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Abstract

We discuss several ontological properties of explicit mathematics and
operational set theory: global choice, decidable classes, totality and
extensionality of operations, function spaces, class and set formation
via formulas that contain the definedness predicate and applications.
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1 Introduction

The purpose of this article is to discuss several ontological properties of ex-
plicit mathematics and operational set theory, not least of all for the sake
of pointing out some principal differences between explicit mathematics and
operational set theory. Very often, operational set theory is regarded as the
set-theoretic counterpart of explicit mathematics, and this point of view is
certainly justified – but only to a certain extent.

Both explicit mathematics and operational set theory give operations a
prominent role, self-application is possible though not necessarily defined.
And in both cases the universe of discourse is a partial combinatory algebra.
However, differences occur, for example, with respect to global choice, the
possibility of asking for totality and extensionality of operations, and set or
class formation by means of formulas that contain the definedness predicate
and applications.

In the following section we briefly introduce the formalism of explicit
mathematics, review several of its known ontological properties and turn to
some additional ones that have not yet been published in this form. Interest-
ing observations tell us that choice is problematic and decidability of classes
can only be permitted for “small” classes.

Afterwards we turn to operational set theory and show that it is not
consistent to claim that all operations are total or extensional and that the

∗Research partly supported by the Swiss National Science Foundation.

1



collection of all operations from a set a to a set b do not form a set in all
relevant cases. We also analyze the situation of set formation via formulas
that permit the definedness predicate and application terms and point out a
significant difference between uniform and non-uniform such set formations.

2 Explicit mathematics

Explicit mathematics and in particular the axiomatic system T0 – then for-
mulated in intuitionistic logic – were introduced by Feferman in the nineteen
seventies and originally designed as a framework for formalizing Bishop-style
constructive mathematics. But soon it became evident that systems of ex-
plicit mathematics (based on intuitionistic or classical logic) play an inde-
pendent important role in proof theory. The three articles Feferman [7, 8, 9]
provide an excellent introduction into explicit mathematics and put it into a
general context.

Here we do not work with Feferman’s original formalization of systems of
explicit mathematics; instead we treat them as theories of types and names
as developed in Jäger [14] and used in, for example, Jäger and Strahm [20, 21]
and Jäger and Studer [22]. The following description of the relevant systems
of explicit mathematics is more or less as in [21].

The applicative theory with elementary typing AET that we will consider
is formulated in the second order language L for individuals and types. It
comprises individual variables a, b, c, f, g, h, u, v, w, x, y, z, . . . as well as type
variables U, V,W,X, Y, Z, . . . (both possibly with subscripts). L also includes
the individual constants k, s (combinators), p, p0, p1 (pairing and projections),
0 (zero), sN (successor), pN (predecessor), dN (definition by numerical cases),
and additional individual constants that will be used for the uniform naming
of types, namely nat (natural numbers), id (identity), co (complement), un
(union), dom (domain), and inv (inverse image). There is one binary func-
tion symbol · for (partial) application of individuals to individuals. Further,
L has unary relation symbols ↓ (defined), N (natural numbers), as well as
three binary relation symbols ∈ (membership), = (equality), and < (naming,
representation).

The individual terms (r, s, t, r1, s1, t1, . . .) of L are built up from individual
variables and individual constants by means of our function symbol · for
forming applications (s · t). In the following we often abbreviate (s · t) as (st)
or – if no confusion arises – simply as st. We further adopt the convention
of association to the left so that s1s2 . . . sn stands for (. . . (s1 · s2) . . . sn), and
we often also write s(t1, . . . , tn) for st1 . . . tn. Further notations:

<s, t> := ps1s2, t′ := sNt, and 1 := 0′.
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The atomic formulas of L are the expressions N(s), s↓, (s = t), (U = V ),
(s ∈ U), and <(s, U); the formulas (A,B,C,A1, B1, C1, . . .) of L are gener-
ated from the atomic formulas by closing under negation, disjunction, con-
junction, implication, equivalence, as well as existential and universal quan-
tification for individuals and types. The free variables of t and A are defined
in the standard way; the closed L terms and closed L formulas, also called L
sentences, are those that do not contain free variables.

Since we work with a logic of partial terms, it is not guaranteed that all
terms have values, and s↓ is read as s is defined or s has a value. Moreover,
N(s) says that s is a natural number, and the formula <(s, U) is used to
express that the individual s represents the type U or is a name of U .

We often omit parentheses and brackets whenever there is no danger of
confusion. Moreover, we frequently make use of the vector notation ~U and ~s
for finite strings of type variables U1, . . . , Um and individual terms s1, . . . , sn,
respectively, whose length is not important or given by the context.

Suppose now that ~a = a1, . . . , an and ~s = s1, . . . , sn. Then A[~s/~a ] is the L
formula that is obtained from the L formula A by simultaneously replacing all
free occurrences of the variables ~a by the terms ~s; in order to avoid collision of
variables, a renaming of bound variables may be necessary. If the L formula
A is written as B[~a ], then we often simply write B[~s ] instead of A[~s/~a ].
Further variants of this notation below will be obvious. The substitution of
L terms for variables in L terms is treated accordingly. The following table
contains a list of useful abbreviations:

(s 6= t) := ¬(s = t),

(s ' t) := s↓ ∨ t↓ → s = t,

(s ∈ N) := N(s),

(V ⊆ W ) := ∀x(x ∈ V → x ∈ W ),

(s ∈̇ t) := ∃X(<(t,X) ∧ s ∈ X),

<(s) := ∃X<(s,X),

<(~r, ~U) := <(r1, U1) ∧ . . . ∧ <(rn, Un).

where the vector ~r consists of the individual terms r1, . . . , rn and the vector
~U of the type variables U1, . . . , Un.

The underlying logic of AET is given by Beeson’s classical logic of partial
terms (cf. Beeson [2] or Troelstra and van Dalen [25]) for the individuals
and classical logic with equality for the types. We also include the usual
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strictness axioms. The non-logical axioms of AET can be divided into the
following groups:

I. Applicative axioms. These axioms formalize that the individuals form
a partial combinatory algebra, that we have pairing and projection and the
usual closure conditions on the natural numbers plus definition by numerical
cases.

(1) kab = a,

(2) sab↓ ∧ sabc ' (ac)(bc),

(3) p0(<a, b>) = a ∧ p1(<a, b>) = b,

(4) 0 ∈ N,

(5) a ∈ N → a′ ∈ N,

(6) a ∈ N → a′ 6= 0 ∧ pN(a′) = a,

(7) a ∈ N ∧ a 6= 0 → pNa ∈ N ∧ (pNa)′ = a,

(8) a ∈ N ∧ b ∈ N ∧ a = b → dN(x, y, a, b) = x,

(9) a ∈ N ∧ b ∈ N ∧ a 6= b → dN(x, y, a, b) = y.

II. Explicit representation and extensionality. The following axioms
state that each type has a name, that there are no homonyms and that
equality of types is extensional.

(1) ∃x<(x, U),

(2) <(a, U) ∧ <(a, V ) → U = V ,

(3) ∀x(x ∈ U ↔ x ∈ V ) → U = V .

III. Basic type existence axioms. In the following we provide a finite
axiomatization of uniform elementary comprehension.

Natural numbers

(1) <(nat) ∧ ∀x(x ∈̇ nat ↔ N(x)).

Identity

(2) <(id) ∧ ∀x(x ∈̇ id ↔ ∃y(x = <y, y>)).
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Complements

(3) <(a) → <(co(a)) ∧ ∀x(x ∈̇ co(a) ↔ x ˙6∈ a).

Unions

(4) <(a) ∧ <(b) → <(un(a, b)) ∧ ∀x(x ∈̇ un(a, b) ↔ x ∈̇ a ∨ x ∈̇ b).

Domains

(5) <(a) → <(dom(a)) ∧ ∀x(x ∈̇ dom(a) ↔ ∃y(<x, y> ∈̇ a)).

Inverse images

(6) <(a) → <(inv(a, f)) ∧ ∀x(x ∈̇ inv(a, f) ↔ fx ∈̇ a).

As usual from the axioms of a partial combinatory algebra, i.e. from the
applicative axioms (1) and (2) above, we can introduce for each L term t an
L term (λx.t) whose variables are those of t other than x such that

(λx.t)↓ ∧ (λx.t)y ' t[y/x].

Of course, we can generalize λ abstraction to several arguments by simply
iterating abstraction for one argument. Accordingly, we set for all L terms t
and all variables x1, . . . , xn,

(λx1 . . . xn.t) := (λx1.(. . . (λxn.t) . . .)).

Often the term (λx1 . . . xn.t) is simply written as λx1 . . . xn.t. If ~x is the
sequence x1, . . . , xn, then λ~x.t stands for λx1 . . . xn.t.

The applicative axioms (1) and (2) also provide us with a closed L term
fix – a so-called fixed point operator – such that

fix(f)↓ ∧ fix(f, x) ' f(fix(f), x).

If an L formula A is called elementary provided that it contains neither
the relation symbol < nor bound type variables, then we have the following
result; see Feferman and Jäger [12].

Theorem 1 For every elementary formula A[u,~v, ~W ] with at most the in-
dicated free variables there exists a closed term tA such that AET proves:

1. <(~w, ~W ) → <(tA(~v, ~w)),

2. <(~w, ~W ) → ∀x(x ∈̇ tA(~v, ~w) ↔ A[x,~v, ~W ]).
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A trivial consequence of this theorem is that there exist the type V of all
objects (the universal type) and the type of the natural numbers, denoted
by N as the corresponding relation symbol.

Our theory AET is a subsystem of the theory EET, which has been con-
sidered in, for example, Feferman and Jäger [12]. EET comprises additional
axioms for primitive recursion, but they are of no relevance for the follow-
ing ontological considerations. However, before turning to some new results,
let me recall some well-known inconsistencies. By Feferman [7] and some
straightforward considerations we know that AET is inconsistent with:

• the totality statement ∀x∀y(xy↓) plus full definition by cases.

• the totality statement ∀x∀y(xy↓) plus ∀xN(x).

• extensionality of operations plus full definition by cases.

• extensionality of operations plus ∀xN(x).

Furthermore, in Feferman [7], it is also shown that AET is inconsistent with
the schema of comprehension for arbitrary L formulas, and Jäger [15] tells
us that the names of a type never form a type.

2.1 Global and weak choice

The axioms of operational set theory OST comprise an axiom for global
choice, and we will show in this section that the corresponding statement is
inconsistent with explicit mathematics. In order to prove this, we first turn
to (names of) types that represent graphs of functions in the set-theoretic
sense and ask the question whether such graphs can be represented in an
operational sense.

Definition 2

1. G[a] :=

{
<(a) ∧ (∀x ∈̇ a)(x = <p0x, p1x>) ∧
(∀x, y ∈̇ a)(p0x = p0y → p1x = p1y).

2. O[a, f ] := G[a] ∧ (∀x ∈̇ a)(f(p0x) = p1x).

The formula G[a] says that a is the name of a type that represents the graph of
a function. On the other hand, O[a, f ] means that a represents the graph of
a function and f is an operation that yields the same values as this function.

Theorem 3 In AET not every graph of a set-theoretic function can be sim-
ulated by an operation; i.e.

AET ` ∃a(G[a] ∧ ∀f¬O[a, f ]).
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Proof. We work in AET and let A[u] be the elementary L formula

(u = <p0u, 0> ∧ (p0u)(p0u) = 1) ∨ (u = <p0u, 1> ∧ (p0u)(p0u) 6= 1).

Thus Theorem 1 implies that there exists the name a of a type such that
(∀x ∈̇ a)(x = <p0x, p1x>) and for all individuals u and v,

<u, v> ∈̇ a ↔ (uu = 1 ∧ v = 0) ∨ (uu 6= 1 ∧ v = 1).

Clearly, we have G[a]. Now assume that there exists an f such that O[a, f ].
Then we have

∀x∀y(<x, y> ∈̇ a → fx = y).

Altogether we thus have (ff = 1 ↔ ff 6= 1), a contradiction. Hence there
is no f with O[a, f ], and our theorem is proved. 2

Making use of this theorem we can easily derive that explicit mathematics
does not permit a form of global choice as in operational set theory. Actually,
even a very weak form of global choice will be seen to be inconsistent with
AET.

Definition 4

1. C[f ] := ∀x(<(x) ∧ ∃y(y ∈̇ x) → fx ∈̇ x).

2. C1[f ] := ∀x(∃y∀z(z ∈̇ x↔ z = y) → fx ∈̇ x).

Hence C[f ] formalizes that f is a global operation picking from any non-
empty type an element; C1[f ] is a weak version of global choice claiming only
that f selects the uniquely determined element of every type that contains
exactly one element. It is obvious that C[f ] implies C1[f ].

Theorem 5 AET is inconsistent with the statement that there exists a weak
global choice operation, i.e.

AET ` ¬∃f C1[f ].

Proof. We work within AET, pick the formula A[u] introduced in the proof
of the previous theorem, let a be the name of the type defined by A[u], and
recall from the proof of the previous theorem that

(*) ∀f¬O[a, f ].

We also set B[u, v,W ] := (<v, u> ∈ W ) and assume C1[g] for some individual
g. First observe that Theorem 1 provides us with a closed L term tB such
that

<(b) → (<(tB(x, b)) ∧ ∀y(y ∈̇ tB(x, b) ↔ <x, y> ∈̇ b)).
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Since a is a name, this implies that

y ∈̇ tB(x, a) ↔ ((y = 0 ∧ xx = 1) ∨ (y = 1 ∧ xx 6= 1)).

It only remains to define s := λux.g(tB(x, u)). Then sa↓ and, because of
C1[g], we also have

(xx = 1 → s(a, x) = 0) ∧ (xx 6= 1 → s(a, x) = 1),

meaning that O[a, sa]. This is a contradiction to (*), and thus there cannot
exist a g with C1[g]. 2

Corollary 6 AET is inconsistent with the existence of a global choice oper-
ation, i.e.

AET ` ¬∃f C[f ].

Please keep in mind that these forms of weak global choice and global choice
must not be confused with other forms of choice such as

(AC) ∀x∃yA[x, y] → ∃f∀xA[x, fx],

where A[u, v] may be any L formula. However, by taking up the argument
in Feferman [9], one can easily see that AET + (AC) is inconsistent as well.

2.2 Decidable and semidecidable types

In explicit mathematics we call a subtype W of a type V decidable on V if
and only if there exists an operation that is total on V and yields 0 for all
elements of W and 1 for all elements of V not in W . Accordingly, a subtype
W of a type V is denoted as semidecidable on V if and only if there exists
an operation f such that for all elements x of V we have fx = 0 exactly for
the elements of W .

Definition 7

1. T [V, f ] := (∀x ∈ V )(fx = 0 ∨ fx = 1).

2. D[V,W ] := W ⊆ V ∧ ∃f(T [V, f ] ∧ (∀x ∈ V )(fx = 0 ↔ x ∈ W )).

3. SD[V,W ] := W ⊆ V ∧ ∃f(∀x ∈ V )(fx = 0 ↔ x ∈ W ).

In addition, we write D[W ] and SD[W ] for D[V,W ] and SD[V,W ], respec-
tively.
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In AET or stronger systems like T0 we cannot prove that a type U is decidable
if and only if U and the complement of U are semidecidable. On the other
hand, it seems that we can consistently add such a statement in all relevant
cases. What is not allowed is to assume that all types are semidecidable.

Theorem 8 AET is inconsistent with the statement that all types are semide-
cidable, i.e.

AET ` ¬∀XSD[X].

Proof. Working informally in AET, use Theorem 1 to introduce the type
U for which

∀x(x ∈ U ↔ xx 6= 0).

Hence if ∀XSD[X] is assumed we have an operation f such that

∀x(fx = 0 ↔ x ∈ U).

This implies (ff = 0 ↔ ff 6= 0), a contradiction. 2

While it is inconsistent to assume that every type is semidecidable on the
universe, we may consistently claim that every subtype of the natural num-
bers is even decidable on the naturals. To see why, consider the level Vω+ω

in the cumulative hierarchy and construct the full set-theoretic model as de-
scribed in Feferman [9]. Then every set-theoretic function belonging to Vω+ω

– and thus every set of natural numbers – is represented by an operation.

Theorem 9 The theory AET + (∀X ⊆ N)D[N, X] is consistent.

It is an easy exercise to extend this theorem to AET + (∀X ⊆ U)D[U,X] for
all types U that are bounded in the sense of Feferman [7, 9].

A first approach to dealing with “ordinary” set theory in explicit mathe-
matics is to interpret sets as (names of) types. However, as shown in Jäger
[15], it is inconsistent with AET that the names of the empty type form a
type and, consequently, that the strong form of the power types axiom

(S-Pow) ∀X∃Y ∀z(z ∈ Y ↔ (∃Z ⊆ X)<(z, Z))

is inconsistent with AET as well. The situation is different if we only require
that for every type X there exists a type Y that consists of names of all
subtypes of X,

(W-Pow) ∀X∃Y ((∀z ∈ Y )(∃Z ⊆ X)<(z, Z) ∧ (∀Z ⊆ X)(∃z ∈ Y )<(z, Z)).

According to Feferman [9], this weak power type axiom is consistent with
AET. From the proof there we can even conclude that the uniform version of
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(W-Pow) is consistent with AET (and many extensions of AET), but recall
from [9] that inconsistencies arise as soon as the join axiom, which allows the
formation of disjoint unions of families of types, is added. Also, the weak
power type axiom is not really in the spirit of explicit mathematics since the
selection of the names of the subtypes that go into the power type is not
made explicit.

Because of these complications in dealing with power types, the interpre-
tation of sets as (names of) types does not lead to a satisfactory treatment of
set theory within explicit mathematics. Of course, such complications vanish
in operational set theory.

3 Operational set theory

Feferman’s original motivation for operational set theory was to provide a set-
ting for the operational formulation of large cardinal statements directly over
set theory in a way that seemed to him to be more natural mathematically
than the metamathematical formulations using reflection and indescribabil-
ity principles, etc. He saw operational set theory as a natural extension of
the von Neumann approach to axiomatizing set theory.†

The system OST has been introduced in Feferman [10] and further dis-
cussed in Feferman [11] and Jäger [16, 17, 18, 19]. For a first discussion of
operational set theory and some general motivation we refer to these articles,
in particular to [11].

Besson [3] presents rule based extensions of set theory and in this sense
there is some similarity to operational set theory, though starting off from a
different motivation. Also, his main system ZFR is conservative over Zermelo-
Fraenkel set theory and thus significantly stronger than OST. Cantini and
Crosilla [5, 6] and Cantini [4] are about the interplay between some construc-
tive variants of operational set theory and constructive set theory.

In the next paragraphs we present the syntax of operational set theory,
though not in its original form (as in the articles mentioned above) but in a
slightly modified and essentially equivalent way similar to Zumbrunnen [27].

Let L be a typical language of first order set theory with the binary sym-
bols ∈ and = as its only relation symbols and countably many set variables
a, b, c, f, g, u, v, w, x, y, z, . . . (possibly with subscripts). We further assume
that L has a constant ω for the collection of all finite von Neumann ordinals.
The formulas of L are defined as usual.

†Another principal motivation of Feferman [10, 11] was to relate formulations of classical
large cardinal statements to their analogues in admissible set theory. However, in view of
Jäger and Zumbrunnen [23] this aim of OST has to be analyzed further.
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The language L◦ of operational set theory extends L by the binary func-
tion symbol ◦ for partial term application, the unary relation symbol ↓ for
definedness and a series of constants: (i) the combinators k and s, (ii) >,
⊥, el, non, dis, and e for logical operations, (iii) D, U, S, R, and C for
set-theoretic operations. The meaning of these constants will be specified by
the axioms below.

As in explicit mathematics, the terms (r, s, t, r1, s1, t1, . . .) of L◦ are built
up from the variables and constants, now by means of our function symbol
◦ for application to form expressions (s ◦ t). Taking up the conventions
of explicit mathematics, (s ◦ t) is often abbreviated as st or simply as st,
again association to the left is made use of so that s1s2 . . . sn stands for
(. . . (s1 ◦ s2) . . . sn), and frequently we write s(t1, . . . , tn) for st1 . . . tn.

The formulas (A,B,C,D,A1, B1, C1, D1, . . .) of L◦ are inductively gener-
ated as follows:

1. All expressions of the form (s ∈ t), (s = t), and (t↓) are formulas of
L◦, the so-called atomic formulas.

2. If A and B are formulas of L◦ , then so are ¬A, (A ∨ B), (A ∧ B),
(A→ B), and (A↔ B).

3. If A is a formula of L◦ and if t is a term of L◦ which does not contain
x, then (∃x ∈ t)A, (∀x ∈ t)A, ∃xA, and ∀xA are formulas of L◦.

The notions of free variables, A[~s/~a], and B[~s] are as in L, and we often omit
parentheses and brackets whenever there is no danger of confusion. The
negation (s 6= t) of (s = t) and the partial equality (s ' t) are defined as
above.

To increase readability, we freely use standard set-theoretic terminology.
For example, if A[x] is an L◦ formula, then {x : A[x]} denotes the collection
of all sets satisfying A; it may be (extensionally equal to) a set, but this is
not necessarily the case. Special cases are

V := {x : x↓}, ∅ := {x : x 6= x}, and B := {x : x = > ∨ x = ⊥}

so that V, as in explicit mathematics, denotes the collection of all sets (it is
not a set itself), ∅ stands for the empty collection, and B for the unordered
pair consisting of the truth values > and ⊥ (it will turn out that ∅ and B are
sets in OST). The following shorthand notation, for n an arbitrary natural
number greater than 0,

(f : an → b) := (∀x1, . . . , xn ∈ a)(f(x1, . . . , xn) ∈ b)
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expresses that f , in the operational sense, is an n-ary mapping from a to
b. It does not say, however, that f is an n-ary function in the set-theoretic
sense. In this definition the set variables a and b may be replaced by V and
B. So, for example, (f : a→ V) means that f is total on a, and (f : V→ b)
means that f maps all sets into b.

As in the case of explicit mathematics, also the logic of operational set
theory is Beeson’s classical logic of partial terms with strictness, including
the common equality axioms. The non-logical axioms of OST comprise ax-
ioms about the applicative structure of the universe, some basic set-theoretic
properties, the representation of elementary logical connectives as operations,
and operational set existence axioms.

I. Applicative axioms.

(A1) kxy = x,

(A2) sxy↓ ∧ sxyz ' (xz)(yz).

II. Basic set-theoretic axioms. They comprise: (i) the usual extensional-
ity axiom; (ii) assertions that give the appropriate meaning to the constant
ω; (iii) ∈-induction for arbitrary formulas A[u] of L◦,

∀x((∀y ∈ x)A[y]→ A[x]) → ∀xA[x].

III. Logical operations axioms.

(L1) > 6= ⊥,

(L2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = > ↔ x ∈ y),

(L3) (non : B→ B) ∧ (∀x ∈ B)(non(x) = > ↔ x = ⊥),

(L4) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = > ↔ (x = > ∨ y = >)),

(L5) (f : a→ B) → (e(f, a) ∈ B ∧ (e(f, a) = > ↔ (∃x ∈ a)(fx = >))).

IV. Set-theoretic operations axioms.

(S1) Unordered pair:

D(a, b)↓ ∧ ∀x(x ∈ D(a, b) ↔ x = a ∨ x = b).

(S2) Union:
U(a)↓ ∧ ∀x(x ∈ U(a) ↔ (∃y ∈ a)(x ∈ y)).
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(S3) Separation for definite operations:

(f : a→ B) → (S(f, a)↓ ∧ ∀x(x ∈ S(f, a) ↔ (x ∈ a ∧ fx = >))).

(S4) Replacement:

(f : a→ V) → (R(f, a)↓ ∧ ∀x(x ∈ R(f, a) ↔ (∃y ∈ a)(x = fy))).

(S5) Choice:
∃x(fx = >) → (Cf↓ ∧ f(Cf) = >).

This finishes our description of the system OST. It is known from Feferman
[10, 11] and Jäger [16] that OST is proof-theoretically equivalent to Kripke-
Platek set theory with infinity. A recent result of Sato and Zumbrunnen even
shows that OST without the choice axiom (S5) is of the same proof-theoretic
strength as Kripke-Platek set theory with infinity; cf. also Zumbrunnen [27].

According to the applicative axioms the universe is a partial combinatory
algebra, and thus we have λ abstraction and a fixed point operator fix exactly
as in explicit mathematics.

Although OST itself does not include an axiom for power sets, operational
set theory – in contrast to explicit mathematics – provides an ideal framework
for introducing them. We simply select a new constant P and let OST(P) be
the extension of OST obtained by adding

(P : V→ V) ∧ ∀x∀y(y ∈ Px ↔ y ⊆ x)

and formulating all axioms of OST for the new language. We will not consider
this system further in the following.

3.1 Totality

A first significant difference between explicit mathematics and operational
set theory has to do with totality: AET and many extensions such as T0 are
consistent with the totality assumption ∀x∀y(xy↓). In operational set theory
this is not the case.

Theorem 10

1. There exists a closed L◦ term t such that OST proves t↓ and ∀x¬(tx↓).

2. OST proves ¬∀x∀y(xy↓).
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Proof. Let s be the term λxy.D(xy, xy) and set t := fix(s). Then we have
t↓ and for any set u,

tu ' s(t, u) ' D(tu, tu) ' {tu}.

Because of the wellfoundedness of the ∈ relation this is only possible if tu
is not defined. Therefore we have the first assertion, and the second is an
immediate consequence. 2

A next interesting distinction between explicit mathematics and operational
set theory has to do with totality checking. To show this, we make use of
the well-known term representation of ∆0 formulas and an extended form of
definition by ∆0 cases.

The ∆0 formulas of L◦ are defined to be those L◦ formulas which do not
contain the function symbol ◦, the relation symbol ↓ or unbounded quan-
tifiers. Hence they are the ∆0 formulas of traditional set theory, possibly
containing additional constants. The logical operations make it possible to
represent all ∆0 formulas by constant L◦ terms. For a proof of the following
lemma see Feferman [10, 11].

Lemma 11 Let ~u be the sequence of variables u1, . . . , un. For every ∆0

formula A[~u] of L◦ with at most the variables ~u free, there exists a closed
L◦ term tA such that OST proves

tA↓ ∧ (tA : Vn → B) ∧ ∀~x(A[~x] ↔ tA(~x) = >).

In combination with the axiom (S3) about separation for definite operations,
this lemma provides us with a uniform version of ∆0 separation.

Theorem 12 Let ~u be the sequence of variables u1, . . . , un. For every ∆0

formula A[~u, v] of L◦ with at most the variables ~u, v free, there exists a closed
L◦ term rpA such that OST proves

rpA↓ ∧ (rpA : Vn+1 → V) ∧ ∀~x∀y(rpA(~x, y) = {z ∈ y : A[~x, z]}).

Please observe that the relation symbol ↓ and applications are not permitted
in the formulas A of the previous lemma and theorem. We will see later that
this restriction is crucial.

As shown in Zumbrunnen [26], the previous lemma can be extended to
definition by cases with respect to ∆0 formulas of L◦.

Lemma 13 Let ~u be the sequence of variables u1, . . . , un. For every ∆0

formula A[~u] of L◦ with at most the variables ~u free, there exists a closed
L◦ term sA such that OST proves:

14



1. sA(u, v)↓ ∧ (sA(u, v) : Vn → D(u, v)).

2. (A[~w] → sA(u, v, ~w) = u) ∧ (¬A[~w] → sA(u, v, ~w) = v).

We may ask the question whether testing all operations for totality is con-
sistent with explicit mathematics and operational set theory.

Definition 14 We call an operation f a totality checker if and only if it has
the property T C[f ], where

T C[f ] := (f : V→ B) ∧ ∀x(fx = > ↔ ∀y(xy↓)).

The consistency of explicit mathematics with the existence of a totality
checker is a trivial consequence of the fact that explicit mathematics is con-
sistent with the assumption that all operations are total. The situation in
operational set theory is different.

Theorem 15 OST is inconsistent with the existence of a totality checker,
i.e.

OST ` ¬∃fT C[f ].

Proof. We work within OST and assume that there exists an f such that
T C[f ]. Then consider the ∆0 formula A[u] := (u = >) and select the term
sA according to Lemma 13. Now set

r0 := λxy.(sA(λuv.D(uv, uv), λuv.⊥, fx)xy)

and obtain ∀x∀y(r0(x, y)↓). More precisely, we have for all x and y that

r0(x, y) =

{
D(xy, xy) if fx = >,
⊥ if fx = ⊥.

(1)

Finally, for r1 := fix(r0) and any a the properties of fix yield r1(a) ' r0(r1, a).
Since ∀x∀y(r0(x, y)↓) this even implies

r1(a) = r0(r1, a) and r1(a)↓(2)

for all a. Hence f(r1) = >, and (1) and (2) give us r1(a) = D(r1(a), r1(a))
for any a. As in the proof of Theorem 10 this is a contradiction. Hence a
totality checker cannot exist in OST. 2
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3.2 Function spaces and extensionality

Let U and V be types in explicit mathematics, for example in the theory
AET. Then elementary comprehension implies the existence of types W1 and
W2 with the following properties:

(i) f ∈ W1 ↔ ∀x(x ∈ U → fx ∈ V );

(ii) f ∈ W2 ↔ ∀x(x ∈ U → fx ∈ V ) ∧ ∀x(x /∈ U → ¬(fx↓)).

This means that AET and explicit mathematics in general allow the formation
of (i) the type of all operations from a given U to a given V as well as the
formation of (ii) the type of all operations from a given U to a given V that
are undefined outside U . Our next theorem tells us that a corresponding
result is false in operational set theory.

Theorem 16 The following three assertions are provable in OST:

1. If set a contains at least one element and set b contains at least two
elements, then {f : (f : a→ b)} is not a set.

2. If set a contains at least one element and set b contains at least two
elements, then the collection

{f : (f : a→ b) ∧ ∀x(x /∈ a → ¬(fx↓))}

is not a set.

3. If set a contains at least one element and set b contains at least two
elements, then, for any set w, the collection

{f : (f : a→ b) ∧ ∀x(x /∈ a → (fx = w))}

is not a set.

Proof. We confine ourselves to proving the first assertion; the proofs of
the second and third are obtained by suitable modifications and given in
Zumbrunnen [26]. So let a and b be sets in OST with an element a0 ∈ a and
two different elements b1, b2 ∈ b. Also, assume that {f : (f : a→ b)} is a set
c. For the ∆0 formula A[u, v] := (u = v) we first pick the closed L◦ term sA
according to Lemma 13 and then define

r0 := λfx.sA(b1, b2, fx, b2).
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For all f ∈ c and x ∈ a we thus have r0(f, x) ∈ b and

r0(f, x) =

{
b1 if fx = b2,

b2 if fx 6= b2.
(1)

Now we take the ∆0 formula B[u, v] := (u ∈ v), select the closed L◦ term sB
according to Lemma 13 and define

r1 := λgy.(sB(r0, λfx.b1, g, c)gy).

In view of (1) it is easy to see that for any g and all y ∈ a,

r1(g, y) =

{
r0(g, y) if g ∈ c,
b1 if g 6∈ c.

(2)

It only remains to set r2 := fix(r1). Consequently, r2(z) ' r1(r2, z) for all
z. In particular, for z ∈ a the equations (1) and (2) yield r1(r2, z) ∈ b, thus
r2(z) ∈ b as well. This means that r2 ∈ c.

Finally, take the element a0 of a. Making use of (1) and (2) once more,
we derive the following sequence of equations,

r2(a0) = r1(r2, a0) = r0(r2, a0) =

{
b1 if r2(a0) = b2,

b2 if r2(a0) 6= b2.

Since b1 and b2 are different, this is a contradiction. Hence {f : (f : a→ b)}
cannot be a set in OST. 2

A similar problem has been discussed in Cantini and Crosilla [5, 6]. There
Cantini and Crosilla study systems COST and EST of constructive opera-
tional set theory and mention that Minari observed the inconsistency of EST
plus the assertion

∀x∀y∃z(z = {f : (f : x→ y)}).

Their strategy of proof is different. In these two articles, Cantini and Crosilla
also address the question of operational extensionality,

(EXT) ∀f∀g(∀x(fx ' gx) → f = g)

and show that (EXT) is inconsistent with their COST and EST. They argue
that for every total operation f in an extensional partial combinatory algebra
there exists an x such that fx = x and proved that this is not the case in
models of COST and EST. We obtain this as an immediate consequence of
our previous theorem.
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Corollary 17 OST is inconsistent with (EXT), i.e.

OST ` ¬(EXT).

Proof. In OST we have the one-element set a := D(⊥,⊥) = {⊥} and the
two-element set b := D(⊥,>) = {⊥,>}; obviously, ⊥ is provably different
from >. Consider the L◦ terms

r0 := λx.⊥ and r1 := λx.sA(>,⊥, x,⊥),

with A[u, v] := (u = v) and sA chosen according to Lemma 13. For any f
satisfying

(f : a→ b) ∧ ∀x(x /∈ a → fx = ⊥)

we thus conclude

(*) ∀x(fx = r0(x)) ∨ ∀x(fx = r1(x)).

Now assume (EXT). Then (*) yields

{f : (f : a→ b) ∧ ∀x(x /∈ a → fx = ⊥)} = D(r0, r1).

Since D(r0, r1) is a set, this contradicts Theorem 16. Hence (EXT) has to be
false in OST. 2

3.3 Separation with definedness and application

In view of Theorem 1 we know that in explicit mathematics all elementary
L formulas A[u] can be used to form the type U of all elements x satisfying
A[x],

∀x(x ∈ U ↔ A[x]),

and elementary L formulas may contain the definedness relation ↓ as well as
application terms, i.e. terms of the form st. Hence in explicit mathematics
types can be formed with reference to definedness assertions and applications
of terms to each other.

In this section we will show that the situation is more intricate in the
case of operational set theory. In a nutshell: (i) From Theorem 12 we know
that uniform ∆0 separation can be proved in OST, but ∆0 formulas of L◦
must not contain the definedness predicate and applications. (ii) Even the
simplest forms of uniform separation with definedness and application lead
to inconsistencies. (iii) The non-uniform versions of these separations are
consistent with OST, but adding them to OST as further axioms increases the
proof-theoretic strength from that of Kripke-Platek set theory with infinity
to that of Kripke-Platek set theory with infinity and Σ1 separation.
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Theorem 18 OST is inconsistent with uniform comprehension (separation)
for formulas involving definedness and application; in particular, we have:

1. OST ` ¬∃f∀x(fx↓ ∧ fx = {y ∈ x : yy↓}).

2. OST ` ¬∃f∀x∀g(f(x, g)↓ ∧ f(x, g) = {y ∈ x : gy↓}).

Proof. Working in OST, we proceed indirectly for establishing the first
assertion and assume that f is an operation that satisfies

∀x(fx↓ ∧ fx = {y ∈ x : yy↓}).

For the L◦ term r0 := λx.f(D(x, x)) and any a we thus have

r0(a)↓ ∧ (r0(a) 6= ∅ ↔ aa↓).(*)

Now let A[u] be the ∆0 formula (u 6= ∅) and B[u] the ∆0 formula (u 6= >).
For A[u] we choose an L◦ term sA according to Lemma 13 and for B[u] an
L◦ term tB according to Lemma 11. Then we define

r1 := λx.(sA(λy.tB(yy), λy.⊥, r0(x))x).

Given an arbitrary a, statement (*) yields r0(a)↓ and we conclude

r1(a) =

{
(λy.tB(yy))a if r0(a) 6= ∅,
(λy.⊥)a if r0(a) = ∅.

Together with (*), we thus obtain

r1(a) =

{
tB(aa) if aa↓,
⊥ if ¬(aa↓),

and because of the properties of tB this implies

r1(a) =


> if aa↓ ∧ aa 6= >,
⊥ if aa↓ ∧ aa = >,
⊥ if ¬(aa↓).

Hence r1(a)↓ for all a and (r1(r1) = > ↔ r1(r1) 6= >), a contradiction. This
settles the first assertion of our theorem.

For the proof of the second assertion, assume that there is an f with

∀x∀g(f(x, g)↓ ∧ f(x, g) = {y ∈ x : gy↓}).
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Now consider the L◦ term t := λx.f(x, λy.yy) and observe that

∀x(tx↓ ∧ tx = {y ∈ x : yy↓}).

This reduces the second assertion to the first, and the proof of our theorem
is completed. 2

What about non-uniform separations with definedness and applications? Let
us define the ∆+

0 formulas of L◦ to be the L◦ formulas without unbounded
quantifiers. So, in contrast to the ∆0 formulas of L◦, the ∆+

0 formulas may
contain the definedness relation and application terms. Below we show that
OST plus non-uniform ∆+

0 separation, i.e.

(∆+
0 -Sep) ∀~a∀b∃c(c = {z ∈ b : A[~a, z]})

where A[~u, v] is a ∆+
0 formula of L◦, is consistent. To calibrate the exact

consistency strength of OST + (∆+
0 -Sep) we refer to a well-known extension

of Kripke-Platek set theory.
The theory KP is the standard system of Kripke-Platek set theory with

infinity as presented, for example, in Barwise [1], Jäger [13], or Rathjen [24].
It is formulated in the language L, and Σ1 separation is the schema

(Σ1-Sep) ∀~a∀b∃c(c = {z ∈ b : ∃xA[~a, x, z]})

for A[~u, v, w] ranging over all ∆0 formulas of L. As usual we write (V = L)
for the axiom of constructibility.

Theorem 19 The theory OST + (∆+
0 -Sep) can be interpreted in the theory

KP + (Σ1-Sep) + (V = L).

Proof. In Jäger and Zumbrunnen [23] a natural translation is introduced
that maps an L◦ formula A to a formula A? such that

OST ` A =⇒ KP + (V = L) ` A?.

The crucial point of this interpretation is a Σ1 formula App[u, v, w], for ap-
plication, taking care of the L◦ formula (uv = w). Based on that, it can be
easily shown that every ∆+

0 formula A of L◦ translates into a formula A? of
L that is ∆0 in Σ1. Since separation for this class of formulas is provable in
KP + (Σ1-Sep) + (V = L) we have our result. 2

For the converse direction we will now see that adding to OST the very special
instance

(DEF) ∀x∀f∃y(y = {z ∈ x : fz↓})

of (∆+
0 -Sep), testing only for definedness, is sufficient for establishing Σ1

separation.
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Theorem 20 Every instance of (Σ1-Sep) is provable in OST + (DEF).

Proof. Let A[~u, v, w] be a ∆0 formula of L with at most the variables ~u, v, w
free and select a closed L◦ term tA according to Lemma 11. Depending on
this tA we now define

s := λ~xz.C(λy.tA(~x, y, z)).

The axiom (S5) of OST about the choice operator C therefore yields for all
~a and z that

(*) ∃xA[~a, x, z] ↔ (s(~a, z)↓ ∧ A[~a, s(~a, z), z]).

Hence for any b our additional axiom (DEF) implies the existence of a set c
such that

c = {z ∈ b : s(~a, z)↓}.

For the L◦ term r := λ~xλz.tA(~x, s(~x, z), z) and all ~a we can easily verify that

r(~a) : c→ B.

Thus we are ready to make use of axiom (S3) about separation for definite
operations and obtain the set S(r(~a), c) for which

z ∈ S(r(~a), c) ↔ z ∈ c ∧ r(~a, z) = >,

consequently also

z ∈ S(r(~a), c) ↔ z ∈ b ∧ s(~a, z)↓ ∧ tA(~a, s(~a, z), z) = >.

Due to the properties of tA and (*) this yields that

S(r(~a), c) = {z ∈ b : ∃xA[~a, x, z]}.

So we have shown separation for the Σ1 formula ∃xA[~u, x, v] of L◦ and arbi-
trary parameters ~a and b. 2

Corollary 21 OST + (∆+
0 -Sep) and KP + (Σ1-Sep) are equiconsistent.

This corollary is immediate from Theorem 19 and Theorem 20 simply by
recalling that KP + (Σ1-Sep) + (V = L) is conservative over KP + (Σ1-Sep)
for absolute formulas and since OST contains KP according to Feferman
[10, 11] and Jäger [16].
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[23] G. Jäger and R. Zumbrunnen, About the strength of operational regular-
ity, Logic, Construction, Computation (U. Berger, H. Diener, P. Schus-
ter, and M. Seisenberger, eds.), Ontos Verlag, 2012, pp. 305–324.

23



[24] M. Rathjen, Fragments of Kripke-Platek set theory, Proof Theory
(P. Aczel, H. Simmons, and S. Wainer, eds.), Cambridge University
Press, 1992, pp. 251–273.

[25] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, I,
Studies in Logic and the Foundations of Mathematics, vol. 121, Elsevier,
1988.

[26] R. Zumbrunnen, Ontological Questions about Operational Set Theory,
Master thesis, Institut für Informatik und angewandte Mathematik, Uni-
versität Bern, 2009.

[27] , Contributions to Operational Set Theory, Ph.D. thesis, Institut
für Informatik und angewandte Mathematik, Universität Bern, 2013.

Address
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