
Unfolding feasible arithmetic and weak truth

Sebastian Eberhard∗ Thomas Strahm∗∗

August 25, 2012

Abstract

In this paper we continue Feferman’s unfolding program initiated in

[12] which uses the concept of the unfolding U(S) of a schematic system

S in order to describe those operations, predicates and principles con-

cerning them, which are implicit in the acceptance of S. The program

has been carried through for a schematic system of non-finitist arith-

metic NFA in Feferman and Strahm [14] and for a system FA (with

and without Bar rule) in Feferman and Strahm [15]. The present

contribution elucidates the concept of unfolding for a basic schematic

system FEA of feasible arithmetic. Apart from the operational un-

folding U0(FEA) of FEA, we study two full unfolding notions, namely

the predicate unfolding U(FEA) and a more general truth unfolding

UT(FEA) of FEA, the latter making use of a truth predicate added

to the language of the operational unfolding. The main results ob-

tained are that the provably convergent functions on binary words for

all three unfolding systems are precisely those being computable in

polynomial time. The upper bound computations make essential use

of a specific theory of truth TPT over combinatory logic, which has

recently been introduced in Eberhard and Strahm [8] and Eberhard

[6] and whose involved proof-theoretic analysis is due to Eberhard [6].

The results of this paper were first announced in [7].

∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrück-

strasse 10, CH-3012 Bern, Switzerland. Email: eberhard@iam.unibe.ch. Research sup-

ported by the Swiss National Science Foundation.
∗∗Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrück-

strasse 10, CH-3012 Bern, Switzerland. Email: strahm@iam.unibe.ch. Homepage:

http://www.iam.unibe.ch/~strahm

1

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
7
0
7
0
3

|

d
o
w
n
l
o
a
d
e
d
:

2
9
.
9
.
2
0
1
5

1 Introduction

The notion of unfolding a schematic formal system was introduced in Fefer-

man [12] in order to answer the following question:

Given a schematic system S, which operations and predicates, and

which principles concerning them, ought to be accepted if one has

accepted S?

A paradigmatic example of a schematic system S is the basic system NFA

of non-finitist arithmetic. In Feferman and Strahm [14], three unfolding sys-

tems for NFA of increasing strength have been analyzed and characterized

in more familiar proof-theoretic terms; in particular, it was shown that the

full unfolding of NFA, U(NFA), is proof-theoretically equivalent to predica-

tive analysis. For more information on the path to the unfolding program,

especially with regard to predicativity and the implicitness program, see Fe-

ferman [13].

More recently, the unfolding notions for a basic schematic system of finitist

arithmetic, FA, and for an extension of that by a form BR of the so-called

bar rule have been worked out in Feferman and Strahm [15]. It is shown

that U(FA) and U(FA + BR) are proof-theoretically equivalent, respectively,

to primitive recursive arithmetic, PRA, and to Peano arithmetic, PA.

The aim of the present contribution is to elucidate the concept of unfolding

in the context of a natural schematic system FEA for feasible arithmetic. We

will sketch various unfoldings of FEA and indicate their relationship to weak

systems of explicit mathematics and partial truth.

The basic schematic system FEA of feasible arithmetic is based on a language

for binary words generated from the empty word by the two binary successors

S0 and S1; in addition, it includes some natural basic operations on the binary

words like, for example, word concatenation and multiplication. The logical

operations of FEA are conjunction (∧), disjunction (∨), and the bounded

existential quantifier (∃≤). FEA is formulated as a system of sequents in this

language: apart from the defining axioms for basic operations on words, its

heart is a schematically formulated, i.e. open-ended induction rule along the

binary words, using a free predicate letter P .

2

The operational unfolding U0(FEA) of FEA extends FEA by a general back-

ground theory of combinatory algebra and tells us which operations on words

are implicit in the acceptance of FEA. It further includes the generalized sub-

stitution rule from Feferman and Strahm [15], which allows arbitrary formulas

to be substituted for free predicates in derivable rules of inference such as,

for example, the induction rule. We will see that U0(FEA) derives the totality

of precisely the polynomial time computable functions.

The full predicate unfolding U(FEA) of FEA tells us, in addition, which pred-

icates and operations on them ought to be accepted if one accepts FEA. It

presupposes each logical operation of FEA as an operation on predicates.

Predicates themselves are just represented as special operations equipped

with an elementhood relation on them. We may further accept the formation

of the disjoint union of a (bounded with respect to ≤) sequence of predicates

given by a corresponding operation. It will turn out that the provably con-

vergent functions of U(FEA) are still the polynomial time computable ones.

We will also describe an alternative way to define the full unfolding of FEA

which makes use of a truth predicate T which mimics the logical operations of

FEA in a natural way and makes explicit the requirement that implicit in the

acceptance of FEA is the ability to reason about truth in FEA. Using a truth

predicate in order to expand a given theory is straightforward and standard

approach in the so-called implicitness program: one prominent example is

Feferman [11] where the reflective closure of a schematic system is introduced

via the famous Feferman-Kripke axioms of partial truth. More recently, in

Feferman’s original definition of unfolding in [12], a truth predicate is used

in order to describe the full unfolding of a schematic system.

The truth unfolding UT(FEA) is obtained by extending the combinatory al-

gebra by a unary truth predicate. Indeed, UT(FEA) contains the predicate

unfolding U(FEA) in a natural way, including the disjoint union operator for

predicates. Moreover, the truth unfolding is proof-theoretically equivalent to

the predicate unfolding in the sense that its provably convergent functions

on the binary words are precisely the polytime functions.

The upper bound computations for both U(FEA) and UT(FEA) will be ob-

tained via the weak truth theory TPT introduced in Eberhard and Strahm

[8] and Eberhard [6], whose analysis and polynomial time upper bound is

3

achieved in Eberhard [6]. The embedding of our two unfolding systems into

TPT is rather straightforward, but some special care and additional consid-

erations are needed in order to treat their generalized substitution rules.

We end this introduction by giving a short outline of the paper. In Section

2 we describe in detail the basic schematic formulation of feasible arithmetic

FEA. In Section 3 we extend FEA to its operational unfolding U0(FEA),

thus introducing its underlying abstract theory of operations in the sense

of a combinatory algebra and the generalized substitution rule. We will

show that the polynomial time computable functions are very naturally and

directly proved to be total in U0(FEA), hence establishing the lower bound

for U0(FEA). In Section 4 we turn to the full predicate unfolding U(FEA) of

FEA and Section 5 describes the truth unfolding UT(FEA). The final section

of the paper is devoted to the upper bound of U(FEA) and UT(FEA) via the

above-mentioned truth theory TPT.

2 The basic schematic system FEA

In this section we introduce the basic schematic system FEA of feasible arith-

metic. Its intended universe of discourse is the set W = {0, 1}∗ of finite binary

words and its basic operations and relations include the binary successors S0

and S1, the predecessor Pd, the initial subword relation ⊆, word concate-

nation ~ as well as word multiplication �.1 The logical operations of FEA

are conjunction (∧), disjunction (∨), and bounded existential quantification

(∃≤). As in the case of finitist arithmetic FA, the statements proved in FEA

are sequents of formulas in the given language, i.e. implication is allowed at

the outermost level.

2.1 The language of FEA

The language L of FEA contains a countably infinite supply of variables

α, β, γ, . . . (possibly with subscripts). These variables are interpreted as

ranging over the set of binary words W. L includes a constant ε for the

empty word, three unary function symbols S0, S1,Pd and three binary func-

1Given two words w1 and w2, the word w1�w2 denotes the length of w2 fold concate-

nation of w1 with itself.

4

tion symbols ~, �, ⊆.2 Terms of L are defined as usual and are denoted by

σ, τ, Further, L contains the binary predicate symbol = for equality, and

an infinite supply P0, P1, . . . of free predicate letters.

The atomic formulas of L are of the form (σ = τ) and Pi(σ1, . . . , σn) for

i ∈ N. The formulas are closed under ∧ and ∨ as well as under bounded

existential quantification. In particular, if A is an L formula, then (∃α ≤ τ)A

is an L formula as well, where τ is not allowed to contain α. Further, as usual

for theories of words, we use σ ≤ τ as an abbreviation for 1�σ ⊆ 1� τ , thus

expressing that the length of σ is less than or equal to the length of τ . We

use ᾱ, σ̄, and Ā to denote finite sequences of variables, terms, and formulas,

respectively. Moreover, the notation σ[ᾱ] and A[ᾱ] is used to indicate a

sequence of free variables possibly occurring in a term σ or a formula A;

finally, σ[τ̄] and A[τ̄] are used to denote the result of substitution of ᾱ by τ̄

is those expressions.

2.2 Axioms and rules of FEA

FEA is formulated as a system of sequents Σ of the form Γ→ A, where Γ is

a finite sequence of L formulas and A is an L formula. Hence, we have the

usual Gentzen-type logical axioms and rules of inference for our underlying

restricted language. In particular, the bounded existential quantifier is gov-

erned by the following rules of inference, where the usual variable conditions

apply:

Γ→ σ ≤ τ ∧ A[σ]

Γ→ (∃β ≤ τ)A[β]
(E1)

Γ, α ≤ τ, A[α]→ B

Γ, (∃β ≤ τ)A[β]→ B
(E2)

Further, in our restricted logical setting, we adopt the following rule of term

substitution:

Γ[α]→ A[α]

Γ[τ]→ A[τ]
(S0)

2We assume that ⊆ defines the characteristic function of the initial subword relation.

Further, we employ infix notation for these binary function symbols.

5

The non-logical axioms of FEA state the usual defining equations for the

function symbols of the language L, see, e.g., Ferreria [16] for similar axioms.

Finally, we have the schematic induction rule formulated for a free predicate

P as follows:

Γ→ P (ε) Γ, P (α)→ P (Si(α)) (i = 0, 1)

Γ→ P (α)
(Ind)

In the various unfolding systems of FEA introduced below, we will be able to

substitute an arbitrary formula for the free predicate letter P .

3 The operational unfolding U0(FEA)

In this section we are going to introduce the operational unfolding U0(FEA)

of FEA. It tells us which operations from and to individuals, and which

principles concerning them, ought to be accepted if one has accepted FEA.

In the operational unfolding, we make these commitments explicit by extend-

ing FEA by a partial combinatory algebra. Since it represents any recursion

principle and thus any recursive function by suitable terms, it is expressive

enough to reflect any ontological commitment we want to reason about. Us-

ing the notion of provable totality, we single out those functions and recursion

principles we are actually committed to by accepting FEA.

Let us explain some properties of the operations we use in the above men-

tioned extension of FEA. We employ a general notion of (partial) operation,

belonging to a universe V including the universe of discourse of FEA. Oper-

ations are not bound to any specific mathematical domain, but have to be

considered as pre-mathematical in nature. Operations can apply to other

operations. Some operations are universal and are naturally self-applicable

as a result, like the identity operation or the pairing operation, while some

are partial and presented to us on the binary words only. Operations sat-

isfy the laws of a partial combinatory algebra with pairing, projections, and

definition by cases.

3.1 The language L1

The language L1 is an expansion of the language L including new constants

k, s, π, p0, p1, d, tt, ff, e, ε, s0, s1, pd, c⊆, ∗, ×, and an additional countably

6

infinite set of variables x0, x1,
3 The new variables are supposed to range

over the universe of operations and are usually denoted by a, b, c, x, y, z,

The L1 terms (r, s, t, . . .) are inductively generated from variables and con-

stants of L and L1 by means of the function symbols of FEA and the appli-

cation operator ·. We use the usual abbreviations for applicative terms and

abbreviate s · t as (st), st or s(t) as long as no confusion arises. We fur-

ther adopt the convention of association to the left so that s0s1 · · · sn stands

for (· · · (s0s1) · · · sn); we sometimes write s(t0, . . . , tn) for st0 · · · tn. We have

(s = t), s↓ and Pi(s̄) for i ∈ N as atoms of L1. The formula s↓ is interpreted

as definedness of s. The formulas (A,B,C, . . .) are built from the atoms as

before using ∨,∧ and the bounded existential quantifier, where as above the

bounding term is a term of L not containing the bound variable.

For s a term of L1 \ L we write s ≤ τ for (∃β ≤ τ)(s = β). We use the

pairing operator π to introduce n-tupling 〈t1, . . . , tn〉 of terms as usual.

3.2 Axioms and rules of U0(FEA)

The operational unfolding U0(FEA) is formulated as a system of sequents

Γ → A of formulas in the language L1. ∅ → A will just be displayed as A.

Apart from the axioms for FEA, U0(FEA) comprises the following axioms and

rules of inference.

I. Applicative counterpart of the initial functions.

(1) siα = Si(α), pdα = Pd(α),

(2) ∗αβ = α~β, ×αβ = α� β, c⊆αβ = α ⊆ β.

II. Partial combinatory algebra, pairing, definition by cases.

(3) kab = a,

(4) sab↓, sabc ' ac(bc),

(5) p0〈a, b〉 = a, p1〈a, b〉 = b,

(6) dab tt = a, dab ff = b.

3These variables are syntactically different from the L variables α0, α1,

7

III. Equality on the binary words.

(7) eαβ = tt ∨ eαβ = ff,

(8) eαβ = tt ↔ α = β.4

The operational unfolding of FEA includes the rules of inference of FEA (ex-

tended to the new language). In addition, in analogy to the rule (S0), we

have the following new substitution rule for terms of L1:

Γ[u]→ A[u]

Γ[t], t↓ → A[t]
(S1)

The next useful substitution rule (S2) can be derived easily from the other

axioms and rules. It tells us that bounded terms can be substituted for word

variables:5

Γ[α]→ A[α] Γ[t]→ t ≤ τ

Γ[t]→ A[t]
(S2)

Finally, U0(FEA) includes the generalized substitution rule for derived rules

of inference as it is developed in Feferman and Strahm [15]. Towards a

more compact notation, let use write Σ1,Σ2, . . . ,Σn ⇒ Σ to denote a rule

of inference with premises Σ1, . . . ,Σn and conclusion Σ. We let A[B̄/P̄]

denote the formula A[P̄] with each subformula Pi(t̄) replaced by t̄↓ ∧ Bi[t̄],

where the length of t̄ equals the arity of Pi. The generalized substitution

rule (S3) can now be described as follows: Assume that the rule of inference

Σ1,Σ2, . . . ,Σn ⇒ Σ is derivable from the axioms and rules at hand. Then

we can adjoin an arbitrary substitution instance

Σ1[B̄/P̄], . . . ,Σn[B̄/P̄]⇒ Σ[B̄/P̄](S3)

as new rule of inference to our system. Here P̄ and B̄ are finite sequences

of free predicates and L1 formulas, respectively. Note that the notion of

derivability of a rule of inference is dynamic as one unfolds a given system.

4To be precise, this equivalence is a shorthand for the two sequents eαβ = tt→ α = β

and α = β → eαβ = tt.
5Note that for an A[α] with α occurring in a bound and a term t ∈ L1 \ L, the rule

(S2) cannot be derived because then A[t] is not a formula.

8

Clearly, using the generalized substitution rule, the induction rule in its usual

form can be derived for an arbitrary A ∈ L1:

Γ→ A[ε] Γ, A[α]→ A[Si(α)] (i = 0, 1)

Γ→ A[α]

Moreover, the usual substitution rule for sequents, Σ[P̄] ⇒ Σ[B̄/P̄] can be

obtained as an admissible rule of inference. This ends the description of the

operational unfolding U0(FEA) of FEA.

Next we want to show that the polynomial time computable functions can

be proved to be total in U0(FEA). We call a function F : Wn →W provably

total in a given axiomatic system whose language includes L1, if there exists

a closed L1 term tF such that (i) tF defines F pointwise, i.e. on each stan-

dard word, and, moreover, (ii) there is a L term τ [α1, . . . , αn] such that the

assertion

tF (α1, . . . , αn) ≤ τ [α1, . . . , αn]

is provable in the underlying system. Thus, in a nutshell, F is provably total

iff it is provably and uniformly bounded.

Lemma 1 The polynomial time computable functions are provably total in

the operational unfolding U0(FEA).

Proof. We use Cobham’s characterization of the polynomial time computable

functions (cf. [5, 4]): starting off from the initial functions of L and arbitrary

projections, the polynomial time computable functions can be generated by

closing under composition and bounded recursion. First of all, the initial

functions of L and projections represented using lambda abstraction are ob-

viously total. Closure of the provably total functions under composition is

established by making use of the substitution rules (S1) and (S2) as well as

the fact that the L functions are provably monotone. In order to show clo-

sure under bounded recursion, assume that F is defined by bounded recursion

with initial function G and step function H, where τ is the corresponding

bounding polynomial.6 By the induction hypothesis, G and H are provably

total via suitable L1 terms tG and tH . Using the recursion or fixed point

6We can assume that only functions built from concatenation and multiplication are

permissible bounds for the recursion.

9

theorem of the partial combinatory algebra, we find an L1 term tF which

provably in U0(FEA) satisfies the following recursion equations for i = 0, 1:

tF (ᾱ, ε) ' tG(ᾱ) | τ [ᾱ, ε],

tF (ᾱ, si(β)) ' tH(tF (ᾱ, β), ᾱ, β) | τ [ᾱ, si(β)]

Here | is the usual truncation operation such that α|β is α if α ≤ β and β

otherwise. Now fix ᾱ and let A[β] be the formula tF (ᾱ, β) ≤ τ [ᾱ, β] 7 and

simply show A[β] by induction on β. Thus F is provably total in U0(FEA)

which concludes the proof of the lower bound lemma. 2

4 The full predicate unfolding U(FEA)
In this section we will define the full predicate unfolding U(FEA) of FEA. It

tells us, in addition, which predicates and operations on predicates ought to

be accepted if one has accepted FEA. By accepting U0(FEA) one implicitly

accepts an equality predicate and operations on predicates corresponding

to the logical operations of U0(FEA). Finally, we may accept the principle

of forming the predicate for the disjoint union of a (bounded) sequence of

predicates given by an operation.

As before the equality predicate and the above-mentioned operations will be

given as elements of an underlying combinatory algebra which is extended

by a binary relation ∈ for elementship, so predicates are represented via

classifications in the sense of Feferman’s explicit mathematics [9, 10]. We

additionally use a relation Π to single out the operations representing pred-

icates one is committed to by accepting FEA.

The language L2 of U(FEA) is an extension of L1 by new individual constants

id (identity), inv (inverse image), con (conjunction), dis (disjunction), leq

(bounded existential quantifier), and j (bounded disjoint unions); further

new constants are π0, π1, . . . which are combinatorial representations of free

predicates. Finally, L2 has a new unary relation symbol Π in order to single

out the predicates we are committed to as well as a binary relation symbol ∈
for elementhood of individuals in predicates. The terms of L2 are generated

7Recall that by expanding the definition of the ≤ relation, the formula A[β] stands for

the assertion (∃γ ≤ τ [ᾱ, β])(tF (ᾱ, β) = γ).

10

as before but now taking into account the new constants. The formulas of

L2 extend the formulas of L1 by allowing new atomic formulas of the form

Π(t) and s ∈ t.

The axioms of U(FEA) extend those of U0(FEA) by the following axioms

about predicates.

I. Identity predicate

(1) Π(id),

(2) x ∈ id→ p0x = p1x ∧ x = 〈p0x, p1x〉,

(3) p0x = p1x, x = 〈p0x, p1x〉 → x ∈ id.

II. Inverse image predicates

(4) Π(a)→ Π(inv(f, a)),

(5) Π(a), x ∈ inv(f, a)→ fx ∈ a,

(6) Π(a), fx ∈ a→ x ∈ inv(f, a).

III. Conjunction and disjunction

(7) Π(a),Π(b)→ Π(con(a, b)),

(8) Π(a),Π(b), x ∈ con(a, b)→ x ∈ a ∧ x ∈ b,

(9) Π(a),Π(b), x ∈ a, x ∈ b→ x ∈ con(a, b),

(10) Π(a),Π(b)→ Π(dis(a, b)),

(11) Π(a),Π(b), x ∈ dis(a, b)→ x ∈ a ∨ x ∈ b,

(12) Π(a),Π(b), x ∈ a ∨ x ∈ b→ x ∈ dis(a, b).

IV. Bounded existential quantification

(13) Π(a)→ Π(leqa),

(14) Π(a), 〈y, α〉 ∈ leq(a)→ (∃β ≤ α)(〈y, β〉 ∈ a),

(15) Π(a), (∃β ≤ α)(〈y, β〉 ∈ a)→ 〈y, α〉 ∈ leq(a).

11

V. Free predicates

(16) Π(πi),

(17) 〈x̄〉 ∈ πi → Pi(x̄), Pi(x̄)→ 〈x̄〉 ∈ πi.

Further, the full unfolding U(FEA) includes axioms stating that a bounded

sequence of predicates determines the predicate of the disjoint union of this

sequence. We use the following three rules to axiomatize the join predicates

in our restricted logical setting.

VI. Join rules 8

Γ, β ≤ α→ Π(fβ)

Γ→ Π(j(f, α))
(18)

Γ, β ≤ α→ Π(fβ)

Γ, x ∈ j(f, α)→ x = 〈p0x, p1x〉 ∧ p0x ≤ α ∧ p1x ∈ f(p0x)
(19)

Γ, β ≤ α→ Π(fβ)

Γ, x = 〈p0x, p1x〉, p0x ≤ α, p1x ∈ f(p0x)→ x ∈ j(f, α)
(20)

The rules of inference of U0(FEA) are also available in U(FEA). In particular,

U(FEA) contains the generalized substitution rule (S3): the formulas B̄ to

be substituted for P̄ are now in the language of L2; the rule in the premise

of (S3), however, is required to be in the language L1.
9 This concludes the

description of the predicate unfolding U(FEA) of FEA.

5 The truth unfolding UT(FEA)

In this section we describe an alternative way to define the full unfolding of

FEA. The truth unfolding UT(FEA) of FEA makes use of a truth predicate

T which reflects the logical operations of FEA in a natural and direct way.

We will see that the full predicate unfolding U(FEA) is directly contained in

UT(FEA).

As in the last section, we want to make the commitment to the logical op-

erations of FEA explicit. This is done by introducing a truth predicate for

8In the formulation of these rules, it is assumed that β does not occur in Γ.
9This last restriction is imposed since predicates may depend on P̄ .

12

which truth biconditionals defining the truth conditions of the logical oper-

ations hold. The axiomatization of the truth predicate relies on a coding

mechanism for formulas. In the applicative framework, this is achieved in a

very natural way by using new constants designating the logical operations of

FEA. The language LT of UT(FEA) extends L1 by new individual constants

=̇, ∧̇, ∨̇, ∃̇, as well as constants π0, π1, In addition, LT includes a new

unary relation symbol T. The terms and formulas of LT are defined in the

expected manner. Moreover, we will use infix notation for =̇, ∧̇ and ∨̇.

The axioms of UT(FEA) extend those of U0(FEA) by the following axioms

about the truth predicate T:

T(x =̇ y) ↔ x = y(=̇)

T(x ∧̇ y) ↔ T(x) ∧ T(y)(∧̇)

T(x ∨̇ y) ↔ T(x) ∨ T(y)(∨̇)

T(∃̇αx) ↔ (∃β ≤ α)T(xβ)(∃̇)
T(πi(x̄)) ↔ Pi(x̄)(πi)

It is easy and natural to assign LT terms to LT formulas in the following way.

Definition 2 For each formula A of LT we inductively define an LT term

[A] whose free variables are exactly the free variables of A:

[t = s] := t =̇ s

[Pi(t̄)] := πi(t̄)

[T(t)] := t

[A ∧B] := [A] ∧̇ [B]

[A ∨B] := [A] ∨̇ [B]

[(∃α ≤ τ)A[α]] := ∃̇τ(λα.[A[α]])

The following lemma can be proved by a trivial induction on the complexity

of formulas.

Lemma 3 (Tarski biconditionals) Let A be a LT formula. Then we have

UT(FEA) A↔ T([A])

13

This lemma shows that in our weak setting, full Tarski biconditionals can be

achieved without having to type the truth predicate. Of course, this is due

to the fact that negation is only present at the level of sequents.

We close this section by noting that the generalized substitution rule (S3)

can be stated in a somewhat more general form for UT(FEA). Recall that

in U(FEA), the rule in the premise of (S3) is required to be in L1. Due

to the fact that each LT formula can be represented by a term, we can

allow rules in LT in the premise of the generalized substitution rule, as long

as we substitute formulas and associated terms for the predicates Pi and

constants πi simultaneously. In the following we denote by Σ[B/P ; t/π] the

simultaneous substitution of the predicates P by the formulas B and of the

constants π by the LT terms t. The generalized substitution rule for UT(FEA)

can now be stated as follows. Assume that the rule Σ1, . . . ,Σn ⇒ Σ is

derivable with the axioms and rules at hand. Assume further that the terms

tB correspond to the LT formulas B according to the lemma above. Then

we can adjoin the rule

Σ1[B/P ; tB/π], . . . ,Σn[B/P ; tB/π]⇒ Σ[B/P ; tB/π]

as a new rule of inference to our unfolding system UT(FEA). This concludes

the description of UT(FEA).

It is easy to see that the full predicate unfolding U(FEA) is contained in the

truth unfolding UT(FEA). The argument proceeds along the same line as the

embedding of weak explicit mathematics into theories of truth in Eberhard

and Strahm [8], which will also be described in some detail in the next section.

6 Proof-theoretical analysis

In this section we will find a suitable upper bound for U(FEA) and UT(FEA)

thus showing that their provably total functions are indeed computable in

polynomial time. We will obtain the upper bound via the weak truth theory

TPT introduced in Eberhard and Strahm [8] and Eberhard [6], whose detailed

and very involved proof-theoretic analysis is carried out in [6]. To be precise,

we consider a slight (conservative) extension of TPT which facilitates the

treatment of the generalized substitution rule.

14

Let us sketch the theory TPT; for a more detailed description, the reader is

referred to [8, 6]. For a more extensive survey on similar kinds of theories

in a stronger setting, see Cantini [1] and Kahle [17]. TPT is based on a total

version of the basic applicative theory B for words which was developed in

Strahm [18]. In particular, we have a word predicate W which is interpreted

as the type of binary strings, constants for some simple functions on the

words and a computationally complete combinatory algebra. TPT contains,

in addition, a unary truth predicate T which formalizes a compositional truth

predicate, where we have constants for the basic logical operations as in the

case of the truth unfolding above. The axioms for this predicate T are as

usual for theories of truth over an applicative setting with the exception of

the axiom for the word predicate. Only bounded elementship in the words

can be reflected by T, thus the low proof theoretic strength of TPT.10 In the

axioms below, y ≤W x is short for y ≤ x ∧ y ∈ W. The truth axioms now

read as follows:

T(x =̇ y) ↔ x = y(=̇)

x ∈ W→ (T(Ẇxy) ↔ y ≤W x)(Ẇ)

T(x ∧̇ y) ↔ T(x) ∧ T(y)(∧̇)

T(x ∨̇ y) ↔ T(x) ∨ T(y)(∨̇)

T(∀̇f) ↔ (∀x)T(fx)(∀̇)
T(∃̇f) ↔ (∃x)T(fx)(∃̇)

In addition, TPT contains unrestricted truth induction on the binary words:

T(rε) ∧ (∀x ∈ W)(T(rx)→ T(r(s0x)) ∧ T(r(s1x)))→ (∀x ∈ W)T(rx)

It is shown in Eberhard [6] that the provably total operations of TPT are

precisely the polynomial time computable functions.11 Moreover, TPT proves

10We note that TPT can be seen as a polynomial time analogue of a theory of truth of

primitive recursive strength studied in Cantini [2, 3].
11As usual for applicative systems, we call a function F : Wn → W provably total in

TPT, if there exists a closed term tF such that (i) tF defines F pointwise, i.e. on each

standard word, and, moreover, (ii) the following assertion is provable in TPT:

x1 ∈W, . . . , xn ∈W→ tF (x1, . . . , xn) ∈W

15

the Tarski biconditionals for formulas that contain only bounded occurrences

of the word predicate, e.g. formulas of the form s ≤W t. The corresponding

terms for such formulas A are denoted by pAq, see [8, 6] for details.

In order to deal with the generalized substitution rule below, we will consider

a slight extension T∗
PT of TPT. Its language extends the one of TPT by the

predicates P0, P1, . . . and the constants π0, π1, It contains the additional

axiom T(πix̄) ↔ Pi(x̄) for every i ∈ N. Since no other axioms for the P

predicates and the π constants are present, T∗
PT is clearly a conservative

extension of TPT.

Next we describe a direct embedding of U(FEA) into T∗
PT which resembles

a standard embedding of a theory of explicit mathematics into a theory of

truth: We translate the elementship relation with help of the truth predicate

and the type constructors by formulating their elementhood condition as in

Eberhard and Strahm [8]. Nevertheless, we have to consider some peculiari-

ties of our system: we take special care of the FEA function constants which

are not present in the language of TPT and map the two kinds of variables to

disjoint sets of TPT variables.

Definition 4 (Translation ∗ of L2 terms) The translation of L2 terms is

given inductively on their complexity.

• Let c be an applicative constant. Then c∗ ≡ c.

• Let αi be an L variable. Then α∗
i ≡ x2i.

• Let xi be a variable of L1 \ L. Then x∗i ≡ x2i+1.

• leq∗ ≡ λa.λz.z =̇ 〈p0z, p1z〉 ∧̇ ∃̇λy.Ẇ(p1z)y ∧̇ a〈p0z, y〉

• id∗ ≡ λz.z = 〈p0z, p1z〉 ∧̇ p0z =̇ p1z

• con∗ ≡ λa.λb.λz. az ∧̇ bz

• dis∗ ≡ λa.λb.λz. az ∨̇ bz

• inv∗ ≡ λf.λa.λz. a(fz)

• j∗ ≡ λf.λa.λz.z = 〈p0z, p1z〉 ∧̇ Ẇa(p0z) ∧̇ f(p0z)(p1z)

• π∗
i ≡ πi

16

• Let t be s0s1. Then t∗ ≡ s∗0s
∗
1.

• Let G be an n-ary L function symbol, gApp its applicative analogue, and

t a sequence of terms of suitable arity. Then G(t)∗ ≡ gAppt∗.

For the translation of L2 formulas, we interpret elementship using the truth

predicate as usual and trivialize the relation Π.

Definition 5 (Translation ∗ of L2 formulas) The translation of L2 for-

mulas is given inductively on their complexity.

• Π(s)∗ ≡ 0 = 0

• (s = t)∗ ≡ s∗ = t∗

• (s ∈ t)∗ ≡ T(t∗s∗)

• (∃α ≤ τ)A[α]∗ ≡ (∃α∗ ≤W τ ∗)A∗[α∗]

• The translation commutes with the connectives ∧ and ∨.

The translation ∗ is extended in the obvious way to sequences and sequents

of L2 formulas. Further, for the statement of the embedding theorem below,

the following notation is handy.

Definition 6 Let 3 be an L2 term, formula or sequence of formulas. Then

y(3) ∈ W denotes the sequence xn0 ∈ W, . . . , xnm ∈ W where the xni
enu-

merate the variables with even subscripts occurring freely in 3∗.

The next two lemmas will be used in the proof of the embedding theorem

below. Lemma 7 can be proved by a trivial induction on the complexity of

the FEA term. Lemma 8 can be proved by induction on the complexity of A.

For the case where A is of the form (∃α ≤ τ)B[α], we use lemma 7.

Lemma 7 Let τ be an L term. Then we have

T∗
PT y(τ) ∈ W → τ ∗ ∈ W.

Lemma 8 Let A be an L2 formula. Then we have

T∗
PT y(A) ∈ W → T(pA∗q)↔ A∗.

17

We are now ready to state the main embedding lemma of U(FEA) into T∗
PT

and sketch its proof.

Lemma 9 (Embedding lemma) Assume U(FEA) Γ → A. Then we

have

T∗
PT y(Γ, A) ∈ W,Γ∗ → A∗.

Proof.(Sketch) In order to prove the lemma, one shows a stronger assertion,

namely that the ∗ translation of each derivable rule of U(FEA) is also derivable

in T∗
PT. Let us exemplary discuss some crucial examples. First, let us look

at ∗ translations of axioms of U(FEA) and distinguish the following cases:

(i) The translations of the axioms about the (word) function symbols of

L hold, because the L variables are assumed to range over words;

(ii) The translations of the axioms about the applicative combinators clearly

hold;

(iii) The translations of the axioms about the correspondence between the

function symbols and the applicative constants follow directly from the

definition of the translation;

(iv) The translations of the axioms about the predicate constructors hold

because of their translation by suitable elementhood conditions and

because of the trivial interpretation of the relation Π;

(v) The translations of the axioms Pi(x̄)↔ 〈x̄〉 ∈ πi clearly hold.

Towards the treatment of the generalized substitution rule, assume that the

rule with premises Γi[P]→ Ai[P] for 1 ≤ i ≤ m and conclusion Γ[P]→ A[P]

is derivable in U(FEA). Let us look at the ∗ translation of the proof for

derivability which is a proof of derivability in T∗
PT by induction hypothesis.

It can be easily seen that for each sequence of formulas B ∈ L2 we still have a

proof if we replace each occurrence of Pi by B∗
i and each occurrence of πi by

[B∗
i] and add y(B) ∈ W to each antecedent. Here, we use lemma 8 to justify

induction and the substituted P biconditionals. Thus the ∗ translation of the

rule with conclusion Γ[B]→ A[B] and premises Γi[B]→ Ai[B] for 1 ≤ i ≤ m

is derivable in T∗
PT as desired. This ends the treatment of the generalized

substitution rule and hence the proof sketch of the embedding lemma. 2

18

The embedding lemma immediately implies that each function which is prov-

ably total in U(FEA) is also provably total in T∗
PT in the usual sense. Since

T∗
PT is conservative over TPT and the latter proves totality exactly for the

polynomial time computable functions (cf. Eberhard [6]) this delivers the

desired upper bound for the unfoldings U0(FEA) and U(FEA). Together with

Lemma 1, we obtain sharp proof theoretic bounds.

Theorem 10 The provably total functions of U0(FEA) and U(FEA) are ex-

actly the polynomial time computable functions.

An embedding of UT(FEA) into T∗
PT can be found in a very similar way as

for U(FEA). Just interpret the constants =̇, ∧̇ and ∨̇ as themselves and ∃̇ as

λy.λz.∃̇λx.Ẇyx ∧̇ zx. Thus we obtain the following theorem.

Theorem 11 The provably total functions of UT(FEA) are exactly the poly-

nomial time computable functions.

This concludes the computation of the upper bounds and hence the proof-

theoretic analysis of our various unfolding systems.

References

[1] Cantini, A. Logical Frameworks for Truth and Abstraction. North-

Holland, Amsterdam, 1996.

[2] Cantini, A. Proof-theoretic aspects of self-referential truth. In Tenth

International Congress of Logic, Methodology and Philosophy of Science,

Florence, August 1995, Maria Luisa Dalla Chiara et. al., Ed., vol. 1.

Kluwer, September 1997, pp. 7–27.

[3] Cantini, A. Choice and uniformity in weak applicative theories. In

Logic Colloquium ’01, M. Baaz, S. Friedman, and J. Kraj́ıček, Eds.,

vol. 20 of Lecture Notes in Logic. Association for Symbolic Logic, 2005,

pp. 108–138.

[4] Clote, P. Computation models and function algebras. In Handbook

of Computability Theory, E. Griffor, Ed. Elsevier, 1999, pp. 589–681.

19

[5] Cobham, A. The intrinsic computational difficulty of functions. In

Logic, Methodology and Philosophy of Science II. North Holland, Ams-

terdam, 1965, pp. 24–30.

[6] Eberhard, S. A feasible theory of truth over combinatory logic. Pre-

liminary draft, February 2011.

[7] Eberhard, S., and Strahm, T. Towards the unfolding of feasible

arithmetic (Abstract). Bulletin of Symbolic Logic 18, 3 (2012), 474–475.

[8] Eberhard, S., and Strahm, T. Weak theories of truth and ex-

plicit mathematics. In Logic, Construction, Computation, U. Berger,

H. Diener, P. Schuster, and M. Seisenberger, Eds. Ontos Verlag, 2012,

pp. 157–184.

[9] Feferman, S. A language and axioms for explicit mathematics. In

Algebra and Logic, J. Crossley, Ed., vol. 450 of Lecture Notes in Mathe-

matics. Springer, Berlin, 1975, pp. 87–139.

[10] Feferman, S. Constructive theories of functions and classes. In Logic

Colloquium ’78, M. Boffa, D. van Dalen, and K. McAloon, Eds. North

Holland, Amsterdam, 1979, pp. 159–224.

[11] Feferman, S. Reflecting on incompleteness. Journal of Symbolic Logic

56, 1 (1991), 1–49.

[12] Feferman, S. Gödel’s program for new axioms: Why, where, how and

what? In Gödel ’96, P. Hájek, Ed., vol. 6 of Lecture Notes in Logic.

Springer, Berlin, 1996, pp. 3–22.

[13] Feferman, S. Predicativity. In The Oxford Handbook of Philosophy of

Mathematics and Logic, S. Shapiro, Ed. Oxford University Press, 2005,

pp. 590–624.

[14] Feferman, S., and Strahm, T. The unfolding of non-finitist arith-

metic. Annals of Pure and Applied Logic 104, 1–3 (2000), 75–96.

[15] Feferman, S., and Strahm, T. Unfolding finitist arithmetic. Review

of Symbolic Logic 3, 4 (2010), 665–689.

20

[16] Ferreira, F. Polynomial time computable arithmetic. In Logic

and Computation, Proceedings of a Workshop held at Carnegie Mellon

University, 1987, W. Sieg, Ed., vol. 106 of Contemporary Mathemat-

ics. American Mathematical Society, Providence, Rhode Island, 1990,

pp. 137–156.

[17] Kahle, R. The Applicative Realm. Habilitation Thesis, Tübingen,

2007. Appeared in Textos de Mathemática 40, Departamento de

Mathemática da Universidade de Coimbra, Portugal, 2007.

[18] Strahm, T. Theories with self-application and computational com-

plexity. Information and Computation 185 (2003), 263–297.

21

