ∆, W,

A2

C2
⊃ ∆, W ⊃ ∆.
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Hence five of nine applications of (sD1) are redundant in this simple example.

Consider rule (sD2). It verifies for a negative constraint ¬L¬B whether ¬B
is valid in the current antecedent. Consider the positions 0.1 and 0.2. If there
applying (sD1) fails then the prover may check twice whether W,A1/C1 ⊃
¬B11 or W,A1/C1 ⊃ ¬B12 is valid. At position 1.0 and 2.0 we have a similar
situation for ¬L¬B21 and ¬L¬B22.

Consider rule (sD3). It verifies for a negative constraint L¬B whether ¬B
is refutable in the current antecedent. The sequents at positions 1.1 and 1.2
contain the constraint L¬B11. The prover may thus verify twice whether
W ⊃ ¬B11 is refutable. We have similar situations for L¬B12 at positions
2.1 and 2.2, for L¬B21 at positions 1.1 and 2.1 and for L¬B22 at positions
1.2 and 2.2.

These redundancies arise if there are defaults with more than one justifica-
tion. To avoid them we can delay branching over the justification until only
residues are left. The idea is similar to the one we use in the credulous case
where we partition the defaults into D4 and D5.

Instead of modifying the antecedent and the set of constraints for proof
search we just split the defaults into two disjoint sets Din and Dout. Din

holds the defaults whose residual part is to be added to the antecedent and
reflects the most left premise of (sD4). Dout holds the defaults whose residual
part is not to be added to the antecedent and reflects the other premises of
(sD4).
From Din we can calculate the residue theory in the antecedent and the
negative constraints. It is obvious how to do this.
From Dout we can calculate the positive constraints. Now because a default
δ ∈ Dout represents proving |jus(δ)| sequents, Dout reflects several sets of
positive constraints. Namely those that contain from each default δi in Dout

exactly one positive constraint L¬Bi where Bi is a justification of δi. Such
a set of positive constraints thus corresponds to a tuple of

∏
δ∈Dout

jus(δ).

To illustrate this approach consider our example in Figure 7.1. Let δ1 be
the first and δ2 be the second default of our sequent. Then there are four
possibilities to partition the defaults into (Din, Dout).

({δ1, δ2} , {}) reflects the set of sequents of position 0.0, i.e. those sequents
having the non-constraint part W,A1/C1, A2/C2 ⊃ ∆.

({δ1} , {δ2}) reflects the set of sequents of position 0.1 and 0.2, i.e. those
sequents having the non-constraint part W,A1/C1 ⊃ ∆.

({δ2} , {δ1}) reflects the set of sequents of position 1.0 and 2.0, i.e. those
sequents having the non-constraint part W,A2/C2 ⊃ ∆.

({} , {δ1, δ2}) reflects the set of sequents of position 1.1, 1.2, 2.1 and 2.2, i.e.
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(Din, Dout) Σin Sout Rin

1 ({δ1, δ2} , {})
¬L¬B11,¬L¬B12,
¬L¬B21,¬L¬B22

∅ A1

C1
,
A2

C2

2 ({δ1} , {δ2}) ¬L¬B11,¬L¬B12 {L¬B21} , {L¬B22}
A1

C1

3 ({δ2} , {δ1}) ¬L¬B21,¬L¬B22 {L¬B11} , {L¬B12}
A2

C2

4 ({} , {δ1, δ2}) ∅

{L¬B11,L¬B21} ,
{L¬B11,L¬B22} ,
{L¬B12,L¬B21} ,
{L¬B12,L¬B22}

∅

Table 7.1: Sequents encountered when partitioning the defaults

those sequents having the non-constraint part W ⊃ ∆.

The general case is covered by the following definition.

Definition 7.7 (S(Din,Dout))
Let ;W,D ⊃ ∆ be the default sequent and (Din, Dout) a disjoint partition
of D with Dout = {δ1, δ2, . . . , δm}. Furthermore let

Rin =

{
pre(δ)

con(δ)
: δ ∈ Din

}
Σin = {¬L¬pre(δ) : δ ∈ Din}

Sout =

{
{L¬B1,L¬B2, . . . ,L¬Bm} : 〈B1, B2, . . . , Bm〉 ∈

m∏
i=1

jus(δi)

}
.

Then we define the set S(Din,Dout) of default sequents as

S(Din,Dout) = {Σin,Σout;W,Rin ⊃ ∆ : Σout ∈ Sout} .

For an example consider Table 7.1 which lists the sets Σin, Sout and Rin of
our example according to the possible partitions.

The procedure to verify whether the sequents in a set S(Din,Dout) are all
skeptically valid is straight forward.

1. Check whether W,Rin ⊃ ∆ is valid. This corresponds to the backward
application of (sD1) for all sequents in S(Din,Dout).

2. If the above check did not succeed then check whether W,Rin ⊃ ¬B
is valid for some ¬L¬B ∈ Σin. This corresponds to the backward
application of (sD2) for all sequents in S(Din,Dout).
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3. If the above two checks did not succeed then check whether every
Σout ∈ Sout contains a constraint L¬B such that W,Rin ⊃ ¬B is
refutable. This corresponds to the backward application of (sD3) for
all sequents in S(Din,Dout).

The last point given above is equivalent to check whether W,Rin ⊃ ¬Bi is
refutable for all Bi ∈ jus(δ) of an arbitrary default δ ∈ Dout. This equiva-
lence is easy to see.
Suppose that there is no default δ ∈ Dout for which this is fulfilled. Then
there exists for each default δi ∈ Dout a justification Bi ∈ jus(δi) for which
W,Rin ⊃ ¬Bi is not refutable. Hence there is a tuple 〈B1, . . . , Bm〉 ∈∏m
i=1 jus(δi) such that W,Rin ⊃ ¬Bi is not refutable for 1 ≤ i ≤ m.

Suppose that there is a default δj ∈ Dout for which this is fulfilled. Since
every tuple 〈B1, B2, . . . , Bm〉 ∈

∏m
i=1 jus(δi) contains a justification of δj we

then know that every Σout ∈ Sout contains a constraint L¬Bj such that
W,Rin ⊃ ¬Bj is refutable.

The algorithm for this approach is given in Algorithm 22 and consists of
three function.

skepDefProvable’ initiates the proof search. The given arguments are a
default theory 〈W,D〉 and the formula A that is to prove.
The function first moves the residues of D to Din and the proper
residues to D′ (lines 2+3) and starts proof search by calling sD4 (line
4).

sD4 recursively creates all possible disjoint partitions of the set of defaults
and calls sD123 to verify a partition. The given argument are two sets
of defaults Din and Dout representing a partial partition of the defaults,
the base theory W , the set of defaults D that is still to partition and
the formula A that is to prover.

sD123 checks whether the sequents represented by the given partition are
skeptically valid. Its arguments are a disjoint partition (Din, Dout) of
the defaults, the base theory W and the formula A that is to prove.
The function proceeds according to the three steps given above. It first
verifies whether W,Rin ⊃ A is valid (line 15). If this fails it checks the
negative constraints (lines 16–18). If this also fails then it checks the
positive constraints (lines 19–24).

A further advantage of that approach is that we use in sD123 the same
residue theory to prove or refute different formulas. If we there use the prover
based on minimal quasi-supports, then the cached information regarding
minimal quasi-supports of each residue can be reused. If we use the prover
based on the closure then Cl′(W,R) needs to be calculated only to once.
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Algorithm 22 Partition based proof search for skeptical default logic

1: function skepDefProvable’(〈W,D〉, A)
2: D′ := {δ ∈ D : jus(δ) 6= ∅}
3: Din := {δ ∈ D : jus(δ) = ∅}
4: return sD4(Din, ∅, W , D′, A)

5: function sD4(Din, Dout, W , D, A)
6: if D = ∅ then
7: result := sD123(Din, Dout, W , A)
8: else
9: choose δ ∈ D

10: result := sD4(Din ∪ {δ}, Dout, W , D \ {δ}, A) and
11: sD4(Din, Dout ∪ {δ}, W , D \ {δ}, A)

12: return result

13: function sD123(Din, Dout, W , A)
14: Rin := {pre(δ)/con(δ) : δ ∈ Din}
15: result := resProvable(W,Rin ⊃ A) . try (sD1)
16: if not result then . (sD1) not successful, try (sD2)
17: for B ∈

⋃
δ∈Din

jus(δ) do
18: result := result or resProvable(W,Rin ⊃ ¬B)

19: if not result then . (sD1) and not (sD2) successful, try (sD3)
20: for δ ∈ Dout do
21: result := true
22: for B ∈ jus(δ) do
23: result := result and resRefutable(W,Rin ⊃ ¬B)

24: if result then break
25: return result
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7.2.2 Residual Improvement

As in the credulous case there are also situations where we can conclude
the provability or refutability of a premise of (sD1), (sD2) or (sD3) from
previously gained results, because the fragment of default logic reduced to
residues is monotonic. To illustrate this consider our example in Table 7.1.

1.0 If (sD1) fails on line 2, i.e. W,A1/C1 ⊃ ∆ is not provable, then (sD1)
is known to fail on line 4, i.e. W ⊃ ∆ is not provable.

1.1 If (sD1) succeeds on line 2, i.e. W,A1/C1 ⊃ ∆ is provable, then (sD1)
is known to succeed on line 1, i.e. W,A1/C1, A2/C2 ⊃ ∆ is provable.

2.0 If (sD2) fails for ¬L¬B11 on line 1, i.e. W,A1/C1, A2/C2 ⊃ ¬B11 is
not provable, then (sD2) is known to fail for ¬L¬B11 on line 2, i.e.
W,A1/C1 ⊃ ¬B11 is not provable,.

2.1 If (sD2) succeeds for ¬L¬B11 on line 2, i.e. W,A1/C1 ⊃ ¬B11 is
provable, then (sD2) is known to succeed for ¬L¬B11 on line 1, i.e.
W,A1/C1, A2/C2 ⊃ ¬B11 is provable.

3.0 If (sD3) fails for L¬B11 on line 4, i.e. W ⊃ ¬B11 is not refutable, then
(sD3) is known to fail for L¬B11 on line 3, i.e. W,A2/C2 ⊃ ¬B11 is
not refutable.

3.1 If (sD3) succeeds for L¬B11 on line 3, i.e. W,A2/C2 ⊃ ¬B11 is refu-
table, then (sD3) is known to succeed for L¬B11 on line 4, i.e. W ⊃
¬B11 is refutable.

The general scheme of this easy to see. Each line in our figure represents
a disjoint partition of the defaults D of our default theory. Let (Din, Dout)
and (D′in, D

′
out) be two such partitions and Rin and R′in as in definition 7.7.

We use the fact that if Din ⊆ D′in then Rin ⊆ R′in.

1.0 If (sD1) fails for partition (Din, Dout) then it will fail for any partition
(D′in, D

′
out) with D′in ⊆ Din, because

PRC 0W,Rin ⊃ ∆ =⇒ PRC 0W,R′in ⊃ ∆ if R′in ⊆ Rin.

1.1 If (sD1) succeeds for partition (Din, Dout) then it will succeed for any
partition (D′in, D

′
out) with D′in ⊇ Din, because

PRC `W,Rin ⊃ ∆ =⇒ PRC `W,R′in ⊃ ∆ if R′in ⊇ Rin.

2.0 If (sD2) fails for constraint ¬L¬B for partition (Din, Dout) then it will
fail for ¬L¬B for any partition (D′in, D

′
out) with D′in ⊆ Din, because

PRC 0W,Rin ⊃ ¬B =⇒ PRC 0W,R′in ⊃ ¬B if R′in ⊆ Rin.
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2.1 If (sD2) succeeds for constraint ¬L¬B for partition (Din, Dout) then
it will succeed for ¬L¬B for any partition (D′in, D

′
out) with D′in ⊇ Din,

because

PRC `W,Rin ⊃ ¬B =⇒ PRC `W,R′in ⊃ ¬B if R′in ⊇ Rin.

3.0 If (sD3) fails for constraint L¬B for partition (Din, Dout) then it will
fail for L¬B for any partition (D′in, D

′
out) with D′in ⊇ Din, because

PRRC 0W,Rin ⊃ ¬B =⇒ PRRC 0W,R′in ⊃ ¬B if R′in ⊇ Rin.

3.1 If (sD3) succeeds for constraint L¬B for partition (Din, Dout) then it
will succeed for L¬B for any partition (D′in, D

′
out) with D′in ⊆ Din,

because

PRRC `W,Rin ⊃ ¬B =⇒ PRRC `W,R′in ⊃ ¬B if R′in ⊆ Rin.

Lifting Residual Improvement

The general scheme of the rules (sD2) and (sD3) applies to constraints. We
can lift it from the constraint to the partition level.

Let 〈W,D〉 be a default theory, (Din, Dout) and (D′in, D
′
out) be two disjoint

partitions of D and Rin, Σin, R′in and Σ′in be as in definition 7.7.

2.0 Suppose that (sD2) fails for all constraints in Σin, i.e.

PRC 0W,Rin ⊃ ¬B for all B ∈
⋃

δ∈Din

jus(δ).

Let R′in ⊆ Rin. Then we know

PRC 0W,R′in ⊃ ¬B for all B ∈
⋃

δ∈Din

jus(δ).

R′in ⊆ Rin implies D′in ⊆ Din, we thus know

PRC 0W,R′in ⊃ ¬B for all B ∈
⋃

δ′∈D′in

jus(δ′).

Hence (sD2) is known to fail for all constraints in Σ′in if D′in ⊆ Din.

2.1 Suppose that (sD2) succeeds for a constraint ¬L¬B ∈ Σin, i.e.

PRC `W,Rin ⊃ ¬B.

Let R′in ⊇ Rin. Then we know PRC `W,R′in ⊃ ¬B.

Rin ⊆ R′in implies Σin ⊆ Σ′in, therefore our witness ¬L¬B is also in
Σ′in. Hence (sD2) is known to succeed for ¬L¬B ∈ Σ′in if Din ⊆ D′in.
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3.0 Suppose that for every δ ∈ Dout there exists B ∈ jus(δ) such that

PRRC 0W,Rin ⊃ ¬B.

Let R′in ⊇ Rin. Then we know PRRC 0W,R′in ⊃ ¬B (1).

Rin ⊆ R′in implies D′out ⊆ Dout. Hence we know that for every δ′ ∈
D′out there exists B ∈ jus(δ′) such that (1) holds.

3.1 Suppose that there exists δ ∈ Dout such that

PRRC `W,Rin ⊃ ¬B for all B ∈ jus(δ).

Let R′in ⊆ Rin. Then we know

PRRC `W,R′in ⊃ ¬B for all B ∈ jus(δ).

R′in ⊆ Rin implies Dout ⊆ D′out, hence our witness δ is also in D′out.

The lifted the general scheme of rule (sD2) turns out to be equivalent to the
scheme of (sD1). We therefore end up with four different cases.

1. If (sD1) and (sD2) fail for (Din, Dout) then they also fail for (D′in, D
′
out)

with D′in ⊆ Din.

2. If (sD1) or (sD2) succeeds for (Din, Dout) then the corresponding rule
also succeeds for (D′in, D

′
out) with D′in ⊇ Din.

3. If (sD3) fails for (Din, Dout) then it also fails for (D′in, D
′
out) with D′in ⊇

Din.

4. If (sD3) succeeds for (Din, Dout) then it also succeeds for (D′in, D
′
out)

with D′in ⊆ Din.

To make use of the scheme we need to remember whether a partition failed
for (sD1) and (sD2), succeeded for (sD1) or (sD2), failed for (sD3), or suc-
ceeded for (sD3). Then we use that information to prevent superfluous
provability checks.

A modified version of the function sD123 is given in Algorithm 23. It uses
the global variables R⊥12, R>12, R⊥3 and R>3 . They hold those sets of residues
Rin for which (sD1) and (sD2) failed, (sD1) or (sD2) succeeded, (sD3) failed
and (sD3) succeeded, respectively.
There are two differences to sD123 of Algorithm 22.

1. It first checks whether the result for the given partition (Din, Dout)
is already known (lines 3–6). If yes, it immediately returns with the
appropriate result, otherwise it proceeds as in Algorithm 22.

2. It updates the four global variables according to the result (lines 11–14
and 21–24)
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Algorithm 23 Residual improvement in proof search for skeptical default
logic

1: function sD123R(Din, Dout, W , A)
2: Rin := {pre(δ)/con(δ) : δ ∈ Din}
3: if

{
R ∈ R>12 : R ⊆ Rin

}
6= ∅ or

{
R ∈ R>3 : R ⊇ Rin

}
6= ∅ then

4: return true . known to succeed
5: if

{
R ∈ R⊥12 : R ⊇ Rin

}
6= ∅ or

{
R ∈ R⊥3 : R ⊆ Rin

}
6= ∅ then

6: return false . known to fail
7: result := resProvable(W,Rin ⊃ A) . try (sD1)
8: if not result then . (sD1) not successful, try (sD2)
9: for B ∈

⋃
δ∈Din

jus(δ) do
10: result := result or resProvable(W,Rin ⊃ ¬B)

11: if result then
12: R>12 := R>12 ∪ {Rin} . remember success of (sD1)/(sD2)
13: else
14: R⊥12 := R⊥12 ∪ {Rin} . remember failure of (sD1)/(sD2)

15: if not result then . (sD1) and not (sD2) successful, try (sD3)
16: for δ ∈ Dout do
17: result := true
18: for B ∈ jus(δ) do
19: result := result and resRefutable(W,Rin ⊃ ¬B)

20: if result then break
21: if result then
22: R>3 := R>3 ∪ {Rin} . remember success of (sD3)
23: else
24: R⊥3 := R⊥3 ∪ {Rin} . remember failure of (sD3)

25: return result
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Improving Cached Results

As in the credulous case we can narrow down the set of residues Rin for
which (sD1) or (sD2) holds if we use a residue prover in function sD123R
that provides us with a support Rsprt of the proven sequent (lines 7 or 10).
That is we add the possibly smaller set Rsprt instead of Rin to R>12.

We can also use the supports to narrow down the set or residues stored
in R⊥3 . However, this case is more complicated because there we need for
each default δi ∈ Dout a justification Bi ∈ δi for which W,Rin ⊃ ¬Bi is
not refutable, i.e. for which that sequent is provable. We hence have |Dout|
supports: For each such justification Bi a support Rsprt,i. The set that we
have to store in R⊥3 instead of Rin is thus the union of those supports Rsprt,i.
By uniting the supports Rsprt,i we loose detailed information about the failed
refutations. It is therefore advantageous to also maintain for each default
δ ∈ δ a set R⊥δ3 and to consult that set to check whether the refutation of a
constraint derived from δ is know to fail before executing the loop on lines
18–19.

Implementation Remarks

As in the credulous case our implementation differs from the pseudocode. In
the implementation we use vectors to store the defaults of a theory and the
justifications of a default. We therefore identify a default and its residual
part by its index and the justification of a default of a theory by a pair of
indexes. For R⊥12, R>12, R⊥3 and R>3 we use these indexes instead of residues
and may thus become less effective because two different defaults may have
the same residual part. A set of residues may thus be a subset of another
one while the corresponding sets of indexes are not in a subset relation.

7.2.3 Use-Check

In this section we show a method to avoid superfluous calls to sD4, namely
the second recursive call on line 11. To successfully apply the method we
need in sD123 a residue prover that provides us on success with the corre-
sponding support. The idea behind use-check is as follows.

Examine the recursion in sD4. In the first recursive call (line 10) we extend
the given partial partition (Din, Dout) to (Din ∪ {δ} , Dout). Hence every suc-
cessive call of sD123 processes a partition (D′in ∪ {δ} , D′out) with Din ⊆ D′in
and Dout ⊆ D′out.
Suppose that the first recursive call succeeds. Then we know that sD123
succeeds for every partition (D′in ∪ {δ} , D′out) with Din ⊆ D′in and Dout ⊆
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D′out. Then we processes the second recursive call (line 11). There we ex-
tend (Din, Dout) to (Din, Dout ∪ {δ}). Hence every successive call of sD123
processes a partition (D′in, D

′
out ∪ {δ}) with Din ⊆ D′in and Dout ⊆ D′out.

For every (D′in ∪ {δ} , D′out) in the first recursive call there exists thus a
counterpart (D′in, D

′
out ∪ {δ}) in the second recursive call. Under certain

circumstances we can deduce the success of (D′in, D
′
out ∪ {δ}) from the suc-

cess of (D′in ∪ {δ} , D′out). These circumstances depend on the succeeding
rule.

(sD1) Suppose that (sD1) succeeds and the support that witnesses the suc-
cess does not contain the residue derived by δ, i.e. the witness is a
subset of

{
pre(δ)/con(δ) : δ ∈ D′in

}
.

Then we know that (sD1) will also succeed with the same witness for
(D′in, D

′
out) and hence also for (D′in, D

′
out ∪ {δ}).

(sD2) Suppose that (sD2) succeeds and the support that witnesses the suc-
cess does not contain the residue derived by δ, i.e. the witness is a
subset of

{
pre(δ)/con(δ) : δ ∈ D′in

}
. Furthermore suppose that the

negative constraint ¬L¬B for which (sD2) succeeds does not derive
from a justification of δ, i.e. B ∈ jus(D′in).
Then we know that (sD2) also succeeds with the same witness for
(D′in, D

′
out) and hence also for (D′in, D

′
out ∪ {δ}) for the same negative

constraint ¬L¬B.

(sD3) Suppose that (sD3) succeeds for (D′in ∪ {δ} , D′out).
Then it is known to also succeed for (D′in, D

′
out ∪ {δ}) according to

residual improvement.

Consider the calls of sD123 that succeed in the first recursive call. If in
each of these calls we encounter one of the above cases then we know that
the second recursive call will also be successful and can thus omit it.

According to the cases above the way to apply use-check is obvious. We
mark those defaults as being used whose corresponding residues appear in
the witness of successful (sD1) and (sD2) applications. If (sD2) succeeds for
a negative constraint ¬L¬B then we also mark that default as being used
from which the constraint derives.

Example

An example for use-check is given in Figure 7.2. It shows the encountered
calls to resProvable and resRefutable together with the resulting set
of used defaults for the sequent

p, q,
p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q2
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p, q,
p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q2

1 p, q,
p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q

1.1 p, q,
p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q2

1.1.1 p, q,
p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q2

(sD1): PRC ` p, q, p
p1
,
q

q1
,
q1

q2
⊃ q2

used[1.1.1] =

{
q : q1

q1
,
q1 : q2

q2

}
1.1.2 p, q,

p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q2

(sD1): PRC 0 p, q,
p

p1
,
q

q1
⊃ q2

(sD2): PRC 0 p, q,
p

p1
,
q

q1
⊃ ¬p1, PRC 0 p, q,

p

p1
,
q

q1
⊃ ¬q1

(sD3): PRRC ` p, q, p
p1
,
q

q1
⊃ ¬q2

used[1.1.2] = {}

used[1.1] = used[1.1.1] ∪ used[1.1.2] =

{
q : q1

q1
,
q1 : q2

q2

}
1.2 p, q,

p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q2

1.2.1 p, q,
p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q2

(sD1): PRC 0 p, q,
p

p1
,
q1

q2
⊃ q2

(sD2): PRC 0 p, q,
p

p1
,
q1

q2
⊃ ¬p1, PRC 0 p, q,

p

p1
,
q1

q2
⊃ ¬q2

(sD3): PRRC ` p, q, p
p1
,
q1

q2
⊃ ¬q1

used[1.2.1] = {}

1.2.2 p, q,
p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q2 can be omitted.

used[1.2] = used[1.2.1] = {}

used[1] = used[1.1] ∪ used[1.2] =

{
q : q1

q1
,
q1 : q2

q2

}
2 p, q,

p : p1

p1
,
q : q1

q1
,
q1 : q2

q2
⊃ q can be omitted.

Figure 7.2: Use-check in sPDC
Elements of Din are marked green, those of Dout are marked red.
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At 1.1.1 (sD1) succeeds with support {q/q1, q1/q2}. We remember the cor-
responding defaults in used[1.1.1].
Since q1 : q2/q2 is marked as being used we have to process 1.1.2. There
(sD3) succeeds. The set used[1.1.2] of used defaults is thus empty.
Having processed both branches of 1.1 we can compute its set of used de-
faults used[1.1] = used[1.1.1] ∪ used[1.1.2]. Because q : q1/q1 is in used[1.1]
we have to process 1.2.
At 1.2.1 (sD3) succeeds. The set used[1.2.1] of used defaults is thus empty.
Because q1 : q2/q2 is not marked as being used in used[1.2.1] we can omit
proving 1.2.2 and know that there exists a proof of it with used[1.2.1] as set
of used defaults.
Because we have not processed 1.2.2 the set of used defaults of 1.2 is simply
the one of 1.2.1.
From used[1.1] and used[1.2] we can now compute the set used[1] of used
defaults for 1. Because there p : p1/p1 is not marked as being used we can
omit proving 2 and can return with success.

Switching Recursive Calls

Use-check is also applicable if we switch the recursive calls in sD4 of Al-
gorithm 22, that is if we call sD4(Din, Dout ∪ {δ}, W , D \ {δ}, A) before
sD4(Din ∪ {δ}, Dout, W , D \ {δ}, A).

Consider a partition (D′in, D
′
out ∪ {δ}) and its counterpart (D′in ∪ {δ} , Dout).

We then encounter the following situations.

1. If (sD1) or (sD2) is successful for (D′in, D
′
out ∪ {δ}) then we know from

residual improvement that the corresponding rule will also be success-
ful for (D′in ∪ {δ} , D′out).

2. If (sD3) is successful for (D′in, D
′
out ∪ {δ}) then it is unknown whether

(sD3) is successful for (D′in ∪ {δ} , D′out).

We can thus omit the second recursive call if in the first recursive call rule
(sD3) never succeeded.

Verifying CPC Provability First

In the skeptical case there is no special procedure for normal default theories.
We can however take up the idea to first verify CPC provability. If A follows
from the base theory W of a default theory 〈W,D〉, then A is known to be
in every extension of 〈W,D〉 because every extension includes W .
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7.3 Extension Based Proving

A further approach to prove default sequents is to use extension based prov-
ing, i.e. to calculate the extensions of a default theory and to check whether
the succedent is in one extension (credulous case) or in all extensions (skep-
tical case). To have a comparison to the sequent calculus based provers we
have implemented a simple algorithm to compute the extensions of a default
theory 〈W,D〉. The algorithm we use is a refinement of the “naive” method
introduced by Marek and Truszczyński [19] who compute extensions based
on well-orderings of the defaults.

Instead of well-orderings we use so called default-chains to compute exten-
sions and start by introducing some definitions we need for our algorithm.

Definition 7.8 (applicable default)
Let T be a set of formulas. A default δ is called applicable for T if

T ` pre(δ) and T 0 ¬B for all B ∈ jus(δ).

Definition 7.9 (default-chain)
Let 〈W,D〉 be a finite default theory and D := (δ1, . . . , δn) be a sequence of
pairwise distinct defaults of D. Then D is called a default-chain of 〈W,D〉
if

1. δi is applicable for W ∪ {con(δ1), . . . , con(δi−1)} for all δi ∈ D,

2. W, con(D) 0 ¬B for all B ∈ jus(D).

A default-chain D = (δ1, . . . , δn) of 〈W,D〉 is called extendable if there exists
δ ∈ D \D such that (δ1, . . . , δn, δ) is a default-chain of 〈W,D〉. We then call
δ appendable to D for W and write D ◦ δ for the extended default-chain.

A default-chain is called maximal if it is not extendable.

Two default-chains that contain the same elements are called set-equal .

Notation 7.10 (default-chain as set of defaults)
As in the definition above we often write D to refer the set containing the
elements of D, for example δ ∈ D, con(D) or jus(D). It always follows from
the context whether we refer to a default-chain or to the set of its elements.

Example 7.11 (default-chains)

Let W := ∅ and D :=

{
: q

q
,
: r

r
,
r : s

s
,
r : ¬s
¬s

,
: ¬q,¬r

t

}
.

245



CHAPTER 7. PROOF SEARCH IN DEFAULT LOGIC

Then the following default-chains of 〈W,D〉 exist:

D∅ := ()

D1 :=

(
: q

q

)
D2 :=

( : r

r

)
D5 :=

( : ¬q,¬r
t

)
D12 :=

(
: q

q
,
: r

r

)
D21 :=

(
: r

r
,
: q

q

)
D23 :=

( : r

r
,
r : s

s

)
D24 :=

( : r

r
,
r : ¬s
¬s

)
D123 :=

(
: q

q
,
: r

r
,
r : s

s

)
D124 :=

(
: q

q
,
: r

r
,
r : ¬s
¬s

)
D213 :=

(
: r

r
,
: q

q
,
r : s

s

)
D214 :=

(
: r

r
,
: q

q
,
r : ¬s
¬s

)
D231 :=

(
: r

r
,
r : s

s
,
: q

q

)
D241 :=

(
: r

r
,
r : ¬s
¬s

,
: q

q

)
.

The default-chains D5, D123, D124, D213, D214, D231 and D241 are maximal
for 〈W,D〉, the others are extendable.
The example also shows that two different default-chains can have the same
elements. D123 and D231 for example are set-equal.

The following two sequences are no default-chains of 〈W,D〉:

D32 :=
(r : s

s
,
: r

r
,
)

D51 :=

(
: ¬q,¬r

t
,
: q

q

)
Although D32 contains the same defaults as D23 it is not a default-chain
because it violates the first requirement of Definition 7.9. D235 is also no
default-chain because it violates the second requirement.

The idea we follow is to find maximal default-chains D of 〈W,D〉 that repre-
sent extensions. In the example above these are D123, D213, D124 and D214.
According to the following theorem a maximal default-chain D represents
an extension if D \D holds no default that is applicable for W ∪ con(D).

Theorem 7.12 (maximal default-chain as extension)
Let D be a maximal default-chain of a finite default theory 〈W,D〉. If there
exists no δ ∈ D \D that is applicable for W ∪con(D) then Th(W ∪ con(D))
is an extension of 〈W,D〉.

Proof. Let D := (δ1, . . . , δn) be a maximal default-chain of 〈W,D〉 (1) and
suppose that there exists no default δ ∈ D \D that is applicable for W ∪
con(D) (2).
Let E := Th(W ∪ con(D)) and Ei be according to Theorem 5.5, i.e.

E0 := W

Ei+1 := Th(Ei) ∪ {con(δ) : δ ∈ D,pre(δ) ∈ Th(Ei) and E ∩ ¬jus(δ) = ∅} .
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Consider δ ∈ D. Then we know from (1) that E ∩ ¬jus(δ) = ∅ (3).
Consider δ ∈ D \D. Then we know from (2) that we either have pre(δ) 6∈ E
(4), or pre(δ) ∈ E and E∩¬jus(δ) 6= ∅ (5). If (4) holds then pre(δ) 6∈ Th(Ei)
for an arbitrary i because Th(Ei) ⊆ E. If (5) holds then we trivially have
E∩¬jus(δ) 6= ∅. Hence the defaults in D\D can be ignored in the definition
of Ei+1. Together with (3) this yields

Ei+1 = Th(Ei) ∪ {con(δ) : δ ∈ D, pre(δ) ∈ Th(Ei)} thus
∞⋃
i=0

Ei ⊆ E.

We now show by induction on i that con(δi) ∈ Ei.

i = 1: Then we know from (1) that W ` pre(δ1), i.e. pre(δi) ∈ Th(E0) hence
con(δ1) ∈ E1.

i = j + 1: For k ≤ j we know by induction hypothesis that con(δk) ∈ Ek.
Since Ei ⊆ Ei+1 we have W ∈ Ej (i) and con(δk) ∈ Ej (ii) for k ≤ j.
From (1) we know that W ∪ con(δ1), . . . , con(δj) ` pre(δj+1). With (i)
and (ii) this yields pre(δj+1) ∈ Th(Ej) and thus con(δj+1) ∈ Ej+1.

Hence E ⊆
⋃∞
i=0Ei and thus E =

⋃∞
i=0Ei, i.e. E ∈ Ext(W,D).

Remark 7.13 (non-maximal default-chains as extensions)
It is possible that a non-maximal default-chain D of 〈W,D〉 corresponds
to an extension E of 〈W,D〉, i.e. E = Th(W ∪ con(D)). This is because
generally not every appendable default has a yet unknown consequent.

For example let W := {p, q} and D :=
{p : r

r
,
q : r

r

}
. Then D :=

(p : r

r

)
is a non-maximal default-chain of 〈W,D〉 and Th(W ∪ con(D)) is the only
extension of 〈W,D〉.
A non-maximal default-chain that corresponds to an extension can easily be
extended to a maximal default-chain by appending all remaining applicable
defaults to it. The order in which they are appended is arbitrary.

The next theorem ensures that for each extension there exists a correspond-
ing maximal default-chain.

Theorem 7.14 (extension as maximal default-chain)
Let E be an extension of a finite default theory 〈W,D〉. Then there exists
a maximal default-chain D of 〈W,D〉 such that E = Th(W ∪ con(D)).

Proof. Let E be an extension of a finite default theory 〈W,D〉 and let Ei be
according to Theorem 5.5, i.e.

E0 := W

Ei+1 := Th(Ei) ∪ {con(δ) : δ ∈ D,pre(δ) ∈ Th(Ei) and E ∩ ¬jus(δ) = ∅} .
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Let n be the smallest number such that En+1 = Th(En) = E. Because
〈W,D〉 is finite we know that such an n exists. Let D1, . . . , Dn be the
disjoints non-empty sets of defaults defined as follows.

Di := {δ ∈ D : pre(δ) ∈ Th(Ei) and E ∩ ¬jus(δ) = ∅} \
i−1⋃
j=1

Dj

Then Di contains exactly those defaults whose conclusions define the second
part in the definition of Ei+1, i.e.

Th(Ei+1) = Th(W ∪
i⋃

j=1

con(Dj)), hence E = Th(W ∪
n⋃
i=1

con(Di)).

For δ ∈ Di we have jus(δ) ∩E = ∅ and W, con(D1), . . . , con(Di−1) ` pre(δ).
Let Di = {δi,1, . . . , δi,mi} for 1 ≤ i ≤ n. Then the following sequence defines
a default-chain for 〈W,D〉.

D := 〈δ1,1, . . . , δ1,m1 , δ2,1, . . . , δ2,m2 , . . . , δn,1, . . . , δn,mn〉

D contains all defaults of D that are applicable for E. Because E is an
extension of 〈W,D〉 there exists no other applicable default for E besides
those in D. Hence D is maximal.

A maximal default-chain that corresponds to an extension must not have
the form as given in the proof above. This is because a default-chain is
defined element-wise while Ei+1 is defined set-wise.

Let 〈W,D〉 :=

〈
∅,
{

: p

p
,
: q

q
,
p : r

r

}〉
. Then

(
: p

p
,
p : r

r
,
: q

q

)
is a maximal

default-chain that corresponds to the only extension E = Th(con(D)) of
〈W,D〉 but does not have the form as given in the proof above.

7.3.1 Computing Extensions

From Theorem 7.14 we know that for every extension of 〈W,D〉 there exists a
corresponding maximal default-chain of 〈W,D〉. Furthermore Theorem 7.12
gives us the requirements a maximal default-chain must have to correspond
to an extension. A simple method to compute the extensions of a default
theory is therefore to compute first all its maximal default-chains and then
compute from them the extensions according to Theorem 7.12. Since a
default-chain is built up element-wise, an algorithm to compute all maximal
default-chains can easily be given (see Algorithm 24).

In our example we have seen that two different default-chains can be set-
equal. It is easy to see that if two set-equal default-chains D1 and D2
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Algorithm 24 Computing maximal default-chains

1: function maxDefChains(〈W,D〉)
2: return extendChain(() ,W,D)

3: function extendChain((D,W,D))
4: D+ := {δ ∈ D : δ appendable to D for W}
5: if D+ = ∅ then
6: return {D}
7: else
8: result := {}
9: for δ ∈ D+ do

10: result := result ∪ extendChain(D ◦ δ,W,D \ {δ})
11: return result

correspond to the extensions E1 and E2 then these extensions must be equal.
To compute the extension of a default theory from the maximal default-
chains it is thus sufficient to consider only one representative among the
set-equal maximal default-chains. A way to find just one representative is
based on the following observation.

Consider a default-chain D of 〈W,D〉 and suppose that a maximal default-
chain D1 includes the elements of D. Then it is easy to see that there exists
a maximal default-chain D2 that is set-equal to D1 and has D as a prefix.
To find a representative of all set-equal maximal default-chains that include
D it is thus sufficient to consider only those that start with D.

Now let δ ∈ D\D be appendable to D for W . According to the remark above
we have to consider two options to extend D to a maximal default-chain.

1. We calculate the maximal default-chains that start with D ◦ δ, i.e. we
recursively proceed the search with D ◦ δ.

2. We calculate the maximal default-chains that start with D but do not
contain δ, i.e. we mark δ to be not appendable for following recursive
calls and recursively proceed our search with D.

By marking defaults to be not appendable the recursion may stop before
a maximal default-chain is reached. On recursion end we thus first check
whether the marked defaults turned out to be not appendable anymore in
the meantime. If this is the case then the default-chain is maximal and we
can decide according to Theorem 7.12 whether it represents an extension.
Otherwise we know that a maximal default-chain that includes the elements
of the current default-chain is considered in another recursion branch of our
algorithm.
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An algorithm that follows this strategy to compute the extensions of a de-
fault theory is given in Algorithm 25.

Algorithm 25 Computing extensions of a default theory

1: function extensions(W,D,D, Dout)
2: find δ ∈ D that is applicable for W ∪ con(D)
3: if such a δ exists then
4: D′ := D \ {δ}
5: if δ is appendable to D for W then
6: return extensions(W , D′, D ◦ δ, Dout) ∪
7: extensions(W , D′, D, Dout ∪ {δ})
8: else
9: return extensions(W , D′, D, Dout ∪ {δ})

10: else
11: if no δ ∈ Dout is applicable for W ∪D then
12: return {{W ∪ pre(D)}}
13: else
14: return {}

The function extensions takes four arguments. The base theory W , the
set of defaults D that may be appendable, the default-chain D that is to
be maximized, and the set of defaults Dout that were marked to be not
appendable or that were applicable but not appendable at a lower recursion
level.

The algorithm distinguishes between applicable and appendable defaults to
avoid redundancies.
A default that is applicable for W ∪D but not appendable to D for W is
known to be not appendable in following recursive calls. It therefore does
not have to be considered there anymore. In order that an extended version
D′ of the current default-chain D represents an extension, such a default
must turn out to be not applicable for D′.
An appendable default that is marked to be not appendable must also turn
out to be not applicable for an extended version D′ of the current default-
chain D in order that D′ is maximal and represents an extension.
We therefore treat both kinds of defaults equally and add them to the set
of defaults Dout that have to be not applicable on recursion end to confirm
a default-chain to be maximal and represent an extension.

There is a further optimization we use that is not visible in the pseudocode.
When searching for an applicable default on line 2 we may encounter defaults
whose prerequisites follows from W ∪con(D) but whose justifications are not
met. It is clear that such defaults need not be checked anymore in following
recursive calls.
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Example

A possible run of extensions(W,D,D, Dout) for example 7.11 is given in
Figure 7.3. There the first appendable default in D is marked green. On
recursion end a maximal default-chain is marked green and a non-maximal
one red. If a maximal default-chain represents an extension then its recursion
label is marked green otherwise it is marked red.
There are exactly three maximal default-chains. None of them is set-equal
to an other. The first two (1.1.1 and 1.1.2.1) represent extensions while the
last of them (2.2.1) does not because there are defaults in Dout that are
applicable but not appendable.

7.4 Experimental Results

In this section we compare the different proving approaches on some scal-
able problems. The problems mainly aim to point out the advantages and
disadvantages of the approaches. All problems were computed under Debian
Linux 4.0 on an AMD Sempron 2600+ with 1.5 GB RAM.

To prove whether a default sequent is credulously valid we have investigated
three main approaches.

1. Do backward application of the deduction rules and prefer rule (cD4)
to (cD5). For this approach we have investigated the following provers.
PR4, implementing no improvements (cf. Algorithm 17, p. 221).
PR4m, implementing the approach with minimal requirements (cf. Al-
gorithm 18, p. 223). PR4r, implementing residual improvement (cf.
Algorithm 20, p. 227). PR4mr, implementing the approach with min-
imal requirements and residual improvement.

2. Do backward application of the deduction rules and prefer rule (cD5) to
(cD4). For this approach we have investigated the following provers.
PR5, implementing no improvements. PR5m, implementing the ap-
proach with minimal requirements. PR5r, implementing residual im-
provement and PR5mr, implementing the approach with minimal re-
quirements and residual improvement.

3. Iterate through the extensions according to Algorithm 25 and check
with the CPC prover whether the succedent is in the extension. The
prover that follows this strategy is called PRext.

To prove whether a default sequent is skeptically valid we have also investi-
gated three main approaches.

1. Do backward application of the deduction rules by partitioning the
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Figure 7.3: Example run of extensions(W,D,D, Dout)
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defaults and prefer dropping a default, i.e. we start with a maximal
Dout. For this approach we have investigated the following provers.
PR0, implementing no improvements. PR0r, implementing residual
improvement. PR0u, implementing use-check. PR0ru, implementing
residual improvement and use-check.

2. Do backward application of the deduction rules by partitioning the
defaults and prefer keeping a default, i.e. we start with a maximal
Din. For this approach we have investigated the following provers.
PR1, implementing no improvements, PR1r, implementing residual im-
provement, PR1u, implementing use-check and PR1ru, implementing
residual improvement and use-check.

3. Iterate through the extensions according to Algorithm 25 and check
with the CPC prover whether the succedent is in the extension. The
prover that follows this strategy is called PRext.

For each problem we investigate a sorted and a random scenario, that is we
use a sorted and a random order in which the defaults are processed. To
have comparable results for the random scenario we initialize the random
number generator with the number of residues in the theory before shuffling.

Many of the provers are slow for most problems. We therefore examine all
provers only for the first problem and discuss for later problems only the
fast provers.

We use graphics to visualize the given default theories. To depict the default
A : B1, B2/C we use labeled arrows, where the label corresponds to the

justification of the default: A
B1,B2 // C . To depict that the formula A is in

the base theory we draw a circle around it: A .

7.4.1 Problem 1: Chain of Defaults

We start with a very simple residue theory that is defined as follows.

T1(n) := {p1} ∪
{
pi : pi+1, q

pi+1
: 1 ≤ i ≤ n

}
Because we have special cases for normal theories, the justification q is added
to operate over a non-normal default theory.

In this theory we have a chain of defaults and thus the single extension
Th(p1, . . . , pn+1). Depicted as a graph T1(n) looks as follows.

p1
p2,q // p2

p3,q // · · ·
pn+1,q // pn+1

In the sorted scenario we use the index of the prerequisite as sort key.
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Proving T1(n) ⊃ pn
2

+1

The problem is set in a way that there exists one minimal requirement that
consists of the first n

2 defaults.

Credulous Provers
Since all defaults of T1(n) are generating for the only extension of T1(n), the
provers that prefer (cD5) follow for this theory an optimal strategy to find
an extension that contains pn

2
+1. The results are accordingly (cf. figures 7.4

and 7.5). We analyze the slow provers for n = 20 and the fast prover for
n = 500 (cf. tables 7.2 and 7.3).

PR4 and PR4g perform worst because they have to do maximal backtrack-
ing. PR4 is a bit faster than PR4g. This indicates that residual improvement
is for this example counterproductive. For n = 20 we can omit about a thou-
sand PRC proofs but this does not weight up the overhead introduced by
residual improvement.
PR4m and PR4mg perform somewhat better than PR4 and PR4g because
they don’t apply (cD4) on defaults that are in the minimal requirement.
The figures for n = 20 confirm this. In the sorted scenario (cD4) can be
omitted 10 times. This results in having far less (cD4) and (cD5) rule appli-
cations and thus fewer unsuccessful PRC proofs. The number of successful
PRRC proofs — they represent the verification of the justifications — is the
same for all four provers. Residual improvement is of no use for PR4mg.
Therefore the prover only introduces additional overhead for this problem.
In the random scenario the four slow provers show the same performance.
Because the defaults of the minimal requirement are not processed first
anymore, the figures of omitted (cD4) rules and with them those of unsuc-
cessful (cD5) rule applications change for PR4m and PR4mg. Compared to
the sorted scenario we now have 1283 instead of 10 omitted (cD4) rules and
2286 instead of 1013 unsuccessful (cD5) rule applications.

PRext performs quite good, processing the defaults in sorted order is in fact
optimal for this problem. Nevertheless it can not compete with the back-
ward rule based provers that prefer (cD5). For them the sorted order is
also optimal. PR5 and PR5m perform best while PR5r and PR5mr perform
marginally worse due to the overhead produced by residual improvement.
The figures for the sorted scenario confirm the good performances of all
provers. There are no failed CPC and CPRC proofs for PRext. Hence check-
ing whether a default is applicable and addable never fails. PR5, PR5m,
PR5r and PR5mr also have optimal figures.
In the random scenario the figures only change for PRext. There we have
for n = 500 about 60 000 failed CPC proofs. This is because the defaults are
no longer in the order in which they need to be added to the default-chain.
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Figure 7.4: Proving time of ;T1(n) ⊃ pn
2

+1 (sorted order).

PRC PRRC (cD4) (cD5)
> ⊥ > ⊥ > ⊥ − > ⊥

PR4 1e3 1e6 31e3 0 0 1e6 0 20 1e6
PR4r 1 1e6 31e3 0 0 1e6 0 20 1e6
PR4m, PR4mr 0 2e3 31e3 0 0 1e3 10 20 1e3

Table 7.2: Figures of proving T1(15) ⊃ p8 (sorted order)
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Figure 7.5: Proving time of T1(n) ⊃ pn
2

+1 (sorted order).

PRC PRRC (cD5) CPC CPRC
> ⊥ > ⊥ > ⊥ > ⊥ > ⊥

PR5, PR5r 1 0 1000 0 500 0
PR5m, PR5mr 0 0 1000 0 500 0
PR5ext 501 0 251 500 0

Table 7.3: Figures of proving T1(500) ⊃ p251 (sorted order)
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Skeptical Provers
For skeptical default entailment there is no optimal strategy for this problem
since being fast in finding one extension that contains pn

2
+1 does not imply

that pn
2

+1 is in all extensions. The question is whether the optimizations
turn out to work well for the corresponding search strategy.

The strategy to prefer dropping a default turns out to be inefficient. All
provers that follow this strategy and PR1 show the same poor performance
(cf. Figure 7.6). For n = 15 residual improvement allows us to omit only 255
CPC proofs and use-check is only successful in 8 of 32 520 cases (cf. Table
7.4).
PR1r is somewhat faster than the provers mentioned above. This is because
due to residual improvement most of the successful PRC and unsuccessful
PRRC proofs can be omitted. However, since residual improvement does not
allow us to omit whole branches in the proof search tree, the impact of this
optimization is small.
There is no significant changes in the random scenario.

PR1ru and PR1ru perform good (cf. Figure 7.7). The strategy to prefer
keeping a default together with use-check is quite successful. According to
the figures for n = 300 the prover only branches in 150 of 33 975 cases (cf.
Table 7.5).
The extension based prover PRext performs best. Compared to the credulous
case it does not drop very much in performance. This is because when we
deliberately mark an appendable default δ to be not appendable then no
other default turns out to be applicable and hence the effort to find an
default-chain that does not contain δ is rather small.
In the random scenario the fast provers perform equally well. The figures for
PRext are exactly the same while for PR1u and PR1ru the number of (sD4)
rule applications drops from 32 520 to 22 507 and the number of branches
remains at 150. This indicates that the sorted order is not optimal for this
problem. Further investigations have shown that when proving p2 instead
of pn

2
+1 then PR1u and PR1ru perform much better and prove the problem

in the sorted scenario for n = 800 in about 2 seconds while the performance
of PRext remains the same.

Proving T1(n) ⊃ p2 ∨ p3 ∨ · · · ∨ pn ∨ pn+1

The next problem we investigate is to prove the disjunction of the defaults
conclusions.

Credulous Provers
The credulous provers show little performance difference to the previous
problem. PR4, PR4g, PR4m and PR4mg perform equally bad and reach the
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Figure 7.6: Proving time of ;T1(n) ⊃ pn
2

+1 (sorted order).

PRC PRRC (sD4)
> ⊥ > ⊥ in out

PR0, PR1 256 518 400 65 024 0 32 767 32 767
PR0r 1 518 400 65 024 0 32 767 32 767
PR0ru, PR0u 1 518 400 65 024 0 32 512 32 520
PR1r 1 203 14 0 32 767 32 767

Table 7.4: Figures of proving T1(15) ⊃ p8 (sorted order)

 0

 20

 40

 60

 80

 100

 120

 0  100  200  300  400  500  600  700  800

P
ro

v
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

n

PR1ru
PR1u
PRext

Figure 7.7: Proving time of ;T1(n) ⊃ pn
2

+1 (sorted order).

PRC PRRC (sD4) CPC CPRC
> ⊥ > ⊥ in out > ⊥ > ⊥

PR1ru, PR1u 1 90e3 300 0 34e3 150
PR1ext 301 45e3 92e3 0

Table 7.5: Figures of proving T1(300) ⊃ p151 (sorted order)
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two minute limit for n = 17 or n = 18. The performance of PR5, PR5g,
PR5m, PR5mg and PR5ext is the same as for the previous problem.

Skeptical Provers
The slow skeptical provers show almost the same performance as for the
previous problem. We therefore only discuss the performance of the fast
skeptical provers in depth.

PRext shows for the sorted and random scenario the same performance as
for the previous problem. This is not astonishing since verifying whether the
succedent is in an extension is rather easy and the time to iterate through
all extensions only depends on the default theory and the processing order
of the defaults. And these two factors are the same as for the previous
problem.

PR1u and PR1ru however show very different performances for the sorted
and random scenario (cf. figures 7.8 and 7.9). In the sorted scenario the
performance is comparable to the performance of the previous problem. In
the random scenario the performance increases but is rather unsteady for
PR1u and somewhat unsteady for PR1ru.

The different behavior of the sorted and the random scenario indicates that
the sorted scenario reflects a bad case for the provers with use-check. A
closer look reveals two facts.

1. The formula in the succedent reflects the worst case for use-check.
If an application of (sD1) succeeds then use-check depends heavily on
the axioms encountered in the proof of the premise. Because ∨ asso-
ciates to the left the prover detects the atoms in p2 ∨ · · · ∨ pn+1 from
right to left. Hence pn+1 has the highest and p2 the lowest preference
to form an axiom.
Suppose that pm : pm+1, q/pm+1 is the first skipped default. Because
of the above preference to form an atom the first m−1 defaults will be
marked as used, while it would be sufficient to only mark p1 : p2, q/p2

as used. The prover thus always uses the maximal possible dependen-
cies for the given succedent.

2. The sorted order reflects a worst case.
An optimal processing order of the defaults for this problem is to treat
the second default last. If we do so then the first partition will have
all defaults in Din and will succeed with (sD1) marking all defaults
as used. The second partition then has all but the second default in
Din and succeeds with (sD1) marking only the first default as used.
Because (sD3) is not used for the second partition use-check then drops
the dependency information of the first partition. In the following all
but one branching can be omitted.
The branching that has to be processed is the one that treats the first
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Figure 7.8: Proving time of ;T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (sorted order).

PRC PRRC (sD4) CPC CPRC
> ⊥ > ⊥ in out > ⊥ > ⊥

PR1ru, PR1u 300 599 2 0 45e3 300
PR1ext 301 45e3 92e3 0

Table 7.6: Figures of proving T1(300) ⊃ p2 ∨ · · · ∨ p301 (sorted order)
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Figure 7.9: Proving time of ;T1(n) ⊃ p2 ∨ · · · ∨ pn+1 (random order).

PRC PRRC (sD4) CPC CPRC
> ⊥ > ⊥ in out > ⊥ > ⊥

PR1ru 10 999 2 0 1145 11
PR1u 18 9960 20 0 4918 27
PR1ext 501 125e3 253e3 0

Table 7.7: Figures of proving T1(500) ⊃ p2 ∨ · · · ∨ p501 (random order)
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default. There the first default is skipped. The first partitioning that
is then encountered has thus all but the first default in Din. This
partitioning succeeds with (sD3) and according to use-check no more
branching will hence be necessary in the following.

The explanation of the optimal processing implies the choice of a good pro-
cessing order. If a default with a low sort key is processed late by the prover
then little dependencies are introduced. This effects that the impact of
use-check is good. Processing the defaults in a random order leads to such
situation. This explains the good performance in the random scenario.

A further interesting observation for this problem is that in the random
scenario the combination of use-check and residual improvement leads to
a steadier behavior. This is because we predict the success of a (sD1) ap-
plication if we know that (sD1) succeeded for a partition whose set D′in
of selected defaults is a subset of the currently selected defaults Din. For
use-check we then take the use-check information of the know result. And
because D′in ⊂ Din we then do not necessarily introduce the maximal possi-
ble dependencies.

Proving T1(n) ⊃ pn+1 ∨ pn ∨ · · · ∨ p3 ∨ p2

If we revert the order in the disjunction of the succedent then PR1r and
PR1ru show their best case behavior and are thus clearly better than PRext
(cf. Figure 7.10). The reason for this is clear. Now p2 has the highest
preference to form the axiom. The prover thus introduces only minimal
dependencies. As a consequence the performance is independent of the pro-
cessing order of the defaults. The random scenario thus leads to the same
performance.

Proving T1(n) ⊃ p2 ∧ p3 ∧ · · · ∧ pn ∧ pn+1

If we prove the conjunction p2 ∧ · · · ∧ pn+1 of the default’s consequents then
the performance of PR1u and PR1ru is comparable to their performance
when proving the corresponding disjunction p2 ∨ · · · pn+1 in the sorted sce-
nario (cf. Figure 7.11).
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Figure 7.10: Proving time of ;T1(n) ⊃ pn+1 ∨ · · · ∨ p2 (sorted order).

PRC PRRC (sD4) CPC CPRC
> ⊥ > ⊥ in out > ⊥ > ⊥

PR1ru, PR1u 1 999 2 0 999 1
PR1ext 501 125e3 253e3 0

Table 7.8: Figures of proving T1(500) ⊃ p501 ∨ · · · ∨ p2 (sorted order)
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Figure 7.11: Proving time of ;T1(n) ⊃ p2 ∧ · · · ∧ pn+1 (sorted order).

PRC PRRC (sD4) CPC CPRC
> ⊥ > ⊥ in out > ⊥ > ⊥

PR1ru, PR1u 1 180e3 600 0 45e3 300
PR1ext 301 45e3 92e3 0

Table 7.9: Figures of proving T1(300) ⊃ p2 ∧ · · · ∧ p301 (sorted order)
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7.4.2 Problem 2: Short Chains of Defaults

We continue with a simple default theory that is defined as follows:

T2(n,m) := {pi,1 : 1 ≤ i ≤ n} ∪
n⋃
i=1

{
pi,j : pi,j+1, q

pi,j+1
: 1 ≤ j ≤ m

}
Again we add q to the justifications in order to force the non-normal proving
techniques.

T2(n) has n chains of m defaults and the prerequisites of the head of each
chain are in the base theory of T2(n). The theory therefore has exactly one
extension that contains all consequents of its defaults. Depicted as a graph
T2(n,m) looks as follows.

p1,1
p1,2,q // p1,2

p1,3,q // · · ·
p1,m+1,q // p1,m+1

p2,1
p2,2,q // p2,2

p2,3,q //

...

· · ·
p2,m+1,q // p2,m+1

pn,1
pn,2,q // pn,2

pn,3,q // · · ·
pn,m+1,q // pn,m+1

In the sorted scenario we use the prerequisite as primary and the consequent
as secondary sort key. The sorting of the propositions is done lexicographi-
cally according to their indexes.

Proving T2(n) ⊃ p1,6 ∨ p2,6 ∨ · · · ∨ pn−1,6 ∨ pn,6

The first problem we investigate for T2(n) is to prove the disjunction of the
consequents of the last elements in the chains.

Credulous Provers
The theory T2(n) is very similar to T1(n). Since all defaults are generating
we again have the case that the theory is optimal for provers that prefer
keeping a default, i.e. adding it to Din. The picture for this problem is
therefore similar for the first problem of T1(n). We thus omit discussing this
and the next problem for the credulous provers.

Skeptical Provers
For this problem all provers show a very poor performance (cf. Figure 7.12).

PRext performs so bad because deliberately marking an appendable default
to be not appendable causes only at most 4 other defaults to be no longer
applicable. The search tree is thus not reduced substantially.
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Figure 7.12: Proving time of ;T2(n) ⊃ p1,6 ∨ · · · ∨ pn,6 (sorted order).

PRC PRRC (sD4) CPC CPRC
> ⊥ > ⊥ in out > ⊥ > ⊥

PR1ru 5 128e3 6250 0 13e3 4155
PR1u 1031 128e3 6250 0 13e3 4155
PR1ext 7776 65e3 226e3 0

Table 7.10: Figures of proving T2(5) ⊃ p1,6 ∨ · · · ∨ p5,6 (sorted order)
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Figure 7.13: Proving time of ;T2(n) ⊃ p1,6 ∧ · · · ∧ pn,6 (sorted order).

PRC PRRC (sD4)
> ⊥ > ⊥ in out

PR1ru, PR1u 1 124 750 500 0 31 375 250

Table 7.11: Figures of proving T2(50) ⊃ p1,6 ∧ · · · ∧ p50,6 (sorted order)
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The performance of PR1u shows that also use-check is of no use to speed up
the proving process. PR1ru performs even worse than PR1u which implies
that residual improvement introduces more overhead than benefit to the
proving process. The reason that use-check is not so successful it mainly
because only five defaults are really needed to prove the sequent but there
are m possibilities to choose them. The ratio of successful to unsuccessful
use-checks is thus not so high as in previous examples where use-check lead
to good results (cf. Table 7.10). Hence the effect of use-check is for this
problem rather small.

The performance of the provers remains the same in the random scenario
or if we invert the order in the disjunction of the succedent. The processing
order of the defaults is thus not relevant for the performance of the provers.

Proving T2(n) ⊃ p1,6 ∧ p2,6 ∧ · · · ∧ pn−1,6 ∧ pn,6

The next problem we investigate for T2(n) is to prove the conjunction of the
consequents of the last elements in the chains.

As mentioned already in the previous problem, we omit discussing the cred-
ulous provers here because we gain no further insight to the provers from
this problem.

Skeptical Provers
Compared to the previous problem PRext shows the same poor performance
while PR1u and PR1ru perform much better (cf. Figure 7.13)

The observation that PRext shows the same performance is not astonishing
since the main work of this provers for this problem is to iterate through
the extensions of the theory and this is independent of the formula that is
to be proven.
The provers with use-check perform so good because skipping a default leads
to a selection for which (sD1) and (sD2) fail and (sD3) succeeds. Skipping
further defaults is thus known to also succeed according to use-check and
hence we branch for each default just once. The figures for n = 50 confirm
this observation (cf. Table 7.11).
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7.4.3 Exponentially Many Extensions

The next theory we are going to inspect has exponentially many extensions
and is defined as follows.

T3(n,m) := {p0} ∪
{
p0 : ¬q1

p1
,
p0 : ¬p1

q1

}
∪{

pi−1 : ¬qi
pi

: 1 < i < n

}
∪
{
pi−1 : ¬pi

qi
: 1 < i < n

}
∪{

qi−1 : ¬qi
pi

: 1 < i < n

}
∪
{
qi−1 : ¬pi

qi
: 1 < i < n

}
T3(n) forms a binary tree that has p0 in its root and each other node carries
pi or qi. A node that carries pi or qi has pi+1 as left and and qi+1 as right
son. Each connection is labeled with the negation of the other son. Depicted
as a graph T3(n) looks as follows.

p0

¬q1

yy

¬p1

%%
p1

¬q2

��

¬p2

��

q1

¬q2

��

¬p2

��
p2

¬q3

��

¬p3

��

q2

¬q3

��

¬p3

��

p2

¬q3

��

¬p3

��

q2

¬q3

��

¬p3

��

From that graph it is easy to see that the theory has exponentially many
extensions since every path from the root of the tree to a leaf node represents
an extension.

In the sorted scenario we use the prerequisite as primary and the consequent
as secondary sort key. The sorting of the propositions is done lexicographi-
cally according to their indexes.

Proving T3(n) ⊃ q1

The first problem we investigate is to prove q1. This problem is credulously
but not skeptically entailed by T3(n).

Credulous Provers
Regarding the graphical representing of T3(n) the prover has to find a path
from the root of the tree to a leave in the right subtree of the root node.
However, all provers perform rather bad (cf. Figure 7.14).
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Figure 7.14: Proving time of T3(n) ⊃ q1 (sorted order).

PRC PRRC (cD4) (cD5)
> ⊥ > ⊥ > ⊥ − > ⊥

PR5m 4105 8193 150e3 83e30 9 87e3 1 9 87e3
PR5mr 4 1 24 90 9 87e3 1 9 87e3
PR5r 5 2 24 90 9 87e3 1 9 87e3

CPC CPRC
> ⊥ > ⊥

PR1ext 400 40e3 21e3 200

Table 7.12: Figures of proving T3(5) ⊃ q1 (sorted order)
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Figure 7.15: Proving time of T3(n) ⊃ q1 (random order).
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For the backward rule based provers the reason for the bad performance
is that each extension is represented by a partition that halves the set of
defaults. Hence neither the strategy to first drop nor the one to first keep
a default leads to a solution at first. Furthermore the single minimal re-
quirement that contains exactly one default is of little help since it is good
to omit backtracking only once (cf. Table 7.12). The impact of residual
improvement is also very poor.

For the extension based prover the reason for the bad performance is to
find in the given processing order which results in traversing the left subtree
of the root node first. In that subtree the paths represent all extensions
that contain p1 but not q1. Hence the prover iterates through half of the
extensions before finding one that contains the formula that is to prover.

In the random scenario the performance of the backward rule based provers
remains the same while the performance of PRext is highly unsteady. If
p0 : ¬p1/q1 is processed before p0 : ¬q1/p1 then PRext is very fast, since the
first extension it encounters witnesses the formula that is to prove. Oth-
erwise it shows the same poor performance as in the sorted scenario (cf.
Figure 7.15).

Skeptical Provers
In the sorted scenario PR1ext performs very good and PR1ru and PR1u
perform good (cf. Figure 7.16).

The reason for the good performance of PR1ext is to find in the processing
order. Since p0 : ¬q1/p1 is processed first, the first extension PR1ext encoun-
ters does not contain q1, it can hence return immediately with failure.
The good performance of the other two provers is to find in the combina-
tion of the processing order of the defaults and use-check. According to the
figure (cf. Table 7.13) use-check is successful in all but 399 of 159 600 cases.

In the random scenario the performance of all provers drops heavily and
they all show an unsteady behavior (cf. Figure 7.17).

The poor and unsteady performance of PRext has the same reason as in
the credulous case. If the prover processes p0 : ¬q1/p1 before p0 : ¬p1/q1

then the first extension encountered by PRext leads to immediate failure,
otherwise it first iterates over all extensions that contain q1 before starting
to iterate over the extensions that do not contain it and has thus exponential
run time behavior.

For PR1ru and PR1u the processing order is also crucial. An interesting
observation is that the combination of use-check with residual improvement
leads to somewhat better results.
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Figure 7.16: Proving time of T3(n) ⊃ q1 (sorted order).

PRC PRRC (sD4) CPC CPRC
> ⊥ > ⊥ in out > ⊥ > ⊥

PR1ru 399 81e3 1 200 160e3 399
PR1u 399 81e3 1 399 160e3 399
PR1ext 400 40e3 21e3 200

Table 7.13: Figures of proving T3(200) ⊃ q1 (sorted order)
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Figure 7.17: Proving time of T3(n) ⊃ q1 (random order).
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Figure 7.18: Proving time of T3(n) ⊃ pn
2

+1 ∨ qn
2

+1 (sorted order).

Proving T3(n) ⊃ pn
2

+1 ∨ qn
2

+1

The next problem we investigate is to prove pn
2

+1 ∨ qn
2

+1 from T3(n). This
formula is credulously and skeptically entailed by T3(n).

Credulous Provers
The backward rule based provers show the same poor performance as for
the previous problem while PRext performs very good (cf. Figure 7.18).

The good performance of PRext is not astonishing. All extensions of T3(n)
contain the formula that is to prove and therefore the first encountered
extension is a witness for it.

The reason for the poor performance of the backward rule based provers is
the same as given for the previous problem.

Skeptical Provers
In the sorted scenario PRext and PR1u perform rather bad while PR1ru
performs quite good (cf. Figure 7.19).

PRext has to iterate through all extensions to verify the skeptical entailment.
And since there are exponentially many extensions the prover shows the
corresponding run time behavior.

As in a previous problem (cf. Figure 7.9) we have for this problem again that
use-check is less effective without residual improvement. For this problem
the differences are bigger but the reason for that behavior remains the same.
By using residual improvement we use use-check information from former
proofs that contain less dependencies. Therefore the prover introduces less
dependencies and performs better.
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Figure 7.19: Proving time of T3(n) ⊃ pn
2

+1 ∨ qn
2

+1 (sorted order).
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Figure 7.20: Proving time of T3(n) ⊃ pn
2

+1 ∨ qn
2

+1 (random order).

In the random scenario PR1ru drops in performance and shows an unsteady
behavior. Nevertheless it is still better than the other two provers which
perform as in the sorted scenario (cf. Figure 7.20).

7.4.4 Conclusion

The results for the credulous provers that perform backward rule application
are very disappointing. They can only compete with the extension based
prover in best case examples. Using the minimal requirements to cut down
the proof search tree is not very effective. What the provers miss is a method
to predict the failure of a (sD4) application from the information gained in
the corresponding failed (sD5) application and to thus cut down the proof
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search tree further.

For the skeptical provers that base on partitioning the set of defaults we ob-
server that the strategy to prefer dropping a default does not lead to good
results. The provers that follow the oppositional strategy show good perfor-
mances for some selected problems. Thereby the combination of use-check
and residual improvement turns out to be the most promising. Nevertheless
the performance of the provers depends highly on the processing order of
the residues.
For several other problems that were not discussed here, the partition based
provers turn out to be very slow compared to the extension based prover.
One of the reasons for this is that the precondition of a default is not re-
ally taken into account by the skeptical default calculus while the extension
based provers does. Use-check is a step towards taking the precondition into
account, nevertheless its impact is sometimes rather low.
An other reason is the use of an intermediate calculus that handles residues.
A more direct approach that bases only on the CPC calculus might lead to
better results.
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Chapter 8

Conclusion

In this thesis we have successfully developed and implemented several opti-
mization techniques for backward proof search in propositional circumscrip-
tion and default logic.

As a first result we have encoded use-check information into sequents of
classical logic by using labeled formulas and then presented a sound and
complete calculus for classical propositional logic in which use-check is en-
coded. This calculus set the base for our research on circumscription and
default logic.

For circumscription we took up the sequent calculus of Bonatti and Olivetti
[2] for backward proof search, successfully adapted the idea of use-check
to circumscription logic and developed and implemented an algorithm that
allows us to omit certain branches in the search tree. As for classical logic we
have encoded use-check into circumscription sequents and have presented a
sound and complete calculus for propositional circumscription in which use-
check is encoded.

Evaluations have shown that backward proof search is superior to use the
classical prover together with the syntactic definition of circumscription. In
backward proof search both approaches, the one that prioritizes to back-
ward apply non-branching rules first and the one that does it the other way
round, showed good results if use-check was involved as an optimization
method. The performance of the former approach thereby turned out to
be moderately slower but also less influenced by the processing order of the
minimized and fixed variables and by the chosen axioms. Our provers were
able to compete with mm [22], a minimal model prover that is restricted
and thus specialized to sets of clauses.

For the monotonic fragment of justification-free default logic we took up the
corresponding sequent calculus of Bonatti and Olivetti [4] for backward proof
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search and could slim down the search tree by avoiding several redundancies
and by adapting the idea of use-check to it. There we also presented a sound
and complete calculus in which use-check is encoded.

Evaluations have shown that the approach to prioritize branching rules in
backward proof search is clearly superior to the opposite approach and that
use-check is essential for good results.
The prover based on the closure and minimal quasi-supports of the residue
theory performed good for most problems. The processing order of the
residues turned out to have quite an influence on the performance of the
former prover. The latter prover showed a more stable behavior, which
rests upon using sorted lists of formulas in the underlying classical prover.

For credulous entailment in default logic we took up the sequent calculus
of Bonatti and Olivetti [4] for backward proof search. Since all its deduc-
tion rules have only one premise, adapting use-check to it was no option.
Instead we presented and implemented a preprocessing step to reduce back-
tracking and a method to omit proving residue sequents according to cached
intermediate results.

For skeptical entailment in default logic we took up the sequent calculus of
Bonatti and Olivetti [3] for backward proof search. There we also introduced
a method to omit proving residue sequents according to cached intermediate
results. Furthermore we successfully adapted the idea of use-check for that
prover.

In a further approach we developed an algorithm to compute the extensions
of a default theory and implemented it in a way that iterating over the
extensions was possible without the need to calculate all extensions before-
hand. This extension iterator then served us as a comparison algorithm to
the rule based provers.

For credulous entailment the performance of the rule based prover was rather
disappointing. The impact of our optimizations were rather small and the
extension based provers outperformed these provers by far.
One of the reasons is that the we use a three stage calculus which first
reduces the default sequents to residue sequents, then hands over to the
residue prover which again hands over to the classical prover. The extension
based prover rely solely on the classical prover and follows thus a more direct
approach. A further reason is that the rules for proper defaults don’t take
the prerequisite into account but delegate this to the residue prover.

For skeptical entailment the results were a bit more encouraging. The gap
between the rule based and the extension based prover is not so big and for
some selected problems the rule based prover performed best. However, in
the overall picture the extension based prover perform better.
Although the skeptical calculus is also a three stage calculus and its rules

274



that process proper defaults also don’t take the prerequisite into account
it performs clearly better than the corresponding credulous prover. The
main difference between the two provers is that we could adapt use-check
for the skeptical prover. The assumption that use-check leads to the better
performance is therefore nearby. And indeed the performance test indicated
that use-check together with the method to reuse intermediate results is the
main reason for the reasonable performance.

Further Work

We have observed that the processing order of the minimal and fixed vari-
ables and of the defaults and residues can have a big influence on the perfor-
mance of our provers. It could be worth searching for methods that provide
us with good processing orders.

Furthermore we have observed that the strategy to prioritize one rule over
the other is sometimes to simple to obtain good results. It would be nice to
have a better criteria for the prioritization of a rule.

Then it could be worth developing provers that are tailored to default the-
ories of a certain form. Cholewinski, Marek, Truszczynski and Mikitiuk [8]
for example have given a prover for conjunction free default theories that is
astonishing fast for some complex problems.
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