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Abstract
We introduce and analyse a theory of finitely stratified general inductive definitions over
the natural numbers, SID<ω, and establish its proof-theoretic ordinal, ϕε0(0). The def-
inition of SID<ω bears some similarities with D. Leivant’s ramified theories for finitary
inductive definitions.
Keywords: Proof theory, inductive definitions, stratification.

1 Introduction

First-order theories that result from number theory by adding new predicate symbols P and
axioms for P are used as a tool to investigate the proof-theoretic strength of various theories
(consider [BFPS81] for example). In particular and with focus on the topic of this note,
predicates PA may formalise for each positive arithmetical operator form A a fixed-point FΦ

of the operator Φ: P(N)→ P(N), where Φ is the intended interpretation of A and P(N) is the
power set of the natural numbers N (compare [Acz77a] for background information). A famous
example of such a formalisation is the impredicative theory ID1 that allows to axiomatise the
least fixed-point IΦ of such Φ by means of axioms for the closure property and the induction
principle assigned to PA; in the context of Φ this can be expressed by

Φ(IΦ) ⊆ IΦ (Φ-Closure)
(∀X ⊆ N) (Φ(X) ⊆ X → IΦ ⊆ X) (Φ-Induction)

and if considered as a definition of IΦ, its impredicative characterisation becomes apparent
by the unrestricted quantification over subsets of N. Furthermore, one can consider just any
fixed-point FΦ, thus described by the single equation

Φ(FΦ) = FΦ (Φ-Fixed-Point)

that is a consequence of (Φ-Closure) and (Φ-Induction).
A theory that formalises fixed-points over positive arithmetical operator forms A is the

theory ÎD1, it was introduced in [Acz77b] and further analysed for the iterated case in [Fef82]
and [JKSS99], using predicative methods. While ÎD1 has no formalisation for (Φ-Induction)
at all, a theory that is predicatively reducible and axiomatises certain (so-called positive)
instances of Φ(X) ⊆ X → IΦ ⊆ X is the theory ID∗1. It has been analysed in [Pro06] and
[AR10], in particular |ID∗1| = |ÎD1| = ϕε0(0) has been shown there for the proof-theoretic
ordinal of ID∗1.
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The aim of this note is to investigate the proof-theoretic strength of a theory of stratified
induction SID<ω. It has a similar approach as in ID∗1, namely in the sense of formalising
certain instances of (Φ-Induction). In order to illustrate the differences, we need to consider
the axioms of those two theories (precise formulations for SID<ω are given in section 2).
Therefore let LPA be some usual formulation of the first-order language of Peano arithmetic
PA, augmented with countably many set-parameters (i.e., fresh unary relation symbols X)
that are only used as place-holders in the sense described further below. A formula is called
arithmetical if it is formulated in the language LPA. For any arithmetical formula A(X,x)
with a designated number variable x that may occur free in it (and that contains no other
free number variable) and a designated set-parameter X occurring at most positively—i.e.,
A(X,x) is a positive operator form—let PA be a distinguished new unary relation symbol not
in LPA. Then the language obtained by extending LPA with such new symbols PA is used
as the language LID for the theories ID1, ÎD1, and ID∗1. The first of these theories formalises
(Φ-Induction) by means of the axiom scheme

(∀x)(A
(
{z : B}, x

)
→ Bz(x))→ (∀x)(PA(x)→ Bz(x)) (ID)

where B can be any LID formula and Bz(t) denotes for any LPA term t the substitution of
z in B by t, furthermore A

(
{z : B}, x

)
expresses the straight-forward substitution of atomic

formulas t ∈ X in A(X,x) by Bz(t).
While ÎD1 has no instances of (ID), the theory ID∗1 allows for positive induction (ID∗), i.e., it

contains instances of (ID) where B may contain PA at most positively. The new theory SID<ω
that we propose and investigate here is used to express a kind of stratified induction (over
fixed-points) by admitting indexed copies of the above mentioned symbols PA, namely by
replacing PA with infinitely many distinguished new unary relation symbols PA

n for 1 ≤ n < ω
(i.e., PA

1 , P
A
2 , . . . ). Hence, SID<ω has a different language than ID1 and further has stratified

induction (over fixed points) via the axiom scheme

(∀x)(A
(
{z : B}, x

)
→ Bz(x))→ (∀x)(PA

n (x)→ Bz(x)) (SID)

for 1 ≤ n < ω and with the restriction that B has to be a formula in this new language which
may contain relation symbols PB

l only if l < n (where B is some operator form).
Let SIDn denote the restriction of the theory SID<ω to formulas that contain at most

the symbols PA
l with l ≤ n. The theory SID0 is just PA and the theory SID1 is essentially a

weakening of ID∗1 where (ID∗) is further restricted in B to allow only arithmetical formulas. We
will investigate the theories SIDn of finitely stratified induction and refer for the next question
on the treatment of transfinitely stratified induction to [JP15]. In this note, we show how we
can apply the proof-theoretic technique of asymmetric interpretation very neatly in order to
gain proof-theoretic insight into this concept of stratified induction.

Aiming towards a characterisation of SID<ω, notice that it is the same as
⋃
n<ω SIDn and

that obviously SIDn embeds into ID∗n for any n < ω. So we have for the proof-theoretic ordinal
|SID<ω| ≤ |

⋃
n<ω ID

∗
n| = Γ0, see [Can85]. We show in this note that actually |SID<ω| = |ÎD1|

holds. Since ÎD1 trivially embeds into SID<ω, it suffices to show that ϕε0(0) = |ÎD1| is an
upper bound for |SID<ω|, and this is done via an asymmetric interpretation combined with
partial cut-elimination.
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The approach of this article bears some similarities to D. Leivant’s proof-theoretic approach
to computational complexity (cf. e.g. [Lei94]) which makes use of ramified theories over (fini-
tary) inductively generated free algebras. Here we treat ramified general inductive definitions
over the natural numbers. W. Buchholz’s notes [Buc05] contributed to the presentation of the
following material.

2 The theory SID<ω of stratified induction

We are now going to render more precisely the notions given in the introduction.

Definition 2.1 (Preliminaries).

• As basic logical symbols of first-order predicate logic with equality, take the usual symbols
¬,∧,∨,∀,∃,=, together with countably many (number) variables. We use x, y, z as
syntactic variables for those number variables, and for any kind of syntactic variables
introduced here, we allow subscripts and vector notation.

• LPA denotes the first-order language of Peano arithmetic PA (with the usual function
and relation symbols for primitive recursive functions and relations) plus set-parameters,
i.e., countably many unary relation symbols. We use X,Y, Z as syntactic variables for
set-parameters.

• LPA terms will be just called terms. We use s, t as syntactic variables for terms and
denote by TER0 the set of closed terms. In case that t is closed (i.e., does not contain a
variable) we mean by tN the numerical value of t, i.e., the valuation of t in the standard
model N.
Consider a fixed language L ⊇ LPA. We define L formulas as usual inductively from
L and the basic symbols but with the restriction that the negation symbol ¬ is only
allowed to occur in front of an atomic formula. We use A,B,C,D as syntactic variables
for L formulas. A literal is either an atomic formula or its negated version. In case of a
compound formula A, its negation ¬A stands for the translation of A according to De
Morgan’s laws and the law of double negation.

Moreover, we use capital Greek letters Γ,∆,Σ as syntactic variables for L sequents, i.e.,
finite (possibly empty) lists of L formulas (e.g., A0, . . . , Ak) that are identified with finite
sets (i.e., {A0, . . . , Ak}). Therefore, Γ, A is understood as Γ∪ {A} and accordingly Γ,∆
is identified with Γ ∪∆.

In order to stress that A is an L formula, we write ambiguously A ∈ L. Moreover,
A→ B abbreviates just ¬A∨B. If an L formula is introduced as A(z), this means that
A denotes this formula and that the variable z may occur freely in A. We write FV(A)
for the set of free number variables of A. A formula is called arithmetical in case of
A ∈ LPA.
Substitution of a variable z in A by a term t is denoted by Az(t), or just by A(t) in case
A has been introduced in the form A(z).

Let P be a unary relation symbol of L and A an L formula. Then we say that P
occurs positively in A if A does not contain the negated formula ¬P (t) for any term t.
Moreover, we write often t ∈ P instead of P (t) and t 6∈ P instead of ¬P (t).
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• By ordinals we actually mean ordinals smaller than the first strongly-critical ordinal Γ0,
in particular we will work with the binary Veblen-function ϕ. In fact, we will need only
ordinals below ϕε0(0) and for most of the results even ordinals below ε0 will suffice. We
use small Greek letters α, β, γ, δ, ξ, π, ν, τ as syntactic variables for ordinals.

• From now on, let X denote a fixed set-parameter. We call an arithmetical formula a
positive (arithmetical) operator form if it contains X at most positively and if it contains
at most one number variable. In order to stress the special role of such formulas, we use
A,B as syntactic variables for those and consider them implicitly given as A(X,x) for
some variable x. In particular, we assume FV(A(X,x)) ⊆ {x} here, while set-parameters
distinct from X may still occur in A.
Given a language L ⊇ LPA together with an L formula B and a term t, we write
A({z : B}, t) for the L formula obtained from A by substituting any atomic formula
X(s) with Bz(s) and any occurrence of x with t, while a renaming of bound variables
may be necessary as usual. In case B has been introduced as B(z), we write also
A(B(z), t) for A({z : B}, t). Moreover, for unary relation symbols P ∈ L, we abbreviate
A({z : P (z)}, t) by A(P, t).

• The proof-theoretic ordinal of a first-order theory T over a language L ⊇ LPA is denoted
by |T|. We refer to [Poh09] for background information.

Definition 2.2. For each A and 1 ≤ n < ω let PA
n denote a new and distinguished unary

relation symbol. Furthermore, define for each n < ω:

L0 := LPA Ln+1 := Ln ∪ {PA
n+1 : A is a positive operator form }

From now on, let A,B,C,D range over formulas of the language L<ω :=
⋃
n<ω Ln.

Definition 2.3. For each n < ω, the theory SIDn with language Ln consists of the following
axioms.

I. Number-theoretic and logical axioms:

The axioms of PA with the scheme of complete induction for all Ln formulas.

II. Stratified induction axioms for 1 ≤ m ≤ n and B(z) ∈ Lm−1:

∀x(A(B(z), x)→ B(x))→ ∀x(x ∈ PA
m → B(x))

III. Fixed-point axioms for 1 ≤ m ≤ n:

∀x(A(PA
m, x)↔ x ∈ PA

m)

The theory SID<ω with language L<ω is the collection
⋃
n<ω SIDn. Furthermore, we also

presume that a derivability notion SIDn ` A is given for each n < ω and A ∈ Ln via a standard
first-order Hilbert-style predicate calculus. Accordingly, SID<ω ` A for A ∈ L<ω just means
that A ∈ Ln and SIDn ` A hold for some n < ω.

Theorem 2.4 (Lower bound of |SID<ω|).

ÎD1 ` A =⇒ SID1 ` A

holds for each A ∈ LPA. Therefore ϕε0(0) ≤ |SID<ω|.

Proof. Recall that |ÎD1| = ϕε0(0) and notice that ÎD1 is essentially SID1 without II from its
definition.
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Strategy for the upper bound of SID<ω. We will work with infinitary proof systems
SID∞n with n < ω that are suitable for partial cut elimination, asymmetric interpretation,
and in case of n = 0 full predicative cut-elimination. The steps to reach the main result of
section 4 will be the following:

1. Unary relation symbols Q<ξA for each A and ξ are added to the language.

2. For each n < ω, set up an infinitary proof-system SID∞n . For n > 0, we obtain a useful
result on partial cut elimination (p.c.e.), while for the case n = 0, we can even achieve
full predicative cut-elimination (f.c.e.).

3. Asymmetric interpretation (a.i.) is used to establish the connection between the systems
SID∞n+1 and SID∞n for any n < ω, given that we deal with derivations where we partially
removed cuts first. In particular, the symbols PA

n+1 are interpreted by Q<ξA for suitable
ξ.

4. The theme is to start with a formal derivation in SIDn+1 of an arithmetical formula
A, embed it into SID∞n+1 such that the proof complexity stays below ε0, combine a
p.c.e. followed by an a.i. iteratively, and end up with a derivation in SID∞0 with proof
complexity still below ε0. Then f.c.e. yields the desired sharp bound ϕε0(0) for |SID<ω|
via a standard boundedness argument:

SIDn+1
embed
 SID∞n+1

p.c.e.
 SID∞n+1

a.i.
 SID∞n  · · · SID∞0

f.c.e.
 SID∞0

Besides the care needed to maintain a proof-complexity below ε0, we also have to cope
with the fact that in general an infinitary proof system may yield derivations whose cuts
cannot be globally bounded. In particular for our iterative use of p.c.e. that started
with embedding a formal derivation (e.g., from SIDn+1 into SID∞n+1), we depend on the
method of a.i. to provide always a derivation whose cut-formulas are bounded by a finite
ordinal. To guarantee this, we shall fix a finite ordinal ` and restrict the derivability
relation for SID∞n with n > 0 such that the cut-formulas have to be globally bounded
by `.

3 The infinitary proof system SID∞n for n < ω

Convention. For the rest of this section, we fix some finite ordinal `. In particular, we will
define the derivability relation for the proof systems SID∞n such that ` globally bounds the
length of the cut-formulas that are allowed in an application of a cut-rule if n > 0. Compare
the proof of lemma 3.9 to see why this bound should not hold for the case n = 0.

Definition 3.1. Let Q<ξA be a fresh unary relation symbol for each A and ξ. For each n < ω,
let L∞n := Ln ∪ {Q<ξA : ξ < Γ0 & A is a positive operator form }. In the following, let
A,B,C,D range over formulas of the language L∞<ω :=

⋃
n<ω L∞n .

Definition 3.2. The length lh(A) of a formula A is defined as the number of basic logical
symbols that occur in A. In particular, lh(A) = lh(Ax(t)) holds for all terms t.
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Definition 3.3. Let rk0(A) := 0 for each A ∈ L∞0 . For 1 ≤ n < ω, we say that A ∈ L∞n is
n-atomic if A ∈ L∞n−1 or if it is a literal of the form t ∈ PA

n or t 6∈ PA
n .

The n-rank rkn(A) < ω is defined for 1 ≤ n < ω and formulas A ∈ L∞n by

rkn(A) :=


0 if A is n-atomic, or otherwise
max(rkn(B), rkn(C)) + 1 if A = B ∧ C or A = B ∨ C
rkn(B) + 1 if A = ∀xB or A = ∃xB

The ordinal-rank rk(A) < Γ0 is defined for formulas A ∈ L∞<ω by

rk(A) :=


0 if A is a literal and A ∈ L<ω
ω · ξ if A = t ∈ Q<ξA or A = t 6∈ Q<ξA

max(rk(B), rk(C)) + 1 if A = B ∧ C or A = B ∨ C
rk(B) + 1 if A = ∀xB or A = ∃xB

Furthermore for 1 ≤ n < ω and A ∈ L∞n , we write A ∈ Posn to denote that PA
n occurs at

most positively in A for every A, and we write A ∈ Negn to denote ¬A ∈ Posn.

Remark. For A ∈ L∞n and 1 ≤ n < ω, we have that lh(A) < ` implies rkn(A) < `, and that
rkn(A) 6= 0 implies that A is not a literal.

Definition 3.4. For each n < ω, the infinitary Tait-style proof system SID∞n with language
L∞n is defined by means of the following inferences (i.e., axioms and inference rules). SID∞n
shall derive L∞n sequents that consist of closed formulas only, therefore we assume in this
definition that the sequents of the axioms and the sequents that occur in the premiss of a rule
consist of closed L∞n formulas only. Note that the inference rules (

∧
∀xA) and (

∧
t6∈Q<τA

) have
infinitely many premisses.

I. Number-theoretic and logical axioms:

Γ, A if A is a true LPA literal without set-parameters

Γ, A(s),¬A(t) if sN = tN and A(z) ∈ Ln is atomic

II. Stratified induction axioms for each 1 ≤ m ≤ n and B(z) ∈ Lm−1:

Γ,∃x(A(B(z), x) ∧ ¬B(x)), t 6∈ PA
m, B(t)

III. Fixed-point rules for 1 ≤ m ≤ n:
Γ,A(PA

m, t) (Fixt∈PA
m

)
Γ, t ∈ PA

m

Γ,¬A(PA
m, t) (Fixt6∈PA

m
)

Γ, t 6∈ PA
m

IV. Predicative rules:
Γ, A

(
∨A
A∨B)

Γ, A ∨B
Γ, B

(
∨B
A∨B)

Γ, A ∨B
Γ, A Γ, B

(
∧
A∧B)

Γ, A ∧B

Γ, Ax(t)
(
∨t
∃xA)

Γ,∃xA
for t ∈ TER0

. . . Γ, Ax(t) . . . (t ∈ TER0)
(
∧
∀xA)

Γ,∀xA

Γ,A(Q<ξA , t)
(
∨ξ

t∈Q<τA

)
Γ, t ∈ Q<τA

for ξ < τ
. . . Γ,¬A(Q<ξA , t) . . . (ξ < τ)

(
∧
t6∈Q<τA

)
Γ, t 6∈ Q<τA
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V. Cut rule:

Γ, C Γ,¬C
(CutC)

Γ

For each of the above mentioned inferences, we define the notions side formula, minor formula,
and main formula as usual. In particular, (CutC) has no main formulas, the axioms in I and
II do not have minor formulas, and for every inference the formulas in the sequent Γ are the
side formulas.

Definition 3.5. The derivability notion SID∞n `αρ,r Γ for n, r < ω is defined inductively on α:

• SID∞n `αρ,r Γ holds for all α, ρ, and r < ω if Γ is an axiom of SID∞n .

• SID∞n `αρ,r Γ holds if there is a rule of SID∞n in III or IV such that Γ is its conclusion
and SID∞n `αιρ,r Γι holds for each of its premisses Γι with some αι < α.

• SID∞n `αρ,r Γ holds if SID∞n `α0
ρ,r Γ, C and SID∞n `α1

ρ,r Γ,¬C hold for some α0, α1 < α and
we have rk(C) < ρ, rkn(C) < r, and in case of n > 0 also lh(C) < `.

Moreover, SID∞n `<αρ,r Γ means that SID∞n `α0
ρ,r Γ holds for some α0 < α.

Remark. Recalling the end of section 2 where we explained the strategy of this article, we
notice here that for n > 0, the condition lh(C) < ` in the third case of the above definition
is needed in order to globally bound the occurring (cut-)formulas’ syntactical complexity
by a finite ordinal, namely `. Having in mind the property of most derivability notions
for infinitary proof systems that the underlying derivations may contain cut-formulas whose
complexity cannot be globally bounded by a finite ordinal, we decided to add the condition
lh(C) < ` since otherwise it would have been more cumbersome to check and guarantee the
well-behaviour of our iterative use of partial cut elimination and asymmetric interpretation
that we are going to apply below. Furthermore, we put no extra effort in encoding such a
property into rkn because we wanted to keep rkn as perspicuous as possible.

Lemma 3.6 (Weakening).

SID∞n `αρ,r Γ & α ≤ β & ρ ≤ η & r ≤ k & Γ ⊆ ∆ =⇒ SID∞n `
β
η,k ∆

Proof. By a straight-forward induction on α. Notice that the condition concerning ` can be
preserved here.

Remark 3.7. SID∞n `αρ,r Γ with ρ = 0 or r = 0 implies SID∞n `α0,0 Γ. Notice also that
SID∞0 `αρ,r Γ implies SID∞0 `αρ,1 Γ since rk0(A) = 0 for each A ∈ L∞0 . Furthermore, we notice
that in the following we will not mention every use of lemma 3.6 explicitly.

3.1 Partial and full cut-elimination

Lemma 3.8. For each 1 ≤ n < ω and C ∈ L∞n with lh(C) < `, we have

rkn(C) = 1 + r & SID∞n `αρ,1+r Γ, C & SID∞n `
β
ρ,1+r Γ,¬C =⇒ SID∞n `

α#β
ρ,1+r Γ
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Proof. By induction on α# β and the following case distinction.
1. C or ¬C is not among the main formulas of the last inference of SID∞n `αρ,1+r Γ, C or
SID∞n `

β
ρ,1+r Γ,¬C, respectively: The claim follows immediately from the I.H. or, in case of

an axiom, by reapplying the inference with suitable side formulas.
2. Otherwise, we notice first that rkn(C) 6= 0, hence C is not n-atomic and only the following
cases are possible:
2.1. C = C0 ∨ C1 and SID∞n `

α0
ρ,1+r Γ, C, C0 for some α0 < α: Then we also get SID∞n `

β0
ρ,1+r

Γ,¬C,¬C0 for some β0 < β, so by I.H. we get SID∞n `
α0#β
ρ,1+r Γ, C0 and SID∞n `

α#β0
ρ,1+r Γ,¬C0.

Since α0 #β, α#β0 < α#β, rkn(C0) < rkn(C) = 1+r, and also lh(C0) < lh(C) hold, we can
apply (CutC0) in order to obtain SID∞n `

α#β
ρ,1+r Γ. The other cases where SID∞n `

α0
ρ,1+r Γ, C, C1

or C = C0 ∧ C1 holds are treated similarly.
2.2. C = ∃xD or C = ∀xD: The claim follows similar to the previous case, notice that
lh(Dx(t)) = lh(D) < lh(C) holds for any term t.

Lemma 3.9. For each C ∈ L∞0 , we have

rk(C) = ρ & SID∞0 `αρ,r Γ, C & SID∞0 `βρ,r Γ,¬C =⇒ SID∞0 `α#β
ρ,r Γ

Proof. By induction on α#β and almost literally as lemma 3.8 because of a similar behaviour
of the n-rank rkn and the ordinal-rank rk in combination with the built-up of formulas. The
following two special situations illustrate the advantage of the ordinal-rank rk and why this
does not work for SID∞n with n > 0. Assume that both C and ¬C are among the main
formulas of the last inference.
1. C is the main formula of an axiom: Then it can only be due to an instance of I, so C
and ¬C are LPA literals. If C = Y (s) for some set-parameter Y and term s, then we have
¬Y (t), Y (t′) ∈ Γ for some t, t′ with tN = sN = t′N, and hence Γ is already an instance of I.
Otherwise, if C does not contain a set-parameter, the claim again follows easily from I.
2. C = t ∈ Q<τA with SID∞0 `

αξ
ρ,r Γ, C,A(Q<ξA , t) for some ξ < τ and αξ < α: Now ρ = ω · τ

and ¬C = t 6∈ Q<τA . Because of the definition of SID∞0 , we do not have SID∞0 `
β
ρ,r Γ,¬C

due to a logical axiom and hence ¬C must be the main formula of (
∧
t6∈Q<τA

). Then we have

SID∞0 `
βξ
ρ,r Γ,¬C,¬A(Q<ξA , t) available with βξ < β for every ξ < τ , so the claim follows very

similar as in the proof of lemma 3.8. Notice that in the setting of SID∞0 , we do not have to
guarantee lh(A(Q<ξA , t)) < `, and that we have rk(A(Q<ξA , t)) < ω · (ξ + 1) ≤ ρ because of
ξ < τ .

Theorem 3.10 (Cut-elimination).

(a) Partial cut-elimination: SID∞n `αρ,1+r Γ implies SID∞n `
ωr(α)
ρ,1 Γ for each 1 ≤ n < ω,

where ω0(α) := α and ωk+1(α) := ωk(ω
α).

(b) Full predicative cut-elimination: SID∞0 `αγ+ωδ,1
Γ implies SID∞0 `

ϕδ(α)
γ,1 Γ.

Proof. The theorem follows from the previous lemmas by a standard argument, and we refer
to [Poh09] for details.
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3.2 Asymmetric interpretation

Convention. We fix n < ω for this subsection and will only deal with the proof systems
SID∞n and SID∞n+1.

Definition 3.11. For L∞n+1 formulas A, L∞n+1 sequents Γ, and ordinals ξ, ξ1, . . . , ξk, we write

Aξ for the L∞n formula that is obtained from A by substituting any
PA
n+1 that occurs in A with the corresponding symbol Q<ξA ,

[Γ]ξ for the L∞n sequent obtained from Γ by substituting every occurring
formula A with Aξ,

and if Γ is explicitly given as a list A1, . . . , Ak, we write

[Γ]ξ1,...,ξk for the L∞n sequent Aξ11 , . . . , A
ξk
k

Lemma 3.12.

(a) SID∞n `αρ,r Γ, B(s1),¬B′(s2) for each s1, s2 with sN1 = sN2 implies that for each t1, t2 with
tN1 = tN2 also SID∞n `

α+2·rk(A)
ρ,r Γ,A(B(z), t1),¬A(B′(z), t2) holds.

(b) sN = tN and ν ≤ π imply SID∞n `ω·ν0,0 s ∈ Q<πA , t 6∈ Q<νA .

(c) sN = tN and A(z) ∈ L∞n imply SID∞n `
2·rk(A)
0,0 A(s),¬A(t)

(d) B(z) ∈ Ln implies SID∞n `ω·τ0,0 ,∃x(A(B(z), x) ∧ ¬B(x)), t 6∈ Q<τA , B(t).

Proof. Statement (a) is proven by a straight-forward induction on rk(A) < ω and we leave
the proof to the reader. Statement (b) is proven by induction on ν: The case ν = 0 follows
from (

∧
t6∈Q<0

A
). If ν > 0, the I.H. and (a) yield SID∞n `

ω·ξ+2·rk(A)
0 A(Q<ξA , s),¬A(Q<ξA , t) for all

ξ < ν. Since ν ≤ π, the claim follows from (
∨ξ

t∈Q<πA

) and (
∧
s 6∈Q<νA

), and notice that A ∈ LPA
implies rk(A) < ω and hence ω · ξ + 2 · rk(A) + 1 < ω · (ξ + 1) ≤ ω · ν holds for all ξ < ν.
Statement (c) is proven by a straight-forward induction on rk(A), and we leave the proof to
the reader, noticing that (b) is used for the case that A is of the form r ∈ Q<ξA . Finally,
statement (d) is proven by induction on τ and we let D := ∃x(A(B(z), x)∧¬B(x)). If τ = 0,
we immediately get SID∞n `0

0,0 D,B(t), t 6∈ Q<0
A from (

∧
t6∈Q<0

A
). If τ > 0, we first get

SID∞n `
ω·ξ
0,0 D,B(t), t 6∈ Q<ξA (∗)

by I.H. for all ξ < τ and all t. Using (a) with (∗) and (c) with B(t) yields

SID∞n `
ω·ξ+2·rk(A)
0,0 D,A(B(z), t),¬A(Q<ξA , t)

SID∞n `
2·rk(B(t))
0,0 D,¬A(Q<ξA , t), B(t),¬B(t)

Since B(t) ∈ Ln, we have rk(B(t)) < ω and hence we get for some m < ω

SID∞n `
ω·ξ+m
0,0 D,A(B(z), t) ∧ ¬B(t),¬A(Q<ξA , t), B(t)

Using (
∨t
D) and that ω · ξ+m+ 1 < ω · (ξ+ 1) ≤ ω · τ holds for each ξ < τ , the claim follows

with an (
∧
t6∈Q<τA

) inference.
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Lemma 3.13 (Persistence). Let L∞n+1 sequents ∆− := A0, . . . , Aq and ∆+ := B0, . . . , Br
be given with ∆− ⊆ Negn+1 and ∆+ ⊆ Posn+1, then for all ordinals ν0, ν

′
0, . . . , νq, ν

′
q with

(∀i ≤ q)(ν ′i ≤ νi), all ordinals π0, π
′
0, . . . , πp, π

′
p with (∀i ≤ p)(πi ≤ π′i), and each L∞n sequent

Γ, we have

SID∞n `αρ,r Γ, [∆−]ν0,...,νq , [∆+]π0,...,πp =⇒ SID∞n `αρ,r Γ, [∆−]ν
′
0,...,ν

′
q , [∆+]π

′
0,...,π

′
p

Proof. By induction on α. In case that all main formulas of the last inference are among Γ or
if the last inference is an instance I or II, a fixed-point rule in III, or a cut-rule in V, then
the proof is straight-forward. Otherwise the last inference is a rule in IV and we consider the
following cases:
1. (

∨ξ
C) with ξ < πi and C = t ∈ Q<πiA for some 1 ≤ i ≤ p: Then we have

SID∞n `α0
r,ρ Γ, [∆−]ν0,...,νq , [∆+]π0,...,πp ,A(Q<ξA , t)

and α0 < α. The I.H. (keeping A(Q<ξA , t) unchanged) and (
∨ξ
C′) with C ′ := t ∈ Q<π

′
i

A yield
the claim since ξ < π′i holds due to πi ≤ π′i.
2. (

∧
C) with C = t 6∈ Q<νiA for some 1 ≤ i ≤ q: As in the previous case, using ν ′i ≤ νi.

3. (
∧
C) with C = C0 ∧C1 and w.l.o.g., let C = Aν00 : Then C0 = Dν0

0 and C1 = Dν0
1 for some

D0, D1 ∈ Negn+1: We can apply the I.H. here as well but change C0, C1 now to Dν′0
0 and Dν′0

1 ,
respectively. (

∧
C′) with C ′ := D

ν′0
0 ∧D

ν′0
1 yields the claim.

4. Another rule of inference from IV: Similar as in the previous case.

Theorem 3.14 (Asymmetric interpretation). Assume that we have

SID∞n+1 `αρ,1 ∆−,∆+

for some ∆− ⊆ Negn+1 and ∆+ ⊆ Posn+1. Let ν and π be given such that π = ν + 2α and
ρ ≤ ω · π hold, then we have

SID∞n `ω·π+α
ω·π,` [∆−]ν , [∆+]π

Proof. By induction on α and a case distinction for the last inference.
1. Axioms in I: In case of t ∈ PA

n+1 ∈ ∆+ and s 6∈ PA
n+1 ∈ ∆− with sN = tN, we can use (b)

in lemma 3.12 for t ∈ Q<πA and s 6∈ Q<νA . The other cases are trivial by taking appropriate
instances of the corresponding axiom schemes.
2. Axioms in II: If we have an instance for some PA

m with 1 ≤ m ≤ n, the axiom can be
reused immediately. Otherwise it is an instance for some PA

n+1, and then the claim follows by
using (d) in lemma 3.12 for Q<νA .
3. (CutC) with rk(C) < ρ ≤ ω · π and rkn+1(C) = 0 (and also lh(C) < `):
3.1. If C is of the form t ∈ PA

n+1 (or t 6∈ PA
n+1): We have SID∞n+1 `

α0
ρ,1 ∆−,∆+, t ∈ PA

n+1 and
SID∞n+1 `

α1
ρ,1 ∆−,∆+, t 6∈ PA

n+1 for some α0, α1 < α. The I.H. yields with ν and π0 := ν + 2α0

SID∞n `
ω·π0+α0
ω·π0,` [∆−]ν , [∆+]π0 , t ∈ Q<π0A

and it also yields with π0 and π1 := π0 + 2α1

SID∞n `
ω·π1+α1
ω·π1,` [∆−]π0 , [∆+]π1 , t 6∈ Q<π0A

After some weakening and applying lemma 3.13 (using in particular ν < π0 and π1 = π0+2α1 ≤
ν + 2α = π), the claim follows by (Cut

t∈Q<π0A
) since we have rk(t ∈ Q<π0A ) = ω · π0 < ω · π,

rkn(t ∈ Q<π0A ) = 0, and in case of n > 0, we also have lh(t ∈ Q<π0A ) = lh(C) < `.
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3.2. Otherwise C ∈ L∞n : First notice that we have rkn(C) ≤ lh(C) < `, so we can use the I.H.
and then reuse (CutC) in SID∞n to obtain the claim.
4. Fixed-point rules in III:
4.1. (Fixt∈PA

n+1
): We have SID∞n+1 `

α0
ρ,1 ∆−,∆+,A(PA

n+1, t) and A(PA
n+1, t) ∈ Posn+1 for

some α0 < α, and hence the I.H. with ν and π0 := ν + 2α0 < π yields SID∞n `
ω·π0+α0
ω·π0,`

[∆−]ν , [∆+]π0 ,A(Q<π0A , t). Then the claim follows from (
∨π0
t∈Q<πA

), lemma 3.13, and some
weakening.
4.2. (Fixt6∈PA

n+1
): We have SID∞n+1 `

α0
ρ,1 ∆−,∆+,¬A(PA

n+1, t) and ¬A(PA
n+1, t) ∈ Negn+1 for

some α0 < α, so we get with π0 := ν + 2α0 by the I.H.

SID∞n `
ω·π0+α0
ω·π0,` [∆−]ν , [∆+]π0 ,¬A(Q<νA , t) (∗)

and hence by lemma 3.13 and some weakening, we get for each ξ < ν

SID∞n `
ω·π+α0
ω·π,` [∆−]ν , [∆+]π,¬A(Q<ξA , t)

By using (
∧
t6∈Q<νA

), the claim follows.
4.3. (Fixt∈PA

m
) or (Fixt6∈PA

m
) for some 1 ≤ m ≤ n: We can apply the I.H. for the premise and

reuse the rule because it is available in SID∞n and its minor formulas do not contain PA
n+1.

5. Predicative rules in IV: Use the I.H. and repeat the rule with an appropriate instance.

Remark. An inspection of the proof of theorem 3.14 yields that in case of ρ = 0, we even
obtain SID∞n `ω·π+α

0,0 [∆−]ν , [∆+]π in the conclusion of theorem 3.14. We do not need this
stronger result, though.

3.3 Arithmetical derivability

Theorem 3.15 (Arithmetical derivability). Let Γ ⊆ LPA and r, n < ω. If SID∞n `<ε0ρ,r Γ holds
for some ρ < ε0, then SID∞0 `

<ε0
η,1 Γ holds for some η < ε0.

Proof. By induction on n. The case n = 0 is clear (see remark 3.7). We can also assume r > 0
w.l.o.g. and get SID∞n `

<ε0
ρ,1 Γ by theorem 3.10.(a). Now theorem 3.14 yields SID∞n−1 `

<ε0
η,` Γ

for some η < ε0 and hence the claim by the I.H.

4 The upper bound of SID<ω

Theorem 4.1. If SIDn ` A for a closed Ln formula A, then there is an ` < ω such that the
derivability relation for SID∞n and this ` yields SID∞n `<ω+ω

`,` A.

Proof. As usual and inductively with respect to the underlying derivability notion SIDn ` A.
Notice that complete induction can be proven by use of the infinitary inference rule (

∧
∀xB)

and that no inferences are needed that involve symbols of the form Q<ξA when inductively
translating from SIDn ` A to the proof-system SID∞n (hence cuts of finite rank ` are sufficient).
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Corollary 4.2. |SID<ω| ≤ ϕε0(0).

Proof. For any closed arithmetical formula A with SIDn ` A, we know from theorem 4.1 that
SID∞n `

<ε0
`,` A holds for some ` < ω. According to theorem 3.15, this means SID∞0 `

<ε0
ρ,1 A for

some ρ < ε0. By weakening we have SID∞0 `
<ε0
ωρ,1 A since ρ ≤ ωρ(< ε0), so theorem 3.10.(b)

yields SID∞0 `
<ϕε0 (0)
0,0 A because α, ρ < ε0 implies ϕρ(α) < ϕρ(ϕε0(0)) = ϕε0(0), using ε0 <

ϕε0(0). Finally, we get |SID<ω| ≤ ϕε0(0) by a standard boundedness argument.

5 Concluding remarks

We finish this note on the theory SID<ω of finitely stratified induction over fixed-points with
some remarks on the proof-theoretic methods that we applied here and the generalisation to
transfinitely stratified induction. In this context, an immediate question is the relation of
transfinite stratification to the iteration of fixed-point definitions. We established the con-
nection of SID<ω to the non-iterated theory ÎD1 and will now briefly explain the concept of
(finite) iteration of fixed-point definitions: Since ÎD1 is based on positive operator forms A1

that are formulated in the language LPA, the theory ÎD2 is based on positive operator forms
A2 that are formulated in the language L̂1 (i.e., ÎD2 axiomatises fixed-points of A2 by means
of new unary relation symbols PA2 for each such A2, resulting in the language L̂2 of ÎD2).
This is similarly defined for ÎDn with arbitrary 2 < n < ω, and it further extends to trans-
finite iterations of fixed-point definitions ÎDα. As remarked in the introduction, we know for
instance that |ID∗β| = |ÎDβ| holds for any ordinal β, and we refer to [JKSS99] and [Pro06] for
details on results and definitions.

Comparison with the proof-theoretic methods for ÎDn Considering only the case
n = 2 and the reduction of ÎD2 to ÎD1, we first notice that similar methods (e.g., asymmetric
interpretation) are used as in the reduction of SID2 to SID1 but with the difference that
|ÎD1| < |ÎD2| holds and that we actually established |SID1| = |SID2| here. This is due to the
following observation: Without going into too many details, let ÎD

∞
2 and ÎD

∞
1 be the infinitary

proof-systems assigned to ÎD2 and ÎD1, respectively, which are defined in a similar way as the
infinitary proof-systems in section 3. The difference is that stratified induction axioms are
missing and that for ÎD

∞
2 , we have fixed-point rules

Γ,A2(PA2 , t)
(Fixt∈PA2 )

Γ, t ∈ PA2

Γ,¬A2(PA2 , t)
(Fixt6∈PA2 )

Γ, t 6∈ PA2

for positive operator forms A2(X,x) ∈ L̂1 that may contain symbols PA1 for positive operator
forms A1 ∈ L̂0(= LPA) in arbitrary position. This is not the case for SID2 where the operator
form is arithmetical. As remarked above, the reduction from ÎD2 to ÎD1 uses asymmetric
interpretation of ÎD

∞
2 in ÎD

∞
1 , therefore ÎD

∞
1 has for example predicative rules of the form

Γ,A2(Q<ξA2
, t)

(
∨ξ

t∈Q<τA2

)
Γ, t ∈ Q<τA2

for ξ < τ (#)

with A2 being a positive operator form over the language L̂2 rather than L̂1. This is needed in
order to be able to interpret a (Fixt∈PA2 ) inference, but it also makes it more difficult to remove
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cuts partially. Recall that in order to be able to use theorem 3.14, we first had to partially
remove cuts in SID∞2 before doing an asymmetric interpretation (this was needed to make the
proof by induction of theorem 3.14 work). Similarly, ÎD

∞
2 needs first to partially remove cuts,

and because of the existence of rule of inferences such as (#) this is only possible by doing a
partial cut-elimination that involves a cut-reduction for formulas of transfinite rank (compare
lemma 3.9). In contrast to this, we were able to avoid such cut-reductions for SID∞2 so that
it was needed only once in the very end for SID∞0 . We refer to the references for more details
on the proof-theoretic analysis of ÎDn for n < ω (yielding |ÎD<ω| = Γ0) and the generalisation
to the transfinite.

Transfinite stratification The equality ϕε0(0) = |ÎD1| = |SIDn| = |SID<ω| (with n < ω)
established here still leaves the question open concerning the relationship of stratification to
iteration. For this, we refer to [JP15] where a generalisation of stratification to the transfinite
gives an answer to it. The following picture captures line by line some aspects of this rela-
tionship and we refer again to [JP15] for the meaning and characterisation of the last three
rows.

ordinal stratification iteration

ε0 SID0 ÎD0

ϕε0(0) SID<ω ÎD1

ϕεε0 (0) SID<ω+ω —

ϕϕω(0)(0) SID<ωω —

ϕϕε0 (0)(0) SID<ε0 ÎD2
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