
Forcing for Hat Inductive Definitions in Arithmetic

— One of the Simplest Applications of Forcing —

SATO Kentaro (Universität Bern)

Abstract

By forcing, we give a direct interpretation of ÎDω into Avigad’s FP. To the best of the
author’s knowledge, this is one of the simplest applications of forcing to “real problems”.

1 Introduction

It is reasonable to say that, to prove equiconsistency or relative consistency results on math-
ematical theories (i.e., those formal systems in which ordinary mathematical practice can be
formalized) is one of the central aims both of proof theory and of set theory. Despite this com-
mon feature, the tools used in the two fields are quite different. In set theory, the forcing (or
generic extension) method is, in effect, the only way to do this besides the inner model method.
Indeed in some subcommunities the terms “consistent” and “forcible” are synonymous. In proof
theory, on the other hand, the most commonly used methods are cut-elimination and, for intu-
itionistic theories, realizability interpretations. The forcing method is much less frequently used,
though there is an excellent survey paper by Avigad [2] summarizing applications of forcing
(including those for theories not necessarily on classical logic but on intuitionistic logic).

In this note, we give one application of classical forcing (i.e., forcing for theories on classical
logic) in proof theory. Namely, we answer a question asked in the context of proof theory: we show

that ÎDω is interpretable in ACA0 + (L2-Ind) + (∆1
0-FP), by giving a concrete interpretation

with the forcing method. Here ÎDω is the first-order theory of ω-times iterated fixed points, and
(∆1

0-FP) asserts the existence of fixed points for any operators defined by positive arithmetical
formulae with parameters. This is not a useless toy example: Jäger and Strahm mentioned in

[5, p.498] that they “do not know whether a direct interpretation of ÎDω in FP is possible”,
where FP in their notation is ACA0 + (L2-Ind) + (∆1

0-FP) in ours. The difficulty arises from
the non-uniqueness of fixed points, which prevents us from defining the hierarchy of fixed points
straightforwardly. This is a typical kind of difficulty with which the forcing method can deal.

This could be one of the simplest applications of classical forcing: in forcing for set theory or
second-order number theory, we have to change the domain of discourse and hence need some
machinery to name those elements (i.e., V P); and the definition of the forcing relation for atomic
formulae becomes complex because of this naming and, in set theory, because of extensionality
(though we can avoid the latter, as shown in [7], by combining one more additional interpretation
from extensional set theories into intensional ones). Here, in our application, we do not change
the domain and so do not need a complex machinery for names; and we do not need to care

about extensionality. Moreover, to interpret ÎDω, we need to define only the interpretations of
new predicates and so forcing need not to be iterated, unlike for parameter-allowed second-order
systems (e.g., [2, §3]). Thus our application could be said to be a “textbook example” of forcing.

Our use of the forcing method can be generalized to obtain the reducibility of DC, a kind of
first-order system for dependent choice, into ACA0 + (L2-Ind), whereas the forcing treatment
of genuinely second-order (Σ1

1-DC) cannot be among the simplest, for the reason given above.

1

2 Preliminaries

Definition 1. L1 and L2 are the standard languages of first- and second-order number the-
ory respectively (see [9]). An L2-formula is called arithmetical if it contains no second-order
quantifiers. L[x0, .., xm, X0, ..., Xn] denotes the set of all the arithmetical L2-formulae whose free
variables are among x0, .., xm, X0, ..., Xn. An operator form is an abstracted L[x, y,X, Y]-formula
λX, x.O(x, y,X, Y), and is called positive if X occurs only positively in O(x, y,X, Y).

We introduce for all the L[y,X, Y]-formulae A new predicate symbols PA of arity 2. The
language Ldc = L1 ∪ {PA | A is a formulae in L[y,X, Y]} is the result of augmenting L1 by
all such new predicate symbols. PA

k and PA
<k denote the unary abstracts {x | PA(k, x)} and

{y | (∃i, x)(y = 〈i, x〉 ∧ i < k ∧ PA(i, x))} respectively, where 〈-, -〉 is a pairing function.

We use the similar abbreviations (X)k and (X)<k for second-order variables X.
Let ACA0 denote the L2-system of arithmetical comprehension axiom with restricted induc-

tion (see e.g., [9]). Though we do not give the detailed definition, it includes the basic axioms of
discretely ordered semi-rings for natural numbers, and induction and comprehension axioms for
arithmetical formulae. (L2-Ind) denotes the induction scheme for all L2-formulae.

Definition 2. We define the following axiom scheme:

(∆1
0-FP) (∀y, Y)(∃F)(∀x)(x ∈ F ↔ O(x, y, F, Y))

for any arithmetical formula O(x, y,X, Y) in which X occurs only positively.

In some literature (e.g., [1] and [5]), the systems ACA0 + (∆1
0-FP) and ACA0 + (L2-Ind) +

(∆1
0-FP) are denoted by FP0 and FP respectively.

Definition 3. PA[Ldc] denotes Peano arithmetic formulated in Ldc, namely the system consist-
ing of all the axioms of Peano arithmetic and the induction scheme for all Ldc-formulae.

For an L[y,X, Y] formula A, the axiom (∀k)A(k, PA
k , P

A
<k) is denoted by (A-DC).

ÎDω is the Ldc-theory consisting of PA[Ldc] and (FO-DC) for all positive operator forms O
where FO(y,X, Y) ≡ (∀x)(x ∈ X ↔ O(x, y,X, Y)). In this theory, we denote PFO by FO.

DC consists of PA[Ldc] and (A-DC) for all A with ACA0 +(L2-Ind) ` ∀y, Y ∃XA(y,X, Y).

As shown in e.g., [8, §3.1], ÎDω is equivalent to PA[Ldc] + (FO-DC) where O is a universal
Π0

2-formula (more precisely, a Π0
2 formula O(x, k,X, Y) in which X occurs only positively such

that for any Π0
2 formula B(x, k,X, Y) in which X occurs only positively we have an equivalence

B(x, k,X, Y) ↔ O(〈e, x〉, k,X, Y) for some natural number e). For convenience in what follows

we consider that ÎDω is formulated in Lfix = L1 ∪ {FO} for such O.
FO
k is intended to denote a fixed point of the monotone operator Γk : X 7→ {x | O(x, k,X, FO

<k)}
defined by an L1-formulaO with previous fixed points FO

<k. We call FO a hierarchy of fixed points.

To define ACA−
ω , the arithmetical comprehension counterpart of ÎDω, we restrict X not to

occur inO, or equivalently, set PA[Ldc] plus all (CB-DC) forB ∈ L[x, y, Y] where CB(y,X, Y) ≡
(∀x)(x ∈ X ↔ B(x, y, Y)). By the uniqueness of X in CB(y,X, Y), we can interpret ACA−

ω in
ACA0+(L2-Ind): By induction on n we can show (∃H)(∀k < n)CB(k, (H)k, (H)<k) in the latter
system. If we interpret PCB (n, x) by a formula (∃H)((∀k < n + 1)CB(k, (H)k, (H)<k) ∧ x ∈
(H)n), all the axioms of ACA−

ω are interpreted as provable formulae in ACA0 + (L2-Ind).

However, since fixed points are not unique, we cannot interpret ÎDω in ACA0 + (∆1
0-FP) +

(L2-Ind) in the same way. This is why we need the forcing method, and actually such a situation
is the typical one in which the forcing method works well.

Our argument will be concentrated on the scheme (A-DC), which generalizes the schemata

used in the definitions of ÎDω and of ACA−
ω . We call PA a choice hierarchy in accord with A.

2

3 Forcing Method

The main idea of forcing or the forcing relation P is as follows: Though we cannot define the
whole PA, we can define finite fragments of it, in the sense that (n,X) P ϕ(PA) is intended to
mean that any choice hierarchy H must satisfy ϕ(H) whenever H extends X �n.

Definition 4. The forcing notion PA (where A ∈ L[y,X, Y] is often omitted) consists of pairs
(n,X) of numbers n and second-order objects X with (∀k < n)A(k, (X)k, (X)<k), ordered by

(n,X) ≤P (m,Y) ↔ (n ≥ m ∧ (∀k < m)((X)k = (Y)k)) ∧ (n,X) ∈ PA.

The forcing relation (n,X) P ϕ between forcing conditions and Ldc-formulae is defined by:

(n,X) P R(~x) ↔ R(~x) for any L1-atom R(~x);

(n,X) P P
A(x, y) ↔ (∀(m,Y) ≤P (n,X))(∃(l, Z) ≤P (m,Y))(l > x ∧ y ∈ (Z)x);

(n,X) P ¬ϕ ↔ (∀(m,Y) ≤P (n,X))¬((m,Y) P ϕ);

(n,X) P ϕ ∧ ψ ↔ ((n,X) P ϕ) ∧ ((n,X) P ψ);

(n,X) P (∀x)ϕ(x) ↔ (∀x)((n,X) P ϕ(x)).

Note that these can be formalized in L2, and that with reasonable axioms (at least with
ACA0) the basic properties, e.g., the reflexivity and transitivity of ≤P, are proved. 1

Among set theorists (or recursion theorists), forcing is better known as a procedure to con-
struct a new model, called a generic model, and the forcing relation as a tool to describe such a
model. While this view helps us to understand the intention above, we can consider the forcing
relation as a syntactic interpretation. This is essential for our goal, that is, to obtain a direct

interpretation of ÎDω into ACA0 + (∆1
0-FP) + (L2-Ind). Moreover, even for almost all appli-

cations in set theory, viewing the forcing method as a syntactic interpretation is equivalent (at
least in theory) to viewing it as a model construction (as shown in e.g., [7]).2

Lemma 5. For any Ldc-formulae ϕ,ψ and any (n,X), (m,Y) ∈ P, the following hold:

(n,X) P ϕ ∨ ψ ↔ (∀(m,Y) ≤P (n,X))(∃(l, Z) ≤P (m,Y))((l, Z) P ϕ ∨ (l, Z) P ψ);

(n,X) P ϕ→ ψ ↔ (∀(m,Y) ≤P (n,X))((m,Y) P ϕ → (m,Y) P ψ);

(n,X) P (∃x)ϕ(x) ↔ (∀(m,Y) ≤P (n,X))(∃(l, Z) ≤P (m,Y))(∃x)((l, Z) P ϕ(x)).

a) monotonicity: (n,X) ≤P (m,Y) and (m,Y) P ϕ imply (n,X) P ϕ;

b) density: (n,X) P ϕ iff (∀(m,Y) ≤P (n,X))(∃(l, Z) ≤P (m,Y))((l, Z) P ϕ); and

c) closure under entailment: if ϕ0 is a consequence of {ϕ1, · · · , ϕk} in the sense of classical
logic and if (n,X) P ϕi for all 1 ≤ i ≤ k, then (n,X) P ϕ0.

A brief explanation of this lemma is as follows: The forcing P is equivalently defined by
(n,X) P ϕ ↔ (n,X) i

P ϕ
N , where N is Gödel-Gentzen’s negative interpretation and where i

P
is the Kripke semantics (formalized in our base theory, e.g., ACA0) over the reversed3 preorder
of ≤P with the constant domain {x | x = x} defined by (n,X) i

P R(~x) ↔ R(~x) for an L1-atom
R(~x) and by (n,X) i

P P
A
x (y) ↔ n > x ∧ y ∈ (Z)x. Now a) monotonicity of P follows from

that of i
P, b) density is nothing more than the Kripke validity of the negative interpretation of

double negation elimination, and c) is from the closure of i
P of under intuitionistic entailment

and the preservation of entailment under the negative translation.

1We do not need the third-order object P as an “official entity” in the formalization.
2Particularly, for the closure under entailment as in the lemma, we do not need truth lemma for generic model.
3For Kripke semantics, it seems standard to let q ≤ p mean that p has more information than q. For forcing,

however, the reversal notation seems more standard, i.e., q ≤ p is read as “q extends p”. It should be mentioned
that there is also a strong tradition to denote “q extends p” by q ≥ p (Israeli notation) which we do not follow.

3

4 Main Result

In the following lemmata, we are working in ACA0 + (L2-Ind) + (∀y, Y ∃XA(y,X, Y)). With
the intuition mentioned at the beginning of the last section, the following lemma is quite natural,
since C(~x, PA

k , P
A
<k) does not refer to PA

j for j > k. PA
k and PA

<k are determined by (n,X).

Lemma 6. For any L[~x, U, V]-formula C(~x, U, V) and (n,X) ∈ P with k < n,

C(~x, (X)k, (X)<k) iff (n,X) P C(~x, PA
k , P

A
<k).

In particular, for any L1-formula ϕ(~x), (∀(n,X) ∈ P)(ϕ(~x)↔ (n,X) P ϕ(~x)).

Proof. This can easily be shown by induction on C(~x, U, V).

Lemma 7. For any (n,X) and any Ldc-formula ϕ(x, y),

(n,X) P (∀x < y)ϕ(x, y) iff (∀x < y)((n,X) P ϕ(x, y)).

Proof. (n,X) P (∀x < y)ϕ(x, y) iff, for all x, (n,X) P (x < y → ϕ(x, y)) iff, for all x and
(m,Y) ≤P (n,X), (m,Y) P x < y implies (m,Y) ϕ(x, y) iff, for all x < y and (m,Y) ≤P
(n,X), (m,Y) ϕ(x, y) iff, for all x < y, (n,X) P ϕ(x, y) by monotonicity.

Lemma 8. For any (n,X) ∈ P, (n,X) “PA[Ldc] + (A-DC)”.

Proof. If ϕ is an axiom of Peano arithmetic other than induction, (n,X) P ϕ is from Lemma 6.
For induction, assume (n,X) P (∀x)((∀y < x)ϕ(y) → ϕ(x)) for an Ldc-formula ϕ. We have

to show (n,X) P (∀x)ϕ(x). By assumption, (m,Y) P (∀y < x)ϕ(x) implies (m,Y) P ϕ(x) for
any x and (m,Y) ≤P (n,X). Fix (m,Y) = (n,X). This means (∀y < x)ψ(y) → ψ(x) by Lemma
7, where ψ(x) ≡ (n,X) P ϕ(x). Thus by (L2-Ind), we have (∀x)ψ(x), i.e., (n,X) P (∀x)ϕ(x).

It remains to see (0, ∅) P A(k, PA
k , P

A
<k) for all k ∈ ω. With (L2-Ind), particularly with

(Σ1
1-Ind), (∀y, Y ∃XA(y,X, Y)) implies that for any (n,X) ∈ P there is (m,Y) ≤P (n,X) such

that m > k, and so Lemma 6 yields (m,Y) P A(k, PA
k , P

A
<k). By density we have (0, ∅) P

A(k, PA
k , P

A
<k).

Theorem 9. The translation from Ldc to L2 defined by ϕ 7→ (0, ∅) P ϕ interprets PA[Ldc] +
(A-DC) into ACA0 + (L2-Ind) + (∀y, Y,∃XA(y,X, Y)) in such a way that, for any L[~x, U, V]-
formula C(~x, U, V), C(~x, PA

k , P
A
<k) is interpreted as, up to equivalence, the following:

(∀X)((k + 1, X) ∈ P→ C(~x, (X)k, (X)<k)). (∗)

In particular, the interpretation preserves L1-formulae (up to equivalence).

Proof. It remains to show the equivalence between (0, ∅) P C(~x, PA
k , P

A
<k) and (∗).

First assume (0, ∅) P C(~x, PA
k , P

A
<k) and (k + 1, X) ∈ P. Then (k + 1, X) ≤P (0, ∅). By

monotonicity we have (k + 1, X) P C(~x, PA
k , P

A
<k) and, by Lemma 6, C(~x, (X)k, (X)<k).

Conversely assume (∗). For any (m,Y) ≤P (0, ∅), by (Σ1
1-Ind) there is (n,X) ≤P (m,Y) with

n ≥ k + 1. Then (k + 1, X) ∈ P and so C(~x, (X)k, (X)<k). By Lemma 6 we have (n,X) P
C(~x, PA

k , P
A
<k). By density, we have (0, ∅) P C(~x, PA

k , P
A
<k).

Corollary 10. The translation in the theorem, for A(y,X, Y) ≡ (∀x)(x ∈ X ↔ O(x, y,X, Y)),

interprets ÎDω into ACA0 + (L2-Ind) + (∆1
0-FP) with all L1 formulae being preserved.

Note that a finite number of (A-DC)’s can be put into one:
∧

i<n(Ai-DC) is equivalent to
(B-DC) with B(y,X, Y) ≡

∧
i<n(y = i mod n)∧Ai(by/nc, X, {〈j, x〉 | 〈n · j+ i, x〉 ∈ Y }). Since

any proof in the system DC uses only a finite number of (A-DC)’s, we have the following local
interpretability result, where the converse is immediate from the definability of ∅(ω) in DC.

Corollary 11. The translation locally interprets DC into ACA0 +(L2-Ind) with L1 preserved.

4

5 Discussions

One might wonder if the interpretation we have given is a “direct interpretation” in the sense of
the paper [5] from which the question originates. The author has to admit that there are many
notions of (syntactic) interpretation between formal systems, as explained below.

One of the narrowest notions allows only the restriction of the ranges of quantifiers by the
formulae associated to the sort of the quantifiers and the replacement of atomic formulae by
some associated formulae, and does not allow changes in the meaning of Boolean connectives.
For example, the interpretation of arithmetic (say Peano arithmetic) in set theory (say Zermelo-
Fraenkel set theory) is an interpretation in this sense, and so is the interpretation of ACA0 +

(∆1
0-FP)+(L2-Ind) in ÎDω, given by replacing n ∈ Xi (i-th second-order variable) by FO

xi
(〈yi, n〉)

and the second-order (∀Xi) and (∃Xi) by (∀xi, yi) and (∃xi, yi) respectively (the reversal of our
main result). The interpretation given by forcing does not satisfy this condition.

One of the widest notions, on the other hand, is called proof-theoretic reduction, which ef-
fectively transforms proofs in the interpreted system into proofs in the interpreting system in
such a way that relatively simple conclusions (at least including Π0

1 formulae) are preserved. The
typical example is cut-elimination method, employed by Jäger and Strahm [5]. Thus there is no
reason to consider that what Jäger and Strahm mean by “direct interpretation” is the narrowest
sense. However, since this wide notion of interpretation includes what they would call “indirect

interpretation”, for example the reduction of ÎDω to ACA0 + (∆1
0-FP) + (L2-Ind) via ordinal

analysis, which they themselves mention. What does “direct interpretation” mean after all?
As long as the theories concerned are reflexive, the two notions are equivalent as has been

known (see e.g., [4, III.2.39 Theorem]). Nevertheless the interpretation (in the narrowest sense)
given by this general theorem is usually not intuitively clear and preserves only the Π0

1 sentences
(while ours preserves all L1 sentences). What Jäger and Strahm [5] concerned seems to be the
intuitive clearness of a concretely defined interpretation or the preservation of relevant fragments.

A significant difference between forcing (and realizability) and proof-theoretic reduction in
general is that, whereas the transformation in the latter depends on the global structure of proofs
(like local interpretations), in the former it depends only on formulae. Moreover, the transfor-
mations of compound formulae are determined uniformly from those of subfomulae (particularly,
in the case of quantifiers, as opposed to the famous result by Pour-El and Kripke [6] 4).

It could be interesting to formulate a general notion of such “direct interpretations”, and to
develop a general theory in a similar sense to those for the narrowest and the widest notions.

References
[1] J. Avigad, On the relationship between ATR0 and ÎD<ω, J. Symbolic Logic 61 (3), 768-779 (1996).
[2] J. Avigad, Forcing in proof theory Bull. Symbolic Logic, 10 (3), 305-333, (2004).
[3] S. Feferman, Does reductive proof theory have a viable rationale?, Erkenntnis 53, 63-96 (2000).
[4] P. Hájek and P. Pudlák, Metamathematics of First Order Arithmetic, Springer-Verlag (1993).
[5] G. Jäger and T. Strahm, Fixed point theories and dependent choice, Arch. Math. Logic 39 (7),

493-508 (2000).
[6] M.B. Pour-El and S. Kripke, “Deduction-preserving recursive iso-morphisms” between theories,

Fund. Math. 61, 141-163 (1967).
[7] K. Sato, Forcing under anti-foundation axiom, Math. Logic Q. 52 (3), 295-314 (2006).
[8] K. Sato, Full and hat inductive definitions are equivalent in NBG, submitted (2013), avaiable at:

http://www.iam.unibe.ch/ltgpub/2013/sat13.pdf
[9] S. Simpson, Subsystems of Second Order Arithmetic, Springer, 1991.

4Feferman classified three notions of “interpretation” in [3, Appendix]: (a) relative interpretation, basically
the same as the narrowest above, (b) translation, which preserves negation, and (c) proof theoretic reduction. (b)
contains Pour-El and Kripke’s, but not forcing nor realizability, because the negation is not preserved.

5

