
Weak applicative theories, truth, and
computational complexity

Inauguraldissertation

der philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sebastian Eberhard
von Schänis SG

Leiter der Arbeit:

Prof. Dr. T. Strahm

Institut für Informatik und angewandte Mathematik

Weak applicative theories, truth, and
computational complexity

Inauguraldissertation

der philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sebastian Eberhard
von Schänis SG

Leiter der Arbeit:

Prof. Dr. T. Strahm

Institut für Informatik und angewandte Mathematik

Von der philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:

Bern, 4.6.2013 Prof. Dr. S. Decurtins

Acknowledgements

First of all, I would like to thank Prof. Dr. Strahm for his valuable guidance

and advice during my PhD studies, and Prof. Dr. Jäger who made this

thesis possible. I also thank Prof. Dr. Halbach, the co-referee, for helping

me to improve the thesis.

Many thanks to the members of the Logic and Theory group, who have

provided a stimulating environment. In particular, I will remember our in-

teresting discussions at coffee - and lunch breaks.

I thank my family and girlfriend for their constant support during my PhD

studies.

The research for the thesis was supported by the Swiss National Science

Foundation.

Contents

1 Logical background 8

1.1 The words . 8

1.2 The theory B . 9

1.2.1 The language L of B 9

1.2.2 The rules and axioms of B 10

1.3 Theorems and models of B . 12

1.4 Provably total functions . 13

1.5 Proof theoretic analysis of weak applicative systems 14

2 A feasible theory of truth over combinatory logic 19

2.1 Introduction . 19

2.2 The system TPT . 21

2.2.1 The language LT of positive truth 21

2.2.2 The axioms and rules of TPT 21

2.2.3 Theorems of TPT . 22

2.2.4 Sequent style formulation of Ti
PT 23

2.3 The standard realisation approach 23

2.3.1 Cantini’s realisation relation 24

2.3.2 Problems of the standard realisation approach 25

2.3.3 Inefficiencies in the standard realisation approach . . . 26

2.3.4 Sketch of the new approach 26

2.4 The new formalism . 27

2.4.1 Construction descriptions 28

2.4.2 The realisation relation for CDs 29

2.4.3 Technically important functions on CDs 31

2.5 Applying the formalism to Ti
PT 33

2.5.1 Stating the main claim 33

2.5.2 Realisation functions for the axioms 35

2.5.3 Realisation functions for the conclusions of rules 39

2.6 Applying the formalism to (the classical theory) TPT 51

2.7 Realising Arai’s function algebra PCSF on sets 52

3 Extensions of TPT by choice and negative reflection 56

3.1 Introduction . 56

3.2 Two extensions of TPT . 58

3.3 A realisation formalism for proofs in T+ 63

3.3.1 The relation ≡ . 63

3.3.2 The extended formalism of addresses and pointers . . . 69

3.3.3 Realisation relation for negative formulas 72

3.4 Application of the formalism to T+ 79

3.4.1 Stating the main claim 80

3.4.2 Realisation functions for the axioms 81

3.4.3 Rules of T+ . 90

3.5 Induction over negative formulas for weak applicative theories 102

3.6 Open questions . 103

4 Embeddings between weak theories of truth and explicit math-

ematics 105

4.1 Introduction . 105

4.2 Explicit mathematics . 106

4.2.1 The language L of explicit mathematics 107

4.2.2 Two theories of explicit mathematics 107

4.2.3 Extensions . 109

4.3 Embeddings . 111

4.3.1 Embedding weak theories of explicit mathematics into

weak truth theories . 112

4.3.2 Embedding of TPR into EPCJ + U + UP 113

4.3.3 Reduction of TPT to PETJ + U 116

4.4 Proof-theoretic analysis . 120

4.5 Concluding remarks . 122

5 Unfolding feasible arithmetic 123

5.1 Introduction . 123

5.2 The basic schematic system FEA 125

5.2.1 The language of FEA 126

5.2.2 Axioms and rules of FEA 126

5.3 The operational unfolding U0(FEA) 127

5.3.1 The language L1 . 127

5.3.2 Axioms and rules of U0(FEA) 128

5.4 The full predicate unfolding U(FEA) 131

5.5 The truth unfolding UT(FEA) 133

5.6 Proof-theoretical analysis . 135

6 Applicative theories for logarithmic complexity classes 140

6.1 Introduction . 140

6.2 Function algebras . 143

6.3 The systems LogT, AlogT and PT 151

6.3.1 The applicative language L 152

6.3.2 Rules and axioms of LogT, AlogT and PT 152

6.3.3 Versions of LogT and AlogT without V 156

6.3.4 Lower bound . 157

6.3.5 Upper bound . 159

6.3.6 Extending the theories by V induction 168

6.4 A new safe function algebra for logspace 168

6.5 Two systems of strength logspace 183

6.5.1 Formalising LS . 183

6.5.2 Formalising Clote’s algebra for logspace 192

6.6 Summary . 194

7 Concluding remarks and future research 196

Abstract

The aim of our thesis is the design of applicative theories on words of strength

below Primitive Recursive Arithmetic to give implicit characterisations of

complexity classes in the style of Strahm’s [79]. In more detail, we analyse

the effect of adding second-order notions as types or truth to an applicative

base theory, and obtain theories of great expressive power, but still poly-

nomial strength. The relation between second-order extensions featuring

types, or truth, respectively, is analysed in detail. We also design theories

corresponding naturally to several logarithmic complexity classes using two

different word predicates reflecting safe and normal arguments, respectively.

In addition, we suggest a new two-sorted characterisation of logspace which

is very similar to Cook and Bellantoni’s B [7].

Introduction

Combinatory logic was introduced by Schönfinkel [70] (or [71] for the English

translation) and analysed by Curry in [25, 26, 27]. Despite its simplicity,

containing only two combinators and variables, combinatory logic is complete

in the sense that for any recursive function it contains a corresponding term.

Therefore, combinatory logic can be seen as abstract model of computation.

Combinatory logic was also employed for foundational projects as e.g. in

Gödels Dialectica interpretation where he proves the consistency of Heyting

arithmetic [48]. For extensive surveys in this area, we recommend Beeson’s

[4] and Troelstra and van Dalen’s [82].

In the mid seventies, Feferman used applicative theories, a formalisation of

combinatory logic, as base theory of his systems of explicit mathematics [33].

These theories employ the logic of partial terms, which was introduced by

Beeson in [4, 5]. Feferman’s theories introduce a typing discipline in the

style of set theory, and can be used to formalise Bishop style constructive

mathematics [8, 9]. His theories are called explicit because all types are

named by objects of the combinatorial universe, and operations on types

have as counterparts operations of the combinatory algebra. The applicative

base theory is very flexible and has a high expressive power, especially in

combination with types. This allows to obtain many interesting theories of

the strength of various subsystems of second order analysis by varying type

construction principles, induction principles, or the operational base theory.

Theories over a strengthened applicative base theory, allowing to represent

non-recursive functions, are considered in [41, 42, 56, 57, 55]. Theories that

expand Feferman’s system T0 of explicit mathematics by universes are given

in [35, 77, 54, 58]. For theories that restrict the type construction - or induc-

1

tion principles, see. e.g. [75, 63, 74].

Another possibility to allow typing over a combinatorial setting is the exten-

sion of applicative theories by a truth predicate, which mimics the properties

of truth, and uses a coding mechanism for formulas build into the applica-

tive base structure. The notion of a partial, self-referential truth predicate

is rooted in Kripke’s seminal work [64]. Theories which expand an applica-

tive core with such a truth predicate are introduced by Aczel [1] and Beeson

[4]. A nice feature of these theories is that they avoid Gödelisation, and

that the fixed point theorem for applicative theories allows a straightforward

production of liar sentences. Theories of truth also allow to interpret naive

set theory by stipulating x ∈ a as T(ax). By varying truth reflection and

induction principles, Cantini [13, 14] and Kahle [59, 60] obtained applicative

theories of truth of strengths between Primitive Recursive Arithmetic and

ÎD1. Stronger applicative theories of truth are proposed by introducing lev-

els [13], or universes [60]. For important results in the realm of truth theories

over arithmetical base theories, we recommend Feferman [36, 40], and Fried-

man and Sheard [46]. For a comprehensive overview and newer results see

Halbach’s [49].

Applicative theories of truth and explicit mathematics have also been used in

Feferman’s unfolding program [38], whose idea is to expand a schematic the-

ory by the operations, predicates and deduction principles which are implicit

in the acceptance of the theory. The great expressive power of applicative

theories makes the precise formalisation of this enterprise possible. Feferman

and Strahm carried out this program for schematic systems of infinitist, and

finitist arithmetic in [43, 44].

Weak logical theories can be used to justify computation - and especially re-

cursion principles present in implicit characterisations of complexity classes.

Mostly, recursion principles are matched by suitable induction principles. Re-

search on this subject was started by Buss in [11] where theories of bounded

arithmetic for the subclasses of the polynomial hierarchy are introduced.

Further theories of bounded arithmetic have been introduced by Clote and

Takeuti [22] amongst others for the logarithmic hierarchy, alternating loga-

rithmic time, logarithmic space, and various circuit complexity classes. Weak

2

arithmetic second-order theories corresponding to various complexity classes,

analysed by various researchers, are collected in Cook and Nguyen’s [24]. Ap-

plicative theories corresponding to complexity classes have been introduced

by Strahm [78, 79] for linear and polynomial time - and space classes, by Can-

tini for polynomial time [15], and by Kahle and Oitavem [62] for the polyno-

mial hierarchy. In contrast to corresponding theories of bounded arithmetic,

applicative theories allow to prove the totality of the functions of the suitable

complexity class without coding. This makes the lower bound proofs typi-

cally easier and more transparent. An overview of weak applicative theories

is given in Strahm’s [81].

Altogether, we have pointed out the usefulness of applicative theories in

formalizing the following three mathematical notions: sets, truth, and com-

plexity classes. In this thesis, we present new results in all of these domains:

In chapter 2, we analyse a theory of truth, TPT, of polynomial strength over a

base theory of combinatory algebra. The intended universe of TPT contains

the binary words, and the theory is equipped with polynomially growing

functions. It is a close companion to the earlier mentioned [18], where the

only essential difference is that TPT allows the reflection of elementship in

the words only for bounded words. So, we have the following axiom

w ∈ W→ (v ∈ W ∧ v ≤ w ↔ T(Ẇwv)),

where v ≤ w is intended to hold if v is a word of smaller length than w
1. As Cantini’s theory, TPT is appealing because of its simplicity, especially

if one compares it to the theory PETJ (see [74]) of explicit mathematics

of equal strength. Despite its weakness, TPT has a high expressive power,

allowing straightforward embeddings of Strahm’s PT, the theory PETJ, and

also of systems of bounded arithmetic of matching strength. The theory TPT

also supports the proof-theoretic analysis of various theories of the feasible

unfolding program as we will explain later.

As usual for applicative theories of low proof theoretic strength, we prove the

upper bound of TPT using a realisation approach. Nevertheless, new ideas

1The length of a word is its number of bits, Ẇ is an applicative constant allowing the
coding of formulas containing W.

3

are needed because realisation approaches introduced by Strahm [79] and

Cantini [18] are unable to deal with the possibly exponential copying process

of information in TPT. This means that in TPT, we can define a function r

satisfying the following recursion equations for any w ∈ W.

• r(ε) = 0=̇0 2

• r(siw) = r(w)∧̇r(w)

Using the compositional truth-axiom for ∧ and truth induction, we can prove

the sequent

TPT x ∈ W⇒ T(rx),

which cannot be realised by the mentioned approaches. To deal with this

problem, we define a new realisation approach manipulating addresses and

pointers. It allows to represent data more efficiently by sharing realisation

information between different formulas and subformulas. Technically this is

implemented using pointers which allow the sharing of data by pointing to

the same storage address. This approach can also be applied to obtain an

alternative proof of the feasibility of a two-sorted algebra on sets recently

introduced by Arai [2], where a similar problem of a possibly exponential

copying process occurs.

The theory TPT does not allow the reflection of negative formulas. Neverthe-

less, we strongly assume that at least the following principle,

a 6= b↔ T(a 6= b),

can be added without strengthening the theory. The reason why this prin-

ciple is problematic is that all realisation approaches used until now in the

applicative setting require a restriction to positive cut-formulas in the set-

ting of classical logic. Obviously, the addition of the above mentioned axiom

makes such a cut-elimination impossible. This is also the reason why until

now no applicative theory of strength below primitive recursive arithmetic

has been introduced which allows induction for formulas containing negated

2=̇ and ∧̇ are applicative constants allowing the coding of equations, and conjunctions,
respectively.

4

equations. In chapter 3, we made first steps in solving this difficult problem

at least in an intuitionistic setting.

We succeeded in proving that the above mentioned reflection of negated equa-

tions can be added to an intuitionistic version of TPT without changing its

proof-theoretic strength. By inspection of our proof it becomes clear imme-

diately that the same technique allows to find upper bounds for intuitionistic

versions of the applicative systems presented in Strahm’s [79] enhanced by

induction over formulas containing negated equations.

We also proved that the additional extension of an intuitionistic version of

TPT by an axiom of choice does not increase its strength. As in Cantini’s

[18], who also equips his theory of truth by choice principles, this is proved

by a realisation approach using feasible functionals. Nevertheless, in our case

additional difficulties occur due to the fact that the implementation of the

address-pointer realisation approach requires the functionals not only to be

feasible but also to fulfil certain bounding conditions.

In chapter 4, we study the relation between systems of explicit mathematics

and theories of truth by finding embeddings of theories of truth into theories

of explicit mathematics and vice versa. The systems have primitive recursive

or polynomial strength, respectively. While the embedding of systems of ex-

plicit mathematics into systems of truth is straightforward, for the opposite

embedding additional principles are necessary. They are motivated by an

exact analysis of the reason of the lack of expressive power of weak theories

of explicit mathematics compared with weak theories of truth: Interpreta-

tions for both predicates, truth and elementship, are build using a Σ1 fixed

point. But for formulas of the form a ∈ b for a fixed b, the restriction of

the elementship predicate to some finite stage of the fixed point still delivers

a correct interpretation while for formulas of the form T(ba) this cannot be

guaranteed. In consequence, the addition of universes that have to be inter-

preted using the full Σ1 fixed point for elementship removes this asymmetry.

We managed to prove that it gives weak systems of explicit mathematics the

expressive power necessary to embed corresponding theories of truth.

We have also examined theories of truth and of explicit mathematics in the

context of Feferman’s unfolding program. In chapter 5, we carry out the

5

unfolding program for a base theory which only justifies bounded existen-

tial quantification, whereas the base system for the finitist unfolding allows

unrestricted existential quantification. For this base theory, the unfolding

program cannot be carried out in exactly the same way as for the finitist

and non-finitist arithmetic. The reason is that allowing a type which re-

flects the set of words is philosophically questionable in a feasible setting

since it immediately gives rise to the definition of exponentially growing

functions. Nevertheless, the reference to a set of words seems necessary to

restrict the applicative axioms for the constants representing initial functions

on the words. We solved this problem by introducing two types of variables,

the first intended to range over the words, and the second over the whole

applicative universe. Then, restriction to the words can be formulated by

imposing syntactical restrictions on the occurring variables.

Modulo these modifications the unfolding program can be executed as ex-

pected, resulting in natural theories of truth and explicit mathematics of

polynomial strength. As usual for unfoldings in this style, and contrary to

PETJ and TPT, these theories allow unrestricted induction. For the upper

bound proof, we make use of the theory TPT into which all unfoldings can be

embedded easily, using for the systems of explicit mathematics the techniques

described in chapter 4.

In chapter 6, we define new applicative systems matching logarithmic com-

plexity classes in the style of Strahm’s [79]. The essential difference to char-

acterizations given by Clote and Takeuti [21] is that in our systems recursion

principles are justified by induction principles, whereas [21] uses a bit com-

prehension principle. We succeeded in giving very uniform characterizations

for the logarithmic hierarchy, alternating logarithmic time, and polynomial

time using known implicit characterisations of these classes with concatena-

tion recursion as main principle. The function algebras are formalised by

applicative theories containing two word predicates, corresponding to safe

and normal inputs and outputs, and are inspired by Cantini’s [17].

This chapter in addition contains a new two-sorted function algebra LS for

logarithmic space. It differs from Cook and Bellantoni’s B [7] for polynomial

time only by restricting case distinction, and by allowing the additional initial

6

function mapping an input word to the word corresponding to its length. It

is also a close relative to Neergaard’s function algebra for logspace [66] but

contrary to his algebra, LS does not contain any affinity restrictions.

We formalize LS as the above mentioned algebras. For the upper bound

computation of the resulting theory, we introduce a new realisation approach

which also delivers a correct upper bound proof for the theory introduced in

Cantini’s [17].

Chapters 4, and 5 are based on joint work with Thomas Strahm, which has

been published as [32, 30, 31]. Chapters 2, and 6 are based on the articles

[29, 28] which have been submitted to journals.

7

Chapter 1

Logical background

Applicative theories are formalisations of combinatory algebras. They for-

malise a universe of operations that can freely be applied to each other,

without being bound to a specific domain. Some operations are universal

and are naturally self-applicable as a result, like the identity operation or

the pairing operation. Some are partial, which means that they do not yield

a value on each input. Because of this possibility, applicative theories are

usually formalised within Beeson’s logic of partial terms. The theories guar-

antee that operations satisfy the laws of a partial combinatory algebra with

pairing, projections, and definition by cases. In this chapter, we introduce a

specific applicative theory B which is, modulo minor changes, employed as

base theory of all introduced applicative systems. We fix notions and conven-

tions used within the whole thesis, in contrast to notations and conventions

introduced later, which are only valid in the scope of their chapter. We

discuss the proof-theoretic analysis of weak applicative systems in general,

and introduce Strahm’s realisation approach [79], on which the later applied

realisation approaches are based.

1.1 The words

Words are given as elements of {0, 1}∗, so they are finite sequences of zeros

and ones. The length |w| ∈ N of a word w is defined in the obvious way.

The word w consists of |w| bits. Its first bit is the rightmost one and is given

8

by BIT(0, w), the other bits are given by BIT(1, w), BIT(2, w), · · · ,BIT(|w|−
1, w). As usual, the most significant bits are at the left -, the least significant

bits at the right side. As usual, we stipulate that the high order bits are

at the left -, the low order bits at the right side. The relation ≺ orders the

words first according to their length, and then lexicographically.

For words w, v and numbers n,m we have w ≺ v exactly if

|w| < |v| ∨ (|w| = |v|∧
(∃n ≤ |w| − 1)(∀m < n ≤ |w| − 1)

(BIT(m,w) = BIT(m, v) ∧ BIT(n,w) = 0 ∧ BIT(n, v) = 1)

We write w � v for w ≺ v ∨ w = v. We call this order the lexicographic

order on words in the following.

1.2 The theory B

Let us introduce the applicative base theory B, which is Strahm’s B(∗,×)

introduced in [78, 79] with the axioms for tally length, lexicographic successor

and - predecessor dropped 1. The axioms of B contain the usual applicative

axioms about the combinators and pairing, and in addition axioms claiming

that certain constants represent simple functions on words.

1.2.1 The language L of B

L is a first order language for the logic of partial terms which includes:

• variables a, b, c, x, y, z, u, v, f, g, h, . . .

• constants k, s, p, p0, p1, dW, ε, s0, s1, pW, c⊆, ∗, ×

• the binary relation symbol = (equality), and the unary relation symbols

↓ (definedness), and W (binary words)

• the binary function symbol ◦ (application)

1The tally length of a word x can be defined as 1×x within B. The lexicographic
successor and predecessor are only used in chapter 6.

9

The meaning of the constants will become clear in the next subsection.

The terms (r, s, t, p, q, . . .) are defined in the expected way, using the func-

tion symbol application. The formulas (A,B,C, . . .) of L are build recursively

from the connectors ∧, ∨, →, and the quantifiers ∀, ∃. We call a formula

positive, if it does not contain →. We assume the following standard abbre-

viations and syntactical conventions:

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

s(t1, . . . , tn) := st1 . . . tn

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

〈t〉 := t

〈t1, . . . , tn+1〉 := p〈t1, . . . , tn〉tn+1

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

s ≤ t := c⊆(1×s, 1×t) = 0

s ≤W t := s ≤ t ∧ s ∈ W

¬A := A→ ε = s0ε

s 6= t := ¬s = t

In the following we often write A[~x] in order to indicate that the variables

~x = x1, . . . , xn may occur free in A. We write A[~s] for A[~x] with the variables

~x replaced by ~s. It will be always clear from the context which variables are

replaced. In such a context, we call [~s] a substitution.

1.2.2 The rules and axioms of B

The logic of B is the classical logic of partial terms due to Beeson [4, 5]. Let us

spell out the non-logical axioms of B. They consist of the usual applicative

axioms, and axioms expressing that the constants for simple functions on

words fulfil the suitable recursion equations. For readability, we divide them

into seven groups.

10

I. Partial combinatory algebra and pairing

(1) kxy = x,

(2) sxy↓ ∧ sxyz ' xz(yz),

(3) p0〈x, y〉 = x ∧ p1〈x, y〉 = y.

II. Definition by cases on W

(4) a ∈ W ∧ b ∈ W ∧ a = b → dWxyab = x,

(5) a ∈ W ∧ b ∈ W ∧ a 6= b → dWxyab = y.

III. Closure, binary successors and predecessor

(6) ε ∈ W ∧ (∀x ∈ W)(s0x ∈ W ∧ s1x ∈ W),

(7) s0x 6= s1y ∧ s0x 6= ε ∧ s1x 6= ε,

(8) pW : W→ W ∧ pWε = ε,

(9) x ∈ W → pW(s0x) = x ∧ pW(s1x) = x,

(10) x ∈ W ∧ x 6= ε → s0(pWx) = x ∨ s1(pWx) = x.

V. Initial subword relation.

(11) x ∈ W ∧ y ∈ W → c⊆xy = 0 ∨ c⊆xy = 1,

(16) x ∈ W → (x ⊆ ε↔ x = ε),

(17) x ∈ W ∧ y ∈ W ∧ y 6= ε → (x ⊆ y ↔ x ⊆ pWy ∨ x = y),

(18) x ∈ W ∧ y ∈ W ∧ z ∈ W ∧ x ⊆ y ∧ y ⊆ z → x ⊆ z.

VI. Word concatenation.

(19) ∗ : W2 → W,

(20) x ∈ W → x∗ε = x,

(21) x ∈ W ∧ y ∈ W → x∗(s0y) = s0(x∗y) ∧ x∗(s1y) = s1(x∗y).

11

VII. Word multiplication.

(22) × : W2 → W,

(23) x ∈ W → x×ε = ε,

(24) x ∈ W ∧ y ∈ W → x×(s0y) = (x×y)∗x ∧ x×(s1y) = (x×y)∗x.

Let us introduce two additional axioms.

Extensionality of operations:

(Ext) (∀f)(∀g)[(∀x)(fx ' gx)→ f = g]

Totality of application:

(Tot) (∀x)(∀y)(xy↓)

In the later chapters, we tacitly expand B by extensionality of operations.

For the theories of truth, we expand B additionally by totality of application

and call the resulting theory B↓. Observe that in the presence of the totality

axiom, the logic of partial terms reduces to ordinary classical predicate logic.

1.3 Theorems and models of B

Let us turn to some crucial theorems of the base theory B. For proofs of

these standard results, the reader is referred to Beeson [4] or Feferman [33].

Lemma 1 (Explicit definitions and fixed points)

1. For each L term t there exists an L term (λx.t) not containing the

variable x such that

B (λx.t)↓ ∧ (λx.t)x ' t

2. There is a closed L term fix so that

B fixg↓ ∧ fixgx ' g(fixgx)

12

Let us quickly remind the reader of two standard models of B, namely the

recursion-theoretic model PR and the term model TM. For an extensive

discussion of many more models of the applicative basis, the reader is referred

to Beeson [4] and Troelstra and van Dalen [83].

Example 2 (Recursion-theoretic model PR) Take the universe of bi-

nary words W = {0, 1}∗ and interpret application ◦ as partial recursive

function application in the sense of ordinary recursion theory.

Example 3 (The open term model T M) Take the universe of open λ

terms and consider the usual reduction of the extensional untyped lambda

calculus λη, augmented by suitable reduction rules for the constants other

than k and s. Interpret application as juxtaposition. Two terms are equal

if they have a common reduct and W denotes those terms that reduce to a

“standard” word w. Note that M(λη) satisfies both (Tot) and (Ext).

1.4 Provably total functions

We intend to measure the proof-theoretic strength of all the systems treated

in this thesis by ascertaining their provably total functions. We call an

element f of the applicative structure total iff for each word input v, we have

that fv is a word too. Observe that using ε, s0, s1, we can produce a canonical

closed L term w denoting w for each word w. In the following let L be a

language extending our first-order language L. The notion of a provably total

function is defined for an arbitrary L theory Th as follows.

Definition 4 A function F : Wn →W is called provably total in an L theory

Th, if there exists a closed L term tF such that

(i) Th tF : Wn → W and, in addition,

(ii) Th tFw1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.

So, the notion of a provably total function is divided into two conditions (i)

and (ii). The first condition (i) expresses that tF is a total operation from

Wn to W, provably in the L theory Th. Condition (ii), on the other hand,

13

claims that tF indeed represents the given function F : Wn → W, for each

fixed tuple of words ~w in Wn.

An example of a theory whose provably total functions are exactly the poly-

nomial time computable ones is Strahm’s PT [79].

1.5 Proof theoretic analysis of weak applica-

tive systems

We make some general considerations about the analysis of (pure) applicative

systems of strength lower than Primitive Recursive Arithmetic, abbreviated

as PR in the following. We introduce the most important proof-theoretic

tool for the analysis of these theories: Strahm’s realisation approach. For

overviews about proof-theoretic results for weak applicative theories extended

by a truth predicate or types, we refer to sections 2.1 and 4.4, respectively.

The strength of applicative theories weaker than Primitive Recursive Arith-

metic is usually measured by giving their provably total functions. We use

the same measurement in this thesis. Because of their expressive strength, for

weak applicative systems it is usually easy to prove the totality of the func-

tions in the corresponding complexity class, which yields the lower bound.

The upper bound proof is more difficult. In general, reductions of weak ap-

plicative systems to corresponding systems of bounded arithmetic seem to

be impossible because of the Σ1 completeness of application in the standard

models. Therefore, if we translate e.g. the expression s = t for L terms s, t

into systems of bounded arithmetic, the resulting formula is Σ1, indepen-

dently of whether we use an interpretation according to the recursion theo-

retic - or the term model. But then, it is difficult to justify even very weak

induction schemes. A system for which an embedding into a correspond-

ing system of bounded arithmetic is possible thanks to its weak induction

scheme2 is Strahm’s PTO [76].

2The schemes allow induction for formulas fx = 0, and y ≤W fx ∧ gxy = 0 for total
functions f , g, respectively. The schemes are weak in the sense that they cannot be used
to prove the totality of functions. Therefore, to justify bounded recursion, Strahm has to
include a special recursor term defined analogously as rN in Feferman and Jäger’s BON

14

In his [78, 79], Strahm introduces a new realisation approach able to deal with

induction schemes strong enough to justify bounded recursion. This allows

him to characterise several polynomial and linear complexity classes in a very

elegant way. Since then, Strahm’s realisation technique or modifications and

extensions thereof have been used to determine the upper bounds of several

applicative systems, possibly extended by a truth predicate or types (see

[18, 19, 61, 74]). In his [80], Strahm shows that his realisation approach proves

the feasibility of the provably total functionals of his polynomial theory PT

introduced in [79].

The idea of realisation goes back to the Brouwer-Heyting-Kolmogorov in-

terpretation of intuitionistic logic. Buss introduced in [11, 12] a witnessing

method for systems of bounded arithmetic. Cantini developed an extension

of Strahm’s approach to formulas containing the truth predicate in [18] 3.

In this thesis, upper bound results are mostly proved by modifications and

generalisations of Strahm’s and Cantini’s approaches. This is the reason why

we introduce Strahm’s realisation approach in the following.

First, we fix the notation. In the context of realisers, 〈·, · · · , ·〉 denotes in the

whole thesis the pairing function (on words) within the logarithmic hierarchy

defined by Clote in [20]. It has the property that pairs of different arities

are different for any arities. There should be no danger of confusion with

pxy which is abbreviated in the same way. < ·, · · · , · > denotes in the whole

thesis a set theoretic pairing function. For both introduced pairing functions

and an object w, we denote its components relative to the suitable pairing

function by w1, · · · , wn.

For Strahm’s realisation approach, we work with a realisation relation R

that holds between individuals (words in our case) and positive formulas. If

w R A holds, we call w a realiser of A. Realisers intuitively give a reason,

why the realised formula is true. In the following, we write s = t if these

terms are equal in the term model TM. R is defined recursively on the

[41, 42].
3Let us also mention Cantini’s [16], which proves feasibility of a total version of PTO

by introducing a realisation approach very different from Strahm’s.

15

complexity of its formula argument as follows.

ρ R W(t) iff ρ = t

ρ R (t1 = t2) iff ρ = ε

ρ R (A ∧B) iff ρ = 〈ρ1, ρ2〉 ∧ ρ1 R A and ρ2 R B,

ρ R (A ∨B) iff ρ = 〈ρ1, ρ2〉 and either ρ1 = 0 and ρ2 R A or

ρ1 = 1 and ρ2 R B,

ρ R (∀x)A(x) iff ρ R A(u) for a fresh variable u,

ρ R (∃x)A(x) iff ρ R A(t) for some term t.

The realisation relation can be generalised to sequences of positive formulas:

< ρ1, · · · , ρn > R A1, · · · , An :⇔ ρ1 R A1, · · · , ρn R An

A crucial property of R is the trivialisation of quantifiers: Compared to

the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic the re-

aliser of an existential quantifier does not deliver a witness, and the realiser

of a formula ∀xA[x] delivers a realiser of any A[t] independently of t. Let us

give justification for these trivialisations later.

Strahm’s realisation approach can be best applied to systems formulated in

a Gentzen-style sequent calculus, see e.g. Buss’ [10] for the basic definitions.

We let Γ,∆ denote sequencies of formulas, and Σ sequents, also given as Γ⇒
∆. For Γ ≡ A1, · · · , An and a substitution [~s], we write Γ[~s] or A1, · · · , An[~s]

for A1[~s], · · · , An[~s] as long as misunderstandings are excluded.

We sketch the application of Strahm’s realisation approach to a system for-

mulated in Gentzen-style sequent calculus, where induction is formulated as

a rule, and where the main formulas of all axioms and rules are positive. An

example for a theory which allows such a formulation is Strahm’s PT [79].

A standard cut elimination argument (see e.g. Buss [10] for explanations)

yields that all cuts except the ones with positive cut formula can be elim-

inated. Since the totality of a function f can be expressed by the positive

sequent ~x ∈ W ⇒ f~x ∈ W, it has a proof containing only positive sequents.

Now, the goal is to find iteratively a so called realisation function for each

16

sequent of this proof, starting with its leaves. Let us define realisation func-

tions: If A1, · · · , An ⇒ D1, · · · , Dm is a positive sequent, we call a function

f : Wn →W a realisation function of this sequent iff for any substitution [~s]

and any ρ ∈Wn we have

ρ1 R A1[~s], · · · , ρn R An[~s]⇒ f(ρ)2 R Df(ρ)1 [~s]

Note, that the cut-elimination argument given above is crucial to realise

positive theorems of the system since only positive formulas are realised.

To get an upper bound result for the analysed theory, we have to deliver

realisation functions in the corresponding complexity class C. For PT we

choose C to be the set of polynomial time computable functions. If we succeed

in finding such realisation functions for all provable, positive sequents, an easy

argument shows that all provably total functions of the theory lie within C.
In addition, Strahm’s approach yields that for formulas of the form

(∀x ∈ W)(∃y ∈ W)A[x, y]

with A being a positive formula the dependence of the witness y on x is given

by a function within the complexity class C. This is the analogon of Buss’

realisation theorem for S1
2 in [11], page 86 4.

Let us now explain why we can realise equations and quantifiers trivially in

Strahm’s realisation approach. The trivialisation of equations is standard

also for realisation approaches of bounded arithmetic, see e.g. Buss’ [11].

Nevertheless, this may seem inadequate in an applicative setting since in

the standard models PR and TM the property of equality for applicative

terms is Σ1 complete. Still, the trivialisation works because the axioms only

force us to decide equality on words (cf. the axiom for case distinction),

where it is decided using the given realisers for formulas of the form t ∈ W.

The trivialisation of the quantifiers works because the axioms give only very

little information about arbitrary members of the universe, possibly not being

words. Note that Strahm’s realisation approach does not trivialise quantifiers

4Compared with Buss’ realisation theorems, Strahm’s approach only allows A to be
a positive formula. For an intuitionistic version of PT, Cantini proves in [18] the above
mentioned result for A being any formula by a realisation approach, which realises negative
formulas using functionals.

17

restricted to words what allows to prove claims about the provably total

functions of the analysed systems.

18

Chapter 2

A feasible theory of truth over

combinatory logic

The contents of this chapter have been submitted for publication as [29].

2.1 Introduction

Weak theories of truth over an applicative setting have been analysed by

Cantini in several papers. First examples of very expressive and natural

truth theories of primitive recursive strength are presented in Cantini [14].

The proof-theoretic tools used in this article are the technique of asymmet-

ric interpretation as well as subtle formalizations in the subsystem of Peano

arithmetic with induction restricted to Σ0
1 statements. In his more recent

[18], Cantini studies a rich family of truth theories of primitive recursive

strength including additional principles such as positive choice and unifor-

mity. Special emphasis is put on the reduction of classical truth theories to

their intuitionistic counterparts using a forcing relation. The computational

content of the intuitionistic truth theories is analysed by means of suitable

realisability techniques. A direct companion to [18] is Cantini [19], which

deals with further extensions of the theories in [18]. In his [18] Cantini de-

veloped a theory of truth of polynomial strength as a guiding technical tool

in order to deal with additional principles.

In this chapter, we introduce the theory TPT which is the feasible analogon of

19

Cantini’s primitive recursive theory of truth in [18]. TPT extends B↓ and, as

Cantini’s theory, contains unrestricted truth induction and natural axioms

for compositional truth. The only difference between the two theories is that

TPT reflects only elementhood in the words for terms that have smaller length

than a given word. The main difference between TPT and Cantini’s above

mentioned theory of polynomial strength is that TPT allows unrestricted truth

induction.

The idea to restrict the reflection of elementhood in the words in order to

obtain weak theories was also used in explicit mathematics where types for

the initial segments of the words were introduced by Spescha and Strahm in

[73, 74] for their system PETJ. This system can indeed be seen as analogue

of the theory TPT in explicit mathematics, and will be discussed in detail in

chapter 4.

That TPT proves totality for all polynomial time computable functions follows

easily using Cobham’s well-known function algebra description (cf. [23, 20])

that characterises polynomial time as closure of initial functions under com-

position and bounded recursion. Therefore we will focus on the proof of the

upper bound of TPT. A new realisation approach will be developed which

uses a system of addresses and pointers to store and manipulate realisation

information more efficiently than in Strahm’s and Cantini’s approaches.

We conclude the introduction with an outline of the chapter. In Section 2,

we introduce the theory TPT and discuss some of its theorems. The rest of

the chapter is devoted to the upper bound proof of TPT. First, we introduce

Cantini’s realisation approach [18] which allowed him to find upper bounds

for theories of truth with additional principles such as choice and uniformity.

We do so because the new realisation approach is based on Cantini’s ap-

proach. It will also be shown were Cantini’s approach fails when it is applied

to TPT, which also motivates the new approach. In Section 4, we give its

technical details. We define a special set of words, construction descriptions,

which are interpreted as coding realisation information and define functions

to manipulate them.

In section 5, we show how this approach can be used to find the upper

bound for an intuitionistic version of TPT. The restriction to intuitionistic

20

logic allows us to present the ideas more transparently. Nevertheless, the

approach could be easily adapted to deal with classical logic using Strahm’s

ideas in [79]. This is sketched in section 6. Finally, in section 7 we sketch

an alternative upper bound proof for Arai’s function algebra PCSF on sets

using the realisation technique developed in this chapter.

Most of the work has to be done to realise the induction rule using bounded

recursion. An important difference to realisations of other applicative theo-

ries of polynomial strength, such as PT introduced by Strahm in [79] or PETJ,

is that the necessary bound cannot be constructed directly from the form of

the induction formula and the realisation function for a special induction

premise. Instead the bound must be established using bounding conditions

which are proved to hold for all used realisation functions by induction on

the depth of the corresponding proof.

2.2 The system TPT

The system TPT contains a predicate T that mimics the properties of truth.

The axiomatisation of this predicate relies on a coding mechanism for for-

mulas. In the applicative framework, we code formulas using new constants

designating logical operations.

2.2.1 The language LT of positive truth

The (first order) language of TPT is an extension of the language L by

• a new unary predicate symbol T for truth

• new individual constants =̇, Ẇ, ∧̇, ∨̇, ∃̇, ∀̇

The new constants allow the coding of positive formulas. We will use infix

notation for =̇, ∧̇ and ∨̇.

2.2.2 The axioms and rules of TPT

The theory TPT with language LT is an extension of B↓ by compositional

truth axioms and truth induction. Accordingly, its underlying logic is simply

21

first order classical predicate logic.

Compositional truth

(C1) T(a
.
= b)↔ a = b

(C2) a ∈ W→ (T(Ẇab)↔ b ≤W a)

(C3) T(a∨̇b)↔ T(a) ∨ T(b)

(C4) T(a∧̇b)↔ T(a) ∧ T(b)

(C5) T(∃̇a)↔ ∃xT(ax)

(C6) T(∀̇a)↔ ∀xT(ax)

Additionally, we have unrestricted truth induction.

Truth Induction

T(aε) ∧ (∀x ∈ W)(T(ax)→ T(a(s0x)) ∧ T(a(s1x)))→ (∀x ∈ W)(T(ax))

2.2.3 Theorems of TPT

Let us give the set of formulas for which the Tarski biconditionals hold.

Definition 5 (Simple LT formulas) Let A be a positive LT formula and

u be a variable not occurring in A. Then the formula Au which is obtained

by replacing each subformula of the form t ∈ W of A by t ≤W u is called

simple.

Definition 6 For each simple formula Au of LT we inductively define a term

〈A〉 whose free variables are exactly the free variables of A:

〈t = s〉 := t =̇ s

〈T(t)〉 := t

〈s ≤W u〉 := Ẇus

〈A ∧B〉 := 〈A〉∧̇〈B〉
〈A ∨B〉 := 〈A〉∨̇〈B〉
〈(∀x)A〉 := ∀̇(λx.〈A〉)
〈(∃x)A〉 := ∃̇(λx.〈A〉)

22

The following lemma is proved by an easy external induction on the com-

plexity of A.

Lemma 7 Let A be a positive LT formula. Then, we have

TPT u ∈ W→ (T(〈Au〉)↔ Au).

We can easily show that all polynomial time computable functions are prov-

ably total in TPT. This is done by an external induction on the rank of the

function relative to the usual function algebra description given by Clote in

[20].

An interesting consequence of the biconditionals is a second recursion or fixed

point theorem for positive, respectively simple predicates. This theorem

can be obtained by lifting the fixed point theorem for combinatory logic

(cf. Lemma 1) to the truth-theoretic language, cf. Cantini [13, 18].

2.2.4 Sequent style formulation of Ti
PT

As mentioned before, we will detail the upper bound proof for the intuitionis-

tic version Ti
PT of TPT formulated in sequent style. The realisation approach

is best formulated for systems in sequent style, and it is routine to formu-

late Ti
PT or TPT in this way. We can assume that the axioms contain only

positive formulas and are conjunction free. Induction is formulated as a rule

with positive main formulas in the usual way. Because of this restrictive for-

mulation of the sequent calculus, a standard cut elimination argument yields

the following lemma.

Lemma 8 Let T be the theory TPT or Ti
PT. Let Γ, D be a sequence of positive

formulas such that T Γ ⇒ D. Then there exists a T proof of Γ ⇒ D that

contains only positive, conjunction free formulas.

2.3 The standard realisation approach

We denote by standard realisation approach the realisation technique exe-

cuted in Cantini [18] for weak theories of truth, and in Strahm [79] for feasible

23

applicative theories. We present a slight modification of the realisation rela-

tion the standard approach uses in detail because the new realisation relation

presupposes it.

2.3.1 Cantini’s realisation relation

Our variant of Cantini’s realisation relation allows to discriminate realisers

of different atoms, disjunctions and conjunctions. All relevant properties are

unchanged by these modifications.

We will define the realisation relation with the help of an abstract derivability

relation d m t where d ∈W, m ∈ ω, and t is an arbitrary term, by means of

a set of introduction rules, where m measures the length of proof. Assume

that p=q, pTq, pWq, p∧q, p∨q are different words. We write s = t meaning

that these terms are equal in TM, analogously for ≤. Remember that 〈· · · 〉
denotes Clote’s pairing function [20] within the logarithmic hierarchy.

• =̇-rule
t = a=̇b a = b

〈pTq, ε〉 t

• Ẇ-rule
t = Ẇrs s = ρ s ≤ t

〈pTq, ρ〉 t

• ∨̇-rule
t = r∨̇s d r (or d s)

〈p∨q, 0, d〉 t (or 〈p∨q, 1, d〉 t)

• ∧̇-rule
t = r∧̇s d r e s

〈p∧q, d, e〉 t

• ∀̇-rule (assume x /∈ FV (rt))

t = ∀̇r d rx

d t

• ∃̇-rule
t = ∃̇r d rq for some q

d t

24

We abbreviate (∃m)(d m t) by d t. Now we are in the position to give the

realisation relation for all positive formulas of LT.

ρ R T(t) iff ρ t

ρ R W(t) iff ρ = 〈pWq, ρ1〉 and t = ρ1

ρ R (t1 = t2) iff ρ = 〈pWq, ε〉 and ρ1 = ε and t1 = t2

ρ R (A ∧B) iff ρ = 〈p∧q, ρ1, ρ2〉 and ρ1 R A and ρ2 R B,

ρ R (A ∨B) iff ρ = 〈p∨q, ρ1, ρ2〉 and either ρ1 = 0 and ρ2 R A or

ρ1 = 1 and ρ2 R B,

ρ R (∀x)A(x) iff ρ R A(u) for a fresh variable u,

ρ R (∃x)A(x) iff ρ R A(t) for some term t.

This definition assures that we can discriminate realisers of atoms of the form

W(t) and T(Ẇst), which is crucial for the new realisation approach.

2.3.2 Problems of the standard realisation approach

In the following, we derive a sequent for which there is no polynomial time

computable realisation function relative to the standard approach. In TPT

we have totality and the λ-theorem holds because it includes B. Therefore,

there is a closed term r which satisfies the following recursion equations for

any w ∈ W.

• r(ε) = 0=̇0

• r(siw) = r(w) ∧̇ r(w)

Using logical and applicative axioms, C1, C4 and truth induction we get:

TPT x ∈ W⇒ T(rx)

But we can not find a (standard) polynomial time computable realisation

function for this sequent: Internal as well as external conjunctions are realised

(roughly) by a pair which contains the realisers of both conjuncts. Therefore,

using natural assumptions about the pairing function, realisation functions

of the above displayed sequent must grow exponentially.

25

2.3.3 Inefficiencies in the standard realisation approach

Two inefficiencies of the standard realisation approach, which are closely

related, will be demonstrated in the following. We will overcome them using

the new realisation approach.

Let us look first at the realisers of the formulas T(rw) for the function r

defined as before and w ∈W. Intuitively, these realisers do not contain much

information, they just contain, repeatedly paired, the information ε. The

realisers only grow that fast in w because we ask for realisation information

for each internal conjunct of each internal conjunction of rw even if two such

conjuncts have always the same realiser. Our formalism will take advantage

of this by allowing that the same piece of realisation information can be used

for several (internal) subformulas.

Another closely related source of inefficiency in the standard realisation ap-

proach can be demonstrated for the realisation of the conclusion of the cut

rule. Let the used cut rule have the following form.

Γ⇒ A Γ, A⇒ D

Γ⇒ D

We assume realisation functions p and q for the premises. To produce a

realiser of D, we will first produce realisation information for A, and add

this information to the tuple of realisers of Γ. Then we will apply the real-

isation function q. This is inefficient because realisation information that is

necessary for A may already be contained in the realisers of Γ. This means

that we apply the realisation function q to an input that is larger than it

has to be. The formalism developed in this section allows to use the same

realisation information for the subformulas of several formulas in a sequence

and therefore overcomes this inefficiency.

2.3.4 Sketch of the new approach

In the following, we roughly describe how the new approach works. We

have as inputs and outputs of our realisation functions strings of information

which are construction descriptions for standard realisers (that is realisers

in the sense of R). In this strings, all information is stored under specific

26

addresses and organised using a system of pointers. A string which describes

the standard realiser of T(rw) for w ∈W under address aw will roughly have

the following form.

aw stores a pair whose components are stored under apWw.

apWw stores a pair whose components are stored under apW(pWw).

· · ·

apW(···(pWw)···) stores a pair whose components are stored under

apW[pW(···(pWw)···)].

· · ·

aε stores the content ε.


Note that this construction description has polynomial size in w, in contrast

to the standard realiser of T(rw), because it allows to use the same pieces

of information for several internal subformulas. Note also that for all words

v ⊆ w the realiser of T(rv) is simultaneously stored at address v.

The price we pay for working with construction descriptions of standard

realisers instead of the standard realisers themselves is that we get in poly-

nomial time only a construction description of a realiser of a D ∈ ∆. The

actual construction of the standard realiser from a construction description

using a fixed construction function could take exponential time. This has to

be avoided, because it would spoil the upper bound proof of TPT. Neverthe-

less, we have to construct standard realisers from construction descriptions to

show that the realisation function f of sequents of the form x ∈ W⇒ tx ∈ W

contains in some way the interpretation of t in the standard model. The so-

lution is to define a polynomial time function which approximates the above

mentioned construction function such that at least for construction descrip-

tions of realisers of formulas of the form t ∈ W the two functions yield the

same result.

2.4 The new formalism

Now, we present a formalisation of the ideas sketched in the previous section.

27

2.4.1 Construction descriptions

The construction descriptions (short: CDs) are finite sets of CD parts which

are build from addresses, pointers, colons, and words. Nevertheless, CDs and

all its components are just special words due to a natural polynomial time

coding function which we silently assume. The CD parts and the addresses

are denoted using the additional signs ., :,→.

Definition 9 (address, address head) Assume that w is a word. Then

w, w.0 and w.1 are addresses with address head w.

We use ă, b̆, v̆, w̆ to denote words that are intended to be addresses.

Definition 10 (CD part) Let ă and b̆ be addresses. Let w be a word. A

CD part can have the following three forms:

• ă → b̆ where the address head of b̆ is contained in the address head of

ă.

• ă : 〈pWq, w〉

• ă : 〈pTq, w〉

The pairing with pTq or pWq has the purpose of discriminating realisation

information for formulas of the form T(Ẇst) and t ∈ W. In the following we

abbreviate ă : 〈pWq, w〉 as ă : w. : or →, respectively, separate the left and

the right side of a CD part.

Definition 11 (CD) A CD ρ is a finite set of CD parts where the following

two conditions are fulfilled.

• If a word w is the left side of a CD part of ρ then neither w.0 nor w.1

are the left side of any CD part of ρ.

• No address occurs twice as the left side of a CD part of ρ.

The two conditions guarantee the unambiguous construction of standard re-

alisers from CDs. We display the CD {a0, a1, · · · , an} as a0/a1/ · · · /an. We

use α and ρ for inputs which are intended to be CDs.

28

2.4.2 The realisation relation for CDs

In this section we show how CDs can realise sequences of formulas by defining

the earlier mentioned construction function con. con translates construction

descriptions, which are given by CDs, into standard realisers.

Definition 12 (Construction function con) The function

con : W×W→W is given by the following algorithm to calculate con(ρ, v̆):

If ρ is not a CD or v̆ is not an address, we return a fixed word ε (error) which

is not a realiser of any formula. In all other cases, we execute the following

definition by cases.

Case 1 There is a CD part of the form v̆ → w̆:

con(ρ, v̆) := con(ρ, w̆).

Case 2 v̆.0 and v̆.1 occur as left sides of CD parts:

con(ρ, v̆) := 〈p∧q, con(ρ, v̆.0), con(ρ, v̆.1)〉.

Case 3 Only v̆.i but not v̆.j, for 0 ≤ i, j ≤ 1 and i 6= j, occurs as left side of

a CD part:

con(ρ, v̆) := 〈p∨q, i, con(ρ, v̆.i)〉.

Case 4 There is a CD part of the form v̆ : w:

con(ρ, v̆) := 〈pWq, ε, w〉.

Case 5 There is a CD part of the form v̆ : 〈pTq, w〉:

con(ρ, v̆) := 〈pTq, ε, w〉.

Case 6 Cases 1 until 5 are not satisfied. Then con(ρ, v̆) := ε.

The well-definedness of this function follows from the conditions imposed on

CDs.

29

Example 13 Let us use another time the function r on page 25. In section

2.3.3 we have written down a description for a standard realiser of T(rw) for

w ∈W. In our formalism a CD α which describes this realiser has a similar

form:

w.0→ pW(w)/w.1→ pW(w)/

pW(w).0→ pW(pW(w))/pW(w).1→ pW(pW(w))/

· · ·

 analogously |w| times

ε : ε

Let us calculate con(α,w). (We suppress pairing with p∧q.)

con(α,w) = 〈con(α,w.0), con(α,w.1)〉 = 〈con(α, pW(w)), con(α, pW(w))〉 =〈
〈con(α, pW(w).0), con(α, pW(w).1)〉, 〈con(α, pW(w).0), con(t, pW(w).1)〉

〉
=

· · ·

This calculation finally delivers the standard realiser of T(rw).

Based on the construction function, we define a realisation relation between

CDs and sequences of formulas. The realisation is always relative to an

address finder b which finds within a CD the address head which stores the

standard realisation information for a certain formula. If the address finder

b finds an address head with this information stored for each formula in a

certain sequence, then the CD realises this sequence relative to b.

To give the formal definition, we use natural numbers i, n to denote words

to increase readability. The natural number n > 0 denotes the word 00 · · · 0︸ ︷︷ ︸
n times

.

Definition 14 (Realisation relation) Let A1, . . . , An be a sequence of pos-

itive formulas. Let b : W2 → W be a polynomial time computable function.

Then the following holds.

ρ rb A1, . . . , An :⇔ For all i with 1 ≤ i ≤ n : con(ρ, b(ρ, i)) R Ai

From now on, in such a context, b is called an address finder. We call the

words denoted by i with 1 ≤ i ≤ n its relevant inputs.

Note that only CDs can realise sequences of formulas since otherwise the

construction function returns the error output ε. For the rest of the paper,

30

we use the term realiser in the sense given above. It is easy to show the

usual elementary properties for the above defined realisation relation since it

is based on R which has the same properties.

Lemma 15 Let b be an address finder. Let A1, . . . , An be a sequence of

positive formulas. We let ~s = ~t abbreviate s1 = t1 ∧ · · · ∧ sm = tm. Then the

following assertions hold.

• ρ rb A1, . . . , An[~x] implies ρ rb A1, . . . , An[~s] for all ~s.

• ρ rb A1, . . . , An[~s] and TM � ~s = ~t implies ρ rb A1, . . . , An[~t] for all

~s,~t.

2.4.3 Technically important functions on CDs

As we sketched in the previous section, we need an additional construction

function which is polynomial time computable. This function should cor-

rectly construct standard realisers of formulas of the form t ∈ W. We will

define a function that fulfils this task, but will also use it to bound realisation

functions. In order to fulfil both tasks, we choose a more complex definition

than one might expect.

Definition 16 (Related address relation) The related address relation

R∗ρ is a binary relation on addresses dependent on a word ρ. We assume that

R∗ρ is empty if ρ is not a CD. In all other cases, R∗ρ is the reflexive, transitive

closure of the following relation Rρ.

Rρ(v̆, w̆) :⇔ w̆ occurs on the left side of a CD part of ρ and

(v̆ → w̆ occurs in ρ or

w̆ = v̆.0 or w̆ = v̆.1)

Definition 17 (conW) The function conW : W×W → W is defined by the

following algorithm for the calculation of conW(ρ, v̆):

Step 1: Find all addresses w̆ for which Rρ(v̆, w̆) holds. They form a set M .

31

Step 2: Output the maximum with respect to the lexicographic ordering over

all words u such that w̆ : u is a part of ρ for a w̆ ∈M . If the set we

take the maximum over is empty, output ε.

Lemma 18 The function conW is polynomial time computable.

Proof. It can be checked in polynomial time if ρ is a CD. If not, conW(ρ, w)

is evaluated immediately as ε. If ρ is a CD, for each address v̆ occurring

in ρ the addresses w̆ with Rρ(v̆, w̆) have to be searched at most once, and

they can be found in polytime. The number of addresses occurring in ρ is

bounded by the length of ρ 1. This yields that the set M can be constructed

in polynomial time relative to ρ. Then the required maximum can be found

in polynomial time relative to M and ρ. 2

Example 19 Let α := 000 → 00/00.0 : 100/0000.1 : 11111/00.1 : 1/0 : ε.

Then conW(α, 000) is the maximum of the set {100, 1}.

The function conW can be interpreted as finding the maximal computational

content stored under a certain address. Note that for a CD ρ that describes a

realiser of a formula of the form t ∈ W under a certain address v̆, conW(ρ, v̆)

correctly constructs the value of t in TM. This is so because exactly one

address occurs in the set M we take the maximum over. Note that CD parts

of the form ă : 〈pTq, w〉, that are used to realise formulas of the form T(Ẇst),

are ignored by conW.

As we indicated before, the polynomial time computable construction func-

tion conW will be used also for technical reasons. The function Wb, which

depends on conW, helps to bound realisation functions.

Definition 20 (Wb) Let b be an address finder. The function Wb : W ×
W→W is defined as

Wb(w, ρ) := max{conW(ρ, b(ρ, v)) : ε ⊂ v ⊆ w}

Wb is polytime because conW is as well.

1We use here natural assumptions about the function coding CDs as words that is
silently assumed.

32

Definition 21 (conT) The function conT : W×W→W is defined as conW

with the only difference that it outputs the maximum over all words u such

that w̆ : 〈pTq, u〉 is a part of ρ for a w̆ ∈ M . If M is empty, it also outputs

ε.

The function conT is polynomial time computable for the same reasons as

conW. The polynomial time computable functions defined below are impor-

tant for technical reasons too. We always assume that they give the error

output if their inputs are not as intended.

Definition 22 (Maximal address function) The function MA : W→W
applied to a CD ρ returns its maximal address head with respect to the lexi-

cographic order.

Definition 23 (→-path) A →-path in ρ is a sequence of addresses

ă1, · · · , ăn such that for all 1 ≤ i < n we have ăi → ˘ai+1 ∈ ρ.

Definition 24 (→-path-end function) The function ↓: W×W→W ap-

plied to a CD ρ and an address v̆ returns the address at the end of a maximal

→-path in ρ starting at v̆. We suppress the first argument of ↓ if it is clear

from the context.

2.5 Applying the formalism to Ti
PT

From now on, we work with a sequent style formulation of Ti
PT which we call

Ti
PT as well.

2.5.1 Stating the main claim

We use the following conventions and notations.

• Γ is always a sequence of positive formulas of the form A1, . . . , An. |Γ|
gives its length n.

• Γ, A[~s] denotes Γ[~s], A[~s].

33

• We often use + and · instead of ∗ and ×. In such contexts natural

numbers n > 0 abbreviate the word 00 · · · 0︸ ︷︷ ︸
n times

.

• The function Wb will always occur in connection with a sequence of for-

mulas of a length n and we will always take 00 · · · 0︸ ︷︷ ︸
n times

as its first argument.

Therefore, we suppress it always.

• For a CD ρ, ρ� denotes the CD produced by deleting the CD part of

ρ which contains the maximal address head. ρ� is the empty word if ρ

is not a CD. This assures w� ≤ w for all words w 2.

• We write value(t) for the word with TM � t = value(t) if there exists

any.

Theorem 25 Let Γ, D be a sequence of positive formulas. Assume that there

is a proof of Γ ⇒ D in Ti
PT containing only positive formulas. Assume that

a polytime address finder b is given. Then there exist polytime functions

p−1, δ, κ, γ (independent of b) and a polytime realisation function pb such

that for all ~s and for all α that are realisers of Γ[~s] relative to b the following

five properties hold:

(1) • p−1(pb(α)) = α.

• p−1(w) ≤ w for all w ∈W.

(2) pb(α) rb∗ Γ, D[~s], where b∗ is the following address finder.

b∗(ρ, i) =


b(p−1(ρ), i), if 1 ≤ i ≤ |Γ|

MA(ρ), if i = |Γ|+ 1

ε, else

(3) MA(pb(α)) ≤ MA(α) + κ(Wb(α)).

(4) pb(α) ≤ α + δ(Wb(α),MA(α)).

2Again, we use natural assumptions about the function coding CDs as words that is
silently assumed.

34

(5) Wb∗(pb(α)) ≤ γ(Wb(α)).

(1) claims that we have an inverse function for the realisation function. The

inverses can be defined because the realisation functions always add some-

thing to the already existing realiser (we will assume this tacitly in the whole

realisation proof). The realisation functions will always store the new infor-

mation under an address which is not used yet. This guarantees that we

construct again a CD.

(2) claims that the application of the realisation function to a realiser of Γ[~s]

delivers a realiser of Γ, D[~s] such that the standard realisers of the formulas

of Γ[~s] are constructed from the same address heads as before. The standard

realiser of D[~s] is constructed from the maximal address head. All realisation

functions we use apply the address finder only to relevant inputs. Therefore,

we will tacitly assume that for two address finders b and b′ that fulfil b(w, i) =

b′(w, i) for all relevant inputs i and all words w, the same realisation functions

are produced. This allows us to define address finders only for relevant inputs

in the following.

(3) claims that we can control the length of the maximal address head. It is

important that the bound depends only on Wb(α) but not on MA(α).

(4) and (5) make analogue statements for the whole realiser. The hidden

first arguments in (5) are 00 · · · 0︸ ︷︷ ︸
|Γ|+1 times

or 00 · · · 0︸ ︷︷ ︸
|Γ| times

, respectively.

We will prove the main theorem by simultaneous induction on the depth of

the positive proof of Γ ⇒ D in Ti
PT. The bounding properties 3 and 4 will

be needed to deal with induction, property 5 for cut. Because it increases

legibility, we will always find first the pb-functions, and only then construct

the other polytime functions (p−1, δ, κ, γ). This is legitimate because these

functions will always be constructed independently of b or pb.

2.5.2 Realisation functions for the axioms

Let us show that for proof depth 0 the claim holds. We illustrate some

interesting or explanatory examples.

35

Applicative axioms

Let us realise

Γ, s = t, s ∈ W, t ∈ W⇒ dW(p, q, s, t) = p

in full detail, the other applicative axioms can be realised similarly. Assume

α rb Γ, s = t, s ∈ W, t ∈ W[~s] for an address finder b 3. This implies the exis-

tence of standard realisers for the main formulas relative to the substitution

[~s] and therefore TM � dW(p, q, s, t) = p[~s]. This means that we can realise

the succedent trivially and get the realiser we searched by adding the CD

part MA(α) + 1 : ε to α. We define pb as

pb(ρ) := ρ/MA(ρ) + 1 : ε.

A function that satisfies the requirements of the inverse is p−1, defined as

p−1(ρ) := ρ�.

Let us check that 2 holds. Because p−1 is the inverse of pb, we have for

1 ≤ i ≤ |Γ|
b∗(pb(α), i) = b(α, i).

Because of the assumption about α, this yields for 1 ≤ i ≤ |Γ|

con
(
pb(α), b∗

[
pb(α), i

])
R Ai[~s].

To show yet is

con
(
pb(α), b∗

[
pb(α), |Γ|+ 1

])
R dW(p, q, s, t) = p[~s].

b∗
(
pb(α), |Γ|+ 1

)
is equal to MA(α) + 1. So con

(
pb(α), b∗

(
pb(α), |Γ|+ 1

))
is

equal to ε. This delivers 2.

pb increases the maximal address head of its argument only by one bit and

the length of the information added by pb can be bounded polynomially in

MA(α). Therefore, 3 and 4 are satisfied. To see that 5 is satisfied, let us

calculate Wb∗(pb(α)), which is the maximum of the set

{conW

(
pb(α), b∗

[
pb(α), i

])
: 1 ≤ i ≤ |Γ|+ 1}.

3Even if s and ~s look related, they are completely independent. Similarly for t.

36

Wb(α) is the maximum of the set

{conW

(
α, b
[
α, i
])

: 1 ≤ i ≤ |Γ|}.

Because of the definition of b∗ and because p−1 is the inverse function of pb,

the two sets are identical except for the element

conW

(
pb(α), b∗

[
pb(α), |Γ|+ 1

])
.

But this equals ε. Therefore, the two maxima are the same. Other equation

axioms can be realised analogously. We note that, given a correct inverse,

to prove 2 and 5, we have only to check the content stored at the maximal

address.

For axioms where we have to choose which disjunct is realised as e.g.

Γ, s ∈ W, t ∈ W⇒ dW(u, v, s, t) = v ∨ s = t,

we read out the values of the given words (here value(s) and value(t)) using

conW and produce the suitable extension of the given realiser. A realisation

function for the given axiom can be defined as follows.

fb(ρ) :=

ρ/MA(ρ) + 1.0 : ε, if conW(b(ρ, |Γ|+ 1)) = conW(b(ρ, |Γ|+ 2))

MA(ρ) + 1.1 : ε, else

Finally, let us realise the following axiom.

Γ, s ∈ W, t ∈ W⇒ s× t ∈ W

It is easy to see that the realisation function fb will do the job.

fb(ρ) := ρ/MA(ρ) + 1 : conW(b(ρ, length(Γ) + 1))× conW(b(ρ, length(Γ) + 2))

Equation axioms

Since the existence of an r b realiser ρ for a sequence Γ implies the existence

of R -realisers for Γ, these axioms can be realised as

Γ, s = t, s ∈ W, t ∈ W⇒ dW(p, q, s, t) = p.

37

Compositional truth

To realise these axioms the use of pointers will be crucial not to violate 3

or 4, in contrast to the axioms realised before. We construct the realisation

function for the following axiom.

Γ,T(s∨̇t)⇒ T(s) ∨ T(t)

Assume α rb Γ,T(s∨̇t)[~s] for an address finder b. We are interested in the

realisation information for T(s∨̇t)[~s]. Because this formula is realised exactly

as T(s) ∨ T(t)[~s], we have only to point to its address. We define pb as

pb(ρ) := ρ/MA(ρ) + 1→ b(ρ, |Γ|+ 1).

A function p−1 that satisfies the requirements of the inverse can be defined

as

p−1(ρ) := ρ�.

By similar reasoning as before, one can show that properties 1 until 5 are

satisfied. Observe that condition 3 and 4 might be violated if we would just

reproduce the realisation information stored at b(ρ, |Γ|+ 1) instead of using

a pointer.

Let us look now at the axiom

Γ, s ∈ W,T(Ẇst)⇒ t ∈ W.

Let b and α be defined as before. The realisation function pb can be defined

as follows.

pb(ρ) := ρ/MA(ρ) + 1 : conT(ρ, |Γ|+ 2)

The realisation information of the formula s ∈ W does not occur in the

realisation function, nevertheless the bound s for t is needed. Let us explain

why.

The added realisation information for t ∈ W could increase the maximum of

the computational content. Indeed, the value of t is already present in the

realiser of the antecedent. But the function conW that extracts computational

content ignores CD parts of the form ă : 〈pTq, w〉. Therefore, only the

38

presence of the realisation information for s ∈ W assures that conditions 4

and 5 are not violated in this case. This shows where our approach would

fail for truth theories of the strength PRA with the additional axiom

Γ,T(Ẇt)⇒ t ∈ W.

2.5.3 Realisation functions for the conclusions of rules

∨-rule left

Let the applied ∨-rule have the following form.

Γ, A⇒ D Γ, B ⇒ D

Γ, A ∨B ⇒ D

By induction hypothesis, we have realisation functions p and q for both pre-

misses. Assume α rb Γ, A ∨ B[~s] for an address finder b. We have to make

a distinction by cases according to the disjunct of A ∨B[~s] which is realised

by α. Depending on this, we can produce from α a realiser α′ of Γ, A[~s] or of

Γ, B[~s]. We will apply p to α∗ in the first case and q in the second. To the

result we add a marker which tells us which function has been applied. This

allows to define an inverse function which works for both cases.

As we have described above, we will modify the input ρ before applying p or

q. In the first case, the modified CD is ρ/MA(ρ)+1→ b(ρ, |Γ|+ 1) ↓.0, which

we abbreviate as ρ0
4. In the second case, it is ρ/MA(ρ)+1→ b(ρ, |Γ|+ 1) ↓.1,

which we abbreviate as ρ1. We abbreviate b(ρ, |Γ|+ 1) ↓ as ăA∨B.

We find the realisation information contained in ρ0 or ρ1, respectively, by the

following address finder b
′
.

b′(ρ, i) :=

b(ρ�, i), if 1 ≤ i ≤ |Γ|

MA(ρ), if i = |Γ|+ 1

We abbreviate Rα(ăA∨B, ăA∨B.0) by C. Now, we can define fb as

fb(ρ) :=

pb′(ρ0)/MA
[
pb′(ρ0)

]
+ 1 : 0/MA

[
pb′(ρ0)

]
+ 2→ MA

[
pb′(ρ0)

]
, if C

qb′(ρ1)/MA
[
qb′(ρ1)

]
+ 1 : 1/MA

[
qb′(ρ1)

]
+ 2→ MA

[
qb′(ρ1)

]
, else

4See 24 for the definition of the function ↓

39

The marker, stored in the second largest address head, tells us whether p or

q was applied. Therefore, we define f−1 as

f−1(ρ) :=

p−1(ρ��)�, if conW(ρ,MA(ρ)− 1) = 0

q−1(ρ��)�, else

We have to show that this function works as an inverse of fb when fb is

applied to a realiser α of Γ, A ∨ B[~s] relative to b. First, we assume that α

realises the first disjunct of A∨B[~s]. The definition of the realisation relation

delivers

α0 rb′ Γ, A[~s].

Therefore, the induction hypothesis delivers p−1(pb′(α0)) = α0. Similarly, if

α realises the second disjunct, we have q−1(qb′(α1)) = α1. Altogether, this

immediately implies property 1.

Let us show that property 2 holds. Again we assume that α realises the first

disjunct of A ∨B[~s], the other case works similarly.

α0 rb′ Γ, A[~s]

implies because of the induction hypothesis for p

con
(
pb′(α0),MA

[
pb′(α0)

])
R D[~s],

which yields property 2 because of the correctness of the inverse. Now, we

prove property 3. Let us again assume that α realises the first disjunct of

A ∨B[~s], the other case works similarly. The induction hypothesis delivers

MA(fb(α)) ≤ MA(α0) + κp(Wb′(α0)) + 2.

(2 corresponds to the marker and the added copy.) Clearly, we have Wb′(α0) =

Wb(α) and MA(α0) = MA(α) + 1. Therefore, we get

MA(fb(α)) ≤ (MA(α) + 1) + κp(Wb(α)) + 2.

For the other case, the same bounding polynomial but with κp replaced by

κq could be found. Therefore, for a polynomial bounding κp and κq property

3 is fulfilled. Property 4 is proved similarly.

Property 5 follows easily from Wb(α) = Wb′(α0) and the induction hypothesis

for p and q.

40

∨-rule right

Let the applied rule have the following form.

Γ⇒ D

Γ⇒ D ∨ E
By induction hypothesis we have the realisation functions pb for the premise.

Obviously, the new realisation function can be defined as follows.

fb(ρ) := pb(ρ)/MA(pb(ρ)) + 1.0→ MA(pb(ρ))

Using the suitable inverse function properties 1 until 5 follow immediately.

Cut

Let the applied cut rule have the following form.

Γ⇒ A Γ, A⇒ D

Γ⇒ D

By induction hypothesis we have realisation functions p and q for the pre-

misses. Assume α rb Γ[~s] for an address finder b. We define the new realisation

function as composition of p and q. First, we apply pb to get a realiser of

Γ, A[~s] relative to a b′. Then apply qb′ to get a realiser of Γ, A,D[~s]. This is

the realiser we need relative to an address finder that just forgets the address

that contains the realisation information for A[~s]. We define b′ as follows.

b′(ρ, i) :=

b(p−1(ρ), i), if 1 ≤ i ≤ |Γ|

MA(ρ), if i = |Γ|+ 1

We define fb as

fb(ρ) := qb′(pb(ρ)).

We define f−1 as

f−1(ρ) := p−1(q−1(ρ)).

We have to show that this function works as an inverse of fb when fb is

applied to a realiser α of Γ[~s] relative to b. From the induction hypothesis 2

for p we get

(A) pb(α) rb′ Γ, A[~s].

41

Now, the induction hypothesis 1 for q delivers q−1(qb′ [pb(α)]) = pb(α). There-

fore, the induction hypothesis 1 for p delivers property 1.

From (A), we get by induction hypothesis for 2

con(qb′
[
pb(α)

]
,MA(qb′

[
pb(α)

]
) R D[~s],

which implies property 2.

Let us prove now property 3. Because of the induction hypothesis for 5,

we have Wb′(pb(α)) ≤ γp(Wb(α)). Using induction hypothesis 3, we have

additionally

MA(fb(α)) ≤MA(pb(α)) + κq(Wb′(pb(α))) ≤
MA(α) + κp(Wb(α)) + κq(Wb′(pb(α))) ≤
MA(α) + κp(Wb(α)) + κq(γp(Wb(α)))).

Property 4 is proved similarly.

Let us show now property 5. By induction hypothesis 5, the following two

inequations hold.

Wb′(pb(α)) ≤ γp(Wb(α))

conW(qb′(pb(α)),MA(qb′(pb(α)))) ≤ γq(Wb′(pb(α)))

Therefore, we have for the composition γq ◦ γp

Wb∗(qb′(pb(α))) ≤ (γq ◦ γp)(Wb(α)).

Structural -, and quantifier rules

For contraction, we use that ρ rb Γ, A implies ρ rb′ Γ, A,A where b′ is defined

as follows.

b′(ρ, i) =

b(ρ, i), if 1 ≤ i ≤ length(Γ)

b(ρ, length(Γ)), if i = length(Γ) + 1

To realise commutation, and weakening, we modify the given address finder

b slightly, similarly as above.

The quantifier rules are realised very easily, using lemma 15.

42

Induction

Let the applied induction rule have the following form.

Γ⇒ T(rε) Γ,T(rx), x ∈ W⇒ T(r(six))

Γ, t ∈ W⇒ T(rt)

By induction hypothesis we have realisation functions p, q0 and q1 for the

premisses.

As usual, we use recursion to define the realisation function. The main

obstacle is to deliver the necessary bound, which will be produced using

induction hypotheses 3 and 4.

The recursion works roughly in the following way: Given a realiser α of

Γ, t ∈ W[~s] relative to b, we get by applying pb to α a realiser of Γ,T(rε)[~s]

relative to a b1. When we add to pb(α) a suitable CD part, we get a realiser of

Γ,T(rε), ε ∈ W[~s] relative to a b2. We can apply the functions (q0)b2 or (q1)b2
to get a realiser of Γ,T(r0)[~s] or Γ,T(r1)[~s] relative to a b3. Then again, by

adding a suitable CD part, we get a realiser of for example Γ,T(r0), 0 ∈ W[~s]

relative to a b4 and can apply the functions (q0)b4 or (q1)b4 to get a realiser

of for example Γ,T(r00)[~s]. This process can be iterated arbitrary often and

will deliver after |value(t[~s])| many iterations the searched realiser.

Nevertheless, two problems have to be solved yet:

1. We have to use always the same recursion step functions. Therefore,

we need an address finder b̃ such that for each w ∈W, after |w| many

recursion steps we still have a realiser of Γ,T(rw), w ∈ W[~s] relative to

b̃.

2. We have to deliver a bound for the sketched recursion.

Our strategy is to define first a binary function f . Its first argument is

considered to be a realiser of Γ, t ∈ W[~s], the length of the second argument

gives the number of iterations of the above described process. Later, from

this binary function, we easily define the realisation function.

Let us tackle now the first problem for the above sketched binary function.

The (qi)b̃ which we will apply in the recursion step always ask for the realisa-

tion information for Γ[~s], that is stored in the first argument of the function.

Therefore b̃ relies on an inverse of f which we define below.

43

Definition 26 The function f−1 : W ×W → W is defined by recursion as

follows.

f−1(ρ, ε) := p−1(ρ�)

f−1(ρ, siw) := f−1(q−1
i (ρ�), w)

This function is clearly polynomial time computable since it can be given by

a recursion bounded by ρ.

Definition 27 Assume that b is an address finder. The function b̃ : W ×
W→W is given by the following definition of cases.

b̃(ρ, i) =


b
(
f−1
[
ρ, conW(ρ,MA(ρ))

]
, i
)
, if 1 ≤ i ≤ length(Γ)

MA(ρ)− 1, if i = length(Γ) + 1

MA(ρ), if i = length(Γ) + 2

We use that the realisation information of the formulas of the form T(rw)[~s]

and w ∈ W[~s] is always stored at the largest and second largest address head.

Using this function the earlier mentioned function fb can be defined.

Definition 28 The function fb : W ×W → W is defined by recursion as

follows.

fb(ρ, ε) := pb(ρ)/MA(pb(ρ)) + 1 : ε

fb(ρ, siw) := (qi)b̃(fb(ρ, w))/MA
(

(qi)b̃
(
fb(ρ, w)

))
+ 1 : siw

Example 29 Let us give now concrete examples for the above defined func-

tions. We look another time at the function r which was defined at page 25

and the sequent

x ∈ W⇒ T(rx),

which cannot be realised by a polytime function using the standard realisation

approach. It can be derived by induction as follows.

⇒ T(rε) T(rx), x ∈ W⇒ T(r(six))

t ∈ W⇒ T(rt)

So, if we deliver realisation functions for the premisses, we can use the above

defined functions to construct a realisation function f for the conclusion. We

44

will construct fId and use premise realisation functions for suitable address

finders, but note that everything is independent of address finders since there

are no side formulas. We will use a realisation function pId for the first

premise, e.g.

pId(ρ) := ρ/MA(ρ) + 1 : ε.

We also use the realisation functions (qi)Ĩd for the induction step premisses,

where Ĩd is the following function (note that Id has no relevant inputs).

Ĩd(ρ, i) =

MA(ρ)− 1, if i = 1

MA(ρ), if i = 2

Realisation functions (qi)Ĩd for the induction step can be given as

(qi)Ĩd(ρ) := ρ/MA(ρ) + 1.0→ MA(ρ)− 1/MA(ρ) + 1.1→ MA(ρ)− 1.

Let us now calculate fId(ρ, w) for ρ, w ∈ W with f defined as in definition

28. We get

• fId(ρ, ε) = ρ/MA(ρ) + 1 : ε/MA(ρ) + 2 : ε

• fId(ρ, 0) = ρ/MA(ρ) + 1 : ε/MA(ρ) + 2 : ε/MA(ρ) + 3.0 → MA(ρ) +

1/MA(ρ) + 3.1→ MA(ρ) + 1/MA(ρ) + 4 : 0

• fId(ρ, 00) = ρ/MA(ρ) + 1 : ε/MA(ρ) + 2 : ε/MA(ρ) + 3.0 → MA(ρ) +

1/MA(ρ) + 3.1 → MA(ρ) + 1/MA(ρ) + 4 : 0/MA(ρ) + 5.0 → MA(ρ) +

3/MA(ρ) + 5.1→ MA(ρ) + 3/MA(ρ) + 6 : 00

• · · ·

• fId(ρ, 00 · · · 00︸ ︷︷ ︸
n times

) = ρ/MA(ρ) + 1 : ε/MA(ρ) + 2 : ε/MA(ρ) + 3.0 →

MA(ρ) + 1/MA(ρ) + 3.1 → MA(ρ) + 1/MA(ρ) + 4 : 0/MA(ρ) + 5.0 →
MA(ρ) + 3/MA(ρ) + 5.1 → MA(ρ) + 3/MA(ρ) + 6 : 00/ · · · /MA(ρ) +

(2n+ 1).0→ MA(ρ) + (2n− 1)/MA(ρ) + (2n+ 1).1→ MA(ρ) + (2n−
1)/MA(ρ) + (2n+ 2) : 00 · · · 00︸ ︷︷ ︸

ntimes

(Analogously for arbitrary words of the same length as second argument.)

It can be easily seen that fId(ρ, w) is a realiser of T(rw), w ∈ W relative

45

to Ĩd for any ρ, w ∈ W. The function fId is polytime because of its small

growth. How do we get from fId a realisation function fb for the sequent

t ∈ W ⇒ T(rt)? The realisation information for t ∈ W[~s] tells us how

many and which recursion steps have to take place which delivers the second

argument for fId. Therefore, we get a realisation function fb for the sequent

as

fb(ρ) := fId

(
ρ, conW

[
ρ, b(ρ, 1)

])
.

To put the realiser of the formula T(rt) to the last position, we use a copy.

In the following, we will show how to find the realisation function fb for

arbitrary conclusions of the induction rule. The additional difficulty is that

in general the function fb is not polytime. Usually, we have to control the

recursion with a bound.

The next lemma claims the correctness of the function f and of its inverse

f−1.

Lemma 30 Let α be a realiser of Γ, t ∈ W[~s] relative to b. Then for each

w ∈W (A) and (B) hold.

(A) fb(α,w) rb̃ Γ,T(rw), w ∈ W[~s]

(B) f−1(fb(α,w), w) = α

Proof. We show (A) and (B) by simultaneous induction on w. If w equals ε,

both claims follow immediately from properties 1 and 2 for p.

Let us switch to an siw ∈W. The induction hypothesis for (A) delivers

fb(α,w) rb̃ Γ,T(rw), w ∈ W[~s].

Therefore property 1 for qi implies

(qi)
−1(fb(α, siw)�) = fb(α,w).

Together with the induction hypothesis for (B), this delivers (B) for siw.

Property 2 of qi and the induction hypothesis for (A) imply that the max-

imal address head of (qi)b̃(fb(α,w)) contains the realisation information for

46

T(r(siw)). It follows that the second largest - and largest address head of

fb(α, siw) contain the realisation information for T(r(siw)) and siw ∈ W,

respectively. Together with these facts, (B) for siw and

conW

[
fb(α, siw),MA

(
fb(α, siw)

)]
= siw

deliver

fb(α, siw) rb̃ Γ,T(r(siw)), siw ∈ W[~s],

which finishes the proof. 2

To bound the function fb by a polynomial for first arguments that realise

Γ, t ∈ W[~s], it will be necessary to bound the values of Wb̃(fb(α,w)) for

w ∈ W. This is so, because the length of the added parts in each recursion

step of fb depends polynomially on Wb̃(fb(α,w)) for a certain w ∈W.

Lemma 31 Let α be a realiser of Γ, t ∈ W[~s] relative to b and let w ∈W be

less or equal value(t[~s]). Then we have

Wb̃(fb(α,w)) ≤ Wb(α)

Proof. Let us calculate Wb̃(fb(α,w)). Because of lemma 30, we have for

1 ≤ i ≤ |Γ|
b̃(fb(α,w), i) = b(α, i).

Therefore, the content at these addresses does not violate the inequation.

Let us look at the |Γ|+ 1-th relevant address. Because of lemma 30, we have

con
(
fb(α,w), b̃

(
fb(α,w), |Γ|+ 1

))
R T(rw).

Because of the stipulation that CD parts of the form w̆ : 〈pTq, k〉 do not

contribute to the computational content, we have

conW

(
fb(α,w), b̃

(
fb(α,w), |Γ + 1|

))
= ε.

Because we have w ≤ value(t[~s]) also the realisation information stored at

the |Γ|+ 2-th relevant address does not violate the inequation. 2

The lemma we just proved allows to find bounding polynomials for fb(α,w)

and MA(fb(α,w)) for suitably chosen α and w.

47

Lemma 32 There is a polynomial κf : W → W such that for all address

finders b, all ~s, all realisers α of Γ, t ∈ W[~s] relative to b, and all w ≤
value(t[~s]), we have

MA(fb(α,w)) ≤ MA(α) + κf (Wb(α)).

Proof. Because property 3 holds for p, q0, q1, we have MA-bounding polyno-

mials κp, κq0 , κq1 . Let κq be a polynomial that bounds κq0 and κq1 . Using the

properties of the bounding functions, we derive

MA(fb(α,w)) ≤ MA(α) + κp(Wb(α)) + 1 +
∑
v⊂w

(
κq
[
Wb̃(fb(α, v))

]
+ 1
)
.

Using lemma 31, we get

MA(fb(α,w)) ≤ MA(α) + κp(Wb(α)) + 1 + κq(Wb(α)) · w + w.

This implies our claim because we have w ≤ Wb(α). 2

Lemma 33 There is a polynomial δf : W → W such that for all address

finders b, all ~s, all realisers α of Γ, t ∈ W[~s] relative to b, and all w ≤
value(t[~s]), we have

fb(α,w) ≤ α + δf (Wb(α),MA(α)).

Proof. Because property 4 holds for p, q0, q1 by induction hypothesis, we have

bounding polynomials δp, δq0 , δq1 . Let δq be a polynomial that bounds δq0 and

δq1 . The CD parts of the form M : w we add in the course of the recursion

after using an induction premise function can be bounded by a polynomial

h in MA(α) and Wb(α) because of lemma 32. Altogether, this implies

fb(α,w) ≤ α + δp
(
Wb(α),MA(α)

)
+ h
(
Wb(α),MA(α)

)
+∑

v⊂w

(
δq

(
Wb̃

[
fb(α, v)

]
,MA

[
fb(α, v)

])
+ h
[
Wb(α),MA(α)

])
.

Using lemmas 31 and 32 we derive

fb(α,w) ≤ α + δp
(
Wb(α),MA(α)

)
+ h
(
Wb(α),MA(α)

)
+∑

v⊂w

(
δq

(
Wb(α),MA(α) + κf (Wb(α))

)
+ h
[
Wb(α),MA(α)

])
.

48

The summands are not dependent on the sum variable v, so we get

fb(α,w) ≤ α + δp
(
Wb(α),MA(α)

)
+ h
(
Wb(α),MA(α)

)
+

w ·

(
δq

(
Wb(α),MA(α) + κf (Wb(α))

)
+ h
[
Wb(α),MA(α)

])
.

This implies our claim because we have w ≤ Wb(α). 2

Now, using the binary function fb, we can define the realisation function fb in

the following way. First, we define a polytime variant f̂b(ρ, v) of fb(ρ, v) by

bounded recursion with bound ρ+δf (Wb(ρ),MA(ρ)). Because of the previous

lemma, f̂b(ρ, v) equals fb(ρ, v) if ρ is a realiser of Γ, t ∈ W[~s] relative to b and

v smaller or equal value(t[~s]).

To get a unary realisation function, we use realisation information for the

formula t ∈ W[~s] stored in ρ to determine value(t[~s]). This is the missing

second argument of f̂b. Therefore, we define the unary hb(ρ) as

f̂b

(
ρ, conW

[
ρ, b(ρ, |Γ|+ 1)

])
.

hb delivers the realisation information for T(rt)[~s], but not under the maximal

address head. Therefore, we use a copy and define the realisation function fb

as

fb(ρ) := hb(ρ)/MA(hb(ρ)) + 1→ MA(hb(ρ))− 1.

It can be seen immediately that all components of the function fb are poly-

time. Therefore, the following holds.

Lemma 34 The function fb is polytime for any address finder b.

To finish the proof of the main claim, we have to show that properties 1 until

5 hold for fb.

For property 1, we have to define an inverse function for fb which must be

correct for realiser inputs. For a realiser α of Γ, t ∈ W[~s] relative to b, we

have because of lemma 33

f̂b

(
α, conW

[
α, b(α, |Γ|+ 1)

])
= fb

(
α, conW

[
α, b(α, |Γ|+ 1)

])
.

49

Therefore, using lemma 30, we get a correct inverse f−1 defined as follows.

f−1(ρ) = f−1
(
ρ�, conW

[
ρ�,MA(ρ�)

])
Lemmas 30 and 33 imply property 2. Property 3 follows from 32. Property

4 follows immediately from the definition of fb. Property 5 follows because

the formula which is realised additionally is a T-formula. This concludes

the proof of the main theorem 25. The feasibility of Ti
PT follows now as a

corollary.

Corollary 35 (of theorem 25) The provably total functions of Ti
PT are ex-

actly the polynomial time computable functions.

Proof. Assume that the function F : W → W is provably total in Ti
PT

5.

Therefore, for a corresponding closed tF , we have

Ti
PT x ∈ W⇒ tFx ∈ W

By cut elimination we have a proof of this sequent only containing positive

formulas. We can apply the main theorem 25 and get a polytime function f

with properties 1 until 5. For an arbitrary w ∈ W we have for the identity

address finder Id

0 : w rId w ∈ W.

Property 2 of fId delivers

con
(
fId(0 : w),MA

[
fId(0 : w)

])
R tFw ∈ W,

which immediately implies

TM � conW

(
fId(0 : w),MA

[
fId(0 : w)

])
= tFw.

This implies

conW

(
fId(0 : w),MA

[
fId(0 : w)

])
= F (w),

for all w in W. So, F is a polytime function.

2

5The proof is easily adapted to functions with higher arity.

50

2.6 Applying the formalism to (the classical

theory) TPT

For a more detailed proof of the upper bound of (the classical theory) TPT, we

refer to the next chapter, where we reduce it to an intuitionistic system that

is treated by a generalisation of the above introduced realisation approach.

Nevertheless, a more direct upper bound proof for TPT is obtained by adopt-

ing Strahm’s technique in [79] to treat classical systems: The realisation

functions always delivers a pair as output, where its first element determines

which formula Di of the succedent is realised, and the second is a realiser

of Γ, Di. We use the following notations which allow to state the new main

theorem very similarly as before.

• For any function F : W → W whose image contains exclusively pairs,

let f denote the function λx.F (x)2.

• Dj denotes the j-th formula of a sequence ∆ of formulas.

Theorem 36 Let Γ,∆ be a sequence of positive formulas. Assume that there

is a TPT proof of Γ ⇒ ∆ containing only positive formulas. Assume that

a polytime address finder b is given. Then there exist polytime functions

p−1, δ, κ, γ (independent of b) and a polytime realisation function Pb (with

projection pb) such that for all ~s and for all α that are realisers of Γ[~s] relative

to b the following five properties hold:

(1) • p−1(w) ≤ w for all w ∈W.

• p−1(pb(α)) = α.

(2) pb(α) rb∗ Γ, Dj[~s] holds, where Pb(α)1 = j, and where b∗ is the following

function.

b∗(ρ, i) =

b(p−1(ρ), i), if 1 ≤ i ≤ |Γ|

MA(ρ), if i = |Γ|+ 1

(3) MA(pb(α)) ≤ MA(α) + κ(Wb(α)).

(4) pb(α) ≤ α + δ(Wb(α),MA(α)).

51

(5) Wb∗(pb(α)) ≤ γ(Wb(α)).

This main theorem is again proved by induction on the depth of the positive

proof of Γ ⇒ ∆ in TPT similarly as before. For the treatment of e.g. the ∧
rule right and cut, additional case distinctions are necessary. They can be

treated using additional markers.

2.7 Realising Arai’s function algebra PCSF on

sets

In his [2], Arai proposes a function algebra PCSF on sets in the style of

Bellantoni and Cook’s B [7]. In the following, we sketch an alternative upper

bound proof using the realisation technique developed in section 2.4. As

realisers, we use finite directed acyclic forests which nicely represent sets of

hereditary finite sets. The upper bound result for PCSF depends on the

exact representation of hereditary finite sets. The following example shows

that there are exponentially increasing functions in PCSF relative to the

usual encoding of hereditary finite sets using undirected graphs: Consider

the following function

f(x;) := {{f(z;) : z ∈ x}, {{f(z;) : z ∈ x}}}.

Applied to the quasi-ordinals {}, {{}}, {{{}}}, ... the undirected trees cor-

responding to the outputs grow exponentially in the undirected trees corre-

sponding to the inputs.

First, we fix some notation. From now on, we tacitly assume all graphs

to be finite. Directed acyclic trees are defined as usual. For a set A, a

directed acyclic tree build from A (short: datA) is given as directed acyclic

tree whose leaves are labelled by elements of A or the empty set. For each

datA there is a unique hereditary finite set build from A corresponding to it

in the obvious way. Reversely, each hereditary finite set build from A has a

set of corresponding datAs. We define directed acyclic forests build from A

analogously as the earlier mentioned trees. In the following, we fix A and

speak only of directed acyclic trees (dats) and - forests (dafs), and hereditary

finite sets suppressing that they are build from A.

52

We code dafs as 0/1-matrices with labels on certain rows which are coded

easily in an efficient way as words 6. This allows us to discuss complexity

questions. Additionally, we can interpret all dafs as words. It is well-known

that dafs can be enumerated in polynomial time by a function e : V → N
such that

< n0, n1 >∈ V ⇒ e(n1) < e(n0)

For a daf a with node n, we denote the dat rooted at n as an. It can be

calculated in polynomial time whether for two nodes n,m of a daf a the

dats an and am correspond to the same hereditary finite set.

In the following, we show how dafs can be used to realise a function F of

PCSF. The idea is to realise the list of its arguments by a daf . We show

that we can efficiently extend this daf such that it realises additionally the

result of the application of F to its arguments.

Definition 37 Let x1, · · · , xm be hereditary finite sets. A daf a realises a

sequence < x1, · · · , xm > relative to a feasible function b on the words (short:

a rb ~x) iff

• For each 1 ≤ i ≤ m ab(a,i) corresponds to xi.

b takes the same role as the address finder used in the previous sections.

Now, we define a function corresponding to Wb for which we use the same

denotation. For a daf a, we let |a| denote the number of its nodes.

Definition 38 For a daf a and a feasible function b, Wb(a,k) is defined as

max�{|ab(a,i)| : 1 ≤ i ≤ k}.

Let us formulate the main claim.

Theorem 39 For any F (~x; ~y) ∈ PCSF of n normal and m safe arguments,

and any feasible function b, there are polytime functions p−1, pb, hb, γ, δ such

that for any a with a rb < ~x, ~y > we have

• – p−1(pb(a)) = a.

6As Arai, we only treat sets A that are codable by the words.

53

– p−1(w) ≤ w for all w ∈W.

• pb(a) rb∗ < ~x, ~y, F (x1, · · · , xn; a1, · · · , am) > where b∗ is defined as fol-

lows.

b∗(v, i) =


b(p−1(v), i), if 1 ≤ i ≤ n+m

hb(v), if i = n+m+ 1

ε, else

• |pb(a)| − |a| ≤ δ(Wb(a, n)).

• If m = 0, we have Wb∗(a, n+ 1) ≤ γ(Wb(a, n))

The proof is carried out very similarly as in section 2.5. We can again assume

that the realisation functions always extend their arguments. We just sketch

the case where a function F , having n normal arguments, is defined by the

following safe recursion.

F (z, ~x; ~y) := H(z, ~x; ~y, {F (z′, ~x; ~y) : z′ ∈ z})

Given that a rb < z, ~x, ~y >, we find a realiser of < z, ~x,~a, F (z, ~x; ~y) > as

follows: Label all nodes that can be reached from b(a, 1) by an enumeration

function e. Referring to e, we call them ni and their corresponding set zi.

By recursion on the label i, we execute the following algorithm.

• Produce a node m for {F (z′, ~x; ~y) : z′ ∈ zi} using nodes corresponding

to F (zj, ~x; ~y) for some j < i which can be found by induction hypoth-

esis.

• Produce a node corresponding to

H(zi, ~x; ~y, {F (z′, ~x; ~y) : z′ ∈ zi})

using ni and m.

• Remember that this node corresponds to F (zi, ~x; ~y).

For each i the above described steps can be executed in polynomial time

assuming the induction hypothesis. Therefore, the whole procedure is ex-

ecuted in polynomial time if we can find a bounding polynomial for the

54

involved dafs. But this is found easily since the number of added nodes in

each step is bounded polynomially in Wb(a, n).

The theorem implies that functions of PCSF are efficiently computable as

long as hereditary finite sets are given by dats, it does not directly claim

how these functions behave on sets given by other codings. The example

given at the beginning of the section shows that we cannot expect a feasible

behaviour of functions of PCSF on undirected trees. On pages 6 and 7 of

[2], Arai describes how to represent words by hereditary finite sets. Our

result readily implies that functions of PCSF that can be restricted to sets

representing words in this way are feasible even relative to their coding by

undirected trees.

55

Chapter 3

Extensions of TPT by choice and

negative reflection

3.1 Introduction

In this chapter, we present extensions of the theory TPT from chapter 2 by

the positive axiom of choice and prove the conservativity of this extension.

In addition, we extend the intuitionistic theory Ti
PT by reflection principles

for negative formulas. The motivation for this extension is to study the

difficult question what role induction over negative formulas plays in the

setting of weak applicative theories. In the literature, negative induction

in the weak applicative setting is only studied by Cantini in his [14] for

theories of primitive recursive strength, whose upper bounds are produced

by embeddings into PR. The proof of the conservativity of the extension of

Ti
PT by reflection principles for particular negative formulas shows that in the

intuitive setting of polynomial strength one can carefully add induction over

negative formulas. The introduced technique of treating negative induction

formulas by realisers coding them as finite functions can easily be adapted

to further weak applicative theories, e.g. the ones presented in [79].

The (positive) axiom of choice is given as follows for A a positive formula.

(∀x)(x ∈ W→(∃y)(y ∈ W ∧ A[x, y]))→(Pos− AC)

(∃f)(∀x)(x ∈ W→ fx ∈ W ∧ A[x, fx])

56

Particularly in a constructive setting, this axiom is very natural since in

essence it claims that for provable Π2 statements (with quantifiers restricted

to the words) we can explicitly describe the dependence of the witness of the

existential quantifier on x by a function f . The axiom of choice in an ap-

plicative setting was first considered by Feferman in [33]. In his [18], Cantini

analysed various weak applicative theories of truth containing the axiom of

choice. By connecting techniques developed in this paper with the address

and pointer formalism developed in the last chapter, we prove that the ex-

tension of TPT by the axiom of choice still proves totality exactly for the

functions computable in polynomial time. Unfortunately, we succeeded to

prove the upper bound for the extension of TPT by truth reflection for nega-

tive formulas only in an intuitionistic setting. This is because the realisation

approach for applicative theories, developed by Strahm in [79], can hardly be

applied to negative formulas in a classical setting 1 . For an applicative the-

ory with a truth predicate reflecting negative formulas of primitive recursive

strength, see Cantini’s [19].

Let us give a brief outline of the content of this chapter. In the next section,

we present natural extensions of TPT. Our strategy to prove the feasibility of

the extensions is to reduce them to an intuitionistic theory T+, as performed

by Cantini in [18]. We choose T+ to be strong enough to allow an embedding

of an extension of TPT by the axiom of choice, and an extension of Ti
PT by

the axiom of choice and reflection of particular negative formulas. We sketch

these reductions, and give a suitable sequent style formalisation of T+. In

section 3, we develop a realisation approach that fuses the address-pointer

formalism presented in the last chapter and Cantini’s realisation approach

with functionals [18]. In section 4, we use this approach to realise T+, which

implies the feasible upper bound of the theory. In section 5, we sketch how

the extensions of other weak applicative theories by induction over negative

formulas can be treated.

1An exception is Strahm’s [80] where the realisation of a sequent calculus including
negative formulas works, because they occur only at the left side of ⇒.

57

3.2 Two extensions of TPT

The extensions of TPT, Ti
PT, respectively, are formulated in a language L+

T

that extends LT by a constant →̇ to code implications and a unary predi-

cate Cl which singles out terms that represent formulas possibly occurring in

negative positions of reflected formulas 2. We assume that A is a positive LT

formula.

Axiom of choice

(∀x)(x ∈ W→(∃y)(y ∈ W ∧ A[x, y]))→(Pos− AC)

(∃f)(∀x)(x ∈ W→ fx ∈ W ∧ A[x, fx]),

Uniformity principle

(∀x)(∃y ∈ W)(A[x, y]))→ (∃y ∈ W)(∀x)(A[x, y]),(UP)

The uniformity principle claims that there are no interesting functions from

the universe into the numbers. It was first proposed by Cantini in [18]. The

following axioms allow the reflection of non-positive formulas.

Reflection of negative formulas (RN)

Cl(x =̇ y)(Cl=̇)

Cl(x) ∧ Cl(y)→ Cl(x ∧̇ y)(Cl∧̇)

Cl(x) ∧ Cl(y)→ Cl(x ∨̇ y)(Cl∨̇)

(∀x)Cl(tx)→ Cl(∃̇t)(Cl∃̇)

(∀x)Cl(tx)→ Cl(∀̇t)(Cl∀̇)

Cl(x)→ (T(x→̇y)↔ T(x)→ T(y))(→̇)

Note that Cl(x) implies ¬T(x)↔ T(¬̇x) for negation defined as usual.

Definition 40 Let the set S of extended positive formulas be the smallest

set S of L+
T formulas satisfying the following conditions.

2The predicate Cl reminds of standard proposition predicates of theories of truth but
is more restrictive since codes containing →̇ cannot be classes.

58

• Each positive formula without occurrences of Cl is in S.

• S is closed under the connectors ∧,∨ and the quantifiers.

• Let A be positive without occurrences of W,T and Cl, and assume B ∈
S. Then A→ B ∈ S.

The following lemma can be proved by a simple induction on the complexity

of A.

Lemma 41 (Tarski biconditionals) Assume A ∈ S. Then

Ti
PT + RN u ∈ W→ (Au ↔ T(pAuq)),

where pAuq denotes the Gödel code of Au, defined as in chapter 2, and ex-

tended in the obvious way to formulas containing implications.

In this chapter, we deliver upper bounds for the theories

• TPT + Pos− AC + UP

• Ti
PT + Pos− AC + UP + RN

Let us introduce a theory T+ to which both of these can be reduced.

Definition 42 Let T+ be a theory formulated in the extension L+
T
′

of L+
T by

a new predicate T , and new constants Ċl, Ṫ to code the class - and the truth

predicate. It contains the following axioms in addition to the ones of Ti
PT.

Extended induction

(T(aε) ∨ C) ∧ (∀x ∈ W)[(T(ax) ∨ C)→ (T(a(s0x)) ∨ C) ∧ (T(a(s1x))) ∨ C)]

(ext− Ind)

→ ∀x ∈ W(T(ax) ∨ C),

where C is a positive L+
T
′

formula.

T -reflection of positive formulas (T − Ref)

(=̇) T (x =̇ y) ↔ x = y

(Ẇ) T (Ẇx) ↔ W(x)

59

(Ċl) T (Ċlx) ↔ Cl(x)

(Ṫ) T (Ṫx) ↔ T(x)

(∧̇) T (x ∧̇ y) ↔ T (x) ∧ T (y)

(∨̇) T (x ∨̇ y) ↔ T (x) ∨ T (y)

(∀̇) T (∀̇f) ↔ (∀z)T (fz)

(∃̇) T (∃̇f) ↔ (∃z)T (fz)

Axiom of choice for T

(∀x)(x ∈ W→(∃y)(y ∈ W ∧ T (axy)))→(T − AC)

(∃f)(∀x)(x ∈ W→ fx ∈ W ∧ T (axy)),

Uniformity principle for T

(∀x)(∃y ∈ W)T (axy)→ (∃y ∈ W)(∀x)T (axy),(T − UP)

Constant domains

(∀x)T (a∨̇bx)→ T (a∨̇∀̇b)(T − CD)

The truth predicate T can reflect arbitrary positive L+
T formulas but does

not deliver any additional strength because induction is only allowed for the

weaker predicate T.

Lemma 43 The provably total functions of the following theories are con-

tained in the provably total functions of T+.

• TPT + Pos− AC + UP

• Ti
PT + Pos− AC + UP + RN

Proof. For the intuitionistic theory the claim follows immediately because T
reflects any positive L+

T formula. For the classical system, we can prove the

claim in a very similar way as Cantini in [18] for his system S . We define

the double-negation translation N as usual and extend T+ by the following

axiom

¬¬T (x)→ T (x),(T S)

We easily derive the following auxiliary lemma, where we use that Pos− AC,

UP follow from (T − AC), (T − UP).

60

Lemma 44 Let A be an L+
T formula.

TPT + Pos− AC + UP A implies T+ + T S AN

In a second step, we eliminate T S by a forcing approach exactly as in Can-

tini’s [18]: We let x ≤T y abbreviate T (y) → T (x), and inductively assign

to every L+
T
′

formula A an L+
T
′

formula f
 A where f does not occur in A:

f
 A⇔ T (f) ∨ A, if A is atomic

f
 A→ B ⇔ (∀g ≤T f)(g
 A→ g
 B)

f
 A ◦B ⇔ f
 A ◦ f
 B(◦ = ∨,∧)

f
 (Qx)A⇔ (Qx)(f
 A)(Q = ∀,∃)

Then the same arguments as in [18] yield the following lemma.

Lemma 45 For any L+
T
′

formula A, we have

T+ + T S A⇒ T+ (∀f)(f
 A)

This easily implies the result. Note that induction can only be forced if the

additional disjunct C is allowed, as for Cantini’s system PTTC. 2

Unfortunately, Cantini’s technique used above does not work for truth pred-

icates that reflect negative equations. Therefore it does not allow to reduce

TPT + Pos− AC + UP + RN to T+.

For the computation of the upper bound of T+, it will be practical to work

in a sequent style formalisation T# of T+. For the success of our realisation

approach it is crucial to formulate some of the rules in a specific way. The

idea is to avoid rules where the antecedent of the premisses is logically weaker

than the antecedent of the conclusion. Let us sketch the axioms and rules of

T#, where Γ contains arbitrary L+
T formulas.

Structural rules: We have the usual structural rules but allow weakening

only for negative formulas.

Axioms of TPT: These are formulated in sequent style as for TPT, containing

side formulas.

61

Axioms for T : These are formulated as expected for sequent calculus,

containing side formulas. E.g., the axiom of choice is given as follows.

Γ, (∀x)(x ∈ W→(∃y)(y ∈ W ∧ T (axy))⇒
(∃f)(∀x)(x ∈ W→ fx ∈ W ∧ T (ax(fx)))

Reflection of negative formulas: These are formulated as expected for

sequent calculus, containing side formulas. E.g., the →̇-axioms are given as

follows.

Γ,Cl(s),T(s)→ T(t) ⇒ T(s→̇t)

Γ,Cl(s),T(s→̇t),T(s) ⇒ T(t)

Induction: Let C be a positive L+
T
′

formula.

Γ, t ∈ W⇒ T(rε) ∨ C Γ, t ∈ W, x ∈ W,T(rx) ∨ C ⇒ T(r(six)) ∨ C
Γ, t ∈ W⇒ T(rt) ∨ C

Universal quantification left:

Γ, (∀x)A[x], A[t]⇒ D

Γ, (∀x)A[x]⇒ D

The other rules are given as usual. T# can be proved to be equivalent to

T+ by standard techniques. A standard cut elimination argument allows to

restrict cut formulas to the set A, defined as follows.

Definition 46 Let A be the smallest set S satisfying the following specifica-

tions.

• S contains all positive formulas of L+
T .

• S contains all formulas of the form A→ B where A,B are positive.

• If S contains the formula A, then also (∀x)A.

• If S contains the formula A, then also (∃x)A.

Because we have weakening with negative formulas, we can always restrict

ourselves to proofs whose leafs contain only positive side formulas.

62

3.3 A realisation formalism for proofs in T+

We extend the realisation relation R to positive formulas of the extended

language L+
T
′

via a relation ≡. This realisation relation is later extended to

negative A-formulas and to sequences of A-formulas.

From now on, we silently assume all formulas to be in A. We call a formula

negative if it is not positive and in A.

3.3.1 The relation ≡

We define a ternary relation ≡ with two words v, w and a formula A as relata,

written as v ≡A w. We interpret v ≡A w as ”v, w are equivalent realisers

of the formula A”. The binary relation that holds between a word w and a

formula A exactly if w ≡A w will be seen to be an extension of the realisation

relation R defined in chapter 2.

Clearly, the class axioms only force us to allow classes s such that the set

{v ∈W | there is a substitution [~t] such that v R T(s)[~t]}

is finite. This motivates the definition of the relation ≡ such that the relation

S defined as w S A :⇔ w ≡A w fulfils the following specifications.

• An S realiser of Cl(s) collects all possible R -realisers of T(s). That

means all R -realisers which according to the build up of the presup-

posed normal form t of s could be realisers of T(s)[~t] for some substi-

tution [~t].

• An S realiser of T(s→̇t) describes a finite function f as a collection of

pairs whose domain are the possible realisers of T(s). If for a possible

realiser v ∈W there exists a substitution [~t] such that v R T(s)[~t], then

f(v) R T(t)[~t]. We call the possible realiser v an actual realiser in this

case.

Note that the specification for the realisation relation we have given above

allows the mentioned function f to return arbitrary outputs if its input is

not an actual realiser. The relation ≡ will allow us to identify realisers that

63

only differ in this insignificant way. We define ≡ using an auxiliary relation

P (v, w, q, d) on words. Its first two arguments are interpreted as realisers,

the third as code of a formula, and the fourth is 0 or 1. P (v, w, q, 0) can be

interpreted as follows: v and w are equivalent realisers of the formula coded

by q. P (v, w, q, 1) can be interpreted as: q codes a formula of the form T(s)

where s is a class and it does not hold that v and w are equivalent realisers of

T(s). The segment P (· · · , 1) allows us to deal with the negative occurrences

of the realisation relation in the specifications for Cl and →̇, and to define

the predicate P as least fixed point of a positive operator B on words 3. All

the arguments and constructions of this section can be justified in PAw
Ω, a

system developed by Jäger in [53] of strength ˆID1.

In the following, we often write s = t meaning that these terms are equal in

the standard open term model TM, analogously for ≤. We use quantifiers

over substitutions as abbreviations of accordingly restricted word quantifiers.

Assume that pWq, pTq, p∧q, p∨q, pClq, p→q are pairwise different words and

different from ε. We again use Clote’s pairing function [20]. We also assume

the unity of generators what means that terms built in a different way from

the truth constants cannot be equivalent in TM. The positive operator

B(X, v, w, q, d) holds by definition exactly if one of the following conditions

is fulfilled.

• q = pT(s)q ∧ s = t0=̇t1 ∧ t0 = t1 ∧ w = v = 〈pTq, ε〉 ∧ d = 0

• q = pT(s)q ∧ s = t0=̇t1 ∧ ¬(t0 = t1 ∧ w = v = 〈pTq, ε〉) ∧ d = 1

• q = pT(s)q ∧ s = t0 ∧̇ t1 ∧ w = 〈p∧q, w2, w3〉 ∧ v = 〈p∧q, v2, v3〉 ∧
X(w2, v2, t0, 0) ∧X(w3, v3, t1, 0) ∧ d = 0

• q = pT(s)q ∧ s = t0 ∧̇ t1 ∧ (w 6= 〈p∧q, w2, w3〉 ∨ v 6= 〈p∧q, v2, v3〉 ∨
X(w2, v2, t0, 1) ∨X(w3, v3, t1, 1)) ∧ d = 1

• q = pT(s)q ∧ s = t0 ∨̇ t1 ∧ (w = 〈p∨q, 0, w3〉 ∧ v = 〈p∨q, 0, v3〉 ∧
X(w3, v3, t0, 0))∨(w = 〈p∨q, 1, w3〉∧v = 〈p∨q, 1, v3〉∧X(w3, v3, t1, 0))∧
d = 0

3See Moschovaki’s [67] for elementary results about inductive definitions.

64

• q = pT(s)q ∧ s = t0 ∨̇ t1 ∧ (w 6= 〈p∨q, 0, w3〉 ∧w 6= 〈p∨q, 1, w3〉) ∨ (v 6=
〈p∨q, 0, v3〉 ∧ v 6= 〈p∨q, 1, v3〉) ∨ w2 6= v2 ∨X(w3, v3, tw2 , 1) ∧ d = 1

• q = pT(s)q ∧ s = ∀̇t ∧X(w, v, tx, 0) ∧ d = 0 for a fresh variable x

• q = pT(s)q ∧ s = ∀̇t ∧X(w, v, tx, 1) ∧ d = 1 for a fresh variable x

• q = pT(s)q ∧ s = ∃̇t ∧ (∃s)X(w, v, ts, 0) ∧ d = 0

• q = pT(s)q ∧ s = ∃̇t ∧ (∀s)X(w, v, ts, 1) ∧ d = 1

• q = pT(s)q∧s = Ẇt0t1∧t1 ≤W t0∧t0 ∈ W∧w = v = 〈pTq, value(t1)〉∧
d = 0

• q = pCl(s)q ∧ s = t0 =̇ t1 ∧ w = 〈pClq, 〈T, ε〉〉 ∧ w = v ∧ d = 0

•

q = pCl(s)q ∧ s = t0 ∧̇ t1 ∧ (∃a ∈W)(∃b ∈W)X(a, a, pCl(t0)q, 0)∧

X(b, b, pCl(t1)q, 0) ∧ a = 〈pClq, a2, · · · , an〉 ∧ b = 〈pClq, b2, · · · , bm〉∧

w = v = 〈pClq, 〈p∧q, a2, b2〉, · · · , 〈p∧q, an, b2〉, · · · , 〈p∧q, an, bm〉〉∧

d = 0

•

q = pCl(s)q ∧ s = t0 ∨̇ t1 ∧ (∃a ∈W)(∃b ∈W)X(a, a, pCl(t0)q, 0)∧

X(b, b, pCl(t1)q, 0) ∧ a = 〈pClq, a2, · · · , an〉 ∧ b = 〈pClq, b2, · · · , bm〉∧

w = 〈pClq, 〈p∨q, 0, a2〉, · · · , 〈p∨q, 0, an〉, 〈p∨q, 1, b2〉 · · · , 〈p∨q, 1, bm〉〉

∧w = v ∧ d = 0

• q = pCl(s)q ∧ s = ∀̇t ∧X(w,w, pCl(tx)q, 0) ∧ w = v ∧ d = 0 for a fresh

variable x

• q = pCl(s)q ∧ s = ∃̇t ∧X(w,w, pCl(tx)q, 0) ∧ w = v ∧ d = 0 for a fresh

variable x

• q = pT(s)q ∧ s = t0→̇t1 ∧ w = 〈p→q, 〈w2,1, w2,2〉, · · · , 〈wn,1, wn,2〉〉 ∧
v = 〈p→q, 〈w2,1, v2,2〉, · · · , 〈wn,1, vn,2〉〉 ∧
X(〈pClq, w2,1, · · · , wn,1〉, 〈pClq, w2,1, · · · , wn,1〉, pCl(t0)q, 0) ∧
(∀2 ≤ i ≤ n)∀[~s](X(wi,1, wi,1, t0[~s], 1) ∨X(wi,2, vi,2, t1[~s], 0))

65

Let P denote the least fixed point of the positive operator B and let P σ de-

note its σ-th stage. The following lemmas are provable by a simple induction

on the ordinal stages 4.

Lemma 47 For all words w, v, q we have

¬(P (w, v, q, 0) ∧ P (w, v, q, 1))

Lemma 48 For all stages σ and all words w and all terms t we have

P σ(w,w, pCl(t)q, 0)⇒ (∀v ∈ W)(∀[~s])(P σ(v, v, t[~s], 0) ∨ P σ(v, v, t[~s], 1)

We define a similar relation for T atoms. R is defined as least fixed point of

a positive operator C on words. The positive operator C(X, v, w, q) holds by

definition exactly if one of the following conditions is fulfilled.

• q = pT (s)q ∧ s = t0=̇t1 ∧ t0 = t1 ∧ w = v = 〈pWq, ε〉

• q = pT (s)q ∧ s = Ẇt ∧ t ∈ W ∧ w = v = 〈pWq, value(t)〉

• q = pT (s)q ∧ s = Ṫt ∧ P (v, w, pT(t)q, 0)

• q = pT (s)q ∧ s = Ċlt ∧ t0 = t1 ∧ P (v, w, pCl(t)q, 0)

4Induction up to stage ω is already sufficient to prove the next two lemmas since all
classes are build below this level. Nevertheless, the fixed point construction closes only
after ω, e.g.

T(dW(ε, ε, x, x) = ε→̇

|x| times︷ ︸︸ ︷
∀̇∀̇ · · · ∀̇ 0=̇0)

becomes realised exactly at omega. Note, that for this result it is crucial that the set
{x|dW(ε, ε, x, x) = ε} describes W in TM, and that the antecedent is always realised by
the same word, which is ε in this case.

T(dW(ε, ε, x, x) = ε→̇

|x| times︷ ︸︸ ︷
0=̇0∧̇0=̇0∧̇ · · · ∧̇0=̇0)

never becomes realised because the clause for t0→̇t1 assumes the existence of a function
from realisers of T(t0)[~s] to realisers of T(t1)[~s]. This is unproblematic since the theory
cannot prove that {x|dW(ε, ε, x, x) = ε} describes W.

66

• q = pT (s)q ∧ s = t0 ∧̇ t1 ∧ w = 〈p∧q, w2, w3〉 ∧ v = 〈p∧q, v2, v3〉 ∧
X(w2, v2, t0, 0) ∧X(w3, v3, t1, 0) ∧ d = 0

• q = pT (s)q ∧ s = t0 ∨̇ t1 ∧ (w = 〈p∨q, 0, w3〉 ∧ v = 〈p∨q, 0, v3〉 ∧
X(w3, v3, t0, 0))∨(w = 〈p∨q, 1, w3〉∧v = 〈p∨q, 1, v3〉∧X(w3, v3, t1, 0))∧
d = 0

• q = pT (s)q ∧ s = ∀̇t ∧X(w, v, tx, 0) ∧ d = 0 for a fresh variable x

• q = pT (s)q ∧ s = ∃̇t ∧ (∃s)X(w, v, ts, 0) ∧ d = 0

We define the previously mentioned relation≡ on triples of two words and one

formula by induction on the complexity of the formula argument as follows.

w ≡T(t) v iff P (w, v, pT(t)q, 0)

w ≡Cl(t) v iff P (w, v, pCl(t)q, 0)

w ≡T (t) v iff R(w, v, pT (t)q)

w ≡W(t) v iff w = v = 〈pWq, w2〉 and t = w2,

w ≡t1=t2 v iff w = v = 〈pWq, ε〉 and t1 = t2

w ≡A∧B v iff w = 〈p∧q, w2, w3〉 and v = 〈p∧q, v2, v3〉 and

w2 ≡A v2 and w3 ≡B v3

w ≡A∨B v iff (w = 〈p∨q, 0, w3〉 and v = 〈p∨q, 0, v3〉 and w3 ≡A v3) or

(w = 〈p∨q, 1, w3〉 and v = 〈p∨q, 1, v3〉 and w3 ≡B v3)

w ≡(∀x)A(x) v iff w ≡A(u) v for a fresh variable u,

w ≡(∃x)A(x) v iff w ≡A(t) for some term t.

Lemma 49 Let v, w be words and A a positive L+
T formula. We let ~s = ~t

abbreviate s1 = t1∧· · ·∧sn = tn. Then the following holds for all substitutions

[~s], [~t].

• w ≡A[~x] v ⇒ v ≡A[~s] w

• ~s = ~t⇒ (w ≡A[~s] v ⇔ w ≡A[~t] v)

67

Proof. Let us prove the first claim for the atoms Cl(t) and T(t) first. We

use an induction on the stages of the fixed point construction of ≡ over the

following property: For all lambda terms s[~x] and any substitution [~t], we

have

• Pα(w, v, pT(s[~x])q, 0)⇒ Pα(w, v, pT(s[~t])q, 0), and

• Pα(w, v, pCl(s[~x])q, 0)⇒ Pα(w, v, pCl(s[~t])q, 0).

For all fixed point clauses except of the case where s[~x] = t0→̇t1[~x], the

claim follows directly from the induction hypothesis, using that equality of

lambda terms is closed under substitution. If q codes the formula T(s[~x])

and s[~x] = t0→̇t1[~x] the claim follows because of the universal quantification

over the substitutions [~s] in the corresponding clause.

For the T atoms, the claim follows easily by induction on the build up of R,

assuming it for T - and Cl atoms. For composed formulas the claim follows,

assuming it for T -,Cl -, and T atoms.

The second claim easily follows because all conditions in the definition of ≡
are independent of substitution by equal terms.

2

We show that ≡ behaves nicely on formulas containing Cl and →̇, and write

w S A for w ≡A w. S is an extension of the realisation relation R of the

previous chapter. We write R instead of S in the following.

Lemma 50 Assume w, v ∈W, and that s, t are terms.

• w ≡Cl(t) v ⇒ (w = v = 〈pClq, w2, · · · , wn〉 ∧ (∀y ∈W)(∀[~s])(y S T(t)[~s]

⇒ (∃2 ≤ i ≤ n)y = wi))

• The above mentioned wi are pairwise different.

• Cl(t) and w ≡T(t) v imply w = v.

68

• The following biconditional holds.

w ≡T(s→̇t) v ⇔ (w = 〈p→q, 〈w2,1, w2,2〉, · · · , 〈wn,1, wn,2〉〉∧

v = 〈p→q, 〈w2,1, v2,2〉, · · · , 〈wn,1, vn,2〉〉∧

〈pClq, w2,1, · · · , wn,1〉 S Cl(s)∧

(∀2 ≤ i ≤ n)(∀[~t])(wi,1 S T(s)[~t]⇒ wi,2 ≡T(t)[~t] vi,2)

Proof. The first, second, and third claim follow by an easy induction on the

ordinal stages of the fixed point construction. For the fourth claim, let us

prove the direction from the right to the left. So assume for an ordinal α,

for a w given as 〈p→q, 〈w1,0, w,1〉, · · · , 〈wn,0, wn,1〉〉, and a v given as 〈p→
q, 〈w1,0, v1,1〉, · · · , 〈wn,0, vn,1〉〉 the following.

• Pα(〈pClq, w1,0, · · · , wn,0〉, 〈pClq, w1,0, · · · , wn,0〉,Cl(s), 0)

• (∀2 ≤ i ≤ n)∀[~s]((∃σ)P σ(wi,1, wi,1, s[~s], 0)⇒ (∃τ)P τ (wi,2, vi,2, t[~s], 0))

With help of lemmas 47 and 48 we derive

(∀1 ≤ i ≤ n)∀[~s](Pα(wi,0, wi,0, s[~s], 1) ∨ (∃τ)P (wi,1, vi,1, t[~s], 0)).

A Σ reflection together with monotonicity deliver a τ larger than α such that

(∀1 ≤ i ≤ n)∀[~s](P τ (wi,0, wi,0, s[~s], 1) ∨ P τ (wi,1, vi,1, t[~s], 0)).

This implies together with the other assumptions

P τ+1(w, v, s→̇t, 0).

The direction from left to right follows from lemma 47. 2

3.3.2 The extended formalism of addresses and point-

ers

For the realisation of the formulas containing Cl, →̇, it is convenient to enlarge

the set of addresses from chapter 2.

69

Definition 51 Let w, v be arbitrary words, and z a word unequal zero con-

sisting only of zeros, and p∧q, pClq, p→q pairwise different words, different

from ε. Then the following are addresses with address head w.

• w.p∧q.0, w.p∧q.1

• w.pClq.z

• w.p→q.z.0, w.p→q.z.1

We let z contain only zeros for technical reasons, this restriction is not essen-

tial. w.p∧q.v0 behaves like w.v0 in chapter 2. (Extended) CD parts are build

from (extended) addresses as demonstrated there. Compared to CDs from

chapter 2 the extended CDs contain an additional restriction which allows a

sensible interpretation of content stored at addresses containing p→q:

Definition 52 (Extended CDs) An extended CD ρ is a finite set of ex-

tended CD parts where the following conditions are fulfilled.

• Let w, v0, v1 be words. Then left sides of at most one of the following

forms occur in ρ.

– w

– w.p∧q.v0

– w.pClq.v0

– w.p→q.v0.v1

• if w.p→q.v0.v1 occurs as left side, then also w.p→q.v0.sg(v1).

• No address occurs twice as the left side of an (extended) CD part of ρ.

We use the same notations and abbreviations for addresses and CDs as in

the previous chapter. Extended addresses, extended CD parts, and extended

CDs are called addresses, CD parts, and CDs from now on. In the following,

we define important functions on CDs in analogy to chapter 2. We define a

new construction function, we call again con.

70

Definition 53 (Construction function con) The function

con : W×W→W is given by the following algorithm to calculate con(ρ, v̆):

If ρ is not a CD or v̆ is not an address, we stipulate con(ρ, v̆) := ε, which

takes the role of an error output. In all other cases, we execute the following

definition by cases.

Case 1 There is a CD part of the form v̆ → w̆:

con(ρ, v̆) := con(ρ, w̆).

Case 2 v̆.p∧q.0 and v̆.p∧q.1 occur as left side of a CD part:

con(ρ, v̆) := 〈p∧q, con(ρ, v̆.p∧q.0), con(ρ, v̆.p∧q.1)〉.

Case 3 Only v̆.p∧q.i but not v̆.p∧q.j, for 0 ≤ i 6= j ≤ 1 occurs as left side of

a CD part:

con(ρ, v̆) := 〈p∨q, i, con(ρ, v̆.p∧q.i)〉.

Case 4 v̆.pClq.z1, · · · , v̆.pClq.zn ordered by the length of the zi but no other

addresses of this form occur as left sides of a CD part:

con(ρ, v̆) := 〈pClq, con(ρ, v̆.pClq.z1), · · ·

con(ρ, v̆.pClq.zn)〉.

Case 5 v̆.p→q.z1.0, v̆.p→q.z1.1, · · · , v̆.p→q.zn.0, v̆.p→q.zn.1 ordered by the

length of the zi but no other addresses of this form occur as left sides

of a CD part:

con(ρ, v̆) := 〈p→q, 〈con(ρ, v̆.p→q.z1.0), con(ρ, v̆.p→q.z1.1)〉, · · · ,

〈con(ρ, v̆.p→q.zn.0), con(ρ, v̆.p→q.zn.1)〉〉.

Case 6 There is a CD part of the form v̆ : w:

con(ρ, v̆) := 〈pWq, w〉.

71

Case 7 There is a CD part of the form v̆ : 〈pTq, w〉:

con(ρ, v̆) := 〈pTq, w〉.

Case 8 Cases 1 until 7 are not satisfied. Then con(ρ, v̆) := ε.

To calculate the computational content, we additionally take the number

of components of realisers of Cl-formulas into account. The related address

relation R∗ρ, used for this definition, is the one from page 31 extended to the

new sorts of addresses in the obvious way.

Definition 54 (conW
+) The function conW

+ : W ×W → W is defined by

the following algorithm for the calculation of conW
+(ρ, v̆):

Step 1: Find all addresses w̆ for which R∗ρ(v̆, w̆) holds. They form a set M .

Step 2: Output the maximum with respect to the lexicographic ordering over

all words u such that there exists a w̆ with either w̆ ∈ M and w̆ : u

being a part of ρ or w̆.pClq.u ∈M . If there is no such word u, output

ε.

conW
+ is a polytime function for the same reasons as conW is. Since conW

+

behaves on addresses giving information for Cl-free formulas as conW, all its

important properties that are used in the upper bound proof are preserved.

We will write conW for conW
+ in this chapter.

3.3.3 Realisation relation for negative formulas

Let us formulate some general considerations about the realisation approach.

As we have mentioned before, the crucial difference to usual realisation

approaches with functionals is that a functional realiser γ of the formula

A0 → A1 does not deliver a realiser of A1 only from a realiser of A0 but also

uses realisers of side formulas. Still, we cannot expect the functional realiser

to allow arbitrary R -realisers of the side formulas as input, because to make

a realisation of the axiom of choice possible, the produced R -realiser has

to be a function only dependent on the R -realiser of A0 in a certain sense.

So, we will allow only inputs ρ for γ giving a (up to a certain extend) fixed

72

R -realisation information for side formulas. Nevertheless, a total fixation

of the R -realisation information is not possible since the realisation func-

tionals we will produce do not operate in a functional way on R -realisation

information. This is the reason why the relation ≡ was introduced.

We deal with the missing functionality along the following lines. In parallel to

the address pointer realisation formalism, we employ a standard realisation

approach with functionals that work on R -realisers instead of CDs. This

formalism on R -realisers can be seen as a projection of the address pointer

realisation formalism since it abstracts away the particular form in which

R -realisation information is stored. This projection controls at the same

time the set of permitted R -realisers of the side formulas when a negative

formula is realised, and guarantees that R -realisers stored in the output

of γ depend only on the R -realisers stored in the input. The reason we

cannot drop the address-pointer formalism completely in favour of the above

described formalism on R -realisers is of course its inefficiency. It would not

deliver a feasible upper bound for our theory.

Let us now specify our strategy, and define a suitable realisation relation for

sequents consisting of formulas of A. First, we show how to realise sequences

of positive formulas. This is done by a realisation relation r+
b defined simi-

larly as rb for TPT but containing a tuple of words as additional arguments.

They help to define a realisation relation r′ for (single) formulas of the form

A0 → A1 where A0, A1 are positive. As expected, we use functionals as re-

alisers, whose input is a CD with R -realisation information for A0 and the

side formulas Γ.

Definition 55 (r+
b) The four relata of r+

b are a word ρ, a recursive

address finder 5 b, a sequence A1, · · · , An of positive formulas, and a tu-

ple of words < c1, · · · , cn >. The relation holds on this relata, written as

ρ r+
b A1, · · · , An < c1, · · · , cn >, iff for 1 ≤ i ≤ n, we have

con(ρ, b(ρ, i)) ≡Ai ci
5In contrast to the last chapter, address finders are not assumed to be feasible in

this chapter. Later, they will just be arguments of type W2 → W of feasible realisation
functionals.

73

In such a context, we call < c1, · · · , cn > a projection of ρ.

In the following, we write rb instead of r+
b for any address finder b.

Definition 56 Let b be an address finder with n relevant inputs. Let w be

an arbitrary word. Then the address finder bw is defined as follows 6.

bw(ρ, i) =

b(w, i), if 1 ≤ i ≤ n

MA(ρ), if i = n+ 1

Definition 57 For two CDs α, ρ we say that α extends ρ exactly if the fol-

lowing conditions are fulfilled.

• ρ ⊆ α

• αr ρ does not contain an address head ρ contains.

Definition 58 (r′) The realisation relation r′ has five relata. We give the

intended meaning of the relata in the brackets. The first is of type

WW×WW × (WW)3

given as < γ1, · · · , γ4 > (the functional realiser together with bounds), the

second is a formula of A of the form A0 → A1 for positive A0, A1 (the formula

to be realised), the third is a positive sequence Γ (the side formulas), the fourth

is a tuple of words < c1, · · · , cn > (restrictions for the allowed R -realisers

of the side formulas) and the fifth a function γ̃ of type WW (a projection of

the functional realiser). The relation r′ holds of its five relata, written as

< γ1, · · · , γ4 > r′A relative to Γ, < c1, · · · , cn, γ̃ >, exactly if for any address

finder b, any substitution [~s], any word v, and any α with α rb A0[~s],Γ[~s]

< v, c1, · · · , cn > the following conditions hold.

• γ1, · · · , γ4 are recursive.

• γ1(α, b) extends α

6We extend the function MA from chapter 2 to the larger set of CDs in the obvious
way.

74

• γ1(α, b) rbα A0[~s],Γ[~s], A1[~s] < v, c1, · · · , cn, γ̃(v, c1, · · · , cn) >,

• MA(γ1(α, b)) ≤ MA(α) + γ2(Wb(α))

• γ1(α, b) ≤ α + γ3(Wb(α),MA(α)) 7

• Wbα(γ1(α, b)) ≤ γ4(Wb(α))

We define a new realisation relation for sequents consisting of formulas of A

by fusing the realisation relations rb and r′. Since this relation is always

relative to an address finder b, we can call it Rb without danger of confusion

with the already defined R . In the following, we give some intuition how

the general realisation relation works and set some notational conventions to

prepare its definition.

The extended realisation relation holds (amongst other relata) between a

word ρ and a positive sequence Γ, or between objects of type

W×

n times︷ ︸︸ ︷
WW×WW × · · · ×WW×WW ×(WW)3

and sequences containing n > 0 negative formulas. For the case n = 0 we

just use the realisation relation rb for positive formulas from definition 55.

We concentrate now on the case where a sequence Γ with n > 0 negative

formulas is realised, and give the intended meaning of the components of

the realiser in this case. The first component is a realiser of the positive

formulas of Γ in the sense of definition 55. The next n components are

realisers of the negative formulas. The last three components are bounds for

the realisers of the negative formulas that work like γ2, γ3, γ4 in definition 58

but simultaneously for all functional realisers of negative formulas. Now a

bit of notation.

• ℘, < ρ, γ1, · · · , γn, P1, P2, P3 >, or similar notations always denote ar-

bitrary objects of type

W×

n times︷ ︸︸ ︷
WW×WW × · · · ×WW×WW ×(WW)3,

7We consider γ3 as a function from W to W. Its intended input is a pair. We make
similar assumptions in other places. Wb is defined analogously as in chapter 2.

75

where for ℘ n is determined by the context. We call these objects

generalised CDs.

• For ℘ given as < ρ, γ1, · · · , γn, P1, P2, P3 > we denote its first compo-

nent ρ by ℘+. The other components are denoted by ℘−, so we have

℘ =< ℘+, ℘− >.

• We write MA(℘) for MA(℘+) and analogously for Wb.

• ~γ abbreviates γ1, · · · , γn and ~P abbreviates P1, P2, P3. The arity of ~γ

is determined by the context.

• For a sequence containing n negative formulas we write NFi for 1 ≤
i ≤ n for the i-th negative formula.

• We write Γ+ for the sequence Γ with all negative formulas deleted.

• We write Γ+, NF1, · · · , NFn for any sequence which contains exactly

the displayed formulas with the same multiplicity, whose positive for-

mulas are ordered as the ones in Γ+, and whose negative formulas are

ordered as the NFi. Our realisation approach does not discriminate

any of these sequencies.

Now, we can define a realisation relation for sequences of formulas of A.

Definition 59 (Rb) The realisation relation Rb has four relata. The

first is a sequence Γ with m positive and n negative formulas (the sequence

that has to be realised). If n equals 0, the second relata is a word (CD for the

positive sequence), the third is a tuple of words < c1, · · · , cm > (restrictions

for the R -realisers of Γ+), the fourth is an empty tuple. If n > 0, the second

relata is of type

W×

n times︷ ︸︸ ︷
WW×WW × · · · ×WW×WW ×(WW)3

(realiser of the mixed sequence), the third is a tuple of words < c1, · · · , cm >

(restrictions for the realisers of Γ+), the fourth is a tuple ~̃γ of n functions of

type WW (projections for the functional realisers of the negative formulas).

We write ℘ Rb Γ < c1, · · · , cm, ~̃γ > iff the relation Rb holds between the

76

above mentioned relata. We drop ~̃γ if it is the empty tuple. We define Rb

by the following definition by cases.

Assume n = 0.

℘ Rb Γ < c1, · · · , cm >:⇔ ℘ rb Γ < c1, · · · , cm >

Assume n > 0. We define Rb inductively on the sum of quantifiers

having → in their scope.

• First, assume that all negative formulas NFi are of the form `NFi →
rNFi for `NFi, rNFi positive. Then

℘ Rb Γ < c1, · · · , cm, ~̃γ >

iff

– ℘+ rb Γ+ < c1, · · · , cm >, and

– for all 1 ≤ i ≤ n, we have

< γi, ~P > r′NFi relative to Γ+, < c1, · · · , cm, γ̃i >

• Assume that NFi is of the form (∀x)A[x]. Then we have

℘ Rb Γ+, NF1, · · · , (∀x)A[x], · · · , NFn < c1, · · · , cm, ~̃γ >:⇔
℘ Rb Γ+, NF1, · · · , A[u], · · · , NFn < c1, · · · , cm, ~̃γ >

for a fresh variable u.

• Assume that NFi is of the form (∃x)A[x]. Then we have

℘ Rb Γ+, NF1, · · · , (∃x)A[x], · · · , NFn < c1, · · · , cm, ~̃γ >:⇔
℘ Rb Γ+, NF1, · · · , A[t], · · · , NFn < c1, · · · , cm, ~̃γ >

for some term t.

If ℘ Rb Γ+, NF1, · · · , NFn < c1, · · · , cm, ~̃γ >, we call < c1, · · · , cm, ~̃γ > the

projection of ℘. Next, we show that the realisation relation Rb is sensible,

by proving some standard properties.

77

Lemma 60 Let Γ a sequence of formulas. We use the abbreviation ~s = ~t for

s1 = t1 ∧ · · · ∧ sn = tn. Then the following holds for all substitutions [~s], [~t]

and all address finders b.

• ℘ Rb Γ[~x] < c1, · · · , cn, ~̃γ >⇒ ℘ Rb Γ[~s] < c1, · · · , cn, ~̃γ >.

• ~s = ~t⇒ (℘ Rb Γ[~s] < c1, · · · , cn, ~̃γ >⇔ ℘ Rb Γ[~t] < c1, · · · , cn, ~̃γ >)

• ℘ Rb Γ, (∃x)A[x] < c1, · · · , cn, ~̃γ >⇒ ℘ Rb Γ, A[t] < c1, · · · , cn, ~̃γ >,

for some term t.

• Assume that A is a positive formula. Then we have

℘ Rb Γ, (∀x)A[x] < c1, · · · , cn, ~̃γ >⇒

℘ Rb′ Γ, (∀x)A[x], A[t] < c1, · · · , cn, cn, ~̃γ >

for any term t, where b′ finds the last address twice.

• Assume that A is a negative formula. Then we have

℘ Rb Γ, (∀x)A[x] < c1, · · · , cn, ~̃γ >⇒ ℘ Rb Γ, A[t] < c1, · · · , cn, ~̃γ >

for any term t.

Proof.

We prove the first assertion: Assume ℘ Rb Γ[~x] < ~c, ~̃γ >. That ℘+ works

correctly for Γ+(~s) follows from the lemma 49. Let us prove the correctness

of ℘− by induction on the sum of quantifiers binding →. For a formula A of

the form A0 → A1 for A0, A1 positive the claim follows from the closedness

of the relation r′ under substitution. The induction step is trivial.

The second claim of the lemma holds because the relation ≡ is closed under

substitutions of the terms of its formula argument by equal terms.

Let us prove that the claim for the existential quantifier holds. Assume

℘ Rb Γ, (∃x)A[x]. If A is a negative formula the claim trivially holds. So,

assume that A is positive. ℘+ clearly works for a substitution by a suitable

closed term t. Let us argue that the functional components of ℘− do their

job with respect to t. Let γi receive an input ρ with

ρ r b `NFi,Γ
+, A[t][~s] < v,~c > .

78

We have that w0 ≡A(t)[~s] w1 implies w0 ≡(∃x)A[x][~s] w1 for all w0, w1 ∈ W and

all [~s] which implies

ρ r b `NFi,Γ
+, (∃x)A[x][~s] < v,~c > .

The assumption yields

γi(ρ, b) r bρ `NFi,Γ
+, (∃x)A[x], rNFi[~s] < v,~c, γ̃i(v) > .

γi extends ρ which implies

γi(ρ, b) r bρ `NFi,Γ
+, A[t], rNFi[~s] < v,~c, γ̃i(v) > .

Let us prove that the claim for the universal quantifier holds. Assume

℘ Rb Γ, (∀x)A[x] for A positive. ℘+ clearly works for any term t. Let us

argue that the functional components of ℘− do their job with respect to an

arbitrary t. Let γi receive an input ρ with

ρ r b `NFi,Γ
+, (∀x)A[x], A[t][~s] < v, c1, · · · , cn, cn > .

We have

γi(ρ, b) r bρ `NFi,Γ
+, (∀x)A[x], rNFi[~s] < v, c1, · · · , cn, γ̃i(v) > .

Since γi extends its input, we derive

γi(ρ, b) r bρ `NFi,Γ
+, (∀x)A[x], A[t], rNFi[~s] < v, c1, · · · , cn, cn, γ̃i(v) >

as required. The claim for A being a negative formula trivially holds.

2

3.4 Application of the formalism to T+

In the following, we work with two realisation functionals, the first working

on CDs and the second on their projections. Their interplay allows the

realisation of the axiom of choice. Note that the second functional does not

have to be feasible.

79

3.4.1 Stating the main claim

We formulate a main theorem, which is very similar as the one in chapter 2.

Theorem 61 Assume T+ Γ ⇒ D quasi cut free, where Γ contains m

positive and n negative formulas. Then there exists a feasible functional p

(realisation functional), feasible functionals κ, δ, γ (bounds for the realisation

functional) and a recursive functional p̃ (projection of the realisation func-

tional) such that the following properties hold for all address finders b, all sub-

stitutions [~s], all ~c ∈Wm, all ~̃γ ∈ (WW)n, all ℘ such that ℘ Rb Γ[~s] < ~c, ~̃γ >.

• p(℘, b) Rb℘+ Γ, D[~s] p̃(~c, ~̃γ)

• – MA(p(℘, b)) ≤ MA(℘) + κ(Wb(℘), P1, P3)

– p(℘, b)+ ≤ ℘+ + δ(Wb(℘),MA(℘), ~P).

– Wb℘+ (p(℘, b)) ≤ γ(Wb(℘), P3)

• – p(℘, b)P1 is a feasible functional of P1 and P3.

– p(℘, b)P2 is a feasible functional of P1, P2 and P3.

– p(℘, b)P3 is a feasible functional of P3.

Note that the new address for the |Γ+| + 1-th positive formula is irrelevant

if D is a negative formula.

There would be the possibility to use alternatively the following realisation

approach which does not use projections: We extend the relation ≡ to an

equivalence relation ≡∗ relative to its word arguments with the formula fixed,

using its transitive closure 8 . The functions ~γ and the realisation relation

8In the following, we show that transitivity relative to the word arguments for a fixed
formula fails for ≡. We let sg : W→W be the following function.

sg(w) =

0, if w = 0

1, else

We let tsg denote the corresponding term on word inputs. Now, a counterex-
ample can be build for the formula (∃x)(dW(x, x, 0, 0) = 0 ∧ tsgx = x ∧
T(x =̇ 0 ∨̇ x =̇ 1→̇x ≤W 1)) := (∃x)A[x] and the following three realisers:

80

p are assumed to respect these equivalence classes. We do not choose this

approach because the property that

s0 ≡∗∃xA[x] s1 ⇒ s0 ≡∗A[t] s1 for a term t

would fail which makes the realisation of the existential quantifier left rule

awkward. During the proof of the main theorem, we tacitly assume that

p(℘, b)+ extends ℘+. We also tacitly assume that λx.κ(x, P1, P3) always

bounds the functions P1, P3. We make analogous assumptions about δ, γ.

We have to show that the realisation functional works for all possible substi-

tutions [~s]. In unproblematic cases, we will ignore this to increase readability.

3.4.2 Realisation functions for the axioms

Since weakening is restricted, we have to realise axioms with positive side

formulas.

The axioms of TPT only contain positive formulas, therefore they can be

realised as in chapter 2. We only have to add suitable projections of the

realisation functions, which can be found easily. Also the T reflection axioms,

(T − CD), (T − UP), can be realised easily using pointers.

〈p∧q, 〈pWq, ε〉, 〈p∧q, 〈pWq, ε〉,

〈p→q, 〈〈0, ε〉, 〈p∧q, 〈pWq, ε〉, 〈pWq, 0〉〉, 〈〈1, ε〉, 〈p∧q, 〈pWq, ε〉, 〈pWq, 0〉〉〉〉〉 := ρ1

〈p∧q, 〈pWq, ε〉, 〈p∧q, 〈pWq, ε〉,

〈p→q, 〈〈0, ε〉, 〈p∧q, 〈pWq, ε〉, 〈pWq, 0〉〉, 〈〈1, ε〉, 〈p∧q, 〈pWq, ε〉, 〈pWq, 1〉〉〉〉〉 := ρ2

〈p∧q, 〈pWq, ε〉, 〈p∧q, 〈pWq, ε〉,

〈p→q, 〈〈0, ε〉, 〈p∧q, 〈pWq, ε〉, 〈pWq, 1〉〉, 〈〈1, ε〉, 〈p∧q, 〈pWq, ε〉, 〈pWq, 1〉〉〉〉〉 := ρ3

The formula is satisfied in the standard model exactly for the witnesses 0 and 1, since
the equation dW(x, x, 0, 0) = 0 is exactly satisfied for words, and the signum function,
which is correctly simulated by tsg on words, has the only fixed points 0 and 1. We have

ρ1 ≡A[0] ρ2 and ρ2 ≡A[1] ρ3,

so if ≡(∃x)A[x] is transitive, ρ1 ≡(∃x)A[x] ρ3 has to hold. Nevertheless, it fails because
ρ1 R A[1] fails, as well as ρ3 R A[0]. So, there is no common witness for which both, ρ1

and ρ3, realise (∃x)A[x].

81

Class generation axioms

Let us realise the axiom

Γ,Cl(s),Cl(t)⇒ Cl(s ∧̇ t),

where Γ is a positive sequence. Assume that α rb Γ,Cl(s),Cl(t). (We suppress

the projection of α for readability.) We have to construct all possible realisers

of T(s∧̇t) which are just all the pairs of a possible realiser of T(s) and a

possible realiser of T(t). These realisers are stored under the extensions of

b(α, |Γ| + 1)↓.Cl or b(α, |Γ| + 2)↓.Cl, respectively. For any CD ρ, let the

function ρCl(s),v give as output the |v|-th left side of ρ which is an extension

of b(α, |Γ|+ 1)↓.Cl ordered by the length of the v ∈ W extending it. We give

out ε if this does not make sense. We use number notation for the input v.

We assume that T(s) has n and T(t) m possible realisers. A function yielding

a realiser for Γ,Cl(s),Cl(t),Cl(s ∧̇ t) can be defined as follows, where M is a

sufficiently large address head.

f(ρ, b) := ρ/M.pClq.0→ MA(ρ) + 1/

MA(ρ) + 1.0→ ρCl(s),1/MA(ρ) + 1.1→ ρCl(t),1/ · · · /

M.pClq.

m times︷ ︸︸ ︷
00 · · · 0→ MA(ρ) +m/

MA(ρ) +m.0→ ρCl(s),1/MA(ρ) +m.1→ ρCl(t),m/ · · · /

M.pClq.

n·m times︷ ︸︸ ︷
00 · · · 0 → MA(ρ) + n ·m/

MA(ρ) + n ·m.0→ ρCl(s),n/MA(ρ) + n ·m.1→ ρCl(t),m

This function is clearly feasible and fulfils property 1. The until now sup-

pressed projection p̃ of the realisation function can be defined analogously.

The bounding property 2.1 is fulfilled because the necessary new maximal

address M can be bounded by the old one plus a bound for |Wb(ρ)×Wb(ρ)|.
The bounding property 2.2 is fulfilled because we add at most |Wb(ρ)×Wb(ρ)|
CD parts that can be bounded polynomially in MA(ρ) plus Wb(ρ) ×Wb(ρ).

2.3 is fulfilled for the bounding polynomial Wb(ρ)×Wb(ρ). Clearly, we need

to admit that class atoms have computational content in order to achieve the

bounding properties 2.1, 2.2. Property 3 is trivially fulfilled. This finishes

the proof for this class axiom.

82

We briefly switch to the other class axioms. The axiom Γ⇒ Cl(x=̇y) can be

realised trivially. For Γ,Cl(s),Cl(t) ⇒ Cl(s ∨̇ t), we use a similar realisation

function as displayed above. The class axioms for quantifiers can be realised

trivially because of the definition of the realisation relation R .

Here, it becomes clear that our approach cannot deal realise the sequent

Cl(s),Cl(t)⇒ Cl(s→ t)

since the number of possible realisers of T(s→ t) cannot be bounded polyno-

mially in the number of possible realisers of T(s),T(t) even if we allow only

finite functions whose image is within the set of possible realisers of T(t).

→̇ axiom right

Let the axiom have the following form.

Γ,Cl(s),T(s)→ T(t)⇒ T(s→̇t)

We produce the realiser of T(s→̇t) as follows. We can read of the possible

realisers of T(s) from the realiser of Cl(s). Then, we apply the functional

realiser of T(s) → T(t) consecutively to the possible realisers. If a possible

realiser is an actual realiser for a substitution [~t] this will yield an actual

realiser of T(t)[~t]. But if the possible realiser is not an actual one, we do not

know whether the application of the functional realiser produces a reason-

able result. Especially, we do not know whether the bounds are respected.

Therefore, we have to enforce them using bounding functions that keep the

maximal address, the computational content and the length under control.

In addition, we can assume that the functional realisers applied to non actual

realisers still have an output that is a CD, and extends their input since the

functional realisers can be easily manipulated to do so.

Definition 62 The function MAbound : W2 → W is defined as follows:

MAbound(ρ, w) outputs ρ with all CD parts with address heads larger than w

deleted.

83

Definition 63 The function Wbound : W2 → W is defined as follows for

ρ0 ⊆ ρ1:

Wbound(ρ0, ρ1) =

ρ1, if conW(ρ1,MA(ρ1)) = ε

ρ0, else

If ρ0 ⊆ ρ1 does not hold, we give output ε.

We write ρ|MAw instead of MAbound(ρ, w) and write ρ1|Wρ0 instead of

Wbound(ρ0, ρ1). Assume that the polytime function g : W → W applied to

w ∈W gives a bound for the CD parts not build from words longer than w

(excluding p∧q, pClq, p→q).

We define the following bounding polynomial to keep the length of the CDs

under control by definition of cases.

B(ρ, ε, ~P) := ρ

B(ρ, siw, ~P) := ρ+ P2(Wb(ρ),MA(ρ) + P1(Wb(ρ))× w + siw)× siw+

g(Wb(ρ) + MA(ρ) + P1(Wb(ρ))× w + siw)× siw

Definition 64 For an address finder b with n+ 1 relevant inputs, we define

b‡ as follows.

b‡(ρ, i) =

b(ρ, n+ 1), if i = 1

b(ρ, i− 1), if 1 < i ≤ n+ 1

Again, for any CD ρ, let the function ρCl(s),v give as output the |v|-th left

side of ρ which is an extension of b(ρ, |Γ| + 1)↓.Cl ordered by the length of

the v ∈ W extending it. We give out ε if this does not make sense. We use

number notation for the input v. We define an auxiliary function h such

that h(ρ, γ, ~P , w, b) contains all components of a realiser of T(s→̇t) under

the assumption that < ρ, γ, ~P > Rb Γ,Cl(s),T(s)→ T(t) < ~c, γ̃ >, and the

R -realiser of Cl(s) having |w| components not counting its first component

pClq 9.

9We assume that the cut function |, that is used to cut with the bound B, works such
that for two words ρ, w, if ρ is a CD then ρ|w is a CD. This is guaranteed by occasionally
cutting away more than necessary.

84

h(ρ, γ, ~P , ε, b) := ρ

h(ρ, γ, ~P , siv, b) := γ(h(ρ, γ, v, b)/MA(h(ρ, γ, v, b)) + 1→ ρCl(s),siv

|MAMA(ρ) + P1(Wb(ρ))× siv + siv|Wh(ρ, γ, v, b)

|B(ρ, siv, ~P)

h(ρ, γ, ~P , v, b) is feasible because it is defined by bounded recursion. Let us

check that indeed all components of a realiser of T(s→̇t) are given under

certain addresses in h(α, γ, ~P , w, b) if we have

< α, γ, ~P > Rb Γ,Cl(s),T(s)→ T(t) < ~c, 〈pClq, a1, · · · , a|w|〉, γ̃ >

The R -realisation content that has to be delivered has the following form,

where the bi will be defined yet.

〈p→q, 〈a1, b1〉, · · · , 〈a|w|, b|w|〉〉.

The realisation information for the ai is already given at the addresses

b(α, |Γ| + 1)↓.Cl.v for v ⊆ w. Let us find the addresses at which the cor-

responding information for the bi is given. Assume v ⊆ w. We do a case

distinction depending on whether a|v| is a realiser of T(s)[~t] for some substitu-

tion [~t]. First, assume that this is the case. Assume siv
′ = v. We abbreviate

h(α, γ, ~P , v′, b)/MA(h(α, γ, v′, b)) + 1→ αCl(s),v as d. This means

d r bα‡ T(s),Γ,Cl(s)[~t] < a|v|,~c > .

We abbreviate h without the bounds as h′ and infer because of the properties

of γ the following.

con(h′(α, γ, ~P , siv
′, b),MA(h′(α, γ, ~P , siv

′, b))) ≡T(t)[~t] γ̃(a|v|,~c)

This means that in this case b|v| has to be defined as γ̃(a|v|,~c). It has to

be checked yet that the bounds in the definition of h are not active in this

case which means that h′(α, γ, ~P , siv
′, b) = h(α, γ, siv

′, b). This follows from

Wbα‡(h(α, γ, ~P , v, b)) = Wb(α) for all v ∈W and the correctness of γ, ~P .

As second case, we now assume that a|v| does not realise T(s)[~t] for any

substitution [~t]. Since in this case we do not have to produce a correct realiser

85

of T(t)[~t] the maximal address of h(α, γ, ~P , v, b) works for an arbitrary defined

b|v|.

After having applied h, we have to add a new address under which T(s→̇t)
will be realised. Its extensions will point at the relevant addresses that are

all produced by h as we proved before. Accordingly, the realisation function

p(℘, b) for ℘ :=< ρ, γ, ~P > is calculated as follows:

• Produce a word w with |w| being the number of left sides of the form

b(ρ, |Γ|+ 1)↓.Cl.v in ρ.

• Calculate h(ρ, γ, ~P , w, b) and remember the relevant addresses

ă1, b̆1, · · · , ˘a|w|, ˘b|w| where ăi gives information for ai and b̆i for bi.

• We add the following CD parts, where M is a new address:

M.p→q.0.0→ ă1/ M.p→q.0.1→ b̆1/ · · · /M.p→q.n.0→ ăn/

M.p→q.n.1→ b̆n

• We get the full realiser by adding the unchanged functional.

The projection p̃ is defined as follows where we assume that Γ contains m

(positive) formulas.

p̃(~c, cm+1, γ̃) :=
〈~c, cm+1, 〈p→q, 〈a0, γ̃(a0)〉, 〈a1, γ̃(a1)〉, · · · 〉, γ̃〉, if cm+1 is of the form

〈pClq, a0, a1, · · · 〉

〈~c, cm+1, ε, γ̃〉, else

The arguments before imply that the first property is fulfilled for p,p̃. Prop-

erty 2 is fulfilled because of the bounded definition of f . Property 3 is fulfilled

for p(℘, b)Pi = Pi.

Note that because we cannot control the behaviour of the bounds in the case

that possible realisers of T(s) are not actual, the realisation function and its

projection produce R -realisers that are only equal modulo ≡T (s→̇t).

86

→̇ axiom left

Let the axiom have the following form.

Γ,Cl(s),T(s→̇t),T(s)⇒ T(t)

From α rb Γ,Cl(s),T(s→̇t),T(s), we produce the required realiser as follows.

We compare the coded classical realiser for T(s) with all possible realisers of

T(s), given within the realisation information for T(s→̇t) (or Cl(s)). There is

a unique fitting address b(α, |Γ|+ 2)↓.p→q.v.0 because of lemma 50. Unlike

the construction of R -realisers their comparison is feasible as we will prove

in lemma 65. Then add the CD part MA(α) + 1 → b(α, |Γ| + 2)↓.p→q.v.1.

(For arbitrary inputs ρ, if no v can be found or ρ has not the intended form,

just output ε.)

Stipulated that R -realiser comparison is feasible, the above sketched func-

tional is feasible too. It fulfils the properties 2,3 trivially. p̃ can be defined

analogously, the correctness of p and p̃ is implied by lemma 50. The feasibility

of p follows from the next lemma.

Lemma 65 There is a feasible comparing function compare : W4 → {0, 1}
such that

compare(ρ0, ρ1, ă0, ă1) = 1⇔ con(ρ0, ă0) = con(ρ1, ă1).

Proof. We first describe the general strategy to compute compare, and en-

hance the efficiency of the computation in a second step to obtain feasibility.

If any of the inputs is not of the intended form output 0. Else, to prove of dis-

prove the equality of the realisers stored at addresses ă0 and ă1, we recursively

compare realisers at smaller addresses v̆, w̆ such that con(ρ0, v̆) = con(ρ1, w̆)

is implied by con(ρ0, ă0) = con(ρ1, ă1). For two addresses v̆ and w̆ which have

to be compared in one of these sub computations, we execute a case distinc-

tion on the case that is used first when calculating con(ρ0, v̆) or con(ρ0, v̆),

respectively, relative to the definition by cases of con on page 71. If e.g. ρ0

equals 1 : 0/2 → 1, to calculate con(ρ0, 2) we first use case 1, for con(ρ0, 1)

we use case 6.

87

• The computation of con(ρ0, v̆) and con(ρ1, w̆) fall under different cases

in the definition by cases of the function con and none of them falls

under case 1: We end the whole computation with output 0.

• The computation of con(ρ0, v̆) and con(ρ1, w̆) both fall under cases

2,3,4,5 or one of them falls under case 1: We find new addresses, we have

to compare. If e.g. both have p∧q extensions v̆.p∧q.0 and v̆.p∧q.1 or

w̆.p∧q.0 and w̆.p∧q.1 respectively. We compare v̆.p∧q.0 with w̆.p∧q.0
and v̆.p∧q.1 with w̆.p∧q.1. It is also possible that e.g. v̆ points at an

address v̆′ which means that this v̆′ and w̆ have to be compared.

• The computation of con(ρ, v̆) and con(ρ, w̆) both fall under case 6 or

both fall under case 7: If both are of the form l̆ : r or l̆ : 〈pTq, r〉
respectively, for equal r, we end this sub computation. If not, we end

the whole computation with output 0.

• The computation of con(ρ, v̆) or con(ρ, w̆) falls under case 8: We end

the whole computation with output 0.

Therefore by recursively using the comparing function, we will finally con-

clude con(ρ0, ă0) = con(ρ1, ă1) and give output 1, if the computation termi-

nates without giving output 0. The algorithm may execute the necessary

sub computations in any order. To make the computation efficient enough,

we have to remember which sub computations have been executed already.

Assume that lρ0 is a left side of ρ0 and lρ1 is a left side of ρ1. We store all

pairs < lρ0 , lρ1 > for which the above displayed instructions have already

been executed. The storage of these pairs allows to go through the above

mentioned instructions only once for each pair < lρ0 , lρ1 >. Since these in-

structions and the required manipulations of the storage can be executed in

polynomial time in ρ0 and ρ1 this establishes the claim.

2

88

Axiom of choice

This axiom is given as follows for A positive.

Γ, (∀x)(x ∈ W→(∃y)(y ∈ W ∧ T (axy))⇒
(∃f)(∀x)(x ∈ W→ fx ∈ W ∧ T (ax(fx)))

As usual, we can realise the axiom of choice using twice the same functional

realiser. Accordingly, we define the realisation functional as follows.

p(< ρ, γ, ~P >, b) =< ρ, γ, γ, ~P >

We define the projection p̃ as follows.

p̃(< ~c, γ̃ >) :=< ~c, γ̃, γ̃ >

We will give a suitable witness f for the existential quantifier in the succedent

and prove the correctness of p, p̃ relative to it. Assume

℘ Rb Γ, (∀x)(x ∈ W→ (∃y)(y ∈ W ∧ T (axy))) < ~c, γ̃ >

From now on, we write MA instead of MA(ρ), if MA occurs in the second

argument of con or conW with ρ as first argument. We define f as the closed

term which corresponds to the following function from W to W

λx.conW(γ(℘+/MA(℘) + 1 : x, b℘+‡),MA↓.0).

We find such a term because γ, b are recursive. According to the logical struc-

ture of the main claim the dependence of the witness on ℘, b is unproblematic.

Now, we prove

< γ, ~P > r′(∃f)(∀x)(x ∈ W→ fx ∈ W ∧ T (ax(fx))),

relative to Γ, < ~c, γ̃ > for the witness given above.

Assume for a ρ ∈W, an address finder b′, and a fresh variable u

ρ rb′ u ∈ W,Γ[~s] < w,~c > .

w0 ≡s∈W w1 implies w0 = w1 for any w0, w1 ∈ W and any term s. This

implies that value(u[~s]) = w ∈W 10. The properties of γ, γ̃ imply

10For readability, we ignore in the following the difference between w and 〈pWq, w〉.

89

con(γ(ρ, b′),MA) ≡(∃y)(y∈W∧T (au[~s]y))[~s] γ̃(w)

We use the properties of ≡ for existential quantification to derive

(A) con(γ(ρ, b′),MA) ≡t∈W∧T (au[~s]t))[~s] γ̃(w)

for some term t. We use the properties of ≡ for ∧ and of ↓ to derive

con(γ(ρ, b′),MA↓.0) ≡t∈W[~s] γ̃(w)1

for the same term t. This implies

conW(γ(ρ, b′),MA↓.0) = γ̃(w)1,1

In particular, if we choose ρ as ℘+/MA(℘) + 1 : w and b′ as b℘+‡, we derive

value(fu[~s]) = γ̃(w)1,1

So, because of the properties of the realisation relation, we have that the

above mentioned t equals fu[~s] in the standard model, which yields because

of (A) the desired result. It follows immediately that properties 1,2,3 are

fulfilled.

Note that in order to show that the witness chosen for (∃y)(y ∈ W ∧
T (au[~s]y)) does not depend on the particular representation of the R -

realisation information in the address-pointer formalism but only on the value

of u[~s], we make crucial use of the projection formalism.

3.4.3 Rules of T+

First, we introduce some for our approach specific problems we will encounter

in the realisation of the rules and give rough instructions how to deal with

them. In the following, we look at rules with premisses ∆i and conclusion

Σ. We abbreviate the positive formulas of the antecedent of the sequent Σ

as Σ+, analogously for the ∆i.

Problem 1: If a ∆+
i is logically weaker than Σ+, we cannot apply the re-

alisation function of this premise to the given realiser, because

its functional components are not strong enough. We avoid this

problem by using a special formulation of the rules and by avoid-

ing weakening.

90

Problem 2: If a ∆+
i is stronger than Σ+, the functional realisers produced

by the realisation function of this premise are not strong enough

to be functional realisers of the conclusion. This is the case for

the rules ∨-left, cut, the→-rules, existential quantifier left. This

problem will be solved usually by combining the weak functional

realisers the realisation function of one of the premisses produces

with functions that deliver a realiser of one of the ∆+
i from a

realiser of Σ+.

Problem 3: For the structural rules ∆+ and Σ+ are logically equivalent, nev-

ertheless, similar difficulties as described above occur because

the functional realisers for ∆+ expect information for a certain

formula at an other address than the ones of Σ+. The problem

can be solved by address finder modifications.

Problem 2 only occurs if the succedent is a negative formula. Else, the

functional realisers for Σ+ can just be preserved and the weakened ones,

produced by the premise realisation function, ignored. Let us first treat

rules where problems 2 and 3 do not occur.

→ rule right

Let the applied rule have the following form.

Γ, A⇒ D

Γ⇒ A→ D

We assume that Γ has m positive formulas. We can assume that A,D are

positive. By induction hypothesis we have a realisation functional p for the

premise, which almost gives the functional realiser of A → D, we just have

to modify the address finder.

Definition 66 For an address finder b with n+ 1 relevant inputs, we define

b† as follows.

b†(ρ, i) =

b(ρ, i+ 1), if 1 ≤ i ≤ n

b(ρ, 1), if i = n+ 1

91

We define the realisation function f as follows.

f(℘, b) = < ℘+, ~γ, λw.λc.p(< w,~γ, ~P >, c†)+,

λw.κp(w,P1, P3), λw.λv.δp(w, v, ~P), λw.γp(w,P3) >

We define f̃ as follows.

f̃(~c, ~̃γ) = < ~c, ~̃γ, λv.p̃D(~c, v, ~̃γ) >

To prove that properties 1,2,3 are fulfilled for f and f̃ it suffices to prove the

correctness of the added functions. We assume ℘ Rb Γ[~s] < ~c, ~̃γ >.

Take a ρ ∈W with ρ r b′ A,Γ
+[~s][~t] < v,~c >. This implies ρ r b′† Γ+, A[~s][~t] <

~c, v >. Because the functions ~γ will ignore the information for the formula

A[~s][~t], we have

< ρ, ℘− > r b′† Γ, A[~s][~t] < ~c, v, ~̃γ >

For each formula A, we write p̃A for the projection of p̃ producing an R -

realiser of A. This yields

p(< ρ, ℘− >, b′†)+ r b′ρ A,Γ
+, D[~s][~t] < v,~c, p̃D(< ~c, v, ~̃γ >) >

So the added functional realiser is correct. The new bounds work for the func-

tional realisers of ℘ because of the monotonicity of κ, δ, γ. They additionally

work for the added functional because the functional parameters occurring

in λw.λc.p(< w,~γ, ~P >, c†)+ extend the input to a realiser of Γ, A[~s][~t] and

for such inputs the bounds hold due to the induction hypothesis.

Induction

We have to realise the extended induction rule of the following form.

Γ, t ∈ W⇒ T(rε) ∨ C Γ, t ∈ W,T(rx) ∨ C, x ∈ W⇒ T(r(six)) ∨ C
Γ, t ∈ W⇒ T(rt) ∨ C

,

where C is a positive formula. By induction hypothesis we have realisation

functionals p, q0 and q1 for the premisses. We can find the realisation func-

tional f for the conclusion in a very similar way as in chapter 2. This is

92

so, because the functional realisers, possibly present in the given realiser of

Γ, t ∈ W[~s], have not to be changed during the recursion, they only behave

as parameters. So, we can concentrate on a realiser for the positive part.

The use of functionals even allows are more elegant definition than in the

mentioned chapter: We include the address finder b as third argument, the

first two arguments of f will behave as for the original f . f is given by a

recursion that we bound using the functions ~P . The bound is inactive if the

inputs are as intended. Now, we define bounding functions for the addresses

and the length of the realiser.

h(℘,w, b) := κp(Wb(℘), P1, P3) + κq(Wb(℘), P1, P3)× w + w + 1,

where κq is a bound for κq0 , κq1 . Again, we define g : W→W as the feasible

function which applied to w ∈ W gives a bound for the CD parts not build

from words longer than w (excluding pClq, p∧q, · · ·).

Definition 67 The bounding function B is defined by case distinction as

follows.

B(℘, ε, b) := ℘+ + δp(Wb(℘),MA(℘), ~P) + g(MA(℘) + h(℘, ε, b))

B(℘, siw, b) := ℘+ + δp(Wb(℘),MA(℘), ~P) +[
δq(Wb(℘),MA(℘) + h(℘,w, b), ~P) +

g(Wb(ρ)) + MA(℘) + h(℘, siw, b)
]
× siw

Definition 68 The function b̃w is given by the following definition of cases.

b̃w(ρ, i) =


b(w, i), if 1 ≤ i ≤ |Γ|+ 1

MA(ρ)− 1, if i = |Γ|+ 2

MA(ρ), if i = |Γ|+ 3

Definition 69 The function f ′ is defined by bounded recursion as follows.

We abbreviate qi(< f(℘,w, b), ~γ, ~P >, b̃℘+)+ as c(℘,w, b). We abbreviate

MA(f(℘,w, b))− 1↓ as v.

f ′(℘, ε, b) := p(℘, b)+/MA(p(℘, b)+) + 1 : ε|B(℘, ε, b)

f ′(℘, siw, b) :=

f ′(℘,w, b), if R℘+(v, v.1)

c(℘,w, b)/MA
(
c(℘,w, b)

)
+ 1 : siw|B(℘, siw, b), else

93

The projection f̃ ′(~c, w, ~̃γ) of f ′ is defined analogously but by unbounded

recursion.

The correctness of the functions f ′, f̃ ′ can be proved very similarly as in

chapter 2 for TPT: We assume ℘ Rb Γ, t ∈ W[~s] < ~c, ~̃γ >. We denote by v

the minimal word v′ ⊆ value(t[~s]) such that

R(MA(f(℘, v, b))− 1↓,MA(f(℘, v, b))− 1↓.1),

if such a word exists, and else value(t[~s]) ∗ 0.

Statements analogous to lemmas 26,27 in the previous chapter can be proved

for a function f defined as f ′ but without bound B. For the analogon of

lemma 26, we prove by induction on w for all w ⊂ v

f(℘,w, b) r b̃℘+
Γ+, t ∈ W,T(rw), w ∈ W[~s]f̃(~c, ~̃γ, w)

For the induction step we use that the r b̃℘+
realiser produced by f can be

completed to a Rb̃℘+
realiser adding ℘−. Lemma 27 holds in a restricted form

exactly for the same reasons as before: For each w ⊂ v, we have

Wb̃(fb(℘,w, b)) ≤ Wb(℘).

Now, it can be proved easily that the bounding function B in the definition

of f ′ is inactive under the assumption that ℘ is a realiser relative to b, which

implies their correctness. The realisation function and its projection can be

defined easily from f ′, f̃ ′. We can add the unmodified functional realisers.

Property 1 follows from the arguments given before. 2.1 follows because

of the analogon of lemma 27, 2.2 follows because of the bounded definition

of f ′. 2.3 follows for a feasible bound γ of γp, γq because we increase the

computable content at most once: in the step we first realise the disjunct

C. Property 3 follows with unchanged ~P . Note that compared with the

treatment of the induction rule in chapter 2, we do not need a reverse of the

auxiliary realisation function. This is because we are working with realisation

functionals with the address finder as argument. Therefore, we are allowed

to let the address finder depend on ℘+ for the realiser ℘ of Γ, t ∈ W[~s].

94

→ rule left

Let the applied rule have the following form.

Γ⇒ A Γ, B ⇒ D

Γ, A→ B ⇒ D

We can assume that A,D are positive. By induction hypothesis we have the

realisation functionals p and q for the premisses. We have to apply both of

them and additionally the realiser of A→ B.

Definition 70 For ℘ =:< ρ, γ1, · · · , γn, ~P > we write ℘� for

< ρ, γ1, · · · , γn−1, ~P >.

We define an approximation f ′ of the realisation functional as follows.

f ′(℘, b) = q(< γA→B[p(℘�, b)+, b℘+‡], (℘�)− >, b℘+)

We show that f ′ delivers realisation information for the positive formulas, and

explain afterwards how it has to be modified to treat the negative formulas.

So, let us assume

℘ Rb Γ, A→ B[~s] < ~c, ~̃γ, γ̃A→B > .

This implies

℘� Rb Γ[~s] < ~c, ~̃γ > .

The induction hypothesis for p delivers

p(℘�, b)+ r b℘+ Γ+, A[~s] < ~c, p̃A(~c, ~̃γ) > .

(Remember that p̃A(~c, ~̃γ) gives the component of the realisation information

given in p̃(~c, ~̃γ) that is responsible for the formula A.) This implies

p(℘�, b)+ r b℘+‡ A,Γ
+[~s] < p̃A(~c, ~̃γ),~c > .

We apply γA→B, forget the realiser for A and get the following.

c := γA→B[p(℘�, b)+, b℘+‡] r b℘+ Γ+, B[~s] < ~c, γ̃A→B(p̃A(~c, ~̃γ)) > .

95

The induction hypothesis for q implies that

q(γA→B[p(℘�, b)+, b℘+‡], (℘�)−), b℘+) R b℘+,c
(A)

Γ, B,D[~s] q̃(~c, γ̃A→B(p̃A(~c, ~̃γ)), ~̃γ)

Now, by forgetting the information for B[~s] we get an r -realiser of (Γ, D)+

relative to a projection as above described but with the information for B is

erased. The only problem is that we have possibly weakened the functional

realisers as they expect an input containing an R -realiser w with w ≡B[~s]

γ̃A→B(p̃A(~c, ~̃γ)). First, let us assume that the negative formula NFi that is

to be realised is of the form `NFi → rNFi for `NFi, rNFi positive.

The searched functional realiser for this formula can be described in the fol-

lowing way: We take the input which is a realiser of `NFi,Γ[~s][~t] (in the

intended case) and produce from it, similarly as demonstrated before, a re-

aliser of `NFi,Γ, B[~s][~t]. Then, we apply the functional realiser f ′(℘, b)NFi
to this modified input. We change the bounds accordingly. For more compli-

cated NFi, the same strategy works. Accordingly, f is given by the following

algorithm to compute f(℘, b).

• Compute f ′(℘, b).

• Replace the functional components f ′(℘, b)NFi by

λx.λy.f ′(℘, b)NFi(γA→B[p(< x, (℘�)− >, y†)+, y†x‡], yx)

• Replace the bound f ′(℘, b)P1 by

λx.f ′(℘, b)P1 [℘P3(γp(x, ℘P3))] + ℘P1(γp(x, ℘P3)) + κp(x, ℘P1 , ℘P3)

• Replace the bound f ′(℘, b)P2 by

λx.λy.f ′(℘, b)P2 [℘P3(γp(x, ℘P3)), y + ℘P1(γp(x, ℘P3)) +

κp(x, ℘P1 , ℘P3)] + ℘P2(γp(x, ℘P3), y + κp(x, ℘P1 , ℘P3)) + δp(x, y, ℘~P)

• Replace the bound f ′(℘, b)P3 by

λx.f ′(℘, b)P3(℘P3(γp(x, ℘P3)))

96

• Add the removed functional realiser γA→B.

To get the right projections of the functional components, we replace the

functional components f̃ ′(~c, ~̃γ)NFi of the projection

f̃ ′(~c, ~̃γ) := q̃(~c, γ̃A→B(p̃A(~c, ~̃γ))) by

λv.f̃ ′(~c, ~̃γ)NFi(v,~c, ˜γA→B(p̃A(~c, ~̃γ)))

After these modifications, we delete the content for B and add the functional

component for A → B. This delivers the projection f̃ of the realisation

function f .

Now, we will prove the correctness of the realisation function and its pro-

jection. Let us prove property 1 first. Claim (A) and the arguments above

imply

f(℘, b)+ r b℘+ (Γ, D)+f̃(~c, ~̃γ)+.

So, we only have to show that the functional components of the realiser are

correct. We use induction on the number of quantifiers having → in their

scope. Assume for a ρ ∈W and a formula A0 → A1 with A0, A1 positive

ρ r b′ A0,Γ
+[~s][~t] < v,~c > .

This implies

< ρ, (℘)− > r b′† Γ[~s][~t] < ~c, ~̃γ >,

where we ignore the information for A0[~s][~t]. In the same way as before, we

derive

γA→B(p(< ρ, (℘)− >, b′†)+, b′†ρ‡) r b′ρ A0,Γ
+, B[~s][~t] < v,~c, γ̃A→B(p̃A(~c, ~̃γ)) >

But on this CD, f̃ ′(℘, b)A0→A1 works correctly, which implies f(℘, b)γ̃i

f(℘, b)γ̃i(ρ, b
′) r b′ρ A0,Γ

+, A1[~s][~t] < v,~c, f̃(℘, b)γ̃i(v,~c) >

as required. The correctness of the bounds follows easily form the induc-

tion properties for the involved functionals. The induction step for negative

formulas of higher complexity is trivial.

The bounds for property 2 are produced by replacing in the bounds for the

functional realisers the terms f ′(℘, b)Pi by κq, δq, γq, respectively. Property 3

is clearly fulfilled.

97

Existential quantifier rule left

Let this rule be formulated as follows where the usual variable condition

applies.

Γ, A[u]⇒ D

Γ, (∃x)A[x]⇒ D

Take the realisation function p of the premise if A is negative, so assume that

A is positive. Against expectation the realisation is not trivial. We assume

℘ R bΓ, (∃x)A[x][~s] < c1, · · · , c|Γ+|+1, ~̃γ >. Let p be the realisation function

of the premise. Its application to ℘ yields correct positive realisers because

we can apply the induction hypothesis for a suitable substitution of u by

a closed term t. But we produce functional realisers which are very weak

because they require inputs ρ such that for an address finder b′

con(ρ, b′(ρ, |Γ+|+ 2)) ≡A(t)[~s] c|Γ+|+1,

where t is a specific substitution of u determined by ℘+. Although, we need

a functional realiser that works for inputs ρ with

con(ρ, b′(ρ, |Γ+|+ 2)) ≡(∃x)A(x)[~s] c|Γ+|+1.

Therefore, we have to replace p(℘, b)NFi by γ′i defined as follows.

γ′i(x, y) := p(< x, ℘− >, y†)NFi(x, y)

The p(℘, b)Pi do not have to be modified, since p is applied to a realiser with

the same negative part as ℘.

We replace the projections of p̃(℘, b)NFi analogously:

γ̃i
′(v) := p̃(< ~c, ~̃γ >)NFi(v)

Let us prove the correctness of the modified functional realisers γi, where we

still assume ℘ R bΓ, (∃x)A[x][~s] < c1, · · · , c|Γ+|+1, ~̃γ >. We let NFi be of the

form `NFi → rNFi for `NFi, rNFi positive. The other cases can again be

treated by an easy induction. So assume

ρ r b′ `NFi,Γ
+, (∃x)A[x][~s][~t] < v,~c >

98

This implies

< ρ, ℘− > Rb′† Γ, (∃x)A[x][~s][~t] < ~c, ~̃γ >

Because of lemma 60

< ρ, ℘− > Rb′† Γ, A[t][~s][~t] < ~c, ~̃γ >

for a specific closed term t depending on the realiser ρ. This means that

p(< ρ, ℘− >, b′†) produces functional components that are correct on inputs

x with address finder y with

con(x, y(x, 1)) R `NFi[~s][~t][~u]

and

con(x, y(x, i+ 1)) ≡Γ+
i [~s][~t][~u] ci

for 1 ≤ i ≤ |Γ| and

con(x, y(x, |Γ+|+ 1)) ≡A[t][~s][~t][~u] c|Γ|+1.

For [~u] being the identity substitution, we derive

γ′i(ρ, b
′) r b′ρ `NFi[~s][

~t],Γ+[~s][~t], A[t][~s][~t], rNFi[~s][~t] < v,~c, γ̃i
′(v) > .

We derive

γi(ρ, b
′) r b′ρ `NFi[~s][

~t],Γ+[~s][~t], (∃x)A[x][~s][~t], rNFi[~s][~t] < v,~c, γ̃i(v) > .

So, we produce correct realisers for the negative formulas. For the realisation

of the positive formulas, we can just use the premise realisation function p.

It is easy to see that properties 1,2, and 3 are fulfilled.

For the realisation of the ∨ left rule, one applies very similar ideas.

Structural rules

If the particular structural rule has a negative main formula, it can be realised

very easily. Additionally, weakening with positive formulas was excluded.

Therefore, we will just demonstrate contraction and commutation for positive

main formulas. These rules require us to modify the address finders being

the second argument of functional realisers.

99

Let the applied contraction rule have the following form.

Γ, A,A⇒ D

Γ, A⇒ D

Let p be the realisation function of the premise. Define an approximation f ′

of the realisation function as follows.

f ′(℘, b) := p(℘, b′),

where

b′(ρ, i) =

b(ρ, i), if 1 ≤ i ≤ |Γ+|+ 1

b(ρ, |Γ+|+ 1), if i = |Γ+|+ 2

This produces almost the right realiser, we just have to adjust the arity

of the functional realisers. So the realisation function f(ρ, b) is defined as

shrink(f ′(ρ, b)) were shrink replaces each f ′(℘, b)NFi by

λx.λy.f ′(℘, b)NFi(x, ŷ),

with ŷ defined as follows.

ŷ(ρ, i) =

y(ρ, i), if 1 ≤ i ≤ |Γ+|+ 2

y(ρ, |Γ+|+ 2), if i = |Γ+|+ 3

We define f̃ ′ as follows.

f̃ ′(c1, · · · , c|Γ+|+1, ~̃γ) := p̃(c1, · · · , c|Γ+|+1, c|Γ+|+1, ~̃γ)

Let the applied commutation rule have the following form.

Γ, A,B,∆⇒ D

Γ, B,A,∆⇒ D

Define the function f ′ as follows.

f ′(℘, b) := p(< ρ, λx.λy.γ1(x, ŷ), · · · , λx.λy.γn(x, ŷ), ~P >, b′),

whereˆswitches the values of b at positions |Γ+|+2 and |Γ+|+3 and ′ switches

the values of b at positions |Γ+|+ 1 and |Γ+|+ 2. This almost produces the

required realiser only the function components have to be adjusted. So the

100

realisation function f(ρ, b) is defined as switch(f ′(ρ, b)) were switch replaces

each f ′(℘, b)NFi by

λx.λy.f ′(℘, b)NFi(x, ŷ).

We define the projection f̃ as follows.

f̃(c1, · · · , c|Γ+|+1, c|Γ+|+2, ~̃γ) := p̃(c1, · · · , c|Γ+|, c|Γ+|+2, c|Γ+|+1, ~̃γ)

Universal quantifier rule left

Let us look at the universal quantifier rule.

Γ, (∀x)A[x], A[t]⇒ D

Γ, (∀x)A[x]⇒ D

The realisation function can be found trivially if A is negative. So assume

that A is positive. Let p be the realisation function of the premise. Because of

lemma 60, the following realisation function yields correct positive realisers.

f(℘, b) := p(℘, b′),

where b′ finds the |Γ|+1-th realiser relative to b twice. The functional realisers

have to be modified as for contraction. We define f̃ as for contraction.

Cut

Let the applied rule have the following form.

Γ⇒ A Γ, A⇒ D

Γ⇒ D

Assume first that the cut formula A is positive. Then we apply both premise

realisation functions consecutively as usual for cut. We have to modify the

weakened functional components analogously as for the → left rule. The

projection can be defined analogously. In case that A is negative, we define

the realisation functional as expected and easily prove that property 1 holds.

To prove that the property 2 is fulfilled for the realisation function f , we

use the induction hypothesis for property 3. Property 3 holds because of the

closedness of feasible functionals under composition.

101

The rules, we did not treat here, can be realised using similar ideas. This

finishes the proof of the main lemma.

Because the feasible functionals from W to W are exactly the polytime func-

tions, we deduce the following corollary as in chapter 2. Note that for the con-

struction of the polytime function corresponding to a provable total function,

we do not rely on the projection formalism, which guarantees the feasibility.

Corollary 71 (of theorem 61 and lemma 43) The provably total func-

tions of the following theories are exactly the polytime functions.

• TPT + Pos− AC + UP

• Ti
PT + Pos− AC + UP + RN

3.5 Induction over negative formulas for weak

applicative theories

As we claimed at the beginning of this chapter, the technique of treating

negative induction formulas by realisers coding them as finite functions can

easily be adapted to further weak applicative theories. In the following, we

sketch how intuitionistic versions of Strahm’s theories PT, PTLS, PS, and LS,

introduced in [79], can be conservatively extended by induction over negative

formulas.

Definition 72 Let T be one of the theories PTi, PTLSi, PSi, or LSi. Then,

the theory T′ extends T by the following induction scheme, where in A, no

W occurs in the antecedent of any implication.

u ∈ W→ (Au[ε] ∧ (∀x ∈ W)(Au[x]→ Au[six])→ (∀x ∈ W)Au[x])

The upper bound of the extended theories T′ is found by a realisation ap-

proach for quasi-cut-free proofs, formulated in sequent calculus. We have

to explain how to realise arbitrary formulas without occurrence of W in the

antecedent of any implication. Such formulas are called normal from now on.

For W free formulas, we define the set of possible realisers as for classes of

the theory T+. Let A be a W free formula, and B a normal formula, then the

word ρ is a realiser of A→ B exactly if the following conditions are fulfilled.

102

• ρ codes a finite function f whose inputs are the possible realisers of A.

• For any substitution [~s] and any word ρ′ we have

ρ′ R A[~s]⇒ f(ρ′) R B[~s]

If we choose a sensible coding of the finite functions, the realisers of the

induction formulas At can still be bounded linearly in value(t) which allows

the realisation of induction by bounded recursion. The→ rule right is realised

by applying the realisation function of the premise to all possible realisers of

the antecedent of the main formula. The→ rule right is realised by applying

consecutively the premise realisation functions and the coded finite function.

Also the theory PETJi, introduced and analysed by Spescha and Strahm

in [74], can be conservatively extended by allowing induction over negative

formulas. (PETJi is presented in detail in the next chapter.) This is done

using a second name predicate S corresponding to classes of T+, and an

additional constant imp fulfilling the following axioms.

S(a) ∧R(b)→ R(imp(a, b)) ∧ (∀x)(x ∈ imp(a, b)↔ x ∈ a→ x ∈ b)

An upper bound by an embedding into T+ can be found by standard tech-

niques along the lines of the next chapter. Note that this does not deliver a

feasible theory of explicit mathematics that reflects all normal formulas but

only such formulas where all antecedents are positive and W free. For the

realisation of the more general theory of explicit mathematics the problem

described for T+ on page 83 occurs.

3.6 Open questions

Cantini’s reduction technique of classical - to the corresponding intuitionistic

theories developed in [18] clearly does not work for an axiom of choice for

negative formulas A. Nevertheless, in the cited paper he succeeds to realise

an intuitionistic theory with full axiom of choice, and proves that this axiom

does not strengthen his theory with respect to its provably total functions.

We strongly assume that our system Ti
PT + Pos− AC + UP + RN extended

103

by the full axiom of choice is still feasible. We also strongly assume that the

natural axiom

Cl(s),Cl(t)⇒ Cl(s→̇t)

does not increase the strength of the system T+ or any of its mentioned

extensions. It would be interesting to see if one could prove these assumptions

using a generalisation of the proposed realisation approach.

104

Chapter 4

Embeddings between weak

theories of truth and explicit

mathematics

The contents of this chapter are joint work with Thomas Strahm, and have

been published as [32].

4.1 Introduction

In this chapter, we study the relationship between weak applicative theories

of truth and corresponding theories of explicit mathematics. In particular,

we consider two truth theories: TPR of primitive recursive strength, and the

previously introduced theory TPT. The theory TPR is just TPT with

a ∈ W→ (T(Ẇab)↔ b ≤W a)

replaced by

a ∈ W↔ T(Ẇa).

Clearly, TPR proves the Tarski biconditionals exactly for positive LT formulas

which immediately implies its lower bound. The upper bound is achieved by

an embedding into PR plus Σ0
1 induction by using the formalized term model

construction used in the proof of Theorem 9 in Cantini [19]. Alternatively,

one can also use Cantini’s realisation approach [18] to prove the upper bound.

105

We will see that the truth theories can interpret corresponding systems of

explicit mathematics very directly, whereas reverse embeddings of truth the-

ories into explicit mathematics are more elaborate and require additional

assumptions.

The chapter is structured as follows: In section 2, we present two natural sys-

tems of explicit mathematics of polynomial and primitive recursive strength,

respectively: the system PETJ of Spescha and Strahm [73, 72, 74] and the

system EPCJ; both of these frameworks are direct subsystems of Feferman’s

EM0 plus the join principle (cf. [33, 34]). For the embedding of truth theories

into explicit mathematics, further principles will be needed, for example, the

existence of universes, and Cantini’s uniformity principle. Section 3 is de-

voted to mutual embeddings of weak truth theories and systems of explicit

mathematics. Firstly, we will see that PETJ and EPCJ are very directly

contained in TPT and TPR, respectively. The reverse embeddings are more

difficult: (i) for the direct embedding of TPR into EPCJ we assume the exis-

tence of a universe and the uniformity principle; (ii) the reduction of TPT to

PETJ proceeds via an intermediate levelled truth theory, which in turn can

be directly modelled in an extension of PETJ by universes. In Section 4, we

discuss the proof-theory of weak systems of explicit mathematics, including

the mentioned ones.

4.2 Explicit mathematics

Types in explicit mathematics are collections of operations and must be

thought of as being generated successively from preceding ones. They are

represented by operations via a suitable naming relation <. Types are ex-

tensional and have (explicit) names which are intensional. The formalization

of explicit mathematics using a naming relation < is due to Jäger [52].

We will present the two weak theories of explicit mathematics EPCJ and

PETJ and some extensions thereof. We will describe the two theories simul-

taneously since their axioms differ only slightly.

106

4.2.1 The language L of explicit mathematics

The language L is a two-sorted language extending L by

• type variables U, V,W,X, Y, Z, . . .

• binary relation symbols < (naming) and ∈ (elementhood)

• new (individual) constants w (sets of words), id (identity), un (union),

int (intersection), dom (domain), all (forall), inv (inverse image), and j

(join)

The formulas (A,B,C, . . .) of L are built from the atomic formulas of L as

well as from formulas of the form

(s ∈ X), <(s,X), (X = Y)

by closing under the propositional connectives and quantification in both

sorts of variables. The formula <(s,X) reads as “the individual s is a name

of (or represents) the type X”.

We use the following abbreviations:

<(s) := (∃X)<(s,X),

s ∈ t := (∃X)(<(t,X) ∧ s ∈ X).

4.2.2 Two theories of explicit mathematics

In the following we spell out the axioms of the system EPCJ whose character-

istic axioms are elementary positive comprehension and join. The applicative

basis of EPCJ is B+ as for all theories of explicit mathematics studied in this

chapter. Hence their underlying logic is ordinary two-sorted classical predi-

cate logic.

The following axioms state that each type has a name, that there are no

homonyms and that equality of types is extensional.

Ontological axioms:

(∃x)<(x,X)(O1)

<(a,X) ∧ <(a, Y) → X = Y(O2)

(∀z)(z ∈ X ↔ z ∈ Y) → X = Y(O3)

107

The following axioms provide a finite axiomatisation of the schema of positive

elementary comprehension and join.

Type existence axioms:

<(w) ∧ (∀x)(x ∈ w↔ x ∈ W)(wPR)

<(id) ∧ (∀x)(x ∈ id↔ x = 〈p0x, p1x〉 ∧ p0x = p1x)(id)

<(a)→ <(inv(f, a)) ∧ (∀x)(x ∈ inv(f, a)↔ fx ∈ a)(inv)

<(a) ∧ <(b)→ <(un(a, b)) ∧ (∀x)(x ∈ un(a, b)↔ (x ∈ a ∨ x ∈ b))(un)

<(a) ∧ <(b)→ <(int(a, b)) ∧ (∀x)(x ∈ int(a, b)↔ (x ∈ a ∧ x ∈ b))(int)

<(a)→ <(dom(a)) ∧ (∀x)(x ∈ dom(a)↔ (∃y)(〈x, y〉 ∈ a))(dom)

<(a)→ <(all(a)) ∧ (∀x)(x ∈ all(a)↔ (∀y)(〈x, y〉 ∈ a))(all)

<(a) ∧ (∀x ∈ a)<(fx)→ <(j(a, f))(j.1)

<(a) ∧ (∀x ∈ a)<(fx)→ (∀x)(x ∈ j(a, f)↔ Σ(f, a, x))(j.2)

where Σ(f, a, x) is the formula

(∃y)(∃z)(x = 〈y, z〉 ∧ y ∈ a ∧ z ∈ fy)

The only difference between EPCJ and PETJ is that for PETJ we replace the

axiom (wPR) by (wPT).

a ∈ W → <(w(a)) ∧ (∀x)(x ∈ w(a)↔ x ≤W a)(wPT)

In contrast to the comprehension schema available in EPCJ, in PETJ it is not

claimed that the collection of binary words forms a type, but merely that for

each word a, the collection {x ∈ W : x ≤ a} forms a type, uniformly in a.

Finally, both theories include the principle of type induction along W.

Type induction on W:

ε ∈ X ∧ (∀x ∈ W)(x ∈ X → s0x ∈ X ∧ s1x ∈ X)→ (∀x ∈ W)(x ∈ X)

The finite axiomatisations of elementary comprehension in EPCJ and PETJ

immediately imply corresponding schemes of elementary comprehension with

respect to the characteristic formula classes of EPCJ and PETJ, respectively.

108

Lemma 73 (Positive Comprehension) Let A[a, ~x, ~X] be a positive L for-

mula with exactly the free variables displayed which does neither contain the

predicate < nor second order quantifiers. Then there exists a term tA[~x, ~z]

with exactly the free variables displayed such that EPCJ proves

<(~z, ~X) → <(tA[~x, ~z]) ∧ (∀a)
(
a ∈ tA[~x, ~z]↔ A[a, ~x, ~X]

)
Definition 74 (Simple L formulas) Let A be a positive L formula which

does neither contain the predicate < nor second order quantifiers. Then the

formula Au which is obtained by replacing each subformula of the form t ∈ W

of A by t ≤W u is called simple.

Note, that simple L formulas are defined in analogy to simple LT formulas 5.

Lemma 75 (Simple Comprehension) Let Au[u, a, ~x, ~X] be a simple L for-

mula with exactly the free variables displayed. Then there exists a term

tA[u, ~x, ~z] with exactly the free variables displayed such that PETJ proves

u ∈ W ∧ <(~z, ~X) → <(tA[u, ~x, ~z]) ∧ (∀a)
(
a ∈ tA[u, ~x, ~z]↔ Au[u, a, ~x, ~X]

)
Lemma 73 and Lemma 75 allow us to use set notation. We will sometimes

write {x : A[x]} instead of tA where tA is defined as above.

4.2.3 Extensions

In standard models of explicit mathematics, the elementhood and naming

relation are constructed in stages; the same applies to standard models of

truth theories, see Feferman [33] and Cantini [13]. Beginning with sentences

which can be immediately seen to be true, we establish the truth of more

complex statements. The truth predicate can then be conceived as joining

the truth stage predicates of at least ω many stages. To interpret this object

in explicit mathematics, we will define recursively types corresponding to

particular stages. However the admissibility of an iterative definition of types

presupposes induction on W for the naming predicate to prove that the type

constructors work as intended. In the following, we will expand our theories

of explicit mathematics such that name induction is possible at least in a

109

restricted way. But instead of expanding these theories by a type reflecting

the name predicate, we vote for the weaker and more usual extension by

universes. This additional expressive power makes it possible to interpret

the truth theories TPR and TPT respectively.

A universe is a type U such that:

• U is closed under (positive) elementary comprehension and join;

• All elements of U are names.

To introduce universes precisely we define a closure condition in the following

way: CEPCJ(z, a) holds iff one of the following conditions is satisfied:

• a = w

• a = id

• (∃x)(∃f)(a = inv(f, x) ∧ x ∈ z)

• (∃x)(∃y)(a = un(x, y) ∧ x ∈ z ∧ y ∈ z)

• (∃x)(∃y)(a = int(x, y) ∧ x ∈ z ∧ y ∈ z)

• (∃x)(a = dom(x) ∧ x ∈ z)

• (∃x)(a = all(x) ∧ x ∈ z)

• (∃x)(∃f)
[
a = j(x, f) ∧ x ∈ z ∧ (∀y ∈ x)(fy ∈ z)

]
For PETJ we have to adapt the first condition: we replace a = w by the

formula (∃u ∈ W)(a = wu). We call the modified formula CPETJ(z, a).

Assuming that z is a name, the formula (∀x)(CEPCJ(z, x)→ x ∈ z) expresses

that z names a type that is closed under the type constructors of the theory

EPCJ; analogously for PETJ. We abbreviate the formula

(∀x)(CEPCJ(z, x)→ x ∈ z) ∧ (∀x)(x ∈ z → <(x)) ∧ <(z)

by UEPCJ(z); the formula UPETJ(z) is defined analogously.

110

Next assume that the language L contains two additional constants `EPCJ and

`PETJ. The following two axioms state that `EPCJ and `PETJ create an EPCJ

or PETJ universe respectively, if applied to a name.

<(a) → UEPCJ(`EPCJ(a)) ∧ a ∈ `EPCJ(a)(UEPCJ)

<(a) → UPETJ(`PETJ(a)) ∧ a ∈ `PETJ(a)(UPETJ)

In order to keep the notation simple, we write EPCJ + U instead of EPCJ +

UEPCJ and analogously PETJ+U instead of PETJ+UPETJ. Similarly, we drop

the subscript of `EPCJ and `PETJ if it is clear from the context.

Using the universe it is possible to code the elementhood relation of its types

by using a suitable join.

Lemma 76 There exists a closed term e such that for Th = PETJ + U or

EPCJ + U we have that Th proves

<(a)→ <(e(a)) ∧ (∀x)
(
x ∈ e(a)↔ (∃y)(∃z)(x = 〈y, z〉 ∧ z ∈ `(a) ∧ y ∈ z

)
Below, Cantini’s uniformity principle (cf. [18]) is needed for the embedding

of TPR. It claims for each positive L formula A

(∀x)(∃y ∈ W)A[x, y]→ (∃y ∈ W)(∀x)A[x, y](UP)

This concludes the description of the relevant extensions of explicit mathe-

matics.

4.3 Embeddings

We will embed the theories of explicit mathematics with universes into the

theories of truth and vice versa. The embedding of the theories of explicit

mathematics with universes is straightforward. The reverse embeddings are

more difficult and work in a different way for both theories of truth: it

seems to be impossible to embed TPT into PETJ + U directly. Instead we

embed a levelled theory of truth to which TPT is reducible by an asymmetric

interpretation argument.

111

In this section we assume an equivalent first order formulation of EPCJ and

PETJ.

The first order formulations postulate the type-theoretic axioms directly via

a unary naming predicate < and a binary elementhood relation ∈ between in-

dividuals. The first and the second order versions can be mutually embedded

for both theories of explicit mathematics. For details about the embedding,

see e.g. Spescha [72] or Spescha and Strahm [74].

4.3.1 Embedding weak theories of explicit mathemat-

ics into weak truth theories

For both weak truth theories introduced in the chapter, the embedding works

completely analogously. We take the embedding of EPCJ + U into TPR as

example. The main idea is to interpret the elementhood relation by using

the truth predicate and to trivialize the universes. The translation ∗ of a

formula s ∈ t will be

T(t∗s∗).

To make this translation work, we have to interpret the type constructors in

the right way. The idea is to translate them by predicates, which embody

their membership condition.

Definition 77 (Translation of terms) For each term t of L, its transla-

tion t∗ into LT is defined recursively on the complexity of t in the following

way.

• All applicative constants are left untouched.

• id∗ ≡ λz.z =̇ 〈p0z, p1z〉 ∧̇ p0z =̇ p1z

• w∗ ≡ λz. Ẇz

• int∗ ≡ λa.λb.λz. az ∧̇ bz

• un∗ ≡ λa.λb.λz. az ∨̇ bz

• inv∗ ≡ λf.λa.λz. a(fz)

112

• dom∗ ≡ λa.λz. ∃̇λy.a〈z, y〉

• all∗ ≡ λa.λz. ∀̇λy.a〈z, y〉

• j∗ ≡ λf.λa.λz. ∃̇λx.∃̇λy.z =̇ 〈x, y〉 ∧̇ ax ∧̇ (fx)y

• `EPCJ
∗ ≡ λa.λz.0 =̇ 0

• st∗ ≡ s∗t∗

Formulas are translated in the following way: atomic formulas commute with
∗ except for the formulas of the shape s ∈ t whose translation is T(t∗s∗) and

the formulas of the shape <(s) whose translation is 0 = 0. The translation

commutes with implication, propositional connectives and quantifiers.

For this translation, the embedding theorem below is proved without diffi-

culties. Since the name predicate is interpreted trivially, the translations of

the universe axioms hold in TPR. Moreover, the translation can be modified

in the obvious way in order to provide an embedding of PETJ + U into TPT.

Theorem 78 EPCJ+U and PETJ+U are contained in TPR and TPT via the
∗ translation or a slight modification thereof, respectively.

Let us mention that this embedding theorem also holds for expansions of

explicit mathematics by positive uniformity if the truth theories are expanded

analogously.

4.3.2 Embedding of TPR into EPCJ + U + UP

First, we define types corresponding to levels of truth. We construct a truth-

level type τw for each word w. Using join we can then collect all these

truth-level types. Because of UP the resulting type satisfies the translated

truth axioms.

The types τw for the truth levels all consist of tuples of three elements. The

first element contains a code for a logical symbol of LT. All these codes are

assumed to be different words. The second and the third element stand for

113

the terms the logical constant is applied to. The third element is sometimes

only a place holder. Let us define the bottom truth level τε as

{〈a, b, c〉|(a = p=̇q ∧ b = c) ∨ (a = pẆq ∧W(b) ∧ c = ε)}.

The types for the higher truth levels are defined recursively (using the fixed

point theorem of B) in the following way:

τ(siw) := τw ∪ {〈a, b, c〉|
(
a = p∧̇q ∧ b ∈ τw ∧ c ∈ τw

)
∨(

a = p∨̇q ∧ [b ∈ τw ∨ c ∈ τw]
)

∨(
a = p∃̇q ∧ (∃x)(bx ∈ τw) ∧ c = ε

)
∨(

a = p∀̇q ∧ (∀x)(bx ∈ τw) ∧ c = ε
)
}

To justify the type notation, we have to show that the above given terms τw

are names for each w ∈ W. Only then, the type constructors work in the

intended way and indeed name the above displayed types. Since <-induction

is not available, we use type induction with the universe `EPCJ(id) for this

purpose. It is easy to see that τε ∈ `EPCJ(id) and

(∀w ∈ W)(τw ∈ `EPCJ(id)→ τ(siw) ∈ `EPCJ(id))

hold. We apply type induction and use the fact (∀x)
(
x ∈ `EPCJ(id)→ <(x)

)
to get the desired result.

Now the stage is set to define a translation ◦ of TPR into EPCJ + U + UP. In

particular, we translate the truth predicate using the above defined hierarchy

of types.

Definition 79 (Translation of terms) For each term t of LT, its transla-

tion t◦ is defined inductively on its complexity in the following way.

• All applicative constants are left untouched.

• =̇◦ ≡ λx.λy.〈p=̇q, x, y〉

• Ẇ◦ ≡ λx.〈pẆq, x, ε〉

• ∧̇◦ ≡ λx.λy.〈p∧̇q, x, y〉

114

• ∨̇◦ ≡ λx.λy.〈p∨̇q, x, y〉

• ∃̇◦ ≡ λx.〈p∃̇q, x, ε〉

• ∀̇◦ ≡ λx.〈p∀̇q, x, ε〉

• (st)◦ ≡ s◦t◦

Definition 80 (Translation of formulas) For each formula A of LT, its

translation A◦ is defined inductively in the following way.

• (s = t)◦ ≡ s◦ = t◦

• (s ∈ W)◦ ≡ s◦ ∈ W

• T(t)◦ ≡ t◦ ∈ dom(inv(λx.〈p1x, p0x〉, j(W, τ)))

• The translation commutes with implication, propositional connectives

and quantifiers.

Note that by the type axioms of EPCJ + U, we have

t ∈ dom(inv(λx.〈p1x, p0x〉, j(W, τ))) ↔ (∃w ∈ W)(t ∈ τ(w))

We are now ready to state the embedding of TPR into EPCJ + U + UP.

Theorem 81 TPR is contained in EPCJ + U + UP via the ◦ translation.

Proof. It is clear that the translations of the applicative axioms hold in

EPCJ + U. Further, we can show that the translation of truth induction

holds in EPCJ + U using inv. So let us check the translations of the truth

axioms. The direction from right to left is always trivially fulfilled except for

(∀̇). Its translation is in EPCJ + U equivalent to

(∀x)(∃w ∈ W)(fx ∈ τw)→ (∃w ∈ W)(〈p∀̇q, f, ε〉 ∈ τw).

Using UP, from the antecedens we can derive the existence of a w ∈ W such

that (∀x)(fx ∈ τw). This implies that 〈p∀̇q, f, ε〉 is in the successor truth

level type τ(siw).

The direction from left to right is always proved in the same way. We sketch

the proof for the ∧̇-axiom. Let .− be defined in the following way.

115

• x .− ε := x

• x .− siw := pW(x .− w)

Let us assume the left-hand side of the ∧̇-axiom. Its translation implies in

EPCJ + U

〈p∧̇q, a, b〉 ∈ τw

for a w ∈ W unequal ε. We define the formula A[x] as1

〈p∧̇q, a, b〉 ∈ τ(w .− x) ∨ (∃y ∈ W)(y ⊂ w ∧ a ∈ τy ∧ b ∈ τy).

Clearly, this formula is progressive in W due to the construction of the truth

level types. By type induction we get

〈p∧̇q, a, b〉 ∈ τε ∨ (∃y ∈ W)(y ⊂ w ∧ a ∈ τy ∧ b ∈ τy).

Since the bottom level of truth does not contain tuples of the form 〈p∧̇q, a, b〉,
the second disjunct has to be true. This immediately implies the left-hand

side of the ∧̇-axiom. 2

Note that we needed only the existence of one single universe to prove this

embedding. In addition, similarly as described in the next paragraph for TPT,

it is also possible to reduce TPR via an intermediate levelled truth theory to

EPCJ + U. This results in a reduction of TPR to EPCJ + U which does not

depend on the uniformity principle.

4.3.3 Reduction of TPT to PETJ + U

Unfortunately an embedding similar to the one in the previous subsection

does not seem to be possible in this case. This is because we cannot collect

the truth levels for all words, since join can have only initial segments of the

type of words as index type.

The levelled truth theory T`
PT

Because of the above mentioned reasons, we have to reduce the truth theory

TPT to a levelled truth theory T`
PT. This means that the predicate T in

1We use s ⊂ t as abbreviation for dW(0, 1, s, t) = 1 ∧ c⊆st = 0

116

T`
PT is a binary predicate, whose first argument is written as superscript and

interpreted as truth level. This superscript displays the maximal complexity

of formulas the corresponding unary truth predicate can reflect. The logical

axioms and rules of T`
PT are the usual ones. T`

PT has the following non-logical

axioms.

• a ∈ W→ (Ta(x
.
= y)↔ x = y)

• a, b ∈ W→ (x ≤W b↔ Ta(Ẇbx))

• a ∈ W→
(
Tsia(x ∨̇ y)↔ Ta(x) ∨ Ta(y)

)
• a ∈ W→

(
Tsia(x ∧̇ y)↔ Ta(x) ∧ Ta(y)

)
• a ∈ W→

(
Tsia(∃̇f)↔ (∃z)Ta(fz)

)
• a ∈ W→

(
Tsia(∀̇f)↔ (∀z)Ta(fz)

)
• a0, a1 ∈ W ∧ a0 ≤ a1 ∧ Ta0(x)→ Ta1(x)

Additionally, we have truth induction in the following form:

Tpε(fε) ∧ (∀x ∈ W)
[
Tpx(fx)→ Tp(s0x)(f(s0x)) ∧ Tp(s1x)(f(s1x))

]
→ (∀x ∈ W)(Tpx(fx))

In the following, p will always be a polynomial.

For the asymmetric interpretation of TPT in T`
PT, we bound the truth level

and the W predicate simultaneously. We work as usual with sequent style

formulations of TPT and T`
PT which we call TPT and T`

PT as well. We as-

sume that in these calculi all axioms are formulated for terms to guarantee

a sufficient cut elimination.

Definition 82 (Asymmetric interpretation) Let A be a positive LT for-

mula and let a, b be variables. The formula Aa,b is defined in the following

way.

• (t ∈ W)a,b ≡ t ≤W a

• T(t)a,b ≡ Tb(t)

117

Other atomic formulas are untouched by the asymmetric interpretation. The

asymmetric interpretation commutes with propositional connectives and quan-

tifiers.

Next we state the crucial asymmetric interpretation lemma of TPT into T`
PT.

An immediate consequence of the lemma is that the provably total functions

of TPT are contained in the provably total functions of T`
PT.

Lemma 83 Let Γ ⇒ ∆ be a positive sequent which has a proof of depth k

in TPT containing only positive formulas. Then there exists a polynomial p

of degree 2(2k) such that 2

T`
PT a, b ∈ W,Γa,b ⇒ ∆pa,pa∗b

Proof. We show the lemma by induction on the depth of the positive proof.

The only difficult case is induction. In this case we have by induction hy-

pothesis polynomials p, q0, q1 of degree 2(2k) with the following properties.

T`
PT a, b ∈ W,Γa,b ⇒ Tpa∗b(rε),∆pa,pa∗b(4.1)

T`
PT a, b ∈ W,Γa,b,Tb(rx), x ≤W a⇒ Tqia∗b(r(six)),∆qia,qia∗b(4.2)

Let q be a polynomial that bounds q0 and q1. We define the polynomial g as

g(x, y) := p(x) ∗ (q(x)× s0y).

Because of monotonicity of the asymmetric interpretation the following hold:

T`
PT a, b ∈ W,Γa,b ⇒ Tgaε∗b(rε),∆gaε,gaε∗b(4.3)

T`
PT a, b ∈ W,Γa,gax∗b,Tgax∗b(rx), x ≤W a⇒(4.4)

Tga(six)∗b(r(six)),∆qa,ga(six)∗b

We use again monotonicity of the asymmetric interpretation to unify the side

formulas and thus get:

T`
PT a, b ∈ W,Γa,b ⇒ Tgaε∗b(rε),∆gaa,gaa∗b(4.5)

T`
PT a, b ∈ W,Γa,b,Tgax∗b(rx), x ≤W a⇒(4.6)

Tga(six)∗b(r(six)),∆gaa,gaa∗b

2We use the notation pa ∗ b to denote the term ∗(pa, b). Analogously for similar nota-
tions.

118

These are the premises for an induction over an initial segment of W which

is proved to be admissible as usual. After using induction, monotonicity

delivers the following.

T`
PT a, b ∈ W,Γa,b, x ≤W a⇒ Tgaa∗b(rx),∆gaa,gaa∗b(4.7)

Since gaa is a polynomial of degree 2(2k) + 1 in a this is the desired result.

Note that the degree 2(2k+1) for the bounding polynomial is needed for the

cut rule. 2

Embedding of T`
PT into PETJ + U

In analogy to the previous embedding, we construct a closed term τ such

that for all w ∈ W the type τ(w) corresponds to the truth level w. We set

τ(ε) := {〈a, b, c〉|a = p=̇q ∧ b = c ∨ a = pẆq ∧ 〈c,w(b)〉 ∈ e(id)}.

The types for the higher truth levels are defined recursively as before:

τ(siw) := τw ∪ {〈a, b, c〉|
(
a = p∧̇q ∧ b ∈ τw ∧ c ∈ τw

)
∨(

a = p∨̇q ∧ [b ∈ τw ∨ c ∈ τw]
)

∨(
a = p∃̇q ∧ (∃x)(bx ∈ τw) ∧ c = ε

)
∨(

a = p∀̇q ∧ (∀x)(bx ∈ τw) ∧ c = ε
)
}

As above, we show that these levels are all names by type induction with the

universe `(e(id)).

We are now ready to modify the translation ◦ from the last subsection in

order to provide a translation from T`
PT into PETJ + U.

Definition 84 (Translation of terms) For each term t of LT its transla-

tion t◦ into L is defined in the same way as above except that we put

Ẇ◦ ≡ λx.λy.〈pẆq, x, y〉

Definition 85 (Translation of formulas) For each formula A of LT its

translation A◦ is defined inductively in the following way.

• (s = t)◦ ≡ s◦ = t◦

119

• (s ∈ W)◦ ≡ s◦ ∈ W

• Ts(t)◦ ≡ 〈t◦, τ(0× s◦)〉 ∈ e(e(id))

• The translation commutes with implication, propositional connectives

and quantifiers.

Similarly to the previous embedding theorem, we now obtain the following

result.

Theorem 86 T`
PT is contained in PETJ + U via the ◦ translation.

Proof. The translations of the truth axioms are proved as before; note that

the induction formula is equivalent to a simple formula. Because of the lev-

elling the uniformity principle is not needed. An easy induction establishes

v, w ∈ W ∧ v ⊂ w ∧ Tv(x)→ Tw(x), which implies the translation of mono-

tonicity. 2

Note that the previous lemma and theorem readily imply that the provably

total functions of TPT are contained in those of PETJ + U.3

4.4 Proof-theoretic analysis

In this section we give an overview of the literature regarding the proof theory

of weak systems of explicit mathematics, including the ones discussed in this

chapter. For an overview about the proof theory of weak systems of truth,

we refer to section 2.1.

Let us start by briefly reviewing some previous proof-theoretic work regard-

ing systems of explicit mathematics of strength PR. Early systems of flexible

typing of this strength are extensively studied by Feferman. In [36, 37] he

3The theory TPT can also be reduced to an extension of polynomial strength of PETJ

by a single universe and an additional type constructor to deal with sharply bounded
universal quantification. In this case the intermediate reduction theory is a twice levelled
theory of truth whose second level designates the maximal value of s to which formulas of
the form t ≤W s are reflected. The corresponding truth levels can be interpreted in this
extension of PETJ without using e(id).

120

proposes a program to use explicit mathematics to analyse properties of func-

tional programs. Theories that are strongly related to the system EPCJ are

considered in Krähenbühl [63]. Let us note that all upper bound computa-

tions for the systems mentioned above proceed via embeddings into suitable

subsystems of Peano arithmetic of strength PR.

Let us now turn to the discussion of systems of explicit mathematics of

polynomial strength which were first introduced and studied in Spescha and

Strahm [73]. There the system PET of types and names4 has been proposed

whose provably total functions are exactly the polytime functions. The PhD

thesis of Spescha [72] gives a uniform treatment of various weak systems of

explicit mathematics in the spirit of PET, possibly augmented by the axiom

of join, see also the article Spescha and Strahm [74]. The very recent work

of Probst [69] solves the delicate and difficult problem of showing that the

provably total operations of the system PET with the join axiom and classical

logic are still the polynomial time computable ones. Strahm’s article [81]

surveys most of these results.

The upper bounds of the theories of polynomial strength mentioned above

are nearly exclusively determined by realisation approaches in the style of

Strahm’s [79]. An exception is Probst’s [69] which employs model theoretic

methods to reduce a system of explicit mathematics to the underlying ap-

plicative system.

Let us switch now to the systems introduced in this chapter. The proof that

TPR is of primitive recursive strength is sketched in the introduction, the

feasible upper bound proof of TPT is contained in chapter 2. Both systems

can be extended by UP without increasing their strength since this axiom

can be realised trivially. The embeddings presented in the last section deliver

upper bound proofs for the systems EPCJ and PETJ, possibly extended by

universes and UP. Alternatively, upper bounds for these theories are obtained

using realisation techniques. For both theories of explicit mathematics, U is

a consequence of ∀<, since under this assumption, `a can be interpreted as

{x : x = x} for any a. Then, we employ realisation approaches that trivialize

the name predicate. For EPCJ and its extensions we use an approach in the

4In the notation of this chapter, PET is PETJ without the join axioms.

121

style of Cantini’s [18]. The realisation approach presented in the last chapter

works for PETJ and its extensions.

Let us conclude this section by summarizing the results about the proof-

theoretic strength of the theories of truth and explicit mathematics consid-

ered in this article.

Theorem 87 (Systems of primitive recursive strength) The provably

total functions of the following theories are the primitive recursive ones:

1. EPCJ, possibly augmented by UP and U;

2. TPR, possibly augmented by UP.

Theorem 88 (Systems of polynomial strength) The provably total

functions of the following theories are the polynomial time computable ones:

1. PETJ, possibly augmented by UP and U;

2. TPT, possibly augmented by UP.

4.5 Concluding remarks

We have studied two natural truth-theoretic frameworks over combinatory

logic and their relationship to weak systems of explicit mathematics. We

have seen that the embedding of explicit mathematics into truth theories is

very straightforward, whereas the direct reverse embeddings require further

(natural) extensions of explicit mathematics and sometimes even intermedi-

ate reduction steps. The corresponding extensions of explicit mathematics

do not increase the proof-theoretic strength of the underlying systems.

122

Chapter 5

Unfolding feasible arithmetic

The contents of this chapter are joint work with Thomas Strahm, and have

been accepted for publication as [31].

5.1 Introduction

In this chapter we continue Feferman’s unfolding program initiated in [38]

which uses the concept of the unfolding U(S) of a schematic system S in or-

der to describe those operations, predicates and principles concerning them,

which are implicit in the acceptance of S. The program has been carried

through for a schematic system of non-finitist arithmetic NFA in Feferman

and Strahm [43] and for a system FA (with and without Bar rule) in Feferman

and Strahm [44]. The present contribution elucidates the concept of unfold-

ing for a basic schematic system FEA of feasible arithmetic. Apart from the

operational unfolding U0(FEA) of FEA, we study two full unfolding notions,

namely the predicate unfolding U(FEA) and a more general truth unfolding

UT(FEA) of FEA, the latter making use of a truth predicate added to the

language of the operational unfolding. The main results obtained are that

the provably total functions on binary words for all three unfolding systems

are precisely those being computable in polynomial time. The upper bound

computations make essential use of the theory of truth TPT introduced in

chapter 2.

The notion of unfolding a schematic formal system was introduced in Fefer-

123

man [38] in order to answer the following question:

Given a schematic system S, which operations and predicates, and

which principles concerning them, ought to be accepted if one has

accepted S?

A paradigmatic example of a schematic system S is the basic system NFA

of non-finitist arithmetic. In Feferman and Strahm [43], three unfolding sys-

tems for NFA of increasing strength have been analysed and characterized

in more familiar proof-theoretic terms; in particular, it was shown that the

full unfolding of NFA, U(NFA), is proof-theoretically equivalent to predica-

tive analysis. For more information on the path to the unfolding program,

especially with regard to predicativity and the implicitness program, see Fe-

ferman [39].

More recently, the unfolding notions for a basic schematic system of finitist

arithmetic, FA, and for an extension of that by a form BR of the so-called

bar rule have been worked out in Feferman and Strahm [44]. It is shown

that U(FA) and U(FA + BR) are proof-theoretically equivalent, respectively,

to primitive recursive arithmetic, PRA, and to Peano arithmetic, PA.

The aim of the present contribution is to elucidate the concept of unfolding

in the context of a natural schematic system FEA for feasible arithmetic. We

will sketch various unfoldings of FEA using a typing discipline or a partial

truth predicate, respectively.

The basic schematic system FEA of feasible arithmetic is based on a language

for binary words generated from the empty word by the two binary successors

S0 and S1; in addition, it includes some natural basic operations on the binary

words like, for example, word concatenation and multiplication. The logical

operations of FEA are conjunction (∧), disjunction (∨), and the bounded

existential quantifier (∃≤). FEA is formulated as a system of sequents in this

language: apart from the defining axioms for basic operations on words, its

heart is a schematically formulated, i.e. open-ended induction rule along the

binary words, using a free predicate letter P .

The operational unfolding U0(FEA) of FEA extends FEA by a general back-

ground theory of combinatory algebra and tells us which operations on words

124

are implicit in the acceptance of FEA. It further includes the generalized sub-

stitution rule from Feferman and Strahm [44], which allows arbitrary formulas

to be substituted for free predicates in derivable rules of inference such as,

for example, the induction rule. We will see that U0(FEA) derives the totality

of precisely the polynomial time computable functions.

The full predicate unfolding U(FEA) of FEA tells us, in addition, which pred-

icates and operations on them ought to be accepted if one accepts FEA. It

presupposes each logical operation of FEA as an operation on predicates.

Predicates themselves are just represented as special operations equipped

with an elementhood relation on them. We may further accept the formation

of the disjoint union of a (bounded with respect to ≤) sequence of predicates

given by a corresponding operation. It will turn out that the provably con-

vergent functions of U(FEA) are still the polynomial time computable ones.

We will also describe an alternative way to define the full unfolding of FEA

which makes use of a truth predicate T which mimics the logical operations

of FEA in a natural way and makes explicit the requirement that implicit

in the acceptance of FEA is the ability to reason about truth in FEA. The

truth unfolding UT(FEA) is thus obtained by extending the combinatory al-

gebra by a unary truth predicate. Indeed, UT(FEA) contains the predicate

unfolding U(FEA) in a natural way, including the disjoint union operator for

predicates. Moreover, the truth unfolding is proof-theoretically equivalent to

the predicate unfolding in the sense that its provably convergent functions

on the binary words are precisely the polytime functions.

The upper bound computations for both U(FEA) and UT(FEA) will be ob-

tained via straightforward embeddings into TPT. Some special care and ad-

ditional considerations are needed in order to treat their generalized substi-

tution rules.

5.2 The basic schematic system FEA

In this section we introduce the basic schematic system FEA of feasible arith-

metic. Its intended universe of discourse is the set of finite binary words and

its basic operations and relations include the binary successors S0 and S1, the

125

predecessor Pd, the initial subword relation ⊆, word concatenation ~ as well

as word multiplication �.1 The logical operations of FEA are conjunction

(∧), disjunction (∨), and bounded existential quantification (∃≤). As in the

case of finitist arithmetic FA, the statements proved in FEA are sequents of

formulas in the given language, i.e. implication is allowed at the outermost

level.

5.2.1 The language of FEA

The language L0 of FEA contains a countably infinite supply of variables

α, β, γ, . . . (possibly with subscripts). These variables are interpreted as

ranging over the set of binary words W. L0 includes a constant ε for the

empty word, three unary function symbols S0, S1,Pd and three binary func-

tion symbols ~, �, ⊆.2 Terms of L0 are defined as usual and are denoted

by σ, τ, Further, L0 contains the binary predicate symbol = for equality,

and an infinite supply P0, P1, . . . of free predicate letters.

The atomic formulas of L0 are of the form (σ = τ) and Pi(σ1, . . . , σn) for

i ∈ N. The formulas are closed under ∧ and ∨ as well as under bounded

existential quantification. In particular, if A is an L0 formula, then (∃α ≤
τ)A is an L0 formula as well, where τ is not allowed to contain α. In analogy

to the previous chapters, we use σ ≤ τ as an abbreviation for 1� σ ⊆ 1� τ ,

thus expressing that the length of σ is less than or equal to the length of τ .

5.2.2 Axioms and rules of FEA

FEA is formulated as a Gentzen-style sequent calculus with sequents of the

form Γ → A. We write → instead of ⇒ to separate left and right sides of

sequents for notational reasons. We assume the usual axioms and rules, in

particular, the bounded existential quantifier is governed by the following

1Given two words w1 and w2, the word w1�w2 denotes the length of w2 fold concate-
nation of w1 with itself.

2We assume that ⊆ defines the characteristic function of the initial subword relation.
Further, we employ infix notation for these binary function symbols.

126

rules, where the usual variable conditions apply:

Γ→ σ ≤ τ ∧ A[σ]

Γ→ (∃β ≤ τ)A[β]
(E1)

Γ, α ≤ τ, A[α]→ B

Γ, (∃β ≤ τ)A[β]→ B
(E2)

Further, in our restricted logical setting, we adopt the following rule of term

substitution:

Γ[α]→ A[α]

Γ[τ]→ A[τ]
(S0)

The non-logical axioms of FEA state the usual defining equations for the

function symbols of the language L0, see, e.g., Ferreira [45] for similar axioms.

Finally, we have the schematic induction rule formulated for a free predicate

P as follows:

Γ→ P (ε) Γ, P (α)→ P (Si(α)) (i = 0, 1)

Γ→ P (α)
(Ind)

In the various unfolding systems of FEA introduced below, we will be able to

substitute an arbitrary formula for the free predicate letter P .

5.3 The operational unfolding U0(FEA)

In this section we are going to introduce the operational unfolding U0(FEA)

of FEA. It tells us which operations from and to individuals, and which

principles concerning them, ought to be accepted if one has accepted FEA.

In the operational unfolding, we make these commitments explicit by extend-

ing FEA by a partial combinatory algebra. Since it represents any recursion

principle and thus any recursive function by suitable terms, it is expressive

enough to reflect any ontological commitment we want to reason about. Us-

ing the notion of provable totality, we single out those functions and recursion

principles we are actually committed to by accepting FEA.

5.3.1 The language L1

The language L1 is an expansion of the language L0 including new constants

k, s, p, p0, p1, d, tt, ff, e, ε, s0, s1, pW, c⊆, ∗, ×, and an additional countably

127

infinite set of variables x0, x1,
3 The new variables are supposed to range

over the universe of operations and are usually denoted by a, b, c, x, y, z,

The L1 terms (r, s, t, . . .) are inductively generated from variables and con-

stants of L0 and L1 by means of the function symbols of FEA and the ap-

plication operator ·. We use the usual abbreviations for applicative terms,

see page 10. We have (s = t), s↓ and Pi(~s) for i ∈ N as atoms of L1. The

formulas (A,B,C, . . .) are built from the atoms as before using ∨,∧ and the

bounded existential quantifier, where as above the bounding term is a term

of L0 not containing the bound variable. For s a term of L1 \ L0 we write

s ≤ τ for (∃β ≤ τ)(s = β).

Let us compare L1 to our applicative base language L. L1 has two sorts

of variables, and extends L by the function constants of L0. L1 contains a

free predicate P but no unbounded quantifiers. The applicative constants

of both languages correspond to each other with exception of the constants

responsible for case distinction (d, tt, ff, or dW, respectively). The constants

of L1 allow to divide case distinctions into checking equality and switching

between cases.

5.3.2 Axioms and rules of U0(FEA)

The operational unfolding U0(FEA) is formulated as a sequent calculus. ∅ →
A will just be displayed as A. Apart from the axioms for FEA, U0(FEA)

comprises the following axioms and rules of inference.

I. Applicative counterpart of the initial functions.

(1) siα = Si(α), pWα = Pd(α),

(2) ∗αβ = α~β, ×αβ = α� β, c⊆αβ = α ⊆ β.

II. Partial combinatory algebra, pairing, definition by cases.

(3) kab = a,

(4) sab↓, sabc ' ac(bc),

3These variables are syntactically different from the L0 variables α0, α1,

128

(5) p0〈a, b〉 = a, p1〈a, b〉 = b,

(6) dab tt = a, dab ff = b.

III. Equality on the binary words.

(7) eαβ = tt ∨ eαβ = ff,

(8) eαβ = tt ↔ α = β.4

The operational unfolding of FEA includes the rules of inference of FEA (ex-

tended to the new language). In addition, in analogy to the rule (S0), we

have the following new substitution rule for terms of L1:

Γ[u]→ A[u]

Γ[t], t↓ → A[t]
(S1)

The next useful substitution rule (S2) can be derived easily from the other

axioms and rules. It tells us that bounded terms can be substituted for word

variables:5

Γ[α]→ A[α] Γ[t]→ t ≤ τ

Γ[t]→ A[t]
(S2)

Finally, U0(FEA) includes the generalized substitution rule for derived rules

of inference as it is developed in Feferman and Strahm [44]. Towards a

more compact notation, let use write Σ1,Σ2, . . . ,Σn ⇒ Σ to denote a rule

of inference with premises Σ1, . . . ,Σn and conclusion Σ. We let A[~B/~P]

denote the formula A[~P] with each subformula Pi(~t) replaced by ~t↓ ∧ Bi[~t],

where the length of ~t equals the arity of Pi. The generalized substitution

rule (S3) can now be described as follows: Assume that the rule of inference

Σ1,Σ2, . . . ,Σn ⇒ Σ is derivable from the axioms and rules at hand. Then

we can adjoin an arbitrary substitution instance

Σ1[~B/~P], . . . ,Σn[~B/~P]⇒ Σ[~B/~P](S3)

4To be precise, this equivalence is a shorthand for the two sequents eαβ = tt→ α = β

and α = β → eαβ = tt.
5Note that for an A[α] with α occurring in a bound and a term t ∈ L1 \ L0, the rule

(S2) cannot be derived because then A[t] is not a formula.

129

as new rule of inference to our system. Here ~P and ~B are finite sequences

of free predicates and L1 formulas, respectively. Note that the notion of

derivability of a rule of inference is dynamic as one unfolds a given system.

Clearly, using the generalized substitution rule, the induction rule in its usual

form can be derived for an arbitrary A ∈ L1:

Γ→ A[ε] Γ, A[α]→ A[Si(α)] (i = 0, 1)

Γ→ A[α]

Moreover, the usual substitution rule for sequents, Σ[~P] ⇒ Σ[~B/~P] can be

obtained as an admissible rule of inference. This ends the description of

the operational unfolding U0(FEA) of FEA. Next we want to show that the

polynomial time computable functions can be proved to be total in U0(FEA).

Lemma 89 The polynomial time computable functions are provably total in

the operational unfolding U0(FEA).

Proof. We use Cobham’s characterization of the polynomial time computable

functions (cf. [23, 20]). First of all, the projections represented using lambda

abstraction and the other initial functions of Cobham’s algebra are obviously

provably total. Closure of the provably total functions under composition is

established by making use of the substitution rules (S1) and (S2) as well as the

fact that the L0 functions are provably monotone. In order to show closure

under bounded recursion, assume that F is defined by bounded recursion

with initial function G and step function H, where τ is the corresponding

bounding polynomial.6 By the induction hypothesis, G and H are provably

total via suitable L1 terms tG and tH . Using the recursion or fixed point

theorem of the partial combinatory algebra, we find an L1 term tF which

provably in U0(FEA) satisfies the following recursion equations for i = 0, 1:

tF (~α, ε) ' tG(~α) | τ [~α, ε],

tF (~α, si(β)) ' tH(tF (~α, β), ~α, β) | τ [~α, si(β)]

6We can assume that only functions built from concatenation and multiplication are
permissible bounds for the recursion.

130

Here | is the usual truncation operation such that α|β is α if α ≤ β and β

otherwise. Now fix ~α and let A[β] be the formula tF (~α, β) ≤ τ [~α, β] 7 and

simply show A[β] by induction on β. Thus F is provably total in U0(FEA)

which concludes the proof of the lower bound lemma. 2

5.4 The full predicate unfolding U(FEA)

In this section we define the full predicate unfolding U(FEA) of FEA. It

tells us, in addition, which predicates and operations on predicates ought to

be accepted if one has accepted FEA. By accepting U0(FEA) one implicitly

accepts an equality predicate and operations on predicates corresponding

to the logical operations of U0(FEA). Finally, we may accept the principle

of forming the predicate for the disjoint union of a (bounded) sequence of

predicates given by an operation.

As before the equality predicate and the above-mentioned operations will be

given as elements of an underlying combinatory algebra which is extended by

a binary relation ∈ for elementship, so predicates are represented via classi-

fications in the sense of explicit mathematics. We additionally use a relation

< to single out the operations representing predicates one is committed to

by accepting FEA.

The language L2 of U(FEA) is an extension of L1 by new individual constants

id (identity), inv (inverse image), int (intersection), un (union), leq (bounded

existential quantifier), and j (bounded disjoint unions); further new constants

are p0, p1, . . . which are combinatorial representations of free predicates. Fi-

nally, L2 has a new unary relation symbol <, and a binary relation symbol

∈. The terms of L2 are generated as before but now taking into account the

new constants. The formulas of L2 extend the formulas of L1 by allowing

new atomic formulas of the form <(t) and s ∈ t.

The language L2 corresponds to the language of the first order formulation

of explicit mathematics introduced on page 112. Note that L2 does not

7Recall that by expanding the definition of the ≤ relation, the formula A[β] stands for
the assertion (∃γ ≤ τ [~α, β])(tF (~α, β) = γ).

131

contain type constructors corresponding to unbounded quantifiers (all, dom).

A further difference are the constructors for the free predicates present in L2.

U(FEA) is formulated as a sequent calculus, and it extends U0(FEA) by the

following axioms about predicates. For the constructors id, inv, int, un these

are just sequent style reformulations of the axioms presented on page 108.

I. Identity predicate

(1) <(id),

(2) x ∈ id→ p0x = p1x ∧ x = 〈p0x, p1x〉,

(3) p0x = p1x, x = 〈p0x, p1x〉 → x ∈ id.

II. Inverse image predicates

(4) <(a)→ <(inv(f, a)),

(5) <(a), x ∈ inv(f, a)→ fx ∈ a,

(6) <(a), fx ∈ a→ x ∈ inv(f, a).

III. Intersection and union

(7) <(a),<(b)→ <(int(a, b)),

(8) <(a),<(b), x ∈ int(a, b)→ x ∈ a ∧ x ∈ b,

(9) <(a),<(b), x ∈ a, x ∈ b→ x ∈ int(a, b),

(10) <(a),<(b)→ <(un(a, b)),

(11) <(a),<(b), x ∈ un(a, b)→ x ∈ a ∨ x ∈ b,

(12) <(a),<(b), x ∈ a ∨ x ∈ b→ x ∈ un(a, b).

IV. Bounded existential quantification

(13) <(a)→ <(leqa),

(14) <(a), 〈y, α〉 ∈ leq(a)→ (∃β ≤ α)(〈y, β〉 ∈ a),

(15) <(a), (∃β ≤ α)(〈y, β〉 ∈ a)→ 〈y, α〉 ∈ leq(a).

132

V. Free predicates 8

(16) <(pi),

(17) ~x ∈ pi → Pi(~x), Pi(~x)→ (~x) ∈ pi.

Further, the full unfolding U(FEA) includes axioms stating that a bounded

sequence of predicates determines the predicate of the disjoint union of this

sequence. We use the following three rules to axiomatise the join predicates

in our restricted logical setting.

VI. Join rules 9

Γ, β ≤ α→ <(fβ)

Γ→ <(j(f, α))
(18)

Γ, β ≤ α→ <(fβ)

Γ, x ∈ j(f, α)→ x = 〈p0x, p1x〉 ∧ p0x ≤ α ∧ p1x ∈ f(p0x)
(19)

Γ, β ≤ α→ <(fβ)

Γ, x = 〈p0x, p1x〉, p0x ≤ α, p1x ∈ f(p0x)→ x ∈ j(f, α)
(20)

The rules of inference of U0(FEA) are also available in U(FEA). In particular,

U(FEA) contains the generalized substitution rule (S3): the formulas ~B to

be substituted for ~P are now in the language of L2; the rule in the premise

of (S3), however, is required to be in the language L1
10. This concludes the

description of the predicate unfolding U(FEA) of FEA.

5.5 The truth unfolding UT(FEA)

In this section we describe an alternative way to define the full unfolding of

FEA. The truth unfolding UT(FEA) of FEA makes use of a truth predicate

T which reflects the logical operations of FEA in a natural and direct way.

We will see that the full predicate unfolding U(FEA) is directly contained in

UT(FEA).11

8We write ~x ∈ pi for 〈x1, · · · , xn〉 ∈ pi.
9In the formulation of these rules, it is assumed that β does not occur in Γ.

10This last restriction is imposed since predicates may depend on ~P .
11We note that in Feferman’s original definition of unfolding in [38], a truth predicate

is used in order to describe the full unfolding of a schematic system.

133

As in the last section, we want to make the commitment to the logical oper-

ations of FEA explicit. This is done by introducing a truth predicate in the

style of the previous chapters. The language LT of UT(FEA) extends L1 by

new individual constants =̇, ∧̇, ∨̇, ∃̇, as well as constants p0, p1, In ad-

dition, LT includes a new unary relation symbol T. The terms and formulas

of LT are defined in the expected manner.

UT(FEA) is formulated as a sequent calculus, and extends U0(FEA) by the

following axioms about the truth predicate T:

T(x =̇ y) ↔ x = y(=̇)

T(x ∧̇ y) ↔ T(x) ∧ T(y)(∧̇)

T(x ∨̇ y) ↔ T(x) ∨ T(y)(∨̇)

T(∃̇αx) ↔ (∃β ≤ α)T(xβ)(∃̇)
T(pi(~x)) ↔ Pi(~x)(pi)

As in definition 22, we can assign an LT code [A] to each LT formula A in

a natural way. The following lemma is proved by a trivial induction on the

complexity of formulas.

Lemma 90 (Tarski biconditionals) Let A be a LT formula. Then we

have

UT(FEA) A↔ T([A])

This lemma shows that in our weak setting, full Tarski biconditionals can be

achieved without having to type the truth predicate. Of course, this is due

to the fact that negation is only present at the level of sequents.

We close this section by noting that the generalized substitution rule (S3)

can be stated in a somewhat more general form for UT(FEA). Recall that

in U(FEA), the rule in the premise of (S3) is required to be in L1. Due

to the fact that each LT formula can be represented by a term, we can

allow rules in LT in the premise of the generalized substitution rule, as long

as we substitute formulas and associated terms for the predicates Pi and

constants pi simultaneously 12. In the following we denote by Σ[~B/~P ;~t/~p]

12The soundness of this rule crucially depends on the fact that the only axioms available
for pi are its truth-biconditionals, and general combinatorial axioms.

134

the simultaneous substitution of the predicates ~P by the formulas ~B and

of the constants ~p by the LT terms ~t. The generalized substitution rule for

UT(FEA) can now be stated as follows. Assume that the rule Σ1, . . . ,Σn ⇒ Σ

is derivable with the axioms and rules at hand. Assume further that the terms

~tB correspond to the LT formulas ~B according to the lemma above. Then

we can adjoin the rule

Σ1[~B/~P ; ~tB/~p], . . . ,Σn[~B/~P ; ~tB/~p]⇒ Σ[~B/~P ; ~tB/~p]

as a new rule of inference to our unfolding system UT(FEA). This concludes

the description of UT(FEA).

It is easy to see that the full predicate unfolding U(FEA) is contained in the

truth unfolding UT(FEA). The argument proceeds along the same line as the

embeddings presented in chapter 4, and is also very similar to the embedding

of U(FEA) into TPT which will be described in some detail in the next section.

As in chapter 4, the reverse embedding does not seem to be possible without

additional principles, and even then, only a levelled version of UT(FEA) could

be embedded.

5.6 Proof-theoretical analysis

In this section we will find a suitable upper bound for U(FEA) and UT(FEA)

thus showing that their provably total functions are indeed computable in

polynomial time. We will obtain the upper bound via an embedding of a

total version of U(FEA) into TPT; to be precise, we consider a slight (conser-

vative) extension T∗PT of TPT which facilitates the treatment of the generalized

substitution rule.

The language of T∗PT extends the one of TPT by the predicates P0, P1, . . . and

the constants p0, p1, It contains the additional axiom T(pi~x)↔ Pi(~x) for

every i ∈ N. Since no other axioms for the P predicates and the p constants

are present, T∗PT is clearly a conservative extension of TPT.

Next we describe a direct embedding of U(FEA) into T∗PT which resembles

the one described in chapter 4. Nevertheless, we have to consider some

135

peculiarities of our system: we take special care of the FEA function constants

which are not present in the language of T∗PT and map the two kinds of

variables to disjoint sets of T∗PT variables.

Definition 91 (Translation ∗ of L2 terms) The translation of L2 terms

is given inductively on their complexity.

• Let c be an applicative constant. Then c∗ ≡ c.

• Let αi be an L0 variable. Then α∗i ≡ x2i.

• Let xi be a variable of L1 \ L0. Then x∗i ≡ x2i+1.

• leq∗ ≡ λa.λz.z =̇ 〈p0z, p1z〉 ∧̇ ∃̇λy.Ẇ(p1z)y ∧̇ a〈p0z, y〉

• id∗ ≡ λz.z = 〈p0z, p1z〉 ∧̇ p0z =̇ p1z

• int∗ ≡ λa.λb.λz. az ∧̇ bz

• un∗ ≡ λa.λb.λz. az ∨̇ bz

• inv∗ ≡ λf.λa.λz. a(fz)

• j∗ ≡ λf.λa.λz.z = 〈p0z, p1z〉 ∧̇ Ẇa(p0z) ∧̇ f(p0z)(p1z)

• p∗i ≡ pi

• Let t be s0s1. Then t∗ ≡ s∗0s
∗
1.

• Let G be an n-ary L0 function symbol, gApp its applicative analogue,

and ~t a sequence of terms of suitable arity. Then G(~t)∗ ≡ gApp~t∗.

For the translation of L2 formulas, we interpret elementship using the truth

predicate as usual and trivialize the relation <.

Definition 92 (Translation ∗ of L2 formulas) The translation of L2 for-

mulas is given inductively on their complexity.

• <(s)∗ ≡ 0 = 0

• (s = t)∗ ≡ s∗ = t∗

136

• (s ∈ t)∗ ≡ T(t∗s∗)

• (∃α ≤ τ)A[α]∗ ≡ (∃α∗ ≤W τ ∗)A∗[α∗]

• The translation commutes with the connectives ∧ and ∨.

The translation ∗ is extended in the obvious way to sequences and sequents

of L2 formulas. Further, for the statement of the embedding theorem below,

the following notation is handy.

Definition 93 Let 3 be an L2 term, formula or sequence of formulas. Then

~y(3) ∈ W denotes the sequence xn0 ∈ W, . . . , xnm ∈ W where the xni enu-

merate the variables with even subscripts occurring freely in 3∗.

The next two lemmas will be used in the proof of the embedding theorem

below. Lemma 94 is proved by a trivial induction on the complexity of the

FEA term. Lemma 95 is proved by induction on the complexity of A. For

the case where A is of the form (∃α ≤ τ)B[α], we use lemma 94.

Lemma 94 Let τ be an L0 term. Then we have

T∗PT ~y(τ) ∈ W → τ ∗ ∈ W.

Lemma 95 Let A be an L2 formula. Then we have

T∗PT ~y(A) ∈ W → T(pA∗q)↔ A∗.

We are now ready to state the main embedding lemma of U(FEA) into T∗PT

and sketch its proof.

Lemma 96 (Embedding lemma) Assume U(FEA) Γ → A. Then we

have

T∗PT ~y(Γ, A) ∈ W,Γ∗ → A∗.

Proof.(Sketch) In order to prove the lemma, one shows a stronger assertion,

namely that the ∗ translation of each derivable rule of U(FEA) is also derivable

in T∗PT. Let us exemplary discuss some crucial examples. First, let us look

at ∗ translations of axioms of U(FEA) and distinguish the following cases:

137

(i) The translations of the axioms about the (word) function symbols of

L0 hold, because the L0 variables are assumed to range over words;

(ii) The translations of the axioms about the applicative combinators clearly

hold;

(iii) The translations of the axioms about the correspondence between the

function symbols and the applicative constants follow directly from the

definition of the translation;

(iv) The translations of the axioms about the predicate constructors hold

because of their translation by suitable elementhood conditions and

because of the trivial interpretation of the relation <;

(v) The translations of the axioms Pi(~x)↔ ~x ∈ pi clearly hold.

Towards the treatment of the generalized substitution rule, assume that the

rule with premises Γi[~P]→ Ai[~P] for 1 ≤ i ≤ m and conclusion Γ[~P]→ A[~P]

is derivable in U(FEA). Let us look at the ∗ translation of the proof for

derivability which is a proof of derivability in T∗PT by induction hypothesis.

It can be easily seen that for each sequence of formulas ~B ∈ L2 we still have

a proof if we replace each occurrence of Pi by B∗i and each occurrence of pi by

[B∗i] and add ~y(~B) ∈ W to each antecedent. Here, we use lemma 95 to justify

induction and the substituted P biconditionals. Thus the ∗ translation of the

rule with conclusion Γ[~B]→ A[~B] and premises Γi[~B]→ Ai[~B] for 1 ≤ i ≤ m

is derivable in T∗PT as desired. This ends the treatment of the generalized

substitution rule and hence the proof sketch of the embedding lemma. 2

The embedding lemma immediately implies that each function which is prov-

ably total in U(FEA) is also provably total in T∗PT in the usual sense. Since

T∗PT is conservative over TPT this delivers the desired upper bound for the

unfoldings U0(FEA) and U(FEA). Together with Lemma 89, we obtain sharp

proof theoretic bounds.

Theorem 97 The provably total functions of U0(FEA) and U(FEA) are ex-

actly the polynomial time computable functions.

138

An embedding of UT(FEA) into T∗PT can be found in a very similar way as

for U(FEA). Just interpret the constants =̇, ∧̇ and ∨̇ as themselves and ∃̇ as

λy.λz.∃̇λx.Ẇyx ∧̇ zx. Thus we obtain the following theorem.

Theorem 98 The provably total functions of UT(FEA) are exactly the poly-

nomial time computable functions.

This concludes the computation of the upper bounds and hence the proof-

theoretic analysis of our various unfolding systems.

The enbedding given above relies on the standard technique of embedding

systems of explicit mathematics into theories of truth. Let us now introduce

an alternative, and simpler embedding of U(FEA) into T∗PT which relies on

the fact that T∗PT proves the Tarski biconditional for each of its formulas.

The idea is to produce for each formula U(FEA) a corresponding code by a

translation c.

Definition 99 (Translation c of L2 formulas) The translation of L2 for-

mulas is given inductively on their complexity. Let the translation c for terms

be defined as the translation ∗ in definition 91.

• <(s)c ≡ 0 =̇ 0

• (s = t)c ≡ sc =̇ tc

• (s ∈ t)c ≡ tcsc

• Pi(t)c ≡ pit
c

• (∃α ≤ t)A[α]c ≡ ∃̇λαc.Ẇτ cαc ∧̇ Ac[αc]

• (A ∧B)c ≡ Ac ∧̇ Bc

• (A ∨B)c ≡ Ac ∨̇ Bc

Then, the following embedding claim is proved as the previous one.

Lemma 100 (Embedding lemma) Assume U(FEA) A1, · · · , An → D.

Then we have

T∗PT ~y(A1, · · · , An, D) ∈ W,T(Ac1), · · · ,T(Acn)→ T(Dc)

139

Chapter 6

Applicative theories for

logarithmic complexity classes

The contents of this chapter have been submitted for publication as [28].

6.1 Introduction

In this chapter, we present applicative theories of words corresponding to

weak, and especially logarithmic, complexity classes. The theories for the

logarithmic hierarchy and alternating logarithmic time formalise function al-

gebras with concatenation recursion as main principle. We present two theo-

ries for logarithmic space where the first formalises a new two-sorted algebra

which is very similar to Cook and Bellantoni’s famous two-sorted algebra

B for polynomial time [7]. The second theory describes logarithmic space

by justifying concatenation - and sharply bounded recursion. All theories

contain the predicates W representing words, and V representing temporary

inaccessible words. They are inspired by Cantini’s theories [17] formalising

B.

There are many examples of logical theories corresponding to complexity

classes given by function algebras. Research on this subject was started

by Buss in [11] where theories of bounded arithmetic are introduced for

the subclasses of the polynomial hierarchy. Further theories of bounded

arithmetic have been introduced by Clote and Takeuti in [22] amongst others

140

for the logarithmic hierarchy, alternating logarithmic time, logarithmic space,

and various circuit complexity classes. Weak arithmetic second-order theories

corresponding to various complexity classes, analysed by various researchers,

are collected in Cook and Nguyen’s [24]. Applicative theories corresponding

to complexity classes have been introduced e.g. by Strahm [78, 79] for linear

and polynomial time - and space classes, by Cantini for polynomial time [17],

or by Kahle and Oitavem [62] for the polynomial hierarchy.

In contrast to corresponding theories of bounded arithmetic, applicative the-

ories allow to prove the totality of the functions of their complexity class

without coding. This makes the lower bound proofs typically easier and

more transparent. For an overview of weak applicative theories, we recom-

mend Strahm’s [81].

We present applicative theories for various logarithmic complexity classes.

The theories are formulated over a base theory of words and contain induction

principles to justify the suitable forms of recursion. As Cantini’s mentioned

system they contain two predicates W and V. In contrast to Cantini’s theory,

we have to be more restrictive about the permitted operations on elements

of V to achieve logarithmic strength: We cannot allow case distinction for

elements of V of the following form.

case(; a, b, c) :=

b, if mod2(a) = 0

c, else

Accordingly, the intended meaning of being an element of V differs from Can-

tini’s theory, where elements of V just have a different role in the induction

scheme. For the weaker theories, t ∈ V informally means that t is a tempo-

rary inaccessible word, e.g. it can only be the input of functions not requiring

to read off any of its bits. This property is fulfilled e.g. for the successor

- and predecessor functions, and is designed to describe the role intermedi-

ate values play during concatenation recursion. For the stronger theory of

logspace strength, we allow at least to determine, whether a t ∈ V equals the

empty word ε by the following case distinction given for safe inputs.

case(; a, b, c) :=

b, if a = ε

c, else

141

If we compare our two-sorted theories with Cantini’s, the main difference is

that we do not only forbid elements of V to control recursion, but also during

recursion restrict the way they can be used heavily.

Let us summarize the content of this chapter. In section two, we develop

word-versions for number function algebras developed by Clote in [20] for

the complexity classes LH, ALOGTIME and P 1. It is not enough to just

reformulate Clote’s algebras because the successor function on numbers, in

contrast to the one on words, does not always increase its argument; we

have S0(0) = 0. For this reason concatenation recursion on notation is a

stronger principle on numbers than on words. To achieve the equivalence of

the number - and word function algebras, we strengthen the word algebras

by an additional initial function which erases leading zeros.

In the third section, we design applicative theories justifying concatenation

recursion. We present three applicative theories of words in detail that cor-

respond to implicit characterisations of complexity classes whose main prin-

ciple is concatenation recursion or an extension thereof. Their provably total

functions are the elements of the logarithmic hierarchy for LogT, alternating

logarithmic time for AlogT, and polynomial time for PT.

The theories LogT, AlogT, and PT are introduced simultaneously, since they

only differ very slightly in their induction schemes. Their induction formulas

have two free variables, as in Kahle and Oitavem’s [61], which allows to

express that F (siw, ~z) is a successor of F (w, ~z) for a function F defined by

concatenation recursion.

The lower bound of the theories LogT, AlogT, and PT is established by prov-

ing totality for all elements of the word function algebras developed in section

6.2. Because of the computational completeness of the underlying combi-

natory algebra, we can directly produce terms representing these functions

without any coding. Then, we prove by an easy induction that these terms

represent total functions. In section 6.3.5, we prove their upper bound using

1LH denotes the set of functions computable on an alternating Turing machine with
random access in logarithmic time with a bounded number of alternations. ALOGTIME ex-
tends LH by allowing an arbitrary number of alternations. Finally, P denotes the polytime
functions.

142

a modification of Strahm’s realisation approach [79]. This delivers an exact

characterisation of LogT, AlogT and PT in terms of provably total functions.

In section four, we present a new two-sorted algebra LS for logarithmic space,

which is just Cook and Bellantoni’s B with a weakened case distinction and

an additional initial function yielding the length of its input. In contrast

to Bellantoni’s description of logarithmic space as safe unary algebra, LS

contains also the fast growing members of logspace. The prize one has to

pay is the addition of the initial function abs.

In section 5, we formalise LS and Clote’s algebra for logspace containing

sharply bounded recursion [20], and obtain new two-sorted applicative the-

ories of the same strength. These theories contain ordinary one-variable

induction schemes.

6.2 Function algebras

For the logarithmic hierarchy, alternating logarithmic time, and polynomial

time there exist corresponding function algebras A1, A2 and A3 on numbers

which will be defined below. A1 and A2 were developed by Clote in [20]. A3

was developed by Ishihara in [51].

Definition 101 A1, A2 and A3 are function algebras on natural numbers.

They contain the following initial functions.

• the constant zero function.

• the binary successor functions S0 and S1 with S0(x) = 2x and S1(x) =

2x+ 1.

• projection functions of arbitrary arity.

• the function BIT such that BIT(i, x) = modulo2(b x
2i
c). So, BIT(i, x)

yields the coefficient of 2i in the binary representation of x.

• the function ABS such that ABS(x) = dlog(x + 1)e. So, ABS(x) yields

the length of the binary representation of x.

143

• the function # such that #(x, y) = 2ABS(x)·ABS(y).

The algebras are closed under various operations.

• The function algebras A1, A2 and A3 are closed under composition.

• The function algebras A1 and A2 are closed under the following scheme

of concatenation recursion on notation CRN .

f(0, ~y) = g(~y)

f(S0(x), ~y) = SBIT(0,h0(x,~y))(f(x, ~y))

f(S1(x), ~y) = SBIT(0,h1(x,~y))(f(x, ~y))

• The function algebra A2 is closed under the following scheme of k-

bounded recursion k −BRN for each k ∈ N.

f(0, ~y) = g(~y) | k

f(S0(x), ~y) = h0(x, ~y, f(x, ~y))) | k

f(S1(x), ~y) = h1(x, ~y, f(x, ~y))) | k

,

where

x|y =

x, if x ≤ y

y, else

• The function algebra A3 is closed under the following scheme of ex-

tended concatenation recursion on notation CRN+.

f(0, ~y) = g(~y)

f(S0(x), ~y) = SBIT(0,h0(x,f(x,~y),~y))(f(x, ~y))

f(S1(x), ~y) = SBIT(0,h1(x,f(x,~y),~y))(f(x, ~y))

For concatenation recursion on notation, if h0 and h1 give only 0 or 1 as

output, we drop BIT.

However, we formulate our theories for words, and therefore it will be prac-

tical to work with function algebras on words of corresponding strengths.

144

Remember that the relation ≺ orders the words first by length, and if they

have the same length lexicographically, see page 9 for its definition. The

existence of an order isomorphism I from (W,�) to (N,≤) allows us to give

a bit function with two words as input.

Definition 102 bit : W2 →W is given as the function fulfilling the following

specifications.

• If I(w) is smaller than the length of v, bit(w, v) equals the I(w)-th bit

of v in the sense of the BIT function.

• In all other cases, bit(w, v) is 0.

Next, we define a length function on words giving a word as output, relying

on I.

Definition 103 abs : W→W is defined such that abs(w) = v exactly if the

length of w is n ∈ N and I−1(n) = v.

Definition 104 The function algebras W1, W2 and W3 on words (corre-

sponding to A1, A2 and A3) contain the following initial functions.

• the constant empty word function.

• the word successor functions s0, s1, concatenating 0 or 1, respectively,

at the right side of their input.

• projection functions of arbitrary arity.

• the function bit.

• the function abs.

• the function × where w×v is the length of the v fold concatenation of

w with itself.

• the function e where e(w) is the word w without its leading zeros, e.g.

zeros bits at the left of any one bit.

The algebras are closed under various operations.

145

• The function algebras W1, W2 and W3 are closed under composition.

• The function algebras W1 and W2 are closed under the following scheme

of concatenation recursion on notation CRN . The notation sbit(···)

abbreviates in the following always a case distinction on the value of

bit(· · ·).

f(ε, ~y) = g(~y)

f(s0(x), ~y) = sbit(ε,h0(x,~y))(f(x, ~y))

f(s1(x), ~y) = sbit(ε,h1(x,~y))(f(x, ~y))

• The function algebra W2 is closed under the following scheme of k-

bounded recursion k − BRN for each k ∈ W. We write w ≤ v for

w, v ∈W exactly if v is at least as long as w.

f(ε, ~y) = g(~y) | k

f(s0(x), ~y) = h0(x, ~y, f(x, ~y))) | k

f(s1(x), ~y) = h1(x, ~y, f(x, ~y))) | k

,

where

x|y =

x, if x ≤ y

y, else

• The function algebra W3 is closed under the following scheme of ex-

tended concatenation recursion on notation CRN+.

f(ε, ~y) = g(~y)

f(s0(x), ~y) = sbit(ε,h0(x,~y,f(x,~y)))(f(x, ~y))

f(s1(x), ~y) = sbit(ε,h1(x,~y,f(x,~y)))(f(x, ~y))

For concatenation recursion on notation, if h0 and h1 give only 0 or 1 as

output, we drop bit.

We have to include the eraser function because the scheme of concatenation

recursion is weaker in word algebras than in number algebras. As we have

mentioned above, this is because of the different properties of the successor

146

functions. In the following, we prove that the addition of the eraser is nec-

essary. For i = 1, 2, 3 let W−
i be the function algebra Wi without e. For

i = 1, 3 W−
i is strictly weaker than Wi because for each function f ∈ W−

i ,

we have that |f(~w)| is function of ~|w|. Finally, for f ∈W−
2 with n arguments,

we can prove that there is a bound k such that for any ~w ∈W the set

{|f(~w′)| : ~w′ ∈W ∧ |w′1| = |w1| ∧ · · · ∧ |w′n| = |wn|}

has at most k elements. |f(~w)| has at most cf ∈ N different values for fixed

lengths of all components of its input. Therefore the eraser e cannot be part

of any of the W−
i which implies that they do not contain the logarithmic

hierarchy. Also the extension of W−
i by e.g. the predecessor function or

definition by cases is weaker than Wi for the same reasons.

So, let us look again at the algebras Wi including the eraser. In the following,

we prove that they contain some important functions. The following lemma

is proved as in Clote [20].

Lemma 105 The following functions are contained in W1.

• The signum functions sg and sg which have outputs 0 or 1 depending

on whether the input equals ε.

• The function rev that reverses the order of the bits of its input.

• The function inv that replaces zero bits by one bits and one bits by zero

bits.

• The concatenation function ∗.

Lemma 106 W1 is closed under sharply bounded quantification in the sense

of 4.

Proof. We can use the word version of the function in Clote’s proof for A1 in

[20]. Then, we erase leading zeros using the eraser. 2

Lemma 107 The predecessor function is contained in W1.

147

Proof. Our first goal is to define a function h which maps a word w to a

word whose length is |pWw|. The function w 7→ e
[
h∗(w)

]
delivers this with

h∗ defined as follows.

h∗(ε) = ε

h∗(siw) = ssg(w)h
∗(w)

We read |e
[
h∗(w)

]
| bits from input w to produce the predecessor. We define

the auxiliary function pW
′ as follows.

pW
′(ε, v) = ε

pW
′(siw, v) = sbit(|siw|,v)pW

′(w, v)

The predecessor pW(w) is defined as rev

[
pW
′
(

e
[
h∗(w)

]
, w
)]

. 2

The most significant part function msp is given in Clote’s [20] on page 20

for number inputs. msp(n,m) outputs the leftmost n bits of m. Using the

isomorphism between (W,�) and (N,≤) this function is transfered to word

inputs, analogously as bit and abs on page 145.

Lemma 108 The following functions belong to W1.

• Definition by cases.

• The most significant part function msp.

• Lexicographic addition +W and subtraction −W, where

w +W v := I−1(I(w) + I(v)). Subtraction is defined analogously.

Proof. As in Clote [20] but using the eraser, we can define a function

cond∗(w, v, u) with

cond∗(w, v, u) =

ev, if w = ε

eu, else

To define definition by cases dW, we expand v and u by a leading 1, and use

cond∗.

dW(w, v, u) := rev
(

pW

(
rev
(
cond∗

(
w, rev(s1(rev(v))), rev(s1(rev(u)))

))))
148

Let us define the most significant part function. The auxiliary function msp∗

is defined as follows.

msp∗(v, ε) = ε

msp∗(v, siw) = sbit(v,siw)(msp(v, w))

We define msp(v, w) by a case distinction as follows: Check whether

bit(|pWw|, w) = 0. If this is not the case we define msp(v, w) := e(msp∗(v, w)).

Else, we define msp(v, w) as

inv
(

e
[
msp∗(v, inv(w))

])
.

For lexicographic addition and subtraction it makes a difference whether one

refers to the lexicographic order of words or the lexicographic order of bi-

nary representations of numbers. As a function of this, 1+1 equals 10 or 01,

respectively. With the help of the most significant part function, one can

define part-of quantifiers as in Clote [20]. This allows to define functions

+n,−n that work on binary representations of numbers as number addition

and subtraction. To define addition and subtraction relative to the lexico-

graphic order of words, we use that the number with binary representation

(1∗w)−n1 and the word w are identified by the isomorphism between the lex-

icographic order of numbers and words. This allows to define word addition

and subtraction via the functions +n,−n. 2

In the following, we establish the equivalence of the number - and the word

function algebras: We produce for any function f ∈ Ai a corresponding

function f ∗ in Wi
2, and for any function f in Wi a corresponding function f ◦

in Ai. The correspondence works in such a way that for any Turing machine

whose behaviour is described by f ∈ Ai its behaviour can also be described by

f ∗ ∈Wi and analogously for f ∈Wi and f ◦ ∈ Ai. This immediately implies

the equivalence of the two function algebras with respect to computational

power.

Definition 109 Let f be a function from (tuples of) numbers to numbers. A

function f ∗ from (tuples of) words to words is an extension of f iff we have

2We will even produce a set of such functions to be precise.

149

for all ~x ∈ Nn with binary representation ~w ∈ W that f ∗(~w) is the binary

representation of f(~x).

Lemma 110 Let f be in Ai. Then there is an extension of f in Wi.

Proof. Extensions of the constant zero function, and the projection functions

are trivially in W1. For S0 and S1, we use a case distinction whether the input

is zero. To simulate BIT(x, y) we have to calculate the x-th word from the

binary representation of the number x. We use that the number with binary

representation (1∗w)−n 1 and the word w are identified by the isomorphism

between the lexicographic order of numbers and words. Therefore, BIT(x, y)

can be extended by manipulating its first input as hinted above and then

using bit. We extend ABS in a similar way. The smash function is treated

by word multiplication. For a function defined by concatenation recursion

on notation, we can use the same definition scheme for its extension except

that we replace the base case F (0, ~z) by F (ε, ~z). At the end, we have to

delete superfluous zeros using the eraser. For k-bounded recursion, just use

the same principle in W2 and change the base case as above. 2

Now, we want to translate functions on words into functions on numbers.

Each word can be mapped to a binary representation of a number by con-

catenating 1 from the left. Each number except of 0 is the image of exactly

one word relative to the map described above. This motivates the following

definition.

Definition 111 Let w be a word. Then w◦ denotes the number with binary

representation 1w. For a function f : Wn →W we define f ◦ : Nn → N as

f ◦(~n) :=

0, if one of the components of ~n equals 0

f(~w)◦, if ~n = ~w◦

(The first case takes care of the possibility that the vector of number inputs

does not correspond to a vector of word inputs.)

Lemma 112 Let f be in Wi. Then f ◦ is in Ai.

150

Proof. For the constant empty word function, the successor functions, and

the projection functions we can take similar functions in Ai. For bit and abs,

we use again that the number with binary representation (1∗w)−n 1 and the

word w are identified by the isomorphism between the lexicographic order of

numbers and words. To calculate (w × v)◦ from inputs x = w◦ and y = v◦,

we first calculate the i-th bit of this expression, which is given as

(µj ≤ 1)(∃z ≤ |y|−2)z·(|x|−1) ≤ i < (z+1)·(|x|−1)∧j = BIT(i−z·(|x|−1), x)

Using Clote’s results in [20], especially that sharply bounded multiplication

is in A1, we derive that this function is in Ai. A concatenation recursion on

notation with recursion step functions h0, h1 both defined as the bit func-

tion above displayed yields the searched function, using a recursion variable

produced by the smash function.

To calculate (ew)◦ from input x = w◦ we have to find the position of a one

that has only zeros to its left in w. This position j is given as

(µj < |x|)(∀z < |x|)
[
BIT(z, x) = 1→ z ≤ j ∨ z = |x| − 1

]
,

where µ is the usual maximal witness operator. Now we check whether

j = |x| − 1. If so, we give output 1 since the eraser completely destroys w.

Else, (ew)◦ equals 1∗ lsp(j, x), where lsp(y, z) gives the y least significant bits

of z starting at the j-th bit.

For functions defined by composition the claim follows easily from the induc-

tion hypothesis. If for concatenation recursion on notation and w-bounded

recursion, we use the same scheme with obvious modifications of the base

case, the recursion step functions are applied once more than needed. For

f defined by w-bounded recursion with recursion step functions h0, h1, we

deal with this problem by modifying h◦1 such that h◦1(0, n, ~m) := n. For

concatenation recursion on notation, we just delete the superfluous bit. 2

6.3 The systems LogT, AlogT and PT

In this section, we will formalise the word function algebras, we have defined

in the last section. Our theories differ only minimally, so we develop them si-

multaneously. We make use of a safe predicate V to express that for F defined

151

by concatenation recursion, the recursion step function must not depend on

the intermediate values of F . The systems are based on an applicative base

theory including the axioms for a combinatory algebra and basic types W, V

which are interpreted as the set W = {0, 1}∗ of binary words in the standard

interpretation.

6.3.1 The applicative language L

Our basic language L is a first order language for the logic of partial terms

which includes:

• variables a, b, c, x, y, z, u, v, f, g, h, . . .

• the applicative constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, ∗,
×, abs, bit, e.

• relation symbols = (equality), ↓ (definedness), W (binary words)

• arbitrary term application ◦

The terms (r, s, t, . . .) and formulas (A,B,C, . . .) of L are defined in the

expected manner.

6.3.2 Rules and axioms of LogT, AlogT and PT

We use a base theory B′ that is very similar to Strahm’s theory B introduced

in [78, 79].

The logic of B′ is the classical logic of partial terms due to Beeson [4, 5]. The

non-logical axioms of B′ include axioms of a partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

We also have the usual axioms for pairing p with projections p0 and p1. Then,

we add axioms stating that the further applicative constants, representing

simple functions on words in the standard model, fulfil the expected recursion

equations on W. These axioms do not contain the predicate V and are given

as follows.

152

• defining axioms for the binary words W with ε, the successors s0, s1

which concatenate 0, 1, respectively, at the right side of a word, and

the predecessor pW which deletes the least significant bit.

• defining axioms for c⊆ which represents the initial subword relation.

• defining axioms for s`, p` which yield the lexicographic successor or -

predecessor, respectively.

• definition by cases dW on W

• word concatenation ∗, word multiplication ×

These axioms are fully spelled out in chapter 1.

We have the following axioms for the new constants.

abs : W→ W(abs.1)

absε = ε(abs.2)

x ∈ W→ abs(six) = s`(absx)(abs.2)

bit : W2 → W(bit.1)

x ∈ W→ bit(ε, x) = dW(1, 0, s1(pWx), x)(bit.2)

x ∈ W→ bit(x, ε) = 0(bit.3)

x, y ∈ W→ bit(x, y) = bit(s`x, siy)(bit.4)

e : W→ W(e.1)

eε = ε(e.2)

x ∈ W→ e(s0x) = dW(ε, s0(ex), ex, ε)(e.3)

x ∈ W→ e(s1x) = s1(ex)(e.4)

Since abs yields the length of words, we often write |t| instead of abs ◦ t.

To motivate the axioms and rules for V, we have to give the informal meaning

of the predicates W and V. As we mentioned already, v ∈ V is intended

to mean that v is a stored, temporary inaccessible word while W contains

fully accessible words. Let us explain these ideas in more detail. We can

sensitively apply any of our initial functions to w ∈ W, especially, we can

153

calculate its bits, i.e. we can fully access w. So, w ∈ W is given to us

similarly as content stored on a usual read-write tape of a Turing machine.

On the other hand, to v ∈ V we allow only the application of the successor

and predecessor functions. The motivation behind this is that given a word

v ∈W its successors and predecessor can be produced without knowing any

of its bits. The knowledge where the word ends is already sufficient. Content

in V is given to us similarly as content stored on a write only tape to a Turing

machine having the write head always on the rightmost bit of the word it

contains. Content in V can be bitwise extended or deleted but not accessed.

Sequents of the form s ∈ V → t ∈ V are interpreted as claiming that a

transformation of content s into content t is possible where both are tempo-

rary inaccessible. Content in V is not inaccessible forever: if it is possible to

produce temporary inaccessibly stored content without assuming anything

about other temporary inaccessible content, we can transfer it into stable

fully accessible content. This corresponds to the idea that at the end of a

computation process, we can read off the result, even if during the computa-

tion there is no time or space to do so.

To formalise concatenation recursion, we let the intermediate values f(x, ~y)

be elements of V. In this way, we express that the induction step functions do

not depend on them. Only at the end of computation, we dispose of f(x, ~y).

According to our motivation, we give the following axioms.

x ∈ W→ x ∈ V(V-intro)

x ∈ V→ six ∈ V(V-ext)

x ∈ V→ pWx ∈ V(V-del)

To define the rule which allows to replace V- by W-occurrences, we need the

concept of a positive L formula.

Definition 113 For s, t being L terms, an L formula A is positive if A is

build from formulas of the form s = t, s ' t, s↓, s ∈ W, s ∈ V, using the

connectives ∧,∨ and the quantifiers ∀, ∃.

Now, let A be an arbitrary formula not containing V, and BW being the

154

positive formula B with all occurrences of V replaced by W.

A→ B

A→ BW
(V-elim)

This concludes the description of the axioms available for V. Note that we

cannot even check for elements in V whether they equal ε. We will allow this

later to construct systems of logspace strength.

The induction scheme formalising concatenation recursion has to be formu-

lated such that for an induction formula A[x, y] ≡ fx ' y and for a function

f defined by concatenation recursion, y is stored but temporary inaccessible.

In contrast, the extended concatenation recursion is formalised by a scheme

that allows full access to such a y. This results in the following induction

schemes for PT and AlogT, respectively, where A[x, y] is a positive formula

without any occurrences of W or V.

(∃y ∈ W)A[ε, y]∧(PT-Ind)

(∀x, y ∈ W)
(
A[x, y]→ A[six, s0y] ∨ A[six, s1y]

)
→

(∀x ∈ W)(∃y ∈ W)A[x, y]

(∃y ∈ V)A[ε, y])∧(AlogT-Ind)

(∀x ∈ W)(∀y ∈ V)
(
A[x, y]→ A[six, s0y] ∨ A[six, s1y]

)
→

(∀x ∈ W)(∃y ∈ V)A[x, y]

The scheme for AlogT is weaker than that of PT because we have to prove

the induction step for inaccessible words y. Finally, the induction scheme for

LogT restricts the scheme of AlogT by allowing only positive induction for-

mulas A which are W,V and disjunction free, except of disjunctions occurring

within formulas of the form s ' t. In the following, we drop the V-axioms

from PT since they are unnecessary. This concludes the description of the

theories LogT, AlogT, and PT.

The standard open term model M(λη) for B can be easily generalised to

model the introduced theories: Take the universe of open λ terms and con-

sider the usual reduction of the extensional untyped lambda calculus λη,

augmented by suitable reduction rules for the constants other than k and s.

155

Interpret application as juxtaposition. Two terms are equal if they have a

common reduct, W and V denote the set of terms which reduce to a “stan-

dard” word w.

6.3.3 Versions of LogT and AlogT without V

It is possible to define applicative theories LogT∗, AlogT∗ without V that

prove totality for the same class of functions as LogT, AlogT, respectively.

LogT∗, AlogT∗ are simpler but more obscure than their analogons. They

are produced from LogT, AlogT by removing the axioms and the rule for V

and replacing induction by LogT∗-Ind, or AlogT∗-Ind, respectively. AlogT∗-

Ind is defined as follows, for A[x, y] being a positive formula without any

occurrences of W or V.

(∃y ∈ W)A[ε, y]∧(AlogT∗-Ind)

(∀x ∈ W)(∀y)
(
A[x, y]→ A[six, s0y] ∨ A[six, s1y]

)
→

(∀x ∈ W)(∃y ∈ W)A[x, y]

The scheme for LogT∗-Ind restricts the scheme of AlogT∗ by allowing only

formulas not containing disjunctions, except of the ones occurring within

formulas of the form s ' t.

Lemma 114 Let T be the theory LogT or AlogT, and T∗ the theory LogT∗

or AlogT∗, respectively. For all formulas A of L we have

T∗ A⇒ T A.

Proof. We only have to prove the induction axiom of T∗. We argue informally

in T and assume

(∃y ∈ W)A[ε, y]∧(T∗-Ind)

(∀x ∈ W)(∀y)
(
A[x, y]→ A[six, s0y] ∨ A[six, s1y]

)

Since W is a subset of V, and by restricting the universal quantifier, we obtain

the premisses of T-Ind and deduce (∀x ∈ W)(∃y ∈ V)A[x, y]. An application

of the V elimination rule delivers the desired result. 2

156

For the lower bound proof of the systems LogT∗, AlogT∗, we refer to section

6.3.4.

6.3.4 Lower bound

We find a lower bound for the theories LogT, AlogT and PT in the sense of

provably total functions. We use the following standard definition.

Definition 115 A function F : Wn → W is called provably total in an L
theory Th, if there exists a closed L term tF such that

(i) Th tF : Wn → W and, in addition,

(ii) M(λη) � tFw1 · · ·wn = F (w1, . . . , wn) for all w1, . . . , wn in W.

Lemma 116

• All functions of W1 are provably total in LogT.

• All functions of W2 are provably total in AlogT.

• All functions of W3 are provably total in PT.

Proof.

The initial functions are clearly provably total and the provably total func-

tions are closed under composition for all introduced theories. Now, let us

deal with the case where the function F (x, ~z) is defined by concatenation

recursion applied to G(~z) and Hi(x, ~z) being both in W1 or W2, respectively.

The induction hypothesis delivers terms tG and tHi representing G and Hi.

We find a closed term tF such that

tF ε~z ' tG~z

tF (siw)~z ' dW(s0(tFw~z), s1(tFw~z), bit(ε, tHiw~z), 0)

We take tFx~z = y as induction formula A[x, y] and assume that ~z ∈ W. Let us

show that the premisses of (LogT-Ind) or (AlogT-Ind), respectively, hold. The

first conjunct holds because of the induction hypothesis for G and because

157

W ⊆ V. To prove the second conjunct, we can assume tFx~z = y ∈ V for

x ∈ W. Because of the properties of the Hi, we have that bit(ε, tHix~z) equals 0

or 1. y ∈ V implies siy ∈ V, which means that all components of the definition

by cases that is partially equal to tF (six)~z are defined. If we now assume

that bit(ε, tHiw~z) equals 0, we derive tF six~z = s0y. The other case works

analogously. The application of induction delivers (∀x ∈ W)(∃y ∈ V)tFx = y,

which yields the totality of tF using (V-elim).

For a function F defined by extended concatenation recursion, we define the

term tF similarly as before. The crucial difference is that the step functions

Hi now depend on the intermediate values of F represented by y. To justify

the application of tHi to y we have to impose y ∈ W.

Now, let us deal with the case where the function F (x, ~y) is defined by w-

bounded recursion applied to G(~y) and Hi(x, ~y) both being in W2. The

induction hypothesis delivers terms tG and tHi representing G,Hi. We find

a closed term tF such that

tF ε~z ' tG~z | w
tF (siw)~z ' tHiw(tFw~z)~z | w

We define the formula s 4 w for each w ∈ W to be a disjunction composed

of all disjuncts of the form s = v where v ≤ w (assume an arbitrary but fixed

bracketing). In the base theory B (see page 152) we can prove the following

by external induction for all w ∈W.

B s 4 w ↔ s ≤W w

To prove the totality of tF , we take tFx~z 4 w as induction formula and

assume ~z ∈ W. Then, the first conjunct of the antecedent holds because of

the induction hypothesis for G. To prove the second conjunct, we can assume

tFx~z 4 w for x ∈ W. This implies that tFx~z is a word, which yields together

with the induction hypothesis for the Hi the desired result. Note, that the

axiom x ∈ V→ pWx ∈ V was not needed to prove the lower bound. 2

For the systems LogT∗ and AlogT∗ we can prove the lower bound in a very

similar way. To justify concatenation recursion, we use induction for the

formula tFx~z ' y where tF is defined as before except that it uses the version

158

of case distinction whose definedness does not depend on the definedness of

the not chosen argument 3. These modifications of the induction formula

and the term tF are necessary because we cannot guarantee the definedness

of s0y or s1y for an arbitrary y 4.

6.3.5 Upper bound

For the upper bound proof, we work with total versions LogT↓, AlogT↓ and

PT↓ of the introduced theories. They are obtained from the corresponding

partial theories by the following modifications:

• We drop ↓, and replace all formulas of the form s ' t by s = t in the

axioms and rules.

• We work with the usual classical logic.

• We redefine the notion of positive formulas as follows.

Definition 117 For s, t being L terms, an L formula A is positive if A is

build from formulas of the form s = t, s ∈ W, s ∈ V, using the connectives

∧,∨ and the quantifiers ∀,∃.

It is easy to see that LogT↓, AlogT↓ and PT↓ are equivalent to the extensions

of LogT, AlogT and PT by the axiom (∀x, y)xy↓.

We formulate LogT↓, AlogT↓ and PT↓, which we just call LogT, AlogT and

PT in the following, in Gentzen’s classical sequent calculus LK. We assume

familiarity with LK as it is presented, for example, in Girard’s [47]. By

formulating induction as a rule, we obtain systems with only positive main

3Such a case distinction d′W is defined as follows.

d′W(x, y, v, w) := dW(λz.x, λz.y, v, w)0

4Nevertheless, if we add the axiom (∀x)six↓ we are able to prove the antecedent of
induction for the induction formula tfx~z = y similarly as above displayed for LogT and
AlogT. The axiom (∀x)six↓ is usually not present in axiomatisations of combinatory
algebras, but its addition does not increase the proof theoretic strength of any of our
systems and is true in both, recursion theoretic - and term models.

159

formulas for all theories. For the sequent style systems, we give the V-

elimination rule as follows for V-free Γ,∆, a positive B, and BW being B

with all occurrences of V replaced by W.

Γ⇒ B,∆

Γ⇒ BW,∆

Note that compared to Cantini’s [17], we allow more general side formulas,

and B can be a positive formula of arbitrary complexity. The reason why this

is possible is that for our realisation approach an elimination of non-positive

cuts is sufficient.

By standard techniques, see e.g. Girard’s [47], we eliminate all cuts with

non-positive cut-formula. This implies that sequents containing only positive

formulas have proofs containing only positive formulas. The above sketched

transformation of the theories into sequent style, and the subsequent partial

cut-elimination are described in detail in Strahm’s [79] on pages 24-26 for

similar theories.

Due to the cut-elimination result, we can restrict the realisation to positive

formulas. We use two realisation relations r and R . The first trivializes

the V-predicate, the second treats V exactly like W. Correspondingly, we

deliver for provable sequents two realisation functions: F operating on r

realisers, and F� on R realisers. The interplay of F and F� allows to catch

both aspects of V: On the one hand the possibilities to derive something

from t ∈ V are very restricted, so we are not allowed to use its realiser as

freely as a realiser of t ∈ W; on the other hand because of (V-elim) under

some conditions we have to produce a full W-atom (e.g. a formula of the

form t ∈ W) realiser from a V-atom realiser.

Let us define both realisation relations. Remember that 〈· · · 〉 denotes Clote’s

pairing function [20] within the logarithmic hierarchy.

160

Definition 118 (Realisation relation r)

ρ r W(t) iff M(λη) � t = ρ,

ρ r V(t) iff ρ = ε,

ρ r (t1 = t2) iff ρ = ε and M(λη) � t1 = t2,

ρ r (A ∧B) iff ρ = 〈ρ1, ρ2〉 and ρ1 r A and ρ2 r B

ρ r (A ∨B) iff ρ = 〈i, ρ2〉 and either i = 0 and ρ2 r A or

i = 1 and ρ2 r B,

ρ r (∀x)A(x) iff ρ r A(u) for a fresh variable u,

ρ r (∃x)A(x) iff ρ r A(t) for some term t.

Definition 119 (Realisation relation R) The realisation relation R

is defined as r except that the clause

ρ r V(t) iff ρ = ε

is replaced by

ρ R V(t) iff M(λη) � t = ρ

Sequences of formulas are realised as usual giving tuples of realisers.

Note that for a formula A realised by ρ relative to r or R , we can talk

about the atoms of A that are realised by ρ in a natural way. This is so

because ρ just contains individual realisers of possibly substituted atoms of

A (with multiplicity), within a structure of pairs allowing to find for each

individual realiser the corresponding atom. Let A be e.g. the formula

(∃x)(x ∈ W ∧ (x = 0 ∨ x = 0)).

Its r -realiser 〈0, 〈0, ε〉〉 realises the first and the second atom from the left,

but does not realise the third one.

For any positive formula A, there is a function ·A (projection function) within

the logarithmic hierarchy that transfers a given R realisers of A into a r

realiser of A, just by inserting ε at the suitable positions.

161

Lemma 120 For any formula A, there exists a projection ·A within the log-

arithmic hierarchy such that for any word ρ and any substitutions [~s], [~t]

• ρ R A⇒ ρA r A

• ·A[~s] and ·A[~t] denote the same function.

• ρ and ρA realise the same atoms in the sense described above.

• ·QxA[x] is given as ·A[u] for Q = ∃,∀ and a fresh variable u.

Proof. We prove the claim by induction on the complexity of A. The fact that

the given function lies within the logarithmic hierarchy is always obvious. If

A is an atom without occurrence of V the relations r and R coincide, so

we can choose ·A as identity. For atoms of the form t ∈ V, we take ·A as

the constant ε function. For A ≡ A0 ∧ A1, we define ρA as 〈ρA0 , ρA1〉. For

A ≡ A0 ∨ A1, we define

ρA :=

〈0, ρA0
1 〉, if ρ0 = 0

〈1, ρA1
1 〉, else

In all cases analysed above, the given function obviously fulfils the claimed

properties. Let A ≡ (∃x)B[x/u]. We show that ·A, defined as required,

has the correct properties. Assume ρ R A. This implies ρ R B[t] for a

certain term t. Since the functions ·B[u] and ·B[t] are identical, the induction

hypothesis delivers ρA r B[t] and therefore ρA r A as required. For ·∀xB[x],

we use the same argument. 2

The projection function can easily be generalised to tuples of realisers and

sequences of formulas, and is written as ·Γ in such cases. We write just ·∗ for

projection functions, if they are clear from the context.

Theorem 121 Let T0, T1, T2 denote LogT, AlogT, PT, respectively. Let

Γ → ∆ be a sequent of positive formulas with Γ ≡ A1, . . . , An and ∆ ≡
D1, . . . , Dm and assume Ti

? Γ[~u] → ∆[~u]. Then there exists functions

F, F� : Wn →W in Wi such that for each substitution [~s] and each ~ρ R Γ[~s]

the following conditions hold.

• F�(~ρ) R ∆[~s]

162

• F�(~ρ)1 = F (~ρ Γ)1 = k

• F�(~ρ)Dk2 = F (~ρ Γ)2

Let us explain the three conditions. The first conditions claims that a func-

tion F� delivers an R realiser of ∆[~s], which means a realiser reflecting the

V-predicate, on input ~ρ. The second condition claims that the realisation

functions F and F� pick the same formula Dk[~s] of ∆[~s] to realise. Note,

that the input of the realisation function F is a projection of the input of

F�. Finally, the third condition connects the realisers delivered by F and

F�, stating that the first is a projection of the second.

Proof. We proof the theorem by induction on the depth of the positive proof.

Note that for PT, we only have to give a realisation function F . All logical

and equation axioms can be realised by suitable projections. The applicative

axioms are realised using suitable initial functions of Wi. The axioms

t ∈ W⇒ t ∈ V / t ∈ V⇒ sit ∈ V

are realised by F the constant 〈1, ε〉 function and F� defined as λx.〈1, x〉,
λx.〈1, six〉, respectively. The totality axiom for the predecessor is realised

similarly.

Let us switch to the realisation of the rules. The logical rules do not pose

special difficulties. Let us realise the V-elimination rule given as follows where

V does not occur in Γ, ∆ is positive, and BW is B with all V replaced by W.

Γ⇒ B,∆

Γ⇒ BW,∆

For the premise, we have realisation functions P, P�. We construct the real-

isation function F . Let ~ρ be the given realisers for Γ relative to realisation

relation r . Since Γ does not contain V they are realisers of Γ relative to R .

An application of P� delivers an R realiser of B,∆. Because R realisers

of t ∈ V are equal to r realisers of t ∈ W, P�(~ρ) simultaneously yields an

r and R realiser of BW,∆. Therefore, we define F and F� as P�.

Let us now realise the induction scheme of AlogT with premisses

• Γ⇒ (∃y ∈ V)A[ε, y],∆

163

• Γ, x ∈ W, y ∈ V, A[x, y]⇒ A[s0x, s0y] ∨ A[s0x, s1y],∆

• Γ, x ∈ W, y ∈ V, A[x, y]⇒ A[s1x, s0y] ∨ A[s1x, s1y],∆

and the conclusion

• Γ, t ∈ W⇒ (∃y ∈ V)A[t, y],∆,

where the usual variable condition applies. We assume realisation functions

G,G�, H0, H
�
0 , H1, H

�
1 for the premisses and that Γ contains n formulas.

First, we define a function I : Wn+1 →W which produces r -realisers of the

induction formula A relative to specific substitutions. This can be done by

the following cA-bounded recursion for a cA ∈W such that for all ρ ∈W and

all terms s, t

ρ r A[s, t]⇒ ρ ≤ cA.

The existence of cA easily follows from the following lemma which can be

proved by induction on the complexity of the formula A.

Lemma 122 Let A be a positive, W-free formula. Then there exists a word

cA such that for any substitution [~s] and any word ρ

ρ r A[~s]⇒ ρ ≤ cA.

We abbreviate multiple projections of a word w as wn0,··· ,nm and define I as

follows.

I(~z, ε) = G(~z)2,2 | cA
I(~z, siw) = Hi(~z, w, ε, I(~z, w))2,2 | cA

Under the assumption ~z r Γ, for any w ∈ W, I(~z, w) delivers a realiser of

A[w, v] for some v ∈W, as long as no side formula is realised.

Let us define a second auxiliary function Q : Wn+1 → W producing an R

realisers for the first inner conjunct of (∃y ∈ V)A[t, y] given an R -realiser ~z

of Γ, presupposed that no side formula is realised.

Q(~z, ε) = G�(~z)2,1

Q(~z, siw) = sbit(ε,Hi[(~z)∗,w,ε,I((~z)∗,w)]2,1)Q(~z, w)

164

Note, that we have to use Hi instead of H�i to find the suitable successor

because we are not allowed to replace ε by a term containing intermediate

values of Q. Because of the induction hypothesis for the premise realisation

functions, both auxiliary functions are in W2.

To define the realisation function F , we have to decide whether a side formula

is realised. This case distinction cannot be integrated into the recursive

definition of the realisation function as usual, because of the weakness of

CRN . Therefore, we have to distinguish cases independently of earlier values

of F . Let us define the realisation function F as follows:

Case 1 G(~z)1 6= 1. We define F (~z, w) as G(~z).

Case 2 G(~z)1 = 1 ∧ (∃l 4 |w|)P (l, w, ~z) where

P (l, w, ~z) :⇔(∃i)(si(msp(l, w)) = msp(l, w)∧
Hi(~z,msp(l, w), ε, I(~z,msp(l, w)))1 6= 1)

This case applies if in the course of recursion, we hit a side formula.

We define F (~z, w) as

Hi(~z,msp(j, w), ε, I(~z,msp(j, w))),

where j = (νy � |w|)P (y, w, ~z), with ν being the usual maximal

witness operator.

Case 3 Case 1 and 2 are not satisfied. We define F (~z, w) as 〈1, 〈ε, I(~z, w)〉〉.

We can define the realisation function F� very similarly as F , using the

same case distinction. The main difference is that in the third case we have

to produce a non trivial realiser of the V-occurrence of the induction formula.

We use in the following the same abbreviations as above.

Case 1 G((~z)∗)1 6= 1. We define F�(~z, w) as G�(~z).

Case 2 G((~z)∗)1 = 1 ∧ (∃l 4 |w|)P (l, w, ~z). We define F�(~z, w) as

H�i (~z,msp(j, w), Q(~z,msp(j, w)), I((~z)∗,msp(j, w))),

where j = (νy � |w|)P (y, w, ~z).

165

Case 3 Case 1 and 2 are not satisfied. We define F�(~z, w) as

〈1, 〈Q(~z, w), I((~z)∗, w)〉〉.

W1 is closed under sharply bounded quantification and the sharply bounded

minimal witness - and maximal witness operator (see Clote’s [20]), which

implies that the functions F , F� are in W2. Let us prove their correctness.

We assume ~z R Γ[~s] and let w be an arbitrary word. We prove the required

properties by external induction on w. We use that for the arguments ~z, w

of F and the arguments ~z∗, w of F� always the same case is fulfilled. Let w

be ε. Then the assertion follows immediately from the induction hypothesis

about G, G� and the fact that case 2 cannot be fulfilled. Let us prove the

assertion for siw. We abbreviate F�(~z, w) as a. First, we assume that case

3 is fulfilled for ~z, w, so a2 does not realise a side formula, and the induction

hypothesis delivers

(6.1) a2 R (∃y ∈ V)A[w, y][~s].

This implies

(6.2) I((~z)∗, w) r A
(
w, a2,1

)
.

The induction hypothesis for the induction step premisses delivers

(6.3) Hi((~z)∗, w, ε, I((~z)∗, w)) r A
(
siw, s0a2,1

)
∨ A

(
siw, s1a2,1

)
,∆[~s].

First, assume that a formula in ∆[~s] is realised. Then for ~z, siw the second

case holds with the only witness 0. This implies that F�(~z, siw) is defined

as H�i (~z, w,Q(~z, w), I((~z)∗, w)). F is defined analogously and the assertion

holds because of the induction hypothesis for Hi, H
�
i . Assume now that the

main formula is realised. Then, because case 3 holds for (~z, w), case 3 also

holds for (~z, siw). s0a2,1 or s1a2,1 is the witness of the restricted existential

quantifier. The value of bit(ε,Hi[(~z)∗, w, ε, I((~z)∗, w)]2,1) determines correctly

which one we have to choose. This implies that Q yields the correct witness.

The correctness of the component produced by I follows easily from (3).

Therefore, the definition of F� implies

(6.4) F�(~z, siw) R (∃y ∈ V)A[siw, y][~s].

166

F (~z, siw) is defined as projection of F�(~z, siw), so the other required proper-

ties of realisation functions immediately follow. Finally, if for ~z, w the first or

the second case is fulfilled, then F�(~z, w)2 and F (~z, w)2 realise side formulas,

and the claim follows from the monotonicity of the cases 1 and 2.

To deal with the weaker induction scheme of LogT, we argue similarly. Since

the induction formula does not contain disjunctions this time, we can assume

that it is always realised by the same word cA. Therefore, we get correct

realisation functions from the functions F , F� above by replacing all terms

of the form I(a, b) by cA. Since I is not needed, the modified realisation

functions are in W1.

To deal with the induction scheme of PT, we define the realisation function

F by bounded recursion. We abbreviate Hi(~z, w, F (~z, w)2,1, F (~z, w)2,2) as

H̃i(~z, w) and suppress a suitable polynomial bound which can be found easily.

• F (~z, ε) = G(~z)

• F (~z, siw) =



H̃i(~z, w), if F (~z, w)1 = 1 and

H̃i(~z, w)1 6= 1

〈1, 〈sbit(ε,H̃i(~z,w)2,1)F (~z, w)2,1,

H̃i(~z, w)2,2〉〉, if F (~z, w)1 = 1 and

H̃i(~z, w)1 = 1

F (~z, w), else

The function F is in W3 because of lemmas 110, 112 and Ishihara’s result de-

livering the equivalence of A3 and [0, I, S0, S1,#, COMP,BRN], where BRN

denotes bounded recursion on notation. Again, an external induction on the

value of w yields the correctness of the realisation function. As mentioned

earlier, no function F� is needed. 2

The previous lemma implies together with the lower bound lemma 116 the

proof theoretic characterisation of the theories:

Theorem 123

• The provably total functions of LogT are exactly the functions in the

logarithmic hierarchy.

167

• The provably total functions of AlogT are exactly the functions com-

putable in alternating logarithmic time.

• The provably total functions of PT are exactly the functions computable

in polynomial time.

6.3.6 Extending the theories by V induction

The theories introduced before all contain two variable induction schemes

to express the dependence between F (w, ~z) and F (siw, ~z) for F defined by

concatenation recursion. There does not seem to be a way to justify precisely

this recursion with an ordinary one variable induction scheme. We now

address the question whether ordinary one variable induction schemes can

be added sensibly to the introduced base theories. Let us first consider the

addition of V induction to the theory LogT. Let ∗ be a closed term satisfying

the recursion equations for concatenation. Using V induction, we easily prove

x ∈ W, y ∈ V⇒ y ∗ x ∈ V.

Using this fact and again V induction we can justify the following recursion

scheme, treated by Lind in [65].

F (~z, ε) := G(~z)

F (~z, siw) := F (~z, w) ∗Hi(~z, w)

It is unknown, whether the algebras W1 or W2 extended by Lind’s concatena-

tion recursion correspond to natural complexity classes. Still, it can be shown

that logspace is closed under the new recursion principle by keeping track of

the length of F by sharply bounded recursion. Therefore, for our theories

with one-variable induction schemes, we will aim at strength logspace.

6.4 A new safe function algebra for logspace

We define a two-sorted algebra LS of logspace strength. LS merits attention

because it allows to describe logspace from natural initial functions with

only one recursion scheme that does not contain explicit bounds. It differs

168

from the famous Cook-Bellantoni safe algebra for polynomial time only by

restricting case distinction, and by allowing an additional initial function abs

yielding the length of its input.

Definition 124 The algebra LS is the smallest function algebra (on words)

which contains the following initial functions and is closed under the following

operations:

Initial functions

• ε, s0, s1, pW with safe input, and abs with normal input.

• Case distinction for safe arguments.

case(; y1, y2, y3) :=

y2, if y1 = ε

y3, else

• Projections πn,mi with both normal and safe inputs.

Operations

• Safe composition.

f(~x; ~y) = h(~g(~x;);~j(~x; ~y))

• Safe recursion on notation.

f(ε, ~x; ~y) := g(~x; ~y)

f(si(w), ~x; ~y) := hi(w, ~x; f(w, ~x; ~y), ~y),

Note that Cook and Bellantoni’s safe algebra B allows the following stronger

case distinction.

case(; y1, y2, y3) :=

y2, if mod2(y1) = 0

y3, else

In addition, one does not need to include abs as an initial function of B since

it is definable. Apart from these differences, LS and B are given in exactly

the same way.

169

Let us mention authors that have constructed other safe descriptions of

logspace. Bellantoni [6] described logspace as B without s0. His algebra

only delivers the sharply bounded functions computable in logspace.

Another two-sorted algebra was introduced in Oitavem’s [68]. Let us com-

pare LS to Oitavem’s system LogspaceCT . The main difference is that in

LS, safe recursion is stronger since successor - and predecessor functions

can be applied to safe inputs. Therefore, our algebra dispenses with further

recursion schemes as Oitavem’s log-transition recursion, and safe concatena-

tion recursion on notation. Also some initial functions as multiplication, and

iterated predecessor can be dropped.

Møller Neergaard introduced a two-sorted characterisation almost exactly

corresponding to B using a composition - and a recursion scheme that allows

the use of safe variables only once.

Let us prove now the lower bound for LS.

Lemma 125 For each logspace function F there exists an f ∈ LS such that

F (~x) = f(~x;) for all ~x ∈W.

Proof.

Let us introduce the word algebra

[ε, I, s0, s1, abs, bit,×, e, COMP,CRN, SBRN],

equivalent to Clote’s algebra for logspace [20], where SBRN denotes sharply

bounded recursion, given as follows.

F (ε, ~y) = G(~y) | |M(ε, ~y)|

F (s0(x), ~y) = H0(x, ~y, F (x, ~y))) | |M(s0(x), ~y)|

F (s1(x), ~y) = H1(x, ~y, F (x, ~y))) | |M(s1(x), ~y)|,

where

x|y =

x, if x � y

y, else

170

Our algebra clearly contains the functions ε, I, s0, s1, abs. Word multiplication

is defined via successor, and concatenation as usual for safe function algebras.

The eraser is defined as follows using safe case distinction.

e(ε;) := ε

e(s0w;) :=

ε, if e(w;) = ε

s0(; e(w;)), else

e(s1w;) := s1(; e(w;))

LS is clearly closed under composition. Next, we prove that the algebra is

closed under CRN . We use the following auxiliary function b.

b(ε; y) := s0y

b(s0w; y) := s0y

b(s1w; y) := s1y

Let F be defined by concatenation recursion from G,H0, H1. Define f as

f(ε, ~x;) := g(~x;)

f(siw, ~x;) := b(hi(w, ~x;); f(w, ~x;))

Note that the definitions of b and f are given without using safe case dis-

tinction. For bit and SBRN , we have to do bootstrapping. The following

function .−(w; y), written as y .− w, is contained in LS.

y .− ε := y

y .− siw := pW(; y .− w)

Now, we can define the characteristic function of the lexicographic ordering

� for two normal arguments w, v. If one of the arguments is larger than the

other, we give the suitable output. If both inputs are of equal length, we

output h(w,w, v;) where h is defined as follows:

h(ε, w, v;) := 1

h(six,w, v;) :=


0, if b(w .− x; ε) = 1 ∧ b(v .− x; ε) = 0

1, if b(w .− x; ε) = 0 ∧ b(v .− x; ε) = 1

h(x,w, v;), else

171

The necessary case distinctions are justified using the case distinction implicit

in the recursion schema. We define exp as follows.

exp(ε, x;) := ε

exp(siw, x;) :=

siw, if |siw| � x

exp(w, x;), else

Again, the necessary case distinctions are justified using the case distinction

implicit in the recursion schema. The following modified bit function is

member of LS.

bit∗(x, y;) := b(y .− x; ε)

This allows to define the usual bit function.

bit(x, y;) := bit∗(exp(y, x;), y;)

Now, we show that LS is closed under sharply bounded recursion. Let F be

defined by sharply bounded recursion from G,H0, H1 with sharp bound M ,

where corresponding functions g, h0, h1,m are given by induction hypothesis.

We show f ∈ LS for a function f such that F (w, ~x) = |f(w, ~x;)| which

immediately yields the claim. The idea is to determine in each recursion step

the length of the recursion argument, which can be assumed to be normal in

a certain sense, to apply hi, and to expand the output using exp.

The function stepi(w, v, ~x; y) we will define below allows to transfer the re-

cursion step of F to f . Its intended first input w is a term bounding the

recursion. Its second input corresponds to the recursion argument of f . Its

safe argument y is intended to equal f(v, ~x;), the other arguments represent

side arguments of the recursion. stepi counts down its recursion argument

w until we arrive at a w′ with |w′| = |y|. At this point, the step function hi

representing Hi will be applied with last argument |w′|. Finally, f(siv, ~x;) is

constructed using the function exp with bound m(siv, ~x;) as first argument.

172

Accordingly, stepi is given as follows for i = 0, 1.

stepi(ε, v, ~x; y) := exp(m(siv, ~x;), hi(v, ~x, ε;);)

stepi(sjw, v, ~x; y) :=

stepi(w, v, ~x; y), if y .− w = ε

exp(m(siv, ~x;), hi(v, ~x, |sjw|;);), else

In the definition of stepi, we essentially use safe case distinction. The re-

quested function f is defined as follows.

f(ε, ~x;) := exp(m(ε, ~x;), g(~x;);)

f(siv, ~x;) := stepi(m(v, ~x;), v, ~x; f(v, ~x;))

This implies the lower bound for LS. 2

Let us switch to the upper bound proof which we prove for an extension

LS′ of LS formulated in analogy to Bellantoni’s BC [6]. As BC, also LS′

separates not only its input but also its output into safe and normal. LS′

will be useful for the realisation of theories of logspace strength formulated

in the next section. In addition, it can be seen easily that Oitavem’s algebra

LogspaceCT can be embedded into LS′.

Definition 126 The algebra LS′ is the smallest function algebra (on words)

which contains the following initial functions and is closed under the following

operations:

Initial functions

• ε, s0, s1, pW with safe input and safe output.

• abs with normal input and normal output.

• πn,mi (projections) with safe output and both normal and safe inputs.

• init(x; y) with normal output which returns the abs(abs(x)) most signif-

icant bits of y. Usually, we write y/x for init(x; y).

173

Operations

• Composition with

f(~x; ~y) = h(~g(~x; ~y);~j(~x; ~y)),

where the gi have normal - and the ji safe output. f has the same sort

of outputs as h.

• Simultaneous safe recursion on notation defined as follows for 1 ≤ j ≤
m, i = 0, 1

fj(ε, ~x; ~y) := gj(~x; ~y)

fj(siw, ~x; ~y) := hj,i(w, ~x; f1(w, ~x; ~y), · · · , fm(w, ~x; ~y), ~y),

where g1, · · · , gm, h1,0, · · · , hm,0, h1,1, · · · , hm,1 have safe output. The

fj have safe output.

• Raising: from f(~x;) with safe output obtain f ν(~x;) with normal output.

The function algebra LS′ contains LS since it can define the function case

using the function init, and a case distinction d(x; y1, y2) with

d(x; y1, y2) :=

y1, if x = ε

y2, else ,

which can be defined easily using safe recursion on notation.

Note, that because of projections, functions with normal instead of safe out-

put are admissible in all schemes. LS′ and BC are formulated very similarly,

the most important difference is that in LS′ only a sharply bounded segment

of a safe input can by shifted to the normal side, whereas the function mod

in BC allows to shift a bounded segment. Note that it is important that

LS′ shifts initial segments since otherwise an embedding of Cook and Bel-

lantoni’s B is clearly possible. The main theorem, stated below, immediately

implies that LS′ is contained in logspace.

Theorem 127 Let f(~x; ~y) be an element of LS′ where ~y := y1, · · · , yn. Then

there exist logspace computable functions ch, del, const on words, and unary

174

(monotone) polynomials Q,M on words such that for all ~x, ~y ∈ W the fol-

lowing properties hold. We write M(~x) for M(max(~x)), and ~y/M(~x) for

y1/M(~x), · · · , yn/M(~x). The output of ch is displayed as a number.

• 0 ≤ ch(~x, ~y/M(~x), |~y|) ≤ n.

• If f has normal output, ch(~x, ~y/M(~x), |~y|) = 0.

• If ch(~x, ~y/M(~x), |~y|) = 0, we have

f(~x; ~y) = const(~x, ~y/M(~x), |~y|).

• If 0 < ch(~x, ~y/M(~x), |~y|) = k ≤ n, we have

f(~x; ~y) =
(
yk .− del(~x, ~y/M(~x), |~y|)

)
∗ const(~x, ~y/M(~x), |~y|).

• del(~x, · · ·), const(~x, · · ·) ≤ Q(~x), where · · · stands for an arbitrary in-

put of fitting size.

Let us explain now the functions ch, del, const mentioned in the theorem.

First, consider the case where 1 ≤ ch(~x, ~y/M(~x), |~y|) = i ≤ n. Then, f(~x; ~y)

is calculated by first deleting |del(~x, ~y/M(~x), |~y|)| bits from yi. (In the whole

proof only the lengths of the del-outputs matter.) Then, we concatenate

const(~x, ~y/M(~x), |~y|) (const stands for construct). If the value of the choice

function is zero, f(~x; ~y) is given as const(~x, ~y/M(~x), |~y|).

Note that in both cases, f(~x; ~y) fully depends only on a single safe input.

For the other safe inputs, only their length, and sharply bounded initial

segments matter. Also the chosen safe input can only be manipulated in a

very restricted way. This will allow us to simulate safe recursion essentially

by sharply bounded recursion since only a very small amount of information

about the intermediate values has to be stored.

In the theorem, we additionally claim

del(~x, · · ·), const(~x, · · ·) ≤ Q(~x).

This property is important to prove that the functions in LS′ have at most

polynomial growth. To treat recursion, it is crucial that the polynomials M

175

and Q do not depend on the safe arguments ~y. Let us start with the proof

of the theorem.

Proof. Let us first introduce some notations used in this section. We work

with the analogues on words of the arithmetical plus and minus operations,

given as +,− using again the isomorphism between (W,�) and (N,≤). As for

numbers, these operations can be extended within the logarithmic hierarchy

to negative words, displayed as −w, using a natural coding. Also the ordering

� is extended as expected to negative words. We work for technical reasons

with a bit function on words, which enumerates the bits in the opposite way

as before, which we call bit as well. The most significant bit of w is given as

bit(0, w) and the least significant as bit(|w|, w).

We prove the claim by induction on the complexity of f , and detail the most

interesting steps.

For the initial functions the claim clearly holds. We treat the successor si as

an example. We define chsi = 1, delsi = ε, constsi = i. The bounds M and

Q are chosen as 1. The predecessor is treated similarly. E.g. for init(x; y),

which has normal output, const is given as y/x.

Composition

Assume that f is defined by composition as follows for ~j containing m com-

ponents.

f(~x; ~y) = g(~h(~x; ~y);~j(~x; ~y))

Let us first reflect the induction hypothesis for the components of ~j. ji(~x, ~y)

for 1 ≤ i ≤ m is given as a sum of at most three summands (always relative

to .− and ∗). If 0 < ch(~x, ~y/M(~x), |~y|) = k ≤ n, this sum is composed of

yk, delji , and constji (with suppressed inputs). The same argument for the

function g implies that f(~x; ~y) is given as a sum of at most 5 summands

containing at most two del - and two const summands. The strategy is first

to produce these summands as logspace functions of our initial inputs. Then,

we combine them to get delf and constf .

In the following, we define auxiliary functions for arbitrary inputs ~b,~c, ~d. We

motivate them for the case that the inputs ~b,~c, ~d are given as intended, i.e.

as ~x, ~y/Mf (~x), |~y|, where Mf (x) is given as Mg(Qh(x)), where Qh denotes a

176

bounding polynomial for the bounds Qhi . The following term equals hi(~x; ~y)

for intended inputs according to the induction hypothesis.

consthi(
~b,~c/Mhi(

~b), ~d) := qi

Next, we have to collect information about the ji(~x; ~y). We abbreviate

chji(
~b,~c/Mji(

~b), ~d)

as ki. We consider the case 1 ≤ ki ≤ n, and define `i as follows.

`i := max(ε, dki − |delji(~b,~c/Mji(
~b), ~d)|),

where max denotes a maximum function relying on the lexicographic order

extended to negative words, as explained at the beginning of the proof. If

1 ≤ ki ≤ n does not hold, we define `i as ε. The length of ji(~x; ~y) is given as

d̃i := `i + |constji(~b,~c/Mji(
~b), ~d)|.

We can now define a function Fi which constructs initial segments of ji(~x; ~y)

as follows.

Fi(ε,~b,~c, ~d) := ε

Fi(siz,~b,~c, ~d) :=


sbit(|siz|,cki)Fi(z,

~b,~c, ~d), if |siz| � `i

sbit(|siz|−`i,constji (~b,~c/Mji
(~b),~d)Fi(z,

~b,~c, ~d), if `i ≺ |siz| � d̃i

Fi(z,~b,~c, ~d), else

Note that an initial segment of ji(~x; ~y) is constructed by first reading bits of

the chosen safe input, and then reading the word provided by constji . For

1 ≤ i ≤ m, Fi(|Mg(~q)|,~b,~c, ~d) produces initial segments of sufficient length

for the later application of g (the qi are defined above). Now, we can calculate

the safe input the function g chooses as follows.

chg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d) := chg

We are ready to define the searched functions chf , delf , constf . This will be

done using a case distinction on the value of chg.

177

First, we assume 1 ≤ chg ≤ m. Then, chf (~b,~c, ~d) is given as

ch(jchg)(~b,~c/Mjchg
(~b), ~d) := k.

This means that the safe input we use as first summand when writing f(~x; ~y)

as sum of five summands is the safe input the chosen function jchg choses for
~b,~c, ~d given as intended. delf (~b,~c, ~d) is defined as

deljk(
~b,~c/Mjk(

~b), ~d)∗

(delg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d) .−
constjk(

~b,~c/Mjk(
~b), ~d)),

constf (~b,~c, ~d) as (
constjk(

~b,~c/Mjk(
~b), ~d) .−

delg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d)
)
∗

constg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d)

Assume now that 1 ≤ chg ≤ m does not hold. Then, chf (~b,~c, ~d) is given as

0. delf (~b,~c, ~d) is given as ε, and constf (~b,~c, ~d) as

constg(~q, ~F (|Mg(~q)|,~b,~c, ~d), ~̃d)

Finally, we define the function Qf as Qj(~b)∗Qg(Qh(~b)) (independent of chg),

where Qh, Qj denote bounding polynomials for the Qhi , Qji , respectively.

Recursion

First, we analyse the case of ordinary safe recursion. Then, it is easy to

generalise the argument to simultaneous safe recursion. Assume that f is

defined as follows.

f(ε, ~x; ~y) := g(~x; ~y)

f(siz, ~x; ~y) := hi(z, ~x; f(z, ~x; ~y), ~y)

Let us give the intuitive reason why this recursion goes through in logspace.

Because our induction hypothesis about g, h0, h1, we know that for any z ∈W

178

we can write f(z, ~x; ~y) ultimately as sum of at most one safe input and

several del and const terms, depending on the order of applications of h0, h1

necessary to calculate f(z, ~x; ~y). These terms only depend on the length,

and a in z and ~x sharply bounded initial segment of the intermediate values

f(z′, ~x; ~y) with z′ ⊆ z, which allows to simulate safe recursion using sharply

bounded recursion.

Let us give the calculations in more detail. First, we have to make sure

until which bit we have to know the safe inputs ~y to compute all necessary

ch, del, const terms during the recursion. It is easy to see that a bounding

polynomial Mf of Mg, Mh0 , and Mh1 is sufficient.

We define an auxiliary function H(w, a,~b,~c, ~d) such that

H(w, z, ~x, ~y/Mf (w, ~x), |~y|) := H

contains information about f(z, ~x; ~y) for z ⊆ w . We sketch the definition

of H, and explain the meaning of its output for the intended input, then

we give a precise definition of H. The output of H will always be a tuple

of five words. The first component is displayed as a number, and tells us

for z = siz
′ ⊆ w which safe argument of hi(z

′, ~x; f(z′, ~x; ~y), ~y) is used when

writing f(z, ~x; ~y) as sum of three summands using the del-const unfolding.

For z = ε, we use g instead of hi. If there is no such safe input, we stipulate

H0 = 0.

H1 is displayed as number as well, and tells us which safe input y` of ~y is

needed when we write f(z, ~x; ~y) as a totally unfolded del-const sum. This

means, for z = siz
′ ⊆ w we write f(z, ~x; ~y) first (if possible) as f(z′, ~x; ~y)

minus a del, plus an const summand, then unfold f(z′, ~x; ~y) analogously, and

so on. If there is no such safe input, we stipulate H1 = 0. For z = ε, H1 = H0.

We assume z = siz
′ and abbreviate

|delhi(z′, ~x, f(z′, ~x; ~y)/Mhi(z
′, ~x), ~y/Mhi(z

′, ~x), |f(z′, ~x; ~y)|, |~y|)|

as del. H2 is the length of (f(z′, ~x; ~y) .− del) minus the length of y`, defined

above. Note that H2 is possibly a negative word. If no y` exists H2 is ε. For

z = ε H2 is given analogously but using delg, and y` instead of f(z′, ~x; ~y).

179

The fourth component H3 gives the length of f(z, ~x; ~y) minus the length of

y`, or simply the length of f(z, ~x; ~y) if y` does not exist. The reason for giving

H2 and H3 as lengths relative to the length of y` is to insure that they can

be sharply bounded by a term only depending on the normal arguments of

f .

H4 contains the ||Mf (w, ~x)|| most significant bits of f(z, ~x; ~y).

In the following, we give a precise definition of H and argue that it is logspace

computable. We define H(w, a,~b,~c, ~d) by sharply bounded induction on a.

We suppress a bound in the following and argue in the end that it can be

found easily. We let n denote the number of components of ~c and of ~d.

The first and second component of H(w, ε,~b,~c, ~d) are defined as

chg(~b,~c/Mg(~b), ~d) := k|n

for | being the cut function defined on page 170. We suppress such bounds

for the first and second component in the following. For 1 ≤ k ≤ n the third

component is given by

max(−dk,−|delg(~b,~c/Mg(~b), ~d)|) := q2.

We abbreviate constg(~b,~c/Mg(~b), ~d) as const. The fourth component is given

as q2 + |const|.

The fifth component is constructed by glueing ck and const together, very

similarly as on page 177. If 1 ≤ k ≤ n does not hold, we output ε, |const|,
const/Mf (w,~b) as third until fifth component.

Now, we show how to calculate H(w, sia,~b,~c, ~d) := r from

w, a,~b,~c, ~d,H(w, a,~b,~c, ~d) := q

in logspace. For convenience, in the following for all words i if 1 ≤ i ≤ n

does not hold, we let di denote ε. r0 is given as

chhi(a,
~b, q4/Mhi(a,

~b),~c/Mhi(a,
~b), dq1 + q3, ~d) := k.

Note that we have inserted the values q4/Mhi(a,
~b) and dq1 +q3 corresponding

to a sharply bounded initial segment, and the length of an intermediate value

180

of the recursion for intended inputs. r1 is given as q1 if r0 equals 1, as r0− 1

if r0 > 1, and as 0 else. For the other components, we use the following case

distinction: We first assume that k equals 1. Then, r2 is given as

max(−dq1 , q3 − |delhi(a,~b, q4/Mhi(a,
~b),~c/Mhi(a,

~b), dq1 + q3, ~d)|),

r3 is given as

r2 + |consthi(a,~b, q4/Mhi(a,
~b),~c/Mhi(a,

~b), dq1 + q3, ~d)|.

We abbreviate the const-term above as const. r4 is defined by glueing to-

gether q4 and const, similarly as on page 177.

If we have 2 ≤ k ≤ n + 1, the components r2, r3, r4 are given in a very

similar way as for H(w, ε,~b,~c, ~d) since in this case we build a new del-const

sum from a safe input. In all other cases, we output ε, |const|, const/Mf (w,~b)

as r2, r3, r4.

Let us finally say a word about the sharp bound we have to deliver for

this recursion. It suffices to show that all components of H(w, a,~b,~c, ~d) are

sharply bounded by polynomials of w, a,~b since we are using a linear pairing

function. For the first, second, and fifth component this is clear. For the

third and fourth component, we use a bounding polynomial[
Qg(~b) ∗ (Qh(a,~b)× a)

]
× c,

where the constant c depends on the exact definition of the coding for nega-

tive words. This concludes the proof that the auxiliary function H is logspace

computable.

It is easy to define chf , delf , constf from H: chf (a,~b,~c, ~d) is simply given as

H(a, a,~b,~c, ~d)1 := k. delf and constf are constructed using a case distinction

on k. First, we assume 1 ≤ k ≤ n. Let us find the smallest z ⊆ a such that

z ⊂ z′ ⊆ a implies H(a, z′,~b,~c, ~d)0 = 1 5. For z ⊆ z′ ⊆ a, f(z′, ~x; ~y) is given

as a del-const sum starting at yk. Find the minimal

H(a, z′,~b,~c, ~d)2

5Sharply bounded quantification which immediately yields subword quantification is
admissible within the logarithmic hierarchy, see Clote’s [20].

181

for z ⊆ z′ ⊆ w which we abbreviate as q. delf (a,~b,~c, ~d) is given as

exp(Qf (w, ~x),max(ε,−q)),

where exp is defined on page 172.

Next, we show how constf (a,~b,~c, ~d) can be calculated in logspace, by cal-

culating its i-th bit in logspace for an arbitrary i. We abbreviate |yk .−
delf (a,~b,~c, ~d)| as `. We search the largest z ⊆ z′ ⊆ w such that

dk +H(a, z′,~b,~c, ~d)2 ≺ `+ i � dk +H(a, z′,~b,~c, ~d)3.

If no such z′ exists, i exceeds the length of constf (a,~b,~c, ~d). Assume z′ = siv.

Then, we easily find the value of the searched i-th bit by calculating

consthi(v,
~b, r4/Mhi(v, ~x), ~y/Mhi(v, ~x), dk + r3, ~d),

where r := H(a, v,~b,~c, ~d). If z′ = ε, we use constg instead.

If 1 ≤ k ≤ n does not hold, constf is defined similarly, and delf as ε. This

finishes our argument for the ordinary safe recursion.

Simultaneous safe recursion

We sketch how to produce the functions chf` , delf` , constf` ,Mf` , Qf` for 1 ≤
` ≤ m if f` is defined by simultaneous safe recursion.

• For all 1 ≤ ` ≤ m, we give the same Mf` , Qf` which we call Mf , Qf .

We define them as for ordinary safe recursion using bounds that work

for all base - and recursion step functions.

• We use again an auxiliary functionH ′. It contains the same information

as H but simultaneously for all f` with 1 ≤ ` ≤ m. So, e.g., we collect

the first ||Mf (w, ~x)|| bits for all f`. The components of H ′ can be

calculated very similarly as the ones of H.

• chf` is given analogously as before. For delf` , and constf` the complica-

tion is that it is not sufficient to know which yk occurs as first summand

in the total unfolding of f`(z, ~x; ~y) as sum of del and const terms. This

is so because it does not give us the information in which order which

182

base - and recursion step functions were applied. The problem is solved

by tracing back which safe input is needed to write f`(z, ~x; ~y) as a del-

const sum using H(z, a′,~b,~c, ~d)0 for a′ ⊆ z. Then, following this trace,

delf` and constf` are defined very similarly as before. The back-tracing

is possible using constantly bounded recursion.

This concludes the proof of the theorem. 2

The lower bound result implies together with the previous theorem the fol-

lowing corollary.

Corollary 128 The normal segments of the algebras LS and LS′ describe

exactly the logspace computable functions.

The technique used to show that LS′ has strength logspace can also be

directly applied to LS. The dependence of ch, del, and const on sharply

bounded initial segments of safe inputs can then be dropped. This imme-

diately implies that Oitavem’s log-transition recursion cannot be defined in

LS. Nevertheless, note that it can be defined easily in LS′. This immedi-

ately implies that Oitavem’s algebra LogspaceCT is contained in LS′.

6.5 Two systems of strength logspace

We formalise the algebra LS and Clote’s function algebra for logspace [20]

with concatenation and sharply bounded recursion within an applicative set-

ting. The theories again contain a predicate for normal - and a predicate for

safe words, interpreted similarly as before. In contrast to the theories pre-

sented earlier, for logspace strength we allow ordinary one-variable induction

schemes.

6.5.1 Formalising LS

We introduce the theory LogST, formalising LS, and prove its lower bound

in terms of provably total functions. We deliver the upper bound proof for a

stronger system LogST′ formalising LS′.

183

Definition 129 The theory LogST is the theory LogT with the following

modifications.

• The induction axiom is replaced by V-induction, defined as follows for

x /∈ FV (r):

rε ∈ V ∧ (∀x ∈ W)(rx ∈ V→ r(six) ∈ V)→ (∀x ∈ W)(rx ∈ V)

• We drop the axioms for bit, concatenation, multiplication, and eraser.

• Let case be a closed term corresponding to the function case ∈ LS for

which the usual elementary properties are provable in LogT. Then we

have as additional axioms the following.

– x, y, z ∈ V→ case(x, y, z) ∈ V

– x, y ∈ V→ case(x, y, ε) = x

– x, y, z ∈ V→ (case(x, y, z) = y ∨ z = ε)

The following lemma is proved by straightforward induction on the complex-

ity of F .

Lemma 130 For any F (~x; ~y) ∈ LS there is an L term tF with

• LogST ~x ∈ W ∧ ~y ∈ V→ tF (~x, ~y) ∈ V

• M(λη) � tF (~w,~v) = F (~w;~v), where M(λη) denotes the standard open

term model.

Now, we switch to the theory LogST′ formalising LS′ which is formulated

with a more flexible induction scheme.

Definition 131 The theory LogST′ is the theory LogT with the following

modifications.

• The induction axiom is replaced by positive W-free induction.

• We drop the axioms for bit, concatenation, multiplication, and eraser.

184

• Let init be a closed term corresponding to the function init ∈ LS′ for

which the usual elementary properties are provable in LogT. Then we

have as additional axiom the following.

x ∈ W ∧ y ∈ V→ init(x, y) ∈ W

A term case′ corresponding to case in LogST can be defined in LogST′ as

follows.

case′ := λx.λy.λz.dW(x, y, ε, init(1, z))

The upper bound proof for LogST′ is technically involved. The main prob-

lem is, that a pairing function p for safe inputs is not available. This is a

consequence of theorem 127 as we will argue in the following. Assume that p

is such a pairing function. Independently of whether we can write p(; y1, y2)

according to the theorem as const term, or as sum of three summands, it can

be bounded by one of its safe inputs concatenated with a fixed polynomial in

the length of both safe inputs. This condition cannot be fulfilled for arbitrary

y1, y2.

Let us now point out, why it is a problem not to have a pairing function for

safe inputs: Complex formulas without occurrences of W have to be realised

by a safe input of the realisation function to allow induction. Nevertheless,

without pairing - and projection functions, we are unable to access the realis-

ers of the components of the formula which makes the realisation approach

impossible.

Cantini presented in [17] a realisation approach that also handles the problem

of the missing pairing function for safe inputs. Nevertheless, we present an

alternative realisation approach, which deals with all V-atoms separately, and

uses a set of realisation functions such that each yields only the realiser of

a single V-atom. In contrast to Cantini’s approach, vector-valued functions

are not necessary, and also proofs containing formulas with both, W and

V-occurrences, can be treated. This allows the realisation of a more general

V-elimination rule in comparison to Cantini’s [17]. The presented approach

also solves a technical problem Cantini’s approach faces for the realisation of

disjunctions whose realisers may have different types.

185

Let us give the details of the realisation approach. We number the V-atoms

of a formula D from the left to the right and call the k-th such atom Dk. If

ρ r D or ρ R D holds, for the realisation relations r and R defined on

page 160, we can speak of the set of realised atoms as on page 161. We write

ρ r? Dk or ρ R? Dk, respectively, if Dk belongs to the set of realised atoms.

If ρ R D holds, we also use the expression ”ρ R? Dk by w” for a word w if

w is the component of ρ realising the atom Dk.

We define a realisation relation S for sequents which realises the V-atoms

separately. We let < ·, · > denote a standard set theoretic pairing function.

Definition 132 Let Γ be given as A1, · · · , An (with V-atoms given as

Ai,1, · · · , Ai,ki). ρ S Γ holds exactly if

• ρ is of the form

<< v1, · · · , vn >,< w1,1, · · · , w1,k1 , · · · , wn,kn >>

where ki equals the number of V-atoms of Ai for each 1 ≤ i ≤ n. (ki

might equal zero.)

• < v1, · · · , vn > r Γ.

• For any 1 ≤ i ≤ n there is a (unique) ℘ with vi = ℘Ai and ℘ R Ai

such that

(vi r? Ai,j ⇔)℘ R? Ai,j ⇔ ℘ R? Ai,j by wi,j.

Note that the use of two realisation relations r and R and their interplay

using the projection function was already used in section 6.3 for the realisa-

tion of the weaker theories. Here, the new idea is the individual realisation

of V-atoms.

Note that for formulas Ai without occurrence of V the third property is

fulfilled for ℘ = vi since the biconditionals hold trivially in this case as no

Ai,j exist. For the realisation relation S the usual properties with respect to

quantification and equality of terms hold as a consequence of these properties

for R , r .

186

Lemma 133 For the realisation relation S the following properties hold.

We use ~s = ~t as an abbreviation of s0 = t0 ∧ · · · ∧ sn = tn.

• ρ S (∃x)A[x]⇔ ρ S A[t] for some term t

• ρ S (∀x)A[x]⇔ ρ S A[u]

• ρ S A[~s]⇔ ρ S A[~t]

Proof. Assume ρ S (∃x)A[x]. The realisation property 3 implies the existence

of a ℘ such that ℘ R (∃x)A[x] and ℘(∃x)A[x] = ρ0,0. This implies ℘ R A[t] for

some term t. The properties of the projection function imply ℘A[t] = ρ0,0 and

ρ0,0 r A[t]. Therefore, realisation properties 2 and 3 hold relative to t. Also

property 1 clearly holds. This implies the direction from left to right for the

first claim. The other direction and the other claims clearly hold because

of the analogous properties for R , r and the properties of the projection

function. 2

Note that the lemma above also holds with side formulas present.

We are ready to state the main theorem for a total sequent-style formalisation

of LogST, called LogST as well, which is constructed as for the theories pre-

sented in section 2. An S -realiser ρ :=< ρ0, ρ1 > is inserted into realisation

functions of LS as

(ρ0,0, ρ0,1, · · · ; ρ1,0, ρ1,1, · · ·)

which we abbreviate as (ρ0; ρ1).

Theorem 134 Assume that Γ and ∆ ≡ D1, · · · , Dm (with V-atoms given as

Di,1, · · · , Di,ki) are positive sequences of formulas. Assume LogST Γ⇒ ∆

with a proof containing only positive formulas. Then there are LS-functions

F with normal output and f<1,1>, · · · , f<1,k1>, · · · , f<m,km> with safe outputs

such that for all substitutions [~s] and for all ρ S Γ[~s] the following properties

hold.

• 1 ≤ F (ρ0; ρ1)0 := i ≤ m

• << F (ρ0; ρ1)1 >,< fi,1(ρ0; ρ1), · · · , fi,ki(ρ0; ρ1) >> S Di

Proof. We use an induction on the length of the positive proof.

187

Logical and applicative axioms

The logical axioms are realised easily, and the applicative axioms as usual

since they do not contain V.

V axioms

• x ∈ V⇒ six ∈ V

We take F as the constant 〈1, ε〉 function. We define

f1,1(ρ0; ρ1) := siρ1.

The predecessor is realised similarly.

• x ∈ W, y ∈ V⇒ init(x, y) ∈ W

We define F (ρ0,0, ρ0,1; ρ1,0) as 〈1, init(ρ0,0; ρ1,0)〉. There are no other

realisation functions since the succedent does not contain V.

• x ∈ W⇒ x ∈ V

We take F as the constant 〈1, ε〉 function. We define f1,1 as identity.

V-elimination

Let us realise V-elimination given as follows where Γ,∆ does not contain V,

and BW is B with all V replaced by W.

Γ⇒ B,∆

Γ⇒ BW,∆

We assume realisation functions G, g1,1, · · · for the premise. Let us define F

by the following algorithm for a given input (ρ0;). Let G(ρ0;)0 = 1. For

each 1 ≤ i ≤ k1, replace the ε in G(ρ0;)1 responsible for the i-th V-atom

by g1,i(ρ0;) if there is such an ε. (The relevant ε’s can be found by only

considering the structure of G(ρ0;)1.) The resulting word α is clearly an

r realiser of BW. Therefore, we define F (ρ0;) as 〈1, α〉 in this case. If

G(ρ0;)0 6= 1 we define F (ρ0;) just as G(ρ0;).

Let us argue that the function F is in LS which follows from α being pro-

ducible from ρ0 within LS: G(ρ0;)1 delivers normal output, and the g1,i(ρ0;)

can be assumed to deliver normal output as well because of the raising rule.

188

Therefore, the lower bound lemma for LS implies that their outputs can be

freely used as input for logarithmic space functions. For each 1 ≤ i ≤ k1, we

can find the ε responsible for the corresponding atom, if it exists, within the

logarithmic hierarchy, since this only involves keeping track of the structure

of G(ρ0;)1 relative to the pairing function. Once the positions of the ε’s

are found, the replacements can be clearly executed within the logarithmic

hierarchy. Finally, the fi,j are found easily 6.

∧ right rule

Let the applied rule have the following form.

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧B,∆

We assume that A has n and B m V-atoms. We assume realisation functions

G, g1,1, · · · , H, h1,1, · · · for the premisses, and ρ S Γ[~s]. Assume first G(ρ)0 =

1 and H(ρ)0 = 1. Then F (ρ) is given as 〈1, 〈G(ρ), H(ρ)〉〉. The fi,j are given

as follows.

• If i = 1 ∧ j ≤ n we have fi,j = g1,j.

• If i = 1 ∧ n < j ≤ n+m we have fi,j = h1,j−n.

• Else, we define fi,j arbitrary.

Assume G(ρ)0 = i 6= 1. Then F is given as G, fi,j is given as gi,j, and

the other fk,` are given arbitrary. Analogously for the case G(ρ)0 = 1 and

H(ρ)0 6= 1.

∨-left rule

Let the applied rule have the following form.

Γ, A⇒ ∆ Γ, B ⇒ ∆

Γ, A ∨B ⇒,∆
6Note that the realisation of V-elimination is not entirely trivial, because of the asym-

metric treatment of the W and V-atoms in our approach. It would be possible to modify
it such that single W-atoms are realised by functions with normal instead of safe outputs
which would yield a trivial realisation of V-elimination.

189

We assume that Γ has n−1 formulas that A has m0 and B m1 V-atoms. We

assume realisation functions G, g1,1, · · · , H, h1,1, · · · for the premisses, and

<< v1, · · · , vn >;< w1,1, · · · , wn,1, · · · , wn,m0+m1 >> S Γ, A∨B[~s]. Assume

that vn realises the first disjunct, the other case is treated analogously. In

this case F is given as follows.

F (v1, · · · , vn;w1,1, · · · , wn,1, · · · , wn,m0+m1) :=

G(v1, · · · , (vn)0;w1,1, · · · , wn,1, · · · , wn,m0).

Analogously for the fi,j.

Cut

Assume that the cut rule is given as follows, where we have premise realisation

functions G, g1,1, · · · , H, h1,1, · · · .

Γ⇒ A,∆ Γ, A⇒ ∆

Γ⇒ ∆

Then the function F is defined as follows.

F (~x; ~y) :=

H(~x,G(~x; ~y)1; ~y, ~g1(~x; ~y)), if G(~x; ~y)0 = 1

G(~x; ~y), else

The functions fi,j are defined as follows.

fi,j(~x; ~y) :=

hi,j(~x,G(~x; ~y)1; ~y, ~g1(~x; ~y)), if G(~x; ~y)0 = 1

gi,j(~x; ~y), else

The correctness of the realisation functions in the case where the cut formula

is realised follows easily from

<< ~x,G(~x; ~y)1 >,< ~y, ~g1(~x; ~y) >> S Γ, A[~s],

which is an immediate consequence of << ~x >,< ~y >> S Γ[~s].

190

Induction

Induction is realised using the scheme of simultaneous recursion. Assume

that the rule has the following form, where we have premise realisation func-

tions G, g1,1, · · · , Hi, hi,1,1, · · · .

Γ⇒ A[0],∆ Γ, x ∈ W, A[x]⇒ A[six],∆

Γ, t ∈ W⇒ A[t],∆

Remember, that we use the standard linear pairing operation 〈, 〉 which is

in the logarithmic hierarchy. To determine, whether the first element of a

certain pair is 1, we have to know only finitely many initial bits. Therefore,

case distinctions with this property are permitted for safe inputs.

By lemma 122, we find a word c such that for all substitutions [~s]

ρ r A[~s]⇒ 〈1, ρ〉 ≤ |c|.

We define an auxiliary function F ′, motivated as follows. We keep its output

small such that we can transform it into a normal output as demanded for F .

This works without a problem as long as main formulas is realised. If in turn

a side formula is realised, the produced realiser does not have to be sharply

bounded. Therefore, in this case, F ′ only stores the information in which

induction step for the first time a side formula is realised. Now, we define

F ′, and the functions fi,j by simultaneous safe recursion. We abbreviate

Hi(~x, w, init(c, F ′(~x, w; ~y))1; ~y, ~f1(~x, w; ~y))

as Qi(~x, w; ~y).

F ′(~x, ε; ~y) :=

G(~x; ~y), if G(~x; ~y)0 = 1

〈2, ε〉, else

F ′(~x, siw; ~y) :=


Qi(~x, w; ~y), if F ′(~x, w; ~y)0 = 1 ∧Qi(~x, w; ~y)0 = 1

〈3, |w|〉, if F ′(~x, w; ~y)0 = 1 ∧Qi(~x, w; ~y)0 6= 1

F ′(~x, w; ~y), else

We abbreviate

hi,j,`(~x, w, init(c, F ′(~x, w; ~y))1; ~y, ~f1(~x, w; ~y))

191

as qi,j,`(~x, w; ~y).

fj,`(~x, ε; ~y) := gj,`(~x, ε; ~y)

fj,`(~x, siw; ~y) :=

qi,j,`(~x, w; ~y), if F ′(~x, w; ~y)0 = 1

fj,`(~x, w; ~y), else

Finally, let us define the realisation function F with normal output. Let p

be a polynomial such that 〈2, |w|〉 ≤ |p(w)|. We define

r(~x, w; ~y) := exp(w, init(p(w);F ′(~x, w; ~y))1;).

We let F (~x, siw; ~y) be given by the following case distinction.
init(c, F ′(~x, siw; ~y)), if F ′(~x, siw; ~y)0 = 1

G(~x; ~y), if F ′(~x, siw; ~y)0 = 2

Hi(~x, r(~x, siw; ~y), init(c, F ′(~x, r(~x, siw; ~y); ~y)); ~y), if F ′(~x, siw; ~y)0 = 3

The correctness of the realisation functions is proved by an easy induction

on the value of t in the standard model.

Other rules

The structural rules, the ∨-right -, and the ∧-left rule are realised easily. For

the quantifier rules, we use lemma 133. 2

From lemma 130 and the previous theorem we derive the following lemma.

Lemma 135 The theories LogST and LogST′ prove totality exactly for the

logarithmic space computable functions.

6.5.2 Formalising Clote’s algebra for logspace

In the last section, we have defined a theory of strength logspace that for-

malises the algebra LS. Another possibility to produce a theory of this

strength is to formalise the already mentioned algebra

[0, I, s0, s1, abs, bit, e,×, COMP,CRN, SBRN],

where SBRN denotes sharply bounded recursion. We give an induction

principle capturing both, CRN and SBRN .

192

Definition 136 For any positive formula A, we denote the formula A with

each subformula of the form t ∈ W replaced by t ≤W u by Au.

Definition 137 The theory LogSB is the theory LogT with the following

modifications.

• The induction axiom is replaced by sharply bounded induction (SB-Ind)

defined as follows, for A a positive formula and u a fresh variable.

u ∈ W→
(
A|u|[ε] ∧ (∀x ∈ W)(A|u|[x]→ A|u|[s0x] ∧ A|u|[s1x])→

(∀x ∈ W)(A|u|[x])
)

• We drop the axioms for bit, concatenation, multiplication, and eraser.

Lemma 138 The theory LogSB proves totality exactly for the logspace com-

putable functions.

Proof. The theory LogST′ can simulate induction over formulas of the form

y ≤W |x|, since it proves

x ∈ W→ (y ≤W |x| ↔ y ∈ V ∧ init(x, y) = y)

because of the elementary properties and the axiom for init. This immediately

implies the upper bound using theorem 127.

For the lower bound, we show that the logspace functions are provably total

by induction on their complexity using the earlier mentioned function algebra

[ε, I, s0, s1, abs, bit,×, e, COMP,CRN, SBRN].

The totality of ε, I, s0, s1, abs are clear. The totality of word multiplication

follows as for LogST. For the definition of the eraser, we use the following

auxiliary function h.

h(w) :=

1, if w contains a 1

ε, else

193

The totality of h is proved by (SB− Ind). Then the eraser function is given

by a term e fulfilling the following recursion equations.

e(ε;) := ε

e(s0w;) :=

s0e(w), if h(s0w) = 1

e(w), else

e(s1w;) := s1e(w)

Its totality is proved by V-induction.

Next, we show how the totality of the bit function is proved. We prove

consecutively the totality of the functions .−, h, exp, bit∗ defined in the lower

bound proof of LS on page 170. The totality of all of these functions is

proved by V-induction in LogSB because only case distinction over elements

of W are necessary. Then, we define bit using bit∗, and exp.

We sketch in the following how to deal with the recursion schemes. As-

sume that tF represents a function defined by concatenation recursion. The

totality of tF is proved using (SB-Ind) with induction variable x for the for-

mula tFx~z ∈ V and the V-elimination rule, where we assume ~z ∈ W. To

prove totality of a function F represented by tF defined by sharply bounded

recursion with bound B represented by tB, we use induction over initial

segments {w ∈ W|w ⊆ a} of W with induction variable x for the formula

tFx~z ≤W |tBa~z| 7. This concludes the proof of the lower bound. 2

6.6 Summary

We have shown that the introduction of two distinct word predicates W and

V, first presented by Cantini [17], can be used nicely to reflect the different

roles inputs play in weak recursion schemes. We propose a new reading of

t ∈ V as ”t is inaccessible” which is reflected by restricting the application of

initial functions to elements of V.

We presented a restricted case distinction for safe inputs and have shown

that it allows a simple two-sorted characterisation of logspace. Interestingly,

7We can assume that the bound B is monotone

194

the restriction of case distinction has a similar effect on the safe recursion

scheme as affinity restrictions (see Neergaard’s [66]).

195

Chapter 7

Concluding remarks and future

research

In chapters 2,3,4, and 5, we demonstrated that the use of second-order notions

like types and truth allows the definition of natural theories of high expressive

power. For the second-order theories TPT, U(FEA), and UT(FEA) introduced

in our thesis on pages 21, 131, and 133, already the restriction to their

first-order, purely combinatorial part reaches polynomial strength. In future

research, it would be interesting to see, whether the expressive strength of

flexible second-order induction schemes yields polynomial strength starting

from weaker applicative first-order theories. We could e.g. drop polynomially

growing initial functions. We would also like to analyse, which second order

principles of these theories are needed exactly to reach polynomial strength.

We strongly assume that already a weakend version TPT
− of TPT with the

reflection principle for initial segments of the words is dropped, proves to-

tality for all polynomial time computable relations. In TPT
− induction on

the variable x over formulas of the form x ∈ W ∧ x ≤ w with w being a

word is not allowed in general. This would be in contrast to all other until

now introduced applicative theories of this strength, given in [76, 79, 74],

which more or less explicitly allow such inductions. The important differ-

ence between TPT
− and the systems given above is its more flexible induction

scheme: the representation r of the induction predicate in T(rx) does not

need to represent the same formula A[x] for all inputs x, it can e.g. represent

196

increasingly large conjunctions depending on x. Using this property it seems

to be possible to simulate a Turing machine computing a polytime relation

within the weakened theory.

We also imagine that these new ideas give rise to an alternative unfolding pro-

gram for a base theory even more limited than the one introduced in chapter

5. The second unfolding would nevertheless reach polynomial strength.

The outlines given above might work for other complexity classes by varying

the induction scheme. We conjecture a theory with the following scheme

T(rε) ∧ (∀x ∈ W)(T(rx)→ T(s`x))→ (∀x ∈ W)T(x)

to prove totality for functions computable in exponential time, where s` de-

notes the lexicographic successor. Similarly as sketched above, one should

be able to obtain an unfolding of exponential strength, using a base theory

featuring lexicographic induction. The proof of these conjectures would show

that second-order notions as types and truth in an applicative setting do not

only increase the expressive power, but also add computational power to

natural base theories.

In chapter 6, we highlighted the close connection between implicit charac-

terisations of complexity classes by function algebras, and by applicative

theories, respectively. Our characterisations of complexity classes by logical

systems often presupposed existing function algebras. In contrast, the new

function algebra characterisation of logspace given on page 168 is inspired

by allowing less restrictive induction schemes than for the theories LogT and

AlogT of logarithmic strength introduced earlier in chapter 6. It would be

interesting to work out the connection between logical systems and function

algebras in greater detail; logical systems could e.g. suggest new function

algebras operating on alternative data types such as list and sets. Especially,

the way in which the above mentioned weakened version of TPT
− seems to

achieve polynomial strength inspires the definition of new function algebraic

characterisations of polynomial time, using words and nested lists as objects

of computation.

Speaking very roughly, in our new algebra on words and lists, safe, respec-

tively normal arguments behave like formulas of the form T(t), respectively

197

t ∈ W in TPT
−. Since formulas of the form T(t) are able to store nested con-

junctions, they correspond to nested lists in our algebra. In greater detail,

on words, simple constantly increasing functions are allowed. In addition,

recursion on notation is allowed for words if it produces a list as output, just

in analogy to truth induction in TPT
−. Finally, we include functions to copy,

delete, insert or read an element of a nested list, where a word vector in-

put describes the relevant position within the given input list. As the above

sketched theory of truth, such a function algebra would achieve polynomial

strength contrary to Cook and Bellantonis B not by executing a recursion

with a sufficiently large recursion argument, but by using short recursions on

increasingly complicated lists. An analogous new function algebra should be

constructible also for exponential time.

Altogether, we hope that the thesis could convince the reader of the close and

fruitful connection between complexity theory and logic. As sketched above,

the second-order notions analysed in detail in our thesis could inspire the de-

sign of new function algebras on alternative data types such as lists and sets.

The analysis of such function algebras is a very active branch of research (see

e.g. [2, 3, 50]). The motivation of improving the understanding of computa-

tion on alternative data structures is twofold: First, computation models on

such structures might have better chances of nicely implementing real-world

algorithms, and secondly, the detour of using different data structures might

also imply deep complexity-theoretic results in the standard setting of words.

198

Bibliography

[1] Aczel, P. Frege structures and the notion of proposition, truth and set.

In The Kleene Symposium (1980), J. Barwise, H. Keisler, and K. Kunen,

Eds., North-Holland, pp. 31– 59.

[2] Arai. Predicatively computable functions on sets. Research article,

2012. http://arxiv.org/abs/1204.5582.

[3] Beckmann, A., Buss, S. R., and Friedman, S.-D. Safe recursive

set-functions. Submitted for publication, 2012.

[4] Beeson, M. J. Foundations of Constructive Mathematics: Metamath-

ematical Studies. Springer, Berlin, 1985.

[5] Beeson, M. J. Proving programs and programming proofs. In Logic,

Methodology and Philosophy of Science VII, Barcan Marcus et. al., Ed.

North Holland, Amsterdam, 1986, pp. 51–82.

[6] Bellantoni, S. Predicative Recursion and Computational Complexity.

PhD thesis, University of Toronto, 1992.

[7] Bellantoni, S., and Cook, S. A new recursion-theoretic character-

ization of the poly-time functions. Computational Complexity 2 (1992),

97–110.

[8] Bishop, E. Foundations of Constructive Analysis. McGraw-Hill, 1967.

[9] Bishop, E., and Bridges, D. Constructive Analysis. Springer-Verlag,

1985.

[10] Buss, S., Ed. Handbook of Proof Theory. Elsevier, Amsterdam, 1998.

199

[11] Buss, S. R. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[12] Buss, S. R. The witness function method and fragments of Peano

arithmetic. In Proceedings of the Ninth International Congress on Logic,

Methodology and Philosophy of Science, Uppsala, Sweden, August 7–14,

1991, D. Prawitz, B. Skyrms, and D. Westerst r ahl, Eds. Elsevier, North

Holland, Amsterdam, 1994, pp. 29–68.

[13] Cantini, A. Logical Frameworks for Truth and Abstraction. North-

Holland, Amsterdam, 1996.

[14] Cantini, A. Proof-theoretic aspects of self-referential truth. In Tenth

International Congress of Logic, Methodology and Philosophy of Science,

Florence, August 1995, Maria Luisa Dalla Chiara et. al., Ed., vol. 1.

Kluwer, September 1997, pp. 7–27.

[15] Cantini, A. Characterizing poly-time with an intuitionistic theory

based on combinatory logic and safe induction. Preprint, Firenze, 1999.

14 pages.

[16] Cantini, A. Feasible operations and applicative theories based on λη.

Mathematical Logic Quarterly 46, 3 (2000), 291–312.

[17] Cantini, A. Polytime, combinatory logic and positive safe induction.

Archive for Mathematical Logic 41, 2 (2002), 169–189.

[18] Cantini, A. Choice and uniformity in weak applicative theories. In

Logic Colloquium ’01, M. Baaz, S. Friedman, and J. Kraj́ıček, Eds.,

vol. 20 of Lecture Notes in Logic. Association for Symbolic Logic, 2005,

pp. 108–138.

[19] Cantini, A. Remarks on applicative theories. Annals of Pure and

Applied Logic 136 (2005), 91–115.

[20] Clote, P. Computation models and function algebras. In Handbook

of Computability Theory, E. Griffor, Ed. Elsevier, 1999, pp. 589–681.

[21] Clote, P., and Kraj́ıček, J., Eds. Arithmetic, Proof Theory and

Computational Complexity. Claredon Press, Oxford, 1993.

200

[22] Clote, P., and Remmel, J., Eds. Feasible Mathematics II, vol. 13

of Progress in Computer Science and Applied Logic. Birkhäuser, Basel,

1995.

[23] Cobham, A. The intrinsic computational difficulty of functions. In

Logic, Methodology and Philosophy of Science II. North Holland, Ams-

terdam, 1965, pp. 24–30.

[24] Cook, S. A., and Nguyen, P. Logical Foundations of Proof Com-

plexity. ASL Prespectives in Logic. Cambridge University Press, 2010.

[25] Curry, H. Grundlagen der kombinatorischen Logik. American journal

of Mathematics 52 (1930), 509–536 and 789–834.

[26] Curry, H., and Feys, R. Combinatory Logic, vol. 1. North-Holland,

1958.

[27] Curry, H., Hindley, J. R., and Seldin, J. Combinatory Logic,

vol. 2. North-Holland, 1972.

[28] Eberhard, S. Applicative theories for logarithmic complexity classes.

Submitted, Oct. 2012.

[29] Eberhard, S. A feasible theory of truth over combinatory logic. Sub-

mitted, Oct. 2012.

[30] Eberhard, S., and Strahm, T. Towards the unfolding of feasible

arithmetic (Abstract). Bulletin of Symbolic Logic 18, 3 (2012), 474–475.

[31] Eberhard, S., and Strahm, T. Unfolding feasible arithmetic and

weak truth. In Axiomatic Theories of Truth (2012), T. Achourioti,

H. Galinon, K. Fujimoto, and J. Mart́ınez-Fernández, Eds., Logic, Epis-

temology and the Unity of Science, Springer. Being published.

[32] Eberhard, S., and Strahm, T. Weak theories of truth and ex-

plicit mathematics. In Logic, Construction, Computation, Ulrich Berger,

Hannes Diener, and Peter Schuster, Eds. Ontos Verlag, 2012.

201

[33] Feferman, S. A language and axioms for explicit mathematics. In

Algebra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathe-

matics. Springer, Berlin, 1975, pp. 87–139.

[34] Feferman, S. Constructive theories of functions and classes. In Logic

Colloquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North

Holland, Amsterdam, 1979, pp. 159–224.

[35] Feferman, S. Iterated inductive fixed-point theories: application to

Hancock’s conjecture. In The Patras Symposion, G. Metakides, Ed.

North Holland, Amsterdam, 1982, pp. 171–196.

[36] Feferman, S. Logics for termination and correctness of functional

programs. In Logic from Computer Science, Y. N. Moschovakis, Ed.,

vol. 21 of MSRI Publications. Springer, Berlin, 1991, pp. 95–127.

[37] Feferman, S. Logics for termination and correctness of functional

programs II: Logics of strength PRA. In Proof Theory, P. Aczel, H. Sim-

mons, and S. S. Wainer, Eds. Cambridge University Press, Cambridge,

1992, pp. 195–225.

[38] Feferman, S. Gödel’s program for new axioms: Why, where, how and

what? In Gödel ’96, P. Hájek, Ed., vol. 6 of Lecture Notes in Logic.

Springer, Berlin, 1996, pp. 3–22.

[39] Feferman, S. Predicativity. In The Oxford Handbook of the Philosophy

of Mathematics and Logic, S. Shapiro, Ed. Oxford University Press,

2005, pp. 590–624.

[40] Feferman, S. Axioms for the determinateness of truth. Review of

Symbolic Logic 1 (2008), 204–217.

[41] Feferman, S., and Jäger, G. Systems of explicit mathematics with

non-constructive µ-operator. Part I. Annals of Pure and Applied Logic

65, 3 (1993), 243–263.

[42] Feferman, S., and Jäger, G. Systems of explicit mathematics with

non-constructive µ-operator. Part II. Annals of Pure and Applied Logic

79, 1 (1996), 37–52.

202

[43] Feferman, S., and Strahm, T. The unfolding of non-finitist arith-

metic. Annals of Pure and Applied Logic 104, 1–3 (2000), 75–96.

[44] Feferman, S., and Strahm, T. Unfolding finitist arithmetic. Review

of Symbolic Logic 3, 4 (2010), 665–689.

[45] Ferreira, F. Polynomial time computable arithmetic. In Logic

and Computation, Proceedings of a Workshop held at Carnegie Mellon

University, 1987, W. Sieg, Ed., vol. 106 of Contemporary Mathemat-

ics. American Mathematical Society, Providence, Rhode Island, 1990,

pp. 137–156.

[46] Friedman, H., and Sheard, M. An axiomatic approach to self-

referential truth. Annals of Pure and Applied Logic 33, 1 (1987), 1–21.

[47] Girard, J.-Y. Proof Theory and Logical Complexitiy. Bibliopolis,

Napoli, 1987.

[48] Gödel, K. Über eine bisher noch nicht benützte Erweiterung des finiten

Standpunktes. Dialectica 12, 3-4 (1958), 280–287.

[49] Halbach, V. Axiomatic Theories of Truth. Cambridge University

Press, 2011.

[50] Hofmann, M., and Schöpp, U. Pure pointer programs with itera-

tion. Lecture Notes in Computer Science 5213 (2008), 78–93.

[51] Ishihara, H. Function algebraic characterizations of the polytime func-

tions. Computational Complexity 8 (1999), 346–356.

[52] Jäger, G. Induction in the elementary theory of types and names. In

Computer Science Logic ’87, E. Börger, H. Kleine Büning, and M.M.

Richter, Eds., vol. 329 of Lecture Notes in Computer Science. Springer,

Berlin, 1988, pp. 118–128.

[53] Jäger, G. Fixed points in Peano arithmetic with ordinals. Annals of

Pure and Applied Logic 60, 2 (1993), 119–132.

203

[54] Jäger, G., Kahle, R., and Studer, T. Universes in explicit math-

ematics. Annals of Pure and Applied Logic 109, 3 (2001), 141–162.

[55] Jäger, G., and Probst, D. The Suslin operator in applicative the-

ories: its proof-theoretic analysis via ordinal theories. Annals of Pure

and Applied Logic (2011), in press.

[56] Jäger, G., and Strahm, T. Totality in applicative theories. Annals

of Pure and Applied Logic 74, 2 (1995), 105–120.

[57] Jäger, G., and Strahm, T. The proof-theoretic strength of the

Suslin operator in applicative theories. In Reflections on the Founda-

tions of Mathematics: Essays in Honor of Solomon Feferman, W. Sieg,

R. Sommer, and C. Talcott, Eds., vol. 15 of Lecture Notes in Logic.

Association for Symbolic Logic, 2002, pp. 270–292.

[58] Jäger, G., and Strahm, T. Reflections on reflections in explicit

mathematics. Annals of Pure and Applied Logic 136, 1–2 (2005), 116–

133.

[59] Kahle, R. Applikative Theorien und Frege-Strukturen. PhD thesis,

Institut für Informatik und angewandte Mathematik, Universität Bern,

1997.

[60] Kahle, R. The Applicative Realm. Habilitation Thesis, Tübingen,

2007. Appeared in Textos de Mathemática 40, Departamento de

Mathemática da Universidade de Coimbra, Portugal, 2007.

[61] Kahle, R., and Oitavem, I. An applicative theory for FPH. In

Proceedings Third International Workshop on Classical Logic and Com-

putation CL&C (2010), S. van Bakel, S. Berardi, and U. Berger, Eds.,

vol. 47 of EPTCS.

[62] Kahle, R., and Oitavem, I. Applicative theories for the polynomial

hierarchy of time and its levels. Accepted for publication in Annals of

Pure and Applied Logic, 2012.

204

[63] Krähenbühl, J. Explicit mathematics with positive existential com-

prehension and join. Master’s thesis, Institut für Informatik und ange-

wandte Mathematik, Universität Bern, 2006.

[64] Kripke, S. Outline of a Theory of Truth. The journal of Philosophy

(1975), 690–716.

[65] Lind, J. Computing in logarithmic space. Tech. rep., Massachusetts

Institute of Technology, 1974.

[66] Møller Neergaard, P. A functional language for logarithmic space.

In Asian Symposium on Programming Languages and Systems. 2004,

pp. 311–326.

[67] Moschovakis, Y. Elementary induction on abstract structures. Studies

in Logic and the Foundations of Mathematics, vol. 77. North-Holland,

2008.

[68] Oitavem, I. Logspace without Bounds. In Ways of proof theory,

R. Schindler, Ed. Ontos Verlag, 2010, pp. 349–356.

[69] Probst, D. The provably terminating operations of the subsystem

PETJ of explicit mathematics. Annals of Pure and Applied Logic 162,

11 (2011), 934–947.

[70] Schönfinkel, M. Über die Bausteine der mathematischen Logik.

Mathematische Annalen 92 (1924), 305–316. Enter text here.

[71] Schönfinkel, M. On the building blocks of mathematical logic. In

From Frege to Gödel: A Source Book in Mathematical Logic, 1871-1931,

Jean van Heijenoort, Ed. Harvard University Press, 1967, pp. 355–366.

[72] Spescha, D. Weak systems of explicit mathematics. PhD thesis, Uni-

versität Bern, 2009.

[73] Spescha, D., and Strahm, T. Elementary explicit types and poly-

nomial time operations. Mathematical Logic Quarterly 55, 3 (2009),

245–258.

205

[74] Spescha, D., and Strahm, T. Realizability in weak systems of ex-

plicit mathematics. Mathematical Logic Quarterly 57, 6 (2011), 551–565.

[75] Strahm, T. Theories with self-application of strength PRA. Master’s

thesis, Institut für Informatik und angewandte Mathematik, Universität

Bern, 1992.

[76] Strahm, T. Polynomial time operations in explicit mathematics. Jour-

nal of Symbolic Logic 62, 2 (1997), 575–594.

[77] Strahm, T. First steps into metapredicativity in explicit mathemat-

ics. In Sets and Proofs, S. B. Cooper and J. Truss, Eds. Cambridge

University Press, 1999, pp. 383–402.

[78] Strahm, T. Proof-theoretic Contributions to Explicit Mathematics.

Habilitationsschrift, University of Bern, 2001.

[79] Strahm, T. Theories with self-application and computational com-

plexity. Information and Computation 185 (2003), 263–297.

[80] Strahm, T. A proof-theoretic characterization of the basic feasible

functionals. Theoretical Computer Science 329 (2004), 159–176.

[81] Strahm, T. Weak theories of operations and types. In Ways of Proof

Theory, R. Schindler, Ed. Ontos Verlag, 2010, pp. 441–468.

[82] Troelstra, A., and van Dalen, D. Constructivism in Mathematics,

vol. I. North-Holland, Amsterdam, 1988.

[83] Troelstra, A., and van Dalen, D. Constructivism in Mathematics,

vol. II. North Holland, Amsterdam, 1988.

206

Erklärung

gemäss Art. 28 Abs. 1 RSL 05

Name/Vorname: Eberhard Sebastian

Matrikelnummer: 03-916-954

Studiengang: Informatik, Dissertation

Titel der Arbeit: Weak applicative theories, truth, and

computational complexity

Leiter der Arbeit: Prof. Dr. Thomas Strahm

Ich erkläre hiermit, dass ich diese Arbeit selbstständig verfasst und keine

anderen als die angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich

oder sinngemäss aus Quellen entnommen wurden, habe ich als solche gekennze-

ichnet. Mir ist bekannt, dass andernfalls der Senat gemäss Artikel 36 Absatz

1 Buchstabe o des Gesetzes vom 5. September 1996 über die Universität zum

Entzug des aufgrund dieser Arbeit verliehenen Titels berechtigt ist.

Bern, den 14. Mai 2013 ..

Ort/ Datum Unterschrift

Lebenslauf

von Sebastian Eberhard

1984: Geboren am 5. September in Flawil

1999-2003: Kantonsschule am Burggraben, St. Gallen

2003-2004: Erstes Vordiplom in Mathematik, ETH Zürich

2004-2005: Zivildienst in Altersheimen in Wintherthur und St. Gallen

2005-2007: Bachelor in Philosophie mit Nebenfach Mathematik an der

Universität Bern

2007-2009: Master in Mathematik an der Universität Bern

2009-2013: PhD-Studium in Informatik bei Prof. Dr. Gerhard Jäger

in der Logic and Theory Group (ehemals Forschungsgruppe

für Theoretische Informatik und Logik) am Institut für

Informatik und angewandte Mathematik der Universität

Bern. Betreuer: Prof. Dr. Thomas Strahm

