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Abstract

In this article we introduce and study the notion of operational clo-
sure: a transitive set d is called operationally closed iff it contains
all constants of OST and any operation f ∈ d applied to an element
a ∈ d yields an element fa ∈ d, provided that f applied to a has a
value at all. We will show that there is a direct relationship between
operational closure and stability in the sense that operationally closed
sets behave like Σ1 substructures of the universe. This leads to our
final result that OST plus the axiom (OLim), claiming that any set
is element of an operationally closed set, is proof-theoretically equiv-
alent to the system KP + (Σ1-Sep) of Kripke-Platek set theory with
infinity and Σ1 separation. We also characterize the system OST plus
the existence of one operationally closed set in terms of Kripke-Platek
set theory with infinity and a parameter-free version of Σ1 separation.

Keywords: Operational set theory, operational closure, Kripke-Pla-
tek set theory, Σ1 separation, stability, proof theory.

1 Introduction

Operational set theory is an alternative approach to set theory, introduced in
Feferman [4] and motivated by a, as he writes, wider program whose aim is
to provide a common framework for analogues of large cardinal notions that
have appeared in admissible set theory, admissible recursion theory, construc-
tive set theory, constructive type theory, explicit mathematics, and systems
of recursive ordinal notations that have been used in proof theory. See Fefer-
man [5] for a detailed description of this program and some principal results
concerning the central axiomatic system OST, including a model of OST
which interprets the underlying applicative structure of OST in the codes for
functions that are Σ1 definable in parameters.

Jäger [8] provides an inductive model construction for OST, studies sev-
eral extensions of OST, and presents, among other theories, a system which
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is equiconsistent with ZFC. Full operational set theory OST(E,P) with un-
bounded existential quantification and power set and several of its subsystems
have been analyzed in Jäger [9]. For example, making use of results in Jäger
and Krähenbühl [11], we obtain that OST(E,P) is proof-theoretically equiv-
alent to the system NBG + (Σ1

1-AC), which extends von Neumann-Bernays-
Gödel set theory NBG by Σ1

1 choice for classes. The survey paper Jäger [10]
places systems of operational set theory into the general set-theoretic land-
scape and describes model constructions based on inductive extensions of
ZFC. Finally, Jäger and Zumbrunnen [12] is about the notion of regularity
in operational set theory.

In this article we introduce and study the notion of operational closure:
a transitive set d is called operationally closed iff it contains all constants
of OST and any operation f ∈ d applied to an element a ∈ d yields an
element fa ∈ d, provided that f applied to a has a value at all. We will show
that there is a direct relationship between operational closure and stability
in the sense that operationally closed sets behave like Σ1 substructures of
the universe. This leads to our final result that OST plus the axiom (OLim),
claiming that any set is element of an operationally closed set, is proof-
theoretically equivalent to the system KP + (Σ1-Sep) of Kripke-Platek set
theory with infinity and Σ1 separation. We also characterize the system OST
plus the existence of one operationally closed set in terms of Kripke-Platek
set theory with infinity and a parameter-free version of Σ1 separation.

2 Operational closure

We begin this section with briefly recapitulating the syntax of Feferman’s
theory OST. Then we introduce the notion of an operationally closed set
and prove some properties of such sets. Finally, we turn to the operational
limit axiom (OLim) which states that every set is element of an operationally
closed set.

In introducing the system OST, we follow Jäger [8, 9, 12] very closely
and even use the same formulations whenever it seems adequate. So let L
be a typical language of first order set theory with a symbol for the ele-
ment relation as its only relation symbol and countably many set variables
a, b, c, f, g, u, v, w, x, y, z, . . . (possibly with subscripts). In addition, we as-
sume that L has a constant for every finite von Neumann ordinal and the
constant ω for the collection of all finite von Neumann ordinals. The formulas
of L are defined as usual.
L◦, the language of OST, augments L by the binary function symbol ◦

for partial term application, the unary relation symbol ↓ (defined) and the
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following constants: (i) the combinators k and s; (ii) >, ⊥, el, non, dis, and
e for logical operations; (iii) S, R, and C for set-theoretic operations. The
meaning of these constants follows from the axioms below.

The terms (r, s, t, r1, s1, t1, . . .) of L◦ are inductively generated as follows:

1. The variables and constants of L◦ are terms of L◦.

2. If s and t are terms of L◦, then so is ◦(s, t).

In the following we often abbreviate ◦(s, t) as (s◦ t), (st) or simply as st. We
also adopt the convention of association to the left so that s1s2 . . . sn stands
for (. . . (s1s2) . . . sn). In addition, we often write s(t1, . . . , tn) for st1 . . . tn if
this seems more intuitive. Moreover, we frequently make use of the vector
notation ~s as shorthand for a finite string s1, . . . , sn of L◦ terms whose length
is either not important or evident from the context.

Self-application is possible and meaningful, but it is not necessarily total,
and there may be terms which do not denote an object. We make use of the
definedness predicate ↓ to single out those which do, and (t↓) is read “t is
defined” or “t has a value”.

The formulas (A,B,C,D,A1, B1, C1, D1, . . .) of L◦ are inductively gener-
ated as follows:

1. All expressions of the form (s ∈ t) and (t↓) are formulas of L◦, the
so-called atomic formulas.

2. If A and B are formulas of L◦ , then so are ¬A, (A∨B), and (A∧B).

3. If A is a formula of L◦ and if t is a term of L◦ which does not contain
x, then (∃x ∈ t)A, (∀x ∈ t)A, ∃xA, and ∀xA are formulas of L◦.

Since we will be working within classical logic, the remaining logical connec-
tives can be defined as usual. We will often omit parentheses and brackets
whenever there is no danger of confusion. The free variables of t and A are
defined in the conventional way; the closed L◦ terms and closed L◦ formulas,
also called L◦ sentences, are those which do not contain free variables.

Given an L◦ formula A and a variable u not occurring in A, we write Au

for the result of replacing each unbounded set quantifier ∃x(. . .) and ∀x(. . .)
in A by (∃x ∈ u)(. . .) and (∀x ∈ u)(. . .), respectively. Equality of sets is
introduced by

(s = t) := (s↓) ∧ (t↓) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s).

Suppose now that ~u = u1, . . . , un and ~s = s1, . . . , sn. Then A[~s/~u] is the
L◦ formula which is obtained from A by simultaneously replacing all free
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occurrences of the variables ~u by the L◦ terms ~s; in order to avoid collision of
variables, a renaming of bound variables may be necessary. If the L◦ formula
A is written as B[~u ], then we often simply write B[~s ] instead of B[~s/~u ].
Further variants of this notation will be obvious.

The logic of OST is the classical logic of partial terms due to Beeson and
Feferman with the usual strictness axioms (cf. Beeson [2, 3]), including the
common equality axioms. Partial equality of terms is introduced by

(s ' t) := (s↓ ∨ t↓ → s = t)

and says that if either s or t denotes anything, then they both denote the
same object.

The non-logical axioms of OST comprise axioms about the applicative
structure of the universe, some basic set-theoretic properties, the represen-
tation of elementary logical connectives as operations, and operational set
existence axioms. They divide into four groups.

I. Applicative axioms.

(A1) k 6= s,

(A2) kxy = x,

(A3) sxy↓ ∧ sxyz ' (xz)(yz).

Thus the universe is a partial combinatory algebra. We have λ-abstraction
and thus can introduce for each L◦ term t a term (λx.t) whose free variables
are those of t other than x such that

(λx.t)↓ ∧ (λx.t)y ' t[y/x].

As usual, we can generalize λ-abstraction to several arguments by simply
iterating abstraction for one argument. Accordingly, we set for all L◦ terms
t and all variables x1, . . . , xn,

(λx1 . . . xn.t) := (λx1.(. . . (λxn.t) . . .)).

Often the term (λx1 . . . xn.t) is simply written as λx1 . . . xn.t. If ~x is the
sequence x1, . . . , xn, then (λ~x.t) and λ~x.t stand for λx1 . . . xn.t.

II. Basic set-theoretic axioms. They comprise: (i) pair and union; (ii)
assertions which give the appropriate meaning to the constants for the finite
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von Neumann ordinals and the constant ω; (iii) ∈-induction for arbitrary
formulas A[u] of L◦,

∀x((∀y ∈ x)A[y]→ A[x]) → ∀xA[x].(L◦-I∈)

To increase readability, we will freely use standard set-theoretic terminology.
For example, {a, b} stands for the unordered pair and 〈a, b〉 for the ordered
pair of the sets a, b; in addition,

Tran[a] := (∀x ∈ a)(x ⊆ a) and Ord [a] := Tran[a] ∧ (∀x ∈ a)Tran[x].

Also, if A[x] is an L◦ formula, then {x : A[x]} denotes the collection of all
sets satisfying A; it may be (extensionally equal to) a set, but this is not
necessarily the case. In particular, we set

V := {x : x↓} and B := {x : x = > ∨ x = ⊥}

so that V denotes the collection of all sets, but is not a set itself, and B
stands for the unordered pair consisting of the truth values > and ⊥, which
is a set by the previous axioms. The following shorthand notation, for n an
arbitrary natural number greater 0,

(f : an → b) := (∀x1, . . . , xn ∈ a)(f(x1, . . . , xn) ∈ b)

expresses that f , in the operational sense, is an n-ary mapping from a to
b. It does not say, however, that f is an n-ary function in the set-theoretic
sense. In this definition the set variables a and b may be replaced by V and
B. So, for example, (f : a→ V) means that f is total on a, and (f : V→ b)
means that f maps all sets into b.

III. Logical operations axioms.

(L1) > 6= ⊥,

(L2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = > ↔ x ∈ y),

(L3) (non : B→ B) ∧ (∀x ∈ B)(non(x) = > ↔ x = ⊥),

(L4) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = > ↔ (x = > ∨ y = >)),

(L5) (f : a→ B) → (e(f, a) ∈ B ∧ (e(f, a) = > ↔ (∃x ∈ a)(fx = >))).

The ∆0 formulas of L◦ are those L◦ formulas which do not contain the func-
tion symbol ◦, the relation symbol ↓ or unbounded quantifiers. Hence they
are the ∆0 formulas of traditional set theory, possibly containing additional
constants. The logical operations make it possible to represent all ∆0 formu-
las by constant L◦ terms.
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Lemma 1 Let ~u be the sequence of variables u1, . . . , un. For every ∆0 for-
mula A[~u] of L◦ with at most the variables ~u free, there exists a closed L◦
term tA such that the axioms introduced so far yield

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x] ↔ tA(~x) = >).

For a proof of this lemma see Feferman [4, 5]. Now we turn to the operational
versions of separation, replacement, and choice.

IV. Set-theoretic operations axioms.

(S1) Separation for definite operations:

(f : a→ B) → (S(f, a)↓ ∧ ∀x(x ∈ S(f, a) ↔ (x ∈ a ∧ fx = >))).

(S2) Replacement:

(f : a→ V) → (R(f, a)↓ ∧ ∀x(x ∈ R(f, a) ↔ (∃y ∈ a)(x = fy))).

(S3) Choice:
∃x(fx = >) → (Cf↓ ∧ f(Cf) = >).

This finishes our description of the system OST. As is known from Feferman
[4, 5] and Jäger [8], OST is proof-theoretically equivalent to Kripke-Platek set
theory with infinity (see next section for a short introduction of this system
and the exact formulation of this equivalence).

In this paper we are primarily interested in operationally closed sets and
the effect of adding axioms about their existence to OST. As we will see this
leads to an enormous increase of proof-theoretic strength.

Definition 2 (Operational closure)

1. A set d is called operationally closed, in symbols Opc[d], iff d is tran-
sitive, contains the constants k, s, >, ⊥, el, non, dis, e, S, R, C, and
ω as elements and satisfies

(∀f, x ∈ d)(fx↓ → fx ∈ d).

2. The operational limit axiom states that every set is element of an op-
erational closed set,

(OLim) ∀x∃y(x ∈ y ∧ Opc[y]).
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Since every operationally closed set is transitive and contains ω, it also con-
tains the constants for the finite von Neumann ordinals and thus all constants
of OST. A further simple observation tells us that any operationally closed
set d contains all terms which are defined and closed as well as all λ terms
with all its parameters from d.

Lemma 3 For every closed L◦ term t, the theory OST proves:

1. Opc[d] ∧ t↓ → t ∈ d.

2. Opc[d] ∧ ~a ∈ d → λz.t(~a, z) ∈ d.

Proof. The first assertion is proved by straightforward induction on the
buildup of t. For the second, let t be closed and observe that OST proves

λz.t(~a, z) = (λ~x.(λz.t(~x, z)))(~a).

λ~x.(λz.t(~x, z)) is closed since t is closed. However, since all λ terms are
defined, λ~x.(λz.t(~x, z)) belongs to d according to the first assertion. Hence
several applications of the closure conditions of d establish our claim. 2

Making essential use of choice, we now obtain a theorem which may be
regarded as a stability assertion for operationally closed sets.

Theorem 4 For any ∆0 formula A[u1, . . . , un, v] of the language L with at
most the variables u1, . . . , un, v free, the theory OST proves

Opc[d] ∧ ~a ∈ d ∧ ∃xA[~a, x] → (∃x ∈ d)A[~a, x].

Proof. We work in OST and assume that Opc[d], ~a ∈ d and ∃xA[~a, x]. In
view of Lemma 1 we have a closed L◦ term tA such that

(*) (tA : Vn → B) ∧ ∀~u ∀v(A[~u, v]↔ tA(~u, v) = >).

Now set s := λz.tA(~a, z) and conclude from the previous lemma, our assump-
tions, and (*) that

s ∈ d ∧ ∃x(sx = >).

Hence the axiom (S3) about choice yields Cs↓ and s(Cs) = >. Since s ∈ d,
the operational closure of d implies Cs ∈ d. Together with (*) we thus have

Cs ∈ d ∧ A[~a,Cs],

and our theorem is proved. 2

In Section 4 we will see that this theorem is the crucial step in dealing with
Σ1 separation of ordinary set theory in the context of operational set theory
with operationally closed sets.
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3 Σ1 separation and stability

This section begins with briefly recalling the system KP of Kripke-Platek set
theory with infinity, the schema of Σ1 separation, and the notion of a stable
ordinal. We then turn to important relationships between Σ1 separation
and stability in order to prepare the ground for establishing proof-theoretic
equivalences in the final section of this article. For further reading about KP,
its proof-theoretic analysis and some interesting subsystems and extensions
consult, for example, Jäger [6, 7] and Rathjen [14].

KP is formulated in our basic language L with ∈ as its only relation
symbol and equality of sets simply defined by

(a = b) := (∀x ∈ a)(x ∈ b) ∧ (∀x ∈ b)(x ∈ a).

The collections of ∆0, Σ1, Σ, and Π formulas are introduced as usual. If T is
a theory in L containing KP and A a formula of L, then A is ∆ over T if there
exist a Σ formula B and a Π formula C, both with the same free variables
as A, such that T proves the equivalence of A and B plus that of A and
C. Also, as in the case of OST, we make use of other standard set-theoretic
terminology.

The underlying logic of KP is classical first order logic with equality,
its non-logical axioms are: (i) pair, union, (ii) assertions which give the
appropriate meaning to the constants for the finite von Neumann ordinals
and the set ω, (iii) ∆0 separation, and ∆0 collection, i.e.

∃x(x = {y ∈ a : B[y]}),(∆0-Sep)

(∀x ∈ a)∃yC[x, y] → ∃z(∀x ∈ a)(∃y ∈ z)C[x, y](∆0-Col)

for arbitrary ∆0 formulas B[u] and C[u, v] of L, as well as (iv) ∈-induction
for arbitrary formulas A[u] of L,

∀x((∀y ∈ x)A[y]→ A[x]) → ∀xA[x].(L-I∈)

Clearly, the formula Ord [a], which says that a is an ordinal, is a ∆0 formula
of L, and we use the lower case Greek letters α, β, γ, κ, λ, ζ, η, ξ (possibly with
subscripts) to range over the ordinals, as we do in OST. In the following we
will often be working within the constructible universe, but cannot introduce
it here. Most relevant details about constructible sets can be found, for
example, in Barwise [1] and Kunen [13].

Very briefly, (a ∈ Lα) states that the set a is an element of the αth level
Lα of the constructible hierarchy, and a ∈ L is short for ∃α(a ∈ Lα). The
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axiom of constructibility is the statement (V=L), i.e. ∀x∃α(x ∈ Lα), and we
write KPL for the theory KP + (V=L). It is well-known that the assertions
(a ∈ Lα) and (a <L b) are ∆ over KP and that the systems KP and KPL
are of the same consistency strength; both systems prove the same absolute
sentences.

Now we can state the exact relationship between the theories OST, KP,
and KPL. The following theorem is proved in Feferman [4, 5], Jäger [8], and
Jäger and Zumbrunnen [12].

Theorem 5 The theories OST, KP, and KPL are of the same consistency
strength; in particular, we have:

1. KP ⊆ OST.

2. OST is interpretable in KPL.

Adding forms of Σ1 separation to KP provides an enormous increase of con-
sistency strength. Σ1 separation is the comprehension principle

(Σ1-Sep) ∀x∃y(y = {z ∈ x : A[z]})

for A[u] a Σ1 formula of L. We will also be interested in parameter-free Σ1

separation on ω,

(Σ1-Sep)−ω ∃y(y = {z ∈ ω : B[z]}),

where B[u] is a Σ1 formula of L with u as its only free variable. It is well-
known, see, for example, Rathjen [15], that KP + (Σ1-Sep) proves the same
sentences of second order arithmetic as the system (Π1

2-CA) + (BI).

Definition 6 (Stability)

1. Let d be a set with ω ∪ {ω} ⊆ d ∈ L. Then we say that 〈d,∈ ∩ d2〉 is
a Σ1-elementary substructure of L, in symbols 〈d,∈∩ d2〉 ≺1 L, iff for
all Σ1 formulas A[~u] of L and all ~a ∈ d,

〈d,∈ ∩ d2〉 |= A[~a] ⇐⇒ L |= A[~a].

2. If d is a transitive set with ω ∈ d, we often simply write d ≺1 L instead
of 〈d,∈ ∩ d2〉 ≺1 L.

3. An ordinal σ is said to be stable iff Lσ ≺1 L.
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In order to formalize the notion of stability within KP, we follow Barwise [1]
and let Satn be a Σ1 formula of L with free variables u, v1, . . . , vn such that
for any Σ formula A[w1, . . . , wn] with at most the variables w1, . . . , wn free
the following is a theorem of KP:

∀x1 . . . ∀xn(A[x1, . . . , xn] ↔ Satn[e, x1, . . . , xn]),

where e is the Gödel number of the formula A[w1, . . . , wn]. We can also
assume that the Gödel numbering of the L formulas is so that for any natural
number n there exists a ∆0 definable set DF n ⊆ ω whose elements are the
Gödel numbers of the ∆0 formulas of L with n free variables.

Definition 7 For any ordinal σ, we set

Stab[σ] := (∀e ∈ DF 2)(∀a ∈ Lσ)(∃xSat2[e, x, a] → (∃x ∈ Lσ)Sat2[e, x, a]).

Clearly, this is the formalized version of stability; the restriction to one pa-
rameter only is not significant. Since our language L contains the constant
ω and constants for all finite von Neumann ordinals we have ω < σ for any
stable ordinal σ.

It is easy to show that all instances of (Σ1-Sep)−ω and (Σ1-Sep) can be
derived in KPL+∃σStab[σ] and KPL+∀α∃σ(α < σ ∧ Stab[σ]), respectively.
However, we omit proving these two results here since they are immediate
consequences of Theorem 9 and Theorem 10 below. Instead, we turn to the
converse directions.

The proof of the following theorem relies very much on the treatment of
stability in Barwise [1]. Its second part also follows from results mentioned
in Rathjen [15].

Theorem 8

1. KPL + (Σ1-Sep)−ω ` ∃ξStab[ξ].

2. KPL + (Σ1-Sep) ` ∀η∃ξ(η < ξ ∧ Stab[ξ]).

Proof. To show the first assertion we work informally within our theory
KPL + (Σ1-Sep)−ω . First we use (Σ1-Sep)−ω to introduce the sets

a := {e ∈ DF 1 : ∃xSat1[e, x]}

b := {e ∈ DF 1 : ¬∀x∀y(Sat1[e, x] ∧ Sat1[e, y] → x = y)}

and then (∆0-Sep) to form the set c := a ∩ (DF 1 \ b). Then we have

(∀e ∈ c)∃!xSat1[e, x].
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Hence by Σ collection there exists a set d such that for all x,

x ∈ d ↔ (∃e ∈ c)Sat1[e, x].

The next steps are as in Barwise [1], proof of Theorem V.7.8: Following the
arguments given there, we first establish 〈d,∈ ∩ d2〉 ≺1 L and then show
d = Lσ, where σ is the least ordinal not in d.

It remains to check that Stab[σ]. So let e ∈ DF2 and a ∈ Lσ and assume
∃xSat2[e, x, a]. Since ∃xSat2[e, x, a] is (equivalent to) a Σ1 formula of L and
Lσ = d ≺1 L, we immediately obtain (∃x ∈ Lσ)Sat2[e, x, a], as required.

Turning to the second assertion we work within KPL+ (Σ1-Sep) and pick
an arbitrary ordinal α. Because of (Σ1-Sep) we can now build the sets

a := {〈e, u〉 ∈ DF 2 × Lα+1 : ∃xSat2[e, x, u]}

b := {〈e, u〉 ∈ DF 2 × Lα+1 : ¬∀x∀y(Sat2[e, x, u] ∧ Sat2[e, y, u] → x = y)}

and then proceed (more or less) as above. This gives us an Lσ such that
Lα ∈ Lσ and Stab[σ]. 2

4 Proof-theoretic equivalences

Now we turn to the proof-theoretic characterizations of OST+∃yOpc[y] and
OST + (OLim) in terms of extensions of Kripke-Platek set theory by forms
of Σ1 separation and stability assertions.

Theorem 9 (Lower bounds)

1. KP + (Σ1-Sep)−ω ⊆ OST + ∃yOpc[y].

2. KP + (Σ1-Sep) ⊆ OST + (OLim).

Proof. According to Theorem 5, OST proves all axioms of KP. To deal
with (Σ1-Sep)−ω in OST + ∃yOpc[y], let d be an operationally closed set and
choose a Σ1 formula A[u] of L with u as its only free variable. Since ω ∈ d,
Theorem 4 implies

(∀x ∈ ω)(A[x] ↔ Ad[x]).(1)

By (∆0-Sep) there exists the set a := {x ∈ ω : Ad[x]}, and according to (1)
we have a = {x ∈ ω : A[x]}, taking care of this instance of (Σ1-Sep)−ω .

Next we have to take care of (Σ1-Sep) in OST+ (OLim). So let A[u,~v] be
a Σ1 formula with u,~v as its only free variables and select arbitrary sets ~a, b.
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Because of (OLim) there exists an operationally closed set d with ~a, b ∈ d.
Now we apply Theorem 4 again and obtain

(∀x ∈ b)(A[x,~a]↔ Ad[x,~a]).(2)

As before, (∆0-Sep) provides for the set c := {x ∈ b : Ad[x,~a]}, and by (2)
we thus have c = {x ∈ b : A[x,~a]}, finishing our proof. 2

For interpreting OST+∃yOpc[y] and OST+ (OLim) in extensions of Kripke-
Platek set theory we make use of the inductive model construction presented
in Jäger and Zumbrunnen [12]. For doing this, we may assume that the con-
stants k, s, >, ⊥, el, non, dis, e, S, R, and C of L◦ are coded as elements
of Lω.

The decisive point of this interpretation is that there exists a Σ1 formula
Ap[u, v, w] of L with three free variables u, v, w which takes care of the ap-
plication of L◦ in the sense that the L◦ formula (fx = y) translates into
Ap[f, x, y] and the L◦ formula (fx↓) into ∃yAp[f, x, y].

Based on this translation of application, a Σ formula JtK(u) of L is as-
sociated to each term t of L◦ expressing that u is the value of t under this
interpretation of the operational application. This treatment of terms then
leads to a canonical embedding of L◦ into L, translating any L◦ formula A
into an L formula A∗. See Jäger and Zumbrunnen [12] for all details.

Theorem 10 (Upper bounds) For all formulas A of L◦ we have:

1. OST + ∃yOpc[y] ` A =⇒ KPL + ∃ξStab[ξ] ` A∗.

2. OST + (OLim) ` A =⇒ KPL + ∀η∃ξ(η < ξ ∧ Stab[ξ]) ` A∗.

Proof. From Jäger and Zumbrunnen [12] we know that KPL proves A∗ for
every axiom A of OST. In order to validate (the translation of) ∃yOpc[y]
within KPL + ∃ξStab[ξ], let σ be a stable ordinal. Then Lσ contains the
interpretations of all constants of L◦, and for all f, x ∈ Lσ we have

∃yAp[f, x, y] → (∃y ∈ Lσ)Ap[f, x, y].

Hence if f and x are elements of Lσ and if – modulo our interpretation – fx
has a value at all, this value belongs to Lσ. This implies that Lσ can act as
a witness for an operationally closed set.

To handle (OLim) in the second embedding assertion, pick an arbitrary
set a and choose an α such that a ∈ Lα. Then we make use of the assumption
∀η∃ξ(η < ξ ∧ Stab[ξ]) and know that there exists a stable ordinal σ greater
than α. As above, it is easily verified that this Lσ is a possible witness for
an operationally closed set containing a. 2
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The following corollary is an immediate consequence of the previous embed-
ding result and Theorem 8.

Corollary 11 For all formulas A of L◦ we have:

1. OST + ∃yOpc[y] ` A =⇒ KPL + (Σ1-Sep)−ω ` A∗.

2. OST + (OLim) ` A =⇒ KPL + (Σ1-Sep) ` A∗.

To conclude our proof-theoretic considerations we remark that adding the
axiom (V=L) to the theories KP+(Σ1-Sep)−ω and KP+(Σ1-Sep) does not in-
crease their respective proof-theoretic strengths. For completeness, we state
the corresponding lemma. Given an L formula A, we write AL for the L
formula obtained from A by restricting all unrestricted quantifiers in A to L.

Lemma 12 Let T be one of the theories KP+ (Σ1-Sep)−ω or KP+ (Σ1-Sep).
Then we have for the universal closure A of any axiom of T that T ` AL.

Proof. From Barwise [1], Theorem II.5.5 we know that our assertion is
true for the universal closures of all axioms of KP. Now suppose that A[u]
is a Σ1 formula of L with u as its only free variable. Then, working within
KP + (Σ1-Sep)−ω , the schema (Σ1-Sep)−ω yields that

a := {x ∈ ω : AL[x]}

is a set. Consequently, we have

(∀x ∈ a)∃ξALξ [x],

and (∆0-Col) implies that there is an ordinal α such that

(∀x ∈ a)(∃ξ < α)ALξ [x].

It follows immediately that a = {x ∈ ω : ALα [x]} and therefore an element
of L. So we find

(∃y(y = {x ∈ ω : A[x]}))L.
Therefore, the L-interpretations of the instances of (Σ1-Sep)−ω are provable
in KP + (Σ1-Sep)−ω .

The L-interpretations of all instances of (Σ1-Sep) are treated within the
theory KP + (Σ1-Sep) analogously. 2

In view of this lemma it is clear that KPL + (Σ1-Sep)−ω is conservative over
KP + (Σ1-Sep)−ω and KPL + (Σ1-Sep) conservative over KP + (Σ1-Sep), in
both cases for absolute formulas. Combining all our results we thus obtain
the following final result.
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Theorem 13 We have the following proof-theoretic equivalences and equi-
consistency results:

1. OST + ∃yOpc[y] ≡ KPL + ∃ξStab[ξ] ≡ KP + (Σ1-Sep)−ω .

2. OST + (OLim) ≡ KPL + ∀η∃ξ(η < ξ ∧ Stab[ξ]) ≡ KP + (Σ1-Sep).

This theorem tells us that our notion of operational closure is a proof-theo-
retically extremely powerful. For a future publication it is planned to study
operationally closed sets and models of operational set theory from a different
perspective and to look at several variants.

Let us end this paper with remarking that a uniform version of operational
closure leads to inconsistency. Assume that the language L◦ comprises a
further constant O with the axiom

(Uniform OLim) ∀x(x ∈ Ox ∧ Opc[Ox]).

Then we have O ∈ OO, and strictness implies that OO↓. Since OO is opera-
tionally closed, we then have OO ∈ OO, contradicting the well-foundedness
of the ∈-relation.
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