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Abstract. We introduce a justification logic with a novel constructor
for evidence terms, according to which the new information itself serves
as evidence for believing it. We provide a sound and complete axiom-
atization for belief expansion and minimal change and explain how the
minimality can be graded according to the strength of reasoning. We also
provide an evidential analog of the Ramsey axiom.

1 Introduction

Like modal logics, justification logics are epistemic logics that provide means to
formalize properties of knowledge and belief. Modal logics use formulas �A to
state that A is known (or believed), where the modality � can be seen as an
implicit knowledge operator since it does not provide any reason why A is known.
Justification logics operate with explicit evidence for an agent’s knowledge using
formulas of the form t : A to state that A is known for reason t. The evidence
term t may represent a formal mathematical proof of A or an informal reason
for believing A such as a public announcement or direct observation of A.

Artemov developed the first justification logic, the Logic of Proofs, to give a
classical provability semantics for intuitionistic logic [2–4]. In the area of formal
epistemology, justification logics provide a novel approach to certain epistemic
puzzles and problems of multiagent systems [5–7, 9, 13].

The study of dynamic justification logics took off with Renne’s PhD the-
sis [21] and his work on eliminating unreliable evidence [22]. He also investigated
the expressive power of certain justification logics with announcements [23]. In
a series of papers [12, 14, 15] we examined two alternative justification counter-
parts of Gerbrandy–Groeneveld’s public announcement logic [18]. Last but not
least, Baltag et al. [10] introduced a justification logic for belief change, soft
evidence, and defeasible knowledge.

In the present paper we introduce the justification logic JUPCS that provides
a sound and complete axiomatization for belief expansion and minimal change.
Our logic includes a new evidence term construct up(A) that represents the
update with A. Hence, after an update with A, the term up(A) becomes a reason

to believe A. Formally, this is modeled by the axiom [A]
(
up(A) :A

)
.
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In addition, the presence of explicit evidence makes it possible to axiomatize
the principle of minimal change within the object language. For instance, in
Lemma 20 we prove that for each term t that does not contain up(A) as a
subterm,

JUPCS ` t :B ↔ [A](t :B) .

The direction from left to right is the persistence principle saying that we deal
only with belief expansion. The direction from right to left states that if after
an update with A an agent believes B for a reason that is independent from
the update, then before the update the agent already believed B for the same
reason. Note that a principle of this kind cannot be formulated in a purely
modal language. When [A]�B holds, it is not clear whether �B should be the
case since it is not known whether the belief in B depends on the update or is
due to another, unrelated reason.

2 The Logic JUPCS

We start with countably many constants ci, countably many variables xi, and
countably many atomic propositions Pi. The (evidence) terms and formulas of
the language of JUP are defined as follows:

– Evidence terms.
• Every constant ci and every variable xi is an atomic term. If A is a

formula, then up(A) is an atomic term. Every atomic term is a term.
• If t and s are terms and A is a formula, then (t ·A s) is a term.

– Formulas.
• Every atomic proposition Pi is a formula.
• If A and B are formulas, Γ is a finite set of formulas, and t is a term,

then ¬A, (A→ B), t :A, and [Γ ]A are formulas.

We write [A1, . . . , An]B instead of [{A1, . . . , An}]B, usually assuming all Ai’s to
be pairwise distinct.

ATm, Prop, Tm, and Fml denote the set of atomic terms, the set of atomic
propositions, the set of evidence terms, and the set of formulas respectively. A
formula t : A means that A is believed for reason t and [Γ ]A stands for A holds
after an update with all formulas in Γ . As usual, we define (A∧B) := ¬(A→ ¬B)
and (A ↔ B) := ((A → B) ∧ (B → A)). We employ the standard conventions
on the omission of brackets and postulate that both the colon operator in t : A
and the update operator in [Γ ]A bind stronger than any Boolean connective.

The set of axioms of JUP can be found in Fig. 1. Note that Γ ∪∆ in the ax-
iom (It) is a finite set of formulas whenever Γ and ∆ are. The axioms (Taut) and
(App) become the usual axioms of the justification logic J (see [6]) if (App) is for-
mulated as an implication instead of the equivalence above. The present version
with the equivalence yields a justification logics with minimal evidence. Later,
when we define the semantics, this will correspond to the fact that the evidence
relation is the least fixed point. This also explains why we need to annotate the



application operator · by a formula: otherwise we would not be able to formu-
late the direction from right to left. Renne [22] was the first to use this kind of
annotation. Axioms (Red.1)–(Red.3) are called reduction axioms. They make it
possible to reduce the situation after an update occurred to the situation before
the update. For instance, (Red.1) states that atomic facts are not affected by
updates. Axiom (Pers) postulates that beliefs are persistent, i.e., that no con-
traction takes place because of an update and, consequently, the belief set can
only be expanded. The update axiom (Up) claims that updates are introspec-
tively successful : after an update with a formula A, the agent believes A and the
term up(A) represents a reason for that belief, which is the update itself. The ax-
iom (Init) postulates the special status of terms up(A), which initially, i.e., before
any updates, cannot serve as a basis for belief in anything. Axioms (MC.1) and
(MC.2) formalize the principle of minimal change: an update should only lead
to the smallest necessary change in the belief set. That means only those beliefs
should be added that “logically” follow from the update and from what is al-
ready believed before. An interesting feature of our system is that the strength of
the logic used for the deductive closure can be regulated. Finally, the axiom (It)
explains how to deal with iterated updates.

1. All propositional tautologies (Taut)
2. t : (A→ B) ∧ s :A ↔ t ·A s :B (App)
3. [Γ ]P ↔ P (Red.1)
4. [Γ ]¬B ↔ ¬[Γ ]B (Red.2)
5. [Γ ](B → C) ↔ ([Γ ]B → [Γ ]C) (Red.3)
6. t :B → [Γ ]t :B (Pers)
7. ¬up(A) :B (Init)
8. [Γ ]up(A) :A if A ∈ Γ (Up)
9. [Γ ]t :A → t :A

if t ∈ ATm and either t 6= up(A) or A /∈ Γ (MC.1)
10. [Γ ]t ·A s :B ↔ [Γ ]t : (A→ B) ∧ [Γ ]s :A (MC.2)
11. [Γ ][∆]A ↔ [Γ ∪∆]A (It)

Fig. 1. Axioms of JUP

A constant specification CS (for JUP) is any subset

CS ⊆ {(c, c1 : c2 : . . . : cn :A) |
n ≥ 0, c, c1, c2, . . . , cn are constants, and A is an axiom of JUP}.

For a constant specification CS the deductive system JUPCS is the Hilbert sys-
tem given by the axioms of JUP and by the rules modus ponens and axiom
necessitation:

A A→ B
B

(MP) ,
(c,B) ∈ CS

c :B
(AN) .



We write JUPCS ` A if the formula A is derivable in JUPCS.
We are now going to introduce a semantics for JUPCS that uses basic modular

models. Artemov [8] introduced them for the basic justification logic J in order
to provide an ontologically transparent semantics for justifications. Kuznets and
Studer [19] later extended this construction to all justification counterparts of
the logics from the modal cube between K and S5. The very first semantics of
this kind, however, was presented by Mkrtychev [20].

Definition 1 (Evidence closure). Let B ⊆ ATm × Fml. For an arbitrary set
X ⊆ Tm× Fml we define clB(X) by:

1. if (t, A) ∈ B, then (t, A) ∈ clB(X);
2. if (s,A) ∈ X and (t, A→ B) ∈ X, then (t ·A s,B) ∈ clB(X).

Note that clB is a monotone operator on Tm× Fml, that is

X ⊆ Y implies clB(X) ⊆ clB(Y )

for all X,Y ⊆ Tm × Fml. Hence, clB has a least fixed point, which is shown as
usual, see, e.g., [11].

Lemma 2 (Least fixed point). There is a unique R ⊆ Tm× Fml such that

1. clB(R) = R,
2. for any S ⊆ Tm× Fml, if clB(S) ⊆ S, then R ⊆ S.

Proof. Let C := {S ⊆ Tm × Fml | clB(S) ⊆ S}. Since Tm × Fml ∈ C, we know
that C is non-empty. Let R :=

⋂
C. The second claim now holds by definition.

And the uniqueness of R is an easy corollary of the second claim.
It remains to establish clB(R) = R. Let S ∈ C. Since R ⊆ S and clB is

monotone, we find clB(R) ⊆ clB(S). We also have clB(S) ⊆ S, so clB(R) ⊆ S.
Since S is an arbitrary element of C and R =

⋂
C, this implies clB(R) ⊆ R.

To show R ⊆ clB(R), we first observe that since clB(R) ⊆ R, we have
clB(clB(R)) ⊆ clB(R) by monotonicity. Thus clB(R) ∈ C, yielding R ⊆ clB(R)
because R =

⋂
C. ut

Definition 3 (Evidence relation). Let B ⊆ ATm× Fml. We define the mini-
mal evidence relation E(B) as the least fixed point of clB.

It follows directly from the definition of clB that

Lemma 4 (Properties of fixed points of clB). For any B ⊆ ATm×Fml and
any fixed point F of clB, e.g., for F = E(B):

1. (t, A) ∈ F iff (t, A) ∈ B for any t ∈ ATm.
2. (t ·A s,B) ∈ F iff (t, A→ B) ∈ F and (s,A) ∈ F .

Further, we get the following lemma.

Lemma 5 (Monotonicity of E). E(B) ⊆ E(B ∪ C) for B, C ⊆ ATm× Fml.



Proof. By induction on the construction of t we show (t, A) ∈ E(B) implies
(t, A) ∈ E(B ∪ C) for all formulas A. Assume (t, A) ∈ E(B). We have one of the
following cases.

1. t ∈ ATm. Then (t, A) ∈ B by Lemma 4.1. Since (t, A) ∈ B∪C, it follows from
the same lemma that (t, A) ∈ E(B ∪ C).

2. t = r ·B s. Then {(s,B), (r,B → A)} ⊆ E(B) by Lemma 4.2. By IH we find
{(s,B), (r,B → A)} ⊆ E(B ∪ C). We get (t, A) = (r ·B s,A) ∈ E(B ∪ C) by
Lemma 4.2. ut

Definition 6 (Model, initial model, updated model). A model is a pair
M = (v,B) where v ⊆ Prop and B ⊆ ATm×Fml. For a constant specification CS,
the model M is called a CS-model if CS ⊆ B. The model M is called initial if
(up(A), B) /∈ B for any formulas A and B.

For a finite set Γ of formulas, the updated model MΓ := (v,BΓ ) is defined
by BΓ := B ∪ UΓ with UΓ := {(up(A), A) | A ∈ Γ}. For a singleton set Γ = {A}
we write MA and BA instead of M{A} and B{A} respectively.

Remark 7. Note that our definition of a model update is independent of which
formulas are true, unlike Plaza-style, Gerbrandy–Groeneveld-style, or action-
model-style updates, where the definitions of model update and truth in the
model have to be given by simultaneous induction. This ontological separation
of reasons for belief from truth is inherent in Artemov’s semantics of modular
models [8], which we adopt and adapt in this paper.

Lemma 8 (Properties of updated models).

1. M∅ =M,

2. (MΓ )∆ =MΓ∪∆,

3. For any constant specification CS, any CS-model M, and any finite set Γ of
formulas, the model MΓ is a CS-model.

Proof. Immediately follows from U∅ = ∅, UΓ ∪ U∆ = UΓ∪∆, and B ⊆ BΓ
respectively. ut

Definition 9 (Truth). Let M = (v,B) be a model and D be a formula. We
define the relation M 
 D by

1. M 
 P iff P ∈ v

2. M 
 ¬A iff M 1 A

3. M 
 A→ B iff M 1 A or M 
 B

4. M 
 t :A iff (t, A) ∈ E(B)

5. M 
 [Γ ]A iff MΓ 
 A.

A formula D is valid with respect to a constant specification CS if M 
 D for
all initial CS-models M.



3 Soundness

For this section and the next one, we assume CS to be a fixed but arbitrary
constant specification. In later sections, the use of soundness and completeness
with respect to models with no CS specified should be understood as soundness
and completeness with respect to initial ∅-models because any model is an ∅-
model.

Theorem 10 (Soundness). For all formulas D,

JUPCS ` D implies D is valid with respect to CS.

Proof. As usual the proof is by induction on the length of the derivation of D.
Let M = (v,B) be an initial CS-model.

1. (Taut). All instances of propositional tautologies hold under M.
2. (App).M 
 t:(A→ B)∧s:A iff {(t, A→ B), (s,A)} ⊆ E(B). By Lemma 4.2,

this is equivalent to (t ·A s,B) ∈ E(B), in other words to M 
 t ·A s :B.
3. (Red.1). M 
 [Γ ]P iff MΓ 
 P iff P ∈ v iff M 
 P .
4. (Red.2).M 
 [Γ ]¬B iffMΓ 
 ¬B iffMΓ 1 B iffM 1 [Γ ]B iffM 
 ¬[Γ ]B.
5. (Red.3). Similar to the previous case.
6. (Pers). Follows immediately from Lemma 5.
7. (Init). (up(A), B) /∈ B since M is initial. (up(A), B) /∈ E(B) by Lemma 4.1.

Thus, M 
 ¬up(A) :B.
8. (Up). If A ∈ Γ , then (up(A), A) ∈ UΓ ⊆ BΓ , and (up(A), A) ∈ E(BΓ ) by

Lemma 4.1. It follows that MΓ 
 up(A) :A and M 
 [Γ ]up(A) :A.
9. (MC.1). Assume M 
 [Γ ]t : A for t ∈ ATm such that either t 6= up(A)

or A /∈ Γ . Then MΓ 
 t : A and (t, A) ∈ E(BΓ ). Since t ∈ ATm, we get
(t, A) ∈ BΓ = B∪UΓ by Lemma 4.1. Clearly, (t, A) /∈ UΓ . Hence, (t, A) ∈ B,
and (t, A) ∈ E(B) by Lemma 4.1. Therefore, we conclude that M 
 t :A.

10. (MC.2). Similar to Case 2 but for MΓ .
11. (It). M 
 [Γ ][∆]A iff MΓ 
 [∆]A iff (MΓ )∆ 
 A. Then (MΓ )∆ =MΓ∪∆

by Lemma 8. The equivalence continues as MΓ∪∆ 
 A iff M 
 [Γ ∪∆]A.
12. (MP). It is trivial to see that modus ponens preserves truth in a model.
13. (AN). For any (c,B) ∈ CS, we have (c,B) ∈ B by definition of a CS-model.

Further, (c,B) ∈ E(B) by Lemma 4.1, and M 
 c :B. ut

4 Completeness

Definition 11 (Consistency). A set Φ of formulas, finite or infinite, is called
consistent if JUPCS 0 ¬(A1 ∧ · · · ∧An) for any finite subset {A1, . . . , An} ⊆ Φ.

A set Φ is called maximal consistent if it is consistent whereas no proper
superset of Φ is.

Definition 12 (Induced model). Let Φ be a maximal consistent set of for-
mulas. The model MΦ = (vΦ,BΦ) that is induced by Φ is given by



1. P ∈ vΦ iff P ∈ Φ ∩ Prop.
2. (t, A) ∈ BΦ iff t ∈ ATm and t :A ∈ Φ.

MΦ is an initial CS-model. Indeed, by the maximal consistency of Φ, we have

– (c,B) ∈ BΦ since c :B ∈ Φ since JUPCS ` c :B for every (c,B) ∈ CS;
– (up(A), B) /∈ BΦ since up(A) : B /∈ Φ since ¬up(A) : B ∈ Φ because we have

JUPCS ` ¬up(A) :B for arbitrary A and B.

Lemma 13 (Canonical evidence). Let Φ be a maximal consistent set. Then

t :A ∈ Φ ⇐⇒ (t, A) ∈ E(BΦ) .

Proof. By induction on the construction of t.

1. t ∈ ATm. We have t :A ∈ Φ iff (by definition) (t, A) ∈ BΦ iff (by Lemma 4.1)
(t, A) ∈ E(BΦ).

2. t = r ·B s. We have r ·B s :A ∈ Φ iff (by (App) and the maximal consistency
of Φ) {s : B, r : (B → A)} ⊆ Φ iff (by IH) {(s,B), (r,B → A)} ⊆ E(BΦ) iff
(by Lemma 4.2) (r ·B s,A) ∈ E(BΦ). ut

Definition 14 (Rank). We inductively define the rank of a term by

1. rk(t) := 1 if t ∈ ATm;
2. rk(s ·A t) := max(rk(s), rk(t)) + 1;

and the rank of a formula by

1. rk(P ) := 1 if P ∈ Prop;
2. rk(¬A) := rk(A) + 1;
3. rk(A→ B) := max(rk(A), rk(B)) + 1;
4. rk(t :A) := rk(t);
5. rk([Γ ]B) := 2 · rk(B).

We immediately get the following properties of rk.

Lemma 15 (Reduction).

1. rk([Γ ]A) > rk(A).
2. rk([Γ ]¬B) > rk(¬[Γ ]B).
3. rk([Γ ](A→ B)) > rk([Γ ]A→ [Γ ]B).
4. rk([Γ ]r ·C s :B) > rk([Γ ]r : (C → B)) and

rk([Γ ]r ·C s :B) > rk([Γ ]s : C).
5. rk([Γ ][∆]A) > rk([Γ ∪∆]A).

Lemma 16 (Truth lemma). Let Φ be a maximal consistent set of formulas.
Then

A ∈ Φ ⇐⇒ MΦ 
 A .

Proof. By induction on rk(A).



1. A ∈ Prop. We have A ∈ Φ iff (by definition) A ∈ vΦ iff (by definition)
MΦ 
 A.

2. A = ¬B. We have ¬B ∈ Φ iff (by the maximal consistency of Φ) B /∈ Φ iff
(by IH) MΦ 1 B iff MΦ 
 ¬B.

3. A = B → C. We have B → C ∈ Φ iff (by the maximal consistency of Φ)
B /∈ Φ or C ∈ Φ iff (by IH) MΦ 1 B or MΦ 
 C iff MΦ 
 B → C.

4. A = t:B. We have t:B ∈ Φ iff (by Lemma 13) (t, B) ∈ E(BΦ) iff (by definition)
MΦ 
 t :B.

5. A = [Γ ]P . We have [Γ ]P ∈ Φ iff (by (Red.1) and the maximal consistency
of Φ) P ∈ Φ iff (by IH)MΦ 
 P iff (by (Red.1) and soundness)MΦ 
 [Γ ]P .

6. A = [Γ ]¬B. Then [Γ ]¬B ∈ Φ iff (by (Red.2) and the maximal consistency
of Φ) ¬[Γ ]B ∈ Φ iff (by IH) MΦ 
 ¬[Γ ]B iff (by (Red.2) and soundness)
MΦ 
 [Γ ]¬B.

7. A = [Γ ](B → C). We have [Γ ](B → C) ∈ Φ iff (by (Red.3) and the maximal
consistency of Φ) [Γ ]B → [Γ ]C ∈ Φ iff (by IH) MΦ 
 [Γ ]B → [Γ ]C iff
(by (Red.3) and soundness) MΦ 
 [Γ ](B → C).

8. A = [Γ ]t :B. We distinguish the following cases for t.
(a) t ∈ ATm. There are two possibilities:

– t = up(B) and B ∈ Γ . In this case, A = [Γ ]up(B) : B is an axiom.
Therefore, we have A ∈ Φ by the maximal consistency of Φ and
MΦ 
 A by soundness;

– either t 6= up(B) or B /∈ Γ . We have that [Γ ]t :B ∈ Φ iff (by (Pers),
(MC.1), and the maximal consistency of Φ) t : B ∈ Φ iff (by IH)
MΦ 
 t :B iff (by (Pers), (MC.1), and soundness) MΦ 
 [Γ ]t :B.

(b) t = r ·C s. We have [Γ ]r ·C s : B ∈ Φ iff (by (MC.2) and the maximal
consistency of Φ) {[Γ ]r : (C → B), [Γ ]s : C} ⊆ Φ iff (by IH) we have
MΦ 
 [Γ ]r : (C → B) ∧ [Γ ]s : C iff (by (MC.2) and soundness) we have
MΦ 
 [Γ ]r ·C s :B.

9. A = [Γ ][∆]B. Then [Γ ][∆]B ∈ Φ iff (by (It) and the maximal consistency
of Φ) [Γ ∪∆]B ∈ Φ iff (by IH) MΦ 
 [Γ ∪∆]B iff (by (It) and soundness)
MΦ 
 [Γ ][∆]B. ut

Theorem 17 (Completeness). For all formulas D,

D is valid with respect to CS implies JUPCS ` D .

Proof. Assume JUPCS 0 D. Then {¬D} is consistent and, hence, contained in a
maximal consistent set Φ. By the previous lemma we find MΦ 
 ¬D. Thus, we
conclude MΦ 1 D, which means that D is not valid with respect to CS since
MΦ is an initial CS-model.

We now show that the update with the empty set Γ = ∅, i.e., the update
with no additional information, has no effect.

Lemma 18 (Uninformative update). JUPCS ` [∅]A↔ A.

Proof. Follows from M∅ =M (Lemma 8) and completeness. ut



We show the following principle of minimal change: an update with A has
no effect on beliefs that are justified without reference to that update.

Definition 19 (Subterms). Subterms of a term t are defined by induction as
follows. Sub(t) := {t} if t ∈ ATm.

Sub(t ·A s) := Sub(t) ∪ Sub(s) ∪ {t ·A s} .

Lemma 20 (Minimal change). Let Γ be a finite set of formulas and t be a
term that does not contain up(A) as a subterm for any A ∈ Γ . Then

JUPCS ` [Γ ]t :B ↔ t :B .

Proof. The direction from right to left follows from (Pers). To show the other
direction, let M = (v,B) be an initial CS-model with M 
 [Γ ]t : B. We prove
M 
 t :B by induction on the construction of t.

1. t ∈ ATm. Then, (t, B) ∈ BΓ = B ∪ {(up(A), A) | A ∈ Γ} by Lemma 4.1.
Since t 6= up(A) for any A ∈ Γ , we find (t, B) ∈ B. Thus, (t, B) ∈ E(B) by
Lemma 4.1, and M 
 t :B follows.

2. t = r ·C s. Then M 
 [Γ ]s : C ∧ [Γ ]r : (C → B) by (MC.2) and soundness.
By IH we find M 
 s : C ∧ r : (C → B). Thus, we conclude by (App) and
soundness that M 
 t :B.

The claim follows by completeness. ut

5 AGM Postulates

In the now classic paper [1], Alchourrón, Gärdenfors, and Makinson introduced
their famous postulates for belief contraction and revision where the underly-
ing principle is that of minimal change. Later Gärdenfors [17] added postulates
for belief expansion. We are going to show that the update operator of JUPCS

satisfies these postulates for expansion, see Lemma 27.
Before we can state and prove Gärdenfors’s postulates, we need to introduce

the notion of belief set and of belief set induced by a model.

Definition 21 (Belief set). A belief set is a set X ⊆ Fml of formulas that
satisfies

if A ∈ X and A→ B ∈ X, then B ∈ X.

Definition 22 (Induced beliefs). LetM be a model. We define the beliefs �M
induced by M as

�M := {A ∈ Fml | M 
 t :A for some t ∈ Tm} .

Lemma 23 (Induced beliefs). Let M be a model. Then �M is a belief set.



Proof. We have to show the condition of Definition 21. Assume that A ∈ �M
and A → B ∈ �M. Then there are terms s and t such that M 
 t : A and
M 
 s : (A→ B). Therefore, M 
 s ·A t :B and hence B ∈ �M. ut

Definition 24 (Expansion). LetM be a model and A be a formula. We define

�M ⊕A := �MA .

Definition 25 (Appropriate constant specification). A constant specifica-
tion CS is called

– propositionally appropriate if for every A that is a propositional tautology
there exists a constant c such that (c, A) ∈ CS;

– axiomatically appropriate if for every A that is an axiom of JUP there exists
a constant c such that (c, A) ∈ CS;

– JUPCS-appropriate if it is axiomatically appropriate and also for every pair
(c,B) ∈ CS there exists a constant c′ such that (c′, c :B) ∈ CS.

Lemma 26 (CS appropriateness as a measure of reasoning strength).
LetM be an initial CS-model. If CS is propositionally appropriate (axiomatically
appropriate, JUPCS-appropriate), belief sets �M and �M ⊕ A are closed with
respect to reasoning in classical propositional logic (in JUP∅, in JUPCS).

Proof. What we need to prove is that whenever C ∈ �M (C ∈ �M ⊕ A) and
C `Th D, it follows that D ∈ �M (D ∈ �M ⊕ A), where Th stands for clas-
sical propositional logic in the language of JUP in the case of a propositionally
appropriate CS, for JUP∅ in the case of an axiomatically appropriate CS, and
for JUPCS in the case of a JUPCS-appropriate CS. This can be easily demonstrated
by induction on the derivation in the respective logic.

Lemma 27 (Postulates for expansion). LetM = (v,B) be a model and A be
a formula. Then X = �M ⊕A satisfies the following properties:

1. X is a belief set.
2. A ∈ X.
3. �M ⊆ X.

Moreover, �M ⊕A is the smallest set satisfying Properties 1–3:

4. for any set X ⊆ Fml satisfying Properties 1–3 we have �M ⊕A ⊆ X.

Proof. 1. Since Lemma 23 holds for arbitrary models, we immediately obtain
that �M ⊕A = �MA is a belief set.

2. By (Up) and soundness we have M 
 [A]up(A) :A, in other words, we have
MA 
 up(A) :A. Thus we get A ∈ �MA , i.e., A ∈ �M ⊕A.

3. Assume B ∈ �M. There exists a term t such that M 
 t :B. By (Pers) and
soundness, we have M 
 [A]t :B, in other words, MA 
 t :B. Thus, we get
B ∈ �MA , i.e., B ∈ �M ⊕A.



4. Let X satisfy Properties 1–3. We have to show �M ⊕ A ⊆ X. By the defi-
nition of �M ⊕A, this amounts to showing

MA 
 t :B implies B ∈ X . (1)

Let MA = (v,BA). To establish (1) it is enough to show

(t, B) ∈ E(BA) implies B ∈ X . (2)

We prove (2) by induction on the construction of t. Assume (t, B) ∈ E(BA).
We have one of the following cases:
(a) t ∈ ATm. By Lemma 4.1, (t, B) ∈ BA = B ∪ {(up(A), A)}. If (t, B) ∈ B,

then (t, B) ∈ E(B) by Lemma 4.1, thus, M 
 t : B, i.e., B ∈ �M. By
Property 3 for X, we find B ∈ X.
If (t, B) = (up(A), A), then B = A, and B ∈ X follows by Property 2
for X.

(b) t = r ·C s. Then {(s, C), (r, C → B)} ⊆ E(BA) by Lemma 4.2. By IH we
find {C,C → B} ⊆ X. By Property 1 for X we know that C ∈ X and
C → B ∈ X imply B ∈ X. Hence, we conclude that B ∈ X. ut

Remark 28. Gärdenfors [17] presented two more postulates that in our context
read as

1. if A ∈ �M, then �M = �M ⊕A
2. if �M ⊆ �M′ , then �M ⊕A ⊆ �M′ ⊕A.

It is standard [16] to show that these two additional postulates follow from the
properties established in Lemma 27.

6 Ramsey Axiom

The Ramsey axiom makes it possible to express the beliefs after an update in
terms of the beliefs before the update. In dynamic doxastic logic, for example,
Segerberg [24] formulates the Ramsey axiom as

[A]�B ↔ �(A→ B) . (3)

Thus, it states that an agent believes B after an update with A if and only if
the agent believes that A implies B before the update.

We can establish an explicit analog of the Ramsey axiom in JUPCS for propo-
sitionally appropriate constant specifications.

We show the two implications of the Ramsey axiom separately. First, the
direction from right to left.

Lemma 29 (Ramsey I). JUPCS ` t : (A→ B)→ [A]t ·A up(A) :B.

Proof. Let M be an initial CS-model. Assume M 
 t : (A → B) for some
term t. By the axiom (Pers) and soundness, M 
 [A]t : (A → B). Moreover,
using the axiom (Up) we find M 
 [A]up(A) : A and by (MC.2) we obtain
M 
 [A]t ·A up(A) :B. The claim follows by completeness. ut



The direction from left to right of (3) need not hold in general. Here is a
simple counter-example. By (Up) we have JUPCS ` [A]up(A) :A. However, if the
constant specification CS is not propositionally appropriate, e.g., for CS = ∅,
any model M = (v,∅) is an initial ∅-model. It is easy to see that E(∅) = ∅
and M 1 t : B for any term t and any formula B. Now JUP∅ 0 t : (A → A) by
completeness.

For a propositionally appropriate constant specification, we do have an ex-
plicit version of the direction from left to right.

Lemma 30 (Ramsey II). Let CS be a propositionally appropriate constant
specification. For each term t there exists a term s such that

JUPCS ` [A]t :B → s : (A→ B) . (4)

Proof. By induction on the construction of t we show that there exists a term s
such thatM 
 s : (A→ B) for any initial CS-modelM wheneverM 
 [A]t :B.
Then (4) follows by completeness. We distinguish the following cases for t:

1. t ∈ ATm. There are two possibilities:
– t 6= up(B) or A 6= B. Since CS is propositionally appropriate, there exists

a constant c such that JUPCS ` c : (B → (A→ B)) and we set s := c ·B t.
IfM 
 [A]t :B, thenM 
 t :B by the axiom of minimal change (MC.1).
Hence, we conclude M 
 c ·B t : (A→ B).

– t = up(B) and A = B. Since CS is propositionally appropriate, there is
a constant c such that JUPCS ` c : (A → B) and we set s := c. Then,
M 
 c : (A→ B)

2. t = r ·C s. By IH there are terms r′ and s′ such thatM 
 r′ :
(
A→ (C → B)

)
wheneverM 
 [A]r : (C → B) andM 
 s′ : (A→ C) wheneverM 
 [A]s :C
for any initial CS-modelM. AssumeM 
 [A]r ·C s :B. It follows by (MC.2)
that M 
 [A]r : (C → B) and M 
 [A]s : C. Since CS is propositionally
appropriate, there exists a constant c such that

JUPCS ` c :
((
A→ (C → B)

)
→
(
(A→ C)→ (A→ B)

))
.

Then for s := (c ·A→(C→B) r
′) ·A→C s

′ we have M 
 s : (A→ B). ut

7 Conclusion

We have introduced JUPCS, a justification logic for belief expansion. The explicit
evidence terms in JUPCS keep track of the effect an update has on an agent’s
beliefs, which makes it possible to axiomatize in the object language the principle
of minimal change and establish soundness and completeness.

There are two directions for further research. One is to study belief con-
traction and revision in the context of justification logic. This is closely related
to [22] where evidence elimination is studied.

A second line of research is to consider introspective agents. It is straightfor-
ward to add positive introspection to JUPCS since semantically this corresponds



to a positive operator and, therefore, the least fixed point construction of the evi-
dence relation still works. However, the properties with respect to belief sets and
the Ramsey axiom will be different and, not surprisingly, the Moore’s paradox
will reappear. Adding negative introspection is also possible. The non-monotone
inductive definitions used in the model constructions [25] for negative introspec-
tion provide a short preview of its belief dynamics.
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4. S. N. Artemov. Kolmogorov and Gödel’s approach to intuitionistic logic: current
developments. Russian Mathematical Surveys, 59(2):203–229, 2004. Originally
published in Russian.

5. S. N. Artemov. Justified common knowledge. Theoretical Computer Science, 357(1–
3):4–22, July 2006.

6. S. N. Artemov. The logic of justification. The Review of Symbolic Logic, 1(4):477–
513, Dec. 2008.

7. S. N. Artemov. Tracking evidence. In A. Blass, N. Dershowitz, and W. Reisig,
editors, Fields of Logic and Computation, volume 6300 of LNCS, pages 61–74.
Springer, 2010.

8. S. N. Artemov. The ontology of justifications in the logical setting. Studia Logica,
100(1–2):17–30, Apr. 2012.

9. S. N. Artemov and R. Kuznets. Logical omniscience as a computational complexity
problem. In A. Heifetz, editor, TARK 2009, pages 14–23, Stanford University,
California, July 6–8, 2009. ACM.

10. A. Baltag, B. Renne, and S. Smets. The logic of justified belief change, soft evidence
and defeasible knowledge. In L. Ong and R. de Queiroz, editors, WoLLIC 2012,
volume 7456 of LNCS, pages 168–190. Springer, 2012.

11. J. Barwise. Admissible Sets and Structures. Springer, 1975.
12. S. Bucheli, R. Kuznets, B. Renne, J. Sack, and T. Studer. Justified belief change. In

X. Arrazola and M. Ponte, editors, LogKCA-10, Proceedings of the Second ILCLI
International Workshop on Logic and Philosophy of Knowledge, Communication
and Action, pages 135–155. University of the Basque Country Press, 2010.

13. S. Bucheli, R. Kuznets, and T. Studer. Justifications for common knowledge.
Journal of Applied Non-Classical Logics, 21(1):35–60, Jan.–Mar. 2011.

14. S. Bucheli, R. Kuznets, and T. Studer. Partial realization in dynamic justification
logic. In L. D. Beklemishev and R. de Queiroz, editors, WoLLIC 2011, volume
6642 of LNAI, pages 35–51. Springer, 2011.

15. S. Bucheli, R. Kuznets, and T. Studer. Realizing public announcements by justi-
fications. Journal of Computer and System Sciences, to appear.

16. H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic.
Springer, 2007.

17. P. Gärdenfors. Knowledge in Flux. The MIT Press, 1988.



18. J. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal
of Logic, Language and Information, 6(2):147–169, Apr. 1997.

19. R. Kuznets and T. Studer. Justifications, ontology, and conservativity. In T. Bolan-
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