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1 Introduction

1.1 About the program

The program of which this theses is taking part of, aims at investigating to what

extent some of the insights that have been obtained in second order arithmetic

have analog counterparts in second order set theory. In short terms, the research

program can be condensed in terms of its leading question as it appears in [LL13]:

What happens if we replace Peano arithmetic and subsystems of

arithmetic by Zermelo-Fraenkel set theory (with or without the ax-

iom of choice) and subsystems of Morse-Kelley theory of sets and

classes, respectively? Which proof-theoretic results have direct ana-

logues and for which results do such analogues not exist?

The term “analog” above has to be understood in the sense that it is not the

purpose of the program to generalize results from arithmetic to set theory, but

instead to investigate to what extent set theory resembles arithmetic. For this

thesis, we employ a specific analogy, to be made more precise below, relative to

which we investigate the aforementioned resemblance.

A pivotal question that characterizes the way we translate postulates from

arithmetic to the realm of sets and classes, is how to make the difference be-

tween “small” and “large” objects respectively. While in arithmetic, the small

objects, numbers, represent finite entities, all infinite sets of natural numbers are

large. The general approach that we follow in our translation is that the small

objects in set theory are sets while the large structures are to be represented by

proper classes. Given that point of view, we found it very natural, though not

“standard”, to axiomatize our base theory NBG, Von Neumann Bernays Gödel
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1 Introduction

set theory, using the principle of limitation of size, which in fact can be seen as

a formal version of our attitude.

As mentioned above, our base theory is to be NBG, Von Neumann Bernays

Gödel set theory. This system will play the role that ACA0 plays in arithmetic,

while the theory MK, Morse Kelley set theory, is to be the set theoretic counter-

part of full second order arithmetic. There are some well known analogies between

those theories and their relationship between other systems of arithmetic and set

theory respectively. Both base theories are finitely axiomatizable extensions of

the most prominent first order theories of numbers and sets respectively, being

PA, Peano arithmetic, and ZFC, Zermelo Fraenkel set theory with choice.

Our investigations are about how far similar analogies go when different exten-

sions of ACA0 and NBG are considered. We want to ask ourselves which results

and, yet more interestingly, which techniques from arithmetic can be mimicked

in set theory. Prominent examples of such number theoretic results are: the

pairwise equivalence1 of

• Arithmetical transfinite recursion

• Comparability of well orders

• Every arithmetically defined positive operator has some fixed point.

or

• Π1
1 comprehension

• Every arithmetically defined positive operator form has a (unique) least

fixed point

and

• ω-model reflection

• bar induction.

Some of the theories mentioned above have straightforward translations to set

theory (e.g. comprehension schemata), and the resulting systems behave similar

1Over ACA0.
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1.1 About the program

as in the arithmetical setting (see [LL13], and [JK10] where it is shown that

Σ1
1 choice over NBG can be characterized by iterated comprehension similarly as

in the arithmetical case). Other theories, however, have different but equivalent

formulations in arithmetic that yield theories of sets and classes that are not pair-

wise equivalent (e.g. see [Sat12] for set theoretically inequivalent formulations of

arithmetical transfinite recursion), in these cases, the formulation to be trans-

lated has to be carefully chosen. Other theories yet have obvious translations but

the resulting theories behave completely different from their arithmetical coun-

terpart (e.g. see [Sat13] where it is shown that, in the set theoretic setting, least

fixed points of monotone elementary operators can be obtained from arbitrary

fixed points of monotone elementary operators).

In the course of our research, it has become apparent that an eminent source

of dissimilarities between set theory and arithmetic lies in the fact that in the

setting of sets and classes, the predicate that states the well foundedness of a

given relation is much less expressive than it is in the arithmetical setting. In

fact, in set theory, it can be expressed by an elementary formula whether or not a

given relation is well founded (cf. Definition 181). In arithmetic, on the contrary,

every Π1
1 statement can be reduced to the question whether or not some specific

arithmetical relation is well founded. In an effort to preserve at least some of the

manifold implications of this situation for set theory, we introduce the notion of

what we call a weak well order. We then establish, via a set theoretic version of

Kleene’s Σ1
1 normal form lemma (cf. Theorem 172), the Π1

1 completeness of the

weak well foundedness predicate (cf. Theorem 173), and thus that there is no

Σ1
1 formula that can express the weak well foundedness of all relations (cf. The-

orem 178). Despite having the notion of a weak well order and an associated

normal form lemma, the situation becomes quite different from the situation in

arithmetic. Weakly well founded trees, the set theoretical analog to well founded

trees in arithmetic, for example, can have branches of any ordinal length and

thus are much more complicated objects than the usual well founded trees famil-

iar from arithmetic (cf. Example 139). A first evidence for this asymmetry lies

in the fact that in arithmetic, the schema of arithmetical comprehension suffices

to prove König’s Lemma while the corresponding principle in set theory has a

much greater consistency strength than NBG or ZFC (cf. Remark 155).
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1 Introduction

1.2 Subsystems of second order arithmetic

In this section, we give a very short overview of the general setup for studying

subsystems of second order arithmetic. We will only quote those results that are

of interest regarding our subsequent work in subsystems of set-class theory. As

the purpose of this section is mainly for reference, we will be very brief and we

will give reference to proofs instead of actually proving facts. Generally, for a

detailed presentation of the material in this section, the reader is referred to the

book [Sim98]. Obviously, none of the results presented in this section are due to

the author of this thesis.

Definition 1 (Language of arithmetic). In addition to all kinds of brackets and

the usual logical symbols =,→,↔,∧,∨,∀,∃ and ¬, the language L2
A of second or-

der arithmetic contains two sorts of variables, numerical variables x, y, z, n,m, . . .

(lower case letters) and set variables X,Y, Z, . . . (upper case letters) that are

meant to range over natural numbers and sets thereof respectively. Further,

the language L2
A contains the relation symbols ∈ and <, the (binary) function

symbols + and · as well as the constants 0 and 1.

Definition 2 (Terms and formulas). The terms of L2
A are built up inductively

as follows:

1. Numerical variables and constants are terms.

2. If t and r are terms then the expressions (t+ r) and (t · r) are also terms.

Atomic formulas are expressions of the form t < s, t = s or t ∈ X where s, t are

terms and X is a set variable. The formulas of arithmetic are the elements of

the least set of L2
A expressions that has the following closure properties.

1. Atomic formulas are formulas.

2. If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) and (¬ϕ) are also

formulas.

3. If x is any numerical variable and ϕ does not contain any of the substrings

∃x or ∀x, then the expressions ∃x (ϕ) and ∀x (ϕ) are also formulas.

12



1.2 Subsystems of second order arithmetic

4. If X is any set variable and ϕ does not contain any of the substrings ∃X
or ∀X, then the expressions ∃X (ϕ) and ∀X (ϕ) are also formulas.

If any variable (numerical or set) appears in a formula right next to a quantifier

(∀,∃), then this variable is called a bound variable of the formula. Formulas that

have no bound set variables are called arithmetical formulas. Formulas that do

not contain any second order variables are L1
A formulas.

Definition 3. An L2
A structure is a 7-tuple M = (M,S,<,+, ·, 0, 1) where:

1. M is a nonempty set and S is a nonempty set of subsets of M ; it is further

assumed that M and S have no common elements.

2. The functions + and · are binary operations on M .

3. The constants 0 and 1 are elements of M and < is a binary relation on M .

Definition 4 (ACA0). The axioms of the theory ACA0 of arithmetical compre-

hension are given from all the axioms of Peano arithmetic (cf. Definition IX.1.4

in [Sim98]) together with the universal closure of the following principles:

1. Induction for sets

(
0 ∈ X ∧ ∀x (x ∈ X → x+ 1 ∈ X)

)
→ ∀x (x ∈ X).

2. Arithmetical comprehension

∃X ∀x
(
x ∈ X ↔ ϕ(x)

)
for arithmetical formulas ϕ that do not contain the variable X.

The following definitions and observations can all be made within the theory

ACA0.

Definition 5 (Trees and sequences in arithmetic). Let 〈·, ·〉 denote a standard

coding function for pairs of natural numbers as natural numbers. A finite sequence

of natural numbers s : {0, 1, . . . , n − 1} → N, also denoted as (s0, · · · , sn−1) or

(si)i<n, is coded as a finite set of ordered pairs (i.e. a finite set of natural
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1 Introduction

numbers) in the usual way. We write l(s) to mean the length of a sequence s,

that is, the least natural number for which the sequence is not defined. If s and

t are (codes of) sequences, then we write s a t to mean the unique sequence of

length l(s) + l(t) that satisfies the equations

s a t(k) =


s(k) if k < l(s)

t(n) if k = l(s) + n with n < l(t)

undefined otherwise.

A sequence s is an extension of the sequence t if a sequence r such that t a r = s

exists. We write t @ s to express that s extends t - or equivalently, that t is an

initial segment of s. A tree is a set of (codes of) finite sequences that is closed

under initial segments. For a function f : N→ N, we write f [n] for the sequence

(f(i))i<n and we say that f is a path through a tree T if f [n] is an element of

T for every natural number n. A tree T is well founded, if no path through T

exists. A tree is finitely branching if for every sequence s ∈ T there are only

finitely many natural numbers n such that s a (n) ∈ T .

Definition 6 (Well orderings in arithmetic). A set R is a linear ordering of a

set X if every element of R is (a code of) a pair of natural numbers from X and

if

∀x, y ∈ X (x 6= y → 〈x, y〉 ∈ R ∨ 〈y, x〉 ∈ R)

and

∀x, y, z ∈ X ((〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R)→ 〈x, z〉 ∈ R)

and

∀x, y ∈ X (〈x, y〉 ∈ R→ 〈y, x〉 /∈ R)

hold. If R is a linear ordering of X and R further satisfies that

∀Y (∃y (y ∈ Y ∩X)→ ∃y ∈ X ∩ Y ¬∃y′ ∈ X ∩ Y (〈y′, y〉 ∈ R)),

then R is called a well ordering of X and we write WO((X,R)), if X is the set

of all natural numbers, then we might just write WO(R).

14



1.2 Subsystems of second order arithmetic

A key feature of trees in arithmetic is that for every Π1
1 formula, that is, any

formula of the form ∀X ϕ(X) where ϕ is arithmetical, one can construct a tree

Tϕ such that ∀X ϕ(X) holds if and only if Tϕ is a well founded tree. As a

consequence, we have the following theorem.

Theorem 7. There exists no Σ1
1 formula Ψ, that is a formula that takes the form

Ψ ≡ ∃X ψ(X) with arithmetical ψ, that satisfies ∀Y (WO(Y )↔ Ψ(Y )).

Proof. See for example Theorem V.1.9 in [Sim98].

These facts give rise to many important results and widely applicable tech-

niques from arithmetic, to name just a few: the pairwise equivalence of the

theories ATR0, CWO, FP0 (cf. Theorem 15 and the references as given there) and

more generally, all kinds of results that are obtained by applications of pseudo

hierarchy arguments. The fact that in set theory, the well foundedness can be

expressed with an elementary formula is a key issue when set theoretic analogs

to the aforementioned theories are investigated. It is in a twofold way that dis-

similarities between arithmetic and set theory arise; many arithmetic arguments

cannot be carried out in set theory, and in some cases the fact that well found-

edness can be expressed by an elementary formula paves the way to use a theory

to prove the consistency of another theory that was equivalent in arithmetical

terms. In an attempt to preserve some of the implications of Theorem 7 for set

theory, as mentioned before, we will be able to state and prove a similar theorem

for what we will call “weak well orders”. However, since weak well orders lack

some of the important properties of well orders, we will not be able to restore the

as it presents itself here, in the set theoretic situation.

Lemma 8 (König’s Lemma). It is provable in ACA0 that every finitely branching

infinite tree has a path.

Proof. This is a standard result, for a proof see for example Theorem III.7.2

in [Sim98].

Remark 9. König’s Lemma will be a first striking example of the dissimilarities

of arithmetic and set theory. While the original statement can of course be

formalized and proved in set theory, the analog statement, being that any proper
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1 Introduction

class sized tree that is set branching has a path of length On, is, as we will see in

the second chapter, not even even provable in the theory MK (cf. Remark 155).

The theories ATR0, CWO and FP0

Definition 10 (Arithmetical transfinite recursion). We assign to each arithmeti-

cal formula ϕ(X,x) a corresponding operator Γϕ : {X | X ⊂ N} → {X | X ⊂ N}
with Γϕ(X) = {x | ϕ(X,x)}. The schema of arithmetical transfinite recursion is

the statement that for every arithmetical formula ϕ(X,x) and every well ordering

(X,R), there exists a set H ⊂ N that satisfies for all natural numbers b ∈ X the

equation2

(H)b = Γϕ({〈a, y〉 ∈ H | aRb}),

where (H)b is an abbreviation for {x | 〈b, x〉 ∈ H}. The theory ATR0 is ACA0

together with the schema of arithmetical transfinite recursion.

Definition 11 (Comparability of well orders). For two linear orderings (X,R)

and (Y, S) we write (X,R) � (Y, S) if there exists a function F : X → Y such

that

∀x, y ∈ X (xRy ↔ F (x)SF (y))

and

∀y ∈ Y ∀x ∈ X (ySF (x)→ ∃x′ ∈ X F (x′) = y).

The comparability of well orderings principle is the statement that for any two

well orderings (X,R) and (Y, S), either (X,R) � (Y, S) or (Y, S) � (X,R) holds.

The theory that consists of ACA0 together with the comparability of well orderings

principle is called CWO.

Definition 12. A formula ϕ(X) in negation normal form is called positive in X,

denoted by ϕ(X+), if it contains no implications and no subformula of the form

t /∈ X, where t ranges over terms. A formula in negation normal form is negative

in X, if the negation normal form of its negation is a formula that is positive in

X.

2Here and afterwards we write xRy to mean that 〈x, y〉 ∈ R.
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1.2 Subsystems of second order arithmetic

Lemma 13. If ϕ(X,x) is positive in X, then the corresponding operator Γϕ(X)

is monotone in X, that is it satisfies the equation

X ⊂ Y → Γϕ(X) ⊂ Γϕ(Y )

for all sets X and Y .

Proof. By induction on the build up of ϕ(X,x), proving simultaneously that

operators where in the corresponding formula ψ(X,x) is negative in X satisfy

X ⊂ Y → Γψ(Y ) ⊂ Γψ(X)

for all sets X and Y .

Definition 14 (Fixed points of positive arithmetical operators). The term FP0

stands for the theory ACA0 enriched by the schema

∃X (X = Γϕ(X))

where ϕ(X,x) ranges over arithmetic formulas that are positive in X.

Theorem 15. The theories ATR0, FP0 and CWO are all equivalent (over ACA0).

Proof. For the implication ATR0 ≡ FP0 see [Avi96] Theorem 3.1, and for the

equivalence ATR0 ≡ CWO see Theorem V.6.8 in [Sim98].

The theories Π1
1-CA0 and LFP0

Definition 16 (Least fixed points of positive arithmetical operators). The theory

LFP of least fixed points of positive arithmetical operators is ACA0 augmented by

the schema

∃X
(
Γϕ(X) = X ∧ ∀Y (Γϕ(Y ) = Y → X ⊂ Y )

)
for all arithmetical formulas ϕ that are positive in X.

Definition 17 (Π1
1 comprehension). The theory Π1

1-CA0 consists of all the axioms

of ACA0 together with the schema

∃X ∀k
(
k ∈ X ↔ ϕ(k)

)

17



1 Introduction

for all Π1
1 formulas ϕ in which the variable X does not occur.

Theorem 18. The theories Π1
1-CA0 and LFP0 are equivalent over ACA0.

Proof. This follows directly from Theorem VI.1.11 of [Bar75].

The theories Π1
n-BI0 and Π1

n+1-RFN0

Definition 19 (Π1
n bar induction). Let n > 0 be a natural number. The theory

Π1
n-BI0 consists of all axioms of ACA0 together with the schema

∀X
(
WO(X)→ TI(X,ϕ)

)
where ϕ(x) is a Π1

n formula, and TI(X,ϕ) is an abbreviation for the formula

∀n
(
∀k (〈k, n〉 ∈ X → ϕ(k))→ ϕ(n)

)
→ ∀nϕ(n).

Definition 20. For all sets X and all formulas ϕ, we define the relativization

ϕX of ϕ to X on the build up of ϕ:

• If ϕ is an arithmetical formula, then ϕ = ϕX .

• For any of the connectives ◦ ∈ {→,∧∨} we define ϕX = ψX1 ◦ ψX2 , if

ϕ = ψ1 ◦ ψ2.

• If ϕ = ¬ψ then we fix ϕX = ¬(ψX).

• If ϕ = ∃Y ψ(Y ), then we fix ϕX = ∃k ψX((X)k).

• If ϕ = ∀Y ψ(Y ), then we fix ϕX = ∀k ψX((X)k).

For a finite collection F of closed formulas, we further write FX to mean the

conjunction of all elements of F relativized to X.

Definition 21 (Π1
n+1 reflection). Let n > 0 be a natural number. The the-

ory Π1
n+1-RFN0 of Π1

n+1 ω-model reflection consists of ACA0 augmented by the

schema

ϕ(X)→ ∃U (∃k (X = (U)k) ∧ σUACA0
∧ ϕU (X))

18



1.3 Sets and classes

where ϕ is a Π1
n+1 formula with at most X as a free set variable, and σACA0

is a

finite axiomatization of ACA0.

Theorem 22. For all natural numbers n > 0 it is provable in ACA0 that the

theories Π1
n+1-RFN0 and Π1

n-BI0 are equivalent.

Proof. See the main Theorem in [JS99].

Corollary 23. The theories Π1
∞-RFN0 and Π∞-BI0 are equivalent over ACA0.

1.3 Sets and classes

As we all know, in classical first order set theory there are formulas whose ex-

tensions are not sets and thus not objects of the theory under consideration.

Probably the most prominent example is Russel’s antinomy

R = {x | x /∈ x},

which by pain of contradiction cannot be accepted as a set. Similarly, the universe

V = {x | x = x}

is also unacceptable as a set. This deficiency of ZFC is usually resolved in one of

the following two ways. The most popular approach to the problem is to keep

working in ZFC and treat classes as informal objects. In this approach, all proper

objects are sets, while classes merely play the role of a comfortable way to speak

about properties of sets (cf. the initial discussion of §9 in [Kun80]). The second

approach is to work in a theory, most commonly NBG, in which formal statements

about classes are possible (cf. the second paragraph in §5 of [SF10]). As it is our

undertaking to investigate the impact of a variety of class existence axioms, the

latter approach is a natural choice for our undertaking. In the setting of NBG,

sets are the usual objects of ZFC while classes are either sets or proper classes

where the latter are (some of) the collections of sets that are larger than any set.

19
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The language of second order set theory

The language of second order set theory is a two sorted language where the first

sort of variables, consisting of lower case letters, range over sets and the second

kind of variables, upper case letters, range over classes (not necessarily proper

classes tough). As usual, all sorts of variables may be subscripted as needed.

The language L2 of second order set theory has only one non logical symbol,

∈, which stands for the membership relation (of a set to a class). Also, in the

formal context we will freely use well known abbreviations such as for example

x ⊂ Y ≡ ∀y (y ∈ x→ y ∈ Y ), x = ∅ ≡ ∀y ¬(y ∈ x), etc.

Definition 24. The languages L1 and L2 are defined as follows.

1. The set L consists of the logical symbols ∀,∃,¬,∧,∨,→,=,↔ together with

all kinds of brackets.

2. The language L1 of first order set theory is defined as L∪{vi | i ∈ N}∪{∈}.
The symbols vi are called set variables.

3. The language L2 of second order set theory is defined as L1 ∪ {Vi | i ∈ N}.
The symbols Vi are called class variables.

For i = 1 and i = 2, we will write L∗i to mean the set of all finite strings with

symbols in Li.

Definition 25. The collections of L1 and L2 formulas is defined inductively as

follows.

1. The collection F1 of L1 formulas is the least subset of L∗1 that contains

all expressions of the form x = y and x ∈ y for any set variables x, y and

further has the following closure properties:

a) If ϕ and ψ are L1 formulas, then so are the expressions (ϕ∧ψ), (ϕ∨ψ),

(ϕ→ ψ), (ϕ↔ ψ) and ¬(ϕ).

b) If ϕ is an L1 formula that does not contain any of the two substrings

“∃x” or “∀x” respectively, then the expressions ∀x (ϕ) and ∃x (ϕ) are

L1 formulas as well.

20



1.3 Sets and classes

2. The collection F2 of L2 formulas is the least subset of L∗2 that contains all

L1 formulas and all expressions of the form x ∈ X,x = X and X = Y

for set variables x and class variables X and Y , and further satisfies the

following closure properties:

a) If ϕ and ψ are L2 formulas, then so are the expressions (ϕ∧ψ), (ϕ∨ψ),

(ϕ→ ψ), (ϕ↔ ψ) and ¬(ϕ).

b) If ϕ is a L2 formula that does not contain any of the two substrings

“∃x” or “∀x” respectively, then the expressions ∀x (ϕ) and ∃x (ϕ) are

L2 formulas as well.

c) If ϕ is a L2 formula that does not contain any of the two substrings

“∃X” or “∀X” respectively, then the expressions ∀X (ϕ) and ∃X (ϕ)

are L2 formulas as well.

The scope of a quantifier in a formula ϕ is that subformula of ϕ that is confined

by the first pair of brackets that opens after the quantifier under consideration.

In a formula ϕ, a variable x is bound by the quantifier ∃x (∀x) if x is in the

scope of that quantifier. Formulas that do not contain quantified second order

variables at all are called elementary formulas. The free set- and class-variables

of a formula are defined inductively as follows:

1. In quantifier free formulas, all occurring set-variables are free set-variables

and all occurring class-variables are free class-variables.

2. The free set-(class-)variables of any formula of the form (ϕ ∧ ψ), (ϕ ∨ ψ),

(ϕ → ψ) or (ϕ ↔ ψ) are exactly those variables that are free (class-) set-

variables of ϕ or of ψ.

3. The free (class-) set-variables of ¬ϕ are those of ϕ.

4. The free set-variables of a formula of the form ∃xϕ and ∀xϕ are those free

set-variables of ϕ that differ from x. The free class-variables of ∃xϕ and

∀xϕ are those of ϕ.

5. The free class-variables of a formula of the form ∃X ϕ or ∀X ϕ are those

free class-variables of ϕ that differ from X. The free set-variables of ∃X ϕ

and ∀X ϕ are those of ϕ.
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1 Introduction

Formulas with no free variables are called closed formulas. Let ϕ be a formula

and let X,Y and x, y be free class- and set-variables respectively. The expression

(ϕ( YX )) ϕ( yx ) stands for the result of simultaneously replacing all occurrences of

(X) x in ϕ by (Y ) y.

Remark 26. Whenever readability can be improved without obfuscating mean-

ing, we will simplify sequences of variables by the vector notation, i.e. we will

write ϕ( ~X, ~x) instead of ϕ(X1, . . . , Xn, x1, . . . , xk) and similarly, for a quantifier

Q, Q ~X and Q~x instead of QX1, . . . Xn and Qx1, . . . , xk.

Definition 27. We use a Hilbert style axiomatization of first order logic with

equality as it is presented in [Hal11], I.3, and outlined in [Kun80], Chapter I §2
and §4. We use the symbol ` to denote formal derivability. We use the term

theory interchangeably with collection of formulas.

Definition 28. Let T be any theory. The classes ∆k
n(T ), Σkn and Πk

n for all

natural number n and k ∈ {0, 1} are inductively defined as follows.

1. The collections Π0
0 = Σ0

0 = ∆0
0 consist of all quantifier free formulas. form

x ∈ Y , x ∈ y, x = y and X = Y . The collections Π1
0 = Σ1

0 = ∆1
0 consist of

all elementary formulas.

2. The formulas in Σ0
n+1 are those formulas that are of the form ∃xψ(x) with

ψ ∈ Π0
n. The formulas in Σ1

n+1 are those formulas that are of the form

∃X ψ(X) with ψ ∈ Π1
n.

3. The formulas in Π0
n+1 are those formulas that are of the form ∀xψ(x) with

ψ ∈ Σ0
n. The formulas in Π1

n+1 are those formulas that are of the form

∀X ψ(X) with ψ ∈ Σ1
n.

4. A formula ϕ is an element of ∆k
n(T ) if there are formulas π ∈ Πk

n and

σ ∈ Σkn such that T ` ϕ↔ σ ∧ ϕ↔ π. We write ∆k
n to mean ∆k

n(NBG).

Definition 29. A structure for the language L2 is a triple M = (M,S, ε) that

consists of a set M , a set S of subsets of M and a binary relation ε, i.e. a set

of pairs (x, y) where x ∈ M and y ∈ M ∪ S. We will write (M,S) to mean the

structure (M,S,∈). The satisfaction relation for L2 formulas is defined as usual

22
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by interpreting ∈ as ε. A model of a set F of L2 formulas is a structure for the

language L2 that satisfies all formulas in F .

1.4 The theories ZFC, NBG and MK

The axioms of ZFC

In the literature, the term NBG does not always refer to exactly the same theory.

Aside from slightly different formulations of the standard axioms, a noteworthy

difference in the expositions lies in whether the axiom of choice is used in its

local (set theoretic) form or as the existence of a global choice function. However,

as it is presented in [Fel71], the resulting theories prove the same set theoretic

formulas.

Although we assume some basic familiarity with naive set theory and corre-

sponding notations, we want to make some abbreviations explicit to avoid any

misinterpretation.

Definition 30. Let X,F and Y be classes, let x, y be sets and let ϕ(x) be any

formula.

1. We write ∃!xϕ(x) to mean

∃xϕ(x) ∧ ∀x, y (ϕ(x) ∧ ϕ(y)→ x = y).

2. The term 〈x, y〉 stands for the Kuratowski pair {{x}, {x, y}} of x and y.

This shorthand notation is justified from the axioms that are presented in

the following, in particular, the Kuratowski pair of any two sets always

exists and is unique.

3. The expression ∀x ∈ R ∃y, z
(
x = 〈y, z〉

)
is abbreviated by rel(R). If rel(R)

holds of some class R, we say the R is a (binary) relation.

4. The term fun(F ) stands for

rel(F ) ∧ ∀x, y, z
(
〈x, y〉 ∈ F ∧ 〈x, z〉 ∈ F → y = z

)
.
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If fun(F ) holds of some class F , then we say that F is a function.

5. The term F : X → Y is meant to abbreviate

fun(F ) ∧ ∀x ∈ X ∃y ∈ Y (〈x, y〉 ∈ F ) ∧ ∀x, y (〈x, y〉 ∈ F → x ∈ X).

If F : X → Y holds and x is some element of X, then we write F (x) to

mean the unique element y of Y that satisfies 〈x, y〉 ∈ F . If F : X → Y

holds and in addition ∀x, y ∈ X (x 6= y → F (x) 6= F (y)) holds, then F is

an injective or one-to-one function. The function F : X → Y is said to be

onto Y if ∀y ∈ Y ∃x ∈ X (F (x) = y). An injective function F : X → Y

that maps X onto Y is called a bijective function of X to Y .

6. The expression |X| = |Y | stands for the formula

∃F
(
F : X → Y ∧ ∀y ∈ Y ∃!x ∈ X (〈x, y〉 ∈ F )

)
.

That is, the expression |X| = |Y | stands for the statement that a bijective

function from X to Y exists.

Now we are ready to present the axioms of ZFC set theory. These principles

represent our basic set theoretic axioms, and they will hold in every theory under

consideration. Note that the collection of axioms that we use to axiomatize

ZFC (and later NBG) is redundant in the sense that there are axioms which

could be derived from the other axioms. For example, we will introduce the

so called axiom of separation, a formal justification for the use of terms in the

style of {x ∈ y | ϕ(x)}. The reason to keep these axioms in our formulation of

ZFC is twofold: first, it is an axiomatization that is often used in the literature

(cf. [Jec03] and [Kun80]) and second, principles such as the axiom of separation

reflect characteristic properties of how we think of sets; as such they qualify as

axioms.

The axiom of extensionality, is the statement that sets with the same extension

are equal. Formally, it is

∀x, y (x = y ↔ ∀z (z ∈ x↔ z ∈ y)). (EXT)
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In particular, the axiom of extensionality implies that there are no two distinct

sets with the same members. We will use this fact constantly, and without

explicitly quoting the axiom of extensionality, to name sets that are given from a

collection of elements whose existence is guaranteed by some further axioms. For

example, we will use the symbol ∅ to mean the unique set {x | x 6= x}, whose

existence is guaranteed by the axiom of the empty set

∃x∀y (y /∈ x). (NUL)

The axiom of pairs is the statement for any two sets x and y there is also a set

{x, y} that contains x and y and nothing else. Formally, this is the statement

∀x, y ∃z ∀w (w ∈ z ↔ w = x ∨ w = y). (PAIR)

The axiom PAIR, thus guarantees that for all sets x and y, the aforementioned

(Kuratowski-) pair 〈x, y〉 = {{x}, {x, y}} = {{x, x}, {x, y}} exists.

The axiom of regularity,

∀x
(
∃y (y ∈ x)→ ∃y ∈ x∀z ∈ x (z /∈ y)

)
, (REG)

is the statement that the elementhood relation is well founded on sets.

The axiom of union, denoted by U, is the statement that for every set x there

is a set y that contains exactly the sets that are an element of some element of

x. Formally, corresponds to

∀x∃y ∀z (z ∈ y ↔ ∃u ∈ x (z ∈ u)). (U)

In the context of any theory that contains EXT and U, and thus in every theory

under consideration of this work, the above set y exists and is uniquely determined

from x. Hence it is justified to write ∪x to mean that specific set y. Similarly,

we will write x ∪ y and
⋃
i∈I xi to denote the sets ∪{x, y} and ∪{xi | i ∈ I}

respectively.

Definition 31. A class W is inductive if ∀x (x ∈W → x∪{x} ∈W ) and ∅ ∈W .
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The axiom of infinity is the assertion that inductive sets exist.

∃w
(
∀x (∀y (y /∈ x)→ x ∈ w) (INF)

∧ ∀z (z ∈ w → ∃a ∈ w (∀b (b ∈ a↔ b = z ∨ b ∈ z)))
)
.

However, in the context of theories that comprise the axioms PAIR,U and NUL

the above formula can be expressed more naturally as

∃w (∅ ∈ w ∧ ∀x ∈ w (x ∪ {x} ∈ w)).

The axiom of the power set is the statement that for any set x there exists a

set that contains exactly the subsets of x as its members. As a formula, this is

∀x∃y ∀z (z ∈ y ↔ z ⊂ x). (POW)

In any context where EXT and POW are available, the above set y exists and

is uniquely determined from x. We shall call the set y the power set of x and

denote it by P(x).

Given any set x and any L1 formula ϕ(z), the axiom of separation guarantees

the existence of the set {z ∈ x | ϕ(z)}. Hence, the axiom of separation is (the

universal closure of) the schema

∀x∃y ∀z (z ∈ y ↔ z ∈ x ∧ ϕ(z, ~p)), (SEP)

where ϕ is meant to range over L1 formulas with free variables different from y

and x.

The axiom of replacement is (the universal closure of) the schema

∀u
(
∀x ∈ u∃!y ϕ(x, y, ~p) → ∃v ∀x ∈ u∃y ∈ v ϕ(x, y, ~p)

)
(REP)

where ϕ(x, y, ~p) is meant to range over L1 formulas with free variables different

from y. In particular, if f is a function and a set, then the axiom of replacement

guarantees for every set x that the class f [x] is a set as well. We will see in

Lemma 42 that the restriction on f to be a set can be dropped.
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1.4 The theories ZFC, NBG and MK

The axiom of choice is the statement that for each set x of nonempty sets,

there exists a choice function. As a formula, this is

∀x
(
∅ /∈ x→ ∃f (f : x→ ∪x ∧ ∀y ∈ x (f(y) ∈ y)

)
. (C)

The axioms of NBG and MK

The theory NBG, Von Neumann Bernays Gödel set theory, consists of all axioms

of ZFC together with the following axioms for classes. This theory will serve as

our “base theory” in the sense that all theories under later investigation will be

extensions thereof. As opposed to NBG, the theory MK, Morse Kelley set theory,

is strong enough to include (almost) all the theories under consideration.

Our first step in formulating NBG set theory is to restate the axiom of exten-

sionality so that also classes with the same extension are treated as one object.

Formally, this is

∀X , Y (X = Y ↔ ∀z (z ∈ X ↔ z ∈ Y )), (EXTC)

where X stands for either X or x respectively. We need the variable X as a

class variable and as a set variable so that we can prove that if a class and a

set are extensionally equal, then they denote the same object. This is necessary

to prove that every set is also a class ( cf. Fact 36). The axiom of elementary

comprehension guarantees that for every elementary formula ϕ(x) there exists

a class that contains exactly those sets x that satisfy ϕ(x). It is the universal

closure of

∃X ∀y (y ∈ X ↔ ϕ(y, ~p)), (ECA)

where ϕ(x, ~p) is meant to range over all elementary formulas with free variables

different from X. Note that elementary comprehension gives rise to the class

V = {x | x = x} of all sets. Also note that elementary comprehension and

extensional equality of classes allow us to extend the powerset operator to form

powerclasses in the sense that P(X) stands for the class {x | x ⊂ X}. The

powerset axiom from ZFC can now be expressed by requiring powerclasses of sets
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to be sets again. Furthermore, we can use the axiom ECA to form the cartesian

product X × Y = {〈x, y〉 | x ∈ X ∧ y ∈ Y } for arbitrary classes X and Y .

The last axiom of NBG is the aforementioned limitation of size axiom. It is the

formal version of our paradigm that proper classes are exactly those collection of

sets whose extension is larger than any set. The formal statement is

∀X
(
∀x (x 6= X)↔ |X| = |V |

)
. (LIM)

Finally, Morse Kelley set theory is obtained from NBG by replacing the axiom

ECA by full comprehension, that is, in the schema of elementary comprehension,

the elementarity condition on the formula ϕ is dropped.

Meta mathematical aspects of NBG,ZFC and MK

During the development of the foundations of mathematics, the meta mathemat-

ics of theories such as ZFC,NBG and MK has been thoroughly studied. It goes

far beyond the scope of this work to list all the insights that where made in

that respect. It is our aim here, however, to just mention very briefly the sort

of fundamental results that substantiate our viewpoint that PA relates to ACA0

similarly as ZFC relates to NBG, and that MK set theory is the counterpart of

full second order arithmetic Π1
∞-CA0. If we informally use the fraction line to

express the “relates to” relation, we can summarize this point of view as

PA

ACA0
=

ZFC

NBG

and in a wider sense also

PA,ACA0

Π1
∞-CA0

=
ZFC,NBG

MK
.

In arithmetic, the first order base theory PA has infinitely many axioms3 and

has a conservative (cf. Theorem IX.1.5 and Remark IX.1.7 in [Sim98]) second

order extension ACA0, that in turn is finitely axiomatizable (cf. Lemma VIII.1.5

in [Sim98]).

3The instances of the schema of mathematical induction.
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1.4 The theories ZFC, NBG and MK

The situation is analog in set theory; while ZFC cannot be finitely axiomatized

(cf. Corollary 7.7 in [Kun80] and the explanation and references given in Fact 32

below), there are finitely many instances of ECA from which all other instances

are derivable (a finite axiomatization can be found in [Men97]).

Fact 32. The theory ZFC has no finite axiomatization.

Proof. This is a direct consequence of the reflection principle (as provable in ZFC)

and of Gödels second incompleteness theorem. For more details see also Theorem

I.12.14 and the subsequent discussion in [Jec03].

Fact 33. The theories NBG and ACA0 can be finitely axiomatized.

Proof. For a detailed exposition of a finite axiomatization of NBG, the reader

is referred to 4.1. in [Men97]4. To see that ACA0 is finitely axiomatizable, the

reader is referred to Lemma VIII.1.5 in [Sim98].

A second similarity between the relationship of PA to ACA0 on one side and

ZFC to NBG on the other side, is that the second order theories are conservative

extensions of the respective first order theories.

Fact 34. For all formulas ϕ ∈ L1, we have that

ZFC ` ϕ⇔ NBG ` ϕ.

For all formulas ψ ∈ L1
A, we have that

PA ` ψ ⇔ ACA0 ` ψ,

where PA stands for Peano arithmetic.

Proof. The first part is a direct consequence of Theorem 1 in [Fel71]. For

the second part, the reader is referred to Theorem IX.1.5 and Remark IX.1.7

in [Sim98].

4To obtain exactly the same theory as introduced here, one has to keep our axiom of limitation
of size or alternatively add an axiom of global choice to Mendelson’s variant of NBG.
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Since the theory MK is neither finitely axiomatizable nor is it conservative over

NBG and ZFC, the analogy is also preserved if we consider to extend the second

order theories by full comprehension schemata.

Basic observations and definitions

We will now list some of the most basic facts about NBG and introduce the

basic concepts on which the remainder of this text relies. Many of the proofs are

standard and can be found in the literature. However, in many cases we found

it more cumbersome to point out appropriate sources instead of giving an actual

proof ourselves. In these cases, we just wrote down the proofs, but of course we

do not claim any of the results. In fact, we assume that all statements in this

section are “folklore”.

Our first observation is that in NBG, the terminus of proper classes5 is not

void.

Fact 35. Not every class is a set. Classes that are not sets are called proper

classes.

Proof. If V was a set, then also {V } would be set. As the existence of such a set

contradicts the axiom of regularity, this is not possible.

Fact 36. Every set is a class.

Proof. Let x be any set. The axiom of elementary comprehension yields a class

X = {z | z ∈ x} with the same extension as x. It follows from extensional

equality of classes that X = x.

Fact 37. Every subclass of a set is a set.

Proof. This is immediate from the limitation of size axiom.

Fact 38. There are no cycles in the elementhood relation, i.e. there are no sets

x0, x1, . . . , xn such that x0 ∈ x1 ∈ · · · ∈ xn ∈ x0.

5Proper classes are classes that are not sets.
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Proof. Let x0, . . . , xn be sets. By the axioms of union and pairing, the collection

{x0, . . . , xn} is a set. Applying the axiom of regularity, we conclude that there is

a set z ∈ {x0, . . . , xn} with z ∩ {x0, . . . , xn} = ∅. Hence, z cannot be part of the

proposed cycle.

Definition 39. A class X is transitive if ∀y (y ∈ X → y ⊂ X) holds. We

denote the transitivity of a class X by tr(X). The class X is swelled whenever

∀x (x ∈ X → P(x) ⊂ X) holds. If X is both, swelled and transitive, then it is

called supertransitive.

Fact 40. V is supertransitive.

Proof. This is immediate from the definition of V .

Definition 41. 1. The restriction X � Y of a class X to a class Y is the

collection {〈x, y〉 ∈ X | x ∈ Y }.

2. Let F be a function. The class

dom(F ) = {x | ∃y (〈x, y〉 ∈ F )}

is called the domain of F . The image of a class X under the function F

is defined from F [X] = {F (x) | x ∈ X ∩ dom(F )}. The range of F is the

class rng(F ) = F [dom(F )]. The preimage of a class X under F is the class

F ′′X = {y | F (y) ∈ X}. For any set x, we write F ′x to mean the fiber

F ′′{x} over x.

3. For any two functions F and G with rng(F ) ⊂ dom(G), we define the

composition G ◦ F : dom(F )→ rng(G) from G ◦ F (x) = G(F (x)).

Lemma 42 (Replacement principle). If F is a function and u is a set, then also

F [u] is a set.

Proof. Let F be any function and let u be a set. From instantiating the axiom

REP with the L1 formula ϕ(x, y, f) ≡ 〈x, y〉 ∈ f , we get that f [u] is a set for

every function f . Since F [u] = (F � u)[u], it is enough to show that F � u is

a set. This, however follows from LIM since F � u can be put into one-to-one

correspondence with u.
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Definition 43. A pair (A,<A) of two classes A and <A where <A is a binary

relation on A is a transitive relation if (a <A b ∧ b <A c→ a <A c) holds for all

a, b, c ∈ A. We will write tran(A,<A) to mean that (A,<A) is a transitive relation.

A linear order is a transitive relation that additionally fulfills the following6

requirements for all a, b ∈ A:

1. a <A b ∨ b <A a ∨ a = b

2. (a <A b→ ¬(b <A a)).

We will write lo(A,<A) to mean that (A,<) is a linear order.

Remark 44. If (A,<A) is a linear order, then we say that <A is a linear ordering

of A. If we just say that <A is a linear ordering, then we mean to express that

({x | ∃y (x <A y∨y <A x)}, <A) is a linear order. Moreover, if (A,<A) is a linear

order and X ⊂ A, then we mean (X, (X ×X)∩ <A) when we write (X,<A).

Definition 45. We introduce the following shorthand notations for linear orders

(A,<A) and arbitrary subclasses X and Y of A.

1. For any elements a and b of A, we write a ≤A b to mean a <A b ∨ a = b.

2. If a ∈ A, then:

a) The term A<Aa denotes the class {b ∈ A | b <A a}.

b) The expression a <A X is a shorthand notation for the statement

∀x ∈ X (a <A x).

c) The class A<AX is defined as {b ∈ A | b <A X} = ∩b∈XA<Ab. Similar

notions like A≤AX or A
A>X are interpreted accordingly.

d) We also use X to mean the relative complement A \ X of X to the

field of the relation at hand.

3. The class X is an initial subclass of Y (relative to (A,<A)), in symbols

X ≺ Y , if

X ⊂ Y ∧ ∀a, b ∈ Y
(
a <A b ∧ b ∈ X → a ∈ X

)
holds, it is called coinitial in Y if Y \X ≺ Y .

6From here on out, we write x <A y to mean 〈x, y〉 ∈<A.
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4. The class X is called minimal in Y ⊂ A if

X ⊂ Y ∧ ∀a ∈ Y ∃b ∈ X (b ≤A a)

holds.

Definition 46. If R is any binary relation on a class A and X ⊂ A is a subclass

of A, then we say that a ∈ X is a minimal element in X (with respect to R) if

∀b ∈ X ¬(bRa)

holds.

Remark 47. Note that for linear orderings (A,<A), we have that any a ∈ A is

exactly then a minimal element of some class X ⊂ A if the set {a} is a minimal

subset of X. Further, we have that ∅ is minimal in some X ⊂ A if and only if

X = ∅, and similarly, that A<A∅ = A.

Definition 48. A set x is called an ordinal if it is transitive and all its members

are also transitive. Formally, we write

ord(x) ≡ ∀y (y ∈ x ∪ {x} → tr(y)).

We will use lower case Greek letters to range over ordinals. Whenever we write

α < β for two ordinals α and β, we mean, unless otherwise stated, that α ∈ β.

We write On to denote the class of all ordinals.

Remark 49. Note that a set is exactly then an ordinal if it is transitive and

all its elements are ordinals. That is, ord(x) ↔ tr(x) ∧ ∀y ∈ x (ord(y)) holds. In

particular, On is a transitive class of transitive sets.

Proof. Let α be any ordinal; we prove that every element of α is an ordinal as

well. If x ∈ α, then x is transitive because so are all the elements of an ordinal.

For any y ∈ x we have, by transitivity of α, that y is an element of α and thus

is also transitive. On the other hand, it is obvious that every transitive set of

ordinals is an ordinal itself.
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Remark 50. Intersections and unions of transitive sets are transitive. Hence,

we get as a consequence of the previous remark and the limitation of size axiom,

that the intersection of any nonempty class or the union of any set of ordinals is

itself an ordinal.

Lemma 51. Every nonempty class X of ordinals contains minimal elements with

respect to the elementhood relation.

Proof. Applying the axiom REG to a nonempty set x of ordinals yields

∃µ ∈ x∀α < µ (α /∈ x).

In other words, every nonempty set of ordinals has minimal elements. Now let

α be an element of any class X of ordinals. If α ∩X = ∅, then α is a minimal

element of X and we are done. Assume that x = X ∩ α 6= ∅. Since x is a

nonempty set of ordinals, it follows from our previous observation that x must

contain a minimal element µ. To see that µ is also minimal in X, assume that

β < µ for some ordinal β. Since µ ∈ α and α is transitive, this implies that

β ∈ α. Thus, by the minimality of µ in x it follows that β /∈ x, the latter implies

that β cannot be an element of X.

Remark 52. The empty set, as an ordinal also called 0, is the unique minimal

element of On.

Corollary 53 (Induction schema for On). For every elementary formula ϕ(x)

with a distinct free variable x it is provable in NBG that the following holds:

∀α
(
∀β < αϕ(β)→ ϕ(α)

)
→ ∀αϕ(α).

Proof. As ϕ is an elementary formula, we can use comprehension to form the class

X = {α | ¬ϕ(α)}. If ϕ satisfies the precondition of the induction schema, then

X cannot have any minimal element and thus must be empty by Lemma 51.

Corollary 54 (Class induction for On). It is provable in NBG that

∀X
(
∀α (α ⊂ X)→ α ∈ X)→ On ⊂ X

)
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holds.

Proof. This corresponds to the instance of the induction schema for On where

ϕ(x) is x ∈ X.

Lemma 55. The class On is linearly ordered by the elementhood relation.

Proof. Since we have the axiom of regularity and since all ordinals are transitive,

it is enough to prove that the elementhood relation is total on On. That is, we

have to show that the class

X = {α | ∃β (α /∈ β ∧ β /∈ α ∧ α 6= β)}

is the empty set. By way of contradiction, assume that X 6= ∅. Let α0 be a

minimal element of X and let β0 be a minimal element of the class {β | α0 /∈
β ∧ β /∈ α0 ∧ α0 6= β}. If µ is any element of α0, then by the minimality of α0 in

X, we have that µ ∈ β0∨β0 ∈ µ∨β0 = µ. Since the latter two cases cannot hold,

it is clear that µ ∈ β0. Hence, α0 ⊂ β0. If, on the other hand, µ is an element

of β0, then it follows from the minimality of β0 that either µ ∈ α0 or µ = α0 or

α0 ∈ µ. The last two cases are not possible since they would imply that α0 ∈ β0,

contradicting our choice of β0. Hence, we have that µ ∈ α0 and therefore that

β0 = α0. This is in contradiction to our choice of β0.

Corollary 56. If α and β are ordinals, then either α ⊂ β or β ⊂ α holds.

Corollary 57. For ordinals α, β, we have the equivalence

α ( β ⇔ α ∈ β.

Corollary 58. Every nonempty class of ordinals has a unique least element with

respect to the natural ordering.

Proof. This is a direct consequence of Lemma 51 and Lemma 55.

Definition 59. Let X be a nonempty class of ordinals; we use the term min(X)

to denote the unique least element of X with respect to the natural orderings on

the ordinals.
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Definition 60. For any set x, the set {x} ∪ x is the successor of x. We write

α + 1 to mean the successor of an ordinal α. An ordinal is called a successor

ordinal if it is the successor of some ordinal and limit ordinal otherwise. We

write lim(α) to mean that α is a limit ordinal.

Lemma 61. For any ordinal α, the successor α+ 1 is an ordinal as well.

Proof. We have to show that α + 1 is transitive. Let β ∈ α + 1. It is obviously

the case that α ⊂ α + 1, thus the case where β = α is done. If α 6= β, then the

transitivity of α implies that β ⊂ α ⊂ α+ 1.

Corollary 62. The class On is not a set.

Proof. If On was a set, it would be a transitive set of ordinals and thus be itself

an ordinal; therefore, it would be the case that On ∈ On, which contradicts the

fact that the elementhood relation is cycle free.

Corollary 63. For any set x, there are ordinals λ that are greater than any

ordinal that is a member of x. Particularly, every set of ordinals has a supremum

given from sup(x) = min{α | ∀β ∈ x (α > β)}.

Proof. Let x be any set; we know from the axiom of union that y = ∪{α | α ∈ x}
is a set, as such it must be an ordinal. The ordinal y + 1 is a strict upper bound

for x ∩On.

Lemma 64. A nonzero ordinal is a limit ordinal if and only if it is inductive.

Proof. Recall that a class X with 0 ∈ X is inductive if it satisfies the formula

∀x (x ∈ X → x ∪ {x} ∈ X).

Let 0 6= λ be an ordinal. Obviously, if λ is a successor ordinal, then it is not

inductive. The fact that nonzero limit ordinals are inductive follows from the

observation that for any ordinal α, the axiom of regularity implies that the class

{µ | α < µ < α+ 1} is empty.

Corollary 65. Limit ordinals are exactly those ordinals that equal their union.
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Definition 66. A class X is closed under chain unions if

∀x ⊂ X (∀y, z ∈ x ((z ⊂ y) ∨ (y ⊂ z))→ ∪x ∈ X)

is satisfied. An inductive class X that is closed under chain unions is called

superinductive.

Lemma 67. A set x is an ordinal if and only if it is an element of every su-

perinductive class. That is, the class On of all ordinals is the intersection of all

superinductive classes.

Proof. Assume that X is some superinductive class which does not contain all

of On. Since the intersection of ordinals is always an ordinal, it follows that

α0 = ∩{µ | µ /∈ X} is an ordinal. If α0 = β + 1 is a successor ordinal, then,

since β is a proper subset of α0, β cannot be an element of the class {µ | µ /∈ X}.
Hence, we have that β ∈ X. This is a contradiction to the assumption that X is

inductive. Thus, α0 must be a limit ordinal. Since all elements of α0 are members

of X and α0 =
⋃
µ<α0

µ, we have a contradiction to the assumption that X is

closed under chain unions. Since On is clearly inductive, it remains to be shown

that On is closed under chain unions. Let x be any set of ordinals. We have to

verify that ∪x is an ordinal. If a ∈ ∪x, then there is a set y such that a ∈ y ∈ x
and thus, by transitivity of y, we have that a ⊂ y ⊂ ∪x. Hence, ∪x is a transitive

set of ordinals and thus is an ordinal itself.

Note that the last lemma corresponds to the definition of ordinals as it is

presented in [SF10]. We might refer to that work in subsequent proofs about

ordinals.

Definition 68. Let X be any class and let y be a set. We define the y-th section

of X as follows:

(X)y = {x | 〈y, x〉 ∈ X}.

Theorem 69. It is provable from NBG that

∀Z ∃F
(
fun(F ) ∧ ∀x (((Z)x = ∅ ∧ F (x) = ∅) ∨ F (x) ∈ (Z)x)

)
holds.
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Proof. We have noticed before that the class of all ordinals is transitive; therefore,

if it was a set, it would contain itself as an element and thus contradict the axiom

of regularity (cf. Fact 38). Hence, we can apply the limitation of size axiom to

obtain a bijective function H : V → On. Now we can use Corollary 58 and

elementary comprehension in order to define F such that

〈x, y〉 ∈ F ⇔ (y = ∅ ∧ y = (Z)x) ∨H(y) = min(H[(Z)x])

holds.

Corollary 70 (Global choice function). There exists a class C that satisfies the

following property:

C : V → V ∧ ∀x
(
(x = ∅ ∧ C(x) = x) ∨ C(x) ∈ x

)
.

Proof. Applying the previous theorem to the class Z = {〈x, y〉 | y ∈ x} yields a

global choice function.

Corollary 71. For every elementary formula ϕ(x, y), it is provable in NBG that

∃F
(
F : V → V ∧ ∀x

(
∃y ϕ(x, y)→ ϕ(x, F (x))

))
holds.

Proof. Given any elementary formula ϕ(x, y), we can apply the previous theorem

to the class Z = {〈x, y〉 | ϕ(x, y)} to obtain a suitable function F .

Corollary 72 (Choice schema). For every elementary formula ϕ(x, y), it is prov-

able in NBG that

∃F
(
F : V → V ∧ ∀x∃y ϕ(x, y)→ ∀xϕ(x, F (x))

)
holds.

Proof. This is a special case of the previous corollary.
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Theorem 73 (Transfinite recursion). Let G : V → V be a function. There exists

a unique function F : On→ V that satisfies the following equation for all ordinals

α:

F (α) = G(F � α)

Proof. For the uniqueness, assume that there are functions F and H that both

satisfy the above equation of F . Let X = {α | F (α) 6= H(α)}. Since X cannot

have a least element, it follows from Corollary 58 that X must be empty and

thus F and H must take the same values on all ordinals. For the existence, let

P (f, α) ≡ f : α→ V ∧ ∀µ < α (f(µ) = G(f � µ)).

We prove that the class X = {α | ∃f P (f, α)} is superinductive and thus contains

all ordinals. Since P (∅, 0) trivially holds, we have that 0 ∈ X. If α is in X, then

there is a function f with P (f, α). Stipulating f̂ = f ∪ {〈α,G(f)〉}, we get

that P (f̂ , α + 1) and thus that α + 1 ∈ X. Now assume that y is a chain in

X. Since the union of any set of ordinals is an ordinal, we can fix γ = ∪y.

Essentially the same argument as in the uniqueness part of this proof yields that

f̂ = ∪{f | ∃α ∈ y (P (f, α))} is a function f̂ : γ → V . If α < γ, then α ∈ ∪y;

hence, there exists a β ∈ y such that α ∈ β. Since y ⊂ X, we can pick a function

fβ with P (fβ , β). Now consider

f̂(α) = fβ(α) = G(fβ � α) = G(f̂ � α).

Now that we know that X is superinductive, we can apply Lemma 67 to conclude

that X = On. Applying exactly the same reasoning one more time yields that

F = ∪{f | ∃αP (f, α)} is a function with the desired properties.

Corollary 74. It is provable in NBG that for every elementary formula ϕ,

∃F
(
F : On→ V ∧ ∀α

(
∃xϕ(F � α, x)→ ϕ(F � α, F (α))

))
.

holds.

39



1 Introduction

Proof. From Corollary 71, we get a function G : V → V with the property that

∀x (∃y ϕ(x, y)→ ϕ(x,G(x))).

Now we apply transfinite recursion to obtain a function F : On→ V that satisfies

the equation F (α) = G(F � α) for every ordinal α. Obviously, F has the required

properties.

Corollary 75 (Dependent choice). It is provable from NBG that for any elemen-

tary formula ϕ, the following holds:

∀x∃y ϕ(x, y)→ ∃F
(
F : On→ V ∧ ∀αϕ(F � α, F (α))

)
Proof. This is a special case of the previous corollary.

Definition 76. We define the set ω as ∩{x | x is inductive}. The elements of ω

are called natural numbers. We call a set x finite if there is a bijective mapping

f : x→ n for some n ∈ ω. We write |x| ∈ ω to mean that a set x is finite.

Remark 77. Note that the axiom of infinity implies that ω is indeed a set.

Moreover, since being inductive is preserved under intersections, ω is an inductive

set.

Lemma 78. The set ω is the least nonzero limit ordinal.

Proof. In view of Lemma 64, it is enough to show that ω is an ordinal. From

the axiom of infinity and from Lemma 67, we already know that ω is a set of

ordinals. Let α0 be the least ordinal that is not a subset of ω and let β ∈ α0\ω
be arbitrarily chosen. Since β /∈ ω, we know that β + 1 6⊂ ω. Hence, it follows

from the minimality of α0 that α0 = β + 1. If we show that ω = β, then we are

done. The fact that β ⊂ ω follows immediately from the minimality of α0. For

the converse implication, it is enough to prove that β is inductive. By definition,

we have that ∅ ∈ ω, thus our choice of β implies that β 6= ∅ hence ∅ ∈ β. If

there was an ordinal λ ∈ β such that β = λ + 1, then we would already have

that λ ∈ ω, and since ω is inductive also that β ∈ ω, contradicting our choice of

β.
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Lemma 79 (Mathematical induction). Let ϕ(x) be any elementary formula with

a distinct free variable x. It is provable in NBG that the following holds.

ϕ(0) ∧ ∀n ∈ ω (ϕ(n)→ ϕ(n+ 1))→ ∀n ∈ ω ϕ(n)

Proof. Let ϕ(x) be an elementary formula that satisfies the antecedent of the

claim. Let ψ(α) ≡ ϕ(α) ∨ α /∈ ω. Now assume that ψ(β) holds for all ordinals

β below some α. If α is a natural number, then it is a successor ordinal or

0, in any case it follows from our assumption that ϕ(α) and thus also ψ(α)

holds. In case where α is greater or equal to ω it trivially satisfies ψ(α). Using

transfinite induction on the ordinals, we get that ∀αψ(α) and thus we also have

∀n ∈ ω ϕ(n).

Lemma 80 (Recursion along ω). For every set x and any function G : V → V ,

there exists a unique function f : ω → V that satisfies the following equations

f(0) = x

f(n+ 1) = G(f(n)).

Proof. This follows directly from Theorem 73 and the fact that 0 is the only limit

ordinal below ω.

Definition 81. Let x be any set. We define the transitive closure of x by

trcl(x) = ∩{y | x ⊂ y ∧ tr(y)}.

Lemma 82. If x is any set, then we have that trcl(x) =
⋃
n∈ω xn where the xn’s

are defined by recursion along ω as follows:

x0 = x

xn+1 = (∪xn) ∪ xn.

Proof. Let x be any set and y =
⋃
n∈ω xn as is defined before. We prove that

y is transitive and that every transitive set that contains x also contains y. To

see that y is transitive, consider that if z is any element of y, then it is an
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element of some xn; therefore it is a subset ∪xn and thus a subset of xn+1,

which is a subset of y. Let now z be any transitive superset of x. We prove by

induction on ω that ∀n ∈ ω (xn ⊂ z). By assumption, we already know that

x0 = x ⊂ z. From the transitivity of z, it follows that if xn ⊂ z, then also

xn+1 = (∪xn) ∪ xn ⊂ (∪z) ∪ z = z.

Corollary 83. The transitive closure of any set is a transitive set; particularly,

every set is contained in a transitive set.

Proof. This follows from Lemma 82 and the axiom of union.

Lemma 84 (Regularity for classes). The axiom of regularity can be extended to

classes i.e. the formula

∀X
(
∃x (x ∈ X)→ ∃x ∈ X (X ∩ x = ∅)

)
is provable in NBG.

Proof. Let X be any nonempty class. Pick x ∈ X. If x ∩ X = ∅, then we are

done. Otherwise, X∩trcl(x) is a nonempty set. Applying the axiom of regularity,

we can pick a set y ∈ X∩trcl(x) such that y∩(X∩trcl(x)) = ∅. Since y ⊂ trcl(x),

this implies that we have found a set y ∈ X with the property that y∩X = ∅.

Theorem 85 (∈ induction for classes). The following formula is provable in

NBG.

∀X
(
∀x (x ⊂ X → x ∈ X)→ X = V

)
Proof. Assume that X is a class that satisfies ∀x (x ⊂ X → x ∈ X). Let

Y = V \X. Assuming that Y 6= ∅, we can find a set y ∈ Y such that y ∩ Y = ∅,

hence y ⊂ X. This contradicts our choice of X.

Corollary 86 (∈ induction schema). For every elementary formula ϕ(x) with a

distinct free variable x, the following is provable in NBG:

∀x
(
∀y ∈ xϕ(y)→ ϕ(x)

)
→ ∀xϕ(x).

Proof. This follows immediately from applying ∈ induction to {x | ϕ(x)}.

42



1.4 The theories ZFC, NBG and MK

Definition 87 (Cumulative hierarchy). We apply transfinite recursion to define

for each ordinal α a set Vα as follows:

V0 = ∅

Vα+1 = P(Vα)

Vλ =
⋃
α<λ

Vα for limit ordinals λ > 0.

Lemma 88. Every set of the form Vα is transitive.

Proof. This follows from the fact that transitivity is preserved under union and

the powerset operator.

Lemma 89. For any two ordinals α and β, we have that α < β → Vα ∈ Vβ.

Proof. We prove ∀β < α (Vβ ∈ Vα) by induction on α. If α = 0, then the

statement is clearly satisfied. Let β < α be chosen arbitrarily. If α = γ + 1

is a successor ordinal, then Vγ ⊂ Vγ implies that Vγ ∈ Vα and thus that either

Vβ = Vγ ∈ Vα or we apply the induction hypothesis to γ and therefore obtain

that Vβ ∈ Vγ ∈ Vα. In that case, the claim follows from the transitivity of Vα.

If α is a limit ordinal, then we can find some ordinal γ such that β < γ < α.

We use the induction hypothesis on γ and the transitivity of Vα to obtain that

Vβ ∈ Vγ ⊂ Vα as desired.

Lemma 90. For every set x, there is an ordinal α such that x ∈ Vα. In other

words,
⋃
α Vα = V .

Proof. We proceed by ∈ induction. Let x be any set such that for every member

y of x, there is an ordinal αy with y ∈ Vαy . By the replacement axiom, we know

that {αy | y ∈ x} is a set of ordinals. Hence, αx = ∪{αy | y ∈ x} is itself

an ordinal. It follows from the monotonicity of the cumulative hierarchy that

x ⊂
⋃
y∈x Vαy ⊂ Vαx and thus that x ∈ Vαx+1.

Definition 91. We define for any set x its rank as rk(x) = min{α | x ⊂ Vα}.

Corollary 92. Every set has a rank.

Lemma 93. For any two sets x and y, we have that x ∈ y → rk(x) < rk(y).
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Proof. Let x ∈ y be any two sets and let α = rk(y). From x ∈ y ⊂ Vα, we know

that x ∈ Vα, thus there must exist an ordinal β < α such that x ⊂ Vβ .

Lemma 94. For any ordinal α, we have that rk(α) = α.

Proof. Clearly, for all α it is the case that α ⊂ Vα and thus that rk(α) ≤ α. By

way of contradiction, we assume that α is the least ordinal such that rk(α) < α.

By Lemma 93, we conclude that rk(rk(α)) < rk(α), contradicting the minimality

of α.

Definition 95. Given a linear ordering (A,<A), we call a function f : α → A

a descending chain of length α in (A,<A) if ∀β, γ < α (β < γ → f(γ) < f(β))

holds. A descending chain f with dom(f) ≥ ω is called an infinitely descending

chain.

Lemma 96. Let (A,<A) be a linear order and let f : α → A be some function.

The following two assertions are equivalent:

1. f is a descending chain of length α.

2. For all ordinals µ with µ + 1 < α and for all limit ordinals λ < α, the

following two assertions hold:

a) f(µ+ 1) <A f(µ)

b) f(λ) ≤A {f(ν) | ν < λ}

Proof. Clearly, 1. above implies 2. above. For the converse direction, assume

that f : α→ A satisfies a) and b). We prove by induction on β that

β ≥ α ∨ ∀µ < β (f(β) <A f(µ)).

Let µ < β < α be arbitrary. If β is a successor ordinal δ + 1, then, by induction

hypothesis and a), f(β) <A f(δ) ≤A f(µ). If β is a limit, then µ + 1 < β and

thus, from the induction hypothesis and from b) we can conclude that f(β) ≤A
f(µ+ 1) <A f(µ), as desired.

Definition 97. A linear ordering (A,<) is called a well order if one (and thus

any) of the following pairwise equivalent conditions is satisfied.
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1. The minimum principle: ∀X ⊂ A (∅ 6= X → ∃a ∈ X ∀b ∈ X (a ≤ b))

2. The minimum principle for sets: ∀x ⊂ A (∅ 6= x→ ∃a ∈ x ∀b ∈ x (a ≤ b))

3. The chain condition: ∀f ((f : ω → A)→ ∃n,m ∈ ω (n < m∧ f(n) ≤ f(m))

4. Transfinite induction: ∀X (∀a ∈ A (A<a ⊂ X → a ∈ X)→ A ⊂ X)

We write wo(A,<) to mean that (A,<) is a well order. If < is a linear ordering

of V we might also just write wo(<) to mean wo(V,<).

Proof of the equivalence. 1⇒ 2 : Immediate.

2⇒ 3 : Let f : ω → A be any function. Applying the minimum principle, we

get the least element (with respect to (A,<)) a0 of f [ω] ⊂ A, which by the

axiom of replacement is a set . Let n ∈ ω be any natural number such that

f(n) = a0. It follows that f(n) ≤ f(n+ 1), as desired.

1⇒ 4 : By contrapositive, assume that there is a class X that satisfies the premise

of transfinite induction, but still does not contain all of A. Stipulating Y

for A\X, we get a nonempty class that satisfies

A<a ∩ Y = ∅→ a /∈ Y

for all a ∈ A. Obviously, such a class Y has no least element.

4⇒ 1 : Let X be a subclass of A with no least element. Clearly, Y = A\X
satisfies the premise of transfinite induction, thus we have that Y = A and

therefore that the only subclass of A with no least element is the empty

set.

3⇒ 1 : By contrapositive, assume that there is a nonempty class X ⊂ A that has

no least element. We apply Corollary 74 to the formula

ψ(f, x) ≡ fun(f) ∧ rng(f) ⊂ X ∧ x ∈ X ∧ x < rng(f)

to obtain a function F : On→ V with the property

∀α
(
∃xψ(F � α, x)→ ψ(F � α, F (α))

)
.
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This implies that

∀α
(
∃x ∈ X (x < rng(F � α))→ F (α) ∈ X<rng(F �α)

)
.

Since X has no least element, the premise of the above implication is indeed

satisfied for all α < ω, hence we have that

∀n ∈ ω
(
F (n) ∈ X<rng(F �n)

)
and thus that F � ω is a descending chain of length ω.

Lemma 98. Every proper initial segment of a well order (A,<A) is of the form

A<Aa for some a ∈ A. Moreover, if a linear order has this property, then it is

already a well order.

Proof. Let X ( A be an initial segment. We chose a = min<A(A\X) and thus

get X = A<a. If (A,<A) is a linear order all of whose proper initial segments are

of the form A<Aa for some a ∈ A, then all coinitial subclasses of (A,<A) have a

least element. Therefore, if X is any nonempty subclass of A, then

Z = {x ∈ A | ∃y ∈ X (y ≤A x)}

is a nonempty coinitial segment of (A,<A) and thus we can find a minimal

element a of X from stipulating a = min<A(Z).

Remark 99. Any restriction of a well ordering is a well ordering.

Proof. This follows immediately from the observation that any possible infinite

descending chain in the restriction of a linear ordering is also an infinite descend-

ing chain in the original ordering.

Lemma 100. Every class can be well ordered.

Proof. Let X be any class. Since the class of all ordinals is not a set, there exists

a bijective function F : V → On. Since On is well ordered by ∈, so is X by

<X= {〈a, b〉 | a, b ∈ X ∧ F (a) ∈ F (b)}.
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Lemma 101. Ordinals are exactly those sets that are transitive and well ordered

by the elementhood relation. The class On is well ordered by the elementhood

relation.

Proof. It is immediate from Corollary 58 that every ordinal is a transitive set

that is well ordered by ∈. We have to show that for any transitive set x, the

assumption wo(x,∈) entails that all elements of x are transitive. Assume that

this is not the case and let y0 = min∈{y ∈ x | ¬tr(y)}. If there are some sets a, b

with a ∈ b ∈ y0, then by the observation made in Fact 38 it cannot be the case

that y0 ∈ a nor that y0 = a. Thus, since ∈ is total on x, it has to be the case

that a ∈ y0. This contradicts our choice of y0.

Lemma 102. Let (A,<A) and (B,<B) be well orders with disjoint fields. The

sum of <A and <B

<(A,<A)⊕(B,<B)= {〈x, y〉 | x <A y ∨ x <B y ∨ (x ∈ A ∧ y ∈ B)}

is a well ordering of the union A∪B. Given two well orders (A,<A) and (B,<B)

with disjoint fields, we wil write (A,<A)⊕ (B,<B) to mean

(A ∪B,<(A,<A)⊕(B,<B)).

Proof. If there is a descending <A⊕B-chain f : ω → A∪B, then either f [ω] ⊂ B
or there is a natural number n such that f [ω>n] ⊂ A. In any case, at least one

of the orders (A,<A) or (B,<B) is not a well order.

Definition 103. Let (A,<A) and (B,<B) be linear orders. By an (order) iso-

morphism from (A,<A) to (B,<B) we mean a function F : A→ B that satisfies

the following conditions:

1. The function F is surjective on B, i.e. F [A] = B.

2. The function F is (strictly) order preserving, i.e.

∀x, y ∈ A
(
x <A y ↔ F (x) <B F (y)

)
.
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If there is an (order) isomorphism from a linear order (A,<A) into an initial

segment of some linear order (B,<B), then we say that (A,<A) embeds into

(B,<B). Consequently, we call an isomorphism F : A → Y from A onto some

initial segment Y of (B,<B) an embedding of (A,<A) into (B,<B).

Theorem 104 (Global well orderings). Every well ordering can be extended

to a well ordering of V . Moreover, for every well order (A,<A), there is a

well orderings <′ of V , such that (A,<A) is isomorphic to an initial segment of

(V,<′).

Proof. Let (A,<A) be a well order. As we have observed in Lemma 100, there is

a well ordering <X of X = V \A. As a consequence of Lemma 102, we find the

desired well ordering of V in <A⊕X .

Remark 105. The fact that any well ordering can be extended to a global well

ordering, will be important in Proposition 251 and Proposition 254.

Definition 106. We will write C to mean a well ordering of V . We will refer to

C as “the” global well ordering of V .

The following two theorems7 are essentially a summary of chapter 6 §2 of the

book [SF10]. We refer to the cited book for a more detailed presentation.

Theorem 107. Let (A,<A) and (B,<B) be linear orders.

1. The class F−1 = {〈y, x〉 | 〈x, y〉 ∈ F} is an order isomorphism from (B,<B)

to (A,<A) for any order isomorphism F : A→ B.

2. If there is an order isomorphism between two linear orders, then either both

or none of the orders are well orders.

3. If (A,<A) is a well order and F : A → A is an order isomorphism, then

for all a ∈ A we have that a ≤A F (a).

4. If H : A → B and F : A → B are order isomorphisms and (A,<A) is a

well order, then F = H.

7The proofs of the theorems, however, are different from the exposition in [SF10].
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5. If there is an order isomorphism between two well orders (A,<A) and

(B,<B), then neither of the two well orders (A,<A) and (B,<B) can be a

proper initial segment of the other.

6. If F : A → B is a bijective function, then (B, {〈x, y〉 | F ′x <A F ′y}) is a

well order and F is an order isomorphism from (A,<A) to (B,<B).

Proof. 1. This is a direct consequence of the definition of order isomorphisms.

2. In view of the first item, it is enough to prove that whenever there is an

isomorphism from a well order to some linear order, then the latter is also

a well order. Let F be an order isomorphism from A to B. Assume that

(A,<A) is a well order and let X ⊂ B be any class. Since F is bijective,

we have that X = F [F ′′X] and thus that F (min<A(F ′′X)) is a minimal

element of X.

3. If F : A→ A is an order isomorphism, then the class {a ∈ A | F (a) <A a}
has no least element; thus, if (A,<A) is a well order, it must be empty.

4. By way of contradiction, assume that X = {a ∈ A | F (a) 6= H(a)} is a

nonempty class and let a0 be its minimal element. Without loss of gener-

ality, we can assume that F (a0) < H(a0). As H � A<a0 and F � A<Aa0
coincide, there cannot be any element a <A a0 such that H(a) = F (a0);

thus, since H[A] = A, there must exist an element a1 >A a0 such that

H(a1) = F (a0). This however, violates the assumption that H is order

preserving.

5. This follows from the uniqueness of order isomorphisms between well orders

and the fact that the identity map is an order isomorphism on any linear

order.

6. As F is bijective by assumption, we have that F [A] = B. The ordering on

B is obviously defined so that F becomes order preserving. The rest follows

from part item 2.

Definition 108. A linear order whose proper initial segments are all sets is called

a set-like ordering.
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Theorem 109 (Comparability theorem). If (A,<A) and (B,<B) are set-like

well orders, then there is either an order isomorphism from A to an initial seg-

ment of B, or there is an order isomorphism from B to an initial segment of

A.

Proof. We use elementary comprehension to define a class F as follows. First,

let X be the class

X = {f | ∃a ∈ A∃b ∈ B (f is an order isomorphism from A<Aa to B<Bb}.

Let f : A<Aa → B<Bb and g : A<Aa′ → B<Bb′ be any elements of X. We prove

that either f ⊂ g or g ⊂ f holds. We can assume without loss of generality that

a <A a′ holds. Since g � A<Aa is an order isomorphism from A<Aa to g[A<Aa],

we have as a consequence from the previous theorem that g[A<Aa] = B<Bb and

thus that g � A<aA = f . Now, since X consists of pairwise compatible functions,

the class F = ∪X is a function. Clearly, F is an order isomorphism from some

initial segment IA of A to some initial segment IB of B. If either IA = A or

IB = B holds, then we are done. If both classes IA and IB are proper initial

segments of A and B respectively, then, because A and B are set-like well orders,

the class F is a ⊂-maximal order isomorphism between proper initial segments

of A and B respectively. Further, by Lemma 98, there are a, b in A and B such

that IA = A<Aa and IB = B<Bb. Since the function F̂ = F ∪ {〈a, b〉} is an order

isomorphism between A≤Aa and B≤Bb, the ⊂-maximality of F implies that either

A≤Aa = A or B≤Bb = B holds.

Corollary 110. Every set-like well order is order isomorphic to a unique initial

segment of (On,∈). In particular, every set-like well order that is a set is order

isomorphic to an ordinal, and every set-like well order that is a proper class is

order isomorphic to (On,∈).

Corollary 111. Every well order (A,<A) that is not set-like, contains an ele-

ment a ∈ A such that (A<a, <A) is order isomorphic to (On,∈).

Proof. Let (A,<A) be as in the claim. Fix a = min<A{x ∈ A | A<Ax is not a set}.
Clearly, (A<a, <A) is a set-like well order that is a proper class, thus the claim

folows from Corollary 110.
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1.4 The theories ZFC, NBG and MK

Remark 112. The previous corollary enables us to assign to each set-like well

order (A,<A) an ordertype or length being the least ordinal α such that (A,<A)

is order isomorphic to (α,∈) if there exists any such ordinal and On otherwise.

Also note that every set-like well order is isomorphic to its order-type.
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2 Trees and κ-well orders

2.1 κ-well orders

In this section, we introduce the concept of κ-well orders. Thereafter we will

continue with investigating to which degree fundamental properties of well orders

have to be weakened to suit the new concept. In particular, we will introduce

appropriate induction and minimum principles. We will see that many of the

characteristic properties of well orders can be adapted for κ-well orders by natural

means, that are moreover compatible with our motif of interpreting small entities

as sets and larger entities as proper classes.

Remark 113. It has been brought to our attention that κ-well orders have been

studied before by Oikkonen in [Oik92]. However, we follow a different approach

and our presentation is independent from Oikkonen’s work.

Definition 114. A cardinal κ is an ordinal that satisfies ∀α (|α| = |κ| → κ ≤ α).

We write card(x) to mean that x is a cardinal.

Lemma 115. For every set x, there is a unique cardinal κ such that a bijective

function f : x→ κ exists.

Proof. Recall that |x| = |y| stands for the assumption that there is a bijective

function from x to y. Let x be any set. Since x can be well ordered, there

exists an ordinal αx with |αx| = |x|. We get a cardinal with the desired property

by stipulating κ = min{α | |α| = |αx|}. The uniqueness of the cardinal κ is

a consequence of the fact that two distinct cardinals can never be put into a

one-to-one correspondence.

Definition 116. The cardinality of a set x is the unique cardinal κ such that

|x| = |κ|. We write |x| to mean the cardinality of x.
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2 Trees and κ-well orders

Definition 117. Let κ and λ be ordinals and let X be any class. We introduce

the following abbreviations:

1. [X]<κ = {x | x ⊂ X ∧ |x| < κ}.

2. [X]>κ = {x | x ⊂ X ∧ |x| > κ}.

3. [X]<κ>λ = [X]<κ ∩ [X]>λ.

Definition 118. Let (A,<A) be a linear order. A class X ⊂ A is called progres-

sive in (A,<A) if

∀a ∈ A (A<Aa ⊂ X → a ∈ X)

holds. We will write prog(X, (A,<A)) to mean that X is progressive in (A,<A).

Given the notion of progressive subclasses, we can formulate transfinite induc-

tion along a linear order (A,<A) as the assumption that A contains no proper

and progressive subclasses. In the following, we will generalize the notion of

progressiveness and thus we will also obtain new induction principles.

Definition 119. Let (A,<A) be a linear order; a class X ⊂ A is κ-progressive

in (A,<A) if

∀m ∈ [A]<κ>0 (A<m ⊂ X → m ∩X 6= ∅).

We write progκ(X, (A,<A)) to mean thatX is a κ-progressive subclass of (A,<A).

Remark 120. Note that our notion of k-progressive for any 1 < k < ω coincides

with the usual notion of progressive.

Proof. Let 1 < k < ω be a natural number and let (A,<) be any linear order.

Let X ⊂ A be progressive and let m = {x0, . . . , xn} with 0 ≤ n < k − 2 be any

subset of A. Since A is linearly ordered, we can assume that x0 is the smallest

element of m. Therefore, A<m = A<x0 and thus it follows from the assumption

that X is progressive that

A<m ⊂ X ⇒ A<x0
⊂ X ⇒ x0 ∈ X ⇒ m ∩X 6= ∅

and thus that X is k-progressive. The fact that every k-progressive set is also

progressive is immediate from the observation that [A]<k>0 contains all singleton

subsets of A if only k > 1.
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2.1 κ-well orders

Remark 121. Obviously, if α < λ are ordinals, then for any linear order (A,<A),

every class X that is λ-progressive in (A,<A) is also α-progressive in (A,<A).

Lemma 122. If κ is a nonzero ordinal, (A,<A) is a well order and X ⊂ A, then

the following are equivalent.

1. prog(X, (A,<A))

2. progκ(X, (A,<A))

Proof. In view of the preceding remark, we only have to show that 1. above

implies 2. above. Let m ⊂ A be a nonempty set of cardinality less than κ such

that A<Am ⊂ X. If we fix am = min<A(m), then A<Aam ⊂ X and thus by

prog(X, (A,<A)) we have that am ∈ X, hence m ∩X 6= ∅.

Definition 123. For a linear order (A,<A), we say that:

1. The κ-minimum principle holds in (A,<A) if for every class X ⊂ A, there

exists a minimal subset m ⊂ X of cardinality less than κ. If the κ-minimum

principle holds in (A,<A), then we say that (A,<A) is a κ-well order. We

write woκ(A,<A) to mean that (A,<A) is a κ-well order.

2. The κ-chain condition holds in (A,<A), and write ccκ(A,<A) if there is no

descending chain of length κ in (A,<A).

3. (A,<A) satisfies κ-transfinite induction, if no proper subclass of A that is

κ-progressive exists. In that case, we write tiκ(A,<A).

Lemma 124. Let (A,<A) be a linear order, κ a cardinal and X any subclass of

A, then the following three assertions are pairwise equivalent.

1. X contains a minimal set of cardinality less than κ.

2. The class {a ∈ A | ∃x, y ∈ X (x ≤A a ≤A y)} contains a minimal subset of

cardinality less than κ.

3. The class {a ∈ A | ∃x ∈ X (x ≤A a)} contains a minimal subset of cardi-

nality less than κ.
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2 Trees and κ-well orders

Proof. Clearly, every minimal subset of X is also a minimal subset of

Y = {a ∈ A | ∃x, y ∈ X (x ≤A a ≤A y)}

and since Y is an initial segment of

Z = {a ∈ A | ∃x ∈ X (x ≤A a)}

every minimal subset of Y is also a minimal subset of Z. Thus it is enough to

prove that whenever Z has a minimal subset of a given cardinality, then so does

X. Let m = {mα | α < λ} be a minimal subset of Z with λ < κ. If m = ∅,

then this means that Z = ∅ and thus also that X = ∅ and we are done. If there

exists an element x ∈ m such that X<Ax = ∅, then x is a minimal element of

X and thus {x} is a minimal subset of X of cardinality less that κ and we are

done. In all the remaining cases, we know that for all α < λ it is the case that

X<Amα 6= ∅. Hence we can define a function f : λ→ A from

f(α) = min
C

(X<Amα).

In this case, f [λ] is the desired minimal set of X with cardinality less than κ.

Proposition 125. Let (A,<A) be any linear order. The following are equivalent:

1. tiκ(A,<A)

2. woκ(A,<A)

Proof. If (A,<A) is not a κ-well order, then there exists a subclass X of A whose

minimal subsets all have at least cardinality κ. Let Y = A\X. In order to prove

that 1. ⇒ 2. holds, it is enough to show that Y is κ-progressive. Let m ∈ [A]<κ>0

be arbitrary and consider

m ∩ Y = ∅⇒ m ⊂ X

⇒ ∃x ∈ X ∀y ∈ m (x < y)

⇒ ∃x ∈ X (x ∈ A<m)

⇒ A<m 6⊂ Y.
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2.1 κ-well orders

For the converse direction, assume that X is a κ-progressive subclass of A.

The class Y = A\X must, by the κ-minimum principle, possess a minimal subset

m ⊂ Y of cardinality less than κ. Because of A<Am ⊂ X and X is κ-progressive,

either m = ∅ or m∩X 6= ∅. In the first case ∅ is minimal in Y and thus X ⊃ A.

The latter case, however, cannot occur since any x ∈ X ∩m ⊂ X ∩Y contradicts

X ∩ Y = ∅.

Definition 126. Let α be an ordinal. The cofinality cf(α) of α is the least

ordinal β such that there exists a sequence f : β → α with the property that

f [β] is a cofinal subset of (α,∈). An ordinal α that satisfies α = cf(α) is called

a regular cardinal.

Remark 127. Note that for every ordinal α, the cofinality cf(α) of α is a

cardinal.

Proposition 128. Let (A,<A) be a linear order. The following are pairwise

equivalent:

1. ∀(A,<A)
(
woκ(A,<A) ↔ ccκ(A,<A)

)
2. ∀(A,<A)

(
woκ(A,<A) → ccκ(A,<A)

)
3. κ is a regular cardinal.

Proof. 1⇒2. Clear.

2⇒3. Assume that for some ordinal κ the equivalence displayed in 1. holds. We

consider the linear ordering (A,<A) = κ−1 = (κ,>), i.e. κ together with

its usual ordering inverted. Obviously, (A,<A) does not satisfy the κ-chain

condition. Hence, by assertion 2., (A,<A) is not a κ-well order. Therefore,

by Lemma 124, there is a coinitial (with respect to the inverted ordering

<A) subset x ⊂ κ that has no minimal subset of size less than κ. In terms

of the standard ordering of κ, this means that x is an initial segment of κ

that has no cofinal subset of size less than κ. Therefore, there is an ordinal

µ ≤ κ with cf(µ) ≥ κ, hence cf(κ) = κ.

3⇒1. Now Let (A,<A) be any linear order and let κ be a regular cardinal. We

have to prove that ccκ(A,<A)↔ woκ(A,<A) holds. If a descending chain
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2 Trees and κ-well orders

f : κ → A exists, then the set f [κ] has no minimal set of size less than

cf(κ) = κ. On the other hand, if there is a subclass X of A that has no

minimal subset of size less than κ, then we can define a function f : κ→ A

by stipulating

f(α) = min
C

(X<{f(µ)|µ<α}).

Such a function clearly violates the κ-chain condition.

Corollary 129. Let (A,<A) be a linear order. If κ is a regular cardinal, then

the κ-chain condition, the κ-minimum principle and the κ-induction principle are

pairwise equivalent.

2.2 Trees

Definition 130. We call a function f whose domain is an ordinal a sequence.

The class of all sequences is denoted by Seq. For any class X, we write Seq(X)

to mean the class of all sequences that range into X, i.e.

Seq(X) = {f ∈ Seq | rng(f) ⊂ X}.

If f, g are two sequences, then we write f⊥g to mean that f and g are incompatible

in the sense that they do not have a common extension, i.e. f ∪ g /∈ Seq.

Remark 131. Note that the subset relation on sequences corresponds to the

notion of extending a sequence by some further elements.

Definition 132. A tree is a subclass T of the class Seq that is closed under

initial sequences. Formally, this can be written as

tree(T ) ≡ T ⊂ Seq ∧ ∀f, α (f ∈ T → f � α ∈ T ).

The tree Bin = Seq({0, 1}) is called the full binary tree; its elements are referred

to as binary sequences. Any tree T ⊂ Bin is called a binary tree.

In the literature of set theory (cf. Definition 5.1 in [Kun80]), trees are usually

defined as pairs (T,<T ) where <T is a partial ordering of T such that for each
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2.2 Trees

x ∈ T , the set {y ∈ T | y <T x} is well ordered. To see that our and the usual

tree notions are interchangeable, we provide a uniform way to construct a tree T̂

from a given tree (T,<T ) and a function F : T → T̂ ⊂ Seq that satisfies

∀x, y ∈ T (x <T y ↔ F (x) ( F (y)).

Clearly, if T ⊂ Seq is a tree, then the pair (T,() is a tree in the usual sense. Vice

versa, given any “usual tree” (T,<T ), then we obtain a tree T̂ if we enumerate

the branches of the original tree, i.e. by stipulating

f ∈ T̂ ⇔ f ∈ Seq(T ) ∧ ∀α ∈ dom(f)
(
T<T f(α) = f [α]

)
.

Note that for every f ∈ T̂ and all ordinals α, β ∈ dom(f), we have that α < β if

and only if f(α) <T f(β). The function F : T → T̂ can be obtained from

x 7→ The uniquely determined order isomorphism fx between

({y ∈ T | y <T x}, <T ) and its order-type.

Definition 133. 1. For any sequences f, g ∈ Seq we define the concatenation

f a g of f and g as

(f a g)(α) =

f(α) if α < dom(f)

g(β) if α = dom(f) + β ∧ β < dom(g).

Note that dom(f a g) = dom(f) + dom(g). We will also use the abbrevia-

tion f a x to mean f a {〈0, x〉}.

2. Let x be any set. We write (x)α = {〈µ, x〉 | µ < α} to mean the constant

function with domain α and range {x}.

3. Let T be a tree. We write Lv(T, α) = {f ∈ T | dom(f) = α} to mean the

αth level of T . The height H(T ) of the tree T is the least ordinal λ such

that Lv(T, λ) = ∅ if such an ordinal exists and the class On of all ordinals

otherwise.

4. For any subclass X of Seq, we write Tr(X) = {f ∈ Seq | ∃h ∈ X (f ⊂ h)}
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2 Trees and κ-well orders

to mean the least tree that contains all of X.

5. An (tree-)embedding of a tree T into a tree H is a mapping E : T → H

such that

∀f, g ∈ T (f ( g ↔ E(f) ( E(g))

holds. An embedding that is onto we shall call an isomorphism of the

respective trees.

Remark 134. Note that for any tree T and any subclass X of T , it is the case

that Tr(X) is the least subtree of T that contains X.

As in our setting we have a global well ordering, we can further simplify our

investigations of trees by considering only ordinal trees, that is trees that are

subclasses of Seq(On).

Lemma 135. If T is a tree and F : V → On is any bijection, then the class

{F ◦ f | f ∈ T} ⊂ Seq(On) is a tree that is isomorphic to T by dint of the

mapping f 7→ F ◦ f .

Proof. The fact that the proposed mapping is indeed an isomorphism follows

directly from the assumption that F is bijective.

Definition 136. Let κ be an cardinal. A tree T is κ-branching if for every f ∈ T ,

the cardinality of the set {x | f a x ∈ T} is less than κ. Similarly, a tree is called

set branching if for every f ∈ T , the class {x | f a x ∈ T} is a set.

Proposition 137. A tree T is set branching if and only if all its levels are sets.

Proof. Let T be any tree. If all the levels of T are sets, then every class of the

form {x | f a x ∈ T} where f ∈ T is a subclass of the set Lv(T, dom(f) + 1) and

hence itself is a set. For the converse direction, assume that T is set branching.

We prove by induction on α that Lv(T, α) is a set. For the successor case, assume

that α = β + 1. We have that

Lv(T, α) = {f ∈ T | dom(f) = β + 1} = {f a x ∈ T | dom(f) = β}

= {f a x | f ∈ Lv(T, β) ∧ f a x ∈ T}

=
⋃

f∈Lv(T,β)

{f a x | f a x ∈ T},
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2.2 Trees

which by induction hypothesis is a set. In case that α is a limit ordinal, note

that a function f : α → V can only be an element of T (and hence of Lv(T, α))

if all the functions {f � β | β < α} already belong to T . Hence, the mapping

f 7→ {f � β | β < α} is clearly an injection of Lv(T, α) into the powerclass of⋃
β<α Lv(T, β). Since the latter is a set by induction hypothesis, the claim is

proved.

Definition 138. Let T be a tree and let λ be an ordinal. A branch of length λ,

also called a λ-branch, of T is a function f : λ→ V such that ∀α < λ (f � α ∈ T ).

A path through T is a function F : On→ V such that ∀α (F � α ∈ T ).

Naturally, all the trees under consideration in arithmetic are subsets of Seq(ω).

It is a peculiarity of the arithmetic setting (assuming arithmetical comprehension)

that for any tree T , the statement that every element of T can be properly

extended is a sufficient condition that there is an infinite branch in T (note that

this within arithmetic becomes the statement that T has a path). To see that,

let T be a tree that satisfies the aforementioned condition. We can then define

an infinite branch f : ω → ω by recursion on the natural numbers as given from

f(n) = min{k ∈ ω | ∃s ∈ T (f � n ( s) ∧ s(n) = k}.

The following example is to illustrate that, in this respect, the situation is

quite different in set theory. We explicitly give a tree in which every element

can be arbitrarily extended within the tree, but there is no path through the

tree nevertheless. In a wider sense, this example seems to give emphasis for our

impression that in set theory it seems much harder to give local conditions that

imply that a given tree has a path than in arithmetic.

Example 139. Let T be the tree that contains exactly the functions of the form

(α0)λ0 a (α1)λ1 a · · · a (αn)λn

with n ∈ ω and α1 < α2 < · · · < αn and for all i ≤ n the constants αi are greater

than λi. Figuratively, the elements of T resemble stairs whose treads are at most

as long as their height over ground. Note that given any element f of T and any
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2 Trees and κ-well orders

ordinal γ, there is always a function h ∈ T that has length (at least) γ and that

extends f . For example, if f is

(α0)λ0 a (α1)λ1 a · · · a (αn)λn ,

then pick h to be the function

h = (α0)λ0
a (α1)λ1

a · · · a (αn)λn a (αn + γ + 1)λn+γ .

Note that despite the fact that every element of T has arbitrary long extensions,

we can show that T has no path. By way of contradiction, assume that T has a

path F : On→ On. If rng(F ) is finite, then there must exist a maximal element

α in rng(F ), since all elements of T are monotonously increasing sequences, this

implies that F is of the form g a (α)On for some suitable initial sequence g,

contradicting ∀γ (F � γ ∈ T ). If otherwise the range of F is infinite, then we can

define an infinite increasing sequence of ordinals {γi | i ∈ ω} by

γi = min{α | |rng(F � α)| > i}.

Stipulating γ = sup{γi | i ∈ ω} it follows that F � γ has a range of infinite

cardinality, in contradiction to F � γ ∈ T .

Comparing to the situation as it is in the setting of arithmetic, i.e. when

speaking of trees with height less or equal than ω, where it is a sufficient condition

for a tree to have a branch of length ω that every element of the tree can be

extended by one further step. The previous example tells us that in the set

theoretic environment, the situation is more complicated; there are trees that do

not have paths but where but still every element of the tree can be extended

arbitrarily far.

Now we turn our attention to the so called Kleene Brouwer ordering, a linear

ordering of the class Seq that allows us to connects trees and linear orders in a

beneficial way. The Kleene Brouwer ordering will be an important tool in our

discussion of the Π1
1 completeness of weak well orders.

Definition 140. The Kleene Brouwer ordering <KB is the linear ordering of
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Seq given from

f <KB g ⇔ g ( f ∨ ∃α (α ∈ dom(f) ∩ dom(g) ∧ f � α = g � α ∧ f(α) C g(α)).

Given a tree T , we say that <KB ∩(T × T ) is the Kleene Brouwer ordering of

T . We will write <T or KBT , whichever makes the respective text component

more readable, to mean the Kleene Brouwer ordering of T .

Remark 141. For any tree T , the pair (T,<T ) is a linear order.

Proposition 142. Let κ be any cardinal. For any tree T , the following implica-

tions hold:

ccκ(T,<T )⇒ T has no κ-branch⇒ woκ(T,<T ).

Proof. The first implication follows from the fact that if b : κ→ T is a branch of

length κ, then the mapping α 7→ b � α induces a descending chain of length κ in

(T,<T ), violating the κ-chain condition. For the second implication, assume that

(T,<T ) is not a κ-well order. By Lemma 124, we can assume that there exists

a coinitial subclass (and thus a subtree) X of T that has no minimal subset of

cardinality less than κ. Let ϕ(f, x) be a formula that signifies

x = min
C
{y | f a y ∈ X}.

From corollary 74 it follows that there exists a function F : On → V with the

property that ∀α (∃xϕ(F � α, x) → ϕ(F � α, F (α))). If we can prove for all

ordinals α < κ that F � α ∈ X holds, then F � κ is a branch of length κ in T and

we are done. By way of contradiction, assume that µ is the least ordinal less than

κ such that F � µ /∈ X. It follows that y = {F � ν | ν < µ} ⊂ X. If there is a

sequence f such that f ∈ X<y, then f cannot be a common and proper extension

of all the elements of y, as otherwise f extends F � µ, contradicting the fact that

X is closed under initial segments. Thus, there must be an ordinal θ < µ such

that F � θ = f � θ and f(θ) C F (θ); this cannot be the case since f ∈ X and the

way we build F . Therefore, X<y is empty and thus y is a minimal subset of X

of cardinality less than κ, contradicting our choice of X.
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Corollary 143. If κ is a regular cardinal and T is any tree, then the following

are equivalent:

1. There is no branch of length κ in T.

2. The Kleene Brouwer ordering <T is a κ-well ordering of T .

Proof. This is a direct consequence of the κ-chain condition and κ-weak well

orderedness being equivalent for regular cardinals κ.

König’s Lemma and its relatives in class theory

The standard formulation of König’s Lemma is the assertion that every finitely

branching infinite tree posseses an infinite branch. We call this principle König’s

Lemma for ω (cf. Proposition 152). The principle which plays the role that

König’s Lemma for ω plays in the arithmetical setting, is what we call König’s

Lemma for On (cf. Definition 153); the assertion that every set branching tree

that is a proper class has a path. Further, in order to obtain the weak versions

of König’s Lemma for ω and On, as usual, the respective principles are restricted

to binary trees. While König’s Lemma in the arithmetical setting is provable

in the theory ACA0, König’s Lemma for On is not provable in our base theory

NBG (cf. Remark 155). While in general it is not possible to reduce the question

whether or not a given tree has a path to the same question about some specific

binary tree, we present a construction that transforms an arbitrary tree into a

binary tree (cf. Definition 144), such that the original tree has a path if and only

if the binary tree has a particular kind of path (cf. Proposition 150). Moreover, if

the construction is initialized with a set branching tree, then we obtain that the

original tree has a path if and only if the binary tree has the path (cf. Proposition

151). As a result, we can prove that the König’s Lemma for On and weak König’s

Lemma for On are equivalent (cf. Theorem 154). Finally, we will introduce the

theory sΠ1
1-Ref an show that this theory is strong enough to prove König’s Lemma

for On (cf. Theorem 164).

Definition 144. We define a canonical embedding

B : Seq(On)→ Bin
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of the tree Seq(On) into1 the tree Bin by recursion on the levels of Seq(On) as

follows:

B(f) =


∅ if dom(f) = 0

B(f � β) a (1)f(β) a (0)1 if dom(f) = β + 1⋃
α<dom(f) B(f � α) if dom(f) is a limit ordinal.

Remark 145. Informally, for any sequence f ∈ Seq, the sequence B(f) takes

the form

B(f) = 〈1, · · · , 1︸ ︷︷ ︸
f(0)

, 0, 1, · · · , 1︸ ︷︷ ︸
f(1)

, 0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
f(α)

, 0, · · · 〉.

Lemma 146. For any tree T ⊂ Seq(On), the function B � T is an embedding of

T into Bin.

Proof. Let T be a tree as in the claim. First, we prove that for any two elements

f, g ∈ T , we have that

f ⊂ g → B(f) ⊂ B(g). (1)

Proceed by induction on the domain of g. Let λ be the domain of g. Without loss

of generality, assume that f = g � β for some β < λ. If λ = α + 1 is a successor

ordinal, then it follows from the induction hypothesis that

B(f) = B(g � β) ⊂ B(g � α)

⊂ B(g � α) a (1)g(α) a (0)1 = B(g � α+ 1) = B(g).

For the case where λ = dom(g) is a limit ordinal and f = g � β with β < λ, we

get that

B(f) = B(g � β) ⊂
⋃
µ<λ

B(g � µ) = B(g).

1To see that B maps, as indicated above, sequences to sequences, note that at the successor
stages clearly sequences are mapped to sequences and for the limit stages consider the first
part in the proof of the next lemma, where it is shown that B preserves the subset relation.
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Next, we prove that for any f, g ∈ T , we have that

f⊥g → B(f)⊥B(g). (2)

Let f, g ∈ T be incompatible and let α be the least ordinal with f(α) 6= g(α).

Without loss of generality, we can assume that f(α) < g(α). We have that

B(f � α+ 1) = B(f � α) a (1)f(α) a 0 = B(g � α) a (1)f(α) a 0

and

B(g � α+ 1) = B(g � α) a (1)g(α) a 0.

Hence, it follows that

B(f)(dom(B(f � α) + f(α))) = 0 6= 1 = B(g)(dom(B(f � α) + f(α))).

Therefore, B(f)⊥B(g). Now we are ready to show that

B(f) ( B(g)→ f ( g (3)

holds for all sequences f, g ∈ T . We prove the contrapositive. We assume that

¬(f ( g) holds, then either g ⊂ f or f⊥g. Applying (1) and (2) for the respective

cases, we get that B(g) ⊂ B(f) or B(g)⊥B(f), therefore, it is the case that

¬B(f) ( B(g). Regarding (1) and (3), we only have to verify that the properness

of inclusions is preserved by B to finish the proof. Let f ∈ T and α < dom(f).

To see this, consider B(f � α) ( B(f � α+ 1) ⊂ B(f).

Definition 147. A sequence f ∈ Seq is called good if it is not terminating in a

sequence of 1’s, that is if

∀α ∈ dom(f)∃β ∈ dom(f) (α ≤ β ∧ f(β) 6= 1)

holds. Similarly, a function F : On→ V is good if

∀α ∃β ≥ α (F (β) 6= 1).
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Lemma 148. Let T be any tree and let f be an element of Tr(B[T ]). We have

the following equivalence:

f ∈ B[T ]⇔ f is good.

Proof. Clearly, any element of the image of B is good. We have to prove that

whenever f ∈ Tr(B[T ]) is good, then there is a function g ∈ T such that f = B(g).

Since f ∈ Tr(B[T ]), there must exist an element h ∈ T such that f ⊂ h′ = B(h).

Without loss of generality, we assume that h is of minimal domain with the

aforementioned property. If dom(h) = δ+1 is a successor ordinal, it follows from

the minimality of the domain of h that f 6⊂ B(h � δ). Since f and B(h � δ)

have a common extension, this implies that they are compatible and thus that

B(h � δ) ⊂ f . In particular, we get that

B(h � δ) ⊂ f ⊂ B(h) = B(h � δ) a (1)h(δ) a 0.

Together with the fact that f is good, this implies that B(h) = f . Now assume

that dom(h) = λ is a limit ordinal. Because B preserves the subset relation, we

know that for every ordinal α < λ the function B(h) is a common extension of

B(h � α) and f . Thus, we have that

∀α < λ (B(h � α) ⊂ f ∨ f ⊂ B(h � α)).

This implies that for all α < λ the assumption that B(h � α) 6⊂ f contradicts

the minimality of dom(h), we conclude that ∀α < λ (B(h � α) ⊂ f) and therefore

that

B(h) =
⋃
α<λ

B(h � α) ⊂ f

holds. Thus we have B(h) = f as desired.

Lemma 149. If T ⊂ Seq(On) is a set branching tree, then Tr(B[T ]) has only,

if any, good paths.

Proof. Let F be a path through Tr(B[T ]). We have to show that F is good.

Suppose that F is not good and let α be the least ordinal with ∀β > α (F (β) = 1).
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From the minimality of α, it follows that F � α is a good element of Tr(B[T ]).

Applying the previous lemma, we get that there exists a sequence f ∈ T with

B(f) = F � α. Since T is set branching, there exists an ordinal κ such that

κ > sup{µ | f a µ ∈ T}. Since F is a path through Tr(B[T ]), it is the case that

F � (α + κ) ∈ Tr(B[T ]), hence there must exist an element g ∈ T that satisfies

F � (α+ κ) ⊂ B(g). Summarizing, we have that

B(f) = F � α ( F � α a (1)κ = F � (α+ κ) ⊂ B(g)

and in regard of the fact that B is an embedding, that f is a proper initial segment

of g. Therefore, we can conclude that

B(f) a (1)g(dom(f)) a 0 = B(g � dom(f)) a (1)g(dom(f)) a 0

= B(g � (dom(f) + 1)) ⊂ B(g).

As the functions

F � α︸ ︷︷ ︸
B(f)

a (1)κ and B(f) a (1)g(dom(f)) a 0

have the common extension B(g), they must be compatible. Since

B(f) a (1)g(dom(f)) a 0 6⊂ B(f) a (1)κ,

this implies that

B(f) a (1)κ ⊂ B(f) a (1)g(dom(f)) a 0.

From this, it follows that κ ≤ g(dom(f)), which contradicts our choice of κ since

f a g(dom(f)) ∈ T and κ > sup{µ | f a µ ∈ T}.

Proposition 150. A tree T ⊂ Seq(On) has a path if and only if the tree Tr(B[T ])

has a good path.

Proof. Let G be a good path through Tr(B[T ]). Since G is good, the class

X = {α | G � α is good in Tr(B[T ])} is unbounded in On. Hence, the preimage
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Y of {G � α | α ∈ X} under B is a proper class of pairwise compatible functions

in T . Therefore, ∪Y is a path through T . For the reverse implication, let F be a

path through T . The subtree S = {F � α | α ∈ On} of T has a path, hence also

Tr(B[S]) has a path. Since clearly S is a set branching tree, we can apply the

previous lemma to get that the path through T (B[S]) is a good path.

The following theorem reduces the question whether or not any set branching

tree T of ordinal sequences (and thus any set branching tree) has a path to the

question whether or not the binary tree Tr(B(T )) has a path. This observation

will be useful when we reduce König’s Lemma to the later introduced principle

of Π1
1 reflection.

Theorem 151. For any set branching tree T ⊂ Seq(On), we have the following

equivalence:

T has a path ⇔ Tr(B[T ]) has a path.

Proof. Since

T has a path ⇔ Tr(B[T ]) has a good path

⇔ Tr(B[T ]) has a path,

the claim follows immediately from Lemma 149 and Proposition 150.

Proposition 152 (König’s Lemma for ω). Every ω-branching tree is either finite

or has an infinite branch.

Proof. Let T be ω-branching and infinite. We define a sequence f ∈ Seq(ω)

recursively as follows:

f(n) = min{k ∈ ω | ω ≤ |{h ∈ T | (f � n a k) ⊂ h}|}.

This function is well defined since there is no finite partition of an infinite set

into finite parts. Clearly, f is an infinite branch of T .

The generalization of König’s Lemma from ω to arbitrary ordinals is false.

There are Aronszajin trees, that is trees of height ω1 = min{α | |α| > ω} whose
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levels are all at most countable that have no uncountable branches. For a con-

struction of an Aronszajin tree, see Theorem 9.16 in [Jec03]. An ordinal to which

König’s Lemma generalizes is called weakly compact. For a detailed exposition on

weakly compact cardinals and other large cardinals see [Kan09] or II.17 in [Jec03].

Definition 153. The König’s Lemma for On is the assumption that every set-

branching tree is either a set or has a path. We will denote this assumption by

KL+. The principle WKL+, weak König’s Lemma for On, is the statement that

every binary tree is either a set or has a path.

Theorem 154. The principles WKL+ and KL+ are equivalent over NBG.

Proof. Let T be any set branching tree. Without loss of generality, let T be a

subclass of Seq(On). Assuming WKL+, we can conclude:

T has a path ⇔ Tr(B[T ]) has a path

⇔ Tr(B[T ]) is a proper class

⇔ T is a proper class.

Remark 155. A weakly compact cardinal is a cardinal κ such that (Vκ, Vκ+1)

is a model of NBG + KL+. Weakly compact cardinals are well known and have

been thoroughly studied (e.g. [Jec03] Chapters 9 and 17 and [Kan09]). Since not

every inaccessible cardinal is weakly compact (cf. [Jec03] Chapter 17), but for

every inaccessible cardinal λ it is the case that (Vλ, Vλ+1) is a model of MK, the

principle WKL+ is not provable from MK set theory.

After we have seen that proving (W)KL+ is far beyond the capabilities of NBG,

we briefly mention two principles which both imply KL+ over NBG. The first

is called weak compactness principle (cf. Definition 158) and the second is the

(strict)Π1
1 reflection principle (cf. Definition 162). Apart from our preparation

in establishing the equivalence between KL+ and WKL+, the proofs (cf. Theo-

rems 159 and 164) that show that these principles entail KL+ are a straightfor-

ward adaption of standard set theory proofs (cf. Theorems II.2.17.13 and II.17.18

in [Jec03]).

Definition 156. The infinitary language LOn,ω is given from the usual language

L of logical symbols together with the following parts:
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1. For each ordinal α a variable xα.

2. Relation, function and constant symbols.

3. Infinitary connectives
∨
α<λ and

∧
α<λ for ordinals α and λ.

Formulas and terms of the language LOn,ω are built up as in first order logic with

additional formulas of the type
∨
α<κ σα and

∧
α<κ σα for any set {σα | α < κ}

of formulas.

Definition 157. Let L be a subclass of the language LOn,ω. A model for L is a

pair M = (A, I) where

1. A is a class

2. I is a function that maps the variables, constants, relations symbols and

functions of L to elements, relations and functions on A.

For a model M = (A, I) of L and a symbol R of L we also write RM for I(R). The

interpretation of terms of the language L and the satisfaction relation |= is defined

as in the case of finitary logic with the additional stipulation that satisfaction of

infinitary formulas is defined such that formulas of the form
∧
α<κ σα are satisfied

if for all α < κ the formula σα is satisfied, while the formula
∨
α<κ σα is satisfied

if there exists an ordinal α < κ such that σα is satisfied.

Definition 158. The weak compactness principle for On is the assumption that

every class of LOn,ω sentences whose subsets all have models, has itself a model.

Theorem 159. König’s Lemma on On, KL+, is provable from NBG together

with the weak compactness principle.

Proof. We assume the weak compactness principle. Let T be a proper class and

a set branching tree. We consider the LOn,ω language with a constant symbol

for every element of T and a unary predicate symbol P . We consider the set

Σ = Σ1 ∪ Σ2 where

Σ1 = {¬(P (f) ∧ P (g)) | f, g ∈ Seq ∧ (f⊥g)}
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and

Σ2 = {
∨

f∈Lv(T,α)

P (f) | α ∈ On}.

Whenever x is a subset of Σ, we can find an ordinal λ such that whenever the

sentence
∨
f∈Lv(T,α) P (f) is an element of x, then α < λ. Now fix a subset x of

Σ and an ordinal λ as described. Since in a set branching tree all the levels are

sets, and since T is a proper class, the height of T is On. Thus, we can find a

sequence f ∈ T with dom(f) = λ. We claim that if we fix I(P ) = {f � α | α < λ}
and I(f) = f for all elements of T , then (T, I) is a model of x. Since all elements

of I(P ) are pairwise compatible, we know that every element of Σ1 is satisfied

in (T, I). On the other hand, if an element of x is not in Σ1, then it is of the

form
∨
f∈Lv(T,α) P (f) for some α < λ, which is satisfied because f � α ∈ I(P )

and f � α ∈ Lv(T, α). Applying the weak compactness principle, we conclude

that the class Σ has itself a model M. We find a path through T by stipulating

F = ∪{f ∈ T | PM(fM)}. Since M is a model of Σ1, we know that F is

a function, thus, to see that F is a path through T , we have to verify that

dom(F ) = On. For every ordinal α, we know that PM(fM) holds for some

f ∈ Lv(T, α) and therefore that f ⊂ F , i.e. dom(F ) ≥ α.

Definition 160. We define the relativization ϕU of a formula ϕ (not containing

U as a variable) to any class U by induction on the complexity of ϕ.

1. Quantifier free formulas remain unchanged when relativized to U .

2. Formulas of the form ϕ1 ∧ ϕ2 relativize to ϕU1 ∧ ϕU2 .

3. Formulas of the form ϕ1 ∨ ϕ2 relativize to ϕU1 ∨ ϕU2 .

4. Formulas of the form ϕ1 → ϕ2 relativize to ϕU1 → ϕU2 .

5. Formulas of the form ¬ϕ relativize to ¬(ϕU ).

6. Formulas of the form ∀xϕ and ∃xϕ relativize to ∀x (x ∈ U → ϕU ) and

∃x (x ∈ U ∧ ϕU ) respectively.

7. Formulas of the form ∀X ϕ and ∃X ϕ relativize to ∀X (X ⊂ U → ϕU ) and

∃X (X ⊂ U ∧ ϕU ) respectively.
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Definition 161. Formulas of the form ∀X σ(X), where σ(X) is a Σ0
1 formula

are called strict Π1
1 formulas. We will use the term sΠ1

1 to denote the collection

of strict Π1
1 formulas.

Definition 162. Let F be a collection of formulas. The F reflection principle

F-Ref is the assumption that for every formula ψ(X1, . . . , Xn, x1, . . . , xk) in F
and all sets ~x = x1, . . . , xk and all classes X1, . . . , Xn, it is the case that

ψ(X1, . . . , Xn, ~x)→ ∃α (lim(α) ∧ ~x ∈ Vα ∧ ψVα(X1 ∩ Vα, . . . , Xn ∩ Vα, ~x)).

For a more detailed analysis of the theories Π1
1-Ref and sΠ1

1-Ref and their com-

parison respectively, the reader is referred to 3.4 and 3.5 in [Sal05] and to [Glo76].

Proposition 163. In the theory NBG+sΠ1
1-Ref, it is provable that for any binary

tree T we have that

T has a path ⇔ ∀α (Lv(T, α) 6= ∅).

Proof. We work in the theory NBG+sΠ1
1-Ref and prove that if T is a binary tree

with no path, then there must exist an ordinal α such that Lv(T, α) = ∅. Let

ψ(T ) be the statement that T has no path, i.e.

ψ(T ) ≡ ∀F ∃α (F � α /∈ T ).

Since the clauses fun(f), ord(x) and x = dom(y) can be expressed by ∆0
0 formulas,

the statement ψ(T ) can be reformulated as a sΠ1
1 formula as follows:

∀F ∃g, α (g ⊂ F ∧ dom(g) = α ∧ g /∈ T ).

If T is a binary tree with no path, then we can apply the reflection principle to ob-

tain the existence of a nonzero limit ordinal λ such that ψVλ(T ∩Vλ). Considering

that T is a binary tree, we obtain that for any element f of T that

dom(f) < λ⇔ f ∈ Vλ
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and thus that

T ∩ Vλ =
⋃
α<λ

Lv(T, α).

Hence, we conclude that

ψVλ(T ∩ Vλ)⇔
(
∀F ∃α (F � α /∈ T ∩ Vλ)

)Vλ
⇔ ∀f ∈ Vλ+1 ∃α < λ (f � α /∈

⋃
µ<λ

Lv(T, µ))

⇔ ∀f ∈ λ2∃α < λ (f � α /∈ T )

and thus that Lv(T, λ) = ∅. For the converse direction, note that if F is a path

though a tree T , then F � α ∈ Lv(T, α) 6= ∅ for all ordinals α.

Theorem 164. KL+ is provable in the theory NBG + sΠ1
1-Ref.

Proof. In view of Theorem 154, it is enough to prove WKL+ within the theory

NBG + sΠ1
1-Ref. Let T ⊂ Bin be a binary tree. If T is a proper class, then all

its levels must be nonempty. As we have seen in Proposition 163, from this it is

provable in NBG + sΠ1
1-Ref that T has a path.

Summary

We introduced the notion of κ well orders together with the principle of κ-

induction and the κ-minimum principle. In Proposition 128 we obtained a charac-

terization of regular cardinals in terms of κ-well orders and the κ-chain condition.

In the second part of the past section, we fixed the notion of trees in set theory.

In Example 139, we illustrated that in set theory, as opposed to arithmetic, it is

much more complicated distinguish trees that have a path from those that do not.

In line with this finding, we observed in Remark 155 that König’s Lemma (for On)

is a much stronger assertion in set theory than it is in arithmetic. Subsequently,

we reduced König’s Lemma to its weak form over NBG (cf. Theorem 154). This

preparation enabled us to adopt the standard arguments (e.g. Theorem II.17.18

and Theorem II.17.13 in [Jec03]) in order to give upper bounds for the strength

of KL+ in terms of strict Π1
1 reflection on limit ordinals (cf. Theorem 164) and

the weak compactness principle (cf. Theorem 159).
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Weak well orders are introduced to be the class theoretic counterpart of countable

well orders in arithmetic. While weak well orders are a natural translation of well

orders with respect to our doctrine of translating numbers as sets and (countable)

sets as proper classes, they also exhibit similar technical features as well orders in

arithmetic. The most striking resemblance is a set theoretic analog of Kleene’s Σ1
1

normal form lemma (cf. Theorem 172). Following our exposition of the normal

form lemma, it is investigated to what extent this result enables us to preserve

some of the “landscape” of arithmetic to our setting of sets and classes.

Following our framework of the first chapter, a weak well order is an “On-well

order”. In the same fashion as before, we introduce weak well orders by providing

three pairwise equivalent conditions: an induction principle, a descending chain

condition and a minimum principle respectively. Also, the notion of a superpro-

gressive subclass of linear orders is based on the respective notion fixed for κ-well

orders before.

Before we turn our attention to investigate weak well orders, let us briefly recall

the situation as it presents itself in arithmetic. The notion of a progressive subset

X of a (countable) linear ordering (A,<A) is given from the condition

∀a ∈ A (A<Aa ⊂ X → a ∈ X).

This condition, however, is equivalent to saying that for every nonempty finite

subset m of A, the statement

A<Am ⊂ X → X ∩m 6= ∅

is satisfied. This is the formulation that we will translate to our setting in order

to obtain the notion of a superprogressive class and consequently the concept of
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a weak well order.

Definition 165. If (A,<A) is a linear order and X is a subclass of A, then we

call X a superprogressive subclass of A if, for all nonempty subsets m of A,

A<Am ⊂ X → X ∩m 6= ∅

holds. We write prog+(X, (A,<A)) to mean that X is a superprogressive subclass

of the linear order (A,<A).

Remark 166. A subclass X ⊂ A is exactly then superprogressive in (A,<A) if

X is κ-progressive for all ordinals κ.

Lemma 167. Let (A,<A) be a linear order. The following properties are all

equivalent for (A,<A).

1. (Weak induction principle) No proper and superprogressive subclass of A

exists.

2. (Weak chain condition) No strictly descending function F : On→ A exists.

3. (Weak minimum principle) For every subclass X ⊂ A, there exists a set

m ⊂ X that is minimal in X.

Proof. Let (A,<A) be a linear order.

1⇒2: By contrapositive, assume that a strictly decreasing function F : On→ A

exists. Use elementary comprehension to define X = A\rng(F ). Let m ⊂ A be a

nonempty set such that A<Am ⊂ X. Note that F is one-to-one; hence, the inverse

image F−1(m) = {α | F (α) ∈ m} of m must be bounded in On by an ordinal λ.

If X ∩m was empty, then m ⊂ rng(F ); hence, F [F−1(m)] = m. Therefore, if we

pick β > λ, it follows that F (β) <A m in contradiction to the choice of m. This

proves that X ∩m cannot be empty and thus that X is superprogressive, i.e. we

have found a superprogressive subclass of A that is clearly a proper subclass.

2⇒3: By contrapositive, let X ⊂ A be such that there exists no minimal subset

in X. Note that for every subset m ⊂ X, this implies that X<Am 6= ∅. Define a

strictly descending function F : On→ A by recursion on the ordinals as follows:

F (λ) = min
C

(X<A{F (µ)|µ<λ}).
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3⇒1: By contrapositive, assume that X ( A is superprogressive. If A\X has a

minimal subset m, then A<Am ⊂ X, and because X 6= A, also m 6= ∅. From the

assumption that X is superprogressive it follows that X ∩m 6= ∅ contradicting

the choice of m. Hence, A \ X has no minimal subset and therefore the third

condition is violated.

Definition 168. A linear order that satisfies any, and thus all, of the properties

presented in Lemma 167, is called a weak well order. We write wwo(A,<A) to

mean that (A,<A) is a weak well order.

Remark 169. The definition of progressive subsets cannot be altered from

A<Am ⊂ X → m ∩X 6= ∅

for all nonempty finite sets m, to

A<Am ⊂ X → m ⊂ X

for the same range of sets m. Otherwise, any linear ordering with some least

element, for example ω + 1 with the natural ordering inverted, would satisfy

transfinite induction, i.e. the nonexistence of proper yet progressive subsets.

Similarly, the weak induction principle is not (and should not be) equivalent to

∀X
(
∀m ⊂ A (A<Am ⊂ X → m ⊂ X)→ A ⊂ X

)
, (3.1)

since every linear ordering that contains a minimal subset (of the whole field)

satisfies already equation (3.1).

Proof. Let (A,<A) be any linear order with minimal subset m0. Let X be a

subclass of A that satisfies the requirement

∀m ⊂ A (A<Am ⊂ X → m ⊂ X).

Now pick any a ∈ A and consider the set m1 = m0 ∪ {a}. Since m0 is minimal

in A, so is m1 and we have that A<Am1 = ∅ ⊂ X. Therefore, it follows from our

assumption on X that m1 ⊂ X and hence a ∈ X.
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Lemma 170. If <A is a linear ordering of A such that every coinitial subclass

X of A contains a minimal subset, then (A,<A) is already a weak well order.

Proof. The proof is very similar as in the case of κ-well orders. Let (A,<A) be a

linear order as in the statement and let X be any proper and nonempty subclass

of A. Since A<AX is initial in A, by assumption, there must exist a set m that

is minimal in Y = A \ A<AX = {a ∈ A | ∃x ∈ X (x ≤A a)}. Assume that

m = {mα | α < λ}. We pick any a0 ∈ X and define for each ordinal α < λ the

set xα as

xα =

minC(X≤mα) if X≤mα 6= ∅

a0 else

and set x = {xα | α < λ} ⊂ X. To see that x is a minimal subset of X, let a ∈ X
be arbitrary. Since a is an element of Y , there exists an ordinal α < λ such that

mα ≤ a. Since mα ∈ Y≤mα , it follows from the minimality of X in Y that there

exists a b ∈ Y≤mα ∩X = X≤mα . Hence, xα ≤ mα ≤ a.

3.1 The logical complexity of weak well orders

It is one of the fundamental results in arithmetic that in the subsystem ACA0

of second order arithmetic the predicate wo(X), which says that X is a well

ordering of the integers, is provably a Π1
1 complete predicate (e.g. Theorem II.1.8

in [Pro05] or Lemma V.1.8 in [Sim98] ). In particular, this implies that it is

not expressible by any Σ1
1 formula that a given linear ordering is well founded

(cf. Theorem 7 and Theorem II.1.9 in [Pro05] and Theorem V.1.9 in [Sim98]).

This fact is of pivotal importance for many of the results that have been obtained

from the comparison of meta predicative subsystems of second order arithmetic.

In particular, it is the rudiment of any argument that involves pseudo hierarchies.

The proof in arithmetic that wo(X) is a Π1
1 complete predicate is based on

the fact that a tree is well founded if and only if it is well ordered by its Kleene

Brouwer ordering. In order to show this, one can1 use König’s Lemma (e.g.

Lemma V.1.3 in [Sim98]) which is at disposal in ACA0. In set theory, as we have

1However, there is no urge to use König’s Lemma since the proof presented here works also in
arithmetic.
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3.1 The logical complexity of weak well orders

observed before, the situation regarding König’s Lemma is quite different and it

is far from being at our disposal in the base theory. However, we can prove the

equivalence of a tree not having a path and of it being weakly well ordered by

its Kleene Brouwer ordering by applying our weak minimum principle. We can

therefore avoid the use of König’s Lemma and, as a consequence, we will be able

to prove the Π1
1 completeness of wwo(X) in the theory NBG.

Proposition 171. It is provable in NBG that for every tree T , the equivalence

T has a path ⇔ KBT is not a weak well ordering of T

holds.

Proof. The proof is very similar to the proof of Proposition 142, however, since

being a weak well order does not imply being a κ-well order for some κ, we cannot

directly apply the proposition. First assume that T has no path. Let X be any

coinitial subclass and thus a subtree of T . We prove that X contains a minimal

subset, which in view of Lemma 170 is sufficient to prove that the Kleene Brouwer

ordering of T is a weak well order. We apply Corollary 74 to the formula

ϕ(f, x) ≡ x = min
C
{y | f ∪ 〈dom(f), y〉 ∈ X}

to obtain a function F : On → V that maps any α to the C-least set so that

F � α + 1 ∈ X holds, whenever α is such that there exists any set x with the

property that F � α a x ∈ X. Since T has no path, neither does X and we can

define

λ = min{α | F � α+ 1 /∈ X}.

In case that F � λ ∈ X it is clear that F � λ is the least element of X with

respect to the Kleene Brouwer ordering of T and we are done. If F � λ /∈ X, then

λ must clearly be a limit ordinal. We prove that m = {F � α | α < λ} is minimal

in X. Since X is a subtree of T , it is clear that m ⊂ X. Let h ∈ X be arbitrarily

chosen. Since X is a tree and ∪m = F � λ /∈ X, there must be an ordinal α < λ

such that F � α 6⊂ h. If h ⊂ F � α, then F � α ≤T h and we are done. Otherwise

let β be the least ordinal such that F � α(β) 6= h(β); from the definition of F , it

follows that F � α(β) C h(β) and we are done. The converse direction is straight
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forward as every path induces a descending chain in (T,KBT ).

Theorem 172 (Σ1
1 normal form lemma). Fix a bijective function Ω : V → On

and define for all ordinals α the set Ωα = {x | Ω(x) < α}, further write Xα to

mean X ∩ Ωα. If ϕ( ~X, ~z) is a Σ1
1 formula (with all free variables shown), then

we can find a ∆1
0(Ω) formula, that is an elementary formula that contains the

additional constant Ω, ϕ∗( ~X, f, ~z) such that

∀ ~X, ~z
(
ϕ( ~X, ~z)↔ ∃F ∀αϕ∗( ~Xα, F � α, ~z)

)
is provable in NBG.

Proof. We assume for the first step of our proof that ϕ is an elementary formula

(in prenex normal form with possibly a “dummy” universal quantifier), that is ϕ

takes the form

ϕ( ~X, ~z) ≡ ∀x1∃y1 . . . ∀xk∃yk ϕ0( ~X, x1, y1, . . . , xk, yk, ~z)

where ϕ0 is quantifier free. Since there are no quantifiers involved in the formula

ϕ0( ~X, x1, y1, . . . , xk, yk, ~z), we know that

∀α ∀x1, y1, . . . , xk, yk, ~z ∈ Ωα (3.2)(
ϕ0( ~X, x1, y1, . . . , xk, yk, ~z)↔ ϕ0( ~Xα, x1, y1, . . . , xk, yk, ~z)

)
holds for all classes ~X and all sets ~z. Because ϕ is elementary, we can use global

choice obtain the following equivalences for all classes ~X and all sets ~z:

∀x1∃y1 . . . ∀xk∃yk ϕ0

(
~X, x1, y1, . . . , xk, yk, ~z

)
⇔ ∃F ∀x1, . . . , xk ϕ0

(
~X, x1, F (〈x1〉), . . . , xk, F (〈x1, . . . , xk〉), ~z

)
⇔ ∃F ∀x1, . . . , xk ϕ0

(
~X, x1, F (Ω(〈x1〉)), . . . , xk, F (Ω(〈x1, . . . , xk〉)), ~z

)
. (3.3)

If we write Λ(α, x1, . . . , xk) to mean

x1, . . . , xk, 〈x1〉, . . . , 〈x1, . . . , xk〉 ∈ Ωα

∧ F (Ω(〈x1〉)), . . . , F (Ω(〈x1, . . . , xk〉)) ∈ Ωα
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we can use equation (3.2) to continue from (3.3) as follows:

∃F ∀α ∀x1, . . . , xk
(
Λ(α, x1, . . . , xk)

→ ϕ0( ~X, x1, F (Ω(〈x1〉)), . . . , xk, F (Ω(〈x1, . . . , xk〉)), ~z)
)

which is equivalent to

∃F ∀α ∀x1, . . . , xk
(
Λ(α, x1, . . . , xk)

→ ϕ0( ~Xα, x1, F � α(Ω(〈x1〉)), . . . , xk, F � α(Ω(〈x1, . . . , xk〉)), ~z)
)
.

Thus, the formula

Θ( ~X,F, ~z, α) ≡ ∀x1, . . . , xk
(
Λ(α, x1, . . . , xk) → ∆( ~X,F, ~z, α, x1 . . . , xk)

)
where ∆( ~X,F, ~z, α, x1 . . . , xk) stands for

ϕ0( ~X, x1, F (Ω(〈x1〉)), . . . , xk, F (Ω(〈x1, . . . , xk〉)), ~z),

satisfies

ϕ( ~X, ~z) ↔ ∃F ∀αΘ( ~Xα, F � α, ~z, α)

for all classes ~X and all sets ~z. Therefore, we can stipulate

ϕ∗( ~X, f, ~z) ≡ Θ( ~X, f, ~z, rk(dom(f)))

to obtain the desired formula. We now turn to the case where ϕ( ~X, ~z) is of the

form

ϕ( ~X, ~z) ≡ ∃Y ψ( ~X, Y, ~z)

with ψ( ~X, Y, ~z) elementary. From the first case we get an elementary formula

ψ∗( ~X, Y, f, ~z) such that

∀ ~X, Y, ~z
(
ψ( ~X, Y, ~z)↔ ∃F ∀αψ∗( ~Xα, Yα, F � α, ~z)

)
(3.4)

holds. We obtain ϕ∗( ~X, g, ~z) from ψ∗( ~X, Y, f, ~z) by replacing all subformu-

las that are of the form z ∈ Y (z being any set variable) by the fragment
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∃v (〈Ω(z), 〈1, v〉〉 ∈ g) (with a new variable v), and all subformulas of the form

z ∈ f by ∃a, b (z = 〈a, b〉 ∧ (〈a, 〈0, b〉〉 ∈ g ∨ 〈a, 〈1, b〉〉 ∈ g)) (with new variables a

and b). We will now show that

∀ ~X, ~z
(
ϕ( ~X, ~z) ↔ ∃G∀αϕ∗( ~Xα, G � α, ~z)

)
(3.5)

holds, and thus complete the proof of the theorem. Let F : On → V be any

function and Y some arbitrary class. We use elementary comprehension to obtain

a function GY,F : On→ V with

GY,F (α) =

〈0, F (α)〉 if Ω−1(α) /∈ Y

〈1, F (α)〉 if Ω−1(α) ∈ Y.

We get for all ordinals α that

Yα = {x | ∃v (GY,F (Ω(x)) = 〈1, v〉)}α = {x | ∃v (〈Ω(x), 〈1, v〉〉 ∈ GY,F � α)},

and for all sets x and y that

〈x, y〉 ∈ F � α⇔ ∃w (〈x, 〈w, y〉〉 ∈ GY,F � α).

Therefore, we have that

∀αψ∗( ~Xα, Yα, F � α, ~z)

⇔ ∀αψ∗( ~Xα, {x | ∃v (〈Ω(x), 〈1, v〉〉 ∈ GY,F � α)}, F � α, ~z)

⇔ ∀αϕ∗( ~Xα, GY,F � α, ~z). (3.6)

Thus, in view of equations (3.4) and (3.6), we have that

∀ ~X, ~z
(
ϕ( ~X, ~z) ↔ ∃Y, F ∀αϕ∗( ~Xα, GY,F � α, ~z)

)
.

Therefore, what remains to be shown, is that the equivalence

∃Y, F ∀αϕ∗( ~Xα, GY,F � α, ~z) ↔ ∃G∀αϕ∗( ~X,G � α, ~z) (3.7)
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holds for all classes ~X and all sets ~z. The direction from left to right is obviously

true. For the converse direction, we can simply invert the construction of GY,F

presented before, i.e. given a function G, we can use elementary comprehension

to define the function

FG = {〈x, y〉 | 〈x, 〈1, y〉〉 ∈ G ∨ 〈x, 〈0, y〉〉 ∈ G}

and the class

YG = {x | ∃y (〈Ω(x), 〈1, y〉〉 ∈ G)}.

Since for all ordinals α and all sets y, we have that

GYG,FG(α) = 〈1, y〉 ⇔ G(α) = 〈1, y〉

and

GYG,FG(α) = 〈0, y〉 ⇔ G(α) = 〈0, y〉,

the desired equivalence (3.7) follows from the definition of ϕ∗( ~X, g, ~z).

Lemma 173 (Representation lemma I). If ϕ( ~X, ~x) is a Π1
1 formula, then there

is a formula Tϕ( ~X, f, ~x) ∈ ∆1
0(Ω) such that it is provable in NBG that for all

classes ~X and all sets ~x the class Tϕ( ~X, ~x), defined from

f ∈ Tϕ( ~X, ~x)↔ Tϕ( ~X, f, ~x),

has the following properties:

1. The class Tϕ( ~X, ~x) is a tree for all classes ~X and all sets ~x.

2. For all classes ~X and all sets ~x, we have that

ϕ( ~X, ~x)↔ Tϕ( ~X, ~x) has no path.

3. For all classes ~X and all sets ~x, we have that

ϕ( ~X, ~x)↔
(
Tϕ( ~X, ~x),KBTϕ( ~X,~x)

)
is a weak well order
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Proof. Let ϕ( ~X, ~x) be any Π1
1 formula and further let ψ( ~X, ~x) be the Σ1

1 formula

obtained from ¬ϕ( ~X, ~x) in negation normal form. Further, ψ∗( ~X, f, ~x) be the

∆1
0(Ω) formula that satisfies

∀ ~X, ~x
(
ψ( ~X, ~x)↔ ∃F ∀αψ∗( ~Xα, F � α, ~x)

)
as presented in the normal form lemma. We stipulate

Tϕ( ~X, f, ~x) ≡ f ∈ Seq ∧ ∀α ≤ dom(f)ψ∗( ~Xα, f � α, ~x).

We now turn to check the first and the second claim of the theorem.

1. This is obvious from the definition of Tϕ( ~X, ~x) and the fact that if f ∈ Seq
and α ≤ dom(f) then {(f � α) � µ | µ ∈ On} ⊂ {f � µ | µ ∈ On}.

2. Since

Tϕ( ~X, ~x) has no path ⇔ ∀F ∃α (F � α /∈ Tϕ( ~X, ~x))

⇔ ∀F ∃α¬Tϕ( ~X,F � α, ~x)

⇔ ∀F ∃α¬∀β ≤ αψ∗( ~Xβ , F � β, ~x)

⇔ ∀F ∃α¬ψ∗( ~Xα, F � α, ~x)

⇔ ¬∃F ∀αψ∗( ~Xα, F � α, ~x)

⇔ ¬ψ( ~X, ~x),

the claim follows from the equivalence ¬ψ( ~X, ~x)⇔ ϕ( ~X, ~x).

Because the third claim is a direct consequence of the second claim and Propo-

sition 171, the proof is complete.

Definition 174. Let T be a tree, X any class and F either an element of Seq

or a function whose domain is the class On.

1. We write [X,F ] to mean the mapping dom(F ) 3 α 7→ 〈Xα, F (α)〉) ∈ V ×V .

2. Given a tree S with
⋃
f∈S rng(f) ⊂ V × V , we use elementary comprehen-
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sion to form a new tree

TS(X) = {f ∈ Seq | [X, f ] ∈ S}.

Further, we write XεS to mean that a function F : On→ V so that [X,F ]

is a path through S exists.

Remark 175. Let T, S,X be as before, then TS(X) has a path if and only if

XεS.

Lemma 176 (Representation lemma II). Let ϕ(X) be a Σ1
1 formula. It is prov-

able in NBG that there is a tree S with
⋃
f∈S rng(f) ⊂ V × V such that

∀X (ϕ(X)↔ XεS).

Proof. Let ϕ(X) be a Σ1
1 formula (with no further parameters). Pick ϕ∗(X, f)

as in Theorem 172. Hence,

∀X
(
ϕ(X)↔ ∃F ∀α (ϕ∗(Xα, F � α))

)
.

We use elementary comprehension to form the tree

S = {f ⊗ g | f, g ∈ Seq ∧ ∀α < dom(f ⊗ g)ϕ∗(f(α), g � α)}

where for f, g ∈ Seq, the term f⊗g stands for the mapping α 7→ 〈f(α), g(α)〉 and

dom(f ⊗ g) = min{dom(f), dom(g)}. Obviously, S is a tree with
⋃
f∈S rng(f) ⊂

V × V . It remains to show that

∀X
(
ϕ(X)↔ TS(X) has a path

)
holds. Fix any class X with ϕ(X) and a function F such that

∀αϕ∗(Xα, F � α).

Hence, the sequence [X,F ] � α belongs to S for every ordinal α and thus TS(X)
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has a path. For the converse direction, consider

TS(X) has a path⇔ ∃F ∀α (F � α ∈ TS(X))

⇒ ∃F ∀α ([X,F ] � α ∈ S)

⇒ ∃F ∀α ((µ 7→ Xµ) � α⊗ F � α ∈ S)

⇒ ∃F ∀α ∀µ < α (ϕ∗(Xµ, F � µ))

⇒ ∃F ∀αϕ∗(Xα, F � α)

⇒ ϕ(X).

This proves the claim.

Proposition 177. If ϕ(X) is a Σ1
1 formula, then it is provable in NBG that there

is a tree T such that

¬ (ϕ(T ) ↔ T has no path)

holds.

Proof. By way of contradiction, assume that ϕ is a Σ1
1 formula such that

∀X
(
tree(X)→ (ϕ(X)↔ X has no path

))
holds. Consider a negated Σ1

1 formula ψ(X) that expresses

tree(X) ∧
⋃
f∈X

rng(f) ⊂ V × V ∧ ¬ϕ(TX(X)).

From the second representation lemma, we get a tree S such that⋃
f∈S

rng(f) ⊂ V × V

and

∀X
(
ψ(X)↔ TS(X) has no path).

From

ψ(S)⇔ ¬ϕ(TS(S)),
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we get

ψ(S)⇔ TS(S) has a path,

but we already know that also

ψ(S)⇔ TS(S) has no path

holds, which is a contradiction.

Theorem 178. If ϕ(A,<A) is a Σ1
1 formula, then it is provable in NBG that

¬∀(A,<A)
(
ϕ(A,<A)↔ wwo(A,<)

)
holds.

Proof. By way of contradiction, assume that a formula ϕ(A,<A) exists such that

∀(A,<A) (ϕ(A,<A) ↔ wwo(A,<A))

holds. Hence, we obtain from Proposition 171 that for every tree T

ϕ(T,KBT ) ↔ T has no path,

in contradiction to Proposition 177.

Summary

We used the minimum principle for weak well orders to prove that the Kleene

Brouwer ordering of a tree T is exactly then weakly well founded if T has no path

(cf. Proposition 171). This fact enabled us to prove the Σ1
1 normal form lemma

(cf. Theorem 172). From the Σ1
1 normal for Lemma we then deduced that the

predicate wwo(A,<A) is Π1
1 complete in the sense that every Π1

1 assertion about

a class can be stated in the form that a specific linear order is a weak well order

(cf. Lemma 173). As a consequence, we proved that the predicate wwo(A,<A)

cannot be stated as a Σ1
1 formula (cf. Theorem 178).
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3.2 Elementary transfinite recursion

Recursion principles have undergone a long history of research, and they play a

key role in many academic disciplines. Similar principles are used and investi-

gated in mathematics, logic, formal languages, linguistics and computer science

– to name but a few.

The starting point of the investigation of the theory ATR0 is the seminal

work [Fri74] of H. Friedman. In [Fri74], second order arithmetic is enriched by

a principle of transfinitely iterating arithmetical comprehension along any given

well ordering. Owing to the important role of the resulting theory, ATR0, in

reverse mathematics, the book [Sim98] lists2 the theory as one of the “five basic

systems” of second order arithmetic (cf. [Sim98] I.12).

In this section, we discuss what theories of sets and classes are suitable rep-

resentatives of set theoretic counterparts of the theory ATR0. Here, “suitable”

is to be understood in a twofold manner. The underlying meaning of the orig-

inal theory should be preserved, i.e. the theory should be recognized as being

based on the same principle of iterating elementary comprehension along some

(carefully chosen) relations. Second, the new theory should relate to the set the-

oretic interpretation of other subsystems of second order arithmetic in a similar

way as the theories originally relate to each other. Since the theory ATR0 can

be quoted verbatim in set theory, the first requirement is not difficult to meet

(cf. Definition 188). However, since the theory ATR0 ows much of its capabilities

to the fact that in arithmetic the well foundedness predicate is Π1
1 complete, the

latter requirement is not fulfilled by employing a one-to-one translation of ATR0.

Consequently, we try to find a way to take advantage of the Σ1
1 normal form

lemma and thus suggest a formulation that involves weak well orders (cf. Defi-

nition 196 ). However, simply allowing iterations of elementary comprehension

along weak well orders, or along any non well founded structures for that matter,

immediately results in inconsistent theories (cf. the follow-up discussion and in

particular Theorem 185, or our related work presented in [FS13]). Under these

circumstances, we evidently have to be very careful in combining recursion and

weak well orders. What we eventually gain by reformulating elementary transfi-

2Among the theories RCA0,WKL0,ACA0 and Π1
1-CA0.
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nite recursion with weak well orders as opposed to well orders, is preserving the

logical structure of the axiom in being formed as a Σ1
1 property of some linear

order (A,<A) being entailed by a Π1
1 complete predicate of (A,<A). We will

thus be able to further extend the theory of elementary transfinite recursion by

a principle of “uniform recursion” (cf. Definition 219) that when translated to

the situation in arithmetic trivially holds, but in our setting allows for “pseudo

hierarchy like arguments” to be applied. We will demonstrate this ability of our

theory by proving that fixed points of positive inductive definitions exist, some-

thing that cannot be shown with the usual principle of elementary transfinite

recursion.

Definition 179. Let R be a binary relation on a class A. A progressive subclass

X of (A,R) is a class X ⊂ A such that

∀b ∈ A ({a ∈ A | aRb} ⊂ X → b ∈ X)

holds. We will write prog(X, (A,R)) to mean that X is a progressive subclass of

(A,R).

Remark 180. Note that in case of linear orders, Definition 179 and Defini-

tion 118 coincide.

Definition 181. A binary relation R on a class A is said to be well founded (on

A) if one of the following three, pairwise equivalent, statements hold

1. There is no function f : ω → A such that ∀n ∈ ω (f(n+ 1)Rf(n)).

2. Every nonempty subclass of A contains R-minimal elements.

3. ∀X (prog(X, (A,R)) → A ⊂ X).

We write wf(A,R) to express that R is well founded and transitive on A. Simi-

larly, we write wf(R) to mean wf(Fld(R), R).

Remark 182. Clearly, wo(A,R) if wf(A,R) and R is a linear ordering of A.

Definition 183. The transitive closure of a relation R on a class A is the pair

(A,R∗) where xR∗y holds if there is a natural number 0 < n and a function
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f ∈ Seq with dom(f) = n such that

f(0) = x ∧ f(dom(f)− 1) = y ∧ ∀i < dom(f) (i = 0 ∨ f(i− 1)Rf(i)).

Remark 184. A relation R is well founded if and only if the transitive closure

of R is well founded.

Theorem 185. There is an elementary formula ϕ(X,x, y) such that it is provable

in NBG that for every transitive relation (A,<A),

(∀x∃H ∀a ∈ A ((H)a = {y | ϕ(H � A<Aa, x, y)})) → wf(A,<A).

Proof. Let ϕ(X,x, y) be the elementary formula

y = ∅ ∧ ∀a ∈ x ((H)a = ∅).

In particular, note that

{y | ϕ(H,x, y)} =

1 if ∀a ∈ x ((H)a = ∅)

∅ otherwise
(3.8)

holds of any class H. Now assume that <A is a transitive relation on A such that

for any set x, there is a class H such that for all a ∈ A

(H)a = {y | ϕ(H � A<Aa, x, y)} (3.9)

holds. Pick any nonempty subset x of A, some a0 ∈ x and a class H that satisfies

the above equation. If H � x = ∅, then we have that ∀a ∈ x ((H)a = ∅) and

thus, by equation (3.8) that

(H)a0 = {y | ϕ(H � A<Aa0 , x, y)} = 1,

contradicting (H)a0 = ∅. If H � x 6= ∅, then there must exist an a ∈ x such that

(H)a 6= ∅, therefore we can conclude with (3.8) that

1 = (H)a = {y | ϕ(H � A<Aa, x, y)},
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and thus that

∀c ∈ x ((H � A<Aa)c = ∅). (3.10)

We now prove that a is minimal in x. If b <A a we can apply the assumption

on the transitivity of <A to conclude that A<Ab ⊂ A<Aa and consequently that

(H � A<Ab)c ⊂ (H � A<Aa)c for all c. Therefore, it follows from equation (3.10)

that

∀c ∈ x ((H � A<Ab)c = ∅).

From equations (3.9) and (3.8) it therefore follows that

(H � A<Aa)b = (H)b = 1.

Thus (3.10) implies that b cannot be an element of x and we are done.

Remark 186. In the previous theorem, the transitivity condition can be dropped

for the necessity of a nontrivial application of the axiom of choice, which in the

proof presented above is not necessary (a short proof is presented in the discussion

part of [FS13]).

Corollary 187. If Ψ(A,<A) is a formula with the following properties

1. ∀(A,<A) (Ψ(A,<A) → tran(A,<A))

2. ∃(A,<A) (¬wf(A,<A) ∧ Ψ(A,<A)),

then the schema

Ψ(A,<A)→ ∃H ∀a ∈ A
(
(H)a = {x | ϕ(H � A<Aa, x)}

)
,

where ϕ(X,x) ranges over all elementary formulas is inconsistent with classical

first order logic (in fact also with much weaker systems).

Now we present three formulations of usual transfinite recursion and show that

they are pairwise equivalent.
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Definition 188. The schemata ∆1
0-TRwo and ∆1

0-TRwf are as follows:

wo(A,<A) → ∃F ∀a ∈ A
(
(F )a = Γϕ(F � A<Aa, a)

)
(∆1

0-TRwo)

wf(A,R) → ∃F ∀a ∈ A
(
(F )a = Γϕ(F � {b ∈ A | bRa}, a)

)
(∆1

0-TRwf)

where ϕ(X,x, a) ranges over elementary formulas (possibly with further param-

eters) and Γϕ(X, a) = {x | ϕ(X,x, a)}.

Remark 189. It is provable in NBG that the schema

wo(A,<A) → ∃H ∀a ∈ A
(
(H)a = Γϕ(H � A<Aa)

)
(3.11)

where ϕ(X,x) ranges over elementary formulas, proves the schema ∆1
0-TR. To

see this, let

X t Y = {〈u, v〉 | (u ∈ X ∧ v = 0) ∨ (u ∈ Y ∧ v = 1)}

denote the disjoint union of any classes X and Y . Given some elementary formula

ϕ(X,x, a), we stipulate ψ(X,x) such that

Γψ(X t Y ) = {〈u, v〉 | (ϕ(X,u, aY ) ∧ v = 0) ∨ (v = 1 ∧ u = aY )}

where aY stands for

min
<A
{b ∈ A | b /∈ Y }.

Thus, applying (3.11) provides a class H, such that (H)a = Γψ(H � A<Aa).

Stipulating F such that for all a ∈ A (F )a = {u | 〈u, 0〉 ∈ (H)a} provides the

desired class.

Definition 190. We call a function R : A → P(A) a recursor for (A,<A) and

write rec(R, (A,<A)) if the conjunction of the following clauses is satisfied:

1. ∀a ∈ A (a ∈ R(a))

2. ∀a, b ∈ A (a <A b→ A<AR(a) ⊂ A<AR(b))

3. ∀X ≺ A
(
X 6= A→ ∃a ∈ X (A<AR(a) ⊂ X)

)
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Remark 191. Let R : A → P(A) be some function and let (A,<A) be a linear

order. If we stipulate

a <R b ⇔ a <A R(b),

then the third clause in Definition 190 is equivalent to the statement that (A,<R),

is a well founded relation. This is crucial for Definition 196 where essentially

elementary transfinite recursion along the relation <R is introduced.

Proof of the equivalence claim. Let R : A → P(A) be some function and let

(A,<A) be a linear order. First assume that <R is well founded on A and let X

be a proper initial segment of (A,<A). Since Y = A \X is a nonempty subclass

of A, we can use the well foundedness of <R on (A,<R), to pick a <R-least

element a ∈ Y . Because A<Ra = A<AR(a) it follows that A<AR(a) is disjoint

from Y and thus that A<AR(a) ⊂ X as desired. For the converse direction,

assume that R satisfies the third clause of Definition 190. We have to show that

<R is well founded on A. Let Y be any nonempty subclass of A. First, assume

that Y is coinitial in (A,<R). Thus, X = A \ Y is a proper initial segment of

(A,<R) and hence we can apply the third clause of Definition 190 to obtain an

element a ∈ Y such that A<Ra ⊂ X, clearly a is <R-minimal in Y . If Y is not

coinitial, we can use the previous case to get a <R-minimal element of the class

{z ∈ A | ∃a ∈ Y (a ≤R z)}, clearly such an element is also <R-minimal in Y .

Remark 192. In cases where (A,<A) is a weak well order, all proper initial

segments of (A,<A) are of the form A<Am for some nonempty subset m of A;

thus, the last clause of Definition 190 can be expressed by the following elementary

formula

∀m ⊂ A
(
m = ∅ ∨ ∃a ∈ A (a /∈ A<Am ∧A<AR(a) ⊂ A<Am

)
. (3.12)

Remark 193. If R is already monotone, i.e. R satisfies the second clause of

Definition 190, then the last item is equivalent to

∀X ≺ A
(
{a ∈ A\X | A<AR(a) ⊂ X} is nonempty and initial in A\X

)
.

Example 194. 1. A linear order (A,<A) is a well order if and only if the

93



3 Weak well orders

mapping R : x→ {x} is a recursor for (A,<A).

2. If (A,<A) is a linear order and m ⊂ A is some minimal subset of A, then

the mapping R : x → m ∪ {x} is a (admittedly uninteresting) recursor for

(A,<A).

Proof. For the first claim, note that for the function R, as defined in the claim,

we have that

a <R b ⇔ a <A {b} ⇔ a <A b

for all elements a, b ∈ A. Thus, it follows from Remark 191 that (A,<A) is

a well order if and only if R, as defined above, is a recursor for (A,<A). For

the second claim, if m,R and (A,<A) are as stated in the claim, then clearly

∀a ∈ A (A<AR(a)) = ∅. Thus the second and the third clause of Definition 190 are

trivially satisfied. However, since x ∈ m∪{x} also the first clause is fulfilled.

Remark 195. Let C be a collection of linear orders, if ϕ(R, (A,<A)) is some

formula such that for all linear orders exactly one function R : A → P(A) with

ϕ(R, (A,<A)) exists, then we say that ϕ(R, (A,<A)) characterizes C with recur-

sors if for all linear orders (A,<A)

(A,<A) ∈ C ⇔ rec(Rϕ(A,<A), (A,<A)),

where Rϕ(A,<A) is the unique function that satisfies ϕ(R, (A,<A)), holds. In

that sense, we have seen in the first part of Example 194 that

ϕ(R, (A,<A)) ≡ R = {〈x, {x}〉 | x ∈ A}

characterizes the collection of all well orders with recursors. However, there is

no simple (elementary) formula ϕ(R, (A,<A)) that can characterize weak well

orders in general. Thus, it is difficult to give interesting examples of actual

recursors for weak well orders at this point. We will see in Lemma 214, that a

particular collection of weak well orders can be characterized with recursors by

an elementary formula and in section 3.2.1, we discuss a theory that in some
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3.2 Elementary transfinite recursion

sense axiomatically ads a characterization with recursors for the collection of all

weak well orders.

Definition 196. The schema ∆1
0-TRwwo is

wwo(A,<A) ∧ rec(R, (A,<A)) → ∃F ∀a ∈ A
(
(F )a = Γϕ(F � A<AR(a), a)

)
for elementary formulas ϕ.

The classes whose existence is guaranteed from the different schemata of el-

ementary recursion ∆1
0-TRwwo, ∆1

0-TRwo and ∆1
0-TRwf respectively, are all, as

shown below, unique.

Lemma 197. Let <A be a binary relation on a class A and let ϕ(X,x) be an

elementary formula.

1. If (A,<A) is well founded, then there exists at most one class H ⊂ A× V
such that

∀a ∈ A ((H)a = Γϕ(H � A<Aa, a)).

2. If (A,<A) is a weak well order and R is a recursor for (A,<A), then there

is at most one class H ⊂ A× V that satisfies

∀a ∈ A ((H)a = Γϕ(H � A<AR(a), a)).

Proof. The proofs of the first and the second part of the lemma are essentially

the same, with the only difference that in the first case, we will use elementary

transfinite induction, whereas in the second case, we will employ weak elementary

induction.

1. Assume that H and G are two classes that both satisfy the formula pre-

sented in the lemma. We use transfinite induction to prove that the class

X = {a ∈ A | (H)a = (G)a} = A holds. Assume that A<Aa ⊂ X for some

a ∈ A. It follows that for every b <A a that (H)b = (G)b and thus that

H � A<Aa = G � A<Aa. This immediately leads to (H)a = (G)a as desired.

2. Assume that H and G are two classes that both satisfy the formula pre-

sented in the second part of the lemma. Let X be defined as before. We

95
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have to show that for all nonempty subsets m ⊂ A, we have that

A<Am ⊂ X → X ∩m 6= ∅

holds. Let m be a nonempty subset of A such that A<Am ⊂ X holds. Since

A<Am clearly is a proper initial segment of (A,<A), it follows from the fact

that R is a recursor of (A,<A) that there exists an element a ∈ A\A<Am
such that A<AR(a) ⊂ A<Am holds. Since we have that a 6<A m, there must

exist a b ∈ m with b ≤ a. It follows from the fact that R is a recursor for

(A,<A) that A<AR(b) ⊂ A<AR(b) ⊂ X and thus that

(H)b = Γϕ(H � A<AR(b), b) = Γϕ(G � A<AR(b), b) = (G)b.

Thus, b ∈ X ∩m as desired. �

Theorem 198. The schemata ∆1
0-TRwwo, ∆1

0-TRwo and ∆1
0-TRwf are all equiv-

alent over NBG.

Proof. ∆1
0-TRwf ⇒ ∆1

0-TRwwo: Let ϕ(X,x) be any elementary formula and let

(A,<A) be a weak well order with a recursor R. As we have observed in Re-

mark 191, the relation (A,<R) is well founded. Since <R clearly is transitive,

the principle ∆1
0-TRwf provides a class F such that for any a ∈ A,

(F )a = Γϕ(F � {b ∈ A | b <R a}, a) = Γϕ(F � A<AR(a), a)

holds.

∆1
0-TRwwo ⇒ ∆1

0-TRwo: This follows from the fact that for every well order

(A,<A), the function A 3 a 7→ {a} ∈ P(A) is a recursor for (A,<A).

∆1
0-TRwo ⇒ ∆1

0-TRwf : Let (A,≺) be any transitive, well founded relation and

let Γϕ be any operator with ϕ(X,x, a) elementary. Let T be the tree of all

(A,≺) descending chains. The linear order (T,<T ) where <T means the Kleene

Brouwer ordering of T is a well order because (A,≺) is well founded. We write

t(s) = s(dom(s) − 1) to mean the tail of any s ∈ T\{∅}. For any a ∈ A, let

sa = min<T {s ∈ T | t(s) = a} be the least sequence in T that has a as its tail

element. Given a class F , let F̂ be the class {(a, x) | (sa, x) ∈ F}. In particular,
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3.2 Elementary transfinite recursion

we have that (F̂ )a = (F )sa . Define the formula ψ(X,x, s, a) as follows

s 6= ss(t) ∧ (s, x) ∈ (X)st(s)

∨

s = st(s) ∧ ϕ(X̂ � {a ∈ A | s ( sa}, x, a)

Now we use elementary transfinite recursion along (T,<T ) to get a class H that

satisfies for any s ∈ T that

(H)s = Γψ(H � T<T s, s, a),

and therefore also for any a ∈ A that

(Ĥ)a = (H)sa = Γψ(H � T<T sa , sa, a) = {x | ψ(H � T<T sa , x, sa, a)}

= {x | ϕ( ̂H � T<T sa � {b ∈ A | sa ( sb}, x, a)}. (3.13)

We observe that all the sequences sx with x ∈ A satisfy for all k ∈ dom(sx) the

equations

sx(k) = min
C

(
A≺x\{sx(n) | n < k}

)
.

Hence an easy induction argument reveals that for any two distinct such sequences

one is a proper extension of the other. Together with the observation that for

any a, b ∈ A we have that

b ≺ a⇒ (sa a b) ∈ T ⇒ sb ≤T (sa a b) <T sa,

we conclude that

b ≺ a⇔ sa ( sb.

Therefore,

̂H � T<T sa � {b ∈ A | sa ( sb}

= {(b, x) | (sb, x) ∈ H ∧ sb <T sa} � {b ∈ A | sa ( sb}

= {(b, x) | (sb, x) ∈ H ∧ sb <T sa ∧ sa ( sb}
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= {(b, x) | (sb, x) ∈ H ∧ sa ( sb}

= {(b, x) | (sb, x) ∈ H ∧ b ≺ a}

= {(b, x) | (b, x) ∈ Ĥ ∧ b ≺ a} = Ĥ � A≺a.

Returning to the equation (3.13), we therefore get that

(Ĥ)a = {x | ϕ( ̂H � T<T sa � {b ∈ A | sa ( sb}, x, a)}

= {x | ϕ(Ĥ � A≺a, x, a)} = Γϕ(Ĥ � A≺a, a),

as desired.

Definition 199. The theory ∆1
0-TR of elementary transfinite recursion stands

for any (and thus every) of the theories NBG + ∆1
0-TRwwo, NBG + ∆1

0-TRwo or

NBG + ∆1
0-TRwf .

Our first step in analyzing the theory of elementary transfinite recursion is to

prove that it properly extends NBG. We do this by proving that the theory is

strong enough to provide for a truth set relative to NBG.

Definition 200 (Gödel numbers and truth sets). We extend the language of set

theory by a constant symbol cx for each set x. The collection of all Lcon1 formulas

is obtained by allowing free variables in L1 formulas to be replaced by any of

the new constant symbols. We define for each Lcon1 formula ϕ a finite set pϕq

recursively on the build up of ϕ:

1. If ϕ is of the form x ∈ y or x = y where x and y are either constants or

variables, then pϕq is the sequence 〈0, x̃, ỹ〉 or 〈1, x̃, ỹ〉, where x̃ and ỹ are

given from

z̃ =

2k + 5 if z = vk

〈5, u〉 if z = cu

where z stands for either x or y.

2. If ϕ is of the form σ ∧ δ, then pϕq is the sequence 〈2, pσq, pδq〉.

3. If ϕ is of the form ¬ψ, then pϕq is the sequence 〈3, pψq〉.
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4. If ϕ is of the form σ ∨ δ, then pϕq is p¬(¬σ ∧ ¬δ)q.

5. If ϕ is of the form σ → δ, then pϕq is p¬σ ∨ δq.

6. If ϕ is of the form ∃vi (ψ), then pϕq is the sequence 〈4, 2i + 5, pψq〉.

7. If ϕ is of the form ∀vi (ψ), then pϕq is p¬(∃vi (¬ψ))q.

We will write Fml to mean the class of all codes of Lcon1 formulas.

Definition 201. A truth set is a set t of codes of closed L1 formulas that satisfies

σ ↔ pσq ∈ t

for all closed L1 formulas σ.

Lemma 202 (Tarski). If t is a truth set, then t is not definable by a first order

formula, i.e. there is no first order formula ϕ(x) such that t = {x | ϕ(x)} holds.

Proof. A proof of this standard result can be found in most textbooks on logic

and set theory, see for example [Jec03] Theorem 12.7.

Theorem 203. It is provable in NBG together with the principle of elementary

transfinite recursion restricted to the well order (ω,<), that a truth set exists.

Proof. We define a class T of codes of Lcon1 formulas by elementary transfinite

recursion as follows: let B ⊂ Fml stand for the true atomic formulas, i.e. B is

the least class that contains all formulas that are of the form px = xq where x

is either a constant symbol or a variable and all formulas that are of the form

pcx ∈ cyq where x ∈ y. B̄ on the other hand is the class of all false atomic

formulas, i.e. B̄ is the least class that contains all formulas of the form px = yq

where x, y are different constant symbols or variables, and all formulas that are

of the form pcx ∈ cyq where x /∈ y. Further, if x is the code of some formula

p∃vi ϕq = 〈4, 2i + 5, y〉, then let xu be the code of the formula ϕ( cuvi ), i.e. the

unique sequence that satisfies dom(xu) = dom(y) and for all z ∈ dom(y)

xu(z) =

y(z) if y(z) 6= 2i + 5

〈5, u〉 otherwise.
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We use elementary transfinite recursion along ω in order to simultaneously define

two subclasses T and T̄ of Fml such that for all n ∈ ω we have that

x ∈ (T )n ↔x ∈ B ∨ ∃y,∃z (x = 〈2, y, z〉 ∧ y, z ∈
⋃
k<n

(T )k)

∨ ∃y (x = p3, yq ∧ y ∈
⋃
k<n

(T̄ )k)

∨ ∃u, y ∃i ∈ ω (x = 〈4, 2i + 5, y〉 ∧ xu ∈
⋃
k<n

(T )k)

and

x ∈ (T̄ )n ↔x ∈ B̄ ∨ ∃y,∃z (x = 〈2, y, z〉 ∧ y ∈
⋃
k<n

(T̄ )k ∨ z ∈
⋃
k<n

(T̄ )k)

∨ ∃y (x = p3, yq ∧ y ∈
⋃
k<n

(T )k)

∨ ∃y ∃i ∈ ω∀u (x = 〈4, 2i + 5, y〉 ∧ xu ∈
⋃
k<n

(T̄ )k).

Let σ be any formula. We prove by induction on the build up of σ that

σ → pσq ∈
⋃
n∈ω

(T )n (1)

¬σ → pσq ∈
⋃
n∈ω

(T̄ )n (2)

holds. In case that σ is an atomic formula the claim is clearly true. Assume that

σ = ϕ ∧ ψ, if σ holds, then by induction hypothesis both codes pϕq and pψq

are elements of
⋃
n∈ω Tn and thus so is pσq. If otherwise, pσq is false, then by

induction hypothesis at least one of the codes pϕq or pψq must be an element of⋃
n∈ω(T̄ )n and thus so is pσq. If σ = ¬ψ, then pσq is an element of

⋃
n∈ω(T )n

iff pψq is an element of
⋃
n∈ω(T̄ )n, and vice versa. Hence, the claim follows from

the induction hypothesis. For the case σ = ∃viψ, first assume that σ holds, thus

there exists a set u such that ψ( uvi ) holds. Therefore, by induction hypothesis,

we have that pψ( cuvi )q ∈
⋃
n∈ω(T )n and thus that pσq ∈

⋃
n∈ω(T )n. If ∃vi ψ is

false, then that means that for all sets u it is the case that ¬ψ( uvi ) holds and
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thus, by induction hypothesis, that all codes of the form pψ( uvi )q are elements

of
⋃
n∈ω(T̄ )n and hence that pσq ∈

⋃
n∈ω(T̄ )n. The cases where σ = ϕ ∨ ψ or

σ = ϕ→ ψ are reduced to the previous cases. Now let t be the class of all sets x

such that x is the code of a closed L1 formula that is an element of some stage

(T )n of T , then clearly for any closed formula σ of L1 we have that

σ ↔ pσq ∈ t.

Corollary 204. Elementary transfinite recursion is not provable from NBG.

Definition 205. The theory FP is NBG together with the assertions that positive

elementary operators have a fixed point. That is

∃Z ∀z
(
z ∈ Z ↔ ϕ(Z, z)

)
where ϕ(Z+, z) ranges over elementary formulas and is positive in Z (cf. Defini-

tion 12).

Remark 206. Note that Lemma 13 also applies to the set theoretic case.

Remark 207. By the same argument that works in the arithmetic setting, the

theory FP can be shown to prove elementary transfinite recursion. The proof of

Theorem 3.1 in [Avi96] can be quoted verbatim to fit our framework.

The following two theorems are a remarkable example on how different the

situation in arithmetic and set theory is for theories that substantially rely on

the notion of well foundedness.

Theorem 208 (Sato). The theory FP proves the consistency of the theory ∆1
0-TR.

Proof. See [Sat12] Corollary 34.

An even more striking result presented in [Sat13] is the fact that the theory FP

is strong enough to prove the existence of least fixed points for any elementary

monotone operator.
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Theorem 209 (Sato). For every X-positive elementary formula ϕ(X+, y) the

following is provable in the theory FP.

∃Z ∀U
(
∀z (ϕ(Z, z)→ z ∈ Z) ∧ ∀z (ϕ(U, z)→ z ∈ U) → Z ⊂ U

)
Proof. See [Sat13] Corollary 5.4.i.

In arithmetic, the theory that corresponds to FP is called FP0, it is, as proved

by Avigad (cf. [Avi96] Theorem 3.1), equivalent to the theory of arithmetical

transfinite recursion ATR0. As proved by Kleene in [Kle55], assuming least fixed

points for positive arithmetical operators is powerful enough to prove the Π1
1

comprehension axiom. Thus, in arithmetic, claiming the existence of least fixed

points of positive arithmetical operators is beyond what is provable in the theory

FP0. Hence, while the results of Sato are interesting on their own, their real

importance stems from the fact that they reveal a deep asymmetry between the

situations in set theory as opposed to arithmetic. In the following, we will first see

how an adaption of Avigad’s proof of FP0 = ATR0 can be used to show that the

logical complexity of the predicate wwo is reduced when specific changes are made

(cf. Theorem 215). Thereafter, we will introduce the axiom of uniform recursion

with the objective of pinning down a little more accurately which peculiarities of

set theory and arithmetic respectively lead to the aforementioned differences.

Lemma 210. Let ϕ(X, a, x) be an elementary formula and let (A,<A) be a weak

well order with a recursor R. It is provable in the theory ∆1
0-TR that there is a

class H such that

∀a, b ∈ A
(

(H)a =
⋃

b<AR(a)

{x | ϕ((H)b, b, x)}
)
,

and in particular also

∀a, b ∈ A (a <A b→ (H)a ⊂ (H)b) .

Proof. Let ϕ(X, a, x) be an elementary formula and let R be any recursor. We

stipulate

ψ(X, a, x) = ∃b <A R(a) (ϕ((X)b, b, x)).

102



3.2 Elementary transfinite recursion

By an application of elementary transfinite recursion, we obtain a class H that

satisfies

(H)a = {x | ψ(H � A<AR(a), a, x)},

and thus that

x ∈ (H)a ⇔ ψ(H � A<AR(a), a, x)

⇔ ∃b <A R(a)ϕ((H � A<AR(a))b, b, x)

⇔ ∃b <A R(a)ϕ((H)b, b, x)⇔ x ∈
⋃

b<AR(a)

{z | ϕ((H)b, b, z)}

as desired. The second part of the claim follows from the first part together with

the property a <A b→ A<AR(a) ⊂ A<AR(b) of the recursor R of (A,<A).

Corollary 211. It is provable in the theory ∆1
0-TR that for every well order

(A,<A) and every elementary formula ϕ(X, a, x), there is a class H such that

for all elements a, b ∈ A we have that (H)a =
⋃
b<Aa

{x | ϕ((H)b, b, x)} and in

particular that a <A b→ (H)a ⊂ (H)b

Proof. This follows from Lemma 210 when considering that every well order is

also a weak well order and the mapping x 7→ {x} is a recursor on any well

order.

Definition 212. Let (A,<A) be a linear order. We write wwo∗(A,<A) to mean

that every subclass X of A contains a minimal subset that is also an initial

segment of X (or equivalently a nonempty initial subset). More formally,

∀X ⊂ A ∃m ⊂ X
(
∀x ∈ X ∃y ∈ m (y ≤ x) ∧ ∀x ∈ m (X<Ax ⊂ m)

)
.

From the arithmetic perspective, the notion of a wwo∗ ordering as defined

above seems equally adequate as weak well orders to translate the concept of a

countable well ordering from arithmetic to set theory. Especially since the typical

minimal sets of well orders, singletons, are also initial segments. However, as we

will prove next, the predicate wwo∗ can be expressed by a Σ1
1 formula and is thus

not useful in our context.
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Definition 213. If (A,<A) is a linear order, then R∗(A,<A) : A→ P(A) is the

function defined from

R∗(A,<A)(a) = {b ∈ A | b ≤A a ∧ [b, a] is a set},

where [b, a] stands for the class {c ∈ A | b ≤A c ∧ c ≤A a}.

Lemma 214. It is provable in NBG that for every linear order (A,<A),

wwo∗(A,<A) ↔ rec(R∗(A,<A), (A,<A))

holds.

Proof. We write R∗ for R∗(A,<A). For the direction from right to left, let Y ⊂ A
be any nonempty subclass of A. First assume that Y is coinitial in (A,<A). Let

X = A\Y and thus X ≺ A ∧ X 6= A. Since R∗ is a recursor for (A,<A), there is

an element a ∈ Y such that A<AR∗(a) ⊂ X, thus R∗(a)∩ Y is a nonempty initial

subset of Y , as desired. In case that Y is not coinitial in (A,<A), we can apply

the previous case to the coinitial class Y ′ = {a ∈ A | ∃b ∈ Y (b ≤ a)} in order to

obtain a minimal and initial subset m of Y ′. Clearly m∩Y is minimal and initial

in Y . We now turn to the converse direction of the claim. We first have to make

sure that for all a ∈ A the class R∗(a) is a set. Let a ∈ A be arbitrarily chosen.

Since by assumption we have that wwo∗(A,<A) holds, we can assume that there

is an initial and minimal subset m of R∗(a); further, since R∗(a) 6= ∅, we can

find a b ∈ m, and since b ∈ R∗(a), we can write R∗(a) = [b, a] ∪m as the union

of two sets. In order to verify that R∗ is a recursor for (A,<A), we still have to

check

1. ∀a ∈ A (a ∈ R∗(a))

2. ∀a, b ∈ A (a <A b→ A<AR∗(a) ⊂ A<AR∗(b))

3. ∀X ≺ A (X 6= A→ ∃b ∈ A\X (A<AR∗(b) ⊂ X)).

Items 1. and 2. are clearly satisfied. To verify 3., let X be any proper initial

segment of (A,<A). Since wwo∗(A,<A) holds, there exists a minimal and initial

subset m of Y = A\X. Because Y 6= ∅, it follows from the minimality of m
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3.2 Elementary transfinite recursion

that also m 6= ∅. Pick any a ∈ m. We want to prove that A<AR∗(a) ⊂ X.

Because of A<Am = X, it is enough to show that A<AR∗(a) ⊂ A<Am, i.e. that

∀b ∈ A (b <A R∗(a) → b <A m) . To see this, consider that for all b with

b <A R∗a we have that [b, a] is not a set and thus that [b, a] 6⊂ m which implies

that b <A m because m is an initial segment of a coinitial subclass of (A,<A)

and a ∈ m.

Theorem 215. There is a Σ1
1 formula ϕ(A,<A) such that

∀(A,<A) (ϕ(A,<A) ↔ wwo∗(A,<A) )

is consistent with ∆1
0-TR.

Proof. By way of contradiction. We assume that there is no Σ1
1 formula σ such

that σ(A,<A) ↔ wwo∗(A,<A) holds for all (A,<A), and then we will use this

assumption to prove the schema FP within ∆1
0-TR and thus contradict Theo-

rem 208. We work in the theory ∆1
0-TR. Let ϕ(X,x) be any elementary and

X-positive formula. If wwo∗(A,<A) holds of some linear order (A,<A), then,

as seen in Lemma 214, the function R∗ = R∗(A,<A) is a recursor for (A,<A).

Because further we have for all b ∈ A that [b, a] /∈ V ⇔ b <A R
∗(a), we can apply

elementary transfinite recursion and Lemma 210 to obtain a class H such that

for all elements a, b ∈ A

1. a <A b→ (H)a ⊂ (H)b

2. (H)a =
⋃
b<AR∗(a)

{x | ϕ((H)b, x)} =
⋃

[b,a]/∈V Γϕ((H)b)

holds because [b, a] /∈ V ⇔ b < a ∧ [b, a] /∈ V ⇔ b <A R∗(a). Further, note

that since wwo∗(A,<A), for all sets x there are minimal and initial subsets of the

class {a ∈ A | x ∈ (H)a}. Therefore, and in view of Lemma 214, the following is
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provable from elementary transfinite recursion:

wwo∗(A,<A) →∃H
(
lo(A,<A) (3.14)

∧ ∀a, b ∈ A (a <A b→ (H)a ⊂ (H)b)

∧ ∀a ∈ A ((H)a =
⋃

[b,a]/∈V

Γϕ((H)b)

∧ ∀x∃m (m is minimal and initial in {a | x ∈ (H)a})
)

∧ ∀a ∈ A ({b ∈ A | ∅ 6= [b, a] is a set} is a set).

As a consequence of our assumption that wwo∗(A,<A) cannot be expressed by

any Σ1
1 formula and the fact that the right hand side of the above expression

is indeed Σ1
1, it follows that there must exist a linear order (A,<A) such that

¬wwo∗(A,<A), but the right hand side of (3.14) holds of (A,<A). Fix any

monotone elementary formula ϕ(X,x) and let (A,<A) be any such linear order

and let H be a class that satisfies the right side of (3.14). Since (A,<A) is not a

wwo∗ order, there must exist an initial subclass X of A such that for Y = A\X
there is no minimal and initial subset. We stipulate

F =
⋃
a∈X

(H)a.

If we can prove that F is a fixed point of the operator Γϕ, then we are done.

First, consider that

F =
⋃
a∈X

(H)a =
⋃
a∈X

(
⋃

[b,a]/∈V

Γϕ((H)b)) =
⋃
a,b∈X
[b,a]/∈V

Γϕ((H)b)

⊂
⋃
b∈X

Γϕ((H)b) ⊂ Γϕ(
⋃
b∈X

(H)b) = Γϕ(F )

where monotonicity of Γϕ is applied in the second line. In order to see also

Γϕ(F ) ⊂ F , we prove the identity

F =
⋂
a∈Y

(H)a, (3.15)
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and then apply monotonicity of Γϕ to obtain

Γϕ(F ) = Γϕ(
⋂
a∈Y

(H)a) ⊂
⋂
a∈Y

(Γϕ(H)a).

Thereafter, in order to verify that Γϕ(F ) ⊂ F , it is enough to prove that for every

b ∈ Y there exists a a ∈ Y such that Γϕ((H)a) ⊂ (H)b. Let a be any element of

Y . By (3.14), we know that if R∗(a) is minimal in Y , then it is a minimal and

initial subset, which cannot be the case by our choice of Y , hence there must be

an element b ∈ Y such that [b, a] /∈ V . Therefore,

Γϕ((H)b) ⊂
⋃

[c,a]/∈V

Γϕ((H)c) = (H)a.

To finish the proof, we still need to verify the identity (3.15). The inclusion

F ⊂
⋂
a∈Y (H)a follows immediately from the second clause of (3.14). For the

reverse inclusion, assume that some x is not in F =
⋃
a∈X(H)a. Hence, Z = {a |

x ∈ (H)a} is a subclass of Y . Because of the second to last clause of (3.14), the

class Z has a minimal and initial subset. Therefore, there must exist an a ∈ Y<AZ ;

hence, we have an a ∈ Y such that x /∈ (H)a and thus that x /∈
⋂
a∈Y (H)a.

3.2.1 The uniform recursion axiom

After we found that, regardless of whether or not we formulate elementary trans-

finite recursion with well orders or weak well orders, the resulting theory will still

be much weaker than the theory FP of fixed points, we will now try to pin down

the differences between set theory and arithmetic that cause this dissimilarity of

the two settings. When analyzing Avigad’s original proof (cf. [Avi96], Theorem

3.1) of the equivalence FP0 = ATR0, an important difference between arithmetic

and set theory seems to be the fact that in arithmetic, it is possible to arithmeti-

cally define a function R : P(N)→ P(N) such that a linear ordering ≺ of N is a

well ordering if and only if R is a recursor for (N,≺). In fact, a linear order ≺ on

N is exactly then a well order if the mapping x 7→ {x} is a recursor for (N,≺).

Moreover, we have seen that the situation is similar in the case of wwo∗ order-

ings (cf Lemma 214). We now turn our attention towards the question of what
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happens if for every linear ordering < of V , a function R(<) : P(V ) → P(V )

exists with the property that for any linear ordering < the class R(<) is a recur-

sor for (V,<) if and only if < weakly well orders V . As it turns out, with this

assumption we can prove FP from ∆1
0-TR in a similar fashion as we did in proving

Theorem 215. In order to process this vague observation into an actual theorem,

we will need to add a class with similar properties such as the aforementioned

function R to our base theory, and then we have to prove FP within this new

theory.

First, we note that a class R(<) as described above must depend on <, unlike

in the case of well orders but similar as in the case of wwo∗ orderings. In other

words, as shown in the next proposition, it is inconsistent to merely add a function

R : V → V and claim that for any linear ordering < of the universe one has

wwo(<)↔ rec(R,<).

Lemma 216. For every function R : V → V , there exists a weak well ordering

< of V such that R is not a recursor for <.

Proof. Let R : V → V be any function. We define a sequence ai for i ∈ ω by

an = min
C

(V \
⋃
i<n

R(ai)).

In the following, we define a linear ordering <∗ on X =
⋃
i∈ω R(ai). First, we

define

R∗(an) = R(an)\
⋃
i<n

R∗(ai)

which are a partition of X into pairwise nonempty sets. Each of the sets R∗(an)

shall be ordered by <∗ such that an is the top element and <∗ equals C on

R∗(an)\{an}. Further, for sets x ∈ R∗(an) and y ∈ R∗(ak) with n and k distinct,

we let x <∗ y if n > k. To see that R is not a recursor for <∗, consider that if

a ∈ X, then there is some natural number k such that a ∈ R∗(ak), and thus that

ak+1 ∈ X<∗R(a). Therefore, there exists no set a in X such that X<∗R(a) = ∅;

hence, R is not a recursor for (X,<∗). Since clearly (X,<∗) is a weak well order,

this proves the claim.
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3.2 Elementary transfinite recursion

Lemma 216 shows that if we want to have some kind of uniform recursor, that

is, a mapping such as < 7→ R(<) as described above, we first have to clarify how

we can code a function that maps classes to classes. Then, as the next step we

will state the uniform recursion axiom as the assertion that there is a (coded)

function F that satisfies the following condition:

F(X) is a recursor for (V,X)⇔ (V,X) is a weak well order.

Definition 217. For any class X, we write Ch(X) to mean the function Ch(X) :

On → 2 which maps an ordinal α to 1 if the αth (with respect to C) set is an

element of X. Formally, Ch(X)(α) is defined by transfinite recursion as follows:

xα = min
C

(V \{xµ | µ < α})

Ch(X)(α) =

1 if xα ∈ X

0 otherwise.

We will refer to Ch(X) as the characteristic function of X.

Definition 218. A class F ⊂ Seq(2× 2) is a coded function if

∀X,Y, Z
(
∀α (Ch(X)⊗ Ch(Y )) � α ∈ F ∧ ∀α ((Ch(X)⊗ Ch(Z)) � α ∈ F )

→ Y = Z
)
.

We will write FUN(F ) to mean that F is a coded function. Further, if F is

a coded function and ∀α (Ch(X) ⊗ Ch(Y )) � α ∈ F holds, then we will write

F (X) = Y .

Definition 219. The axiom of uniform recursion is the assertion that there exists

a coded function U such that

∀X
(
wwo(V,X)↔ rec(U(X), (V,X))

)
holds.

Now, after having stated our axiom of uniform recursion, we have to make sure

that the new principle is consistent relative to some established theory.
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Theorem 220. The uniform recursion axiom is provable in NBG + Π1
1-CA.

Proof. We work in NBG+ Π1
1-CA to define a class U such that f ∈ U if and only

if

∃F,G,X
(
F ⊗G � dom(f) = f

∧ F = Ch(X)

∧
(
¬wwo(V,X) ∧G = Ch({〈x, {x}〉 | x ∈ V })

∨G = Ch({〈x,m0 ∪ {x}〉 | m0 = min
C
{m | m is a minimal set of X}})

))
.

Identifying classes with their characteristic functions, basically, a sequence f :

α → 2 × 2 is an element of U if there are classes X,G such that f is an initial

segment of X⊗G and if X is not a weak well ordering of V , then G is the function

x 7→ {x}; otherwise, there is a (unique) least (with respect to C) minimal subset

m of V (with respect to the ordering X) and G is the mapping x 7→ m ∪ {x}.
Hence, U is a coded function such that

U(X)=̇

x 7→ {x} if ¬wwo(V,X)

x 7→ {x} ∪ “ the least minimal set w.r.o X” otherwise

where =̇ reads as “is the characteristic function of”. Clearly, U(X) is the char-

acteristic function of a recursor for (V,X) exactly if X weakly well orders V .

Definition 221. The theory ∆1
0-TR+ consists of ∆1

0-TR and the uniform recur-

sion axiom.

Theorem 222. The principle FP is provable within the theory ∆1
0-TR+.

Proof. The proof is very similar to that of Theorem 215. We work in the theory

∆1
0-TR+. Fix a class U as stated in the uniform recursion axiom. Applying

elementary transfinite recursion and Lemma 210, we get that for every elementary
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3.2 Elementary transfinite recursion

formula ϕ(X,x), the following holds.

wwo(V,<)→ ∃H
(
lo(V,<) (3.16)

∧ ∀x, y (x < y → (H)x ⊂ (H)y) (3.17)

∧ ∀x ((H)x =
⋃

b<(U(<))(b)

Γϕ((H)b)) (3.18)

∧ ∀x (x ∈ (U(<))(x)) (3.19)

∧ ∀x, y (x < y → {z | z < U(<)(x)} ⊂ {z | z < U(<)(y)})
(3.20)

∧ ∀x∃m (m is minimal in {z | x ∈ (H)z}) (3.21)

∧ ∀m ∃x (¬ (x < m) ∧ ∀y (y < U(<)(x)→ y < m))
)
. (3.22)

We justify the last two clauses as follows. While (3.21) is just a way to express

that some specific subclasses of V have minimal subsets with respect to (V,<)

and thus is granted by the assumption that < weakly well orders V , the last part

is a slightly harder to decipher. Remember that any recursor R of (V,<), by

definition, has the property

∀X (X is an initial subclass of (V,<)→ ∃y (y /∈ X ∧ {x | x < R(y)} ⊂ X)).

(3.23)

Since this property is Π1
1, we cannot directly include it into our formula. However,

we can restrict the above statement to only initial subclasses of the form V<m for

all sets m, that is initial subclasses whose complements have minimal subsets, and

then apply the formula to the recursor U(<) to get (3.22). Now fix a monotone

elementary formula ϕ(X,x). Since the right side of (3.16)∧ · · · ∧(3.22) is a Σ1
1

formula, it follows from Theorem 178 that there exists a linear ordering < of V

that is not a weak well order, but still satisfies the right side of (3.16)∧ · · · ∧(3.22).

Fix a class H such as stated in (3.16)∧ · · · ∧(3.22). Since < does not weakly well

order V , the class R = U(<) is not a recursor for (V,<). Because of (3.19) and

(3.20), the statement made in (3.23) must be violated, i.e. there must be an

initial subclass X of (V,<) such that there is no set x /∈ X with the property

that {y | y < R(x)} ⊂ X. First, note that because of (3.22), the class V \X

111



3 Weak well orders

cannot have a minimal subset. We claim that⋃
x∈X

(H)x =
⋂
x/∈X

(H)x

holds. The ⊂ part of the equality is immediate from the second clause of the right

side of (3.16)∧ · · · ∧(3.22) and the fact that X is initial relative to (V,<). To see

the reverse inclusion, suppose that y /∈
⋃
x∈X(H)x. Therefore, y is such that the

class Y = {x | y ∈ (H)x} is a subclass of V \X. From (3.21), it follows that Y

has a minimal subset and thus that Y is not minimal in V \X, since otherwise

any minimal subset of Y would also be a minimal subset of V \X. Therefore,

there must be a set z ∈ V \X that is below Y , thus

y /∈ (H)z ⊃
⋂
x/∈X

(H)x.

Now, we prove that F =
⋃
x∈X(H)x =

⋂
x/∈X(H)x is a fixed point of Γϕ, i.e.

Γϕ(F ) = F . For the inclusion from left to right, we use monotonicity of Γϕ

together with (3.17) and (3.18) to obtain

F =
⋃
x∈X

(H)x =
⋃
x∈X

(
⋃

y<R(x)

Γϕ((H)y))

⊂
⋃
x∈X

Γϕ((H)x)

⊂ Γϕ(
⋃
x∈X

(H)x) = Γϕ(F ).

For the inclusion of Γϕ(F ) in F , since by monotonicity of Γϕ we already know

that

Γϕ(F ) = Γϕ(
⋂
x/∈X

(H)x) ⊂
⋂
x/∈X

Γϕ((H)x)

holds, it is enough to show that for all sets y, we have

y /∈
⋂
x/∈X

(H)x → ∃z (z /∈ X ∧ y /∈ Γϕ((H)z)).
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Suppose that there is a set x such that x /∈ X and y /∈ (H)x. It follows from how

we chose X that Z = {z | z < R(x)}\X is a nonempty class. Choosing any z

from Z yields

y /∈ (H)x =
⋃

i<R(x)

Γϕ((H)i) ⊃ Γϕ((H)z)

as desired.

Summary

We saw in Theorem 185 that generalizing the principle of elementary transfinite

recursion cannot be done by only relaxing the well foundedness condition on the

underlying relation. Nevertheless, we managed to give a translation of elemen-

tary transfinite recursion that is based on weak well orders (cf. Definition 196).

In Theorem 198 we showed that our new principle is equivalent to the usual for-

mulation of elementary transfinite recursion. For completeness, we gave a proof

in Theorem 203 that elementary transfinite recursion is not provable from NBG.

We suppose that the argument given is folklore. We continued by using our new

interpretation of elementary transfinite recursion in order to use a result of Sato

(cf. Theorem 208) to show that wwo∗ orderings are not complete Π1
1 (cf. Theo-

rem 215). We observed that the existence of uniform recursors for wwo∗ orderings

allowed us to transform Avigad’s proof of FP0 ≡ ATR0 into the proof for Theo-

rem 215. We then formalized this line of thought and asserted the existence of

uniform recursors for weak well orders in the uniform recursor axiom (cf. Defini-

tion 219). We proved in Theorem 220 that the uniform recursor axiom is provable

from Π1
1 comprehension and continued with proving the existence of fixed points

of elementary monotone operators from elementary transfinite recursion together

with uniform recursors for weak well orders (cf. Theorem 222).
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3.3 Comparing weak well orders

As we have seen in Theorem 109, for any two well orderings (A,<A) and (B,<B),

if at least one of (A,<A) or (B,<B) respectively is a set like well order, then it

is provable in NBG that either (A,<A) can be embedded into (B,<B) or vice

versa. It is a natural question to ask whether in Theorem 109 the condition of

being set like can be dropped and the claim can still be proved from NBG, or

otherwise what the consequences are if such a principle is added to the base the-

ory. Unfortunately, we where not successful in providing conclusive answers to

these questions. In particular, it remains open whether or not NBG proves the

comparability of arbitrary well orders. What we do know, and what we assume

to be folklore, is that the comparability of well orders follows from elementary

transfinite recursion (cf. Theorem 225). In regard of the fact that in arithmetic

the theory CWO is of the same strength as ATR0 and FP0 (cf. Theorem 15), the

question arises whether or not it is possible to implement a comparability princi-

ple for weak well orders that can prove FP or at least can be added to ∆1
0-TR to

obtain a theory within which FP is provable. However, it became evident in the

course of our investigations that comparing weak well orders is a very meticulous

task. In particular, since there are weak well orders that clearly do not compare

in the usual sense, it is clear that the usual approach which employs order iso-

morphisms has to be altered. In literature, the system CWO is often quoted as

the weakest extension ACA0 that allows for a reasonable treatement of ordinals

(e.g. [Sim98] V.6.). In the second part of this section we attempt to translate

this particular characteristic of the theories CWO and ATR0 to the class theo-

retic setting. Informally, a decent framework of ordinals should at least provide

enough ordinals to have order-types for all well orders. Our framework provides

order-types for potentially all weak well orders and additionally incorporates the

following basic features (cf. Proposition 253):

• The order-type of every weak well order is a well order

• Every well order is order isomorphic to its order-type

• Order isomorphic orders have order isomorphic order-types.
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Based on our framework of order-types, we introduce a theory that guarantees

order-types for all weak well orders and discuss dome basic properties of that

theory. However, most questions about the abilities of this theory remain open.

3.3.1 Comparability of well orders

First, we will prove that the comparability of well orders is a consequence of the

theory ∆1
0-TR.

Definition 223 (Comparability of well orders). The theory3 CWO is NBG to-

gether with the statement that from any two well orders at least one embeds into

the other (cf. Definition 103).

Lemma 224. If Y is any class and ϕ(X,x) is an elementary formula such that

∀X (Γϕ(X) ∈ Y ), then it is provable in the theory ∆1
0-TR that for every well order

(A,<) there is a function F : A→ Y such that ∀a ∈ A (F (a) = Γϕ(F � A<a)).

Proof. For any well order (A,<), a function F with the aforementioned properties

can be obtained as follows. Let ϕ(X,x) be an elementary formula. Stipulate

ψ(X,x) ≡ ∀z (z ∈ x↔ ϕ(X, z)),

and let H be a class that satisfies the usual recursion schema for the operator

Γψ. Now define F by elementary comprehension

F = {〈a, y〉 ∈ A× Y | y = min
C

(H)a}.

Let a ∈ A and consider

F (a) = min
C

((H)a) = min
C

(Γψ(H � A<a))

= min
C

({Γϕ(H � A<a)}) = Γϕ(H � A<a).

3Due to the verbatim translation, we use the same acronym to name the comparability of well
orders in arithmetic and in set theory respectively. It will, however, always be clear from
the context which theory we are referring to.
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Theorem 225. In the theory ∆1
0-TR, it is provable that CWO holds.

Proof. Let (A,<A) and (B,<B) be any two well orders. Let a0 and b0 be the

smallest elements of (A,<A) and (B,<B) respectively.

(∀b ∈ B ∃a ∈ A (X(a) = b) ∧ x = b0) ∨ (x = min
<B
{b ∈ B | ¬∃a ∈ A (X(a) = b)})

Applying Lemma 224, we obtain a function F : A→ B such that for all a ∈ A

F (a) = Γϕ(F � A<Aa)

holds. In particular, we get a function F such that for all a in A

F (a) =

min<B (B\F [A<Aa]) if possible

b0 otherwise.

holds. We distinguish two cases. First, assume that for all a ∈ A we have that

F (a) = b0 ↔ a = a0. Obviously, F satisfies for all a, a′ ∈ A that a < a′ holds

iff F (a) < F (a′) holds. Therefore, if we show that F [A] is an initial segment

of (B,<B) we have shown that F embeds (A,<A) into (B,<B). Assume that

b < F (a) holds of some b ∈ B and a ∈ A, then it follows that

b < F (a) = min
<B

(B\F [A<Aa])⇒ b ∈ F [A<Aa] ⊂ F [A].

In the case there is an a ∈ A\{a0} with the property that F (a) = b0, let a1

be the least such element. Since F � A<Aa1 is a bijective mapping, we can fix

G = (F � A<a1)−1. Clearly, G embeds (B,<B) into (A<a1 , <A).

Corollary 226. As a consequence of Theorem 225 and Theorem 208, we have

that, unlike in the arithmetic case, comparability of well orders is not enough to

prove the existence of fixed points of elementary positive operators.

3.3.2 Order-types and comparability of weak well orders

As mentioned before, it is an immediate observation that simply extending the

scope of the principle CWO from well orders to weak well orders yields an incon-
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sistent theory.

Remark 227. For two given weak well orders, it is not necessarily the case that

one embeds into the other.

Proof. Consider the order ω∗ = (ω,>), the set of natural numbers with their

natural order inverted, and the order (ω,<), the natural numbers ordered as

usual. Obviously both orders are weak well orders, but neither embeds into the

other.

In view of this observation, we will turn our attention to the question on how to

relax the notion of embedability, so that a corresponding comparability principle

for weak well orders is meaningful. We will examine the strengths and shortcom-

ings of the principles obtained that way. As we will see below (cf. Corollary 230),

order embeddings are exactly those one-to-one functions between linear orders

that preserve initial segments in both directions, i.e. every image of an initial

segment is an initial segment in the target order and every preimage of an initial

segment is an initial segment of the domain.

The following terminology is motivated by the fact that the collection of all

initial subclasses of a linear order forms a topological space on the field of the

relation.

Definition 228. A function F : A→ B is a continuous map between the linear

orders (A,<A) and (B,<B) if preimages of initial segments of (B,<B) are initial

segments of (A,<A), i.e. if the following is satisfied.

∀X (X ≺ B → F ′′X ≺ A).

The function F is open if initial segments are mapped onto initial segments, i.e.

∀X (X ≺ A→ F [X] ≺ B).

Proposition 229. If (A,<A) and (B,<B) are linear orders, then the continuous

functions from A to B are exactly the (not necessarily strict) order preserving

functions from A to B, i.e. functions F : A → B that suffice the condition
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a ≤A a′ → F (a) ≤B F (a′) for all a, a′ ∈ A4.

Proof. We assume that F : A → B satisfies ∀a, a′ (a ≤A a′ → F (a) ≤B F (a′))

and we fix some initial segment Y of (B,<B). If X = F ′′Y is empty, then it is

initial in (A,<A) and we are done. Otherwise let a ∈ X and a′ < a then, since

F is order preserving and Y is initial in (B,<B), we know that F (a′) ∈ Y and

thus that a′ ∈ X. For the converse implication, assume that F is continuous and

that a ≤ a′ for some elements of A. Since Y = B≤BF (a′) is an initial segment of

(B,<B) so is F ′′Y . Because a′ ∈ F ′′Y and a ≤ a′, we conclude that a ∈ Y and

thus that F (a) ≤ F (a′).

Corollary 230. Let (A,<A) and (B,<B) be linear orders and let F : A → B.

The following are equivalent.

1. The function F is an embedding of (A,<A) into (B,<B).

2. The function F is one-to-one, open and continuous.

In view of the above proposition, continuous functions between any given linear

orders (A,<A) and (B,<B) exist, and trivial examples are constant mappings.

On the other hand, continuous one-to-one functions are strictly order preserving

and thus, as we have seen before, too restrictive as comparison maps for anything

beyond well orders. Moreover, even if we relax the one-to-one condition to the

point where all functions F : A→ B with the property that there is no element

b ∈ B such that F ′b is a proper class are considered, the resulting comparability

principle is still inconsistent. A counter example is presented in the following

remark.

Remark 231. Let A be the class ω ×On and fix

(n, α) <1 (m,β) ⇔ n < m ∨ (n = m ∧ α < β)

and

(n, α) <2 (m,β) ⇔ n > m ∨ (n = m ∧ α < β).

4Note that the defining implication for non strict order preservation is required only from left
to right but not necessarily from right to left. A function F : A→ B that has the property
F (a) ≤B F (a′)→ a ≤A a′ for all a, a′ in A, is in fact already strictly order preserving and
thus one-to-one, which is not necessarily the case for non strict order preserving functions.
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Both (A,<1) and (A,<2) are weak well orders, but every continuous function

from one order into the other will map some proper subclass of A to a single

point.

Proof. Let F : A → A be such that ∀a ∈ A (F ′a ∈ P(A)). First, assume that F

is continuous from (A,<1) to (A,<2). First, note that for all ordinals α, β and

all natural numbers n, k with n < k we have that k′ < n′ if α′, β′, n′ and k′ are

such that F (n, α) = (n′, α′) and F (k, β) = (k′, β′). Now, since (0, 0) is the least

element of (A,<1), a natural number n such that F [A] ⊂ {(k, α) | k ≤ n ∧ α ∈
On} exists. This contradicts our previous observation. Now assume that F is

continuous from (A,<2) to (A,<1). Similarly as in the previous case, the elements

of X = {(n, 0) | n ∈ ω} form an infinite descending chain in (A,<2). Since for

any two distinct elements a <2 b of X we have that {x ∈ A | a <2 x ∧ x <2 b}
is a proper class, we know that F � X is one-to-one, contradicting the fact that

(A,<1) is a well order.

Now that we have seen that continuous (i.e. non strict order preserving) func-

tions are no viable candidates for comparison functions between weak well orders,

we now turn to investigate to which degree open functions can be tuned into a

more suitable alternative. First, a definition:

Definition 232. Let (A,<A) and (B,<B) be linear orders. We call a function

F : A→ B is weakly order preserving if

a <A F
′b→ F (a) <B b

for all a ∈ A and all b ∈ B.

We will continue with proving a few basic facts in order to display which

key properties of (strict) order preserving functions are conserved in the process

of weakening the notion in the sense of Definition 232. We will subsequently

elaborate on some general facts of these functions and then discuss how they

could be applied to obtain comparability principles of weak well orders.

First, we note that in the one-to-one case, weakly order preserving functions

are already (strict) order preserving.
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Lemma 233. Let (A,<A) and (B,<B) be linear orders. Every weakly order

preserving one-to-one function F : A → B is already strictly order preserving,

i.e. ∀a, b ∈ A (a <A b ↔ F (a) <B F (b)).

Proof. Let (A,<A), (B,<B) and F : A → B be as in the claim. It is enough

to show that for all a, b ∈ A, we have a <A b → F (a) <B F (b). Since F is

one-to-one, we can write {b} as F ′F (b) for every element b ∈ A. Thus we get

that

a <A b⇔ a <A F
′F (b)⇒ F (a) <B F (b)

for all a ∈ A, as desired.

Lemma 234. If F : A → B is some weakly order preserving function between

linear orders (A,<A) and (B,<B), then

a <A F
′′Y → F (a) <B Y

holds for all a ∈ A and all classes Y ⊂ B.

Proof. Let F be a weakly order preserving function from (A,<A) to (B,<B).

Assume that a <A F
′′Y for some class Y ⊂ B. Consider

a <A F
′′Y ⇒ ∀y ∈ Y (a <A F

′y)

⇒ ∀y ∈ Y (F (a) <B y)

⇒ F (a) <B Y.

As a consequence, we can prove that under weakly order preserving functions,

preimages of minimal subclasses are minimal. More precisely:

Corollary 235. Let F be a weakly order preserving function from (A,<A) to

(B,<B). For all subclasses M,Y ⊂ B we have that F ′′M is minimal in F ′′Y

whenever M is minimal in Y .

Proof. Let M ⊂ Y be some subclasses of B. If F ′′M ⊂ F ′′Y is not minimal, then

there is an element a ∈ F ′′Y below F ′′M , i.e. some set a satisfies F (a) ∈ Y and

a < F ′′M . Applying that F is weakly order preserving, we obtain that F (a) ∈ Y
and F (a) < M , thus M cannot be a minimal subclass of Y .
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The purpose of the following series of lemmas is to gather some more gen-

eral facts about weakly order preserving functions and thus establish a suitable

intuition for our further studies.

Lemma 236. If (A,<A) and (B,<B) are linear orders and F : A→ B is weakly

order preserving, then every restriction F � X of F to any initial segment X of

(A,<A) is weakly order preserving.

Proof. Without loss of generality, we assume that X 6= ∅. Let a <A (F � X)′b

with a ∈ X and b ∈ B. We apply (F � X)′b = X ∩ F ′b, and we distinguish the

two cases where F ′b ∩X is and is not empty respectively. If F ′b ∩X = ∅, then

because X is an initial segment of (A,<A), we know that a <A F
′b and thus that

F (a) <B b. In case that F ′b ∩ X is not empty, it is minimal in F ′b and thus,

since a <A F
′b ∩X, we know that a <A F

′b so F (a) <B b as desired.

As a result of this lemma, we obtain a proof that that weakly order preserving

functions correspond exactly to open functions.

Lemma 237. If (A,<A) and (B,<B) are linear orders, then every weakly order

preserving function F : A→ B is also open.

Proof. First, we note that the image of any weakly order preserving function is

an initial segment of the target order. To see this, assume that F : A → B

is weakly order preserving. If a ∈ A is arbitrarily chosen and b ∈ B is not an

element of F [A], then F ′b = ∅ and thus a <A F
′b, therefore F (a) <B b. Hence,

F [A] = {x ∈ B | ∀b ∈ B\F [A] (x <B b)} is an initial segment of (B,<B). Now, if

X is any initial segment of (A,<A), then we know from Lemma 236 that F � X is

a weakly order preserving and thus that F [X] = (F � X)[X] is an initial segment

of B.

Lemma 238. Let (A,<A) and (B,<B) be linear orders. Every open function

F : A→ B is weakly order preserving.

Proof. Let a ∈ A and b ∈ B be such that a <A F
′b and assume that F : A→ B

is open. We have to show that F (a) <B b. If X = A<AF ′b, then, because F is

open, Y = F [X] is an initial segment of (B,<B) with F (a) ∈ Y and b /∈ Y , thus

F (a) <B b.
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Corollary 239. Let (A,<A) and (B,<B) be linear orders and let F : A → B,

then F is weakly order preserving if and only if F is open.

From the fact that weakly order preserving functions are open, it is an imme-

diate consequence that the composition of weakly order preserving functions are

weakly order preserving.

Corollary 240. If (A,<A), (B,<B) and (C,<C) are linear orders and if further

F : A → B and G : B → C are weakly order preserving, then G ◦ F : A → C is

weakly order preserving between the orders (A,<A) and (C,<C).

Combining corollary 239 and Lemma 233, we obtain that weakly order pre-

serving functions that are one-to-one are already embeddings.

Corollary 241. Let (A,<A) and (B,<B) be linear orders and let F : A → B.

The following statements are equivalent:

1. F is an embedding of (A,<A) into (B,<B)

2. F is weakly order preserving and one-to-one

In view of the previous lemma, we can think of approaching the notion of order

preserving functions with weakly order preserving functions by tuning the degree

to which they are allowed to map different elements to the same image. A very

permissive approach is presented in the next definition, when we fix the notion

of a set to one function to be a function F whose fibers, i.e. classes of the form

F ′b for some b, are all sets.

Definition 242. A function F : X → Y is set to one if ∀y ∈ Y (F ′y ∈ P(X)). A

weak embedding of some linear order (A,<A) into some other linear order (B,<B)

is a function F : A→ B that is both weakly order preserving and set to one.

Lemma 243. The restriction of any weak embedding F : A→ B of some linear

order (A,<A) onto some other linear order (B,<B) to some initial segment X

of (A,<A) is a weak embedding F � X : X → B of (X,<X) into (B,<B).

Proof. This follows directly from Lemma 236.
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Lemma 244. For all linear orders (A,<A), (B,<B) and (C,<C) and all weak

embeddings F : A→ B and H : B → C, the composite H ◦ F : A→ C is a weak

embedding of (A,<A) into (C,<C).

Proof. Let F : A → B and H : B → C be weak embeddings as indicated in the

claim. First note that for every element c ∈ C the class

(H ◦ F )′c = {a ∈ A | H(F (a)) = c}

is the union of set many sets and thus is itself as a set. To see that H ◦ F is

weakly order preserving, it is enough to verify that the function is open. Let X

be any initial segment of (A,<A). Since F is open, F [X] is an initial segment of

(B,<B) and because H is also open we can conclude that H[F [X]] = (H ◦F )[X]

is an initial segment of (C,<C).

Now that we have established some basic properties of weak embeddings, the

stage is set in order to see how far we can get with weak embeddings in terms of

comparing weak well orders.

Theorem 245. For every cardinal κ, if (Vκ, Vκ+1) is a model of NBG, then

(Vκ, Vκ+1) is also a model of

wwo(A,<A) → ∃(W,≺)∃F
(
wo(W,≺) ∧ F : (A,<A)

w.e.−→ (W,≺)
)
,

where F : (A,<A)
w.e.−→ (W,≺) is an abbreviation for the statement that F is a

weak embedding of (A,<A) into (W,≺).

Proof. Let M = (Vκ, Vκ+1) be a model of NBG. Clearly, a weak well order

(A,<A) in M 5 is a κ-well order of cardinality at most κ. We define a sequence

{mα | α ∈ On} by transfinite recursion as follows:

mα =

minC{m ⊂ A | m is minimal in A \
⋃
µ<αmµ} if {. . . } 6= ∅

∅ otherwise.

5In spite of the fact that A and F are sets, but for the benefit of readability, we use upper
case letters here.
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Since we can assume without loss of generality that |A| = κ and because the

elements of {mα | α ∈ On} are pairwise disjoint and A =
⋃
αmα holds, there is

an ordinal λ with κ ≤ λ = {α ∈ On | mα 6= ∅} < κ+, where κ+ denotes the least

cardinal greater than κ. Therefore, there is a bijective function h : Vκ → λ based

on which we introduce the well order (Vκ, <h) where x <h y ↔ h(x) < h(y).

Since, in M, the function F : A→ Vκ as given from

F (a) = x ↔ ∃α (h(x) = α ∧ a ∈ mα).

is a weak embedding of (A,<A) into (V,<h), this proves the claim.

As a consequence of Theorem 245, we get that the consistency of NBG together

with the formula

wwo(A,<A) → ∃(W,≺)∃F
(
wo(W,≺) ∧ F : (A,<A)

w.e.−→ (W,≺)
)
, (3.24)

can be proved within ZFC+“ inaccessible cardinals exist ”. Thus, if anything else,

a theory based on (3.24) can be assumed consistent. Moreover, as we will see

later (cf. Definition 252), assuming a formula such as presented in (3.24) can

be seen as an intermediate step towards a machinery to match weak well orders

with well orders. Of course, (3.24) only guarantees that for every weak well order

(A,<A) a nonempty collection of well orders into which (A,<A) can be weakly

embedded exists, it has to be further clarified how these well orderings can be

used to propose a well order to associate with (A,<A).

As we have seen in Theorem 185, if the theory ∆1
0-TR is extended through

weakening of the well foundedness precondition in the schema ∆1
0-TRwo, then

the resulting theory is inconsistent. However, utilizing the formula (3.24) as

an additional axiom might strengthen the theory ∆1
0-TR by way of extending

the range of well orders to which ∆1
0-TRwo could be applied. More specifically,

working in (3.24)+∆1
0-TR and given any weak well order (A,<A), one can find

a class H that is the result of iterating a given elementary formula along a well

order into which (A,<A) can be weakly embedded. More formally, if ϕ(X+, x)6

6The superscript + in ϕ(X+, x) indicates that the parameter X might only occur positively
in ϕ.

124



3.3 Comparing weak well orders

and ψ(H,F, (W,≺)) are elementary formulas and hierϕ(H, (W,≺)) stands for the

formula

∀x, y ∈W
(
x ≺ y → (H)x ⊂ (H)y ∧ (H)x =

⋃
z≺x

Γϕ
(
(H)z

))
,

then one can prove from wwo(A,<A) (with an application of Lemma 210) that

∃(W,≺), F,H
(
F : (A,<A)

w.e.−→ (W,≺) ∧ hierϕ(H, (W,≺)) ∧ ψ(H,F, (W,≺))
)

(3.25)

holds. Since (3.25) is a Σ1
1 formula, we conclude that there must also be a

linear order (A,<A) that is not a weak well order but still satisfies (3.25). At

first glance, it seems as if a particularly clever combination of the facts that

F : (A,<A)
w.e.−→ (W,≺) and that (A,≺) is not weakly well founded might reveal

the existence of a pseudo hierarchy7 and along with it a fixed point for the

operator Γϕ. However, this is not the case as it is always possible to choose

the formula ψ such that ψ(H,F, (W,≺)) → wo(W,≺). In fact, we obtain the

following proposition as a byproduct of the discussion above.

Proposition 246. It is not provable in NBG that for all F, (A,<A) and (W,≺)

it is the case that

(
wo(W,≺) ∧ F : (A,<A)

w.e.−→ (W,≺)
)
→ wwo(A,<A)

holds. In fact, if NBG is extended by (3.24), then it is provable that there are

linear orders (A,<A) and (B,<B) and a function F such that ¬wwo(A,<A) and

wo(B,<B) and F : (A,<A)
w.e.−→ (B,<B).

While these observations make it clear that a pseudo hierarchy argument to

obtain fixed points for Γϕ cannot be obtained as described above, that does not

mean that a proper hierarchy with a fixed point of Γϕ does not exist. In order to

prove the existence of a proper hierarchy which contains fixed points of Γϕ, one

needs transfinite recursion and a well order (W,≺) that is long enough so that

a fixed point is eventually reached when Γϕ is iterated along (W,≺). Although

7A class H such that a linear order (B,<B) with hierϕ(H, (B,<B)) ∧ ¬wo(B,<B) exists.
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possible in principle8, in view of the next proposition, this is not a consequence

of (3.24).

Proposition 247. Let (A,<A) be any linear order. If there is a well order

(W,≺) and a function F : (A,<A)
w.e.−→ (W,≺), then there is a weak embedding

F ? : (A,<A)
w.e.−→ (On,∈).

Proof. Let F, (W,≺) and (A,<A) be as in the claim. By Corollary 111, we can

assume without loss of generality that (W,≺) = (On,∈)⊕ (X,≺) for some well

order (X,≺) with X ∩On = ∅. Further, we can assume that {xα | α ∈ On} = X

be any enumeration of X. We use the weak embedding F to define a function

F ? : A→ On as follows

F ?(a) =

F (a) if F (a) ∈ On

α if F (a) = xα.

First, note that F ? is a set to one function. To see that F ? is also weakly order

preserving, it suffices to show that it is open. This follows from the fact that

for every initial segment Y of (A,<A), we have that F [Y ] ∩On = F ?[Y ] holds.

Thus, F ? : (A,<A)
w.e.−→ (On,∈) as desired.

Corollary 248. Every well order can be weakly embedded into (On,∈).

Informally, in the proof of Theorem 245 we have seen that proving the existence

of a weak embedding from a weak well order (A,<A) into some given well order

(W,≺) essentially amounts to “consuming” the whole field of (A,<A) by removing

one minimal subset after another, while (W,≺) enumerates all the so collected

subsets. That is not unlike the situation when proving comparability of well

orders; minimal elements are removed from one order and matched to increasing

elements of the other order until there is either nothing left to remove or to match

respectively. From an outside perspective9, although the procedures are similar,

8Note that by Theorem 209, the existence of fixed points is equivalent to the existence of
proper hierarchies that contain fixed points.

9When we say that a well order (W,≺) is of at least the same length as a well order (W ′,≺′),
then we mean to speak in the meta theory and say that the ordinal that corresponds to the
order-type of (W,≺) is greater or equal than the corresponding ordinal of (W ′,≺′), thus the
phrase “from an outside perspective”.

126



3.3 Comparing weak well orders

a well order can only be embedded into a well order of at least the same length,

this is not the case for weak embeddings as demonstrated in Corollary 248. We

will now pin down the underlying reason for that difference and then present a

more effective version of (3.24). First, an observation:

Remark 249. Let (w,≺) be a well order (that is a set). The order-type of (w,≺)

is the supremum of all ordinals α such that a weakly order preserving function

f : (w,≺)→ (α,∈) exists.

Proof. Let αw be the order-type of (w,≺) and let αs be the supremum as de-

scribed in the claim. Since there is an order isomorphism (and thus a weakly

order preserving function) between (w,≺) and (α,∈), we know that αw ≤ αs.

For the converse inequality, assume that α is some ordinal such that a weakly

order preserving function f : w → α exists. We have to show that the order-type

of (w,≺) is greater or equal than α. Since (w,≺) is a well order and f is weakly

order preserving, we can define a strictly increasing sequence {xµ | µ < α} in

(w,≺) by stipulating xµ = min≺ f
′µ. Thus, the order-type of (w,≺) is at least

α.

From an outside perspective, the previous remark tells us that the order-type of

a well order (W,≺) can be seen as the supremum of all ordinals into which (W,≺)

can be weakly embedded. The reason that this characterization is needlessly

complicated when one is only interested in order-types of well orders, is the

fact that, in case of well orders, the aforementioned supremum actually is a

maximum. Thus, it is much more natural to directly describe the order-type of

a well order (W,≺) as this maximum; the least ordinal that is order isomorphic

to (W,≺). However, in case of weak well orders the supremum mentioned before

is in general10 not a maximum. Thus, in order to formalize the notion of order-

types for weak well orders, we will have to use the characterization given in the

previous remark. First, in Definition 250, we give an explicit meaning to the

phrase “removing minimal subsets of a weak well order up to the point where

the remaining part is empty”. Thereafter, in Proposition 251 we give a formal

variant of our observation that constructing a weak embedding of a weak well

10In fact, the supremum described above is a maximum exactly in case that the order is a well
founded
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order into a well order basically consists of removing minimal subsets of the weak

well order up to the point where the remaining part is empty, while the well order

enumerates the so collected sets in order of their removal.

In the remainder of this chapter, we work in the theory ∆1
0-TR.

Definition 250. Let (A,<) be a linear order and (W,≺) a well order. Further,

let l be any global well ordering. We define the function

Fl((W,≺), (A,<A)) : W → P(A)

by recursively stipulating

F (x) =

minl{m ⊂ A | m is minimal in A \ ∪F [W≺x]} if {. . . } 6= ∅

∅ otherwise,

where F is an abbreviation for Fl((W,≺), (A,<A)). In the following, if there is

no ambiguity, we will write Fl to mean Fl((W,≺), (A,<A)).

Proposition 251. Let (A,<) be a weak well order and (W,≺) a well order. The

following assertions are equivalent for every function F : A→W .

1. F : (A,<A)
w.e.−→ (W,≺)

2. There is a global well ordering l such that ∀x ∈ W
(
F ′x = Fl(x)

)
and

A = ∪(Fl[W ])

Proof. First, assume that F : (A,<A)
w.e.−→ (W,≺). Let (X,<X) be the well or-

dering where X = {F ′x | x ∈W} and F ′x <X F ′y ↔ x ≺ y. By Theorem 104,

we can extend <X to a global well order l of which X is an initial segment. It

is now easy to verify by induction along (W,≺) that Fl(x) = F ′x holds for all

x ∈ W . For the converse direction, note that for every global well ordering l,

the assertion F (a) = x ↔ a ∈ Fl(x) defines a unique function F with domain

A and that this function is a weak embedding11.

The now formalized process of constructing a weak embedding of a non well

founded weak well order into a well order is erratic in the sense that the method
11Compare also to the proof of Theorem 245, where the sequence {mα | α ∈ On} acts in the

place of the function Fl.
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of how to choose the “next” subset to remove is guided by the axiom of choice.

For well orders, on the other hand, the “next” minimal subset to be removed

can always be chosen “canonically” as the (uniquely determined) singleton that

contains the minimal element of the remaining class. The crucial property of this

specific strategy to remove minimal subsets from a well order, is that the ordinal

needed to enumerate these subsets in the order of their removal is maximal. We

will now present our order-type system that resolves this problem at the cost of

a second order universal quantification.

Definition 252 (order-type of weak well orders). Let (A,<A) be any linear order

and let (W,≺) be a well order. If for every global well ordering l it is the case

that ∪Fl[W ] = A holds, then we write ot(A,<A) ≤ (W,≺). If further there is no

element x ∈W such that ot(A,<A) ≤ (W≺x,≺) holds, then we say that (A,<A)

is of order-type (W,≺) and we write ot(A,<A) ' (W,≺).

Proposition 253. The following assertions can be proved in ∆1
0-TR.

1. For every well order (W,≺) we have that ot(W,≺) ' (W,≺).

2. If (A,<A) and (B,<B) are order isomorphic and ot(A,<A) ' (W,≺) and

ot(B,<B) ' (W ′,≺′) then (W,≺) and (W ′,≺′) are order isomorphic.

3. Order-types of weak well orders are unique up to order isomorphism.

Proof. For 1., let (W,≺) be any well order. By Proposition 251, there is a global

well order l1 such that Fl1
(x) = {x}. We have to prove the following two

statements:

i) For all global well orderings l it is the case that ∪Fl[W ] ⊃W .

ii) For all x ∈W there is a global well ordering l such that ∪Fl[W≺x] 6= W .

Statement ii) follows from the fact that for every x ∈ W it is the case that

x /∈ ∪Fl1 [W≺x]. Claim i) follows from the fact that for every global well ordering

l we have that W ⊂ ∪Fl1 [W ] ⊂ ∪Fl[W ]. For the second part of the proposition,

let (A,<A), (B,<B), (W,≺) and (W ′,≺′) be as in the claim. Since ∆1
0-TR proves

the comparability of well orders, we can assume without loss of generality that

(W ′,≺′) can be embedded in (W,≺). It is thus enough to show that there is no
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element x ∈ W such that (W≺x,≺) is order isomorphic to (W ′,≺′). By way of

contradiction assume such an x ∈W exists. Let H : W ′ →W≺x and F : A→ B

be order isomorphisms. Since ot(A,<A) ' (W,≺), there exists a global well

ordering l such that an a ∈ A with a /∈ ∪Fl[W≺x] exists12. Since minimality of

sets is preserved under order isomorphism, there is a global well ordering l2 such

that for every y in W ′, Fl2
(y) = F [Fl(H(y))] holds. From ot(B,<B) ' (W ′,≺′)

it follows that F (a) ∈ ∪Fl2
[W ′]. Now consider:

F (a) ∈ Fl2
[W ′] ⇒ ∃y ∈W ′ (F (a) ∈ Fl2

(y))

⇒ F (a) ∈ F [Fl1
(H(y))]

⇒ a ∈ Fl1
(H(y))

⇒ a ∈ ∪Fl1 [W≺x],

in contradiction to our choice of a. The third part of the proposition is an

immediate consequence of the second.

In the next proposition, we observe that weak well orders are the only linear

orders that can possibly have an order-type in the sense of Definition 252.

Proposition 254. It is provable in ∆1
0-TR that for all linear orders (A,<A),

∃(W,≺) (wo(W,≺) ∧ ot(A,<A) ≤ (W,≺))

implies that (A,<A) is a weak well order.

Proof. Let (A,<A) be a linear order such that ot(A,<A) ≤ (W,≺) for some well

order (W,≺). Let X be any nonempty coinitial subclass of A. By Theorem 104,

a global well ordering l that satisfies

∀x, y
(
(x ∩X = ∅ ∧ y ∩X 6= ∅) → xl y

)
exists. Let x be a element of X. It follows from our choice of l and the definition

of Fl that for all y ∈W either Fl(y) ⊂ X or Fl(y)∩X = ∅. Thus, x ∈ ∪Fl[W ]

12Note that, because of the uniqueness of hierarchies defined by transfinite recursion, there is
no need to distinguish between the functions Fl((W,≺), (A,<A)) and Fl((W≺x), (A,<A)).
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implies that the class {z ∈ W | Fl(z) ⊂ X} is nonempty and therefore has a

least element, say zX . We claim that Fl(zX) is a minimal subset of X. It follows

from the definition of Fl that Fl(zX) is a minimal (w.r.t. (A,<)) subset of

A\Fl[W≺zX ]. Since Fl[W≺zX ] ⊂ A<X , this implies that Fl(zX) is minimal in

X, as desired.

Definition 255. Let CWO+ stand for ∆1
0-TR plus

wwo(A,<A)→ ∃(W,≺) (wo(W,≺) ∧ ot(A,<A) ' (W,≺)).

Theorem 256. It is provable in CWO+ that the following two assertions are

equivalent:

1. wwo(A,<)

2. ∃(W,≺) (wo(W,≺) ∧ ot(A,<) ' (W,≺))

Proof. The direction from 1. to 2. is CWO+ and the converse is a direct conse-

quence of Proposition 254.

Corollary 257. It is provable in CWO+ that there is no Σ1
1 formula ϕ(X,Y )

that satisfies

∀(A,<A), (W,≺)
(
ot(A) ' (W,≺)←→ ϕ((A,<A), (W,≺))

)
.

Summary

In the first part, we introduced the theory CWO that guarantees that any two

well orders are comparable. In Theorem 225 a straightforward proof that the

theory ∆1
0-TR includes CWO was presented. The second part was devoted to

an attempt to interpret CWO in terms of weak well orders. First, we observed

that for the purpose of comparing anything not well founded, order isomorphisms

and embeddings are too restrictive. We continued to analyze which properties of

embeddings have to be weakened in order to obtain functions more suitable for

the task. We introduced weakly order preserving functions and weak embeddings

in Definition 232 and Definition 242. After we proved some general facts about

weak embeddings, we showed in Theorem 245 that weak embeddings potentially
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exist not only between weak well orders but also that it is consistent to assume

that all weak well orders can be weakly embedded into well orders. However, in

Proposition 247 we gave evidence for the fact that merely assuming the existence

of weak embeddings from all weak well orders into well orders does not constitute

a strong theory. Subsequently we introduced our notion of order-types for weak

well orders (cf. Definition 252); the order-type of a weak well order can be seen

as the supremum of all ordinals in which (A,<A) can be weakly embedded. In

Proposition 253 we showed that our framework satisfies the most basic properties

that one would expect from an order-type system. In Definition 255 we introduced

the theory CWO+ which consists of ∆1
0-TR together with the assertion that every

weak well order has an order-type. In Theorem 256 we proved that CWO+ is as

strong as possible in the sense that if a linear order has an order type, then it is

already a weak well order, i.e. the axioms of CWO+ cannot be extended to linear

orders that are not weakly well founded. Finally, the big question that remains

open is whether or not FP is contained in CWO+, thus the following conjecture:

Conjecture. It is provable in CWO that for every monotone elementary operator

Γ there is a well order (W,≺), such that Γ reaches a fixed point when iterated

along (W,≺).
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3.4 Bar induction and V -model reflection

In this section, we will provide further evidence that the situation in class set

theory with regard to the relative strength of theories that fundamentally rely on

the notion of well foundedness is quite different from the situation in arithmetic.

Specifically, we will see that the relationship of corresponding principles of bar

induction and ω-model reflection is differs from their relationship in arithmetic.

Again, the fact that in set theory, as opposed to arithmetic, the well found-

edness of a relation can be expressed as an elementary formula constitutes the

dissimilarity between the two settings.

After introducing the notion of V -models, a straightforward translation of ω-

models to sets and classes, we introduce the axiom of V -model reflection, which

corresponds to ω-model reflection. In a further step, we will present two versions

of bar induction, where the first is a verbatim quote of the usual bar induction

schema from arithmetic, and the second principle is obtained by generalizing the

weak induction principles from classes to predicates. While we cannot give a

conclusive argument for which of the two principles is “the right” analog, we will

see that, despite the fact that bar induction with weak well orders entails the

usual schema of bar induction, both principles yield theories that fall short of the

power of their arithmetic counterpart, at least with respect to their capacities

relative to V -model reflection.

Definition 258. Let M be any class, and let ϕ be any formula. We define the

formula ϕ(M) by induction on the complexity of ϕ as follows:

1. If ϕ is an elementary formula, then ϕ(M) is ϕ.

2. If ϕ is ∃X (ψ(X)), then ϕ(M) is ∃α
(
ψ((M)α)

)(M)
.

3. If ϕ is ∀X (ψ(X)). then ϕ(M) is ∀α
(
ψ((M)α)

)(M)
.

4. If ϕ is ϕ1 ∗ ϕ2 for any of the connectives ∗ ∈ {∧,∨,→}, then ϕ(M) is

ϕ
(M)
1 ∗ ϕ(M)

2 .

5. If ϕ is ¬ψ, then ϕ(M) is ¬ (ψ(M)).

6. If ϕ is ∃xψ, then ϕ(M) is ∃x (ψ(M)).
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7. If ϕ is ∀xψ, then ϕ(M) is ∀x (ψ(M)).

We will use the shortcut X∈̇M to mean (∃Y (X = Y ))(M), i.e ∃α (X = (M)α).

Stipulating ΦNBG as the conjunction of all formulas that constitute an arbitrary

but fixed finite axiomatization of the theory NBG, we introduce V -models, in

analogy to ω-models of arithmetic, as classes in which ΦNBG holds13.

Definition 259. A V -model is a classM such that Φ
(M)
NBG holds. For any collection

F of formulas, we say that a class M is a V -model of F if M is a V -model that

satisfies ϕ(M) for all formulas ϕ in F .

The idea behind V -model reflection is to assume that for some formulas ϕ(X)

and for all classes X that satisfy ϕ(X), a V -model that contains X and models

ϕ(X) exists.

Definition 260. Let F be a collection of formulas. The theory F-RFN, of V -

model reflection for formulas in F is obtained from extending NBG by the schema

ϕ(X)→ ∃M
(
X∈̇M ∧ Φ

(M)
NBG ∧ ϕ

(M)
)
,

where ϕ(X) ranges over formulas in F with at most X free. We will use the

shorthand notation RFN for the theory {∃x (x = x)}-RFN, i.e. the assumption

that a V -model exists.

Lemma 261. If F is any extension of the theory NBG and if it is provable in

NBG that every V -model is also a model of F , then it is provable in RFN together

with elementary transfinite recursion along ω that F is consistent.

Proof. This is a direct consequence of Lemma 6.6 in [Sat13].

The general idea behind bar induction14 is to take the transfinite induction

principle (cf. Definition 97)

wo(A,<A)→ ∀X (prog(X, (A,<A))→ A ⊂ X),

13The phrasing that some formula ϕ holds in a given class M , or equivalently, that M models
ϕ, means that the formula ϕ(M) is true.

14The reader is advised that for reference in [Sim98], the principle corresponding to bar induc-
tion is named transfinite induction in [Sim98].
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to the form

wo(A,<A)→ ∀X (prog(X , (A,<A))→ A ⊂ X ),

where X ranges over extensions {x | ϕ(x)} of suitable formulas ϕ(x), as presented

formally in the two following definitions.

Definition 262. For every formula ϕ, we introduce the formulas

prog(ϕ, (A,<A)) ≡ ∀a ∈ A
(
∀b (b <A a→ ϕ(b)) → ϕ(a)

)
Ti(ϕ, (A,<A)) ≡ prog(ϕ, (A,<A)) → ∀a ∈ Aϕ(a)

Definition 263. Let F be some collection of formulas. The theory F-BI of bar

induction for formulas in F extends NBG by every instance of

wo(A,<A) → Ti(ϕ, (A,<A))

where ϕ is an element of F .

As pointed out earlier, it is shown in [JS99] (cf. Theorem 22) that in the

case of arithmetic, the theories Π1
n+1-RFN0 and Π1

n-BI0 are equivalent. The next

theorem shows that the situation in set theory is quite different; highlighting the

pivotal role of the fact that in our setting well orderedness can be expressed as

an elementary formula.

Theorem 264. Every V -model M of NBG satisfies bar induction for all formulas

of the language L2.

Proof. By way of contradiction, assume that M is a V -model of NBG that does

not satisfy bar induction. By assumption there exists a class (A,<)∈̇M and a

formula ϕ(x) such that wo(A,<)(M) and (¬(Ti(ϕ, (A,<))))(M). Since wo((A,<))

is an elementary formula, the first clause simplifies to wo(A,<). Written in full,

the second clause amounts to

(
∀a ∈ A (A<a ⊂ {x | ϕ(x)} → ϕ(a))→ ∀a ∈ Aϕ(a) ∧ ∃a¬ϕ(a)

)M
, (3.26)

thus we can apply elementary comprehension to form the class X = {x | ϕ(x)M}
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and rewrite (3.26) as

∀a ∈ A
(
∀x ∈ A(x < a→ x ∈ X)→ a ∈ X.

)
∧ ∃a ∈ Aa /∈ X,

which contradicts wo((A,<)).

Remark 265. In arithmetic, for every finite collection S of closed L2
A formulas

that hold in some ω-model, there is an ω-model of S that does not satisfy full

bar induction (cf. Corollary VIII.5.8 in [Sim98]). This is in sharp contrast to the

situation in set theory as displayed by Theorem 264.

Theorem 266. It is provable in the theory RFN that elementary transfinite re-

cursion along ω entails the consistency of the theory Π1
∞-BI.

Proof. We know from Theorem 264 that in every V -model every instance of

Π1
∞-BI holds, thus we obtain the claim as a result of Lemma 261.

Comparing the situation to the arithmetic case, it is clear from the previous

result that in the realm of sets and classes the principle of bar induction falls

significantly short in terms of its power relative to V -model reflection. Since

the notion of weak well orders cannot be captured by an elementary formula,

and since this proved to be the crucial point in the weakness of bar induction,

we will give a formulation of the bar induction schema that is based on our

principle of weak induction for weak well orders (cf. Lemma 167 and Definition

168). However, while it is clear that our new schema with weak well orders

entails bar induction as presented before, we are unable to provide a convincing

case of application of our principle, such as for example proving the existence of

V -models, let alone V -model reflection for any richer collections of formulas.

The schema of bar induction for weak well orders, BI+ is a straightforward

generalization of the principle of weak induction15,

wwo(A,<A) → ∀X
(
prog+(X, (A,<A)) → A ⊂ X

)
15Remember that prog+(X, (A,<A)) means that X is a superprogressive subclass of A (cf. Def-

inition 165).
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to the schema

wwo(A,<A) → ∀X
(
prog+(X , (A,<A)) → A ⊂ X

)
,

where, just as in the usual case of bar induction, the meta variable X ranges over

collections of the form {x | ϕ(x)} for suitable formulas ϕ(x). To formalize this

principle we proceed as in the case of usual bar induction.

Definition 267. For every formula ϕ, we introduce the formulas

prog+(ϕ, (A,<A)) ≡ ∀m ∈ P(A)\{∅}
(
∀b (b <A m→ ϕ(b)) → ∃a ∈ mϕ(a)

)
Ti−(ϕ, (A,<A)) ≡ prog+(ϕ(x), (A,<A)) → ∀a ∈ Aϕ(a)

For any collection F of formulas, the theory F-BI+ consists of NBG together with

all instances of the schema

wwo(A,<A) → Ti−(ϕ, (A,<A))

where ϕ is in F .

While the schema bar induction in the form BI+ applies to a wider class of linear

orders than the usual formulation BI (i.e. weak well orders vs. well orders), it

also draws a weaker (i.e. Ti(. . . ) vs. Ti−(. . . )) conclusion from its premise. Thus,

it is not clear at prima facie which of the two systems is more powerful. However,

at second glance, it is clear that since for any given well order (A,<A) and any

formula ϕ the formulas prog(ϕ, (A,<A)) and prog+(ϕ, (A,<A)) are equivalent, it

follows that BI ⊂ BI+.

Lemma 268. Let (A,<A) be a well order and let ϕ be a formula. It is provable

in NBG that

prog+(ϕ, (A,<A)) ↔ prog(ϕ, (A,<A))

holds.

Proof. The proof is almost identical to the proof of Lemma 122: we assume

prog(ϕ, (A,<A)) for some formula ϕ and a well order (A,<A). For every nonempty

set m ⊂ A fix am = min<A(m). To verify prog+(ϕ, (A,<A)), we have to prove
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that for every nonempty set m ⊂ A that satisfies A<Am ⊂ {x | ϕ(x)}, there is an

element a ∈ m with ϕ(a). This is clearly the case, since for every such set m we

can apply the assumption prog(ϕ, (A,<A)) to obtain ϕ(am).

Corollary 269. For every collection F of formulas it is provable in NBG that

F-BI ⊂ F-BI+.

Summary

We saw that the arithmetical and the set theoretical setting are dissimilar when

comparing the relationship between reflection principles (in the sense of Defi-

nition 21 and Definition 260) and bar induction (cf. Definition 263 and Defi-

nition 19). In the arithmetic case, the theories Π1
1-RFN0 and Π1

1-BI0 prove the

same formulas (cf. Theorem 22 ) in contrast to our setting, where the theory RFN

together with elementary transfinite recursion along ω is enough to prove the con-

sistency of full bar induction. Further, we gave a straightforward formalization of

weak induction for formulas, resulting in the theory F-BI+ (cf. Definition 267).

We saw in Corallary 269 that F-BI+ entails bar induction for all formulas in F .

Further questions about the capabilities of the theory F-BI+ remain open.
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