
From a Flexible Type System to
Metapredicative Wellordering

Proofs

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Florian Ranzi

aus Italien

Leiter der Arbeit:
Prof. Dr. G. Jäger und Prof. Dr. Th. Strahm

Institut für Informatik und angewandte Mathematik

From a Flexible Type System to
Metapredicative Wellordering

Proofs

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von
Florian Ranzi

aus Italien

Leiter der Arbeit:
Prof. Dr. G. Jäger und Prof. Dr. Th. Strahm

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, den 1. Dezember 2015 Der Dekan:
Prof. Dr. G. Colangelo

Acknowledgements
I want to thank Prof. Dr. Gerhard Jäger and Prof. Dr. Thomas Strahm for
their guidance, advice, and the optimal working environment they offered.
I also want to thank Prof. Dr. Wilfried Buchholz for serving as second
examiner and for helping me improve this thesis during my stay as a guest
at the University of Munich. The research for this thesis was supported by
the Swiss National Science Foundation.

Many thanks go also to the members of the Logic and Theory Group,
my friends, and my family: Liebi Lüt, merssi viumau für die schöni Zyt!—
Tusen takk kjære gjøk for at du hjalp meg på mange forskjellige måter!—
Caspita, ce l’ho fatta! Grazie mille ai cirilli per il vostro sostegno e grazie
anche a quello che bada all’ultima penna del Malcantone.—Ge, oarg! Jetzad
kimm i scho z’ruck, i gfrei mi! Dankschee an de Frechbären fürs Woaten.—
ぼちぼち 行こか!1

1Bochi-bochi iko-ka!

i

Contents

Introduction 1

I. Ordinals and General Definitions 11

1. General Definitions 13
1.1. General Notational Framework 13

1.1.1. Vector Notations . 14
1.1.2. Class Terms and Substitution 15

1.2. The Base Theory PA of Peano Arithmetic 16

2. Ordinal Theoretic Framework 23
2.1. The Finitary Veblen Functions 24
2.2. Klammersymbols . 25

2.2.1. Recursion Properties 28
2.2.2. Klammersymbols as Denotations for Functions . . . 32
2.2.3. Representation Properties 33

2.3. The ϑ-function . 35
2.4. Cherry-Picking from [Sch92] and [Buc15]: ϑα̃ = ϕEα 36
2.5. Proof-Theoretic Ordinal . 38

3. Ordinal Notations for the Small Veblen Ordinal 39
3.1. The Ordinal Notation System (OT,≺) 39
3.2. Ordinal Arithmetic within (OT,≺) 43
3.3. Semantics of (OT,≺) . 48
3.4. Fundamental Sequences . 49

4. Ordinal Notations for the Large Veblen Ordinal 53
4.1. Towards an Ordinal Notation System OT(K�) 54
4.2. Extending OT(K�) to OT(K) with an Equivalence Relation 55

iii

Contents

4.3. Primitive Recursive Properties of OT(K) 57
4.4. Partitioning via Labeled Klammersymbols yielding OT(L0) 58
4.5. Motivation and Interpretation 63
4.6. Primitive Recursive Operations on Labeled Klammersymbols 64

II. Typed Induction 67

5. FIT for Functions, Inductive Definitions, and Types 69
5.1. Basic Language of FIT . 69
5.2. Full Language of FIT . 71
5.3. The Theory FIT . 74
5.4. Informal Interpretation of FIT 78

6. TID for Typed Inductive Definitions 79
6.1. The Accessible Part Theory TID 79
6.2. Embedding TID into FIT . 81

7. The Small Veblen Ordinal ϑΩω measures FIT and TID 89
7.1. Lower Bound ϑΩω for FIT and TID 89

7.1.1. The Simple Case for the Binary Veblen Function . . 91
7.1.2. The General Case for the Finitary Veblen Functions 94

7.2. Upper Bound ϑΩω for FIT and TID 99
7.2.1. Subsystems of Second Order Arithmetic 100
7.2.2. Upper Bound Results from the Literature 103
7.2.3. Some Syntactical Properties of L2

PA Formulas 104
7.2.4. Embedding FIT into Π1

3-RFN0 106
7.3. Considering TIDf for General Positive Operator Forms . . . 117
7.4. Notes . 119

8. TIDn and TID+
n as Generalizations of TID 121

8.1. The Arithmetical Theories TIDn and TID+
n 121

8.2. Alternative Definition of TIDn 124
8.3. Comparison of TID with the Theory TID1 124
8.4. Notes . 126

9. Embedding for TIDn and Derivability for TID+
n 127

9.1. Embedding TIDn into Π1
n+2-RFN0 128

iv

Contents

9.2. Arithmetical Derivability in TID+
n 131

9.2.1. The Reference System Town 131
9.2.2. Arithmetical Derivability 132

9.3. Comparison with a Bar Rule 134
9.4. Upper Bounds for TIDn and TID+

n 135
9.5. Notes . 135

10.Special Considerations for TID0 and TID+
0 137

10.1. Calibrating TID0 with Σ1
1-DC0 and ϑΩ(0, ω) 137

10.2. Calibrating TID+
0 with ATR0 and ϑΩ(0,Ω) 137

11.The Large Veblen Ordinal ϑΩΩ measures TID+
1 139

11.1. Generalization of Concepts from Chapter 7 139
11.1.1. Syntactical Properties 141
11.1.2. Motivation and Comparison with Chapter 7 142

11.2. Basic Results . 145
11.2.1. Basic Wellordering Results 145
11.2.2. Basic Results for the New Notions 146

11.3. Core Results . 148
11.3.1. Core Result for Full 148
11.3.2. Advanced Wellordering Results 151
11.3.3. Core Result for HypFull 155

11.4. Towards the Large Veblen Ordinal in TID+
1 and TID2 164

11.4.1. Wellordering Results Getting Beyond ϑΩω 164
11.4.2. Weak and Strong Veblen Ordinals 165
11.4.3. The Large Veblen Jump in TID+

1 and TID2 166
11.5. Remark on Complete Induction for TID1 169
11.6. Wellordering Proof for TID+

1 and TID2 170

12.Concluding Remarks on Typed Induction 171
12.1. Higher Type Functionals . 172
12.2. Generalizations of FIT . 173

III. Stratified Induction 175

13.The Theory SID<ω of Stratified Induction 177
13.1. Adaptations of Syntax from Chapter 1 177

v

Contents

13.2. Definition of SID<ω and SIDn 178
13.3. The Lower Bound of SID<ω 179
13.4. Strategy for the Upper Bound of SID<ω. 180

14.Proof-Theoretic Results for the Theory SID<ω 181
14.1. The Infinitary Proof System SID∞n 181
14.2. Partial and Full Cut-Elimination 185
14.3. Asymmetric Interpretation 186
14.4. Arithmetical Derivability 190

15.The Upper Bound of SID<ω 191

16.Concluding Remarks on Stratified Induction 193
16.1. Comparison with Proof-Theoretic Methods for ÎDn 193
16.2. Transfinite Stratification . 194

A. Appendix: Remaining Proofs of Chapter 3 195
A.1. Theorem 3.6. 195
A.2. Lemma 3.15 . 200
A.3. Auxiliary Corollary A.3.1 201
A.4. Lemma 3.21 . 202
A.5. Theorem 3.25 . 206
A.6. Theorem 3.27 . 209

Bibliography 215

Index 219

vi

Introduction
First-order theories that result from number theory by adding new predi-
cate symbols P and axioms for P are used as a tool to investigate the proof-
theoretic strength of various theories (consider for example [BFPS81]). In
particular and with focus on the topic of this thesis, predicates PA may
formalize for each positive arithmetical operator form A(X,x) a fixed-point
FΦ of the function Φ: P(N)→ P(N), where Φ is the intended interpretation
of A and P(N) is the power set of the natural numbers N (such functions
Φ are also called operators, compare [Acz77a] for background information).
A famous example of such a formalization is the impredicative theory ID1
(an arithmetical first-order theory for non-iterated general inductive defi-
nitions, see [BFPS81]). ID1 allows to axiomatize the least fixed-point IΦ
of such Φ by means of axioms for the closure property and the induction
principle assigned to PA; in the context of Φ this can be expressed by

Φ(IΦ) ⊆ IΦ (Φ-Closure)
∀X ⊆ N (Φ(X) ⊆ X → IΦ ⊆ X) (Φ-Induction)

and if considered as a definition of IΦ, its impredicative characterization
becomes apparent by the unrestricted quantification over subsets of N.
Furthermore, one can consider just any fixed-point FΦ, thus described by

Φ(FΦ) = FΦ (Φ-Fixed-Point)

that is a consequence of (Φ-Closure) and (Φ-Induction) in case of FΦ being
IΦ. For each positive operator form A(X,x), let now PA be a distinguished
new unary relation symbol not in LPA, i.e., not in the language of Peano
arithmetic PA. Then the language obtained by extending LPA with such
new symbols PA is used as the language LID for the theory ID1 that for-
malizes (Φ-Induction) by means of the axiom scheme

∀x(A
(
{z : B}, x

)
→ Bz(x))→ ∀x(PA(x)→ Bz(x)) (ID)

1

Contents

where B can be any LID formula and Bz(t) denotes for any LPA term t
the substitution of z in B by t; furthermore, A

(
{z : B}, x

)
expresses the

straight-forward substitution of atomic formulas t ∈ X in A(X,x) by Bz(t).
A theory that formalizes fixed-points over positive arithmetical oper-

ator forms A is the theory ÎD1 that also has LID as its language. ÎD1 was
introduced in [Acz77b] and further analyzed for the iterated case in [Fef82]
and [JKSS99], using predicative methods. While ÎD1 has no formalization
for (Φ-Induction) at all, a theory that is predicatively reducible and that
axiomatizes certain (so-called positive) instances of Φ(X) ⊆ X → IΦ ⊆ X
is the theory ID∗1 that again has LID as its language. ID∗1 has been analyzed
in [Pro06] and [AR10], where in particular |ID∗1| = |ÎD1| = ϕ(ε0, 0) has been
shown for the proof-theoretic ordinal of ID∗1.

Both theories ID∗1 and ÎD1 are prominent examples from the realm of
metapredicative2 proof-theory, and they were the starting-point for this
thesis in order to analyze new means and theories that reach in proof-
theoretic strength to larger3 ordinals. But the inspiration and motivation
to do so came mainly from [Fef92] in case of ID∗1 and from [Lei94] in case
of ÎD1. This thesis therefore consists of

• an introductory Part I, containing observations on ordinal theoretic
concepts and general definitions,

• a main Part II that deals with the concept of typed induction as a
generalization of positive induction from ID∗1, and

• a Part III that deals with the concept of stratified induction as a
generalization of the fixed point theory ÎD1.

It turns out that stratified induction allows for a fine-graded calibra-
tion of sub-theories below Γ0 (the results on ordinals above ϕ(ε0, 0) are due
to [JP15]) but which is, however, not strong enough to tackle our quest for
larger ordinals. Typed induction on the other hand turns out to be a strong
version that calibrates with prominent ordinals such as the small Veblen

2The notion metapredicativity is meant in general for the approach to use proof-
theoretic methods from the realm of predicative proof-theory instead of impredica-
tive methods. In particular for wellordering proofs, we aim to avoid the use of
so-called collapsing functions. We refer to [Str99] or [JKSS99]. For further reading
on metapredicativity, we refer to [Jäg05] and [JS05].

3The notion large is meant from our perspective of metapredicativity, i.e., our focus
lies on ordinals that follow in the wake of the Bachmann-Howard ordinal.

2

Contents

ordinal or the large Veblen ordinal. We consider the results on typed in-
duction as the main achievement of this thesis because it yields a positive
result (while stratified induction yields a somewhat negative result as it
provides only access to rather small ordinals—but this surely depends on
the perspective and the point of interest one has). For this reason, we shall
start with typed induction.

3

Contents

About Typed Induction
In [Fef92], S. Feferman introduced a two-sorted quantificational logic and
showed that it has the same strength as (Skolem’s system of) primitive re-
cursive arithmetic. The characteristics of this two-sorted quantificational
logic are that it is an applicative theory augmented by type variables as
the second sort and with a refined notion of comprehension terms, so-
called type and function terms. In particular, this theory embodies a rule
(F0-IRN) that is called the function-induction rule on N (where N is in-
terpreted as the type for the natural numbers). It was shown to be closed
under a strengthening of this rule to finitary inductively generated types
I, called (F0-IRI).

This kind of theory strongly influenced the shape of our applicative
theory FIT that we are going to introduce in Part II. Our motivation to
examine the theory in [Fef92] was to find a natural theory for carrying out
metapredicative wellordering proofs in the spirit of higher type functionals
for ordinals. It seemed to provide a suitable environment for doing so. But
soon, we realized that aside from this, the theory gave rise to the question
of what consequence a function-induction rule for infinitary inductively
generated types would have on the one side and to the idea of implement-
ing the wellordering proofs through accessible part inductive definitions on
the other side (having in mind our desire for metapredicative wellordering
proofs). Hence, we tackle this question on infinitary inductively generated
types only for inductively generated types that correspond to the (induc-
tively defined) accessible part IP,Q for a (binary) relation Q on a domain P.
In fact, our methods implicitly suggest that we get the same result for the
variant where we allow for general inductively generated types.

FIT stands for “theory for function(al)s, non-iterated inductive defini-
tions, and types (of level 1)”, and it represents the first step for a generaliza-
tion of the theory in [Fef92] which turns out to have the small Veblen ordinal
as measure for its proof-theoretic strength, i.e., ϑΩω when using the termi-
nology of [RW93]. Theories that have ϑΩω as proof-theoretic strength are
for instance Π1

2-BI0 from [RW93] or more recently RCA0 + (Π1
1(Π0

3)-CA0)−
from [Jer14]. While these theories are analyzed by impredicative proof-
theoretic methods, our treatment of FIT uses metapredicative methods for
the lower bound. For the upper bound, we use an embedding into Π1

3-RFN0
and get a desired upper bound result in the realm of metapredicative proof-
theory due to D. Probst’s modular ordinal analysis from [Pro15] that de-

4

Contents

termines by metapredicative methods the proof-theoretic ordinal of various
theories with strength below (and reaching to) the Bachmann-Howard ordi-
nal ϑεΩ+1. One of these theories is Π1

3-RFN0 (which is denoted by p3(ACA0)
in [Pro15]) and determined to have the proof-theoretic strength of the
small Veblen ordinal. Furthermore, we mention the system KPi0 +(Π3-Ref)
from [JS05] which is also related to Π1

3-RFN0. In particular, [JS05] explains
how the proof-theoretic strength of KPi0 + (Π3-Ref) can be determined to
be ϑΩω by metapredicative methods.

Results on the Theories FIT and TID
We now explain the methods used for the ordinal analysis of FIT. First,
we shall consider a canonical implementation of FIT as a subsystem of
ID1 in which metapredicative wellordering proofs can be carried out in
a perspicuous way and where the interpretation back into FIT is straight-
forward. This subsystem of ID1 is called TID for “theory of typed (accessible
part) inductive definitions (of level 1)” and essentially arises from ID1 by
restricting to accessible part inductive definitions and adapting the closure
axioms, its induction scheme on the natural numbers, and its generalized
induction scheme (ID) to (the translation of) the function types of FIT,
akin to the restriction of ID1 to the theory ID∗1� from [Pro06].

For the (proof-theoretic) upper bound of FIT (and hence for TID), we
shall embed it into the system Π1

3-RFN0 of second-order arithmetic for Π1
3

ω-model reflection. In order to obtain the desired upper bound ϑΩω, we
shall use the results from [RW93] by impredicative methods, noting that
the (meta)predicative treatment from [Pro15] has not been published yet.
Figure 1 depicts the abovementioned approaches accordingly. Furthermore,
at the end of Chapter 7 we shall give some remarks on the canonical gen-
eralization of TID to a theory TIDf for general typed inductive definitions
with the full range of positive arithmetical operator forms, leading to the
same proof-theoretic strength of TID and TIDf .

Results on the Generalizations TIDn and TID+
n

The applicative theory FIT from Chapter 5 has the small Veblen ordi-
nal ϑΩω as its proof-theoretic ordinal. The provided wellordering proof is
implemented in an arithmetical theory TID based on accessible part induc-
tive definitions of primitive recursive binary relations and using the finitary

5

Contents

FIT

motivation

++

embedding
(Section 7.2)

��

oo embedding
(by Section 6.2)

TID

wellordering proof
(by Section 7.1)

��
Π1

3-RFN0 embedding
(by [JS99])

// Π1
2-BI0 upper bound

(by [RW93])
//
�� ��ϑΩω

Figure 1.: Strategy to determine the proof-theoretic ordinal ϑΩω of FIT

Veblen functions as a means to denote ordinals below ϑΩω. We shall gen-
eralize TID in Chapter 8 by the theories TIDn and TID+

n for each n ∈ N
where TID1 essentially corresponds to TID. In particular TID+

1 and TID2
are suitable for reusing the wellordering method of TID and generalizing
it (by an internalization) to ordinals that are denoted by Klammersymbols
(as introduced by K. Schütte in [Sch54]), i.e., to ordinals below the large
Veblen ordinal ϑΩΩ. It turns out that |TID+

1 | = ϑΩΩ holds.
In order to be able to work more efficiently with Klammersymbols,

we shall introduce the notion of a partition of a Klammersymbol together
with auxiliary notions and operations that allow the manipulation of the
represented ordinals in a natural way that is suitable for metapredicative
investigations. The benefit of our approach is that we can work directly
with the results from [Sch54] and keep the reader focused on the main tech-
niques that are used for the wellordering proof. More precisely, we shall
introduce the new notions and operations in such a way that it becomes
clear that (apart from the results from [Sch54]) only primitive recursive
manipulations of finite strings are needed. The difficulty of this conceptu-
ally simple but technically rather complicated section stems merely from
our aim to internalize the wellordering proof of TID within the arithmetical
theory TID+

1 .
For the upper bound of TID+

1 , we can refer once more to D. Probst’s
work [Pro15] on modular ordinal analysis of subsystems of second-order
arithmetic because we shall show that each arithmetical formula provable
in TID+

1 is also provable in the system p1p3(ACA0) from [Pro15] which

6

Contents

formalizes over ACA0 that each set is contained in a model of Π1
3-RFN0. Its

strength is the large Veblen ordinal (see [Pro15]).

Conjectures on Further Generalizations TID+
n and TIDn

By considering TID0 as the previously mentioned theory ID∗1� from [Pro06]
and defining TID+

0 analogously from TID0 as we defined TID+
1 from TID1,

we can show upper bound results that suggest generalizations to theories
TIDn and TID+

n with conjectures as indicated in Table 1 on page 8. This
table reads as follows: We use Ω(1, ξ) := Ωξ and Ω(k + 1, ξ) := ΩΩ(k,ξ)

for each k ≥ 1 and each ordinal ξ from [RW93] in order to denote certain
ordinals, and we use the following symbols:

X marks the treatment in this thesis

“X” marks a strong conjecture (results of this thesis point to this)

? marks a conjecture

The conjectures would not only resonate and calibrate in a nice way
with the theories from [Pro15], but they would also identify the small
Veblen ordinal and the large Veblen ordinal as first steps towards a char-
acterization of the notion metapredicativity in terms of ordinals such as
the notion impredicativity4 is often identified with relying on the ordinal
theoretic concepts of collapsing functions. The difficulty of further inves-
tigating this conjecture is to set up an ordinal notation system that goes
beyond the notation system that is based on Klammersymbols and treated
in Chapter 8. A promising trail towards an ordinal notation system that is
suited to reuse the results from Chapter 7 and Chapter 11 seems to be the
concept of higher type functionals in the spirit of [Wey76] (see [Buc15] for
more details). The theories FITn and FIT+

n listed in Table 1 on page 8 are
not explicitly treated in this thesis but will be mentioned in the conclusion
of Part II in Chapter 12.

4By impredicativity we mean the notion from the setting of ordinal analysis as used
for instance in [BFPS81].

7

Contents

type
level

ordinal
upper
bound

lower
bound

reference
system from
[Pro15]

common
reference
system

TID0
(FIT0)

ϑ(Ω · ω)
[ϕ(ω, 0)]

X X p2(ACA0) Σ1
1-DC0

TID+
0

(FIT+
0)

ϑ(Ω · Ω)
[Fef.-Sch. Γ0]

X X p1p2(ACA0) ATR0

TID
FIT

ϑΩω
[small Veblen]

X X p3(ACA0) Π1
3-RFN0

TID+
1

(FIT+
1)

ϑΩΩ

[large Veblen]
X X p1p3(ACA0) Π1

3-RFN0
+(BR)

TID2
(FIT2)

ϑΩΩω X “X” p4(ACA0) Π1
4-RFN0

TID+
2

(FIT+
2)

ϑΩΩΩ
X ? p1p4(ACA0) Π1

4-RFN0
+(BR)

...
...

...
...

...
...

TIDn

(FITn)
for n ≥ 3

ϑΩ(n, ω) X ? pn+2(ACA0) Π1
n+2-RFN0

TID+
n

(FIT+
n)

for n ≥ 3

ϑΩ(n,Ω) X ? p1pn+2(ACA0) Π1
n+2-RFN0

+(BR)

...
...

...
...

...
...

TID<ω

(FIT<ω)
ϑεΩ+1

[Bachm.-How.]
X ?

⋃
n∈N pn(ACA0) ID1

Table 1.: Overview of Typed Induction
8

Contents

About Stratified Induction

The aim of Part III is to investigate the proof-theoretic strength of a theory
of stratified induction SID<ω. We remark that this part has been published
in an article by Th. Strahm and the author of this thesis (see [RS14]).
SID<ω has a similar approach as ID∗1, namely in formalizing certain in-
stances of (Φ-Induction), see page 1, but it is based on the fixed-point
theory ÎD1. In order to illustrate the differences, we compare the axioms of
those two theories in an informal way (precise formulations for SID<ω are
given in Chapter 13). While ÎD1 has no instances of (ID), the theory ID∗1 al-
lows for positive induction (ID∗), i.e., it contains instances of (ID) where B
may contain PA at most positive. The new theory SID<ω that we propose
and investigate here is used to express a kind of stratified induction (over
fixed-points) by admitting indexed copies of the above mentioned symbols
PA, namely by replacing PA with infinitely many distinguished new unary
relation symbols PA

n for 1 ≤ n < ω (i.e., PA
1 , P

A
2 , . . .). Hence, SID<ω has

a different language than ID1 and further has stratified induction (over
fixed-points) via the following axiom scheme

∀x
(
A({z : B}, x)→ Bz(x)

)
→ ∀x

(
PA
n (x)→ Bz(x)

)
(SID)

for 1 ≤ n < ω and for which B is restricted to be a formula in this new
language which may contain relation symbols PB

l only if l < n holds (while
B is some operator form).

Let SIDn denote the restriction of the theory SID<ω to formulas that
contain at most the symbols PA

l with l ≤ n. The theory SID0 is just Peano
arithmetic PA and the theory SID1 is essentially a weakening of ID∗1 where
(ID∗) is further restricted in B to allow only arithmetical formulas. We
will investigate the theories SIDn of finitely stratified induction and refer
for the next question on the treatment of transfinitely stratified induction
to [JP15]. We shall show how we can apply the proof-theoretic technique
of asymmetric interpretation very neatly in order to gain proof-theoretic
insight into this concept of stratified induction.

Aiming towards a characterization of SID<ω, note that it is the same
as
⋃
n<ω SIDn and that, obviously, SIDn embeds into ID∗n for any n < ω.

So we have for the proof-theoretic ordinal |SID<ω| ≤ |
⋃
n<ω ID∗n| = Γ0,

see [Can85]. We show that actually |SID<ω| = |ÎD1| holds, and since ÎD1

9

Contents

trivially embeds into SID<ω, it suffices to show that ϕ(ε0, 0) = |ÎD1| is
an upper bound for |SID<ω|. The latter is done via an asymmetric inter-
pretation combined with partial cut-elimination. Our approach bears some
similarities to D. Leivant’s proof-theoretic approach to computational com-
plexity (cf. e.g. [Lei94]) which makes use of ramified theories over (finitary)
inductively generated free algebras. Here we treat ramified general induc-
tive definitions over the natural numbers. W. Buchholz’s notes [Buc05]
contributed to the presentation of the material.

The equality ϕ(ε0, 0) = |ÎD1| = |SIDn| = |SID<ω| (with n < ω) es-
tablished here still leaves the question open concerning the relationship of
stratification to iteration. For this, we refer to [JP15] where a generaliza-
tion of stratification to the transfinite gives an answer. Table 2 captures
some aspects of this relationship line by line and we refer again to [JP15]
for the meaning and characterization of the last three rows.

stratification ordinal
reference system

iteration

SID0 ε0 ÎD0

SID<ω ϕ(ε0, 0) ÎD1

SID<ω+ω ϕ(εε0 , 0) —

SID<ωω ϕ(ϕ(ω, 0), 0) —

SID<ε0 ϕ(ϕ(ε0, 0), 0) ÎD2

Table 2.: Overview of Stratified Induction

10

Part I.

Ordinals and General
Definitions

11

1. General Definitions

1.1. General Notational Framework
We shall work with three conceptually different kinds of logical frameworks:
First in Chapter 5 with the two-sorted theory FIT (where FIT has the
language LFIT) that is an applicative theory enhanced by a type system,
then in Chapter 6 and Chapter 13 with the first-order theories TID and
SID<ω, respectively, that are extensions of Peano arithmetic PA (where PA
has the language LPA) by new predicates, and starting from Chapter 7, we
shall work with some subsystems of second order arithmetic (with language
L2

PA). Hence, we shall work in this thesis with up to two sorts of (countably
many) variables and we use

a, b, c, d, u, v, w, x, y, z as syntactic variables for the first sort,
U, V,W,X, Y, Z as syntactic variables for the second sort,

and choose

=,¬,→,∨,∧,∃,∀ as basic logical symbols.

Now, let L be one of the languages of the abovementioned theories, and
assume that the notion of L terms and L formulas has been already intro-
duced. In case that L is clear from the context, we shall sometimes drop
the reference to L by just using the notions term and formula.

• s, t, r shall primarily be used as syntactic variables for L terms.

• A,B,C,D,E, F shall be used as syntactic variables to denote L for-
mulas, and we call an atomic L formula or its negated version a
literal.

• If an L formula is introduced as A(a), this means that A denotes this

13

1. General Definitions

formula and that the variable a may occur freely in A (i.e., a is not
in the scope of any ∀a or ∃a quantification).

• FV(A) denotes the set of free variables of the first sort of A.

• a, b, c, d, u, v, w, shall primarily be used within an L formula to denote
free variables of the first sort.

• k, l,m, n, p, q shall primarily be used as variables in our meta-theory,
i.e., as ranging there over the natural numbers.

• Parentheses may be added or dropped in order to make expressions
unambiguous or more readable, e.g., we may write a quantification
in the form ∃xA, (∃x)A, or ∃x(A).

• We often prefer infix notation rather than prefix notation when deal-
ing with binary function and relation symbols.

• For →, we follow the usual convention of right-associativity, e.g.,
A → B → C denotes A → (B → C). We further write A ↔ B to
denote (A→ B) ∧ (B → A). Moreover, ∧ binds stronger than →.

1.1.1. Vector Notations
If ∗ denotes one of the syntactic variables that will be introduced in the
this thesis, then we allow the usual annotations such as ∗′, ∗̃, or subscripts
∗i (for i ∈ N, i.e., for natural numbers i). With respect to subscripts, we
also use the vector notation ~∗ to denote lists of the form ∗1, . . . , ∗n for some
n ∈ N. If we introduce a list as

∗̄(n)

for a particular n ∈ N and a syntactic variable ∗, then we mean

∗1, . . . , ∗n

and we may write ∗̄(k) for any k ∈ N in order to denote ∗1, . . . , ∗min(k,n).
In some rare cases we may write for specific constants c (e.g., for 0) the
expression c̄(n) to denote the list c, . . . , c of length n, and hence we read ~c
analogously. This notation will come in handy in particular when we will

14

1.1. General Notational Framework

be working with ordinal notations that are based on the finitary Veblen
functions. If n = 0, then ∗̄(n) and ~∗ denote the empty list.

Applications of all these notations will be obvious, following common
conventions—for instance ∀x̄(3)A shall abbreviate ∀x1∀x2∀x3A as usual,
and ∀~xA is just A if ~x is the empty list. Also when writing f t̄(n) for a
list of terms t̄(n) and an n-ary function symbol f , it is usually meant to
abbreviate ft1 . . . tn rather than ft1, . . . , tn.

1.1.2. Class Terms and Substitution
L class terms are objects of the form

Λa.A

for any L formula A and we use A,B, C,D as syntactic variables for L class
terms. Sometimes, class terms are also called comprehension terms, and
we do not use the more common notations {a : A} or λa.A because these
notions are already reserved in our setting of the applicative theory FIT.

Substitution of a variable a in an L formula A by an L term t is denoted
by A(t/a) and Aa(t), or just by A(t) in case A has been introduced in the
form A(a), and as usual we assume (if necessary) an appropriate renaming
of bound variables in A to avoid a clash of bound variables. Then for A
being Λa.A, we set

A(t) := t ∈ A := A(t/a)

for any L term t and we ambiguously write A ∈ L to stress that A is an L
class term. Moreover, we also extend this to lists of variables ~a = a1, . . . , an
and have objects of the form

Λa1. . . .Λan.A

or Λ~a.A for short with (Λ~a.A)(~t) := A(~t/~a) for terms ~t = t1, . . . , tn and
where A(~t/~a) is obtained by simultaneously replacing in A all free occur-
rences of the variables ~a by ~t, while a renaming of bound variables may be
necessary to avoid a clash of variables. We use (Λā(n).A)(t̄(k)) for k < n
to denote (Λa′k+1. . . .Λa′n.

(
Λā(k).(A(a′k+1, . . . , a

′
n/ak+1, . . . , an))(t̄(k))

)
. . .)

where a′k+1, . . . , a
′
n are fresh variables that do not appear in t̄(k), ā(n), A.

15

1. General Definitions

In case that L also embodies variables X,Y, Z of the second sort, we
mean by substitution of a variable X in an L formula A by an L class term
B the expression

A(B/X)

which is obtained from A by substituting any atomic formula Xt with
B(t) while a renaming of bound variables may be necessary as usual. If A
has been introduced in the form A(X), we may also just write A(B) for
A(B/X).

In case R is a unary relation symbol in L or a second sort variable, we
also define

A(R/X) := A(B/X)

for B := Λa.Ra. Furthermore, if A is an L class term Λa.A, then we set

A(B/X) := Λa.A(B/X)

Accordingly, we let substitution for number variables be defined byAz(t) :=
A(t/z) := Λa.A(t/z) if a does not occur in t, and otherwise we let Az(t) :=
A′z(t) for A′ := Λb.A(b/a) and some b that does not occur in A, t.

1.2. The Base Theory PA of Peano Arithmetic
We introduce basic notions that we are going to use in combination with
arithmetical theories.

Definition 1.1. LPA is the first-order language of Peano arithmetic with

• just one sort of variables x, referred to as (number) variables,

• a unary relation symbol U (without further interpretation and that
is needed for proof-theoretic investigations),

• a symbol = for equality,

• function symbols for each primitive recursive function, and for n ∈ N,
we denote by PRn the collection of those function symbols that have
arity n, and

16

1.2. The Base Theory PA of Peano Arithmetic

• relation symbols Rf for each function symbol f ∈ PRn with n 6= 0,
and Rf has the same arity as f .

For the sake of completeness, we provide PR :=
⋃
n∈N PRn via one

of the usual formulations by an inductive definition over n ∈ N of func-
tion symbols, while 0n,S, In+1

i denote here symbols for the constant zero
function, the successor function, and the i-th projection function on n+ 1-
tuple, respectively, while C,R are auxiliary symbols in our meta-theory for
expressing composition and primitive recursion, respectively:

• 0n ∈ PRn, S ∈ PR1, and In+1
i ∈ PRn+1 for each i with 1 ≤ i ≤ n+ 1.

• (Cfg1 . . . gm) ∈ PRn if f ∈ PRm, g1, . . . , gm ∈ PRn, and m,n ≥ 1.

• (Rfg) ∈ PRn+1 if f ∈ PRn and g ∈ PRn+2.

Remark 1.2. We added relation symbols Rf to LPA for technical reasons,
namely in order to ease the embedding from TID into FIT in Chapter 6
(cf., Remark 6.12).

Definition 1.3. The language L2
PA denotes the extension of LPA to the

language of second-order arithmetic, i.e., it is LPA extended by a second
sort of variables X, referred to as set variables or just sets.

Notation 1.4. We use the following notations for certain symbols of LPA:

• 0N and 0 denote the constant 00 for the number zero,

• +N denotes the binary function symbol for addition of two natural
numbers,

• <N denotes the binary less-than relation on the natural numbers, and

• .−N denotes the modified subtraction function on the natural numbers
(i.e, if m <N n then m .−N n = 0 holds).

Further, 1N, 2N, . . . abbreviate S0,S(S0), . . . as usual. If the meaning be-
comes clear from the context, we may drop the subscript N and just use
0, 1, 2, . . . , +, <, and .− instead. Moreover, s ≤ t is used in the obvious
way to denote s < t ∨ s = t.

17

1. General Definitions

Definition 1.5. For any k ∈ N, let (n1, . . . , nk) 7→ 〈n1, . . . , nk〉 be any of
the usual primitive recursive injective functions Nk → Nmapping finite lists
of natural numbers of length k into the natural numbers, and let 〈〉k be the
corresponding k-ary function symbol in LPA. Then for any terms t1, . . . , tk,
we ambiguously write 〈t1, . . . , tk〉 in order to denote 〈〉k(t1, . . . , tk).

Moreover, we have the usual primitive recursive functions for projec-
tion (m,n) 7→ (m)n, list construction (m,n) 7→ cons(m,n), list concatena-
tion (m,n) 7→ m∗n, and for computing the length n 7→ lh(n) of a list, which
again we use ambiguously to denote the application of its corresponding
function symbol in LPA to terms. We also make the following standard
properties explicit:

• 〈n1, . . . , nk〉 = 0 if and only if k = 0,

• If n 6= 0 holds, then there is exactly one k 6= 0 and natural numbers
n1, . . . , nk such that n = 〈n1, . . . , nk〉 holds,

• (n)i < n for each i < lh(n),

• lh(〈n1, . . . , nk〉) = k,

• (〈n0, . . . , nk〉)i = ni for each 0 ≤ i ≤ k,

• cons(n, 〈n1, . . . , nk〉) = 〈n, n1, . . . , nk〉

• 〈n1, . . . , nk〉 ∗ 〈m1, . . . ,ml〉 = 〈n1, . . . , nk,m1, . . . ,ml〉

Convention 1.6. L will denote in the following either L2
PA or any extension

of LPA by new relation symbols. We will introduce common notions for such
languages L.

Definition 1.7. L terms s, t, r are defined as usual inductively from func-
tion symbols and number variables. Since L extends LPA only by relation
symbols or variables of the second sort, all such terms are LPA terms. A
constant is a nullary function symbol. If f is an n-ary function symbol of
LPA and ~t = t1, . . . , tn is a list of terms, then we set

f(~t) := f(t1, . . . , tn) := f~t := ft1 . . . tn

and this holds analogously for lists introduced by the t̄(n) notation. For
closed terms t, we mean by tN the numerical value of t, i.e., the canonical
valuation of t in the standard model N.

18

1.2. The Base Theory PA of Peano Arithmetic

Definition 1.8. L formulas are defined inductively as usual by use of
parentheses and the basic logical symbols and we write ambiguously A ∈ L
in order to stress that A is an L formula. For terms s, t, we may sometimes
write s 6= t for ¬(s = t). Atomic L formulas are equations s = t and all
formulas Rt1 . . . tn where R ∈ L is an n-ary relation symbol and t1, . . . , tn
are terms.

For the case that L is L2
PA, then also Xt is an atomic formula for any

set variable X and term t. L2
PA formulas further allow for quantification

over set variables and we call an L2
PA formula arithmetical if it does not

contain such a quantification (but set variables may still occur and we
sometimes call set variables that occur free in a formula set parameters of
this formula).

For n-ary relation symbols (or set variables) R of L, a formula A is
positive in R if it occurs only positively in the usual sense, i.e., no atomic
formula of the form R(t1, . . . , tn) occurs negated in the formula which is
obtained from A by translating first each subformula of the form B1 → B2
to ¬B1 ∨ B2 and where we then move every negation symbol ¬ towards
atomic formulas, while making use of De Morgan’s laws and the law of
double negation.1

Definition 1.9.

(a) For any language L that is L2
PA or (possibly) extends LPA by new

relation or function symbols, a standard derivability notion ` shall
be given that is based on a Hilbert-style deduction system for classical
logic with equality axioms (in the first sort). In particular, we assume
besides modus ponens that we have rules of the form

A→ B(∀-intro)
A→ ∀xB

B → A(∃-intro) ∃xB → A

for x 6∈ FV(A), and we assume in case that L is L2
PA that we have

the analogous of these rules for the second sort, too.

(b) Then for any L formula A, we write ` A to denote the derivability
of A in this logic. Moreover, if T is a theory (i.e., a collection of
non-logical axioms) with language LT, then writing T ` A for any

1Compare this definition of positive formula with the definition of For+ in the setting
of FIT in Chapter 5.

19

1. General Definitions

LT formula A denotes the derivability of A from the axioms of T and
this logic. For any set of formulas Γ, we write ` Γ and T ` Γ in order
to denote that ` A and T ` A hold, respectively, for each A ∈ Γ. This
notion is used analogously also in case that T contains new rules of
inference (see for instance TID+

n in Chapter 8).
Notation 1.10. For an n-ary relation symbol R with n ≥ 1 and ~t =
t1 . . . tn, we write R(~t) for Rt1 . . . tn. and if n = 1, we also introduce the
following notation:

t ∈ R := Rt and t 6∈ R := ¬Rt

Then (∀x ∈ R)A and (∃x ∈ R)A stand for ∀x(R(x)→ A) and ∃x(R(x)∧A),
respectively. These conventions shall hold analogously also for set variables
X. If C is a binary relation symbol, we use expressions (∀x C t)A and
(∃xC t)A to abbreviate ∀x(xC t→ A) and ∃x(xC t ∧A), respectively.
Definition 1.11. The first-order theory PA is based on the language LPA
and its non-logical axioms are the usual axioms of Peano arithmetic, while
for each relation symbol Rf that stems from a function symbol f of arity
n ≥ 1, we have for ~x = x1, . . . , xn the axiom ∀~x(Rf~x↔ f~x = 0).

In particular for the formulation of PR as presented in Definition 1.1,
the non-logical axioms of PA consist of the universal closure of the following
formulas where we suppose A ∈ LPA, (Cfg1 . . . gm) ∈ PRn, and (Rfg) ∈
PRn+1:

Sx 6= 0
Sx = Sy → x = y

0nx1 . . . xn = 0
Ini x1 . . . xn = xi

(Cfg1 . . . gm)x1 . . . xn = f(g1x1 . . . xn) . . . (gmx1 . . . xn)
(Rfg)x1 . . . xn0 = fx1 . . . xn

(Rfg)x1 . . . xn(Sy) = gx1 . . . xny((Rfg)x1 . . . xny)
Rfx1 . . . xn ↔ fx1 . . . xn = 0
A(0/x)→ ∀x(A→ A(Sx/x))→ ∀xA (complete induction)

There is no non-logical axiom for the unary relation symbol U (besides in
an instance of complete induction).

20

1.2. The Base Theory PA of Peano Arithmetic

Definition 1.12. (Arithmetical) operator forms are objects of the form

ΛX.A

for L2
PA class terms of the form A = Λx.A such that A is an arithmetical

formula with X being the only set variable that may occur in it (compare
also with Section 1.1) and x is the only free number variable that may
occur in it.2 Note that the unary relation symbol U may occur in A. We
use A,B,C,D as syntactic variables for operator forms. For each L class
terms B, we set

(ΛX.A)(B) := A(B/X)

while note that the expression A(B/X) may yield an L formula here. More-
over, if R is a unary relation symbol in L or a set variable, then we write
A(R) to denote A(Λx.Rx). Positive operator forms are operator forms
A := ΛX.Λx.A such that X occurs only positively in A.

Notation 1.13. We have the following abbreviations for some formulas
and operator forms:

• ClA(A) := ∀x(A(A, x)→ A(x)) for each operator form A and L class
term A.

and for a binary relation symbols C in LPA and any class term A, we also
have

• AccC := ΛX.Λx.∀y C x(Xy),

• ProgC(A) := ClC(A) := ClAccC(A),

• TIC := ΛX.Λx.(ProgC(X)→ ∀y C x(Xy)), and

Note that we shall usually write ProgC instead of ClC. If C is clear from
the context, we may just write Acc, Cl, Prog, and TI instead of AccC, ClC,
ProgC, and TIC, respectively.

2Recall that A := ΛX.Λx.A is intended to define an operator ΦA : P(N)→ P(N) where
A(X,x) corresponds to “x ∈ ΦA(X)” for some interpretation X ⊆ N and x ∈ N of x
and X.

21

2. Ordinal Theoretic Framework
In this chapter, we work in ZFC, i.e., in the broad set-theoretic framework
of Zermelo–Fraenkel set theory with the axiom of choice, having the class
On of ordinals at hand. The class of limit ordinals is denoted by Lim, while
ω denotes the first limit ordinal. Moreover, we write 0 for ∅, a <On b (or
just a < b) for a ∈ b, and a ≤On b (or just a ≤ b) for a ⊆ b. For a > 0, we
let Ωa denote ℵa, i.e., {Ωa : a ∈ On} is the class of all uncountable initial
ordinals, and we write Ω for Ω1 and Ω0 for 0. Over ZFC, we have that Ωa+1
is regular. A normal function is a (with respect to <) strictly increasing
continuous function f : On → On. We presuppose a knowledge about this
broad set-theoretic framework and shall use commonly used notions and
well-known properties of those tacitly, e.g.,

• the notion of club classes C with C ⊆ On and its correspondence to
normal functions (i.e., each club class C induces a normal function
enumC that enumerates the elements of C in increasing order),

• the existence of the derivative fix(f) := {a ∈ On: f(a) = a} of a
normal function f , being a club class itself,

• basic ordinal arithmetic for a, b ∈ On with (ordinal) addition a+On b
(or just a + b), (ordinal) multiplication a ·On b (or just a · b or ab),
(ordinal) exponentiation expOn(a, b) (or just ab), and the Hessenberg
sum a#On b (or just a# b),

• the usual representation of natural numbers within On as von Neu-
mann ordinals (0)On := ∅ and (n+ 1)On := {(n)On} ∪ (n)On for each
n ∈ N, while we shall from now on identify (n)On with n for each
n ∈ N.

We refer also to [Buc15] for more details on the relationship between dif-
ferent approaches to ordinal notations. It shall be clear from the context
whether < means <N or <On (and similar for the other mentioned expres-
sions).

23

2. Ordinal Theoretic Framework

Definition 2.1. Let P := {ωa : a ∈ On}. We call the elements of P
additive principal numbers.

Remark 2.2. For a ∈ P and b, c ∈ On with b, c < a, we have b+ c < a and
b+ a = a.

2.1. The Finitary Veblen Functions
Definition 2.3. The n+ 1-ary Veblen function ϕn+1 : Onn+1 → On is
obtained for each n ∈ N from the ω-exponential function and the binary
Veblen function ϕ2 by generalizing its definition principle, i.e., we let

ϕ1(c) := ωc

for each c ∈ On and define ϕn+2 for n ≥ 0 as follows:

• ϕn+2(0, ā(n), c) := ϕn+1(ā(n), c).

• If a1, ak > 0 holds for some 1 ≤ k ≤ n+ 1 with ak+1 = · · · = an+1 =
0, then ϕn+2(ā(n+1), c) denotes the c-th common fixed-point of the
functions

x 7→ ϕn+2(ā(k−1), b, x, 0̄(n−k+1))

that are defined on On and for each b < ak.

In particular, we have for the binary Veblen function that ϕ2(a, c) for
a ∈ On \ {0} is the c-th common fixed-point of the functions x 7→ ϕ2(b, x)
on On and that are given for each b ∈ On with b < a.

Notation 2.4. We often just use the following abbreviation

ϕ(a1, . . . , an) := ϕn(a1, . . . , an)

if the meaning becomes clear from the context.

Remark 2.5. We have that ϕ(0, 1, 0, 0) and ϕ(1, 0, 0) denote the Feferman-
Schütte ordinal Γ0 and ϕ(1, 0) denotes the ordinal ε0.

24

2.2. Klammersymbols

Lemma 2.6. Let k, l ∈ N and a1, . . . , ak ∈ On be given with a1 6= 0 and
ak 6= 0. Then(

b < ak & x = ϕ(ā(k), 0̄(l+1))
)

=⇒ ϕ(ā(k−1), b, 0̄(i), x, 0̄(j)) = x

holds for every b, x ∈ On and i, j ∈ N with i+ j = l.
Proof. This follows easily from Definition 2.3.

2.2. Klammersymbols
Definition 2.7. We introduce now the concept of Klammersymbols1 which
are a generalization of the finitary Veblen functions to the transfinite by
allowing arguments to be indexed by ordinals and which were introduced
by K. Schütte in [Sch54].
(a) A Klammersymbol κ is an expression of the form(

a0 . . . an
b0 . . . bn

)
for a0, . . . , an, b0, . . . , bn ∈ On and with the condition

0 ≤ b0 < . . . < bn (2.1)

(b) Two Klammersymbols κ1 and κ2 are defined to be equal in case that
κ1 and κ2 can be transformed into the same Klammersymbol by
adding or dropping of columns of the form 0

b . We denote this by

κ1 = κ2

and we write κ1 6= κ1 in case that κ1 and κ2 are not equal. Further-
more, in order to stress that κ1 and κ2 are identical we write

κ1 ≡ κ2

More precisely,
(a0 ... an
b0 ... bn

)
≡
(c0 ... cm
d0 ... dn

)
denotes that m = n holds with

ai = ci and bi = di for all i ≤ n.
1The German word Klammersymbol can be translated as “bracket symbol”, but the
term Klammersymbol is more common in setting of systems of ordinal notations.

25

2. Ordinal Theoretic Framework

(c) Given a normal function f : On → On with f(0) > 0, the value
f(κ) := fκ of a Klammersymbol κ (under f) is defined as follows:

1. If κ ≡
(a1 ... an+1
b1 ... bn+1

)
and b1 6= 0 hold, then fκ is f

(0 a1 ... an+1
0 b1 ... bn+1

)
and one of the other cases applies.

2. If κ≡
(
c
0
)
holds, then fκ is f(c).

3. If κ≡
(c a1 ... an+1

0 b1 ... bn+1

)
and ai = 0 hold for some i ∈ {1, . . . , n+ 1},

then fκ is fκ′ where κ′ is obtained from κ by deleting the column
0
bi .

4. If κ ≡
(c a1 ... an+1

0 b1 ... bn+1

)
and ai 6= 0 hold for all i ∈ {1, . . . , n + 1},

then fκ is the c-th common solution x for the following equations
and for all a′ < a1 and b′ < b1:

f
(x a′ a2 ... an+1
b′ b1 b2 ... bn+1

)
= x

(d) Given a normal function f : On→ On such that f(x) ∈ Lim holds for
all x ∈ On, the fixed-point free value f(κ) := fκ of a Klammersymbol
κ (under f) is defined as follows (see [Sch54, §3]):

f
(a0 ... an
b0 ... bn

)
:=

f
(
a0+1 a1 ... an
b0 b1 ... bn

)
if a0 = c+ k holds for
some c ∈ On and k < ω with
f
(c a1 ... an
b0 b1 ... bn

)
∈ {c, a1, . . . , an}

f
(a0 a1 ... an
b0 b1 ... bn

)
otherwise

Remark 2.8. For all Klammersymbols α1 and α2, there exist ordinals
a0, . . . , an, b0, . . . , bn and ordinals c0, . . . , cn with c0 < . . . < cn such that
α1 =

(
a0 ... an
c0 ... cn

)
and α2 =

(
b0 ... bn
c0 ... cn

)
hold, simply by adding or removing

of columns of the form 0
ci where necessary.

Definition 2.9. A lexicographic order < on Klammersymbols is defined
for Klammersymbols α and β with α 6= β as follows:

1. If α =
(
a0 ... an
c0 ... cn

)
and β =

(
b0 ... bn
c0 ... cn

)
hold for some a0, . . . , an,

b0, . . . , bn, c0, . . . , cn, and if i ≤ n is the largest index with ai 6= bi,
then we have α < β in case of ai < bi and β < α otherwise.

2. If α = α′, β = β′, and α < β, then also α′ < β′.

26

2.2. Klammersymbols

Proposition 2.10.

(a) The function x 7→ f
(

1
x

)
is normal. In particular, we have f

(
1
z

)
=

supx<z f
(

1
x

)
for each z ∈ Lim.

(b) If f(x) ∈ Lim holds for all x ∈ Lim, then we have f
(

1
x

)
= f

(
1
x

)
for

each x ∈ On.

Proof. Since we assumed f(0) > 0 holds, the first claim is immediate
from [Sch54, (4.1)–(4.3)]. For the second claim, note in particular that
f
(

0
x

)
= f(0) 6= 0 for each x ∈ On implies by the definition of f

(
1
x

)
that

f
(

1
x

)
= f

(
1
x

)
holds.

Definition 2.11. Recall that we defined

ϕ(x) = ϕ1(x) = ωx

in Section 2.1 for all x ∈ On. We now let

ϕ•(x) := ω1+x

for all x ∈ On, and further for all x1, . . . , xn ∈ On, we define

ϕ1xn . . . x0 := ϕ1

(
x0 . . . xn
0 . . . n

)
ϕ•xn . . . x0 := ϕ•

(
x0 . . . xn
0 . . . n

)
ϕ•xn . . . x0 := ϕ•

(
x0 . . . xn
0 . . . n

)
Definition 2.12. The large Veblen ordinal V is defined as

V := min{a : a = ϕ1
(

1
a

)
}

and the small Veblen ordinal v is defined as

v := ϕ1
(

1
ω

)

27

2. Ordinal Theoretic Framework

Convention 2.13.

(a) f : On→ On shall be for the remainder of Subsection 2.2 any normal
function with the property

f(0) > 0

(b) a, b, c, d, . . . are primarily used as syntactic variables for On.

(c) α, β, γ, δ, κ, ρ, σ, τ, . . . are primarily used as syntactic variables for
Klammersymbols.

2.2.1. Recursion Properties
Proposition 2.14. For each Klammersymbol

(
a0 ... an
c0 ... cn

)
, we have the fol-

lowing:

(a) a0 ≤ f
(
a0 ... an
c0 ... cn

)
(b) In case of a0 6= 0, we have that ai < f

(
a0 ... an
c0 ... cn

)
holds for all i ∈

{1, . . . , n}.

In general, we have a0, . . . , an ≤ f
(
a0 ... an
c0 ... cn

)
.

Proof. By (3.3) and (6.1) in [Sch54], we have

a0 ≤ f
(
a0 ... an
c0 ... cn

)
(2.2)

a0 6= 0 ⇒ ai < f
(
a0 ... an
c0 ... cn

)
for all i ∈ {1, . . . , n} (2.3)

respectively, and the remaining claim follows by induction on n.

Proposition 2.15. Let α :=
(a1 ... an+1
c1 ... cn+1

)
be a Klammersymbol. For each

Klammersymbol β with α < β, the following holds:

(a) fα = fβ holds if and only if k ∈ {1, . . . , n+ 1} exists such that
ak = fβ and the following holds:
• ai = 0 for each i with 1 ≤ i < k, and
• ai < fβ for each i with k < i ≤ n+ 1.

(b) fα < fβ holds if ai < fβ holds for all i ∈ {1, . . . , n+ 1}.

28

2.2. Klammersymbols

(c) fβ < fα holds if
• either fβ < ak holds for some k ∈ {1, . . . , n+ 1}, or
• n ≥ 1 and j, k ∈ {1, . . . , n+ 1} exist such that j < k, aj 6= 0,
and ak = fβ.

Proof. See (7.1)–(7.4) in [Sch54]. Note that the negation of the condition
given in (a) yields the conditions stated in (b) and (c). For this, note in
particular that ak = fβ implies ak 6= 0 and hence if ai = 0 holds for each
i with 1 ≤ i < k and the condition of (a) does not hold, then k < n + 1
holds and i exists with ai ≥ fβ and k < i ≤ n + 1, leading to one of the
conditions in (c).

Lemma 2.16. We have

ϕn+1(a1, . . . , an+1) = ϕ1
(an+1 an ... a1

0 1 ... n

)
where we denoted with 0, 1, . . . , n in the Klammersymbol’s second row am-
biguously the corresponding finite ordinals.

Proof. If n = 0 or a1 = · · · = an+1 = 0 holds, then the claim is clear.
Otherwise, assume n 6= 0 and without loss of generality that a1 6= 0 holds.
Further, let k ∈ {1, . . . , n} with ak 6= 0 and ak+1 = · · · = an = 0. The claim
now follows by transfinite induction on ak since ϕ(ā(n+1)) is the an+1-th
common fixed-point of the functions

x 7→ ϕ(ā(k−1), b, x, 0̄(n−k))

given for each b < ak. Now, we get

ϕ(ā(k−1), b, x, 0̄(n−k)) = f
(0 ... 0 x b ak−1 ... a1

0 ... n−(k+1) n−k n−(k−1) n−(k−2) ... n

)
= f

(x b ak−1 ... a1
n−k n−(k−1) n−(k−2) ... n

)
from the induction hypothesis and for each x ∈ On. Hence the claim follows
from Definition 2.7 and Lemma 2.6.

Corollary 2.17. Let n ≥ 1 and ordinals a1, . . . , an be given, then we have
the following:

(a) ai ≤ ϕ(ā(n)) for all i ∈ {1, . . . , n}.

29

2. Ordinal Theoretic Framework

(b) If ak 6= 0 for some k ∈ {1, . . . , n}, then ai < ϕ(ā(n)) holds for all
i ∈ {1, . . . , k − 1}.

Proof. This follows from Proposition 2.14 and Lemma 2.16.

Corollary 2.18. Let n ≥ 1 and ordinals a1, . . . , an, b1, . . . , bn be given.
Then ϕ(ā(n)) < ϕ(b̄(n)) holds if and only if some r ∈ {1, . . . , n} exists such
that ar 6= br holds with ai = bi for all i ∈ {1, . . . , r− 1}, and such that one
of the following holds:

1. ar < br and ai < ϕ(b̄(n)) for all i ∈ {r + 1, . . . , n}, or

2. br < ar and
• either ϕ(ā(n)) < bk holds for some k ∈ {1, . . . , n}, or
• ϕ(ā(n)) = bk and bi 6= 0 for some i, k ∈ {1, . . . , n} with k < i.

Proof. This follows immediately from Proposition 2.15 and Lemma 2.16.
For the first case ar < br, note that ai < ϕ(b̄(n)) holds anyway for i ∈
{1, . . . , r} by Corollary 2.17: On the one hand, we have br ≤ ϕ(b̄(n)) and
so ar < ϕ(b̄(n)), and on the other hand, ar < br also implies br 6= 0 which
by Corollary 2.17.(b) gives ai = bi < ϕ(b̄(n)) for i ∈ {1, . . . , r − 1}.

Definition 2.19. Let n ≥ 1.

(a) a1, . . . , an are in normal form (w.r.t. ϕn) in case that ai < ϕ(ā(n))
holds for each 1 ≤ i ≤ n, and we denote this by NFϕn(ā(n)).

(b) b =NF ϕ(ā(n)) denotes b = ϕ(ā(n)) and NFϕn(ā(n)).

Lemma 2.20. Let n ≥ 1, k ∈ {1, . . . , n}, and b1, . . . , bn, a1, . . . , an ∈ On
be given with bk =NF ϕ(ā(n)) and bk+1 = · · · = bn = 0. Then NFϕn(b̄(n))
holds if and only if ar 6= br holds for some r ∈ {1, . . . , k} with ai = bi for
all i ∈ {1, . . . , r − 1} and one of the following holds:

1. ar < br, or

2. br < ar and for some i ∈ {1, . . . , n}, we have bk ≤ bi.
(In particular, it suffices here to have i ∈ {r + 1, . . . , k − 1}.)

30

2.2. Klammersymbols

Proof. Note that we have bk 6= 0 by our assumption bk =NF ϕ(ā(n)), and
hence by Corollary 2.17 and NFϕn(ā(n)), we have

ai < bk ≤ ϕ(b̄(n)) (2.4)

for all i ∈ {1, . . . , n} and also bi < ϕ(b̄(n)) for all i ∈ {1, . . . , k − 1}.
Furthermore, there has to be some r ∈ {1, . . . , k} such that ar 6= br and
ai = bi holds for all i ∈ {1, . . . , r− 1} since we have ak < bk. Recalling the
assumption bk+1 = · · · = bn = 0, we thus have that NFϕn(b̄(n)) holds if and
only if bk < ϕ(b̄(n)) holds, i.e., ϕ(ā(n)) < ϕ(b̄(n)). By Corollary 2.18 this is
equivalent to the following two situations:
1. If ar < br: We need ai < ϕ(b̄(n)) for each i ∈ {r + 1, . . . , n}. But this
holds anyway as we have noted in (2.4).
2. If ar > br: We need some i ∈ {1, . . . , k} such that either bi > ϕ(ā(n)) =
bk holds, or otherwise bi = ϕ(ā(n)) = bk holds and there is some i < j ≤ k
such that bj 6= 0 holds. In both cases, i = k is trivial, moreover recall
that bk 6= 0 holds. Hence, bk ≤ bi for some i ∈ {1, . . . , n} suffices in this
situation. Actually, i ∈ {r+ 1, . . . , k− 1} is enough since otherwise bk ≤ bi
can never hold: We have that bi ≤ ar < ϕ(ā(n)) = bk holds for all 1 ≤ i ≤ r
and that bi = 0 holds for all k ≤ i ≤ n.

Remark 2.21. In Lemma 2.20, we took the lists of ordinals a1, . . . , an and
b1, . . . , bn to have the same length n ≥ 2 in order to simplify the formulation
and proof of the lemma. Clearly, the lemma holds analogously for lists of
ordinals with different length ≥ 2 (just add ordinals of the form 0 to the
front of the shorter list to make them the same length).

Proposition 2.22. Assume that f(x) ∈ Lim holds for all x ∈ On. Then
we have for all Klammersymbols α :=

(
a0 ... an
c0 ... cn

)
and β the following:

(a) fα = fβ ⇐⇒ α = β.

(b) If α < β holds, then we have:
(i) fα < fβ ⇐⇒ ai < fβ holds for all i ≤ n.
(ii) fβ < fα ⇐⇒ fβ ≤ aj holds for some j ≤ n.

Proof. See (8.3) and (8.4) in [Sch54].

31

2. Ordinal Theoretic Framework

Proposition 2.23.
(a) ϕ1(x) = ϕ•(x) holds for all x ∈ On with ω < x.

(b) Given x0, . . . , xn ∈ On such that xj 6= 0 holds for some 1 ≤ j ≤ n,
then we have ϕn(xn, . . . , x1) = ϕ•xn . . . x1.

(c) ϕ•(x) ∈ Lim and ϕ•
(

1
x

)
= ϕ1

(
1
x

)
= ϕ•

(
1
x

)
hold for all x ∈ On.

(d) v is the least ordinal a > 0 not expressible from ordinals smaller than
a and by means of ordinal addition and the finitary Veblen functions.
Moreover, the following correspondences hold

ω = ϕ2(0, 1) = ϕ•00 = ϕ•
(

0
0
)

ε0 = ϕ2(1, 0) = ϕ•10 = ϕ•
(

1
1
)

ϕ2(ω, 0) = ϕ•ω0 = ϕ•
(
ω
1
)

Γ0 = ϕ3(1, 0, 0) = ϕ•100 = ϕ•
(

1
2
)

where for ϑΩω, we used a notation from [RW93].
Proof. This follows from the definitions and the previous results. For (d),
note that ϕ•ω0 = ϕ•ω0 holds because of Definition 2.7 and ω 6= ϕ•

(
ω
1
)
.

2.2.2. Klammersymbols as Denotations for Functions
Definition 2.24. For all Klammersymbols α :=

(a1 ... an+1
b1 ... bn+1

)
and a ∈ On,

we define {α}a ∈ On as follows:

{α}a := ϕ•
(a a1 ... an+1

0 1+b1 ... 1+bn+1

)
Corollary 2.25. For all Klammersymbols α, β and all a0, b0 ∈ On we have
the following:
(a) {α}a0 = {β}b0 ⇐⇒ α = β & a0 = b0

(b) If α = β holds, then we have: {α}a0 < {β}b0 ⇐⇒ a0 < b0.

(c) If α < β holds and if we let α≡
(a1 ... an+1
c1 ... cn+1

)
, then we have:

(i) {α}a0 < {β}b0 ⇐⇒ ai < {β}b0 holds for all i ≤ n+ 1.
(ii) {β}b0 < {α}a0 ⇐⇒ {β}b0 ≤ aj holds for some j ≤ n+ 1.

32

2.2. Klammersymbols

Proof. This follows from Proposition 2.22. In particular for (b), assuming
α = β and letting

α′ :=
(a0 a1 ... an+1

0 1+c1 ... 1+cn+1

)
β′ :=

(b0 a1 ... an+1
0 1+c1 ... 1+cn+1

)
we have the following:
1. If {α}a0 < {β}b0 holds, then this rewrites to ϕ•α′ < ϕ•β

′ and hence by
Proposition 2.22.(a), we must have a0 6= b0. In particular, we must have
a0 < b0 because otherwise b0 < a0 implies β′ < α′ and hence we would
get by Proposition 2.22.(b).(ii) and due to ϕ•α′ < ϕ•β

′ with β′ < α′ that
ϕ•α

′ ≤ b0 holds (while note that a1, . . . , an+1 < ϕ•α
′ always holds). Since

also a0 < ϕ•α
′ always hold, we get a contradiction from b0 < a0.

2. Conversely, if a0 < b0 holds, then we get also {α}a0 < {β}b0.

Corollary 2.26. We have the following correspondences:

ω1+a = {
(

0
0
)
}a

εa = {
(

1
0
)
}a

ϕ2(ω, a) = {
(
ω
0
)
}a

Γa = {
(

1
1
)
}a

Proof. Immediate from Proposition 2.23.

2.2.3. Representation Properties

Remark 2.27. We have that {a : a = ϕ1
(

1
a

)
} is club and hence non-empty

by Proposition 2.10, and we have

V = min{a : a = ϕ•
(

1
a

)
}

= min{a : a = ϕ•
(

1
a

)
}

= min{a : a = {
(

1
a

)
}0}

by Proposition 2.23, while the last equation is due to the fact that a ∈ Lim
holds for all a with a = ϕ1

(
1
a

)
. Moreover, we remark that V corresponds

to ϑΩΩ from [RW93].

33

2. Ordinal Theoretic Framework

Lemma 2.28. Let now c ∈ On \ {0} be given with c < v. Then we have
c = c1 + . . .+ cn for some n ≥ 1 with c ≥ c1 ≥ . . . ≥ cn such that

ci = ϕ1
(ai,1, ... ai,ki
bi,1, ... bi,ki

)
holds for some k1, . . . , kn ∈ N and such that ai,j , bi,j < ci holds for all
1 ≤ i ≤ n and 1 ≤ j ≤ ki. In case of n > 1, we further have ci < c for
each 1 ≤ i ≤ n.

Proof. Assume c 6= 0 and let c = ωd1 ·m1 + . . . + ωdl ·ml be the Cantor
Normal Formal of c at base ω, i.e., we have 0 < m1, . . . ,ml < ω and
d1 > . . . > dl. Due to m1, . . . ,ml < ω, we have

c = ωe1 + . . .+ ωen

for some n ≥ 1 with e1 ≥ . . . ≥ en, while in case of n > 1 also ωei < c holds
for each 1 ≤ i ≤ n. From c < v follows c < ϕ1

(
1
c

)
, we can use [Sch54,

(5.1)] in order to get

ωei = ϕ1
(ai,1, ... ai,ki
bi,1, ... bi,ki

)
for some ki ∈ N and ai,j , bi,j < ωei for all 1 ≤ j ≤ ki because ωei = ϕ1(ei)
holds. This implies the claim with ci := ωei for 1 ≤ j ≤ ki.

Proposition 2.29. Let c < V be given, then there exist unique n ∈ N and
c0, . . . , cn ∈ On such that c = cn + . . .+ c0 holds with

c0 < ω

ω ≤ c1 ≤ . . . ≤ cn

while we have for n 6= 0 and each i ∈ {1, . . . , n} that

ci = {
(a1 ... ak+1
b1 ... bk+1

)
}a0 ≤ c

holds for some k ∈ N and a0, . . . , ak+1, b1, . . . , bk+1 < ci.

Proof. In case of c < ω, we can take n := 0 and c0 := c. Assume now
c ≥ ω and let c = ωdl · el + . . .+ ωd0 · e0 be the Cantor Normal Formal of
c at base ω, i.e., we have 0 < e0, . . . , el < ω and 0 ≤ d0 < . . . < dl ≤ c.
Due to e0, . . . , el < ω, we have c = (ωfn + . . .+ ωf1) + c0 for some c0 < ω

34

2.3. The ϑ-function

and some n ∈ N with 0 < f1 ≤ . . . ≤ fn. Furthermore, we have for each
i ∈ {1, . . . , n} that ωfi = ϕ•(gi) holds for some gi ≤ fi (more precisely, in
case of fi < ω we have fi = f ′i + 1 and can take gi := f ′i , while otherwise
we take gi := fi). We have ϕ•(gi) < {

(1
ϕ•(gi)

)
}0 since ωfi ≤ c < V holds,

and hence we can set ci := ωfi and use Corollary 2.31 in order to get the
claim.

Proposition 2.30. Assume that f(x) ∈ Lim holds for all x ∈ On and let
c ∈ On be such that c < f

(
1
c

)
and c = f(d) hold for some d ∈ On. Then

there exist n ∈ N and a0, . . . , an, b0, . . . , bn < c such that c = f
(a0 ... an
b0 ... bn

)
holds.

Proof. See (8.1) in [Sch54].

Corollary 2.31. Let c ∈ On be such that c < {
(

1
c

)
}0 holds with c = ϕ•(d)

for some d ∈ On. Then there exist n ∈ N and a0, . . . , an+1, b1, . . . , bn+1 < c
such that we have

c = {
(a1 ... an+1
b1 ... bn+1

)
}a0

Proof. This follows from Proposition 2.30.

2.3. The ϑ-function
See [RW93] and [Buc15] for more details.

Definition 2.32 ([RW93, 1.]). Sets of ordinals C(α, β), Cn(α, β), and
ordinals ϑα are defined by main recursion on α < εΩ+1 and subsidiary
recursion on n < ω (for β < Ω) as follows:

1. {0,Ω} ∪ β ⊆ Cn(α, β),

2. (γ, δ ∈ Cn(α, β) & ξ =NF ω
γ + δ) =⇒ ξ ∈ Cn+1(α, β),

3. δ ∈ Cn(α, β) ∩ α =⇒ ϑδ ∈ Cn+1(α, β),

4. C(α, β) :=
⋃
{Cn(α, β) : n < ω},

5. ϑα := min{ξ < Ω: C(α, ξ) ∩ Ω ⊆ ξ ∧ α ∈ C(α, ξ)}.

35

2. Ordinal Theoretic Framework

where we used ξ =NF ωγ + δ to denote that ξ = ωγ + δ holds such that
either δ = 0 and γ < ξ hold, or such that δ = ωδ1 + . . . + ωδk holds with
γ ≥ δ1 ≥ . . . ≥ δk and k ≥ 1.

Notation 2.33. As it is given in [RW93], we introduce also the following
notation Ω(n, x) for all n ≥ 1 and all x ∈ On:

Ω(1, x) := Ωx

Ω(n+ 1, x) := ΩΩ(n,x)

In contrast to [RW93], we extend this notion also to n = 0 as follows:

Ω(0, x) := Ω · x

Proposition 2.34. We have ϑΩω = ϕ1
(

1
ω

)
= {
(

1
ω

)
}0 = v.

Proof. This is due to [Sch92]. See also [Buc15] and note Subsection 2.2.2.

Remark 2.35. We remark that for the Buchholz ψ-functions from [BS88] or
the Feferman-Aczel θ-functions from [Bri75], we have the correspondence
ϑΩω = ψ0ΩΩω = θΩω0. See also the last paragraph in [Rat92].

2.4. Cherry-Picking from [Sch92] and [Buc15]:
ϑα̃ = ϕEα

We give some remarks on the correspondence of the ϑ-function for argu-
ments smaller than ΩΩ and the ordinals obtained via the concept of Klam-
mersymbols. We shall get to a generalized form of Proposition 2.34, i.e., to
the core result of [Sch92]. It has been rephrased in [Buc15], while consid-
ering a more complex setting that compares many other ordinal-theoretic
approaches for describing ordinals around the Bachmann-Howard ordinal.

In this small section, we focus on certain results of [Buc15] that provide
the correspondence of the ϑ-function to Klammersymbols. First, we note
that Klammersymbols represent in a straight-forward way ordinals smaller

36

2.4. Cherry-Picking from [Sch92] and [Buc15]: ϑα̃ = ϕEα

than ΩΩ. Namely, if α is a Klammersymbol such that

α≡
(
a0 . . . an
b0 . . . bn

)
holds with 0 < ai < Ω for each i ≤ n and b0 < . . . < bn < Ω, then

α̃ := Ωbnan + . . .+ Ωb0a0

is an ordinal such that α̃ < ΩΩ holds and which is in Cantor Normal Formal
(at base Ω). Letting ϕE denote the function x 7→ εx on On, we obtain

ϑα̃ = ϕEα (∗)

We refer to the paragraph “Note on Klammersymbols” in [Buc15] for this
result. Furthermore, we get

ϑ(Ω · ω) = ϕE
(
ω
1
)

(2.5)
= ϕE

(
ω
1
)

(2.6)
= ϕP

(
ω
1
)

(2.7)
= ϕ(ω, 0) (2.8)

where we let ϕE(x) := εx and ϕP(x) := ωx (i.e., ϕP is ϕ1 from Section 2.1)
and where (2.5) is due to (∗) (or [Sch92]), (2.6) is due to Definition 2.7,
(2.7) is due to the fact that ϕE

(
n
1
)

= ϕP
(
n+1

1
)
holds for n < ω, and (2.8)

is essentially due to Lemma 2.16. Similarly, we have

ϑ(Ω · Ω) = ϕ1100 = Γ0

37

2. Ordinal Theoretic Framework

2.5. Proof-Theoretic Ordinal
Following [Poh09, page 100], we define for every theory T whose language
LT includes the language of arithmetic (possibly via an interpretation2)
the proof-theoretic ordinal |T| of T to be the ordinal

sup{otyp(≺) : (≺ is a primitive recursive linear order) & T ` TI(≺,U)}

where otyp(≺) denotes the order type of ≺, U shall be the special unary
relation from Definition 1.1, and TI(≺,U) abbreviates

Prog≺(U)→ ∀x ∈ field(≺)(x ∈ U)

and where Prog≺(U) is defined according to Notation 1.13. This means
that |T| denotes the supremum of the order types of primitive recursive
linear orderings ≺ that can be proven in T to be wellfounded (noting that
TI≺(U) corresponds to the Π1

1-statement “∀X(TI≺(X))”).
In particular, this means that for determining a lower bound a of |T|, it

suffices to set up first an ordinal notation system (OT,≺) that corresponds
to a, e.g., as we shall do in Chapter 3 or Chapter 4, and then prove that

T ` TI≺(U, b)

holds for all b ∈ OT and where TI≺(U, b) is according to Notation 1.13.
Furthermore, for determining an upper bound a of |T|, it suffices to embed
T into another theory T′ for which it is known to fulfill |T′| ≤ a. In
particular, it already suffices here to show that each arithmetical formula
that is provable in T can be proven in T′ because TI(U, b) is arithmetical.
Compare this with Chapter 9.

2As it is the case with LFIT, see also Section 6.2. This thesis investigates only theories
that comprise the language of arithmetic (directly or via an interpretation).

38

3. Ordinal Notations for the
Small Veblen Ordinal

In order to determine the lower bound for the proof-theoretic ordinal of
both FIT and TID, we shall carry out wellordering proofs within TID in
Chapter 7. We therefore need a framework for ordinals and ordinal nota-
tions which we shall introduce in the following sections. We rely on the
literature for most of the preparatory work that is needed to formulate the
ordinals that are involved here and try to explain only as much as to make
this chapter sufficiently self-contained.

3.1. The Ordinal Notation System (OT,≺)
For carrying out the wellordering proofs in TID, we shall fix a primitive
recursive notation system (OT,≺) for ordinals below the small Veblen or-
dinal. It is based on Lemma 2.20 (essentially on (7.1)–(7.4) in [Sch54]).
The representation of the following material was inspired by [Buc05]. The
properties of (OT,≺) can be formalized and established within PA.

Definition 3.1. Using the coding machinery from Definition 1.5, we set:

φā(n+1) := φa1 . . . an+1 := φ(a1, . . . , an+1) := 〈1, a1, . . . , an+1〉

1̃ := φ0 a⊕ b :=
{
a if b = 0
〈2, a, b〉 otherwise

PT+ := {φā(n+1) : a1 6= 0 & a1, . . . , an+1 ∈ N}
= {a : lh(a) ≥ 2 ∧ (a)0 = 1 ∧ (a)1 6= 0}

PT := PT+ ∪ {1̃}

hd(a) :=
{
a if a ∈ PT
(a)1 otherwise

tl(a) :=
{

0 if a ∈ PT
(a)2 otherwise

39

3. Ordinal Notations for the Small Veblen Ordinal

Definition 3.2. Moreover, for any binary relation C on N, we define the
(length-sensitive) lexicographic order Clex with respect to C recursively as
follows. aClex b holds for any a, b ∈ N if and only if:

1. lh(a) < lh(b) holds, or

2. lh(a) = lh(b) holds and there is some k < lh(a) with (a)k C (b)k such
that (a)i = (b)i holds for all i < k.

Example 3.3. Note that 〈1, 2〉 <lex 〈1, 1, 3〉 holds but not 〈1, 1, 3〉 <lex
〈1, 2〉 and that 〈1, 2〉 corresponds to 〈0, 1, 2〉 here. If we have a < b, then
〈a, a〉 <lex 〈a, b〉 holds but not 〈b, a〉 <lex 〈a, b〉. Note that Clex is primitive
recursive if C is.

Definition 3.4. Motivated by Corollary 2.18 and Lemma 2.20, we now
define simultaneously the primitive recursive set OT of ordinal notations
and the binary primitive recursive relation ≺ on OT. We have c ∈ OT if
and only if one of the following cases holds:

1. c = 0 or c = 1̃ holds.

2. c ∈ PT+ holds with c = φā(m+1)0̄(k) for some a1, . . . , am+1 ∈ OT
such that am+1 6= 0 and one of the following cases holds:

(i) am+1 6∈ PT+,
(ii) am+1 ∈ PT+ and am+1 ≺lex c, or
(iii) am+1 ∈ PT+, c ≺lex am+1 and am+1 � aj holds for some

1 ≤ j ≤ m.

3. c = a⊕ b holds for some a, b ∈ OT and such that a ∈ PT, b 6= 0, and
hd(b) � a hold.

With a � b, we abbreviate in general a ≺ b ∨ (a = b ∧ a ∈ OT ∧ b ∈ OT).
Now, a ≺ b holds if and only if a, b ∈ OT and one of the following cases
hold:

1. a = 0 and b 6= 0 hold.

2. a = 1̃, b 6= 0, and b 6= 1̃ hold.

3. a ∈ PT+ and b ∈ PT+ hold with a = φā(m+1)0̄(k) and b = φb̄(n+1)0̄(l)

such that am+1, bn+1 6= 0 and one of the following cases hold:

40

3.1. The Ordinal Notation System (OT,≺)

(i) a ≺lex b and ai ≺ b for all 1 ≤ i ≤ m+ 1, or
(ii) b ≺lex a and a ≺ bn+1 or a � bj for some 1 ≤ j ≤ n.

4. a = a1 ⊕ a2, b = b1 ⊕ b2, and a1, b1 ∈ PT hold with a2 6= 0 or b2 6= 0
such that one of the following cases holds:
(i) a1 ≺ b1 or
(ii) a1 = b1 and a2 ≺ b2.

We use common abbreviations in combination with these notions, e.g.,
a 6≺ b abbreviates ¬(a ≺ b), (∀x � t)A abbreviates ∀x(x � t → A), and
analogously (∃x � t)A abbreviates ∃x(x � t ∧A).

Remark 3.5.

(a) For a ∈ OT, we have that φa ≺lex a is impossible since in Defini-
tion 3.4, in order to have φā(m+1)0̄(k) ∈ OT for m = 0, there are no
aj with 1 ≤ j ≤ m.
So φa ∈ OT holds if and only if a 6∈ PT+ or a ∈ PT+ with a ≺lex φa
holds, i.e., a = φb with b ≺ a. Correspondingly, φa 6∈ OT holds if
and only if a1 ∈ PT+ and φa ≺lex a hold, i.e., a = φb̄(n+2) for some
n ≥ 0.

(b) Note that due to the definition of OT, for each a ∈ OT with a 6= 0
there are unique a1, a2 ∈ OT such that a = a1⊕a2 and a1 ∈ PT hold:
Either a ∈ PT and we have a = a ⊕ 0, or a = 〈2, a1, a2〉 = a1 ⊕ a2
and a1 ∈ PT holds.

(c) When we write a = a1 ⊕ a2 for a ∈ OT, then we usually mean that
a1 ∈ PT holds. Nevertheless, we shall often stress that a1 ∈ PT holds
in order to avoid confusion. Note for example that with a1 := φ0⊕φ0,
we have a1 ⊕ 0 = a1 ∈ OT by the definition of ⊕ but we also have
a1 6∈ PT.

(d) Let a = φā(m+1)0̄(k) and b = b1 ⊕ b2 with b2 6= 0, then we obviously
have a1, . . . , am+1 <N a and b1, b2 <N b. Moreover a 6= 0 and b 6= 0
hold.

Theorem 3.6. (OT,≺) and (PTOT,≺lex) are strict total orders, where
we let here PTOT := {φā(n+1) ∈ PT: a1, . . . , an+1 ∈ OT}.

41

3. Ordinal Notations for the Small Veblen Ordinal

Proof. By a straightforward but long and cumbersome induction on the
build-up of OT, see A.1 in the appendix for details.

Remark 3.7. We include the proof of the following lemma in order to make
the reader more familiar with (OT,≺).

Lemma 3.8. Let a ∈ OT.

(a) If a = a1 ⊕ a2 with a1 ∈ PT and a2 6= 0, then a1, a2 ≺ a.

(b) If a = φā(m+1)0̄(k) with am+1 6= 0, then ai ≺ a for each 1 ≤ i ≤ m+1.

Proof. For (a), we have 0 ≺ a2, hence we get a1 = a1⊕0 ≺ a1⊕a2 = a. We
show a2 ≺ a by induction on a2: Since a2 6= 0 holds, we have b1, b2 ∈ OT
such that a2 = b1 ⊕ b2 and b1 ∈ PT hold (cf. Remark 3.5). Due to a ∈ OT
and a = a1 ⊕ a2, we have b1 = hd(a2) � a1 by definition of OT. If b2 = 0,
then we have a2 = b1 � a1, and since we have already shown a1 ≺ a, we
get a2 ≺ a by transitivity. If b2 6= 0, we get b2 ≺ a2 by the induction
hypothesis on a2 (note that a2 <N a holds), and with b1 � a1, we have
a2 = b1 ⊕ b2 ≺ a1 ⊕ a2 = a.

For (b), we proceed by a (main) induction on a ∈ OT, assuming
a = φā(m+1)0̄(k) with am+1 6= 0. As an auxiliary statement, we show for
all b ∈ N:

If b � aj and b ≤N aj hold for some 1 ≤ j ≤ m+ 1,
then b ≺ a holds.

}
(∗)

This implies the main claim by taking b ∈ {a1, . . . , am+1}. We prove (∗)
by a side induction b.
1. b = 0: b ≺ a holds trivially, since a 6= 0.
2. b = 1̃: We have a ∈ PT+, hence a 6= 0 and a 6= 1̃, yielding b ≺ a
immediately by the definition of ≺.
3. b ∈ PT+ with b = φb̄(n+1)0̄(l) and bn+1 6= 0: By b ≤N aj <N a and the
main induction hypothesis, we get b1, . . . , bn+1 ≺ b, and hence by b � aj
and transitivity of ≺ we get also

b1, . . . , bn+1 ≺ aj (3.1)

Further, we have b1, . . . , bn+1 <N b, and we get from (3.1) and the side

42

3.2. Ordinal Arithmetic within (OT,≺)

induction hypothesis

b1, . . . , bn+1 ≺ a (3.2)

We consider the following cases:
3.1. b ≺lex a: By (3.2) and the definition of ≺, we get b ≺ a.
3.2. a ≺lex b: We consider the following cases.
3.2.1. b � ak for some 1 ≤ k ≤ m: By definition, we get b ≺ a.
3.2.2. ai ≺ b for all 1 ≤ i ≤ m: Hence b � am+1 must hold because our
assumption from the premiss of (∗) now implies j = m + 1. If b = am+1,
then we have am+1 = b ∈ PT+ and a ≺lex b = am+1, hence with a ∈ OT
and the definition of OT, we get b = am+1 � ak for some 1 ≤ k ≤ m. But
this contradicts our assumption that ai ≺ b holds for all 1 ≤ i ≤ m. Hence
b ≺ am+1 holds and we get b ≺ a by definition of ≺.
4. b = b1 ⊕ b2 with b1 ∈ PT and b2 6= 0. Then b1 ≺ b holds by (a), and
since we have b1 <N b, we get by the side induction hypothesis that b1 ≺ a
holds, hence we get b = b1 ⊕ b2 ≺ a⊕ 0 = a due to a ∈ PT.

3.2. Ordinal Arithmetic within (OT,≺)
We point out that the following definitions and properties can be formalized
and established within PA.

Definition 3.9. In order to simulate ordinal addition and the finitary
Veblen functions within OT, we introduce the following primitive recursive
functions on natural numbers:

(a) For each a, b ∈ N, we define

a +̃ b :=

a if a ∈ OT and b = 0
b if a = 0 and b ∈ OT \ {0}
hd(a)⊕ (tl(a) +̃ b) if a, b ∈ OT \ {0} and

hd(b) � hd(a)
b if a, b ∈ OT \ {0} and

hd(a) ≺ hd(b)
0⊕ 1̃ otherwise, i.e.,

if a 6∈ OT or b 6∈ OT

43

3. Ordinal Notations for the Small Veblen Ordinal

(b) For each n ∈ N and ā(n+1) ∈ N, we define:

ϕ̃n+1(ā(n+1)) :=

φā(n+1) if φā(n+1) ∈ OT
cr(〈ā(n+1)〉) if φā(n+1) 6∈ OT,

a1, . . . , an+1 ∈ OT,
and a1 6= 0

ϕ̃n(a2, . . . , an+1) if φā(n+1) 6∈ OT,
a1, . . . , an+1 ∈ OT,
and a1 = 0

0⊕ 1̃ otherwise, i.e.,
if aj 6∈ OT holds
for some 1 ≤ j ≤ n+ 1

and

cr(〈ā(n)〉) :=

0 if n = 0
cr(〈ā(n−1)〉) if n 6= 0 and an = 0
an otherwise

and since the index n+ 1 will be clear from the context, we also just
write ϕ̃(a1, . . . , an+1) in order to denote ϕ̃n+1(a1, . . . , an+1).

Remark 3.10. Note that n 6= 0 holds in the third clause of the definition
of ϕ̃n+1(ā(n+1)). Furthermore, the naming of cr : N → N is motivated
from the intention of returning a fixed-point of ϕ̃n+1 and that fixed-points
β = ϕ(α, β) of the binary Veblen function are sometimes called critical in
the literature.

Definition 3.11. We further introduce the following notations for every
a, x ∈ N:

ω̃a := ϕ̃(a) ε̃a := ϕ̃(1̃, a) a ·̃ x :=
{

0 if x = 0
a⊕ (a ·̃ x0) if x = x0 +N 1

ω̃ := ω̃1̃(= φ(φ0)) ω̃x(a) :=
{
a if x = 0
ω̃ω̃x0 (a) if x = x0 +N 1

44

3.2. Ordinal Arithmetic within (OT,≺)

Definition 3.12.

last(a) :=
{

last(a2) if a = a1 ⊕ a2 and a2 6= 0
a otherwise

Lim := {a ∈ OT: a 6= 0 ∧ last(a) 6= 1̃} Suc := {a ∈ OT: last(a) = 1̃}

Elements of Lim are called limits and elements of Suc are called successors.

Lemma 3.13. Let a, b, a1, . . . , an+1, x ∈ N, then we have:

(a) a ·̃ 0 ∈ OT.

(b) a ·̃ (x+N 1) ∈ OT ⇐⇒ a ∈ OT.

(c) ϕ̃(ā(n+1)) ∈ OT ⇐⇒ a1, . . . , an+1 ∈ OT.

(d) ω̃x(a) ∈ OT ⇐⇒ a ∈ OT.

(e) a +̃ b ∈ OT ⇐⇒ a, b ∈ OT.

Proof. (a), (b), (c), and (d) follow easily from the definitions (noting that
0⊕ 1̃ 6∈ OT holds). For (e), the only nontrivial case is if we have

a, b ∈ OT \ {0} & hd(b) � hd(a) (3.3)

Then we have to show

hd(a)⊕ (tl(a) +̃ b) ∈ OT

and we do this by induction on a. Furthermore, we let

c := tl(a) +̃ b

1. If a ∈ PT: We have hd(a) = a, tl(a) = 0, and that 0 +̃ b = b holds. So,
we get a +̃ b = a ⊕ (0 +̃ b) = a ⊕ b and we are done because of a ∈ PT
and (3.3).
2. If a 6∈ PT: Note that we get tl(a) = (a)2 <N a because we assumed
a 6= 0 in (3.3), hence we get c ∈ OT by the induction hypothesis. Since
a ∈ OT \ {0} holds, we have a = hd(a) ⊕ tl(a) where hd(a) ∈ PT ∩ OT,
tl(a) 6= 0, and

hd(tl(a)) � hd(a) (3.4)

45

3. Ordinal Notations for the Small Veblen Ordinal

hold. The claim hd(a) ⊕ c ∈ OT follows now from hd(c) � hd(a) which
we get from the definition of +̃ in c = tl(a) +̃ b and by recalling that we
assumed b 6= 0 in (3.3): Either c = b holds, and we can use the assumption
hd(b) � hd(a) from (3.3), or we have c = hd(tl(a)) ⊕ (tl(tl(a)) +̃ b) and
hd(c) = hd(tl(a)), and hence get hd(c) � hd(a) by (3.4).

Remark 3.14. The following properties reflect common properties from the
context of ordinal arithmetic (and we follow essentially [Buc05]).

Lemma 3.15. Let a, b, c ∈ OT.

(a) (a⊕ b ∈ OT and c � b) =⇒ a +̃ c = a⊕ c.

(b) a +̃ (b +̃ c) = (a +̃ b) +̃ c.

(c) b ≺ c =⇒ a +̃ b ≺ a +̃ c.

(d) a � c =⇒ c = a +̃ d for some d ∈ OT.

(e) (a � c and c ≺ a +̃ b) =⇒ c = a +̃ d for some d ∈ OT with d ≺ b.

(f) a, b � a +̃ b.

(g) a � c =⇒ a +̃ b � c +̃ b.

(h) (a 6= 0 or b 6= 0) =⇒ a +̃ b 6= 0.

(i) a ≺ b +̃ 1̃ =⇒ a � b.

(j) a ∈ Lim ⇐⇒ (a ∈ PT+ or a = a1 ⊕ a2 with a2 ∈ Lim)

(k) (a ∈ Lim and b ≺ a) =⇒ b +̃ 1̃ ≺ a.

(l) a ∈ Suc =⇒ (a 6∈ PT+ and a = d +̃ 1̃ for some d ∈ OT with d ≺ a
and d <N a).

Proof. Mostly by induction on the build-up of a, b, c ∈ OT, see A.2 in the
appendix for details.

Remark 3.16. Every ordinal notation d ∈ OT mentioned in Lemma 3.15
can be computed primitive recursively from the given context.

46

3.2. Ordinal Arithmetic within (OT,≺)

Lemma 3.17. For every k,m ∈ N and a1, . . . , am+1 ∈ OT, we have the
following:
(a) φā(m+1) ∈ OT

=⇒ ϕ̃(ā(m+1)) = φā(m+1).

(b) ϕ̃(0̄(k), ā(m+1)) = ϕ̃(ā(m+1)).

(c) ϕ̃(0̄(k)) = 1̃ ∈ PT.

(d) (a1 6= 0 & am+1 6= 0 & φā(m+1)0̄(k) 6∈ OT)
=⇒ ϕ̃(ā(m+1), 0̄(k)) = am+1 & am+1 ∈ PT+ & φā(m+1)0̄(k) ≺lex
am+1.

(e) aj 6= 0 for some 1 ≤ j ≤ m+ 1
=⇒ ϕ̃(ā(m+1)) ∈ PT+.

(f) (a1 6= 0 & am+1 6∈ PT+ ∪ {0})
=⇒ ϕ̃(ā(m+1), 0̄(k)) = φā(m+1)0̄(k).

(g) a1, . . . , am ≺ ϕ̃(ā(m+1), 0̄(k)).
Proof. (a), (b), and (c) are immediate from the definition of ϕ̃.

For (d), we let a1 6= 0 and φā(n+1) 6∈ OT. Further let k be such that
ak 6= 0 and ai = 0 for all k < i ≤ n + 1. Since a1 6= 0 holds, this k
exists. By definition of ϕ̃, we get ϕ̃(ā(n+1)) = cr(〈ā(n+1)〉) = ak. Since
φā(n+1) 6∈ OT hols, this implies ak ∈ PT+.

For (e), we can assume without loss of generality that a1 6= 0 holds
(due to (b)). Then either φā(m+1) ∈ OT ∩ PT+ holds and we can use (a),
or otherwise we can use (d).

For (f), we use the definition of OT together with (a), noting that
a1 6= 0 and am+1 6∈ PT+ ∪ {0} imply φā(m+1)0̄(k) ∈ OT.

For (g), we can assume without loss of generality and due to (b)
that also a1 6= 0 holds. In case of φā(m+1)0̄(k) ∈ OT, we get the claim
from Lemma 3.8 together with (a). Otherwise, we have ϕ̃(ā(m+1), 0̄(k)) =
cr(〈ā(m+1), ā(k)〉) = aj for some 1 ≤ j ≤ m + 1 and ai = 0 for all
j < i ≤ m + 1 and we have k ≤ j. By the definition of OT, this
means that aj ∈ PT+ must hold but not aj ≺lex φā(m+1)0̄(k). Since
aj 6= φā(m+1)0̄(k)(= 〈1, ā(m+1), 0̄(k)〉) holds, we get φā(m+1)0̄(k) ≺lex aj
from totality of ≺lex which means that ai ≺ aj = ϕ̃(ā(m+1), 0̄(k)) must
hold for all 1 ≤ i < j since φā(m+1)0̄(k) 6∈ OT.

47

3. Ordinal Notations for the Small Veblen Ordinal

3.3. Semantics of (OT,≺)
Definition 3.18.

(a) fω(γ) := ωγ for all γ ∈ On.

(b) νn := fω
(

1
n

)
for each n < ω.

Lemma 3.19.

(a) supn<ω νn = ϑΩω.

(b) νn < νn+1 for all n ∈ N.

(c) γ < ϑΩω =⇒ νn ≤ γ < νn+1 for some n ∈ N.

Proof. (a) and (b) follow directly from Propositions 2.10 and 2.34. For (c),
note that the claim is obvious if γ = 0, so assume γ ≥ 1 = fω

(
1
0
)
. Now,

recall that for any normal function g : On → On and every γ ∈ On with
γ ≥ g(0) there is a unique α ∈ On such that

g(α) ≤ γ < g(α+ 1)

holds. Then Proposition 2.10 yields that g : On → On, ξ 7→ fω
(1
ξ

)
is a

normal function, and we are done.

Definition 3.20. We define o(a) ∈ On and |a|≺ ∈ On for each a ∈ OT
recursively as follows:

o(a) :=

0 if a = 0
o(a1) + o(a2) if a = a1 ⊕ a2 with a2 6= 0
ϕ(o(a1), . . . , o(an)) if a = φa1 . . . an with n ≥ 1

|a|≺ := sup{|b|≺ + 1: b ≺ a}

where 1 denotes the first non-zero ordinal in the definition of |a|≺.

Lemma 3.21. Let a, b ∈ OT.

(a) o(a) ∈ On & (a ∈ PT =⇒ o(a) ∈ P).

(b) a ≺ b ⇐⇒ o(a) < o(b).

48

3.4. Fundamental Sequences

(c) o(a +̃ b) = o(a) + o(b)

(d) o(a) < ϑΩω.

(e) γ < ϑΩω =⇒ o(c) = γ for some c ∈ OT.

Proof. See A.4 in the appendix. The proof uses essentially Lemma 3.19,
Definition 3.4, and the results from Chapter 2, more precisely: Lemma 2.28,
Proposition 2.15, Lemma 2.16, Corollary 2.18, Lemma 2.20, and Proposi-
tion 2.34.

Theorem 3.22.

(a) With a 7→ o(a), we have an order isomorphism between (OT,≺) and
(ϑΩω, <).

(b) |a|≺ = o(a) for each a ∈ OT.

Proof. For (a): This follows from Lemma 3.21. For (b): From (a), we get
that ({z ∈ OT: x ≺ a},≺) is isomorphic to (o(a), <) and this yields the
claim.

3.4. Fundamental Sequences
Definition 3.23. Fundamental sequences for limit notations d ∈ Lim are
defined within PA by means of a binary primitive recursive function L
whose defining equations are described as follows, where d, x range over
natural numbers and where we write d[x] in order to denote L(d, x).

• If d = 0 or d 6∈ OT, then

d[x] := 0

• If d ∈ Suc with d = d0 +̃ 1̃, then

d[x] := d0

• If d ∈ Lim and d = a⊕ b with a ∈ OT and b ∈ Lim, then

d[x] := a +̃ b[x]

49

3. Ordinal Notations for the Small Veblen Ordinal

• If d ∈ Lim and d = φa with a 6= 0, then

d[x] :=
{
ω̃a0 ·̃ (x+N 1) if a = a0 +̃ 1̃
ω̃a[x] otherwise

• If d ∈ Lim with d = φā(m)b0̄(k)c for some ā(m), b, c ∈ OT with b 6= 0
and m, k ∈ N, then

d[0] :=

ϕ̃(ā(m), b, 0̄(k), c[0]) if c ∈ Lim
ϕ̃(ā(m), b[0], 0̄(k+1)) if c = 0 and b ∈ Lim
1̃ if c = 0 and b ∈ Suc
ϕ̃(ā(m), b, 0̄(k), c[0]) +̃ 1̃ otherwise, i.e., if c ∈ Suc

d[x+N 1] :=

ϕ̃(ā(m), b, 0̄(k), c[x+N 1]) if c ∈ Lim
ϕ̃(ā(m), b[x+N 1], 0̄(k+1)) if c = 0 and b ∈ Lim
ϕ̃(ā(m), b[x], d[x], 0̄(k)) otherwise, i.e., c ∈ Suc

or (c = 0 and b ∈ Suc)

Note that m 6= 0 implies that a1 6= 0 holds.

Remark 3.24. Given d = φā(m+1)0̄(k) ∈ OT with am+1 ∈ Lim, we cannot
expect that φā(m)b0̄(k) ∈ OT holds for every b ≺ am+1. In particular,
we cannot expect φā(m)(am+1[x])0̄(k) ∈ OT to hold for any x. Take for
instance d := φa with a := φε̃01̃. Since a ∈ Lim holds, we have d[x] =
ϕ̃(a[x]) with a[x] = ω̃ε̃0 ·̃ (x+N 1) = ε̃0 ·̃ (x+N 1). Hence, we have φ(a[0]) =
φ(ε̃0) = φ(φ1̃0) 6∈ OT because of φ(φ1̃0) ≺lex φ1̃0 and the definition of
OT, and hence (ϕ̃(a))[x] = ϕ̃(a[x]) 6= φ(a[x]) holds.

Theorem 3.25.

(a) PA ` ∀d, x(d ∈ Suc→ d[x] ≺ d).

(b) PA ` ∀d, x(d ∈ Lim→ (0 ≺ d[x] ∧ d[x] ≺ d[x+N 1] ∧ d[x] ≺ d)).

Proof. See A.5 in the appendix.

50

3.4. Fundamental Sequences

Corollary 3.26. PA proves for each d ∈ Lim with d = φā(m)b0̄(k)c and
b 6= 0 the following:

c ∈ Suc ∨ (c = 0 ∧ b ∈ Suc)

→ ∀x
(
d[x+N 1] = ϕ̃(ā(m), b[x], d[x], 0̄(k))

=
{
φ(d[x])0̄(k) if m = 0 and b = 1̃
φā(m)(b[x])(d[x])0̄(k) otherwise

)
Proof. Theorem 3.25 implies d[x] ≺ d[x+N 1] and d[x] 6= 0, hence the claim
follows with Lemma 3.17.

Theorem 3.27. PA ` ∀d, d0(d ∈ Lim ∧ d0 ≺ d→ ∃x(d0 ≺ d[x])).

Proof. See A.6 in the appendix.

Example 3.28. PA ` ∀a
(
a ≺ ε̃0 → ∃x(a ≺ ω̃x(1̃))

)
.

Proof. Since ε̃b = ϕ̃(1̃, b) holds for any b ∈ OT, we have

ε̃0[0] = (φ1̃0)[0] ε̃0[x+N 1] = (φ1̃0)[x+N 1]
= 1̃ = ϕ̃(0, ε̃0[x]) = ω̃ε̃0[x]

and obtain ε̃0[x] = ω̃x(1̃) by induction on x. Then Theorem 3.25 and
Theorem 3.27 yield the claim.

Corollary 3.29. Let k,m ∈ N. PA proves that for every ā(m), b, d0 ∈ OT
with

d0 ≺ ϕ̃(ā(m+1), 0̄(k), b)

the following holds:

(a) b ∈ Lim→ ∃x
(
d0 ≺ ϕ̃(ā(m+1), 0̄(k), b[x])

)
.

(b) (b 6∈ Lim ∧ a1 = 0 ∧ . . . ∧ am+1 = 0)→ ∃x
(
d0 ≺ ω̃b[x] ·̃ (x+N 1)

)
.

(c) (b = 0 ∧ am+1 ∈ Lim)→ ∃x
(
d0 ≺ ϕ̃(ā(m), am+1[x], 0̄(k+1))

)
.

51

3. Ordinal Notations for the Small Veblen Ordinal

Proof. Let d := ϕ̃(ā(m+1), 0̄(k), b). In case of d = φā(m+1)0̄(k)b, the claims
follow from Theorem 3.27. Now, assuming d 6= φā(m+1)0̄(k)b, we have the
following cases:
1. If ai = 0 holds for all 1 ≤ i ≤ m+ 1:
1.1. If φb 6∈ OT: Then d = ω̃b = b holds with b ∈ PT+, i.e., b ∈ Lim.
From d0 ≺ d = b, we get x with d0 ≺ b[x] by Theorem 3.27. The claim
hence follows from b[x] � ω̃b[x] = ϕ̃(ā(m+1), 0̄(k), b[x]) with Lemma 3.17.
1.2. If φb ∈ OT: Then d = φb and assuming d0 ≺ d, we get x with
d0 ≺ d[x] by Theorem 3.27.
1.2.1. If b ∈ Lim: We get d[x] = ω̃b[x] = ϕ̃(ā(m+1), 0̄(k), b[x]).
1.2.2. Otherwise: We only need to consider the case where b ∈ Suc holds.
Let b = b0 +̃ 1̃ for some b0 (and which we can compute from b). Then we
get d[x] = ω̃b0 ·̃ (x+N 1) and are done since b[x] = b0.
2. Otherwise: Then there is some 1 ≤ l ≤ m + 1 such that al 6= 0 and
a1 = . . . = al−1 = 0 hold, and we have d = ϕ̃(al, . . . , am+1, 0̄(k), b).
2.1. If φal . . . am+10̄(k)b 6∈ OT:
2.1.1. If b = 0: This means, we only have to show (c) and we therefore
assume now also am+1 ∈ Lim. Then we must have am+1 ∈ PT+ and
d = ϕ̃(al, . . . , am+1, 0̄(k), b) = am+1, hence we have d[x] = am+1[x] for all
x, and d0 ≺ d implies d0 ≺ am+1[x] � ϕ̃(ā(m), am+1[x], 0̄(k+1)) for some x,
using Lemma 3.17.
2.1.2. Otherwise: Then we get d = ϕ̃(al, . . . , am+1, 0̄(k), b) = b with b ∈
PT+, i.e., b ∈ Lim. We have d[x] = b[x], so d0 ≺ b[x] � ϕ̃(ā(m+1), 0̄(k), b)
holds again by Lemma 3.17.
2.2. If φal . . . am+10̄(k)b ∈ OT: Then d = φal . . . am+10̄(k)b holds and by
Theorem 3.27, we get d0 ≺ d[x] for some x.
2.2.1. If b ∈ Lim: d[x] = ϕ̃(al, . . . , am+1, 0̄(k), b[x]) = ϕ̃(ā(m+1), 0̄(k), b[x])
holds by Definition 3.23.
2.2.2. Otherwise: Then we only need to consider the case where b = 0
and am+1 ∈ Lim holds. We get d[x] = ϕ̃(al, . . . , am, am+1[x], 0̄(k+1)) =
ϕ̃(ā(m), am+1[x], 0̄(k+1)) by Definition 3.23.

52

4. Ordinal Notations for the
Large Veblen Ordinal

In Chapter 8, we shall carry out wellordering proofs that rely on a simpli-
fied representation of Klammersymbols and that we shall introduce in the
following chapter in order to work more efficiently with Klammersymbols.

This means that we shall introduce further below the notion of a par-
tition of a Klammersymbol together with auxiliary notions and operations
that allow the manipulation of the represented ordinals in a natural and
suitable way for the proofs of Chapter 8. The benefit of our approach is
that we can work directly with the results from [Sch54], not having to intro-
duce a completely new concept for establishing a suitable ordinal notation
system, hence keeping the reader focused on the main techniques that are
used for the wellordering proof. More precisely, we shall introduce the new
notions and operations in such a way that it becomes clear that (apart
from the results from [Sch54]) only primitive recursive manipulations of fi-
nite strings are needed. The difficulty of the following chapter comes from
our aim in Chapter 11 to internalize some methods from Chapter 7 within
the arithmetical theory TID+

1 from Chapter 8.
We do not explicitly introduce the underlying ordinal notation sys-

tem because similar work has been already done in the context of finitary
Veblen functions in Chapter 3 which gives the information needed to deal
with Klammersymbols in general. Hence, we shall presuppose that an
underlying ordinal notation system (OT(L0),≺) is given that can be for-
malized already in a system like PA. In particular, OT(L0) is motivated
by Proposition 2.29 and shall be built up inductively from

1. codes for finite ordinals,

2. codes for ordinal addition, and

3. codes ϕ•α for the fixed-point free value of ϕ• applied to Klammer-
symbols.

53

4. Ordinal Notations for the Large Veblen Ordinal

4.1. Towards an Ordinal Notation System
OT(K�)

Definition 4.1. (OT(K�),≺) is the primitive recursive ordinal notation
system defined by simultaneous induction in the following way:

• ≺ ⊆ OT(K�)×OT(K�) shall be defined according to Corollary 2.25
and the usual properties of ordinal addition. We write a � b in order
to abbreviate

a ≺ b ∨ (a = b ∧ a ∈ OT(K�))

• K� ⊆ N shall be built up from (codes for) expressions of the form(a0 ... an
b0 ... bn

)
such that we have

a0, b0, . . . , bn ∈ OT(K�)
a1, . . . , an ∈ OT(K�) \ {0}
b0 ≺ . . . ≺ bn

• OT(K�) ⊆ N shall be defined according to Proposition 2.29, where
in particular it shall consist of the following kinds of codes:
1. 0 := 0 and n := 〈0, n〉 denoting codes for the zero ordinal and

the finite successor ordinals for each n ∈ N \ {0}.
2. {α}a := 〈1, α, a〉 denoting codes for Klammersymbol-function

application for each α ∈K� and a ∈ OT(K�).
3. Finite lists

{α0}a0 ⊕ . . .⊕ {αm}am ⊕ b := 〈2, {α0}a0, . . . , {αm}am, b〉

such that
– {αi+1}ai+1 � {αi}ai holds for each i <N m and
– b is either of the form n with n 6= 0 or b is of the form {β}b

with {β}b � {αm}am,
denoting codes for expressions that respect Proposition 2.29 for
α0, . . . , αm ∈K� and n ∈ N.

We let a0 ⊕ . . .⊕ an denote a0 in case of n = 0.

54

4.2. Extending OT(K�) to OT(K) with an Equivalence Relation

Remark 4.2. We did not give an exact definition of (OT(K�),≺) because
it is not crucial for our investigations on TID+

1 and TID2 in Chapter 6.
More precisely, we actually only need the exact definition of (OT(K�),≺)
in order to verify on the one hand the above properties and on the other
hand that (OT(K�),≺) is primitive recursive with ≺ being a strict total
order. In particular the proof of the latter would be technically cumbersome
and is similar to the proofs for the ordinal notation system given in the
context of finitary Veblen functions (see Chapter 3).

4.2. Extending OT(K�) to OT(K) with an
Equivalence Relation

We introduce an extension (OT(K),≺) of (OT(K�),≺) in order to con-
ceptually identify (OT(K�),≺) and (V, <).

Definition 4.3. Let K, =K , and (OT(K),≺OT(K)) be defined simulta-
neously and inductively, having the following properties:

1. K shall be the primitive recursive set of general (codes of) Klammer-
symbols (over OT(K�)) that consists of all expressions

(a0 ... an
b0 ... bn

)
with a0, . . . , an, b0, . . . , bn ∈ OT(K) and b0 ≺OT(K) . . . ≺OT(K) bn.

2. =K and ≺lex shall be the primitive recursive equivalence relation on
K and the primitive recursive lexicographic order on K, respectively,
that is analog to the corresponding notions of Section 2.2. To stress
that α, β ∈K denote the same (code of a) Klammersymbol, we write
α≡ β.

3. (OT(K),≺OT(K)) shall be defined analogously to Definition 4.1 such
that OT(K) contains all expressions {α}a with α ∈ K and a ∈
OT(K). Moreover, we also have an equivalence relation =OT(K) on
OT(K) that is based on the equivalence relation =K on K, hence
≺ is extended to ≺OT(K) over OT(K) according to this equivalence.
To stress that a, b ∈ OT(K) denote (as codes) the same natural
numbers, we write a≡ b.

We write form now on simply ≺ instead of ≺OT(K).

55

4. Ordinal Notations for the Large Veblen Ordinal

Definition 4.4.

• +̃ shall be the primitive recursive binary function on OT(K), denot-
ing ordinal addition. In particular, the following shall hold:

{α0}a0 ⊕ . . .⊕ {αm}am ⊕ b ∈ OT(K)
=⇒ {α0}a0 +̃ . . . +̃ {αm}am ⊕ b = {α0}a0 ⊕ . . .⊕ {αm}am ⊕ b

• Suc := {a ∈ OT(K) : a = {α0}a0 ⊕ . . .⊕ {αm}am ⊕ n & n 6= 0}
defines the set of successors (in OT(K)). In particular, we have
a ∈ Suc if and only if a = a0 +̃ 1 holds for some a0 ∈ OT(K).

• Lim := OT(K) \ (Suc ∪ {0}) defines the set of limits (in OT(K)).

Definition 4.5. We write α =NF(K�) β in order to denote for α, β ∈ K
that α =K β holds with β ∈K�.

Lemma 4.6. For each α ∈ K there is a unique β ∈ K� such that
α =NF(K�) β holds. In particular, β can be computed primitive recursively
from α.

Proof. This follows easily by induction on the build-up of α ∈ K. If not
already α ∈K� holds, then delete first each row of the form 0

a and obtain
a Klammersymbol α′ with α =K α′. Then proceed with each component
of α′ and rewrite each Klammersymbol that occurs there.

Notation 4.7.

(a) For each n ∈ N, we simply write n instead of n if the meaning is clear
from the context.

(b) Motivated by Proposition 2.23.(d) and Corollary 2.26, we introduce
the following notations for each a ∈ OT(K):

ωa :=

1 if a = 0
{
(0

0
)
}n0 if a = n0 +N 1

{
(0

0
)
}a otherwise

ω := ω1 = {
(0

0
)
}0

εa := {
(1

0
)
}0

ϕ•ωa := {
(ω

0
)
}a

Γa := {
(1

1
)
}a

ϑΩω := {
(1
ω

)
}0

56

4.3. Primitive Recursive Properties of OT(K)

and shall write ω, ωa, εa, ϕ•ωa, Γa, and ϑΩω for ω, ωa, εa, ϕωa, Γa,
and ϑΩω, respectively.

(c) n may be used from now on also for n (besides nN), and it shall be
clear from the context which of those is meant. Moreover, we may
also write a + b to denote a +̃ b (besides a +N b), but we shall make
only rare use of this abbreviation and prefer writing a +̃ b explicitly
instead.

(d) a � b is used in the obvious way to abbreviate a ≺ b ∨ a =OT(K) b,
and analogously, α �lex β is used to abbreviate α ≺lex β ∨ α =K β.

4.3. Primitive Recursive Properties of OT(K)
It is more or less clear that (OT(K),≺) and the results of Section 4.2 can
be formalized and proven within PA, given the assumptions that we made
and the definitions that we introduced. Based on this and the results of
Subsection 2.2.2, we shall list now straight-forward properties and that are
needed for the wellordering proofs for TID+

1 and TID2.

• Motivated by Corollary 2.31, compound codes shall be built up from
smaller components (w.r.t. ≺ and <N):

b := a0 ⊕ . . .⊕ am+1 ∈ OT(K) =⇒
{
a0, . . . , am+1 ≺ b
a0, . . . , am+1 <N b

c := {
(a0 ... an
b0 ... bn

)
}c0 ∈ OT(K) =⇒

{
c0, a0, . . . , an, b0, . . . , bn ≺ c
c0, a0, . . . , an, b0, . . . , bn <N c

• Motivated by Corollary 2.25, we assume for α, β ∈ K with α :=(a1 ... an+1
c1 ... cn+1

)
, β :=

(b1 ... bm+1
d1 ... dm+1

)
, and a0, b0 ∈ OT(K) that {α}a0 ≺

{β}b0 holds if and only if one of the following holds:
1. α =K β holds with a0 ≺ b0.
2. α ≺lex β holds with ai ≺ {β}b0 for all i ≤ n, or
3. β ≺lex α holds with {α}a0 � bj for some j ≤ m.

• If a ≺ {
(

0
0
)
}0 holds, then already a ≺ n holds for some n ∈ N.

57

4. Ordinal Notations for the Large Veblen Ordinal

• If a ∈ Lim and c ≺ {α}a hold for some α ∈ K, then already c ≺
{α}a0 holds for some a0 ≺ a.

• If b ∈ Lim and c ≺ {
(1
b

)
}0 hold, then already c ≺ {

(1
b0

)
}0 holds for

some b0 ≺ b.

• For each a, b, c ∈ OT(K), we have that c ≺ a +̃ b implies either a ≺ b
or that some d ∈ OT(K) exists with d ≺ c such that c = a +̃ d holds.

• Klammersymbols can be coded as finite lists of pairs, therefore we can
assume that a0, . . . , an, b0, . . . , bn <N α holds for each (thus encoded)
Klammersymbol α :=

(a0 ... an
b0 ... bn

)
.

4.4. Partitioning via Labeled Klammersymbols
yielding OT(L0)

This section singles out two primitive recursive subsets S and L from
K that consist of so-called simple and labeled Klammersymbols. These
turn out to be technically more amenable from a formal standpoint and
sufficient for denoting ordinals below V, hence leading to an alternative
representation

OT := OT(L0)

of OT(K). In particular and building on S, we introduce for each α ∈K a
Klammersymbol β ∈K which we call the partition of α. Then, expressions
of the form {β}b occur in OT(L0) only if β is such a partition and b ∈
OT(L0) holds.

Definition 4.8. L(K) := {a ∈ OT(K) : a = 0 or a ∈ Lim} defines the
collection of labels of OT(K).

Definition 4.9. For each a ∈ OT(K), we define the following notions.

(a) The label a⇓ ∈ L(K) of a is defined as

a⇓ :=

0 if a is of the form n

a1 ⊕ . . .⊕ am if a is of the form a1 ⊕ . . .⊕ am ⊕ n
a otherwise (i.e., a ∈ Lim)

58

4.4. Partitioning via Labeled Klammersymbols yielding OT(L0)

(b) The successor length lhSuc(a) ∈ OT(K) of a is defined as

lhSuc(a) :=
{
n if a is of the form a1 ⊕ . . .⊕ am ⊕ n
0 otherwise

Definition 4.10. For each b, a0, . . . , an ∈ OT(K), we define

b :=
(

0
0
)

a0,...,an
b :=

{
a0,...,an−1

b if an = 0(a0 a1 ... an
b b+̃1 ... b+̃n

)
otherwise

.〈a0,...,an−1〉
b / := a0,...,an−1

b

and for α :=
(a0 ... an
b0 ... bn

)
∈K and β :=

(c0 ... cm
d0 ... dm

)
∈K, we further define

α ∗K β :=

β if α = 0
0

α if α 6= 0
0 , m = 0, and d0 ≺ bn(

a0 ... an+̃c0
b0 ... bn

)
if α 6= 0

0 , m = 0, and d0 = bn(a0 ... an c0
b0 ... bn d0

)
if α 6= 0

0 , m = 0, and bn ≺ d0

(α ∗K

(a0
b0

)
) ∗K

(c1 ... cm
d1 ... dm

)
otherwise, i.e.,
α 6= 0

0 and m > 0

Notation 4.11. We write ambiguously α ∗ β for α ∗K β if the meaning is
clear from the context. Moreover, we let

α1 ∗ . . . ∗ αn :=
{

0
0 if n = 0
(α1 ∗ . . . ∗ αn−1) ∗ αn otherwise

for each α0, . . . , αn ∈K.

Definition 4.12. Let α ∈K be given with α 6= 0
0 .

(a) S := { a0,...,an
b ∈ K : b ∈ L(K) & an 6= 0} and we say that α is

simple in case that α ∈ S holds. In particular, this means 0
0 6∈ S.

59

4. Ordinal Notations for the Large Veblen Ordinal

Moreover, we let

Sb := {α ∈ S : α≡ a0,...,an
b for some a0, . . . , an}

S≺b := {α : α ∈ Sb0 for some b0 ≺ b}
S�b := S≺b ∪ Sb

and

S0 := S ∪ { 0
0 } S≺b0 := S≺b ∪ { 0

0 }

Sb
0 := Sb ∪ { 0

0 } S�b0 := S�b ∪ { 0
0 }

We say for α ∈ Sb that α is simple with label b.

(b) L := {α0 ∗ . . . ∗ αm ∈ K : αi ∈ Sbi for i ≤ m with b0 ≺ . . . ≺ bm}
and we say that α ∈ L is labeled. In particular, this means 0

0 6∈ L.
Moreover, we let

Lb := {α ∗ σ ∈ L : σ ∈ Sb}
L≺b := {α ∗ σ ∈ L : σ ∈ S≺b}
L�b := L≺b ∪Lb

and

L0 := L ∪ { 0
0 } L≺b0 := L≺b ∪ { 0

0 }

Lb
0 := Lb ∪ { 0

0 } L�b0 := L�b ∪ { 0
0 }

We say for α ∈ Lb that α has label b.

Definition 4.13.

(a) OT(L0) shall be the restriction of OT(K) that consists of all such
a ∈ OT(K) such that α ∈ L0 holds for every Klammersymbol α that
occurs in a. In particular, this implies hereditarily that also β ∈ L0
holds for all Klammersymbols β that occur in α.

(b) L(L0) is then just L(K) ∩OT(L0).

60

4.4. Partitioning via Labeled Klammersymbols yielding OT(L0)

Definition 4.14. Let α ∈ K be given with α 6= 0
0 . Moreover, let

β, γ, α0, . . . , αm ∈K be given.

(a) α =NF(S) β ∗ γ denotes that we have

1. α = β ∗ γ with β ∈ S and

2. γ ∈ L0 such that we have β ∈ S≺b0⇓ in case of γ 6= 0
0 and

γ ≡
(a0 ... an
b0 ... bn

)
.

We call β ∗ γ the simple normal form of α.

(b) α =NF(L) α0 ∗ . . . ∗ αm denotes that we have

1. α = α0 ∗ . . . ∗ αm and

2. b0, . . . , bm ∈ L(K) exist with b0 ≺ . . . ≺ bm and such that
αi ∈ Sbi holds for each i ≤ m.

We call α0 ∗ . . . ∗ αm the partition of α (or also the labeled normal
form of α).1

Remark 4.15. We defined =NF(S) and =NF(L) by using the equivalence
relation = and not the notion of identity ≡. Note that α =NF(S) β ∗ 0

0
implies β ∈ S and α = β but we have not necessarily α ∈ S.

Example 4.16. For α :=
(1 3 2 1 2

0 2 4 ω+̃1 ω+̃ω
)
, we get

α =
(1 0 3 0 2 0 1 2

0 1 2 3 4 ω ω+̃1 ω+̃ω
)

Now, we have α =NF(L)
1,0,3,0,2

0 ∗ 0,1
ω ∗

2
ω+̃ω because of

1,0,3,0,2
0 ∗ 0,1

ω ∗
2

ω+̃ω ≡
(

1 0 3 0 2
0 1 2 3 4

)
∗
(0 1
ω ω+̃1

)
∗
(2
ω+̃ω

)
=
(1 3 2 1 2

0 2 4 ω+̃1 ω+̃ω
)

and 0 ≺ ω ≺ ω +̃ ω. We have α =NF(S) β ∗ γ for β := 1,0,3,0,2
0 and

γ :=
(0 1 2
ω ω+̃1 ω+̃ω

)
. Moreover, we have β =NF(L) β ∗ 0

0 and β =NF(S) β ∗ 0
0 .

1Note in particular that α0 ∗ . . . ∗ αm ∈ L holds.

61

4. Ordinal Notations for the Large Veblen Ordinal

Theorem 4.17. Let α ∈K be given with α 6= 0
0 .

(a) α has a unique partition, i.e., there exist unique α0, . . . , αm and
b0, . . . , bm ∈ L(L0) with b0 ≺ . . . ≺ bm such that we have

α =NF(L) α0 ∗ . . . ∗ αm & αi ∈ Sbi for all i ≤ m

(b) α can be uniquely written in simple normal form, i.e., there exist
unique β, γ such that we have

α =NF(S) β ∗ γ

In particular, the simple normal form and the partition of α can be com-
puted primitive recursively from α.

Proof. Note that (b) is a direct consequence of (a) and note for the followin
that we used only primitive recursive operations. For (a), let α ∈ K be
given with α 6= 0

0 . We can write α as
(a0 ... an
d0 ... dn

)
with ai 6= 0 for each i ≤ n.

We proceed by a induction on n.
1. n = 0: We have α≡

(a0
d0

)
, so we can set m := 0 and α0 := 0̄(k),a0

b0
∈ S

where we let b0 := d0⇓ and k := lhSuc(d0), while noting that we have

0̄(k),a0
b0

≡

{(a0
b0

)
if k = 0(0 ... 0 a0

b0+̃0 ... b0+̃k−1 d0

)
otherwise

2. n 6= 0: We get by the induction hypothesis some unique m0 ∈ N,
some unique b0, . . . , bm0 ∈ L(L0) with b0 ≺ . . . ≺ bm0 , and some unique
α′0, . . . , α

′
m0

such that(a0 ... an−1
d0 ... dn−1

)
=NF(L) α

′
0 ∗ . . . ∗ α′m0

& α′i ∈ Sbi for all i ≤ m

holds. Analogously to the base case n = 0, we get α′ := 0̄(k),an
b ∈ Sb

for b := dn⇓ and some (unique) k ∈ N. In case of bn−1 ≺ b, we can set
m := m0 + 1, αm := α′, and αi := α′i for all i ≤ m0. Otherwise, we have
b = bn−1 and can then set m := m0, αm := α′m0

∗ α′, and αi := α′i for all
i < m0.

62

4.5. Motivation and Interpretation

Corollary 4.18. For each a ∈ OT(K) there exists some unique a′ ∈
OT(L0) such that a =OT(K) a

′ holds.

Proof. This follow by induction on the build-up of a ∈ OT(K) and using
Theorem 4.17.

Convention 4.19. A consequence of Theorem 4.17 and Corollary 4.18 is
that we can define an alternative representation OT(L0) of OT(K) as re-
marked in the beginning of this section, and we can work with (OT(L0),≺)
from now on. In this sense, we change terminology as follows:

• The notion Klammersymbol refers to elements of L0, i.e., either 0
0 or

a labeled Klammersymbol. Moreover, we use α, β, γ, δ, . . . as syntactic
variables for Klammersymbols.

• (OT,≺) shall denote (OT(L0),≺) and we use a, b, c, d, . . . as syntactic
variables for elements of OT.

• L shall denote L(L0).

4.5. Motivation and Interpretation
The motivation for {α}a is that α can be seen as the name of a function

a 7→ {α}a

on ordinals. Moreover and without going into further details, we point out
that Klammersymbols and ordinals below ΩΩ have a natural correspon-
dence if interpreting OT as the set Ω of countable ordinals. Since each
Klammersymbol distinct from

(
0
0
)
can be written in the form

(a0 ... an
b0 ... bn

)
such that 0 ≤ b0 < . . . < bn and a0, . . . , an 6= 0 hold, we get for

Ωbnan + . . .+ Ωb0a0

that this expression is in Cantor normal form with base Ω and an ordinal
distinct from 0, i.e., we get a representation of

(a0 ... an
b0 ... bn

)
6=
(

0
0
)
in ΩΩ\{0}.

Compare this with the notation {Ωbnan + . . .+ Ωb0a0}a from [Buc15].

63

4. Ordinal Notations for the Large Veblen Ordinal

4.6. Primitive Recursive Operations on Labeled
Klammersymbols

Definition 4.20. For each α ∈ L, there exist by Theorem 4.17 unique
m,n ∈ N, a0, . . . , an ∈ OT, b ∈ L, and α1, . . . , αm ∈ L such that

α =NF(L)
a0,...,an

b ∗ α1 ∗ . . . ∗ αm

holds, and therefore we define the following notions

lhL(α) := m

hdL(α) := a0,...,an
b tlL(α) :=

{
α1 ∗ . . . ∗ αm if m 6= 0
0
0 otherwise

Furthermore, we define

c(α) := 〈a0, . . . , an〉 e(α) := b

lhS(α) := n hdS(α) := an tlS(α) :=
{
〈a0, . . . , an−1〉 if n 6= 0
〈〉 otherwise

where c(α) defines the (simple) coefficients of α and e(α) the (simple)
label of α (or also called (simple) exponent of α). Finally, we extend these
definitions to L0 by setting

c(0
0) := 〈0〉 e(0

0) := hdS(0
0) := 0 tlS(0

0) := 〈〉
lhL(0

0) := lhS(0
0) := 0 hdL(0

0) := tlL(0
0) := 0

0

Definition 4.21. The base α⇓ of α for each α ∈ L0 is defined as

α⇓ :=
{

1
e(α) ∗ tlL(α) if e(α) 6= 0

tlL(α) otherwise

Remark 4.22. For each a ∈ OT and α ∈ L0, we have the following proper-
ties.
(a) a = a⇓ +̃ lhSuc(a).

(b) α≡ hdL(α) ∗ tlL(α) holds. α 6= 0
0 implies α =NF(S) hdL(α) ∗ tlL(α).

64

4.6. Primitive Recursive Operations on Labeled Klammersymbols

(c) hdL(α) ≡ .c(α)
e(α)/ ≡ . tlS(α)∗〈hdS(α)〉

e(α) / where ∗ denotes finite list con-
catenation (see Definition 1.5).

(d) lh(c(α)) = lhS(α) +N 1.

Definition 4.23. For each α ∈ L0, we define the k-th element p(α, k) of
the partition of α as follows:

p(α, k) :=
{

hdL(α) if k = 0
p(tlL(α), k .− 1) otherwise

Definition 4.24. For each α ∈ L0 and k ∈ N, we define the k-th exponent
e(α, k) ∈ OT of α, the k-th coefficient c(α, k) ∈ OT of α, the k-th S-
cropped Klammersymbol α|Sk of α, and the k-th L-cropped Klammersymbol
α|Lk of α as follows:

e(α, k) := e(α) +̃ k c(α, k) :=
{

(c(α))k if k ≤ lhS(α)
0 otherwise

α|Sk :=
{

0̄(k+1),c(α,k+1),...,c(α,lhS(α))
b ∗ tlL(α) if k < lhS(α)

tlL(α) otherwise

α|Lk :=
{

p(α, k) ∗ . . . ∗ p(α, lhL(α)) if k ≤ lhL(α)
0
0 otherwise

Further, we let α ∗ β|Sk := α ∗ (β|Sk) and α ∗ β|Lk := α ∗ (β|Lk).

Lemma 4.25. For each α ∈ L0 and k ∈ N, the following holds.

(a) e(α, k), c(α, k) ∈ OT.

(b) p(α, k), α|Sk , α|Lk ∈ L0.

(c) α≡ p(α, 0) ∗ . . . ∗ p(α, lhL(α)) and p(α, k)≡ 0
0 for each k > lhS(α).

We have α =NF(L) p(α, 0) ∗ . . . ∗ p(α, lhL(α)) in case of α 6= 0
0 .

Proof. This is immediate from the definitions.

65

Part II.

Typed Induction

67

5. FIT for Functions, Inductive
Definitions, and Types

5.1. Basic Language of FIT
The full language of FIT will be defined in Section 5.2. Here, we shall
introduce a basic language that is needed for the applicative part of FIT.
Definition 5.1. The basic language of FIT is built-up on two sorts of
variables, while first sort variables are called individual variables and second
sort variables are called type variables. The basic language further consists
of the following symbols.
(a) Constants of the first sort:

k, s, p, p0, p1, 0, sN, pN, dN (denoting the usual applicative constants)

(b) Constants of the second sort:
N (denoting the natural numbers)
N (denoting the complement of the natural numbers)
U (without further interpretation1)

(c) Relation symbols of the first sort:
= (denoting equality on individual terms2)
↓ (denoting definedness for individual terms)

(d) Further symbols:
· (denoting a binary function symbol for first sort term application)
∈ (denoting a binary relation symbol between individual terms and

types3)

1It is needed for proof-theoretic investigations.
2Individual terms will be defined in Definition 5.2.
3Types will be defined in Definition 5.5.

69

5. FIT for Functions, Inductive Definitions, and Types

Definition 5.2. Individual terms s, t, r are defined inductively from indi-
vidual variables and constants by use of the binary function symbol · as
usual.

Definition 5.3. The following notions and abbreviations will serve as basic
applicative tools.

(a) t′ := sNt and 1 := 0′.

(b) Term application on n inputs is defined recursively on n ≥ 0:

st1 . . . tn := s(t1, . . . , tn) :=
{
s if n = 0
(s · t1)t2 . . . tn if n > 0

(c) General n-tupling is defined recursively on n ≥ 0:

〈s0, . . . , sn−1〉FIT :=
{

0 if n = 0
ps0〈s1, . . . , sn−1〉FIT if n > 0

Write shall write 〈s0, . . . , sn−1〉 for 〈s0, . . . , sn−1〉FIT if the meaning is
clear from the context.

(d) The n-th projection is defined recursively on n ≥ 0:

(s)FIT
n :=

{
p0s if n = 0
(p1s)FIT

n−1 if n > 0

Write shall write (s)n for (s)FIT
n if the meaning is clear from the

context.

(e) Lambda abstraction of a variable x on a term t is defined recursively
on the build-up of t:

λx.t :=

skk if t is x
kt if t is a constant or

a variable that is different from x

s(λx.t1)(λx.t2) if t is t1t2

70

5.2. Full Language of FIT

while note that λx.t does not contain the variable x. In general,
lambda abstraction of a list of variables ~x = x1, . . . , xn over a term t
is defined recursively on n ≥ 0:

λ~x.t :=
{
t if n = 0
λx1.(λx2 . . . xn.t) if n > 0

Remark 5.4. 〈〉 appears for instance in the proof of Lemma 6.15.

5.2. Full Language of FIT
Definition 5.5. The language LFIT is defined simultaneously and induc-
tively with the notions for formulas (For), positive formulas (For+), types
(Ty), restricted types (Ty�), and terms of the second sort:

(a) LFIT extends the basic language from Definition 5.1 by new (syntac-
tically different) kinds of terms of the second sort

{x : A} and IP,Q

demanding here A ∈ For+ and P,Q ∈ Ty�.

(b) For denotes the collection of formulas A,B,C,D, which consists of
the expressions

t ∈ P t ∈ U t↓ s = t

¬A A→ B A ∨B A ∧B ∃xA ∀xA ∃XA ∀XA

and we demand here P ∈ Ty. We sometimes write A ∈ LFIT ambigu-
ously for A ∈ For.

(c) For+ denotes the collection of positive (elementary) formulas, i.e.,
formulas A ∈ For such that
• quantifications of type variables do not occur and
• expressions of the form t ∈ P for types P ∈ Ty occur at most
positively4

4Positive is meant in the usual way: t ∈ P is called positive in A ∈ For if it does not

71

5. FIT for Functions, Inductive Definitions, and Types

(d) Ty denotes the collection of types P,Q,R (also called positive types),
i.e., expressions of the form

X,Y, Z, . . . (i.e., type variables)
N N {x : A} IP,Q

demanding here A ∈ For+ and P,Q ∈ Ty�. Note that U itself is not
treated as a type.

(e) Ty� denotes the collection of restricted types, i.e., types such that
• no type variables and
• no expressions of the form IP,Q occur

Definition 5.6. Let� be a new distinguished symbol. The collection FT
of function types F,G,H is defined inductively to consist of expressions of
the form

P and P� F

for any P ∈ Ty and F ∈ FT. Note that function types are defined as objects
in the meta-language.

We can write any F ∈ FT in the form (P1 � (. . . (Pn−1 � Pn) . . .)),
and we allow to simplify this notation to P1 � . . .Pn−1 � Pn by following
the convention of right-associativity for �.

Remark 5.7. We did not define U to be a type because we can use {x : x ∈
U} in order to get t ∈ U, while noting {x : x ∈ U} is a type because x ∈ U
is in For+. Moreover, any type P in any formula appears only in the form
t ∈ P. More precisely, from the definition of FIT below, it is clear that
t ∈ U is equivalent over FIT to t ∈ {x : x ∈ U} for every individual term
t (by making use of (CA+) and the defined axioms from Definitions 5.11
and 5.12).

Definition 5.8 (Free variables and substitution). The notion of FV(A) is
extended to the notion of atomic formulas t ∈ P for P ∈ Ty by defining
recursively on the build-up of types and formulas:

occur in negated form ¬(t ∈ P) in A′, while A′ shall be the translation of A where
first each subformula of the form B1 → B2 is transformed to ¬B1 ∨ B2 and where
we then move the negation symbol ¬ next to atomic formulas, while making use of
De Morgan’s laws and the law of double negation.

72

5.2. Full Language of FIT

• FV(t ∈ P) := FV(t) ∪ FV(P) and

• FV(P) :=

FV(A) \ {x} if P is {x : A}
FV(P′) ∪ FV(Q′) if P is IP′,Q′
∅ otherwise

With this extension explained, the substitution of individual and type vari-
ables is defined as in Section 1.1.

Notation 5.9. We have the following abbreviations for some formulas and
types:

• s ' t is (s↓ ∨ t↓)→ s = t.

• s 6= t is s↓ ∧ t↓ ∧ ¬(s = t).

• t ∈ P� F is recursively ∀x(x ∈ P→ tx ∈ F).

• Nn+1 � F is recursively N� (Nn � F) where N0 � F is F.

• t 6∈ F is ¬(t ∈ F).

• (∃x ∈ F)B is ∃x(x ∈ F ∧B).

• (∀x ∈ F)B is ∀x(x ∈ F→ B).

• ClP,Q(A) is ∀x(
(
x ∈ P ∧ (∀y ∈ P)(〈y, x〉 ∈ Q→ A(y))

)
→ A(x)).

We assume as usual for such notational abbreviations that x, y are
supposed to not occur in A, P, and Q. This shall hold analogously
for similar such abbreviations for formulas.

• A(F/X) for the formula obtained by substituting any occurrence of
t ∈ X in A by t ∈ F.

Remark 5.10.

(a) We chose ClP,Q(A) to be defined with a conjunction rather than a
chain of implications such as in ∀x

(
x ∈ P → (∀y ∈ P)(〈y, x〉 ∈ Q →

A(y))→ A(x)
)
which is logically equivalent to ClP,Q(A). The reason

for this is of syntactical nature, allowing for a simplified representa-
tion in Section 7.2 (cf., Remark 7.40).

73

5. FIT for Functions, Inductive Definitions, and Types

(b) Note that function types are not necessarily part of the language
LFIT: We defined expressions of the form P � F from outside and
in our meta-language, using the delimiter �. Within LFIT formulas,
these new expressions will only occur in the form t ∈ P � F, i.e., as
LFIT formulas.

Alternatively and in order to make function types first-class members
of LFIT, we could have introduced a more general form of type (called
general type as in [Fef92]), allowing for expressions {x : A} for any
A ∈ For and thus abbreviate P � F by {x : (∀y ∈ P)(xy ∈ F)}
where x, y are any distinct individual variables that do not occur in
P or F, and then we would need to strengthen the comprehension
scheme to allow for general types. This alternative approach does
not change anything in the result because the comprehension scheme
can be reduced to the variant we have here (this has been also done
in [Fef92]).

(c) We used the restriction to Ty� in the definition of IP,Q ∈ Ty in order
to account for a non-iterated inductive definition.

5.3. The Theory FIT
Definition 5.11. The logic of FIT is a two-sorted logic whose first-order
part (i.e., for individual variables) is based on the classical logic of partial
terms LPT due to Beeson [Bee85]:

• Propositional axioms and rules. The usual propositional axioms
and rules, based on some sound Hilbert calculus for classical propo-
sitional logic.

• Quantificational logic for the first sort. For A being an LFIT
formula and t an individual term, we have

(∀xA ∧ t↓)→ A(t/x)
(A(t/x) ∧ t↓)→ ∃xA

74

5.3. The Theory FIT

and for A,B being LFIT formulas and x 6∈ FV(A), we have the fol-
lowing figures:

A→ B
A→ ∀xB

B → A
∃xB → A

• Quantificational logic for the second sort. For A,B being LFIT
formulas and P a type, we have

∀XA→ A(P/X)
A(P/X)→ ∃XA

and for A,B being LFIT formulas and X not occurring free in A, we
have the following figures:

A→ B
A→ ∀XB

B → A
∃XB → A

• Equality axioms.

x = x

(x1 = y1 ∧ . . . ∧ xn = yn ∧A)→ (. . . (A(y1/x1)) . . . (yn/xn))

• Definedness axioms. For all constants c of the first sort of LFIT,
we have

c↓ ∧ x↓
(st)↓ → (s↓ ∧ t↓)
s = t→ (s↓ ∧ t↓)

and for every type P and individual term t, we have

t ∈ P→ t↓
t ∈ U→ t↓

Writing ` A for any LFIT formula A denotes the derivability of A in the
logic of FIT.

75

5. FIT for Functions, Inductive Definitions, and Types

Definition 5.12. FIT is the two-sorted applicative theory based on the
logic of partial terms LPT (and on [Fef92]). Its non-logical axioms are as
follows:

I. Applicative axioms.

I.1. Partial combinatory algebra.

kxy = x

sxy↓ ∧ sxyz ' (xz)(yz)

I.2. Pairing and projection.

p0(pxy) = x ∧ p1(pxy) = y

I.3. Definition by numerical cases.

x ∈ N ∧ y ∈ N ∧ x = y → dNz1z2xy = z1

x ∈ N ∧ y ∈ N ∧ x 6= y → dNz1z2xy = z2

I.4. Axioms about N and N.

0 ∈ N ∧ (x ∈ N→ x′ ∈ N)
x ∈ N→ (x′ 6= 0 ∧ pN(x′) = x)
(x ∈ N ∧ x 6= 0)→ (pNx ∈ N ∧ (pNx)′ = x)
x ∈ N↔ x 6∈ N

II. Induction on N for F ∈ FT.

(FT-Ind) t0 ∈ F ∧ (∀x ∈ N)(tx ∈ F→ tx′ ∈ F)→ t ∈ (N� F)

III. Positive comprehension for A ∈ For+.

(CA+) y ∈ {x : A} ↔ A(y/x)

76

5.3. The Theory FIT

IV. Axioms about IP,Q for F ∈ FT and P,Q ∈ Ty�.

(FT-Cl) ClP,Q(Λz.z ∈ IP,Q)
(FT-ID) ClP,Q(Λz.tz ∈ F)→ t ∈ (IP,Q � F)

Writing FIT ` A for any LFIT formula A denotes the derivability of A from
these axioms in the logic of FIT given in Definition 5.11.

Lemma 5.13 (Basic applicative tools).

(a) Lambda abstraction: For all LFIT terms t, s and ~s = s1, . . . , sn, and
all individual variables y and ~x = x1, . . . , xn with y 6∈ {x1, . . . , xn},
we have the following:
1. FIT ` (λ~x.t)↓ ∧ (λ~x.t)~x ' t.
2. FIT ` (s1↓ ∧ . . . ∧ sn↓)→ (λ~x.t)~s ' t(~s/~x).
3. FIT ` (λ~x.t)(s/y)x ' (λ~x.t(s/y))x.

(b) Fixed-point: There exists a closed term fix such that FIT ` fixy↓ ∧
fixyx ' y(fixy)x holds for all number variables x, y.

(c) Pairs and tupling: For all LFIT variables x0, . . . , xn and each 0 ≤ i ≤
n, we have FIT ` (s0↓ ∧ . . . ∧ sn↓)→ (〈s0, . . . , sn〉)i = si.

Proof. The applicative part of FIT corresponds to the standard axioms and
constants that appear in applicative theories. For details on (a) and (b),
we refer to [FJS]. For (c), we argue by induction on n and show at the
same time that s↓ holds. Let s := 〈s0, . . . , sn〉, i.e., ps0(ps1(. . . (psn0)) . . .).
Further, assume s0↓ ∧ . . . ∧ sn↓. In case of n = 0, we have that s is
ps00 and then 0↓ and s0↓ imply FIT ` p0(s) = s0 since we can use LPT
together with I.2. from Definition 5.12. Hence, we are done since (s)0
equals p0s. Note that the definedness axioms yield s↓ from FIT ` p0(s) =
s0. For n 6= 0, we can argue analogously to get s↓ by using instead of
0↓ the induction hypothesis s′↓ for s′ := (ps1(. . . (psn0)) . . .), namely we
have that s is p0s

′. So FIT ` p0(s) = s0 holds and we get the claim for
i = 0, and FIT ` p1(s) = s′ holds, so we get FIT ` (s)i = si also for
1 ≤ i ≤ n while noting that then (s)i equals (p1(s))i−1: The induction
hypothesis for s′ yields FIT ` (s′)i−1 = si and the equality axioms yield
FIT ` (p1(s))i−1 = (s′)i−1, so we get the claim.

77

5. FIT for Functions, Inductive Definitions, and Types

5.4. Informal Interpretation of FIT
Since FIT directly evolved from Feferman’s theory QL(F0-IRN), we refer
for a thorough motivation and informal interpretation of FIT to [Fef92,
sections 2 and 5]. Moreover, the special constant U can be interpreted as
a subset of the natural numbers, having no further interpretation. It is
needed for proof-theoretic investigations.

78

6. TID for Typed Inductive
Definitions

FIT is a natural theory for specifying the behaviour of an applicative term
t by use of types, say by a function type P1 � . . . � Pn+1 that conists of
types. For checking this behaviour, we have the axiom schemes (FT-Ind)
and (FT-ID) at hand. The latter allows the discussion of the behaviour
of an operation t that acts on the inductively defined accessible part of a
given binary relation (e.g., if P1 is IP,Q in the example above). This gives
an idea for the following definition of the theory TID for typed inductive
definitions as a subtheory of ID1.

6.1. The Accessible Part Theory TID
Definition 6.1.

(a) For each operator form A, let PA denote a new unary relation symbol
not in LPA. Then, PC abbreviates PAccC for any binary relation
symbol C in LPA.

(b) The language of TID is defined as

LTID := LPA ∪ {PC : C is a binary relation symbol in LPA}

Definition 6.2 (Pos0 and Pos1(a)). We first set

Pos0 := {A ∈ LTID : PC occurs at most positively in A for any
binary relation symbol C in LPA}

and then define Pos1(a) for any number variable a as the collection of LTID
formulas A such that one of the following cases holds:1

1This is motivated by FT from the setting of FIT.

79

6. TID for Typed Inductive Definitions

• A ∈ Pos0

• A = ∀~x(B1 → B2) with
– a 6∈ FV(B1),
– B1, B2 ∈ Pos0, and
– ~x being a (possibly empty) list of variables.

Definition 6.3 (Neg0). Let Neg0 := {A ∈ LTID : ¬A ∈ Pos0}.

Notation 6.4. We write Λa.A ∈ Pos1 in order to denote A ∈ Pos1(a).

Example 6.5. Let f be some binary function symbol in LPA and a a
number variable. Then Pos1(a) contains the formula A := ∀y(PCy →
∀xC a(PCfxy)) and we have Λa.A ∈ Pos1.

Definition 6.6 (TID). TID is the theory that arises from the axioms of
Peano arithmetic PA without complete induction by adding the following
axioms and axiom schemes

(Ind) B(0) ∧ ∀x(B(x)→ B(Sx))→ ∀xB(x)
for B ∈ Pos1

(Cl) ProgC(PC) (i.e., ∀x(AccC(PC, x)→ PCx))
for C being a binary relation symbol in LPA

(TID) ProgC(B)→ ∀x(PCx→ B(x))
for B ∈ Pos1 and C being a binary relation symbol in LPA

where (Cl) is called closure and (TID) is called typed inductive definition.

Remark 6.7. For any binary relation symbol C in LPA, we may identify
(Cl) with a fixed-point principle

(FP) ∀x(PCx↔ AccC(PC, x))

and therefore we will sometimes use (Cl) to ambiguously mean (FP).
Abbreviating PC by P and AccC by Acc, we explain how (FP) follows

from TID: We get ∀x(Px → Acc(P, x)) by (TID) with B := Λa.Acc(P, a),
first because Acc(P, a) equals ∀y(y C a → Py) which is in Pos0(a), and
second because ∀x(Acc(B, x)→ B(x)) holds by using (Cl) and that Acc is
a positive operator form.

80

6.2. Embedding TID into FIT

Remark 6.8. We can use instead of (Ind) also the following course-of-value
variant of complete induction for Pos1 formulas, i.e., we have

∀x(∀x0 <N xB(x0)→ B(x))→ ∀xB(x)

as an induction principle for all B ∈ Pos1. In the following, we shall make
use of this variant without mentioning it explicitly.

6.2. Embedding TID into FIT
Definition 6.9. For each f ∈ PRn and n ∈ N, we define an LFIT term prf
recursively on the build-up of f (and where we let ~x = x1, . . . , xn):

λ~x.0 if f = 0n

sN if f = S
λ~x.xi if f = Ini
λ~x.prg(prh1~x) . . . (prhm~x) if f = (Cgh1 . . . hm)
λ~x.fix(tg,hx̄(n−1))xn if f = (Rgh)

where

tg,h :=
{
λx̄(n−1)h0xn.

dNprg
(
λz̄(n−1).prhz̄(n−1)(pNxn)(h0z̄

(n−1)(pNxn))
)
0xnx̄(n−1)

and fix is the closed term given in Lemma 5.13.(b).

Theorem 6.10. For each n-ary function symbol f ∈ LPA, we have the
following.

(a) FIT proves the reformulation of every defining equation of f from Def-
inition 1.11 with respect to prf , while interpreting number variables
x as individual variables x with x ∈ N.

(b) FIT ` prf ∈ Nn � N.

Proof. It is straight-forward to verify (a) and (b) by induction on the build-
up of f ∈ PRn, given the translation from Definition 6.9 and by making
use of the induction principle (FT-Ind).

81

6. TID for Typed Inductive Definitions

In order to make this a bit clearer, we consider for instance the case
that f is (Rgh). Then n > 0 holds with g ∈ PRn−1, h ∈ PRn+1, so we can
assume that (a) and (b) holds for g, h. Further, prf is λ~x.fix(tg,hx̄(n−1))xn
for

tg,h := λx̄(n−1)h0xn.dNprgsxn0xnx̄(n−1)

while we let

sr :=
(
λz̄(n−1).prhz̄(n−1)(pNr)((fix(tg,hx̄(n−1)))z̄(n−1)(pNr))

)
here for any term r. In order to show (a) for f , we have to verify the
following reformulation of the defining equations for f from Definition 1.11
with respect to prf . We assume x1 ∈ N ∧ . . . ∧ xn−1 ∈ N and show first

prf x̄(n−1)0 = prgx̄(n−1) (∗)

Noting

prf x̄(n−1)0 ' (tg,hx̄(n−1))0
(tg,hx̄(n−1))0 ' (tg,hx̄(n−1))(fix(tg,hx̄(n−1)))0

we get from the definition of tg,h and since ' is transitive that

prf x̄(n−1)0 ' dNprgs000x̄(n−1)

holds. Now, since we have that s0↓ because of Lemma 5.13 (while in case
of n = 1, use that (fix(tg,hx̄(n−1)))↓ holds in s0), we get

dNprgs000x̄(n−1) = prgx̄(n−1)

and hence (∗). Next, we show

prf x̄(n−1)(sNy) = prhx̄(n−1)y(prf x̄(n−1)y) (∗∗)

As before when showing (∗), we get

prf x̄(n−1)(sNy) ' dNprgssNy0(sNy)x̄(n−1)

82

6.2. Embedding TID into FIT

and due to Lemma 5.13 and since sNy 6= 0 holds, we get

dNprgssNy0(sNy)x̄(n−1)

= ssNyx̄
(n−1)

= prhx̄(n−1)(pN(sNy))((fix(tg,hx̄(n−1)))x̄(n−1)(pN(sNy)))

and hence (∗∗) from the axioms on pN, and (fix(tg,hx̄(n−1))) = prf x̄(n−1)

holds due to Lemma 5.13.(a) and (fix(tg,hx̄(n−1)))↓, while the latter holds
due to Lemma 5.13.(b).

For (b), we can use (FT-Ind) with F := N and t := prf x̄(n−1) and get
t ∈ N� N. For t0 ∈ N, we use (∗) and the induction hypothesis on g with
our assumptions xi ∈ N for all 1 ≤ i ≤ n− 1. Given y ∈ N and ty ∈ N, we
get t(sNy) ∈ N.

Definition 6.11. Based on the translation given in Definition 6.9, we
define for each LPA term t the translation t• to an LFIT term recursively on
the build-up of t:

x if t is a variable x
prc if t is a constant c
prf t•1 . . . t•n if t is of the form ft1 . . . tn with f ∈ PRn and n ≥ 1

The translation on terms is now extended to LTID formulas A. We define
the LFIT formula A• recursively on the build-up of an LTID formula A:

s• = t• if A is of the form s = t

prf t•1 . . . t•n = 0 if A is of the form Rf t1 . . . tn

t• ∈ U if A is of the form Ut
t• ∈ IN,QC if A is of the form PCt

and where QC := {〈x, y〉 : (xC y)•}
¬(B•) if A is of the form ¬B
B• ◦ C• if A is of the form B ◦ C for ◦ ∈ {∧,∨,→}
∀x(x ∈ N ∨B•) if A is of the form ∀xB (see also Remark 6.12)
∃x(x ∈ N ∧B•) if A is of the form ∃xB

83

6. TID for Typed Inductive Definitions

The expression {〈x, y〉 : (xCy)•} is a short-hand notation for the expression

{z : z = 〈(z)0, (z)1〉 ∧ (xC y)•((z)0/x, (z)1)/y}

i.e., for {z : z = 〈(z)0, (z)1〉 ∧Rf (z)0(z)1} where f is such that Rf is C.

Remark 6.12.

(a) It can be readily checked that A• is indeed a LFIT formula. Moreover,
A and A• have the same free variables. In particular, note that
(xC y)•((z)0/x, (z)1)/y} contains only z as a free variable.

(b) We will use the expression QC without further mentioning in order
to denote the type that we introduced in the definition of (PCt)•.
Recall also that (x C y)• equals prfxy = 0 for some binary function
symbol f ∈ LPA because the binary relation symbol C ∈ LPA is of
the form Rf for such an f .

Lemma 6.13.

(a) For each A ∈ Pos0 there is a formula A′ ∈ For+ with FV(A•) =
FV(A′) and such that FIT ` A• ↔ A′ holds.

(b) For each A ∈ Neg0, there is a formula A′ ∈ For+ with FV(A•) =
FV(A′) and such that FIT ` A• ↔ ¬A′ holds.

Proof. By simultaneous induction on the build-up of A.
1. A is an atomic formula: Then A 6∈ Neg0 and A ∈ Pos0. Now A• ∈ For+

follows by definition and we can take A′ := A•.
2. A = ∀xB: We have A• = ∀x(x ∈ N ∨B•).
2.1. A ∈ Pos0: Then B ∈ Pos0 holds and by the induction hypothesis
there is some B′ ∈ For+ such that FIT ` B• ↔ B′ and FV(B•) = FV(B′)
holds. We can set A′ := ∀x(x ∈ N ∨ B′) and get A′ ∈ For+ and the claim
follows.
2.2. A ∈ Neg0: Then B ∈ Neg0 holds and by the induction hypothesis
there is some B′ ∈ For+ such that FIT ` B• ↔ ¬B′ and FV(B•) = FV(B′)
holds. We can set A′ := ∃x(x ∈ N∧B′), so we get A′ ∈ For+ and that ¬A′
is equivalent to ∀x(¬(x ∈ N) ∨ ¬B′). Over FIT, this is equivalent to A•,
while recalling that we have FIT ` ¬(x ∈ N)↔ x ∈ N.
3. A = ∃xB: As before.

84

6.2. Embedding TID into FIT

4. A = B ◦ C with ◦ ∈ {∧,∨}: This case is easy because we have A• =
B• ◦ C•.
5. A = ¬B:
5.1. A ∈ Pos0: Then B ∈ Neg0 and by the induction hypothesis, we get
FIT ` B• ↔ ¬B′ for some B′ ∈ For+ and FV(B•) = FV(B′) holds. Since
A• = ¬B• holds, we get FIT ` A• ↔ ¬¬B′ ↔ B′ and then the claim
follows for A′ = B′.
5.2. A ∈ Neg0: Then B ∈ Pos0 and by the induction hypothesis, we
get FIT ` B• ↔ B′ for some B′ ∈ For+ and FV(B•) = FV(B′) holds.
Since A• = ¬B•, we get FIT ` A• ↔ ¬B′ and then the claim follows for
A′ = ¬B′.
6. A = B → C: We have A• = B• → C• which is equivalent to A0 :=
¬B• ∨ C• and FV(A0) = FV(A•) holds.
6.1. A ∈ Pos0: Then B ∈ Neg0 and C ∈ Pos0, so FIT ` B• ↔ ¬B′ for
some B′ ∈ For+ and FIT ` C• ↔ C ′ for some C ′ ∈ For+. We can set
A′ := B′ ∨C ′ and get A′ ∈ For+ and FIT ` A• ↔ A0 ↔ (¬¬B′ ∨C ′)↔ A′

and then the claim follows.
6.2. A ∈ Neg0: Then B ∈ Pos0 and C ∈ Neg0, so FIT ` B• ↔ B′ for
some B′ ∈ For+ and FIT ` C• ↔ ¬C ′ for some C ′ ∈ For+. We can set
A′ := B′ ∧ C ′ and get A′ ∈ For+ and FIT ` A• ↔ A0 ↔ ¬A′ and then the
claim follows.

Definition 6.14. For every A ∈ LTID, we define

A•N :=

A• if FV(A) = ∅
x1 ∈ N→ . . .→ xn ∈ N→ A• if FV(A) = {x1, . . . , xn}

for some n 6= 0

Lemma 6.15. For each B ∈ Pos1(a), there is an LFIT-term t and a func-
tion type F ∈ FT such that

FIT ` ∀x(tx ∈ F↔ B•(x/a))

holds.

Proof. We distinguish the following cases on B ∈ Pos1(a):
1. If B ∈ Pos0, then Lemma 6.13 provides some B′ ∈ For+ such that
FIT ` B• ↔ B′ holds, so for F := {a : B′} we have F ∈ FT. Moreover,
with t := λx.x, we get the claim.

85

6. TID for Typed Inductive Definitions

2. If B is of the form ∀~y(B1 → B2) with a 6∈ FV(B1), ~y = y1, . . . , yn, and
B1, B2 ∈ Pos0, we first get B′1, B′2 ∈ For+ from Lemma 6.13 such that

B•i ↔ B′i & FV(B•i) = FV(B′i) (i = 1, 2)

and then we set

Q1 := {z : z = 〈(z)0, . . . , (z)n−1〉 ∧B′1((z)0/y1, . . . , (z)n−1/yn)}
Q2 := {z : z = 〈(z)0, . . . , (z)n〉 ∧B′2((z)n/a, (z)0/y1, . . . , (z)n−1/yn)}
F := Q1 � Q2

t := λx, z.〈x, (z)0, . . . , (z)n−1〉

Obviously F ∈ FT holds and then similar as in [Fef92, 6.3], we have over
FIT and for any x

tx ∈ F↔ ∀z(z ∈ Q1 → txz ∈ Q2)
↔ ∀~y(B•1 → tx〈y1, . . . , yn〉 ∈ Q2)
↔ ∀~y(B•1 → 〈x, y1, . . . , yn〉 ∈ Q2)
↔ ∀~y(B•1 → B•2(x/a))
↔ B•(x/a)

which gives us the claim. Note that n = 0 is possible, so ∀~y(B•1 →
tx〈y1, . . . , yn〉 ∈ Q2) denotes then B•1 → (tx〈〉 ∈ Q2).

Theorem 6.16. FIT proves every translation A• of an instance A of ax-
ioms (Ind), (Cl), and (TID) from TID1. More precisely, if A is an instance
of (Ind), (Cl), or (TID), then we have FIT ` A•.

Proof. Let A be an instance of (Ind), (Cl), or (TID). We have to show
FIT ` A•.
1. For (Cl): If A = ProgC(PC) holds for some C, then we have that A•
is logically equivalent over FIT to ClN,QC(Λz.z ∈ IN,QC), and this is an
instance of (FT-Cl). More precisely, we have over FIT:

86

6.2. Embedding TID into FIT

(
ProgC(PC)

)•
↔
(
∀x(AccC(PC, x)→ PCx)

)•
↔ ∀x(x ∈ N ∨

(
(AccC(PC, x))• → x ∈ IN,QC

)
)

↔ ∀x(x ∈ N ∨
(
∀y(y ∈ N ∨

(
(y C x)• → y ∈ IN,QC

)
)→ x ∈ IN,QC

)
)

↔ ∀x(x ∈ N ∨
(
∀y(y ∈ N ∨

(
〈y, x〉 ∈ QC → y ∈ IN,QC

)
)→ x ∈ IN,QC

)
)

↔ (∀x ∈ N)((∀y ∈ N)(〈y, x〉 ∈ QC → y ∈ IN,QC)→ x ∈ IN,QC)
↔ ClN,QC(Λz.z ∈ IN,QC)

2. For (Ind) and (TID): Let B ∈ Pos1(a) be arbitrary. By Lemma 6.15
some LFIT-term t and function type F ∈ FT exist such that we have

FIT ` ∀x(tx ∈ F↔ B•(x/a)) (6.1)

2.1. If A = B(0) ∧ ∀x(B(x)→ B(Sx))→ ∀xB(x) holds for B = Λa.B: We
note that for B1 := B(a/Sa) one can prove (by induction on the build-up of
B) that B•1 is B•(a/sNa). So, with B(Sx)• being (B(a/Sx))• this becomes
(B1(x))•, i.e., we get B•1(a/x) and hence (B•(a/sNa))(a/x). So, we obtain
that B(Sx)• is B•(a/sNx), while note that for any B′ ∈ LTID, we have that
B′ and B′• share the same first-order variables. For proving A•, we can
therefore assume that

B•(0/a) (6.2)
∀x(x ∈ N ∨ (B•(x/a)→ B•(sNx/a))) (6.3)

holds, and we have to show ∀x(x ∈ N∨B•(x/a)), while this is equivalent to
t ∈ N� F due to (6.1). Now we can directly apply (FT-Ind) because (6.2)
is equivalent to t0 ∈ F and (6.3) is equivalent to (∀x ∈ N)(tx ∈ F→ t(sN) ∈
F).
2.2. If A = ProgC(B)→ ∀x(PCx→ B(x)) holds for B = Λa.B: With

(
ProgC(B)

)• = (∀x ∈ N)(∀y ∈ N)

 〈y, x〉 ∈ QC
→
(
B(y)

)•
→
(
B(x)

)•
 (6.4)

we get that FIT proves the following:

87

6. TID for Typed Inductive Definitions

(
ProgC(B)

)•
↔ (∀x ∈ N)(∀y ∈ N)(〈y, x〉 ∈ QC → ty ∈ F→ tx ∈ F)
↔ ClN,QC(Λz.tz ∈ F)

 (6.5)

This accumulates in the provability of A•. Namely, assume
(
ProgC(B)

)•
and get t ∈ (IN,QC � F) from (6.5) and (FT-ID), hence (6.1) yields

∀x(x ∈ IN,QC → tx ∈ F)↔ ∀x(x ∈ IN,QC → B•(x/a))
→ (∀x ∈ N)(x ∈ IN,QC → B•(x/a))

Now, we are done because
(
∀x(PCx → B(x))

)• is (∀x ∈ N)(x ∈ IN,QC →
B•(x/a)).

Corollary 6.17 (Embedding TID into FIT). Let A ∈ LTID with FV(A) =
{x1, . . . , xn}. Then we have

TID ` A =⇒ FIT ` A•N

Proof. The claim follows essentially from Theorems 6.10 and 6.16. In par-
ticular, we remark that for FIT, the propositional logical rules and axioms
and the quantificational logic for individual variables correspond (under the
translation of Definition 6.11) to first-order predicate logic in the setting
of TID.

88

7. The Small Veblen Ordinal ϑΩω

measures FIT and TID

7.1. Lower Bound ϑΩω for FIT and TID
This section provides a lower bound for the proof-theoretic ordinal of the
theory TID by means of wellordering proofs. Hence, together with the
embedding of TID into FIT from Section 6.2, we automatically get a lower
bound for FIT as well. We based the following proofs on the fundamental
sequences from Section 3.4 in order to make the present section depend
less on the implementation of the ordinal notation system (OT,≺). The
fundamental sequences are motivated by and can be understood from an
intuitive set-theoretic view-point, without relying too much on intrinsic
properties of the ordinal notation system (OT,≺) that we introduced in
Section 3.1. However, the cost of having a more accessible approach to
the wellordering proofs is that we had to verify the fundamental sequences’
adequate behaviour in the background (cf., Sections 3.2 and 3.4).

We remark that an alternative approach would be to implement the
following proofs directly in the setting of φ and the ordinal notation system
(OT,≺), allowing us to avoid the introduction of ϕ̃ and the proof of its
adequate behaviour. In this case, it would be technically more sensible to
work with fixed-point free variants ϕn+1 of the finitary Veblen functions
and base (OT,≺) on those (see also [Sch54, §3]). We did not choose this
approach for the sake of a better motivation and understanding of the
wellordering proof.

Notation 7.1. In this section, we work within TID and fix the following
notational conventions:

(a) The notion ordinal denotes terms that are given according to the
ordinal notation system (OT,≺).

89

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

(b) Small black letters a, b, c, d, . . . denote explicit terms for ordinal no-
tations in sense of OT and which are given externally in the meta-
theory.

(c) P denotes P≺, and analogously Acc, Prog, and TI denote Acc≺,
Prog≺, and TI≺, respectively.

(d) L-TI(≺a) := {TI(A, b) : A ∈ L & b ≺ a} for L being LPA or LTID.

(e) Moreover and in case it is clear from the context, we shall also use
the following notations:
• 1, ωa, ω, ε0, a · n denote 1̃, ω̃a, ω̃, ε̃0, a ·̃ n, respectively.
• ϕ(a1, . . . , an+1) and ϕa1 . . . an+1 denote ϕ̃(a1, . . . , an+1).
(Recall in particular that ϕ(a1) = ωa1 holds.)

• a+ b denotes a +̃ b whenever it appears in a formula.1

Proposition 7.2.

(a) TID ` ∀x(x 6∈ OT→ Px).

(b) TID ` ∀x(Px→ TI(A, x)) for all A ∈ LPA.

(c) TID ` TI(A, a) holds for each a ≺ ω and A ∈ LTID.

Proof (Sketch). (a) holds immediately by (Cl), using that a 6∈ OT implies
b 6≺ a for all b. For (b), assume Pa, Prog(A), and b ≺ a. We get Pb by (FP)
from Remark 6.7, and since A ∈ Pos1 holds, we then get A(b) by (TID).
For (c), note that we can show TI(A, nk) for all k ∈ N by (meta-)induction
on k and where we set n0 := 0 and nm+1 := nm +̃ 1̃ for each m ∈ N.

Remark 7.3. Dropping the restriction on the induction formula used in
(Ind) yields TID ` TI(A, a) for each a ≺ ε0 and A ∈ LTID. This is because
TID would extend PA in this case with complete induction for the full
language LTID, so by following the usual wellordering proofs for PA and
adapted to the representation of ordinals below ε0 as given here (e.g., by
using Example 3.28), we could derive every formula from LTID-TI(≺ε0) in
TID.2

1In this context, we shall take care to use +N instead of + in order to rule out confusion
with +̃, though it shall always be clear from the context which of +N and +̃ is meant
when writing +.

2See also Section 11.5 where we make use of this property.

90

7.1. Lower Bound ϑΩω for FIT and TID

Remark 7.4. Due to Proposition 7.2.(a), we can assume from now on with-
out loss of generality that a ∈ OT holds whenever we try to show Pa
for some a within TID. In particular, if we aim to prove P (a + b) or
Pϕ(ā(n)) for some a, b, a1, . . . , an (with n ≥ 1), we shall tacitly assume
that a + b ∈ OT and ϕ(ā(n)) ∈ OT hold, respectively. Then Lemma 3.13
yields also a, b, a1, . . . , an ∈ OT. Recall that this holds similarly if we have
assumptions of the form c ≺ a + b or c ≺ ϕ(ā(n)) because this implies
a+ b ∈ OT and ϕ(ā(n)) ∈ OT, respectively, by the definition of ≺.

Lemma 7.5. TID ` ∀x, y(Px ∧ Py → P (x+ y)).

Proof. Assume a1, a2 with Pa1 and Pa2, so we have to show P (a1 + a2).
By showing Prog(B) for B := Λb.P (a1 + b), we can use (TID) together with
Pa2 to get the claim. Now, Prog(B) is ∀z(Acc(B, z) → B(z)), so assume
c and Acc(B, c), i.e., ∀z ≺ c(P (a1 + z)). Due to (Cl), it suffices to show
(∀z ≺ a1 + c)(Pz). Let now d ≺ a1 + c. Then Lemma 3.15 yields either
d ≺ a1, and we can then use (FP) on assumption Pa1 to get Pd, or we
have a1 � d ≺ a1 + c. In the latter case, we have d = a1 + c0 for some
c0 ≺ c, so our assumptions yield the claim.

7.1.1. The Simple Case for the Binary Veblen Function
This subsection treats the case for the binary Veblen function separately in
order to give a more transparent proof that avoids the technicalities that
appear in the treatment of the general case in Subsection 7.1.2 (e.g., we
shall later formulate auxiliary class terms of the form Smallkn for 1 ≤ k ≤ n).

Lemma 7.6. TID ` ∀x, y(Px ∧ Py → Pϕ(x, y)).

Proof. Note that P0 and hence P1 hold due to (Cl). Now, we assume a1, a2
with Pa1, Pa2. We use the class term

B := Λa.∀y(Py → Pϕ(a, y))

with B ∈ Pos1 and show Prog(B). Then we can use (TID) with Pa1 and
Pa2. Now, in order to bring the proof of this lemma closer to the proof of
Theorem 7.15 that deals with the general case of a finitary Veblen function,
we note that Prog(B) is

∀z(∀x ≺ z(B(x))→ B(z))

91

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

Now, using the class term

A1
2 := Λa.∀y(Py → ∀x ≺ a(Pϕ(x, y)))

and that A1
2(a) is logically equivalent to ∀x ≺ a(B(x)), we get that Prog(B)

is logically equivalent to

∀z(A1
2(z)→ B(z)) (∗)

So, it rests to show (∗). For proving this, assume a with

A1
2(a) (7.1)

and show B(a), while for proving B(a), assume b with

Pb (7.2)

and show Pϕ(a, b). Once more, we can use (TID), namely with

A2
2 := Λd.Pϕ(a, d)

on (7.2) since A2
2 ∈ Pos1 holds, while we have to show Prog(A2

2).3 Now,
for proving Prog(A2

2), we assume d and z with

∀z0 ≺ d(A2
2(z0))

(
i.e., ∀z0 ≺ d(Pϕ(a, z0))

)
(7.3)

z ≺ ϕ(a, d) (7.4)

and show Pz. This yields Pϕ(a, d) by (Cl) because z is arbitrary. We
consider now the following case distinction.
1. If d ∈ Lim: We get that z ≺ ϕ(a, d[x]) holds for some x by Corol-
lary 3.29. Since we have d[x] ≺ d by Theorem 3.25, we get Pϕ(a, d[x])
by (7.3), implying Pz by (FP).
2. If d 6∈ Lim:

3Noting our current assumption (7.1) and our current goal, we remark that we actually
show

A1
2(a)→ Prog(A2

2)

which is a special case of Theorem 7.12, and also note that A1
2 ∈ Pos1 holds with

A1
2 6∈ Pos0, while we have A2

2 ∈ Pos0.

92

7.1. Lower Bound ϑΩω for FIT and TID

2.1. If a = 0: Since d 6∈ Lim holds, we get z ≺ t(x) for some x by
Corollary 3.29, where we let

t(x) := ωd[x] · (x+N 1)

We show ∀x(P (t(x))) by induction on x and note that (Ind) is applicable
here because of Λx.P (t(x)) ∈ Pos1. For x = 0, we can argue as for the case
d ∈ Lim and get P (ωd[0]). For x = x0 +N 1, the claim follows from P (t(0)),
the induction hypothesis, and Lemma 7.5, noting that d[0] = d[x0] holds
by definition and because of d 6∈ Lim.
2.2. If a ∈ Lim and d = 0: We have by Corollary 3.29 that z ≺ ϕ(a[x], 0)
holds for some x. Since we have a[x] ≺ a by Theorem 3.25, we get
Pϕ(a[x], 0) with (7.1).
2.3. Otherwise, i.e., either d = 0 with a ∈ Suc or d ∈ Suc with a 6= 0:
Letting t := ϕ̃(a, d), we have by Theorem 3.27 some x such that z ≺ t[x]
holds. Proving

∀x(P (t[x]))

by induction on x suffices now. Note again that (Ind) is applicable because
we have Λx.P (t[x]) ∈ Pos1, and note for the following computations of t[x]
also that we have ϕ(a, d) = φad by Lemma 3.17.
2.3.1. If x = 0: If d = 0 holds, then we have t[0] = 1 and are done since we
have P1. If d ∈ Suc holds with d = d0 +1, then we have t[0] = ϕ(a, d0) + 1,
and since d0 ≺ d holds, we get P (t[0]) from (7.3) and Lemma 7.5 by using
P1.
2.3.2. If x = x0 +N 1: We have t[x0 +N 1] = ϕ(a[x0], t[x0]), so the claim fol-
lows with a[x0] ≺ a from Theorem 3.25, the induction hypothesis P (t[x0]),
and (7.1).

Corollary 7.7. TID ` Pϕ(a, 0) holds for each a ≺ ω.

Proof. The claim is a direct consequence of Lemma 7.6. Note hereby that
for a ≺ ω, we get Pa from Proposition 7.2.(c): We get ∀x ≺ a(Px) from
TI(Λa.Pa, a) and closure (Cl), hence Pa by (FP).

Remark 7.8. We proved Lemma 7.6 by applying (TID) to a class term B
in Pos1 that is not in Pos0. Though, in order to show Prog(B) in the proof
of Lemma 7.6, we can work with a (weaker) subtheory TID0 of TID that we

93

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

shall define in Chapter 8. It can be obtained from TID by restricting (the
instances of) the axiom schemes (TID) and (Ind) to class terms that are in
Pos0 (rather than Pos1). The theory TID0 is the restriction of the theory
ID∗1� to accessible part positive operator forms, i.e., to the language LTID,
while ID∗1� is a subtheory of ID1 for positive induction and with the same
restriction for complete induction. The proof-theoretic ordinal of ID∗1� is
ϕ(ω, 0). See for instance [Pro06], and note furthermore Remark 7.14 below.

7.1.2. The General Case for the Finitary Veblen Functions
Remark 7.9. Recall from Chapter 3 that the expression ϕ(ā(n+1)), i.e.,
ϕ̃(ā(n+1)), is also defined in case of n = 0. We then have ϕ(a1) = ωa1 .

Definition 7.10. For k, n ∈ N with 1 ≤ k < n, we define

Smallkn := Λā(k).∀y(Py → ∀x ≺ ak(Pϕ(ā(k−1), x, y, 0̄(n−k−1))))
Hypkn := Λā(k).Small1n(a1) ∧ . . . ∧ Smallkn(ā(k))
Hyp0

n := (0 = 0)

Lemma 7.11. For k, n ∈ N and variables a1, . . . , an−1, the following holds:

(a) (Λa.P (ϕ(ā(n−1), a))) ∈ Pos0 for 1 ≤ n.

(b) (Λa.Smallkn(ā(k−1), a)) ∈ Pos1 for 1 ≤ k < n.

Proof. (a) is obvious. For (b), note in the definition of Smallkn(ā(k−1), a)
that Py and ∀x(x ≺ a → Pϕ(ā(k−1), x, y, 0̄(n−k−1))) are in Pos0. Fur-
thermore, Py does not contain a as a free variable, so we get indeed that
∀y(Py → ∀x ≺ a(Pϕ(ā(k−1), x, y, 0̄(n−k−1)))) is in Pos1(a).

Theorem 7.12. For n ∈ N with n ≥ 1, we have

TID ` ∀ā(n−1)(Hypn−1
n (ā(n−1))→ Prog(Λa.Pϕ(ā(n−1), a))

)
Proof. Let n ≥ 1 and ā(n−1) be given with

Hypn−1
n (ā(n−1)) (7.5)

94

7.1. Lower Bound ϑΩω for FIT and TID

In order to show Prog(Λa.Pϕ(ā(n−1), a)), assume a and d such that

∀x ≺ a(Pϕ(ā(n−1), x)) (7.6)
d ≺ ϕ(ā(n−1), a) (7.7)

hold and show Pd. This would yield Pϕ(ā(n−1), a) by (Cl) because d is
arbitrary.

1. If n = 1 or a1 = . . . = an−1 = 0 hold: We can proceed as in Lemma 7.6
since we have ϕ(ā(n−1), a) = ϕ(a) = ωa.
2. Otherwise: We can assume now that some 1 ≤ l ≤ n− 1 exists with

al 6= 0 & al+1 = . . . = an−1 = 0

i.e., that we have ϕ(ā(n−1), a) = ϕ(ā(l), 0̄(n−l−1), a) with al 6= 0. Further-
more, (7.5) yields

Small1n(a1) ∧ . . . ∧ Smalln−1
n (ā(n−1)) (7.8)

Consider now the following case distinction and note that P0 and hence
P1 hold due to (Cl).
2.1. If a ∈ Lim: We get that d ≺ ϕ(ā(n−1), a[x]) holds for some x by
Corollary 3.29 and (7.7). Since we have a[x] ≺ a by Theorem 3.25, we get
Pϕ(ā(n−1), a[x]) by (7.6) which implies Pd by (FP).
2.2. If a 6∈ Lim:
2.2.1. If al ∈ Lim and a = 0: By Corollary 3.29, we have some x such that
z ≺ ϕ(ā(l−1), al[x], 0̄(n−l)) holds. Since we have al[x] ≺ al by Theorem 3.25,
we get Pϕ(ā(l−1), al[x], 0̄(n−l)) with Smallln(ā(l)) from (7.8).
2.2.2. Otherwise, i.e., either a = 0 with al ∈ Suc or a ∈ Suc with al 6= 0:
In this situation, Lemma 3.17 implies ϕ(ā(l), 0̄(n−l)) = φap . . . al0̄(n−l−1)a
for some 1 ≤ p ≤ l where a1, . . . , ap = 0 holds. In order to simplify
notation and without loss of generality, we shall assume p = 1, noting that
the following argument works for the general case as well. Letting

t := φā(l)0̄(n−l−1)a (7.9)

we have by Theorem 3.27 some x such that z ≺ t[x] holds. Proving

∀x(P (t[x]))

95

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

by induction on x suffices now. (Ind) is applicable because Λx.P (t[x]) ∈
Pos1 holds.
2.2.2.1. If x = 0: For a = 0, we have t[0] = 1 and are done since we have
P1. If a ∈ Suc holds with a = a0 + 1, then we have t[0] = ϕ(ā(n−1), a0) + 1
due to the form of t in (7.9) and the definition of t[0]. Since a0 ≺ a holds,
we get P (t[0]) from (7.6) and Lemma 7.5 by using P1.
2.2.2.2. If x = x0 +N 1: We get t[x0 +N 1] = ϕ(ā(l−1), al[x0], t[x0], 0̄(n−l)),
so the claim follows with al[x0] ≺ al from Theorem 3.25, the induction
hypothesis P (t[x0]), and Smallln(ā(l)) from (7.8).

Corollary 7.13. For n ∈ N with n ≥ 1, we have

TID ` ∀ā(n)(Hypn−1
n (ā(n−1)) ∧ Pan → Pϕ(ā(n))

)
Proof. Immediate from Theorem 7.12 by using (TID) and Lemma 7.11.(a).

Remark 7.14. Note that we did not invoke (TID) in the proof of Theo-
rem 7.12, so this result holds also for the restriction TID0 of TID that we
mentioned in Remark 7.8. Clearly, our proof of Theorem 7.12 does not
work directly within PA because we invoked (Cl) and (FP).

Theorem 7.15. For k, n ∈ N with 1 ≤ k < n, we have

TID ` ∀ā(k−1)(Hypk−1
n (ā(k−1))→ Prog(Λa.Smallkn(ā(k−1), a))

)
Proof. We fix n ≥ 1 and argue by induction on n − k for 1 ≤ k < n. Let
ā(k−1) be given with

Hypk−1
n (ā(k−1)) (7.10)

and where (7.10) just gives us the formula 0 = 0 in case of k = 1. In order
to show Prog(Λa.Smallkn(ā(k−1), a)), assume a, ak, ak+1 with

∀x ≺ a(Smallkn(ā(k−1), x)) (7.11)
Pak+1 (7.12)
ak ≺ a (7.13)

96

7.1. Lower Bound ϑΩω for FIT and TID

and in case we have k 6= n− 1, further let

ai := 0

for each k < i ≤ n. We have to show P (ϕ(ā(k+1), 0̄(n−k−1))), i.e.,

P (ϕ(ā(n))) (∗)

From (7.13) and (7.11), we get

Smallkn(ā(k−1), ak) (7.14)

and hence

Hypkn(ā(k)) (7.15)

with (7.10). From (7.12) and P0, we get

Pak+1 ∧ . . . ∧ Pan (7.16)

We show by a side induction on i that the following holds:

1 ≤ i < n =⇒ Hypin(ā(i)) (∗∗)

From (∗∗) with i := n− 1 and Pan from (7.16), we then get (∗) by Corol-
lary 7.13. For the proof of (∗∗), we note that the claim follows in case of
1 ≤ i ≤ k from (7.15). If we have k < i < n, then we can use the side
induction hypothesis and get

Hypi−1
n (ā(i−1)) (7.17)

This and the main induction hypothesis yield Prog(Λa.Smallin(ā(i−1), a))
and hence we get ∀a(Pa → Smallin(ā(i−1), a)) by (TID), while noting here
Lemma 7.11.(b). Now, Smallin(ā(i)) follows from (7.16) and the current
case k < i < n. Hence, we get Hypin(ā(i)) by (7.17).

Corollary 7.16. For k, n ∈ N with 1 ≤ k < n, we have

TID ` ∀ā(k)(Hypk−1
n (ā(k−1)) ∧ Pak → Hypkn(ā(k))

)

97

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

Proof. From Hypk−1
n (ā(k−1)) ∧ Pak, we get Smallkn(ā(k)) by Theorem 7.15

and (TID), while noting Lemma 7.11.(b). Hence, we get Hypkn(ā(k)).

Theorem 7.17. For each n ≥ 1, we have

TID ` ∀ā(n)(
∧n
i=1 Pai → Pϕ(ā(n)))

Proof. Let n ≥ 1 and assume ā(n) with
∧n
i=1 Pai. We trivially get

Hyp0
n(ā(0)) ∧

∧n
i=1 Pai (7.18)

due to the definition of Hyp0
n. We now show by induction on k ∈ N that

the following holds:

0 ≤ k < n =⇒ Hypkn(ā(k)) ∧
∧n
i=k+1 Pai (∗)

Then the claim Pϕ(ā(n)) follows from Corollary 7.13 and (∗) with k := n−1.
We show now (∗) and assume 0 ≤ k < n:
1. k = 0: This is (7.18).
2. 0 < k ≤ n: The induction hypothesis yields Hypk−1

n (ā(k−1))∧
∧n
i=k Pai

and hence the claim (∗) due to Corollary 7.16.

Corollary 7.18 (Lower bound of TID). For each A ∈ LPA and a ∈ OT,
we have

TID ` TI(A, a)

Proof. By induction on the build-up of a ∈ OT. We can use Lemma 7.5
and Theorem 7.17 together with Proposition 7.2.(b).

Remark 7.19. Similar to Remark 7.8, we shall give an informal and intu-
itive explanation why Corollary 7.18 is the best we can expect from TID.
The method used in the proof of Theorem 7.15 relied on an external rep-
resentation of the finite list of arguments that the finitary Veblen function
is applied to. This is made apparent by the use of the syntactic variable n
in Definition 7.10 to denote the arity of a Veblen function. In particular,
induction in the meta-theory has been applied to cope with arbitrary but
finite lists of arguments. The proof of Theorem 7.15 is designed for the
theory TID, and in order to use it to get beyond the small Veblen ordinal,

98

7.2. Upper Bound ϑΩω for FIT and TID

for instance by working with infinitary Veblen functions or Klammersym-
bols, we would need to internalize the proof and deal with non-standard
argument positions (for which we do not have a denotation in the meta-
theory). The next section shall provide the formal explanation why the
small Veblen ordinal is the upper bound of TID.
Remark 7.20. Concluding and with regard to the theory TID0 that we
mentioned in Remark 7.8, we point out that Pϕ(a, 0) for a ≺ ω is the
best we can expect from TID0 even though Corollary 7.7 would yield
TID0 ` LTID-TI(≺ϕ(ω, 0)). An intuitive approach to an explanation why
this method does not push further when used with LTID-TI(≺ϕ(ω, 0)) is
the following property:

a ≺ ω & b ≺ ϕ(ω, 0) ⇒ ϕ(a, b) ≺ ϕ(a, ϕ(ω, 0)) = ϕ(ω, 0) (#)

Note that if we want to use LTID-TI(≺ϕ(ω, 0)) to prove Corollary 7.7 with
a = ω, then the induction hypothesis yields only ∀x(Px → P (ϕ(a0, x)))
for a0 ≺ ω. Since we can so far provide Pa only for a ≺ ϕ(ω, 0), the
property (#) prevents us from reaching ϕ(ω, 0).

Note also that (Cl) can neither be used to get Pϕ(ω, 0) because we did
not show “TID0 ` ∀x ≺ ω(Pϕ(x, 0))”, namely we showed the statement
“TID0 ` P (ϕ(a, 0))” only externally from the perspective of our meta-
theory and for a ≺ ω with a being a numeral whose index ranges over the
meta-theory’s universe, hence neglecting instances that are non-standard
from the perspective of TID0.

We refer to Section 7.2 that provides (together with the embedding of
TID into FIT from Chapter 6) a justification for the above assertions. Now,
we shall turn to the general part of the wellordering proofs for TID.

7.2. Upper Bound ϑΩω for FIT and TID
For determining the upper bound of FIT, we apply one result from [JS99]
that relates over ACA0 the scheme (Π1

3-RFN) of ω-model reflection for Π1
3

formulas to the scheme (Π1
2-BI) of bar induction for Π1

2 formulas, and one
result of [RW93] that determines the proof-theoretic ordinal of Π1

2-BI0 to be
the small Veblen ordinal ϑΩω. Then an embedding of FIT into the second
order theory Π1

3-RFN0 of ω-model reflection for Π1
3 formulas suffices to get

the desired upper bound result for FIT. Moreover and due to Section 6.2,

99

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

this also provides an upper bound for TID. In particular, we shall exploit
the Π1

1 definability of a least fixed-point. A similar approach has been taken
in [AR10] and [Pro06] for the treatment of the theories Π1

2-RFN0 and ID∗1 (a
subsystem of ID1 that allows only positive induction for the predicates PA

that are assigned to each positive operator form A). Below, we shall provide
an upper bound for FIT by embedding it directly into Π1

3-RFN0. We remark
that if we were to investigate only the subtheory TID of ID1, we could have
embedded it directly into Π1

3-RFN0 (rather than taking the detour via FIT
as figure 1 from the introduction on page 6 suggests). Furthermore, we
recall that D. Probst’s modular ordinal analysis from [Pro15] determines
the proof-theoretic ordinal of Π1

3-RFN0 to be the small Veblen ordinal by
metapredicative methods.

7.2.1. Subsystems of Second Order Arithmetic

We shall introduce here subsystems of second order arithmetic, and we
formulate them in the language L2

PA that we defined in Section 1.2. In
particular, recall that L2

PA formulas allow for quantification over set vari-
ables X. The following definitions are taken to some extent from [JS99]
and [Sim09], respectively, and we refer to these sources for more details on
subsystems of second order arithmetic and in particular to the underlying
two-sorted logic.

Definition 7.21. We use the following standard abbreviations

(X)t := Λa.〈t, a〉 ∈ X
(QY ∈̇ X)A := (Qy)A((X)y/Y) (where Q ∈ {∀,∃})

Y ∈̇ X := (∃Z ∈̇ X)(Z = Y) (i.e., Y ∈̇ X is ∃z((X)z = Y))

and we define the relativization AX of a formula A to a set variable X
inductively as follows:

100

7.2. Upper Bound ϑΩω for FIT and TID

A if A is an atomic formula
¬(AX0) if A is ¬A0

AX0 ◦AX1 if A is A0 ◦A1 and ◦ ∈ {∨,∧,→}
(Qx)AX0 if A is (Qx)A0 and Q ∈ {∃,∀}
(QY ∈̇ X)AX0 if A is (QX)A0 and Q ∈ {∃,∀}

As usual, we assume tacitly a renaming of bound variables in order to avoid
a clash of variables. Note that set variables occur at most free in AX , i.e.,
AX is arithmetical.

Notation 7.22. We also write

X |= A

in order to denote AX .

Definition 7.23 (Usual hierarchies of formulas).

(a) Π1
0 (or also Σ1

0) formulas are called those formulas A that are arith-
metical, i.e., L2

PA formulas without quantifications over set variables.
We denote this also by writing A ∈ Π1

0 or A ∈ Σ1
0.

(b) Π1
n+1 formulas are called those formulas which are of the form

∀X1∃X2 . . . (Qn+1Xn+1)A

for some A ∈ Π1
0, and where Qn+1 is ∃ for even n and Qn+1 is ∀

otherwise. We denote this also by writing A ∈ Π1
n.

(c) Σ1
n+1 formulas are all those formulas which are of the form ∃XA with

A ∈ Π1
n. We denote this also by writing A ∈ Σ1

n.

Definition 7.24. The two-sorted theory ACA0 is based on the language
L2

PA. Its axioms are the axioms of PA without complete induction, and
where the equality axioms (for the first sort) hold for the language L2

PA.
Moreover, ACA0 consists of the following principles:

101

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

• Set induction:

∀X((0 ∈ X ∧ ∀x(x ∈ X → Sx ∈ X))→ ∀x(x ∈ X))

• Arithmetical comprehension:

(ACA) ∃X∀x(x ∈ X ↔ A)

for each A ∈ Π1
0 that does not contain X (though it might contain

free occurrences of other set variables).

Proposition 7.25. ACA0 is finitely axiomatizable by a Π1
2-sentence FACA.

Proof. See for instance [Sim09, Lemma VIII.1.5].

Definition 7.26. We define the following principles:

• Σ1
1 axiom of choice:

(Σ1
1-AC) ∀x∃XA→ ∃Y ∀x(A((Y)x/X))

for each A ∈ Σ1
1.

• Σ1
1 axiom of dependent choice:

(Σ1
1-DC)

{
∀x∀X∃Y A
→ ∀U∃Z

(
(Z)0 = U ∧ ∀x(A((Z)x/X, (Z)x+1/Y))

)
for each A ∈ Σ1

1.

• Π1
n ω-model reflection for n ∈ N:

(Π1
n-RFN)

{
∀U1, . . . , Uk(
A→ ∃X(AX ∧ FXACA ∧ U1 ∈̇ X ∧ . . . ∧ Uk ∈̇ X)

)
for each A ∈ Π1

n with at most U1, . . . , Uk occurring as free set vari-
ables in A (and where FACA is taken from Proposition 7.25).

• Π1
n bar induction for n ∈ N:

(Π1
n-BI) ∀X(WO(X)→ TIX(Λa.A))

102

7.2. Upper Bound ϑΩω for FIT and TID

for each A ∈ Π1
n and where we let

WO(X) := LO(X) ∧WF(X)
WF(X) := ∀Y (TIX(Y))

TIX(Λa.A) := PROG(X,Λa.A)→ ∀xA(x/a)
PROG(X,Λa.A) := ∀x(∀y

(
〈y, x〉 ∈ X → A(y/a)

)
→ A(x/a))

and where LO(X) denotes the usual arithmetical formula that ex-
presses that X encodes a binary relation that is a linear ordering.

The theories Σ1
1-AC0, Σ1

1-DC0, Π1
n-RFN0, and Π1

n-BI0 are defined by ex-
tending ACA0 with the axiom scheme (Σ1

1-AC), (Σ1
1-DC), (Π1

n-RFN), and
(Π1

n-BI), respectively.

Remark 7.27. We added the definition for (Π1
n-BI) for the sake of complete-

ness but we shall not need to use it directly in the following.

7.2.2. Upper Bound Results from the Literature
Theorem 7.28 ([RW93]). |Π1

n+2-BI0| = ϑΩ(n+ 1, ω) holds for all n ∈ N.

Theorem 7.29 ([JS99]). (Π1
n+1-BI) and (Π1

n+2-RFN) are equivalent over
ACA0 for all n ∈ N.

Theorem 7.30 ([Sim09]). Over ACA0, we have

(a) (Π1
n-RFN) implies (Π1

k-RFN) for k ≤ n.

(b) (Π1
2-RFN) is equivalent to (Σ1

1-DC).

(c) (Σ1
1-DC) implies (Σ1

1-AC).

Corollary 7.31. (Π1
n+2-RFN) implies (Σ1

1-AC) over ACA0 for all n ∈ N.

Theorem 7.32 ([Can86]). |Σ1
1-DC0| = ϕ(ω, 0).

Corollary 7.33. |Π1
n+2-RFN0| = ϑΩ(n, ω) holds for all n ∈ N.

Proof. For n ≥ 1, this is immediate from Theorem 7.28 and Theorem 7.29.
For n = 0, use also Theorem 7.32 and that ϑΩ(0, ω) = ϑ(Ω · ω) = ϕ(ω, 0)
holds by Section 2.4.

103

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

7.2.3. Some Syntactical Properties of L2
PA Formulas

Definition 7.34 (Refined hierarchies of formulas). Let T be some theory
of L2

PA as introduced in Subsection 7.2.1, e.g., T = ACA0 or T = Σ1
1-AC0.

(a) Π1
n formulas over T are all A ∈ L2

PA that are provably equivalent over
T to some formula A′ ∈ Π1

n.

(b) A ∈ Π1
n(T) denotes that A is an Π1

n formula over T.

Remark 7.35. In case that A ∈ Π1
n(T) is given for some theory T of L2

PA
and we consider some A′ ∈ Π1

n that is provably equivalent over T to A,
then we can assume that A and A′ have the same free variables, and we
shall tacitly do so from now on. Moreover, if T1,T2 are theories of L2

PA as
introduced in Subsection 7.2.1 such that T2 comprises T1, then obviously
A ∈ Πn(T1) implies A ∈ Πn(T2).

Proposition 7.36. Let k, n ∈ N and T ∈ {ACA0,Σ1
1-AC0}. Then we have

the following.

(a) (A ∈ Π1
k(T) & k < n) =⇒ (A ∈ Π1

n(T) & ¬A ∈ Π1
n(T)).

(b) Π1
n(T) is closed under conjunction, disjunction, and universal quan-

tification for number variables, i.e., we have

A,B ∈ Π1
n(T) =⇒ A ◦B ∈ Π1

n(T) where ◦ ∈ {∧,∨}
A ∈ Π1

n(T) =⇒ ∀xA ∈ Π1
n(T)

(c) Π1
n+1(T) is closed under universal quantification for set variables,

i.e., we have

A ∈ Π1
n+1(T) =⇒ ∀XA ∈ Π1

n+1(T)

Proof. (a) is obvious. For (b), note that the case n = 0 is obvious. Now,
we show (b) and (c) simultaneously for n + 1 by induction n ∈ N and a
case distinction on the build-up of the formula C given in the right-hand
sides of the claims.

104

7.2. Upper Bound ϑΩω for FIT and TID

We shall provide formulas C ′(W) ∈ Σ1
n such that T ` C ↔ ∀XC ′(X)

holds. Note that for each A ∈ Π1
n+1(T), there exist some A′(U) ∈ Σ1

n and
A′′(U) ∈ Π1

n such that the following holds:

T ` A↔ ∀Y A′(Y)
T ` A′(U)↔ ¬A′′(U)

}
(∗)

Hence, the induction hypothesis may be used in combination with A′′.

1. For conjunction C = A ∧ B: We have A,B ∈ Π1
n+1(T). So, let

A′(U), B′(V) ∈ Σ1
n+1 and A′′(U), B′′(V) ∈ Π1

n+1 be given for A and B,
respectively, with properties as indicated by (∗). Given any set variable
W , we also have A′′((W)0), B′′((W)1) ∈ Π1

n+1. Therefore, the induction
hypothesis yields some C ′′(W) ∈ Π1

n such that

T ` C ′′(W)↔
(
A′′((W)0) ∨B′′((W)1)

)
holds. Since ¬C ′′(W) is logically equivalent to some formula C ′(W) ∈ Σ1

n,
we get eventually T ` C ↔ ∀XC ′(X) by making use of (ACA). Note that
we have

T ` C ′(W)↔ ¬(A′′((W)0) ∨B′′((W)1))↔ A′((W)0) ∧B′((W)1)

2. For disjunction C = A ∨B, the proof is similar as for conjunction.
3. For universal quantification (for numbers) C = ∀xA: Let A′(U, u) ∈ Σ1

n

and A′′(U, u) ∈ Π1
n be given for A with properties as indicated by (∗).

With

B(W) := ∃x(x ∈ (W)0)→ ∃y(y ∈ (W)0 ∧A′((W)1, y))

we have T ` ∀x∀XA′(X,x)↔ ∀Y B(Y) due to the following:
For “→”, assume ∀x∀XA′(X,x) and let Y be given with ∃x(x ∈ (Y)0).

Furthermore, note that for any z, we have that z ∈ (Y)1 is the arithmetical
formula 〈1, z〉 ∈ Y , so we have ACA0 ` ∃X∀z(z ∈ X ↔ z ∈ (Y)1). So,
given such an X and given x with x ∈ (Y)0, we get eventually A′(X,x)
from the assumption ∀x∀XA′(X,x), and hence ∃y(y ∈ (Y)0∧A′((Y)1, y)).

For “←”, assume ∀Y B(Y) and let x and X be given. With D :=
((z)0 = 0 ∧ (z)1 = x) ∨ ((z)0 = 1 ∧ (z)1 ∈ X), we have D ∈ Π1

0, and hence
ACA0 ` ∃Y ∀z(z ∈ Y ↔ D). Given such an Y , we get B(Y) from the

105

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

assumption ∀Y B(Y), and due to x ∈ (Y)0, we further get ∃y(y ∈ (Y)0 ∧
A′((Y)1, y)). Since we have z ∈ (Y)0 ↔ z = x and z ∈ (Y)1 ↔ z ∈ X for
each z, we get A′(X,x).

Turning now to the proof of the main claim, we let

B′(W) := ∃x(x ∈ (W)0) ∧ ∀y(¬(y ∈ (W)0) ∨A′′((W)1, y))

and note that B(W) is equivalent to ¬B′(W). Since ∃x(x ∈ (W)0) ∈ Π1
0

and ¬(y ∈ (W)0) ∈ Π1
0 hold, we have B′(W) ∈ Π1

n(T) by the induction
hypothesis for A′′, i.e., there is some C ′′(W) ∈ Π1

n such that

T ` C ′′(W)↔ B′(W)

holds. Since ¬C ′′(W) is logically equivalent to some formula C ′(W) ∈ Σ1
n,

we finally get

T ` C ↔ ∀x∀XA′(X,x)↔ ∀XB(X)↔ ∀X¬C ′′(X)↔ ∀XC ′(X)

4. For universal quantification (for sets) C = ∀XA(X/V): Let A′(U, V) ∈
Σ1
n(T) and A′′(U, V) ∈ Π1

n(T) be given for A(V) with properties as indi-
cated by (∗). Letting C ′(W) := A′((W)0, (W)1) yields C ′(W) ∈ Σ1

n and
we get T ` C ↔ ∀XC ′(X) by making use of (ACA).

Corollary 7.37. Let k, n ∈ N and T ∈ {ACA0,Σ1
1-AC0}. Then we have(

A0, . . . , Ak ∈ Π1
n(T) & B ∈ Π1

n+1(T)
)

=⇒ ∀~x(A0 → . . .→ Ak → B) ∈ Π1
n+1(T)

Proof. Immediate by Proposition 7.36 and induction on k ∈ N, while noting
that Ak ∈ Π1

n(T) implies ¬Ak ∈ Π1
n+1(T), and that Ak → B is equivalent

to ¬Ak ∨B.

7.2.4. Embedding FIT into Π1
3-RFN0

In order to interpret within Π1
3-RFN0 the applicative part of FIT, i.e., I. in

Definition 5.12, we shall first implement the so-called canonical model PR
for this applicative part. It is built upon ordinary recursion theory and
by using indices of partial recursive functions for interpreting the function
symbol · of LFIT. For a thorough introduction to this construction and a

106

7.2. Upper Bound ϑΩω for FIT and TID

more detailed treatment of the following (in a slightly different setting), we
refer to [FJS]. Without going into detail, we let T be the ternary, primitive
recursive relation T according to Kleene’s Normal Form Theorem, and
let U be the corresponding unary primitive recursive (result-extracting)
function, and in the sense that ∃x(T(e, 〈n1, . . . , nk〉, x) ∧ U(x) = m) for
e, k,m, n1, . . . , nk ∈ N corresponds to the expression {e}(n1, . . . , nk) ' m
in the usual sense that {e} denotes the partial recursive function indexed by
the number e. Furthermore, let Π1

1(x, y) with x 6= y denote a universal Π1
1

formula for Π1
1 formulas that have one free variable, i.e., we have Π1

1(x, y) ∈
Π1

1 and for each L2
PA formula A ∈ Π1

1 with FV(A) = {y}, we have that
∃x∀y(Π1

1(x, y)↔ A) holds over ACA0.4

Definition 7.38 (Interpretation of LFIT into L2
PA). In the abovementioned

setting, we let T and U also denote the corresponding relation and function
symbols in LPA, and then we set

({a}(b) ' c) := ∃x(T(a, b, x) ∧U(x) = c)

Next, we assume an assignment of the constants k, s of LFIT to numer-
als k?, s? that have corresponding properties over ACA0 as described by
the axiom group I.1. in definition 5.12. For the remaining constants
p, p0, p1, 0, sN, pN, dN of LFIT, we set p? to be the numeral of the (primitive
recursive) function (m,n) 7→ 〈m,n〉; p?i to be the numeral of m 7→ (m)i
for i = 0, 1; 0? to be 0; s?N to be the numeral of m 7→ m + 1; p?N to be the
numeral of m 7→ m .− 1; and d?N to be the numeral of the case distinction
function, mapping (k, l,m) to l if k = 0, otherwise to m. See also [FJS].

The translation V?
t (x) of a LFIT term t into the language of LPA is

defined for variables x 6∈ FV(t) as follows:

t = x if t is a variable
t? = x if t is a constant
∃y, z(V?

r(y) ∧V?
s(z) ∧ {y}(z) ' x) if t is of the form rs

and for each LFIT formula A, we let the L2
PA formula A? be defined recur-

sively on the build-up of A as follows for every x 6∈ FV(A) (while we shall
provide the case where A is t ∈ IP,Q in (?-IP,Q) below):

4Bear in mind that this universal Π1
1 formula shall include the unary relation symbol

U of LPA as a parameter.

107

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

∃x(V?
s(x) ∧V?

t (x)) if A is of the form s = t

∃x(V?
t (x)) if A is of the form t↓ or t ∈ N

∃x(V?
t (x) ∧ x ∈ U) if A is of the form t ∈ U

V?
t (0) ∧ ¬V?

t (0) if A is of the form t ∈ N (see Lemma 7.39)
∃x(V?

t (x) ∧ x ∈ X) if A is of the form t ∈ X
∃x(V?

t (x) ∧B?(z/x)) if A is of the form t ∈ {z : B} for B ∈ For+

¬(B?) if A is of the form ¬B
B? ◦ C? if A is of the form B ◦ C for ◦ ∈ {∧,∨,→}
QzB? if A is of the form QzB for Q ∈ {∀,∃}
Qz(B?

(
(Λa.Π1

1(z, a))/X
)
)if A is of the form QXB for Q ∈ {∀,∃}

and for the case that A is of the form t ∈ IP,Q, we introduce first the
following positive operator form (for any P,Q ∈ Ty�)

Acc?P,Q := ΛXΛx.(x ∈ P)? ∧ ∀y((y ∈ P)? → (〈y, x〉 ∈ Q)? → y ∈ X)

and note that P,Q do not contain expressions of the form IP′,Q′ . Eventually,
we set(
t ∈ IP,Q

)? := ∀X(∀x(Acc?P,Q(X,x)→ x ∈ X)→ (t ∈ X)?) (?-IP,Q)

Furthermore, we tacitly assume in the definition of the translation A?
as usual a renaming of bound variables in order to avoid a clash of variables.
Note also that the translation is meant to interpret type variables as Π1

1
definable sets and that IP,Q ∈ Ty implies that P,Q do not contain type
variables (since P,Q ∈ Ty�).

Lemma 7.39. Let A ∈ LFIT, then A? and A have the same free variables.

Proof. This is clear from the definition of A?, while note that it is due
to this lemma that we defined (t ∈ N)? as V?

t (0) ∧ ¬V?
t (0) instead as

¬(0 = 0).

Remark 7.40. For any F ∈ FT, consider the L2
PA class term A := Λz.(tz ∈

F)?. In order to make later arguments more readable, we shall make the
translation of the LFIT formula ClP,Q(Λz.tz ∈ F) more explicit (cf., Nota-
tion 5.9):

108

7.2. Upper Bound ϑΩω for FIT and TID

(
ClP,Q(Λz.tz ∈ F)

)?
=
(
∀x(x ∈ P ∧ (∀y ∈ P)(〈y, x〉 ∈ Q→ ty ∈ F))
→ tx ∈ F

)?
= ∀x(Acc?P,Q(A, x)→ A(x))

 (?-ClP,Q)

As mentioned in Remark 5.10, we defined ClP,Q(Λz.tz ∈ F) in Chapter 5
in order to have the above representation that allows to use Acc?P,Q in a
intuitive way. This correspondence would appear as directly as here in case
we would have defined ClP,Q(Λz.tz ∈ F) for instance as

∀x(x ∈ P→ (∀y ∈ P)(〈y, x〉 ∈ Q→ ty ∈ F))→ tx ∈ F

Lemma 7.41. Let n ≥ 0. For each LFIT term t and each LPA term r, the
following holds.

(a) V?
t (x) ∈ Π1

0.

(b) (t ∈ X)? ∈ Π1
0 &

(
P ∈ Ty� =⇒ (t ∈ P)? ∈ Π1

0
)
.

(c) For T ∈ {ACA0,Σ1
1-AC0}, B := Λa.B(a) with B ∈ L2

PA, and P,Q ∈
Ty�, we have:

B ∈ Π1
n(T) =⇒ Acc?P,Q(B, r) ∈ Π1

n(T)

In particular, we have Acc?P,Q(B, r) ∈ Π1
0 in case of B ∈ Π1

0.

(d) P,Q ∈ Ty� =⇒
(
ClP,Q(X)? ∈ Π1

0 & (t ∈ IP,Q)? ∈ Π1
1
)
.

(e) A ∈ For+ =⇒ A? ∈ Π1
1(Σ1

1-AC0).

(f) F ∈ FT =⇒ (t ∈ F)? ∈ Π1
2(Σ1

1-AC0).

Proof. For (a): This follows easily after inspecting the definition of V?
t (x).

For (b): (t ∈ X)? ∈ Π1
0 follows from (a). Given P ∈ Ty�, we first note

that then by definition, it can only be the case that P is N, N, or {x : A}
for some A ∈ For+ such that A does not contain any IP′,Q′ expression
or type variable. By (a) and Definition 7.38, one can easily verify that
(t ∈ P)? ∈ Π1

0 holds.

109

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

For (c): Acc?P,Q(B, r) translates to the formula

(r ∈ P)? ∧ ∀y((y ∈ P)? → (〈y, x〉 ∈ Q)?(r/x)→ y ∈ B)

and then the claim follows from Proposition 7.36 and (b), using the as-
sumption B ∈ Π1

n(T) and that P,Q ∈ Ty� holds.

For (d): We have Acc?P,Q(X,x) ∈ Π1
0 by the second claim of (c), and

further with (b) and after inspecting (?-IP,Q) on page 108 and (?-ClP,Q) on
page 109, the claim becomes clear.

For (e): We prove here a more general statement

A ∈ For+ =⇒ A? ∈ Π1
1(Σ1

1-AC0)
¬A ∈ For+ =⇒ ¬A? ∈ Π1

1(Σ1
1-AC0)

}
(∗)

and by induction on the build-up of the LFIT formula A. Now, let A ∈ For+

or ¬A ∈ For+ be given. Note that A cannot be of the form ∀XA0 or ∃XA0
because of the definition of For+.

1. Base case: If A is of the form t ∈ U, t↓, or s = t, we have A? ∈ Π1
0 and

are done.
2. Step case t ∈ P: If A is t ∈ P with P ∈ Ty, then A ∈ For+ must hold.
Because of (b), we also only need to consider the case where P 6∈ Ty� and P
is not a type variable. Hence, P is either of the form IP′,Q′ with P′,Q′ ∈ Ty�
or P is of the form {z : B} for some B ∈ For+.

In the first case, we get A? ∈ Π1
1(Σ1

1-AC0) from (d). For the second
case, recall that (t ∈ {z : B})? equals

∃x(V?
t (x) ∧B?(x/z)) (7.19)

and note that by the induction hypothesis for (∗) with B(x/z), we get
A0(U, x) ∈ Π1

0 for some set variable U such that B?(x/z) is equivalent to
∀XA0(X,x) over Σ1

1-AC0. Hence (7.19) is equivalent to

∃x∀X(V?
t (x) ∧A0(X,x)) (7.20)

110

7.2. Upper Bound ϑΩω for FIT and TID

Letting A′0(W) := ∃x
(
V?
t (x) ∧ A0((W)x, x)

)
, we get ∀XA′0(X) ∈ Π1

1
and it only remains to show that (7.20) and ∀XA′0(X) are equivalent over
Σ1

1-AC0, i.e.,

Σ1
1-AC0 ` ∃x∀X

(
V?
t (x) ∧A0(X,x)

)
↔ ∀X∃x

(
V?
t (x) ∧A0((X)x, x)

)
(∗∗)

The “→”-direction holds already over ACA0: In order to show A0((X)y, y)
for some y for any given set X, take x that is given from the left-hand side
of (∗∗). Then use (ACA) to get Z such that z ∈ Z ↔ z ∈ (X)x holds, then
the left-hand side of (∗∗) yields V?

t (x)∧A0(Z, x), i.e., V?
t (x)∧A0((X)x, x).

For the “←”-direction, we can work with the contraposition of (∗∗) and
apply (Σ1

1-AC).
3. Step case ∀,∃: If A = ∀xA0 ∈ For+ holds, then A? ∈ Π1

1(Σ1
1-AC0) is

immediate from the induction hypothesis and Proposition 7.36. If A =
∃xA0 ∈ For+ holds, then also A0 ∈ For+ holds, and the induction hypoth-
esis for (∗) with A0 yields A′0(U, x) ∈ Π1

0 such that A?0 is equivalent to
∀XA′0(X,x) over Σ1

1-AC0. By letting B(W) := ∃xA′0((W)x), we get

Σ1
1-AC0 ` (∃xA0)? ↔ ∃x∀XA′0(X,x)↔ ∀XB(X,x)

using a similar argument as before, and we have ∀XB(X) ∈ Π1
1. In case

that we have ¬A ∈ For+, the argument is analog to the case A ∈ For+.
4. Step cases ¬,→: If A is ¬A0, then we can use the induction hypothesis
for (∗) with A0. Similarly, this holds also for the case that A is A0 →
A1: We can work with ¬A0 ∨ A1 and use that for instance in case of
A ∈ For+, we have ¬A0, A1 ∈ For+, hence ¬A?0, A?1 ∈ Π1

1(Σ1
1-AC0). So by

Proposition 7.36 also ¬A?0 ∨A?1 ∈ Π1
1(Σ1

1-AC0) holds.
5. Step cases ∧,∨: If A = A0 ◦ A1 ∈ For+ with ◦ ∈ {∧,∨}, then A? ∈
Π1

1(Σ1
1-AC0) follows immediately from the induction hypothesis and Propo-

sition 7.36. This holds analogously for the case ¬A ∈ For+.
For (f): We prove this for F ∈ FT with F = P0 → . . . → Pn by

induction on n ∈ N: If n = 0 holds, then we have F ∈ Ty and (t ∈ F) ∈
For+, so we can use (e). If n > 0 holds, then let F′ := P1 → . . .→ Pn. Now,
(t ∈ F)? translates to ∀x

(
(x ∈ P)? → (tx ∈ F′)?

)
. By (e) and the induction

hypothesis, we get (x ∈ P)? ∈ Π1
1(Σ1

1-AC0) and (tx ∈ F′)? ∈ Π1
2(Σ1

1-AC0).
By Corollary 7.37, we get (t ∈ F)? ∈ Π1

2(Σ1
1-AC0).

111

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

Theorem 7.42. Π1
3-RFN0 proves A? for every instance A of (FT-ID).

Proof. Let A be an instance of (FT-ID), say

ClP,Q(Λz.tz ∈ F)→ t ∈ (IP,Q � F)

with F ∈ FT. Similar as in (?-ClP,Q) on page 109, we have with A :=
Λz.(tz ∈ F)? that A? translates to

∀x
(
Acc?P,Q(A, x)→ A(x)

)
→ ∀x

(
(x ∈ IP,Q)? → A(x)

)
and therefore we assume (with a slight renaming of bound variables to
make the following more readable) that

∀y
(
Acc?P,Q(A, y)→ A(y)

)
(7.21)

holds. Due to Lemma 7.41.(f), we know that a formula B ∈ Π1
2 exists such

that

Σ1
1-AC0 ` B ↔ A(y)

holds. For B := Λy.B, we get from Corollary 7.37 and Lemma 7.41.(c) a
formula C ∈ Π1

3 such that

ACA0 ` C ↔ ∀y(Acc?P,Q(B, y)→ B(y)) (7.22)

holds. Note that this holds over ACA0 since we work with B ∈ Π1
2 instead

of (ty ∈ F)?. Moreover, we have over Σ1
1-AC0 that (7.21) is equivalent

to ∀y(Acc?P,Q(B, y) → B(y)) and we proceed now by assuming that the
conclusion in A? is false and will derive a contradiction from this. So, let
a0 be such that

(x ∈ IP,Q)?(a0/x) ∧ ¬A(a0) (7.23)

holds and note that the formula ¬A(a0) (which is ¬(tz ∈ F)?(a0/z)) is
equivalent over Σ1

1-AC0 to ¬B(a0/y). Note that ¬B(a0/y) is equivalent to
a Π1

3 formula, and since we have C ∈ Π1
3, there exists by Proposition 7.36

some D ∈ Π1
3 that is provably equivalent over ACA0 to C∧¬B(a0/y). Then

due to Corollary 7.31, we can work with Π1
3-RFN0 to apply (Π1

3-RFN) to D
and thus obtain an ω-model M of ACA0 such that the following holds:

112

7.2. Upper Bound ϑΩω for FIT and TID

∀y(Acc?P,Q(B, y)M → B(y)M) (7.24)
¬BM (a0/y) (7.25)

Relativization to M in (7.24) holds essentially because of the equivalence
in (7.22) being provable over ACA0. Now, (7.24) unfolds by Definition 7.21
and the build-up of Acc?P,Q(B, y) to

∀y(Acc?P,Q(Λy.BM , y)→ BM) (7.26)

Since BM is arithmetical, (ACA) provides a set X0 such that we have

∀y(y ∈ X0 ↔ BM) (7.27)
∀y(Acc?P,Q(X0, y)→ y ∈ X0) (7.28)

Now, after recalling (?-IP,Q) on page 108, we instantiate (x ∈ IP,Q)?(a0/x)
from (7.23) with X0 and (7.28). We obtain then (x ∈ X0)?(a0/x), i.e.,
∃z(V?

x(z) ∧ z ∈ X0)(a0/x) which is equivalent to a0 ∈ X0 since V?
x(z) is

just x = z. But then we get BM (a0/y) by (7.27) which is a contradiction
to (7.25) and we have proven the lemma.

Remark 7.43. In the previous proof, we considered (7.26) as the pivotal
property for the used proof method because it allowed us to internalize an
argument withing the ω-model M . In particular, we needed that the pos-
itive operator form Acc?P,Q has the property described by Lemma 7.41.(c)
with T being ACA0. A conceptually similar proof in the setting of Π1

2-RFN0
and using similar standard results from the area of subsystems of second
order arithmetic can be found in [AR10], treating the embedding of the
theory ID∗1 of positive induction into Π1

2-RFN0.
Now, turning to the question if our proof method would also work for

arbitrary positive operator forms A, we point out that a direct embedding
of TID into Π1

3-RFN0 can be carried out almost literally as the embedding
of FIT into Π1

3-RFN0. More precisely, the previous lemmas can be reformu-
lated in a very similar way so that they work for TID as well. The pivotal
property to make the proof work would again correspond to (7.26), and
essentially because Acc in the setting of TID has a similar bounded com-
plexity as Acc?P,Q here. The latter means that for (7.22) in the proof of The-
orem 7.42, we used that we had the property Acc?P,Q(Λy.B, x) ∈ Π1

2(ACA0)
at hand for B ∈ Π1

2, namely as provided by Lemma 7.41.(c).

113

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

Continuing from the perspective of TID, we shall consider for a moment
its natural generalization TIDf (where f stands for full) that allows for
arbitrary arithmetical operator forms A. So, having A instead of Acc?P,Q
or Acc in (7.22), it would not always be possible to obtain a property
such as A(B, x) ∈ Π1

2(ACA0), nor can we expect that G′ ∈ Π1
2 exists that

is equivalent over Σ1
1-AC0 or Π1

3-RFN0 to A(B, x). Comparing this with
the mentioned embedding of ID∗1 into Π1

2-RFN0 from [AR10], we note that
essentially only Π1

1 formulas B needed to be considered there, and since a
formula such as A(Λz.B, t) can be proven to be equivalent over Σ1

1-AC0 to
a Π1

1 formula G′, one can continue the proof with this G′.
For an embedding of TIDf into Π1

3-RFN0 where we cannot control
anymore the syntactical complexity of the positive operator forms A, we
apparently cannot directly apply the method of this section. As we shall
describe in the conclusion of Chapter 7 (see Section 7.4), we remark here
that the desired upper bound for TIDf can be obtained by turning to the
setting of set-theory.

Theorem 7.44. Over Π1
3-RFN0, the following holds.

(a) A? holds for every formula A from axiom group I. of FIT.

(b) A? holds for every instance A of the N-induction scheme (FT-Ind) of
FIT.

(c) A? holds for every instance A of the comprehension scheme (CA+)
of FIT.

(d) A? holds for every instance A of the closure axiom (FT-Cl) of FIT.

Proof. For (a): Note that according to Definition 7.38, the type N has
no special role in the translation A? of any of the formulas A given in
the axiom group I. of FIT. As mentioned in Definition 7.38, we assume a
standard interpretation of the constants k and s with the properties that
we need for such a translation to be adequate. It is well-known that the
combinators are available as partial recursive functions in the sense given
here. Moreover, it is also more or less obvious that the interpretation of
the remaining constants has the properties needed to make the translation
of the remaining formulas in axiom group I. go through.

For (b): Over ACA0, we have that (Π1
3-RFN) implies transfinite in-

duction for Π1
2 formulas, and thus complete induction along the natural

114

7.2. Upper Bound ϑΩω for FIT and TID

numbers for Π1
2 formulas. For this, see in [Sim09] Theorem VIII.5.12 and

in particular Exercise VIII.5.15, while noting there that Σ1
4-RFN0 is equiv-

alent to Π1
3-RFN0. Now, let A be an instance t0 ∈ F ∧ (∀x ∈ N)(tx ∈ F→

tx′ ∈ F)→ t ∈ (N� F) of the N-induction scheme (FT-Ind) of FIT, where
F ∈ FT holds. By setting B := Λz.

(
tz ∈ F

)?, we have that A? is equivalent
over ACA0 to

B(0) ∧ ∀x(B(x)→ B(x+ 1))→ ∀x(∃y(V?
x(y))→ B(x)) (7.29)

since B(x + 1) is equivalent to
(
t(sNx) ∈ F

)?. For the latter, note that(
t(sNx) ∈ F

)? is ∃y(V?
t(sNx)(y) ∧ (y ∈ F)?) and that this is equivalent to

∃y, z1, z2(V?
t (z1) ∧ {s?N}(x) ' z2 ∧ {z1}(z2) ' y ∧ (y ∈ F)?)

which again simplifies to

∃y, z1(V?
t (z1) ∧ {z1}(x+ 1) ' y ∧ (y ∈ F)?)

and this is equivalent to B(x + 1). Now arguing over Π1
3-RFN0, we have

that (7.29) is equivalent to an instance of complete induction along the
natural numbers for a Π1

2 formula (use Lemma 7.41.(f)) and hence we are
done.

For (c): Let A be an instance of (CA+), say y ∈ {x : B} ↔ B(y/x)
with B ∈ For+. Then, A? yields

∃x(V?
y(x) ∧B?)↔ (B(y/x))?

which is equivalent to (B(y/x))? ↔ (B(y/x))? and hence a tautology.

For (d): Let A := ClP,Q(Λz.z ∈ IP,Q) be an instance of (FT-Cl).
Following (?-ClP,Q) on page 109 and in order to show A?, assume for
A := Λz.(z ∈ IP,Q)? that we have Acc?P,Q(A, z0) for some z0, and we aim to
prove A(z0), i.e.,(

∀X(∀x(Acc?P,Q(X,x)→ x ∈ X)→ (z ∈ X)?)
)
(z0/z)

and in order to prove this, let X0 be given such that

∀x(Acc?P,Q(X0, x)→ x ∈ X0) (7.30)

115

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

holds and show z0 ∈ X0. We have ∀z((z ∈ IP,Q)? → z ∈ X0) due to (7.30)
and the definition of (z ∈ IP,Q)?, i.e., we have ∀z(A(z)→ z ∈ X0). So, the
latter yields

Acc?P,Q(A, z0)→ Acc?P,Q(X0, z0)

because Acc?P,Q is a positive operator form. We hence get Acc?P,Q(X0, z0)
from our assumption Acc?P,Q(A, z0), and with (7.30) we are done.

Corollary 7.45 (Embedding FIT into Π1
3-RFN0). Let A ∈ LFIT. Then we

have

FIT ` A =⇒ Π1
3-RFN0 ` A

?

Proof. Let A be any LFIT formula. Due to Theorems 7.42 and 7.44, it
remains only to show that the logical part of FIT embeds into Π1

3-RFN0 in
the following sense:

LPT ` A =⇒ Π1
3-RFN0 ` A

?

Assume LPT ` A with respect to any sound Hilbert calculus that may
have been chosen in Definition 5.11. We prove Π1

3-RFN0 ` A? by induction
on the definition of the derivability notion LPT ` A. It is clear from
Definition 7.38 that the translation of the propositional axioms and rules
are derivable in the setting of L2

PA. Similarly, the equality axioms and the
translation of the quantificational axioms and rules for individual variables
is stable, while the definedness axioms become trivial.

Now, we consider the remaining quantificational axioms and rules for
type variables, we have the following cases (and given LFIT formulas A,B):
1. For axiom A := ∀XB → B(P/X): Then A? is

∀z(B?
(
(Λa.Π1

1(z, a))/X
)
)→ B?

(
Λa.(a ∈ P)?/X

)
and the claim follows due to (a ∈ P)? ∈ Π1

1(Σ1
1-AC0) from Lemma 7.41.(e)

and since Π1
1(x, y) denotes a universal Π1

1 formula.
2. For axiom A := B(P/X) → ∃XB: Use the contraposition of A and
argue as in the previous case.

116

7.3. Considering TIDf for General Positive Operator Forms

3. For the logical rule

A→ B
A→ ∀XB

with X not occurring free in A, we get Π1
3-RFN0 ` A? → B? form the

induction hypothesis. Since the underlying calculus for Π1
3-RFN0 from

Definition 1.9 is closed under substitution and X does not occurring in
A, we obtain Π1

3-RFN0 ` A? → B?
(
(Λa.Π1

1(z, a))/X
)
. If we further let

z ∈ FV(A?), we eventually get A? → ∀z(B?
(
(Λa.Π1

1(z, a))/X
)
).

4. For the logical rule

B → A
∃XB → A

with X not occurring free in A, this holds similarly.

7.3. Considering TIDf for General Positive
Operator Forms

With regard to the upper-bound results, we embedded FIT into a subsys-
tem of second order arithmetic, while exploiting the Π1

1 definability of a
least fixed-point in such a setting. However, it is more or less apparent
that we can embed TID analogously via ω-model reflection5, this approach
seems to fail if we extend TID to a theory TIDf for general typed inductive
definitions with the full range of positive arithmetical operator forms (as
described in Remark 7.43). A way to avoid this obstacle is to shift the
setting to set-theory rather than subsystems of second order arithmetic,
namely by exploiting the Σ1 definability of a least fixed-point. Working
then in KPω−+Π2-Found from [Rat92] (i.e., Kripke-Platek set-theory with
a restricted axiom scheme for foundation) shall suffice to get an analog re-
sult as for FIT which we can apply to the theory TIDf . Summing up, what
we gain from these embeddings is that extending TID to the theory TIDf

retains the proof-theoretic upper bound ϑΩω because KPω− + Π2-Found
has the same proof-theoretic strength as Π1

2-BI0 according to [Rat92]. Since
TID trivially embeds into TIDf and as depicted in figure 2, we get that TIDf

5Instead of taking the detour via an intermediate embedding into FIT, see also Sec-
tions 8.3 and Chapter 9.

117

7. The Small Veblen Ordinal ϑΩω measures FIT and TID

has the same proof-theoretic strength as TID (in a similar way as ID1 cor-
responds to ID1(Acc), i.e., to its restriction to accessible part arithmetical
operator forms, see also [BFPS81]).

TID

wellordering proof
(by Section 7.1)

��

generalization
))

embedding // TIDf

embedding

���� ��ϑΩω oo upper bound
(by [Rat92])

KPω− + Π2-Found

Figure 2.: Generalization of TID to the full theory TIDf

We finish with some conjectures on how to extend the proof-methods
from sections 7.1 and 7.2 in order to analyze stronger systems: First, the
collections of formulas Pos0 and Pos1 already suggest a generalization to
collections Posn for any n ≥ 2 in the sense that the correspondence of
Pos1 to function types of the form P1 � . . . � Pk for each k ∈ N (i.e.,
“level-1-functional types”) passes over to Pos2 being in correspondence to
level-2-functional types F1 � . . . � Fk for each k ∈ N, and similarly for
n > 2. Accompanied by this and in particular for Pos2, the transition from
using Klammersymbols instead of finitary Veblen functions and the use of
a higher-type functional for iterating the fixed-point construction on Klam-
mersymbols allows to extend the ordinal notation system. Endowed with
stronger induction principles (e.g., extending (Ind) and (TID) to induction
formulas from Pos2 instead of Pos1), this may lead towards higher ordi-
nals via wellordering proofs based on the accessible part of the primitive
recursive ordering of the new ordinal notation system.

118

7.4. Notes

7.4. Notes
In short, we obtained theories FIT and TID that both have the small Ve-
blen ordinal ϑΩω as their proof-theoretic ordinal, while FIT is a natural
extension of Feferman’s two-sorted theory QL(F0-IRN) from [Fef92] and
TID becomes from this perspective a natural subsystem of ID1. Moreover,
we used techniques from the realm of predicative proof-theory in order to
obtain a wellordering proof for TID (and hence for FIT). Th. Strahm gave
the first ideas towards a suitable way of carrying out wellordering proofs,
in particular the idea to consider [Fef92] stems from him. He also drew our
attention to working with Π1

3-RFN0 for the treatment of the upper bound
of FIT.

119

8. TIDn and TID+
n as

Generalizations of TID
Aiming for an internalization of the wellordering proof for the system TID
from Chapter 7 that reaches up to the small Veblen ordinal, we shall in-
troduce in this chapter a theory TID+

1 which in Chapter 11 will turn out
to be a very natural framework for carrying out wellordering proofs in the
context of Klammersymbols and hence reaching up to the large Veblen or-
dinal ϑΩΩ. This shall lead to the following generic definition of families of
theories TIDn and TID+

n for each n ∈ N where TID1 essentially corresponds
to TID. Furthermore and motivated by Corollary 7.37, we shall adapt the
notion Pos1 to Pos→1 and in general to Pos→n for n ∈ N.

8.1. The Arithmetical Theories TIDn and TID+
n

Definition 8.1.

(a) Pos→0 denotes the collection of LTID formulas that contain each PC
at most positively.

(b) Pos→n for each n ≥ 1 is inductively defined as follows:

A ∈ Pos→n−1 =⇒ A ∈ Pos→n (Pos→-Base)

A0, . . . , Ak ∈ Pos→n−1& B ∈ Pos→n
=⇒ ∀~x(A0 → . . .→ Ak → B) ∈ Pos→n

}
(Pos→-Cons)

for all k ∈ N and all (possibly empty) lists of variables ~x.

For n ∈ N, we write Λa.A ∈ Pos→n in order to denote A ∈ Pos→n , respec-
tively.

121

8. TIDn and TID+
n as Generalizations of TID

Definition 8.2. For each n ∈ N, we define the following:

(a) TIDn is the theory that arises from the axioms of Peano arithmetic
PA without complete induction by adding the following axioms and
axiom schemes

(Indn) B(0) ∧ ∀x(B(x)→ B(Sx))→ ∀xB(x)
for B ∈ Pos→n

(Cl) ProgC(PC) (i.e., ∀x(AccC(PC, x)→ PCx))
for C being a binary relation symbol in LPA

(TIDn) ProgC(B)→ ∀x(PCx→ B(x))
for B ∈ Pos→n and C a binary relation symbol in LPA

where (Cl) is called closure and (TIDn) is called n-typed inductive
definition.

(b) TIDn + (Indk) for k > n is obtained from TIDn by exchanging the
axiom scheme (Indn) by (Indk).

Definition 8.3.

(a) TID+
• is obtained from Peano arithmetic PA by adding the axioms

(Nat) ∀x(P<Nx)
(Cl) ProgC(PC)

for each binary relation symbol C in LPA

and the following rule of inference:

PCt(TID+) ProgC(B)→ B(t)

for each B ∈ LTID (i.e., for arbitrary LTID class terms), each binary
relation symbol C in LPA, and each term t.

(b) TID+
n := TID+

• + (TIDn) is obtained from TID+
• by adding the axiom

scheme (TIDn).

Remark 8.4. The axiom (Nat) axiomatizes that the accessible part P<N of
the <N-relation consists of all the natural numbers.

122

8.1. The Arithmetical Theories TIDn and TID+
n

Lemma 8.5. For each B ∈ LTID, we have

TID+
• ` B(0) ∧ ∀x(B(x)→ B(Sx))→ ∀x(B(x))

Proof. Note first that we have TID+
• ` ∀x(P<Nx) because of (Nat), so we get

P<Nx for any x and can then use (TID+) to get Prog<N
(B)→ B(x) for each

B ∈ LTID. Now, (∀-intro) from Definition 1.9 yields Prog<N
(B)→ ∀x(B(x))

which is equivalent to B(0)∧∀x(B(x)→ B(Sx))→ ∀x(B(x)). Note for the
latter that TID+

• includes PA, so we have in particular ∀x(x = 0 ∨ ∃y(x =
Sy)).

Theorem 8.6. For each A ∈ LTID and n ∈ N, we have the following:

TIDn ` A =⇒ TID+
n ` A

Proof. This follows from Lemma 8.5.

Remark 8.7. As for TID in Remark 6.7, it is clear that the following prop-
erties hold over TIDn and TID+

n for all n ∈ N (while note that (TID0) is
always available in TIDn and TID+

n):

• For any binary relation symbol C in LPA, we may identify (Cl) with
a fixed-point principle

(FP) ∀x(PCx↔ AccC(PC, x))

and therefore we will sometimes use (Cl) to ambiguously mean (FP).

• We can use instead of the formula from Lemma 8.5 also the following
course-of-value variant of complete induction for LTID formulas, i.e.,
we have

∀x(∀x0 <N xB(x0)→ B(x))→ ∀xB(x)

as an induction principle for all B ∈ LTID.

Convention 8.8. We may use (Indn) in TID+
• for all n ∈ N or its course-

of-value variant without always mentioning Lemma 8.5.

123

8. TIDn and TID+
n as Generalizations of TID

8.2. Alternative Definition of TIDn

Let TID−n be the theory that is obtained from PA by adding the axioms
(Nat) and (Cl) from TID+

• and the axiom scheme (TIDn) from TIDn, i.e.,

TID−n := PA + (Nat) + (Cl) + (TIDn)

Then we can derive (Indn) in TID−n from (TIDn) and (Nat) in a similar
way as in the proof of Lemma 8.5. Hence, we get that TID−n and TIDn are
equivalent. We decided not to use TID−n , leaving the definition of TIDn as
it is, because we wanted to keep the resemblance of TIDn to the theory
ID∗1� from the introduction of this thesis as it is.

We shall see in Chapter 9, when determining the upper bound of
|TID+

n |, that the interpretation of (TID+) into the language L2
PA and the

setting of subsystems of second order arithmetic corresponds to a form
of bar rule1 which allows to use set induction (from Definition 7.24) to
derive complete induction for all L2

PA formulas, so this fits to the result
of Lemma 8.5 (see also Section 9.3). Moreover, the upper bound result of
Chapter 9 suggests that the strength of TID+

n is essentially given by adding
(TIDn) to TID+

• .
With respect to the wellordering proof of TID+

1 in Chapter 11, we shall
actually only use (Ind2) and not the full strength of Lemma 8.5. We shall
also only need such instances of (TID+) where B ∈ Pos→2 holds (instead of
arbitrary B ∈ LTID), and we remark here that we included the rule (TID+)
for arbitrary B ∈ LTID because on the one hand, the definition of TID+

1
(and TID+

n in general) becomes simpler and more perspicuous, and on the
other hand because of the upper bound result in Chapter 9.

8.3. Comparison of TID with the Theory TID1

The applicative theory FIT that was introduced in Chapter 7 has the small
Veblen ordinal ϑΩω as its proof-theoretic ordinal, and it influenced the
definition of an arithmetical theory TID based on accessible part inductive
definitions of primitive recursive binary relations. TID1 is essentially the
theory TID from Chapter 7.

1See for instance [FJ83] for a definition of the bar rule.

124

8.3. Comparison of TID with the Theory TID1

For the one direction, recall that we get for Pos1 in Chapter 7 that
B ∈ Pos1 implies B ∈ Pos→1 . Note in particular the situation where we
have

B = Λa.∀~x(A1 → A2) & a 6∈ FV(A2) & A1, A2 ∈ Pos0

and note that A1, A2 ∈ Pos0 is equivalent to A1, A2 ∈ Pos→0 .
For the other direction, we get for each Λa.B ∈ Pos→1 that some

formula B′ exists that is logically equivalent to B and such that Λa.B′ ∈
Pos1 holds. This is due to the following observation regarding Definition 8.1
and arguing by induction on the built-up Λa.B:

• If Λa.B ∈ Pos→1 is due to (Pos→-Base), this is clear because Pos0 and
Pos→0 consist of the same formulas.

• If Λa.B ∈ Pos→1 is due to (Pos→-Cons), then B is

∀~x(A0 → . . .→ Ak → C)

and we can use the induction hypothesis to get C ′′ with Λa.C ′′ ∈ Pos1
and that is logically equivalent to C. Moreover, we have A0, . . . , Ak ∈
Pos0.

In case of C ′′ ∈ Pos0, we can set A′′ := A0 ∧ . . . ∧ Ak and B′′ :=
∀~x(A′′ → C ′′) which is logically equivalent to B due to an uncurrying
argument. If the variable condition a 6∈ FV(A′′) does not already
hold, then let y be some fresh variable, set A′ := A′′(y/a) and C ′ :=
(y = a→ C ′′) and note that A′, C ′ ∈ Pos0 holds with a 6∈ FV(A′). It
is now easy to see that B′ := ∀y∀~x(A′ → C ′) is logically equivalent
to B′′ (hence also to B) and that B′ ∈ Pos1 holds.

In case of C ′′ 6∈ Pos0, we have that C ′′ is ∀~y(C ′′0 → C ′′1) such that a 6∈
FV(C ′′0) and C ′′0 , C ′′1 ∈ Pos0 hold. By setting A′′ := C ′′0 ∧A0∧ . . .∧Ak
and B′′ := ∀~x∀~y(A′′ → C ′′1), we can argue as in the case C ′′ ∈ Pos0.

We used in Chapter 7 the variant with B ∈ Pos1 (instead of B ∈ Pos→1)
in order have a more natural correspondence of TID to the applicative
theory FIT, and also because this simplified the embedding of TID into FIT
from Chapter 6.

125

8. TIDn and TID+
n as Generalizations of TID

8.4. Notes
The first idea of extending the theory TID was to strengthen the induction
axiom (Ind). This emerged directly after observing the wellordering proof
for TID, and this seemed necessary in particular for being able to internalize
the proofs in Chapter 7 (note also Remark 7.19). The internalization of the
wellordering proof of TID seemed to provide a local combinatorial property
which can be generalized in a canonical way, and where the induction axiom
(Ind2) seemed strong enough to carry this. Though, in order to exploit this
generalized combinatorial property and being able to push it forward in
the framework of Klammersymbols, we needed to enhance (TID) by (TID2)
but it seemed a bit too strong. Now, by considering (TID2) as a rule,
we obtain in Chapter 11 a desired result for the ordinal notation system
based on Klammersymbols, i.e., the large Veblen ordinal ϑΩΩ. The idea for
this came from Th. Strahm. He also pointed towards a formulation of the
rule (TID+) where arbitrary B ∈ LTID may occur in its formulation, hence
allowing for an interpretation in L2

PA as a kind of bar rule. The theories
TIDn and TID+

n then emerged naturally from the definitions of TID+
1 and

TID2.

126

9. Embedding for TIDn and
Derivability for TID+

n

In this chapter, we shall determine upper bounds for the proof-theoretic
ordinals of the theories TIDn and TID+

n for each n ∈ N.

Definition 9.1 (Π1
1 interpretation of PC). For every A ∈ LTID, we define

A? as the interpretation of A in L2
PA by exchanging in A any occurrence of

atomic formulas of the form PCt for some C by

(PCt)? := ∀X(ProgC(X)→ t ∈ X)
= ∀X(∀x(AccC(X,x)→ x ∈ X)→ t ∈ X)
= ∀X(∀x(∀y(y C x→ y ∈ X)→ x ∈ X)→ t ∈ X)

and leaving everything else unchanged.

Notation 9.2. For each A := Λa.A with A ∈ LTID and each PC ∈ LTID,
we use the following notation:

A? := Λa.A?

P ?C(t) := (PCt)?

Remark 9.3.

(a) For each B ∈ LTID, we have that (AccC(B, t))? equals

AccC(B?, t)

because of the definition of AccC.

(b) For each B ∈ L2
PA, we have that B? equals B.

127

9. Embedding for TIDn and Derivability for TID+
n

Lemma 9.4. Let n ∈ N and T ∈ {ACA0,Σ1
1-AC0}. Then we have the

following:

(a) (PCt)? ∈ Π1
1.

(b) B ∈ Π1
n(T) =⇒ AccC(Λa.B, t) ∈ Π1

n(T).

(c) B ∈ Pos→n =⇒ B? ∈ Π1
n+1(Σ1

1-AC0).

Proof. For (a): Immediate from Definition 9.1 and since AccC(X,x) has
no second order quantifiers.

For (b): Let B ∈ Π1
n(T) ⊆ L2

PA be given. Since Acc(B, t) is the formula

∀y(y C t→ B(y))

and we have (y C t) ∈ Π1
0, we get Acc(B, t) ∈ Π1

n(T) by Corollary 7.37.
For (c): By induction on n.

1. n = 0: This is proven almost literally as for Lemma 7.41.(e), while
noting that Pos→0 corresponds in current consideration to For+ from the
applicative setting of FIT.
2. n ≥ 1: We prove this by a side induction on the build-up of B and the
definition of B ∈ Pos→n . This is similar to the proof of Lemma 7.41.(e).
2.1. If B ∈ Pos→n is due to (Pos→-Base) in Definition 8.1: Then we have
B ∈ Pos→n−1 and the claim follows from the main induction hypothesis
(while noting Lemma 7.36.(a)).
2.2. If B ∈ Pos→n is due to (Pos→-Cons) in Definition 8.1: Then we have
that B equals

∀~x(A0 → . . .→ Ak → B0)

for some A0, . . . , Ak ∈ Pos→n−1, B0 ∈ Pos→n , and some (possibly empty) list
of variables ~x. The side induction hypothesis yields B?0 ∈ Π1

n+1(Σ1
1-AC0)

and the main induction hypothesis yields A0, . . . , Ak ∈ Π1
n(Σ1

1-AC0), hence
the claim follows immediately from Corollary 7.37.

9.1. Embedding TIDn into Π1
n+2-RFN0

Theorem 9.5. Π1
n+2-RFN0 proves A? for every instance A of (TIDn) and

for every n ∈ N.

128

9.1. Embedding TIDn into Π1
n+2-RFN0

Proof. We adapt now the proof of Theorem 7.42 for the current setting.
Let A be an instance of (TIDn), say

∀x(AccC(B, x)→ B(x))→ ∀x(PCx→ B(x))

with B := Λa.B and B ∈ Pos→n . Then by definition and Remark 9.3, A? is

∀x(AccC(B?, x)→ B?(x))→ ∀x(P ?C(x)→ B?(x))

where B? is Λa.B?. Further assume

∀x(AccC(B?, x)→ B?(x)) (9.1)

Due to Lemma 9.4, we know that D(a) ∈ Π1
n+1 exists such that

Σ1
1-AC0 ` D(a)↔ B?(a) (9.2)

holds. Letting D := Λy.D(y) and noting that D ∈ Π1
n+1 holds, we get by

Corollary 7.37 and Lemma 9.4.(b) (with T := ACA0) some E ∈ Π1
n+2 with

ACA0 ` E ↔ ∀x(AccC(D, x)→ D(x)) (9.3)

Moreover, we have that (9.1) is equivalent over Σ1
1-AC0 to

∀x(AccC(D, x)→ D(x))

We proceed now by assuming that the conclusion in A? is false and will
derive a contradiction from this. Let a0 be such that

P ?C(a0) ∧ ¬B?(a0) (9.4)

holds and note that ¬B?(a0) is equivalent over Σ1
1-AC0 to ¬D(a0) by (9.2)

and that ¬D(a0) ∈ Π1
n+2 holds. Due to Theorem 7.30, we can apply

(Π1
n+2-RFN) to the conjunction of E and ¬D(a0) in order to obtain an ω

model M of ACA0 such that we obtain (in particular due to (9.3)) that

∀x(AccC(D, x)M → D(x)M) (9.5)
¬DM (a0) (9.6)

hold within the theory Π1
n+2-RFN0. Now, (9.5) unfolds by definition to

129

9. Embedding for TIDn and Derivability for TID+
n

∀x(AccC(Λy.DM (y), x)→ DM (x)) (9.7)

and hence, we obtain that (9.7) holds over Π1
n+2-RFN0. As DM (x) is

arithmetical, (ACA) provides a set X such that ∀x(x ∈ X ↔ DM (x)) and
∀x(AccC(X,x)→ x ∈ X) holds. This can be used with P ?C(a0) from (9.4)
to get a0 ∈ X, i.e., DM (a0) which is a contradiction to (9.6).

Theorem 9.6. For each n ∈ N, the following holds over Π1
n+2-RFN0:

(a) A? holds for every formula A that is an axiom of PA without complete
induction.

(b) A? holds for every instance A of axiom (Indn) of TIDn.

(c) A? holds for every instance A of the closure axiom (Cl) of TIDn.

Proof. For (a), this is obvious. For (b), note that we have over ACA0
that (Π1

n+2-RFN) implies transfinite induction for Π1
n+1 formulas, and thus

complete induction along the natural numbers for Π1
n+1 formulas. For this,

see in [Sim09] Theorem VIII.5.12 and in particular Exercise VIII.5.15, while
noting there that Σ1

n+2-RFN0 is equivalent to Π1
n+2-RFN0. Then the claim

follows, noting that A? translates by Lemma 9.4.(c) to complete induction
along the natural numbers for Π1

n+1 formulas. Note also Theorem 7.30.
For (c), we have to show

∀x
(
AccC(Λa.P ?C(a), x)→ P ?C(x))

So, assume x0 with

AccC(Λa.P ?C(a), x0) (9.8)

and show P ?C(x0), i.e.,

∀X(∀x(AccC(X,x)→ x ∈ X)→ x0 ∈ X)

So, assume X0 with

∀x(AccC(X0, x)→ x ∈ X0) (9.9)

and show x0 ∈ X0. We have ∀z(P ?C(z) → z ∈ X0) due to (9.9) and the
definition of P ?C(z). Then this yields ∀z(AccC(Λa.P ?C, z) → AccC(X0, z)))

130

9.2. Arithmetical Derivability in TID+
n

since AccC is apositive operator form. Now, we first get AccC(X0, x0)
by (9.8) and then the claim x0 ∈ X0 by (9.9).

Corollary 9.7 (Embedding TIDn into Π1
n+2-RFN0). For each A ∈ LTID

and n ∈ N, we have

TIDn ` A =⇒ Π1
n+2-RFN0 ` A

?

Proof. This follows directly from the previous results.

9.2. Arithmetical Derivability in TID+
n

9.2.1. The Reference System Town

Notation 9.8. For each n ∈ N and each set variable X, we denote by

X |= Π1
n+2-RFN0

ambiguously to Notation 7.22 that X is a model of Π1
n+2-RFN0, i.e., this

shall denote

(FΠ1
n+2-RFN)X

where FΠ1
n+2-RFN is any Π1

n+2-sentence that is a finite axiomatization1 of
Π1
n+2-RFN0.

Definition 9.9. For each n ∈ N, we define

Town :=
{

ACA0

+ ∀X∃Y (X ∈̇ Y ∧ Y |= Π1
n+2-RFN0)

We call Town a theory for towers2 of models over Π1
n+2-RFN0.

Remark 9.10. The theories Town for n ∈ N are essentially the theories
p1pn+2(ACA0) from [Pro15].

1By means of FACA from Proposition 7.25 and making use of a universal Π1
n+2 formula

for Π1
n+2 formulas. See also [Hin78] and [Sim09].

2We can use the main axiom of Town for each k ≥ 2 iteratively in order to get sets
X1, . . . , Xk with Xi |= Π1

n+2-RFN0 for each 1 ≤ i ≤ k and such that X1 ∈̇ . . . ∈̇ Xk
holds.

131

9. Embedding for TIDn and Derivability for TID+
n

9.2.2. Arithmetical Derivability

Theorem 9.11. For each n ∈ N, we have

TID+
n ` A =⇒ Town ` ∀Y (Y |= Π1

n+2-RFN0 → Y |= A?)

Proof. By induction on the derivation-length of TID+
n ` A. In the following

case distinction, we assume Y with

Y |= Π1
n+2-RFN0 (9.10)

and have to show Y |= A?.
1. Arithmetical Axioms: This is clear since Y is in particular a model of
ACA0 by (9.10).
2. Axiom (Nat): We have to show ∀x(Y |= P ?<N

(x)), i.e.,

∀x(∀X ∈̇ Y (Prog(X)→ x ∈ X))

which is ∀x(∀y(Prog((Y)y)→ x ∈ (Y)y)). So, we can derive this from set
induction and (ACA) which both are available in Town.
3. Axiom (TIDn): Let A be an instance

ProgC(B)→ ∀x(PCx→ B(x))

of (TIDn) with B ∈ Pos→n . We have that B is of the form Λa.B and that B?
is equivalent over Σ1

1-AC0 to some B′ ∈ Π1
n+1 by Lemma 9.4. Hence, this

equivalence holds also in the model Y since Y is a model of Π1
n+2-RFN0

by (9.10). Further, and as in Section 9.1, we get that Prog(B?) is equivalent
to some C ∈ Π1

n+2 and we can argue within Y as we did in Section 9.1
when we were working externally in Π1

n+2-RFN0.
4. Axiom (Cl): As for the treatment of (Cl) for TIDn in Section 9.1 but
working now within Y .
5. Rule modus ponens, (∀-intro), and (∃-intro): This follows easily from
the induction hypothesis. For instance for (∀-intro), let A be A0 → ∀xB0
with x 6∈ FV(A0). So, the induction hypothesis for the premiss A0 → B0
of (∀-intro) yields Y |= A?0 → B?0 , i.e., A?0

Y → B?0
Y , hence (∀-intro) yields

A?0
Y → ∀x(B?0

Y), i.e., Y |= A?.
6. Rule (TID+): Let A be the conclusion ProgC(B) → B(t) of the rule
(TID+) with B ∈ LTID, and we remark that the ?-translation of (TID+)

132

9.2. Arithmetical Derivability in TID+
n

into L2
PA yields a kind of bar rule, i.e., a rule of the form

∀X(ProgC(X)→ t ∈ X)
(BR+) ProgC(B?)→ B?(t)

while recalling that the ?-translation of the premiss PCt of TID+ becomes
∀X(ProgC(X)→ t ∈ X) and that B? is Λa.B? given that B is Λa.B. Now,
we have to show

Y |= (ProgC(B?)→ B?(t)) (∗)

and therefore assume Y |= ProgC(B?), i.e.,

ProgC(Λx.B?(x)Y) (9.11)

where x is some fresh variable. In order to get (∗), we have to show
Y |= B?(t), i.e.,

B?(t)Y (∗∗)

Arguing within Town, we get Z such that Y ∈̇ Z and Z |= Π1
n+2-RFN0

hold. Now, note that B?(x)Y ∈ Π1
0 holds, so we get

∃X0 ∈̇ Z∀x(x ∈ X0 ↔ B?(x)Y) (9.12)

because each instance of (ACA) holds relativized to Z and we have Y ∈̇ Z.
On the other hand, we have TID+

1 ` PCt and hence

Town ` ∀Y0

(
Y0 |= Π1

n+2-RFN0

→ Y0 |= ∀X(ProgC(X)→ t ∈ X)

)
(9.13)

by the induction hypothesis, i.e., we get ∀X ∈̇ Z(ProgC(X) → t ∈ X)
and hence ProgC(X0) → t ∈ X0 by making use of X0 from (9.12). By
showing ProgC(X0), we are done because t ∈ X0 and (9.12) imply (∗∗).
For ProgC(X0), we can use (9.11) and again (9.12).

Corollary 9.12. For each A ∈ LPA and each n ∈ N, the following holds:

TID+
n ` A =⇒ Town ` A

133

9. Embedding for TIDn and Derivability for TID+
n

Proof. Follows immediately from Theorem 9.11 and since (A?)Y equals A
for all set variables Y and all LPA formulas A.

9.3. Comparison with a Bar Rule
Wemotivated the treatment of the rule (TID+) in the proof of Theorem 9.11
by depicting the ?-translation of this rule’s premiss and conclusion with an
informal indication of a bar rule

∀X(ProgC(X)→ t ∈ X)
(BR+) ProgC(B)→ B(t)

for arbitrary B ∈ L2
PA and which we named (BR+) so that it bears anal-

ogy to (TID+). This rule (BR+) is a special case of a (parameter-free)
substitution rule (SUB), i.e.,

∀X(A)
(SUB)

A(B/X)

where A ∈ L2
PA is arithmetical and ∀X(A) contains no set parameters (i.e.,

no free set variables), while B ∈ L2
PA can be arbitrary. On the other hand,

one of the common definitions of the bar rule (BR) is

∀X(ProgC(X)→ ∀x(x ∈ X))
(BR)

ProgC(B)→ ∀x(B(x))

which is given for arbitrary B ∈ L2
PA and which is treated for instance

in [FJ83]. Clearly, (BR) is a special case of (SUB), and we know from the
literature that adding (BR) to a theory T that comprises ACA0 (and is a
subsystem of second order arithmetic as described in Section 7.2) is strong
enough to derive (SUB), see [Rat91, Lemma 1.4.(iii)] or [Fef70] for this.3

These observations yield

|Π1
n+2-RFN0 + (BR)| = |Π1

n+2-RFN0 + (SUB)|

and under the assumption |TIDn| = |Π1
n+2-RFN0|, we hence get immedi-

3In fact, (BR+) follows from (BR) over ACA0 if we use (BR) for the restriction C�t of
any given C and t that is given in (BR+). Obviously, (BR+) implies also (BR).

134

9.4. Upper Bounds for TIDn and TID+
n

ately that |TID+
n | ≤ |Π1

n+2-RFN0 + (BR)| holds because the ?-translation of
the rule (TID+) yields a special case (BR+) of (SUB) and because TIDn is
by Lemma 8.5 essentially included in TID+

n . Further, the proof-method for
showing Theorem 9.11 can be used to show that the arithmetical formulas
that are derivable in Π1

n+2-RFN0 + (BR) are also derivable in Town, This
yields |Π1

n+2-RFN0 + (BR)| ≤ |Town| = ϑΩ(n,Ω) since |Town| = ϑΩ(n,Ω)
follows from [Pro15] (while noting that Town appears in [Pro15] as the
theory p1pn+2(ACA0)).

In case of n = 1, we know already |TID1| = |Π1
3-RFN0| by Chapter 7

and Section 8.3, i.e., that |TID1| is the small Veblen ordinal. From the
wellordering proof of TID+

1 in Chapter 11, we hence get that Π1
3-RFN0 +

(BR) corresponds to the large Veblen ordinal, i.e., adding (BR) yields the
step from the small to the large Veblen ordinal. This gives rise to the
conjectures on |TID+

n | that are depicted by ? in Table 1 on page 8.
As in Section 8.2, we note that the result of Lemma 8.5 corresponds

here to the provability of complete induction for the full language L2
PA.

This follows from the substitution rule (SUB), and hence from (BR+), by
essentially applying (SUB) to the axiom of set induction.

9.4. Upper Bounds for TIDn and TID+
n

Theorem 9.13. |TIDn| ≤ ϑΩ(n, ω) holds for all n ∈ N.

Proof. This is a direct consequence from Corollary 9.7 and Corollary 7.33.

Theorem 9.14. |TID+
n | ≤ ϑΩ(n,Ω) holds for all n ∈ N.

Proof (Sketch). This is a consequence of Corollary 9.12 and the results
of [Pro15] on p1pn+2(ACA0), i.e., Town.

9.5. Notes
The results of Chapter 9 concerning TIDn for n ∈ N are inspired by the
upper bound results for FIT in Chapter 7, though the idea to work with
Π1

3-RFN0 at all in Chapter 7 is due to Th. Strahm. The treatment of
TID+

n via Town, i.e., “towers” of models for ω-model reflection for Π1
n+2

135

9. Embedding for TIDn and Derivability for TID+
n

formulas, was motivated by Th. Strahm and D. Probst. In particular,
D. Probst uses in [Pro15] essentially the same systems Town which are
however based on operators p1 and pn+2 that take theories (that can be
coded as sentences) and output new theories in a modular way that allows
for a powerful and flexible treatment of proof-theoretic investigations. In
particular, pn+2(ACA0) corresponds to Π1

n+2-RFN0 and p1pn+2(ACA0), i.e.,
p1(pn+2(ACA0)), corresponds to Town.

136

10. Special Considerations for
TID0 and TID+

0

10.1. Calibrating TID0 with Σ1
1-DC0 and ϑΩ(0, ω)

Recall that TID0 is ID∗1� from [Pro06] with the restriction to accessible part
operator forms, so |TID0| = ϕ(ω, 0) holds.1 Due to ϑΩ(0, ω) = ϑ(Ω · ω) =
ϕ(ω, 0) from Section 2.4 and due to Theorem 7.32, the following holds:

|TID0| = ϑΩ(0, ω) = ϕ(ω, 0) = |Σ1
1-DC0|

10.2. Calibrating TID+
0 with ATR0 and ϑΩ(0,Ω)

Arithmetical formulas that are provable in TID+
0 are also provable in a

theory Tow0 that formalizes over ACA0 models of Π1
2-RFN0. Using that

Σ1
1-DC0 is equivalent to Π1

2-RFN0 by Theorem 7.30 and using [Sim09, The-
orem VIII.4.20, Lemma VIII.4.19], we get that Tow0 can be embedded into
the theory ATR0, a theory for arithmetical transfinite recursion, see [Sim09]
for a definition of ATR0. After inspection of the proof of Lemma 7.6 in
Subsection 7.1.1, one can see that the rule (TID+) in TID+

0 allows to get a
wellordering proof for ordinals below Γ0, using the following usual approx-
imations gn of Γ0 that are defined for each n ∈ N by

g0 := ε0 gn+1 := ϕ(gn, 0)

and yielding supn∈N(gn) = Γ0. Altogether, we obtain

|TID+
0 | = ϑΩ(0,Ω) = Γ0 = |ATR0|

while ϑ(Ω · Ω) = ϑΩ2 = Γ0 is due to [Sch92], see also Section 2.4.
1This follows actually from the considerations of Corollary 7.7 and Remark 7.8.

137

11. The Large Veblen Ordinal
ϑΩΩ measures TID+

1

In this chapter, we shall show that TID+
1 is a natural theory for carrying out

wellordering proofs in the context of Klammersymbols and hence reaching
up to the large Veblen ordinal ϑΩΩ. In order to be able to work more
efficiently with Klammersymbols, we shall use the notions from Chapter 4
that allow to manipulate the represented ordinals in a natural and suitable
way for predicative investigations. Bear in mind that our aim to internalize
the concepts from Section 7.1 within the arithmetical theory TID+

1 is the
main difficulty of the following content.

11.1. Generalization of Concepts from Chapter 7
Convention 11.1.

(a) (OT,≺) and all associated notions shall refer to the ordinal notation
system (OT(L0),≺) that was circumscribed in Chapter 4.

(b) In order to increase readability, we shall use the following abbrevia-
tions for denoting quantification over (labeled) Klammersymbols:
• ∀α(. . .) abbreviates ∀x(x ∈ L0 → . . .) and
• ∃α(. . .) abbreviates ∃x(x ∈ L0 ∧ . . .).

(c) For more readability, we shall prefer now the notation

t ∈ PC

rather than PCt (since we do not work any more in the setting of
FIT, so there is no clash of notations). In particular, we shall make
more use of expressions of the form ∀x ∈ PC(. . .) or ∃x ∈ PC(. . .).
Compare this with the notational framework introduced in Chapter 1.

139

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

(d) Moreover and similar to Chapter 7, we let

• P denote P≺,

• Acc denote Acc≺, and

• Prog denote Prog≺.

Definition 11.2.

(a) In order to formally express that for any Klammersymbol
(a0 ... an
b0 ... bn

)
,

we have ai ∈ P for each i ≤ n, we introduce the following formula:

x ∈̇ P :⇔ ∀y ≤ lhL(x)
(
∀z ≤ lhS(p(x, y))

(
c(p(x, y), z) ∈ P

))
If it is clear from the context, we also write α ∈ P instead of α ∈̇ P .
Clearly, x ∈̇ P is in Pos→0 .

(b) Let α ∈ L ∩ P abbreviate α ∈ L ∧ α ∈̇ P , and clearly α ∈ L ∩ P is
in Pos→0 . This notation shall be tacitly used analogously for similar
expressions such as α ∈ S ∩ P .

Remark 11.3. The wellordering proof crucially depends on the following
notions which are generalizations of concepts from Chapter 7 and adapted
for the current treatment without fundamental sequences.

Definition 11.4.

• Fun(α) is called functionality and defined as

∀x ∈ P ({α}x ∈ P)

• Small(s, α, a) is called the (generic) small Veblen jump and defined as

∀ρ, σ
(

c(σ, s) ≺ a
∧ lhS(σ) ≤ s ≤ lhS(α)

∧ σ ∈ S
e(α)
0 ∩ P

∧ ρ ∈ L
≺e(α)
0 ∩ P

→ Fun(ρ ∗ σ ∗ α|Ss)
)

140

11.1. Generalization of Concepts from Chapter 7

Definition 11.5.

• HypBase(α) is called the base hypothesis and defined as

α 6= 0
0 → Fun(α⇓)

• HypFull(α) is called the full hypothesis and defined as

∀s ≤ lhS(α)
(
Small(s, α, c(α, s))

)
• HypPart(s, α) is called the part hypothesis and defined as

∀s0(s < s0 ≤ lhS(α)→ Small(s0, α, c(α, s0)))

Definition 11.6.

• Full(α) is defined as

Prog(Λa.(a ∈ P → {α}a ∈ P))

• Part(s, α) is defined as

Prog(Λa.(a ∈ P → Small(s, α, a)))

• Large(a, b) is called the large Veblen jump and defined as

∀α ∈̇ L�b0 ∩ P (e(α) � a→ HypBase(α))

11.1.1. Syntactical Properties
Lemma 11.7. The following properties hold for all terms t1, t2, t3:

(a) Fun(t1) ∈ Pos→1 .

(b) Small(t1, t2, t3) ∈ Pos→1 .

(c) HypBase(t1),HypFull(t1),HypPart(t1, t2) ∈ Pos→1 .

(d) Large(t1, t2) ∈ Pos→1 .

Proof. This follows easily from the definitions.

141

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

Lemma 11.8. The following properties hold for all terms t1, t2:
(a) Part(t1, t2) ∈ Pos→2 .

(b) Full(t1) ∈ Pos→2 .
Proof. Use Lemma 11.7. Note for (a) that Part(t1, t2) is

∀a(∀a0 ≺ a(a0 ∈ P → Small(t1, t2, a0))→ (a ∈ P → Small(t1, t2, a)))

and that we have

∀a0 ≺ a(a0 ∈ P → Small(t1, t2, a0)) ∈ Pos→1

This is similar for (b).

11.1.2. Motivation and Comparison with Chapter 7
For a motivation on the intuition behind Small(s, α, a), we compare it with
the approach in Chapter 7 and consider the following situation

α≡ a0,...,an
0

ρ≡ 0
0

σ ≡ y1,...,ys,x
0

for arbitrary a0, . . . , an and y1, . . . , ys, x with 0 ≤ s ≤ n. Note that the list
y1, . . . , ys starts with index 1 and that s = 0 means σ ≡ x

0 ≡
(
x
0
)
.

Now, informally speaking, these objects are suitable to be translated to
arguments of the finitary Veblen function ϕ. In this sense, we can translate
the instantiation of Small(s, α, a) with ρ and σ essentially to

x ≺ a ∧ x ∈ P ∧ y1 ∈ P ∧ . . . ∧ ys ∈ P
→ ∀y0 ∈ P (ϕ(an, . . . , as+1, x, ys, . . . , y0) ∈ P)

}
(∗)

because of c(σ, s) = x, c(α, s) = as, lhS(σ) ≤ s ≤ n = lhS(α), e(α) =
e(σ) = 0, and α|Ss = 0̄(s),as+1,...,an

0 . Note that lhS(σ) ≤ s holds because we
have y1, . . . , ys and not y0, . . . , ys in σ. In case of x = 0, we get lhS(σ) < s
and hence c(σ, s) = 0 by the definition of c(σ, s). In other words and
with respect to the expression ϕ(an, . . . , as+1, x, ys, . . . , y0), we have the
following:

142

11.1. Generalization of Concepts from Chapter 7

α|Ls corresponds to the list an, . . . , as+1.

σ corresponds to the list x, ys, . . . , y1.

ρ does not exist.

Next, and since y1, . . . , ys, x are arbitrary, we add universal quantifiers
to (∗) and rewrite the result to

∀y0, . . . , ys

(
y0 ∈ P ∧ y1 ∈ P ∧ . . . ∧ ys ∈ P
→ ∀x ≺ a

(
x ∈ P → ϕ(an, . . . , as+1, x, ys, . . . , y0) ∈ P

))

Now, compare this with “Smallkn” from Chapter 7 in Definition 7.10:

1. “ak” in Definition 7.10 corresponds here to a.

2. “x” in Definition 7.10 corresponds here to x, and note that the con-
dition x ∈ P does not occur in Definition 7.10. We use this extra
condition in order to make later proofs technically simpler. In Chap-
ter 7, the situation was conceptually simpler because we worked there
with fundamental sequences.

3. “y” in Definition 7.10 corresponds here to ys. In case of s > 0, we
further have that y0, . . . , ys−1 are treated as “0” in Definition 7.10.

Note that we introduced the notion of a fundamental sequence in Chap-
ter 3 in the setting of the ordinal notation system for the small Veblen
ordinal (and we verified its properties in the appendix). This allowed us to
work in Chapter 7 with these fundamental sequences, while here, in Chap-
ter 11, we work without fundamental sequences. The cost of not having to
introduce such objects (and not having to verify their adequacy) is that we
have to work with a more general list

y0, . . . , ys, x

instead of a list of the form

“0, . . . , 0, y, x”

143

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

Recall that a list of the form “0, . . . , 0, y, x” appears essentially in Defi-
nition 7.10.1 Having (∗) from above in mind and its initiated comparison to
Chapter 7, we can motivate Definition 11.5 and Definition 11.6 as follows:

• HypFull(α) corresponds essentially to (an internalization of) the hy-
pothesis of the main implication given in Theorem 7.12.

• HypPart(s, α) corresponds essentially to the hypothesis of the main
implication given in Theorem 7.15.

• Full(α) corresponds essentially to the conclusion of Theorem 7.12.

• Part(s, α) corresponds essentially to the conclusion of Theorem 7.15.

With these observations, the theorems of Section 11.3 include essentially
the main results of Section 7.1. In particular, we remark the following:

• Theorem 7.12 is generalized to Theorem 11.15, i.e., it internalizes the
list of universal quantifiers

“∀ā(n−1)”

from Theorem 7.12 by encoding it using one universal quantification

“∀α”

i.e., by quantifying over a (labeled) Klammersymbol.
We account for this generalized situation by adding for instance
HypBase(α) to the premiss in Theorem 11.15 and as a kind of generic
hook which allows us to extract the essential statement of Theo-
rem 7.12 in a general form.

1The ordinal notation system for the large Veblen ordinal has been described in Chap-
ter 4, but we did not introduce and verify its properties in full detail. This would be
necessary for a proper definition and verification of fundamental sequences (since it is
sensitive to the exact definition of the underlying ordinal notion system). Moreover,
the introduction of fundamental sequences did not seem to be as straight-forward as
for ordinals below the small Veblen ordinal and by means of finitary Veblen func-
tions. On the contrary, it seemed to make the situation rather more complicated.
Since the current setting already is technically advanced, we decided to work with-
out fundamental sequences (and to base the ordinal notation system on the so-called
fixed-point free value of Klammersymbols, see also Definition 2.7).

144

11.2. Basic Results

Comparing Theorem 11.15 to Theorem 7.12, we always have ρ ≡ 0
0

in the formulation of Theorem 11.15 because we have here e(α) = 0
and hence that ρ ∈ L

≺e(α)
0 implies ρ≡ 0

0 .

• Theorem 7.15 is generalized to Theorem 11.22 analogously. More
precisely, the auxiliary statement (•) in the proof of Theorem 11.22
corresponds to Theorem 7.15.

11.2. Basic Results
11.2.1. Basic Wellordering Results
We have the following results that are analogs of the results from Chapter 7.

Lemma 11.9. TID0 ` ∀x(x ∈ P).

Proof. Recall that x ∈ OT is used to encode finite ordinals, so in particular
y ≺ 0 does not hold for each y. By (Cl), it suffices to show ∀y ≺ x(y ∈ P)
for which we can use (Ind0).

Lemma 11.10. TID0 ` ∀x, y(x ∈ P ∧ y ∈ P → x +̃ y ∈ P).

Proof. As in Chapter 7. Note B ∈ Pos→0 for B := Λb.(x +̃ b ∈ P).

Proposition 11.11.

(a) TID0 ` ∀x(x 6∈ OT→ x ∈ P).

(b) TID0 ` ∀x(x ∈ P → TI(A, x)) for all A ∈ LPA.

(c) TID0 ` TI(A, a) holds for each (externally given) term a ≺ ω and
A ∈ LTID.

Proof. As in Chapter 7. In particular note for (b) that A ∈ LPA implies
A ∈ Pos→0 .

Convention 11.12. Due to Proposition 11.11.(a), we can assume from
now on without loss of generality that a ∈ OT holds whenever we try to
show a ∈ P for some a within TID0 or any extension. For instance, if we
aim to prove a+̃b ∈ P for some a, b, we shall tacitly assume that a+̃b ∈ OT
holds.

145

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

11.2.2. Basic Results for the New Notions

Lemma 11.13.

(a) TID0 ` HypBase(1
0)→ HypFull(1

0).

(b) TID0 ` ∀α(e(α) 6= 0→ HypBase(1
0 ∗ α)→ HypFull(1

0 ∗ α)).

Proof. For (b), assume α with e(α) 6= 0 and HypBase(1
0 ∗ α) and note that

this yields

Fun(α) (11.1)

by 1
0 ∗α 6=

0
0 and (1

0 ∗α)⇓≡tlL(1
0 ∗α)≡α. For the claim HypFull(1

0 ∗ α),
we have to show

∀s ≤ lhS(1
0 ∗ α)

(
Small(s, 1

0 ∗ α, c(1
0 ∗ α, s))

)
i.e., we have to show

Small(0, 1
0 ∗ α, 1) (∗)

due to lhS(1
0 ∗α) = 0 and c(1

0 ∗α, 0) = 1. Moreover, we have e(1
0 ∗α) = 0

and (1
0 ∗ α)|S0 = tlL(1

0 ∗ α) = α, so the goal (∗) becomes

∀ρ, σ
(

c(σ, 0) ≺ 1
∧ lhS(σ) = 0
∧ σ ∈ S0

0 ∩ P
∧ ρ ∈ L≺0

0 ∩ P

→ Fun(ρ ∗ σ ∗ α)
)

(∗∗)

and note that for all σ ∈ S0 with lhS(σ) = 0, we have that c(σ, 0) ≺ 1
implies σ ≡ 0

0 , and that ρ ∈ L≺0
0 implies ρ≡ 0

0 .
So, the goal (∗∗) becomes to show Fun(α) which we get from (11.1).

Now, for showing (a), we can apply the same argument and (11.1) becomes
Fun(0

0) due to 1
0 ⇓ ≡

0
0 .

146

11.2. Basic Results

Lemma 11.14.

(a) TID0 ` ∀α, ρ
(
Fun(α) ∧ ρ �lex α ∧ ρ ∈̇ P → Fun(ρ)

)

(b) TID0 ` ∀α, ρ, a, c

α ∈̇ P ∧ a ∈ P
→ α ≺lex ρ

→ {ρ}c ≺ {α}a
→ {ρ}c ∈ P

Proof. For (a) let α, ρ be given and note that the case α≡ ρ is trivial. So,
we assume now

α 6= ρ

and let c be given such that we have

Fun(α) (11.2)
ρ ≺lex α (11.3)
ρ ∈̇ P (11.4)
c ∈ P (11.5)

Then we have to show {ρ}c ∈ P . Let a0, . . . , an, b0, . . . , bn be given with

ρ≡
(a0 ... an
b0 ... bn

)
and let ĉ := max≺({c}∪{a0, . . . , an}). We get ĉ ∈ P from (11.5) and (11.4),
and hence {α}ĉ ∈ P from (11.2). Now, {ρ}c ∈ P follows with (FP) from
{ρ}c ≺ {α}ĉ which holds because of (11.3), c, a0, . . . , an � ĉ ≺ {α}ĉ, and
the definition of ≺ (see Chapter 4 and also Corollary 2.25), while ĉ ≺ {α}ĉ
holds due to Section 4.3. Hence, we get Fun(ρ) since c ∈ P was arbitrary.

For (b), let e0, . . . , el and f0, . . . , fl be given such that α ≡
(
f0 ... fl
e0 ... el

)
holds and let d := {ρ}c. Then we get by the definition of ≺ and due to
α ≺lex ρ that d ≺ {α}a implies d � a or d � fj for some j ≤ l. Given
α ∈̇ P and a ∈ P , we can then use (FP) to get d ∈ P . Note that (b)
formulated with α �lex ρ does not hold in general.

147

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

11.3. Core Results

11.3.1. Core Result for Full

Theorem 11.15.

TID0 ` ∀α ∈̇ P (HypBase(α)→ HypFull(α)→ Full(α))

Proof. Assume α with

α ∈̇ P (11.6)
HypBase(α) (11.7)
HypFull(α) (11.8)

and a with

∀x ≺ a
(
x ∈ P → {α}x ∈ P

)
(11.9)

a ∈ P (11.10)

We have to prove

{α}a ∈ P (∗)

From (11.6) and (11.10), we get in particular

a ∈ P ∧ α ∈̇ P (11.11)

We can use (Cl) to show (∗), i.e., it suffices to assume

d ≺ {α}a (11.12)

and show d ∈ P by induction on d, i.e., we use (Ind0) on Λd.(d ≺ {α}a→
d ∈ P). By Convention 11.12, it suffices to consider the following cases.
1. d = x for some x: The claim follows from Lemma 11.9.
2. d = d0 ⊕ . . .⊕ dm+1 ∈ OT: Then d0, . . . , dm+1 <N d holds by Sec-
tion 4.3, and we have d = d0 +̃ . . . +̃ dm+1. Now, the induction hypothesis
yields d0, . . . , dm+1 ∈ P and hence by Lemma 11.10 that d ∈ P holds.
3. d = {α}c: This implies c ≺ a, so we can use (11.9) to get d ∈ P since
c ≺ a and (11.11) imply c ∈ P by (FP).

148

11.3. Core Results

4. d = {γ}c with α ≺lex γ: Use Lemma 11.14.(b) because we have (11.11).
5. Otherwise: We have d = {γ}c with

γ ≺lex α (11.13)

and this implies in particular

α 6= 0
0 (11.14)

Let e1, . . . , ep+1, c1, . . . , cp+1 be such that we have γ≡
(c1 ... cp+1
e1 ... ep+1

)
. We get

c, c1, . . . , cp+1 <N {γ}c and c, c1, . . . , cp+1 ≺ {γ}c by Section 4.3. Hence,
c, c1, . . . , cp+1 ≺ {ρ ∗ α}a also holds and the induction hypothesis implies
c, c1, . . . , cp+1 ∈ P , i.e.,

c ∈ P ∧ γ ∈̇ P (11.15)

5.1. γ �lex tlL(α): Then we also have γ �lex α⇓. Since α 6= 0
0 holds

by (11.14), we get Fun(α⇓) from (11.7) and therefore Lemma 11.14.(a)
and (11.15) yield d = {γ}c ∈ P .
5.2. tlL(α) ≺lex γ: With γ ≺lex α≡ hdL(α) ∗ tlL(α) from (11.13), we get

γ ≡ δ ∗ σ ∗ tlL(α) (11.16)

for some δ ∈ L
≺e(α)
0 ∩ P and σ ∈ S

e(α)
0 ∩ P , while note here (11.15).

Moreover, we have

σ ≺lex hdL(α) (11.17)

and note here that (11.14) implies hdL(α) 6= 0
0 . Now, we get

∀s ≤ lhS(α)
(
Small(s, α, c(α, s))

)
(11.18)

from (11.8). Next, we let

b := e(α)
n := lhS(α)
ai := c(α, i) (for all i ≤ n)
bi := c(σ, i) (for all i ≤ n)

149

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

and get

hdL(α)≡ a0,...,an
b & an 6= 0 (11.19)

since α 6= 0
0 holds by (11.14). With respect to bi for i ≤ n, we note that

bi = 0 is possible (while recalling that we have for each i with lhS(σ) < i
that c(σ, i) = 0 holds by the definition of c(σ, i), and that also σ ≡ 0

0 may
hold).2 Now, from (11.17) and σ, hdL(α) ∈ S0, we get

lhS(σ) ≤ lhS(α) = n (11.20)

and some s ≤ n such that we have

σ ≡ b0,...,bs,as+1,...an
b (11.21)

bs ≺ as (11.22)

This includes the special situation if σ≡ b0,...,bs0
b holds with s0 < n because

we can then just take s := n and bs0+1 := . . . := bs := 0 due to an 6= 0
from (11.19). Noting (11.18) and the definition of Small(s, α, c(α, s)), let

σ′ := b0,...,bs
b (11.23)

and get σ′ ∈ Sb
0 ∩ P (note that σ′ ≡ 0

0 holds in case of b0 = . . . = bs = 0).
So, we get from (11.18) and with s ≤ n = lhS(α) the following:

c(σ′, s) ≺ c(α, s)
∧ lhS(σ′) ≤ s ≤ lhS(α)

∧ σ′ ∈ S
e(α)
0 ∩ P

∧ δ ∈ L
≺e(α)
0 ∩ P

→ Fun(δ ∗ σ′ ∗ α|Ss)

This yields

Fun(δ ∗ σ′ ∗ α|Ss) (11.24)

because (11.22) yields c(σ′, s) = bs ≺ as = c(α, s) and because (11.20)

2Furthermore and as a technical remark, we recall that in case of b0 = . . . = bn = 0,
we get b0,...,bn

b
≡ 0

0 by the definition of b0,...,bn
b

even if b 6= 0 holds.

150

11.3. Core Results

yields lhS(σ′) ≤ s ≤ n = lhS(α). Note in (11.24) that δ ∗ σ′ ∗α|Ss ≡ γ holds
because of the following:

γ ≡ δ ∗ σ ∗ tlL(α) [by (11.16)]
≡ δ ∗ σ′ ∗ hdL(α)|Ss ∗ tlL(α)
≡ δ ∗ σ′ ∗ α|Ss

Hence, (11.24) implies {γ}c ∈ P by (11.15).

Corollary 11.16.

TID1 ` ∀α ∈̇ P
(
HypBase(α)→ HypFull(α)→ Fun(α)

)
Proof. This follows from Theorem 11.15 and by making use of (TID1), while
note that Full(α) ∈ Pos→1 holds.

11.3.2. Advanced Wellordering Results
Corollary 11.17 (Closure under the ω-function).

TID1 ` Fun(0
0)

Proof. We have 0
0 ∈̇ P and 1

0 ∈̇ P due to 0, 1 ∈ P from Lemma 11.9.
Further, HypBase(0

0) and HypFull(0
0) hold trivially (while note here that

Small(0, 0
0 , c(0

0 , 0)) is trivial). Hence Fun(0
0) holds by Corollary 11.16.

Corollary 11.18 (Closure under the ε-function).

TID1 ` Fun(1
0)

Proof. From Corollary 11.17 and 1
0 ⇓≡tlL(1

0)≡ 0
0 , we get HypBase(1

0). So,
Lemma 11.13 yields HypFull(1

0) and Corollary 11.16 yields Fun(1
0).

Corollary 11.19 (Closure under the binary Veblen function).

TID1 ` ∀a ∈ P (Fun(a0))

i.e., we get TID1 ` ∀a, x(a ∈ P ∧ x ∈ P → { a0 }x ∈ P).

151

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

Proof. It suffices to show Prog(Λa.Fun(a0)) because then, the claim follows
by (TID1). So let a, x be given and assume

∀a0 ≺ a(Fun(a0
0)) (11.25)

For α := a
0 , we shall show Fun(α). By Corollary 11.16, it suffices to show

HypBase(α) (∗)
HypFull(α) (∗∗)

By a
0 ⇓≡

0
0 , we get (∗) from Corollary 11.17. Showing (∗∗) means to show

Small(0, α, a) due to lhS(α) = 0 and c(α) = a. From e(α) = 0, we get in
the definition of Small(0, α, a) for each σ ∈ S

e(α)
0 ∩ P with lhS(σ) ≤ 0 that

σ ≡ b
0

holds for some b and that c(σ, 0) ≺ a yields b ≺ a. So (11.25) yields

Fun(σ) (11.26)

for such σ. By the definition of Small(0, α, a), we are done now because of
α|S0 ≡ 0

0 and because e(α) = 0 implies ρ≡ 0
0 for each ρ ∈ L

≺e(α)
0 ∩ P . Hence,

we can use (11.26) in order to get the conclusion of Small(0, α, a).

Remark 11.20.

• Corollary 11.17 corresponds essentially to the closure of P under

“x 7→ ωx”

i.e., the ω-exponential function. Recall that { x0 } corresponds to
“ω1+x” in our setting and that we can use Lemma 11.9 for “ω0”.

• Corollary 11.19 corresponds essentially to the closure of P under

“x, y 7→ ϕ2(x, y)”

i.e., the binary Veblen function. Compare this with Lemma 7.6.

152

11.3. Core Results

Lemma 11.21.

TID1 ` ∀α

tlL(α) ∈̇ P
→ Fun(tlL(α))
→ ∀b ≺ e(α)(Fun(1

b ∗ tlL(α)))
→ Fun(1

e(α) ∗ tlL(α))

Proof. We assume α, d with

tlL(α) ∈̇ P (11.27)
Fun(tlL(α)) (11.28)
∀b ≺ e(α)(Fun(1

b ∗ tlL(α))) (11.29)

and show

Fun(1
e(α) ∗ tlL(α)) (∗)

1. e(α) = 0: We get (∗), i.e., Fun(1
0 ∗ tlL(α)), from Corollary 11.16 be-

cause of the following observations: We have that 1
0 ∗ tlL(α) ∈̇ P holds

due to (11.27) and 1 ∈ P by Lemma 11.9. Then, HypBase((1
0 ∗ tlL(α))⇓)

holds due to (1
0 ∗ tlL(α))⇓ ≡ tlL(α) and (11.28). Finally, we get also

HypFull(1
0 ∗ tlL(α)) by Lemma 11.13. So, we can use Corollary 11.16.

2. e(α) 6= 0: We shall show

Prog(Λa.a ∈ P → { 1
e(α) ∗ tlL(α)}a ∈ P) (∗∗)

because then (∗∗) and (TID1) yield the claim Fun(1
e(α) ∗ α). For (∗∗),

assume a, d with

∀a0 ≺ a(a0 ∈ P → { 1
e(α) ∗ tlL(α)}a0 ∈ P) (11.30)

a ∈ P (11.31)
d ≺ { 1

e(α) ∗ tlL(α)}a (11.32)

and show

d ∈ P (#)

153

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

Then (FP) yields the remaining claim { 1
e(α) ∗ tlL(α)}a ∈ P . The current

case e(α) 6= 0 implies in particular

α 6= 0
0 (11.33)

α⇓ ≡ 1
e(α) ∗ tlL(α) (11.34)

We show (#) by induction on d. More precisely, we shall use (Ind0) on
Λd.(d ≺ { 1

e(α) ∗ tlL(α)}a → d ∈ P). Since we assume tacitly and without
loss of generality that d ∈ OT holds (see Convention 11.12), it suffices to
consider the following case distinctions.
2.1. d = x for some x: The claim follows from Lemma 11.9.
2.2. d = d0 ⊕ . . .⊕ dm+1 ∈ OT: Then d0, . . . , dm+1 <N d holds by Sec-
tion 4.3, and we have d = d0 +̃ . . . +̃ dm+1. Now, the induction hypothesis
yields d0, . . . , dm+1 ∈ P and hence by Lemma 11.10 that d ∈ P holds.
2.3. d = { 1

e(α) ∗ tlL(α)}c: This implies c ≺ a, so we use (11.30) to get
d ∈ P since c ≺ a and (11.31) imply c ∈ P by (FP).
2.4. d = {γ}c with 1

e(α) ∗ tlL(α) ≺lex γ: Use Lemma 11.14.(b) because
we have a ∈ P by (11.31), 1

e(α) ∗ tlL(α) ∈̇ P by (11.27) and 1 ∈ P .
2.5. Otherwise: We have d = {γ}c with

γ ≺lex
1

e(α) ∗ tlL(α) (11.35)

Let e1, . . . , ep+1, c1, . . . , cp+1 be such that we have γ≡
(c1 ... cp+1
e1 ... ep+1

)
. We get

c, c1, . . . , cp+1 <N {γ}c and c, c1, . . . , cp+1 ≺ {γ}c by Section 4.3. Hence,
c, c1, . . . , cp+1 ≺ { 1

e(α) ∗ tlL(α)}a also holds and the induction hypothesis
implies c, c1, . . . , cp+1 ∈ P , i.e.,

c ∈ P ∧ γ ∈̇ P (11.36)

2.5.1. γ �lex tlL(α): Use Lemma 11.14.(a), (11.36), and (11.28).
2.5.2. tlL(α) ≺lex γ: With γ ≺lex

1
e(α) ∗ tlL(α) from (11.35), we get

γ ≡ ρ ∗ σ ∗ tlL(α)

for some σ ∈ S≺e(α) and ρ ∈ L
≺e(σ)
0 . Let

b := e(σ) +̃ lhS(σ) +̃ 1

154

11.3. Core Results

In other words, we have 1
b ≡

0̄(lhS(σ)+1),1
e(σ) . Now, because of e(σ) ≺ e(α) and

e(α) ∈ Lim, we get b ≺ e(α) and therefore Fun(1
b ∗ tlL(α)) by (11.29). We

get now Fun(γ) by Lemma 11.14.(a) with γ ≺lex
1
b ∗ tlL(α) and γ ∈̇ P

from (11.36). With c ∈ P from (11.36), we hence get d = {γ}c ∈ P .

11.3.3. Core Result for HypFull

Theorem 11.22.

TID1 + (Ind2) ` Prog
(
Λc.∀α0 ∈̇ P

 e(α0) � c ∧ c ∈ P
→ HypBase(α0)
→ HypFull(α0)

)
Proof. We assume

∀c0 ≺ c∀α0 ∈̇ P

 e(α0) � c0 ∧ c0 ∈ P
→ HypBase(α0)
→ HypFull(α0)

 (Prog-Hyp)

and c with

c ∈ P (11.37)

Furthermore, we assume α0 with

α0 ∈̇ P (11.38)
e(α0) � c (11.39)
HypBase(α0) (11.40)

and have to show HypFull(α0). We get this by first showing the following
auxiliary statement

TID1 + (Ind2) ` ∀s∀α ∈̇ P

e(α) � c
→ HypBase(α)
→ HypPart(s, α)
→ Part(s, α)

 (•)

155

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

from which we get for all s ≤ lhS(α0) that

Small(s, α0, c(α0, s)) (◦)

holds, i.e., the claim HypFull(α0). More precisely, we get (◦) by an induc-
tion on lhS(α)0

.− s for s ≤ lhS(α0) as follows:

• In case of lhS(α0) .−s = 0, we have s = lhS(α0) and so HypPart(s, α0)
is trivial. Therefore Part(s, α) follows from (•) with (11.38), (11.39),
and (11.40). We then get (◦) from Part(s, α) by making use of (TID1)
and that c(α0, s) ∈ P holds by α0 ∈̇ P from (11.38). Note hereby
that c(α0, s) ∈ P → Small(s, α0, c(α0, s)) is in Pos→1 .

• If we have on the other hand lhS(α0) .− s 6= 0, then the induction
hypothesis yields Small(s0, α0, c(α0, s0)) for all s0 with s0 ≤ lhS(α0)
and lhS(α0) .− s0 < lhS(α0) .− s, i.e., for all s0 with s < s0 ≤ lhS(α0).
This yields HypPart(s, α0) and hence, (◦) follows again from (•) by
making use of (TID1) and that c(α0, s) ∈ P holds.

It remains to show the auxiliary statement (•) which we do by induc-
tion on s. Note that (Ind2) can be applied here because

Λs.∀α

α ∈̇ P
→ HypBase(α)
→ HypPart(s, α)
→ Part(s, α)

 ∈ Pos→2

holds by the definition of Pos→2 , while we use here that Part(s, α) ∈ Pos→2
holds by Lemma 11.8.(a), that HypBase(α),HypPart(s, α) ∈ Pos→1 holds
by Lemma 11.7, and that α ∈̇ P is in Pos→0 (and hence in Pos→1). Before
we distinguish the cases on s, let s, α, a be given, set

n := lhS(α)
b := e(α)
γ := tlL(α)

156

11.3. Core Results

and assume

α ∈̇ P (11.41)
e(α) � c (11.42)
HypBase(α) (11.43)
HypPart(s, α) (11.44)
∀x ≺ a(x ∈ P → Small(s, α, x)) (11.45)
a ∈ P (11.46)

while (11.44) is

∀s0(s < s0 ≤ n→ Small(s0, α, c(α, s0))) (11.47)

Then we have to show Small(s, α, a), i.e.,

∀ρ, σ
(

c(σ, s) ≺ a
∧ lhS(σ) ≤ s ≤ n
∧ σ ∈ Sb

0 ∩ P
∧ ρ ∈ L≺b0 ∩ P

→ Fun(ρ ∗ σ ∗ α|Ss)
)

(∗-1)

In case of α ≡ 0
0 , we have b = 0, so for ρ in (∗-1), we have ρ ≡ 0

0 . Since
we also have n = 0 in case of α ≡ 0

0 , we get σ ≡ x
0 with x ≺ a for σ

in (∗-1), i.e., the conclusion of (∗-1) becomes Fun(x0). Then, we can use
Corollary 11.19 because x ≺ a and (11.46) imply x ∈ P . Therefore, we
shall assume from now on

α 6= 0
0 (11.48)

and in order to show (∗-1), we further assume ρ, σ, y with

c(σ, s) ≺ a (11.49)
lhS(σ) ≤ s ≤ n (11.50)
σ ∈ Sb

0 ∩ P (11.51)
ρ ∈ L≺b0 ∩ P (11.52)
y ∈ P (11.53)

157

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

and show

{ρ ∗ σ ∗ α|Ss }y ∈ P (∗-2)

Note that (11.48) with (11.43) implies

Fun(α⇓) (11.54)

Next, we set

τ := σ ∗ hdL(α)|Ss
βs := τ ∗ γ

and get

βs ≡ σ ∗ α|Ss (11.55)
τ ∈ Sb

0 ∩ P (11.56)

while we can use for (11.56) that (11.51) and (11.41) hold. So the goal (∗-2)
becomes to show

{ρ ∗ βs}y ∈ P (∗-3)

Moreover, we get τ ∗ γ ∈̇ P because of σ ∈̇ P from (11.51) and α ∈̇ P
from (11.41), i.e., we have

βs ∈̇ P (11.57)

1. τ ≡ 0
0 : We now have βs≡γ. So for showing (∗-3), we now have to show

{ρ ∗ γ}y ∈ P and we shall consider the following cases on b.

1.1. b = 0, i.e., e(α) = 0: Then ρ ≡ 0
0 must hold (due to (11.52)) and

we get α⇓ ≡ γ. Now, (11.54) yields Fun(γ) and hence {γ}y ∈ P together
with (11.53) and we are done.
1.2. Otherwise: Note that ρ ∗ γ ≺lex

1
b ∗ γ ≡ α⇓ holds due to ρ ∈ L≺b0

from (11.52). Then use Lemma 11.14.(a) with Fun(α⇓) from (11.54) and
ρ ∗ γ ∈̇ P from (11.57) and (11.52). We thus have Fun(ρ ∗ γ) and so (∗-3)
follows with (11.53).

158

11.3. Core Results

2. τ 6= 0
0 : This implies

lhS(βs) ≤ n
= lhS(α)

e(βs) = b

= e(α)

hdL(βs)≡ τ

tlL(βs)≡ γ
≡ tlL(α)

βs 6= 0
0

βs⇓ ≡ α⇓

(11.58)

where the situation lhS(βs) < n in (11.58) is only possible in case of s = n
because we have hdS(α) = hdS(tlL(α)) 6= 0 due to α 6= 0

0 from (11.48).
With (11.54) and (11.58), we get Fun(βs⇓) and hence

HypBase(βs) (11.59)

2.1. ρ≡ 0
0 : In this case, we shall show

HypFull(βs) (#-1)

and then get by Corollary 11.16 with (#-1), (11.59), and (11.57) that
Fun(βs) holds. The claim (∗-3) follows then by (11.53). For showing the
remaining goal (#-1), we note first that the following holds (using the
current case τ 6= 0

0 , while c(σ, s) = 0 may hold):

c(βs, s) = c(τ, s) = c(σ, s) ∈ P (11.60)
∀s0(s < s0 ≤ n→ c(βs, s0) = c(α, s0)) (11.61)

This implies

∀s0(s ≤ s0 ≤ n→ α|Ss0 ≡ βs|
S
s0) (11.62)

and further, we get

Small(s, βs, c(βs, s)) (11.63)

because of the following: First, we have that Small(s, α, c(σ, s)) holds due
to (11.45) with (11.49) and since we have c(σ, s) ∈ P by (11.51). Next, we

159

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

have that Small(s, α, c(σ, s)) is

∀ρ′, σ′
(

c(σ′, s) ≺ c(σ, s)
∧ lhS(σ′) ≤ s ≤ lhS(α)

∧ σ′ ∈ S
e(α)
0 ∩ P

∧ ρ′ ∈ L
≺e(α)
0 ∩ P

→ Fun(ρ′ ∗ σ′ ∗ α|Ss)
)

and so by using (11.58), (11.60), and (11.62), this implies (11.63). Note
in case of lhS(bs) < lhS(α) = n that we have s = n, hence (11.63) is
trivial then because lhS(σ′) ≤ s ≤ lhS(βs) is impossible in the definition of
Small(s, βs, c(βs, s)). So, we have shown (11.63). Furthermore, we get

∀s0(s < s0 ≤ n→ Small(s0, βs, c(βs, s0))) (11.64)

because Small(s0, α, c(α, s0)) holds for each s0 with s < s0 ≤ n by (11.47),
and this yields (11.64) because of (11.61), (11.62), and the definition of
Small(s0, α, c(α, s0)). So, (11.64) with (11.63) yields

∀s0(s ≤ s0 ≤ n→ Small(s0, βs, c(βs, s0))) (11.65)

If we can also show

∀s1(s1 < s→ Small(s1, βs, c(βs, s1))) (#-2)

then (#-2) and (11.65) yield (#-1) and we are done. For the remaining
goal (#-2), we can assume s 6= 0 and do a side induction on s .− s1.

Formally, this means that we shall apply (Ind1) in order to show

∀s2, l(0 < l ≤ s2 ≤ s→ Small(s .− l, βs, c(βs, s .− l))) (#-3)

while noting that

Λs2.∀l(0 < l ≤ s2 ≤ s→ Small(s .− l, βs, c(βs, s .− l))) ∈ Pos→1

holds by the definition of Pos→1 , using that Small(s .− l, βs, c(βs, s .− l)) ∈
Pos→1 holds by Lemma 11.7 and that 0 < l ≤ s2 ≤ s is in Pos→0 . For (#-3),
we have nothing to show in case of s2 = 0. So, assume now s2 > 0: Since

160

11.3. Core Results

s2
.− 1 < s2 holds, we get from the side induction hypothesis for (#-3):

∀l(0 < l ≤ s2
.− 1 ≤ s→ Small(s .− l, βs, c(βs, s .− l))) (11.66)

For (#-3), it remains to consider the case l = s2 with s2 ≤ s and to show

Small(s .− s2, βs, c(βs, s .− s2)) (#-4)

Note that (11.66) and s2
.− 1 < s2 ≤ s yield

∀s0(s .− s2 < s0 < s→ Small(s0, βs, c(βs, s0))) (11.67)

so by using the main induction hypothesis for (•), i.e.,

∀α′ ∈̇ P

e(α′) � c
→ HypBase(α′)
→ HypPart(s .− s2, α

′)
→ Part(s .− s2, α

′)

Note that e(βs) = e(α) � c holds by (11.58) and (11.42). So, we get for
α′ := βs from (11.57), (11.59), (11.67), and (11.65) that Part(s .− s2, βs)
holds, i.e., Prog(C) for

C := Λa0.(a0 ∈ P → Small(s .− s2, βs, a0))

Since C ∈ Pos→1 holds and since we have

c(βs, s .− s2) = c(τ, s .− s2) = c(σ, s .− s2)

due to s2 < s, we get with (TID1) and c(σ, s .− s2) ∈ P from (11.51)
that (#-4) holds and we are done.
2.2. ρ 6= 0

0 : In this case, we shall show

Fun(ρ ∗ βs) (†-1)

by a side induction on lhL(ρ). Note that the claim (∗-3) follows from (†-1)

161

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

and (11.53). For showing (†-1), let now

β′ := tlL(ρ) ∗ βs
ρ′ := hdL(ρ)

and note that hdL(ρ′) ∈ S≺b holds due to ρ 6= 0
0 . We first get that

Fun(β′) (11.68)

holds due to the following observation: In case of lhL(ρ) = 0, we have β′≡βs
and get Fun(βs) in (11.68) due to HypFull(βs), i.e., (#-1), from case 2.1.
and HypBase(βs) from (11.59). Then we can apply Corollary 11.16 to get
Fun(βs). If otherwise lhL(ρ) 6= 0 holds, then we get (11.68) immediately
by the side induction hypothesis for (†-1) due to β′≡ tlL(ρ)∗βs. Note that

e(ρ′) � e(ρ) ≺ e(α) � c (11.69)

holds by e(ρ′) = e(ρ) ≺ e(βs) = e(α) and e(α) � c from (11.42).

2.2.1. e(ρ′) = 0: Then we have (ρ ∗ βs)⇓ ≡ (ρ′ ∗ β′)⇓ ≡ β′ because of
ρ ∗ βs ≡ ρ′ ∗ β′ and so, (11.68) yields

HypBase(ρ ∗ βs) (11.70)

Recall that ρ 6= 0
0 holds, so we have e(ρ ∗ βs) = e(ρ) ≺ c ∈ P from (11.69)

and (11.37), so we can use (Prog-Hyp) with (11.70) and with ρ ∗ βs ∈̇ P
from (11.57) and (11.52) in order to get HypFull(ρ ∗ βs). So, the claim (†-1)
follows by Corollary 11.16.
2.2.2. e(ρ′) 6= 0: We shall show now

Prog(Λd.d ≺ e(ρ′)→ Fun(1
d ∗ β

′)) (†-2)

Then (†-2) implies the claim (†-1) due to the following observation. First,
we get from (†-2) that

∀d ≺ e(ρ′)(Fun(1
d ∗ β

′)) (11.71)

holds because we can apply (TID1) to (†-2) and because we have that d ∈ P
holds for all d ≺ e(ρ′) due to e(ρ′) ≺ c from (11.69) and c ∈ P from (11.37).
Next, note that we have tlL(1

e(ρ′) ∗ β
′) ≡ β′ ∈̇ P by (11.57), (11.52),

162

11.3. Core Results

and the definition of β′. So, Lemma 11.21 applied to 1
e(ρ′) ∗ β

′ yields
Fun(1

e(ρ′) ∗ β
′) because we have (11.68) and (11.71). Now, this is just

HypBase(ρ ∗ βs) (11.72)

because we have (ρ ∗ βs)⇓ ≡ (ρ′ ∗ β′)⇓ ≡ 1
e(ρ′) ∗ β

′. Now, ρ 6= 0
0 yields

e(ρ∗βs) = e(ρ) ≺ c ∈ P from (11.69) and (11.37), so we can use (Prog-Hyp)
with (11.72) and with ρ ∗ βs ∈̇ P from (11.57) and (11.52) in order to get
HypFull(ρ ∗ βs). So, the claim (†-1) follows by Corollary 11.16.

Now, it remains to show (†-2) and for this, we let d be given with

d ≺ e(ρ′) (11.73)
∀d0 ≺ d(d0 ≺ e(ρ′)→ Fun(1

d0
∗ β′)) (11.74)

and show

Fun(1
d ∗ β

′) (†-3)

2.2.2.1. d ∈ L: By Lemma 11.21, (11.68), (11.74) and e(1
d ∗β

′) = d⇓ = d.
2.2.2.2. Otherwise: We have d ∈ Suc and hence d⇓ ≺ d. Recall e(ρ′) ≺
e(α) ≺ c from (11.69), so we have e(1

d ∗β
′) ≺ c due to e(1

d ∗β
′) = d⇓ ≺ d ≺

e(α) � c ∈ P from (11.37) and d ∈ Suc. Therefore, we get from (Prog-Hyp)
that the following holds:

HypBase(1
d ∗ β

′)→ HypFull(1
d ∗ β

′) (11.75)

In particular due to d⇓ ≺ d, we get Fun(1
d⇓ ∗ β

′) due to (11.74). This
and (11.68), respectively, yield

HypBase(1
d ∗ β

′) (11.76)

by the definition of HypBase(1
d ∗ β

′). We therefore get HypFull(1
d ∗ β

′)
by (11.75) and (11.76). So, Corollary 11.16 yields Fun(1

d ∗ β
′) and hence

the claim (†-3).

163

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

Corollary 11.23. For all terms t, the following holds:

(a) TID+
1 ` t ∈ P implies TID+

1 ` ∀α ∈̇ P

 e(α) � t
→ HypBase(α)
→ Fun(α)

(b) TID2 ` t ∈ P → ∀α ∈̇ P

 e(α) � t
→ HypBase(α)
→ Fun(α)

Hence, TID2 ` ∀x ∈ P∀α ∈̇ P (e(α) � x→ HypBase(α)→ Fun(α)).

Proof. Assume t ∈ P , while we can also assume TID+
1 ` t ∈ P if show-

ing (a). Further assume α with

α ∈̇ P (11.77)
HypBase(α) (11.78)

Now, by (TID+) and TID2, respectively, we get by Theorem 11.22 that

∀α0 ∈̇ P (e(α0) � t ∧ t ∈ P → HypBase(α0)→ HypFull(α0))

holds. Hence, we get also HypFull(α) from which the claim Fun(α) follows
due to Corollary 11.16 with (11.78) and (11.77) .

11.4. Towards the Large Veblen Ordinal in TID+
1

and TID2

11.4.1. Wellordering Results Getting Beyond ϑΩω

Corollary 11.24 (Closure under the finitary Veblen functions). For all
n ∈ N, the following holds:

TID1 + (Ind2) ` ∀a0 ∈ P . . .∀an ∈ P ({ a1,...,an
0 }a0 ∈ P)

164

11.4. Towards the Large Veblen Ordinal in TID+
1 and TID2

Proof. Let n ∈ N and a0, . . . , an ∈ P be given and set σ := a1,...,an
0 .

We have to show Fun(σ). Note that Theorem 11.22 (for c := e(σ) := 0)
trivially yields

HypBase(σ)→ HypFull(σ)

and so, we show HypBase(σ) and get then HypFull(σ) which yields with
Corollary 11.16 the claim Fun(σ). For HypBase(σ), note that we get
Fun(σ⇓) by Corollary 11.17 and due to σ⇓ ≡ 0

0 .

Corollary 11.25 (Closure under weak Veblen ordinals3).

(a) TID1 + (Ind2) ` ∀σ ∈̇ S0
0 ∩ P (Fun(σ))

(b) TID1 + (Ind2) ` Fun(1
ω).

Proof. For (a), we can argue as in Corollary 11.24. For (b), we shall use
Lemma 11.21 with

α := 1
ω

For this note that tlL(α)≡ 0
0 and e(α) = ω hold. So, we get Fun(0

0) due
to Corollary 11.17 and

∀b ≺ e(α)(Fun(1
b ∗ tlL(α)))

due to (a). For the latter, note that b ≺ e(α) = ω implies 1
b ∗ tlL(α)≡ 1

b ∈
S0. Hence, we get Fun(1

e(α) ∗ tlL(α)) from Lemma 11.21, i.e., Fun(1
ω).

11.4.2. Weak and Strong Veblen Ordinals
Turning in this subsection to an informal standpoint and in the setting
of (On, <) from Chapter 2, we remark that ordinals that are enumerated
by the function { 1

ω } : On → On, x 7→ { 1
ω }x are sometimes called weak

Veblen ordinals. These are ordinals d ∈ On that can not be approximated
by the value ϕ•

(a0 ... an
b0 ... bn

)
of a Klammersymbol

(a0 ... an
b0 ... bn

)
for any bn < ω

and a0, . . . , an < d.

3See Subsection 11.4.2.

165

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

Hence, Corollary 11.25.(b) corresponds to the statement that the the-
ory TID1 + (Ind2) proves the closure under weak Veblen ordinals. In par-
ticular, note that the small Veblen ordinal is the first weak Veblen ordinal.

Similarly, we can define an ordinal d ∈ On to be a strong Veblen
ordinal in case d cannot be approximated by the value ϕ•

(a0 ... an
b0 ... bn

)
of a

Klammersymbol
(a0 ... an
b0 ... bn

)
for any bn, a0, . . . , an < d. Hence, the large

Veblen ordinal is the first strong Veblen ordinal.

11.4.3. The Large Veblen Jump in TID+
1 and TID2

Theorem 11.26. For all terms t, the following holds:

(a) TID+
1 ` t ∈ P implies TID+

1 ` Prog(Λb.Large(b, t)).

(b) TID2 ` t ∈ P → Prog(Λb.Large(b, t)).

Proof. Let t, b, α, a be given with

t ∈ P
[
TID+

1 ` t ∈ P if showing (a)
]

(11.79)
∀b0 ≺ b(Large(b0, t)) (Prog-Hyp)
α ∈̇ L�t0 ∩ P (11.80)
e(α) � b (11.81)

and we show by a main induction on lhL(α) the claim

HypBase(α) (∗)

Then we can assume e(α) 6= 0 because otherwise α⇓≡ tlL(α) holds and we
get the claim (∗) in case of tlL(α)≡ 0

0 by Corollary 11.17 or otherwise, we
get HypBase(tlL(α)⇓) from (∗) and the main induction hypothesis. We
can then use Corollary 11.23 with (11.79) in order to get Fun(tlL(α)). So,
we shall assume from now on

e(α) 6= 0 (11.82)

and we therefore have α⇓≡ 1
e(α) ∗ tlL(α). Now, for showing (∗), we assume

α 6= 0
0 (11.83)

166

11.4. Towards the Large Veblen Ordinal in TID+
1 and TID2

and have to show Fun(1
e(α) ∗ tlL(α)). For this and due to (TID1), it suffices

to show

Prog(Λa.a ∈ P → { 1
e(α) ∗ tlL(α)}a) (#)

So, we assume further a with

a ∈ P (11.84)
∀a0 ≺ a(a0 ∈ P → { 1

e(α) ∗ tlL(α)}a0) (11.85)

and proceed by showing d ∈ P by a side induction on the build-up d for
each d ≺ { 1

e(α) ∗tlL(α)}a and by considering the following case distinction.
This yields the claim { 1

e(α) ∗ tlL(α)}a ∈ P due to (FP).

1. d = x for some x: The claim follows from Lemma 11.9.
2. d = d0 ⊕ . . .⊕ dm+1 ∈ OT: Then d0, . . . , dm+1 <N d holds by Sec-
tion 4.3, and we have d = d0 +̃ . . . +̃ dm+1. Now, the side induction
hypothesis yields d0, . . . , dm+1 ∈ P and hence by Lemma 11.10 that d ∈ P
holds.
3. d = { 0

0 }d0 for some d0: Then d0 <N d and d0 ≺ d hold by Section 4.3,
so d0 ∈ P by the side induction hypothesis. Then use Corollary 11.17.
4. d = { 1

e(α) ∗ tlL(α)}a0 for some a0 ≺ a: By (11.85) and a0 ≺ a ∈ P .
5. d = {γ}d0 with 1

e(α) ∗ tlL(α) ≺lex γ: Use Lemma 11.14.(b). Note that
we have 1

e(α) ∗ tlL(α) ∈̇ P by (11.80) and 1 ∈ P , that we have a ∈ P

by (11.84), and that {γ}d0 = d ≺ { 1
e(α) ∗ tlL(α)}a holds.

6. Otherwise: We have d = {γ}d0 for some d0 and γ with

γ 6= 0
0 (11.86)

γ ≺lex
1

e(α) ∗ tlL(α) (11.87)

Note that the side induction hypothesis gives us

d0 ∈ P (11.88)
γ ∈̇ P (11.89)

167

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

From (11.87) and (11.80), we obtain

γ ∈ L�t0 ∩ P (11.90)

6.1. γ ≡ ρ ∗ tlL(α) for some ρ ∈ L≺e(α): This means that ρ 6= 0
0 holds4

and hence we have e(γ) ≡ e(ρ) ≺ e(α) � b. So, by (Prog-Hyp) we get
Large(e(γ), t), i.e.,

∀α′ ∈̇ L�t0 ∩ P (e(α′) � e(γ)→ HypBase(α′)) (11.91)

and by (11.90) and (11.91), we get

HypBase(γ) (11.92)

Now, we use t ∈ P from (11.79), while we can even assume TID+
1 ` t ∈ P in

case we show (a), and get from Corollary 11.23 by (TID+) or (TID2), respec-
tively, that Fun(γ) holds and hence the claim d = {γ}d0 ∈ P by (11.88).
6.2. Otherwise: Due to (11.87) we must have

γ �lex tlL(α) (11.93)

Then (11.86) yields tlL(α) 6= 0
0 , so we can use the main induction hypoth-

esis for (∗) to obtain Fun(tlL(α)⇓), i.e.,

HypBase(tlL(α)) (11.94)

From (11.94) and since we have tlL(α) ∈̇ P by (11.80), we can use as before
t ∈ P from (11.79) with Corollary 11.23 in order to get

Fun(tlL(α)) (11.95)

by Corollary 11.16. In case we show (a), we can use TID+
1 ` t ∈ P .

From (11.95), (11.93), and (11.89), we get Fun(γ) by Lemma 11.14.(a).
Hence d = {γ}d0 ∈ P follows due to (11.88) and we are done.

4Note that we assumed in this case ρ ∈ L≺e(α) and not ρ ∈ L
≺e(α)
0 .

168

11.5. Remark on Complete Induction for TID1

Corollary 11.27. For all terms t, the following holds:

(a) TID+
1 ` t ∈ P implies TID+

1 ` Fun(1
t).

(b) TID2 ` t ∈ P → Fun(1
t).

Hence TID2 ` ∀x(Fun(1
x)).

Proof. Assume t ∈ P , while we can assume TID+
1 ` t ∈ P if show-

ing (a). From Theorem 11.26 and (TID1), we get Large(t, t) and hence
HypBase(1

t). Then Corollary 11.23 yields Fun(1
t).

11.5. Remark on Complete Induction for TID1

Let TID1 + (IndLTID) be the system obtained from TID1 by allowing com-
plete induction for the full language LTID instead of having (Ind1) with its
restriction to Pos→1 .5 As a variant of Proposition 11.11.(c), we get

TID1 + (IndLTID) ` LTID-TI(≺ε0)

i.e., TID1 + (IndLTID) ` TI(A, a) for each a ≺ ε0 and A ∈ LTID. So, for

A := Λc.
(
c ∈ P → ∀α ∈̇ P

 e(α) � c ∧ c ∈ P
→ HypBase(α)
→ HypFull(α)

)
and in the presence of Theorem 11.22, we therefore get for each a ≺ ε0 that

TID1 + (IndLTID) ` ∀α ∈̇ P

 e(α) � a ∧ a ∈ P
→ HypBase(α)
→ HypFull(α)

 (11.96)

holds. Next, the proof of Theorem 11.26.(a) can be adapted in the sense
that we use (11.96) instead of applying (TID+) to TID+

1 ` t ∈ P and
Theorem 11.22. With this, we get for all a ≺ ε0 that

TID1 + (IndLTID) ` Prog(Λb.Large(b, a)) (11.97)

5Compare this with Remark 7.3.

169

11. The Large Veblen Ordinal ϑΩΩ measures TID+
1

holds. Then similar to the proof of Corollary 11.27.(a) but using (11.97)
instead of Theorem 11.26, we get TID1+(IndLTID) ` Fun(1

a) for each a ≺ ε0.
Comparing this with the bound for TID (and hence of TID1), we have:

TID1 ` LPA-TI(≺ϑΩω)
TID1 + (IndLTID) ` LPA-TI(≺ϑΩε0)

11.6. Wellordering Proof for TID+
1 and TID2

Definition 11.28. We define vn for each n ∈ N as follows:

v0 := 0
vn+1 := { 1

vn
}0

Theorem 11.29. For each n ∈ N, the following holds:

(a) TID+
1 ` vn ∈ P .

(b) TID2 ` vn ∈ P .

Proof. We prove this by meta-induction on n.
1. n = 0: Use Lemma 11.9.
2. n = n0 +1: We have vn = { 1

vn0
}0 and can use the induction hypothesis

vn0 ∈ P together with Corollary 11.27 to get Fun(1
vn0

). Hence, we get that
vn = { 1

vn0
}0 ∈ P holds by (TID1) and Lemma 11.9.

Corollary 11.30. |TID+
1 | = ϑΩΩ ≤ |TID2|.

Proof. By Section 9.4, we have |TID+
1 | ≤ ϑΩΩ. Moreover, supn∈N(vn) =

ϑΩΩ follows from [Sch92], so we get ϑΩΩ ≤ |TID+
1 | and ϑΩΩ ≤ |TID2| from

Theorem 11.29.

170

12. Concluding Remarks on
Typed Induction

In Part II, we investigated a concept of typed induction that originated in
considerations on S. Feferman’s applicative theory QL(F0-IRN) from [Fef92]
and whose concept of function types cumulated into our type system FIT
from Chapter 5 with strength of the small Veblen ordinal, i.e.,

|FIT| = ϑΩω

Further comparisons with the arithmetical theory ID∗1� led in Chapter 6
to the theory TID as a natural implementation of FIT as a subsystem of
ID1. We further generalized TID in Chapter 8 to hierarchies {TIDn}n∈N
and {TID+

n }n∈N of subsystems of ID1, establishing hereby

|TID| = |TID1| = ϑΩω |TID+
1 | = ϑΩΩ

i.e., we obtained a theory TID+
1 with strength of the large Veblen ordinal.

In particular with respect to the involved wellordering proofs for ob-
taining a lower bound, we started for FIT with the theory TID and ex-
tracted in Chapter 7 a generalized scheme from the common wellordering
proof in the setting of ID∗1� or ID∗1. More precisely, our approach generalized
common methods from the realm of predicative proof-theory by using the
finitary Veblen functions (see Subsection 7.1.2) instead of the binary Ve-
blen function (see Subsection 7.1.1). In this setting, we reached beyond the
Feferman-Schütte ordinal Γ0 and hence into the realm of metapredicative
proof-theory.

After having obtained these new results, we continued (in the spirit of
predicativity) to further generalize our methods in order to exceed the small
Veblen ordinal. For this, we used Klammersymbols as a means to generalize
the finitary Veblen functions to the transfinite (while we chose to work with
Klammersymbols because the literature provided well-established results

171

12. Concluding Remarks on Typed Induction

on ordinal notations based on such a concept). See Section 12.1 below for
ideas on another representation of ordinals that may be technically more
amenable (in comparison with Klammersymbols).

It turned out in Chapter 11 that our methods almost literally trans-
late to the transfinite. The key observation was to consider a so-called
partitioning of Klammersymbols in Chapter 4 where we introduced and
refined ordinal notations based on Klammersymbols. In other words, we
considered for ordinals a < ΩΩ their Cantor normal form (with base Ω),
say Ωb1a1 + . . . + Ωbnan, and labeled the exponents bi by the “nearest”
limit or by zero (which we called “label”, see also the corresponding notion
bi⇓ from Section 4.4). Having such a partitioning by labels at hand, we
identified the method for the wellordering proof of Chapter 7 as the base
case for steps that reach towards the large Veblen ordinal, i.e., Chapter 7
deals with the label 0. By an internalizing method (which typically comes
along with greater technical difficulties), we showed in Chapter 11 that our
methods from Chapter 7 have a canonical generalization in the setting of
Klammersymbols, allowing us to deal with arbitrary labels (i.e., with limit
ordinals instead of only the zero ordinal).

12.1. Higher Type Functionals
In order to get beyond the large Veblen ordinal ϑΩΩ and following our
metapredicative standpoint of generalizing the wellordering proofs of Chap-
ter 11 further, we would need a more expressive ordinal notation system.

We suggest the concept of higher type functionals for a representation
of ordinals which is on the one hand suitable for reaching to the Bachmann-
Howard ordinal ϑεΩ+1 and that seems on the other hand to be technically
more amenable than the representation based on Klammersymbols.

Having Corollary 11.27.(b) at hand, we already have a strong conjec-
ture that

ϑΩΩ < |TID2|

holds. The idea for showing this is (again) to internalize the argument of
the proof of Theorem 11.29, namely by internalizing the meta-induction on
n ∈ N. According to Corollary 11.30, TID+

1 is not strong enough to prove
this internalization. For TID2 on the other hand, we are not restricted

172

12.2. Generalizations of FIT

to Corollary 11.27.(a) in the proof of Theorem 11.29 because we can use
Corollary 11.27.(b) instead.

Unfortunately, in order to show this, we would need an ordinal no-
tation system that goes beyond notations that are describable by Klam-
mersymbols (and that are adequate from a metapredicative standpoint).
One possible solution would be to work with higher type functionals (in
the spirit of [Wey76] and [Buc15]), and we tried to indicate this by using
the representation {α}a and notions such as functionality Fun(α). In this
context, we have the following open questions:

(I) Do the conjectures hold which we depicted in Table 1 on page 8?

(II) Can the methods from Chapter 7 and Chapter 11 be generalized and
used for answering (I)?

12.2. Generalizations of FIT
Another question that comes up naturally is:

(III) Can we set up hierarchies {FITn}n∈N and {FIT+
n }n∈N that are analogs

in the setting of applicative theories of the hierarchies {TIDn}n∈N and
{TID+

n }n∈N?

This seems quite straight-forward due to the way the embedding of TID
into FIT from Chapter 6 was done, while having in mind the result from
Section 8.3. Furthermore, there is the question:

(IV) What would happen if we allow arbitrary types P,Q to occur in IP,Q?

We conjecture that this corresponds to having iterated inductive definitions,
and that this corresponds to FIT in a similar way as the theories IDn for
any n ≥ 2 correspond to ID1. Similarly, we ask:

(V) What is the relation of FIT to the extension of FIT where we have
apart from IP,Q also types for general inductive definitions?

173

Part III.

Stratified Induction

175

13. The Theory SID<ω of
Stratified Induction

13.1. Adaptations of Syntax from Chapter 1
Before introducing and investigating the concept of stratified induction, we
shall slightly adapt our general notational framework. This will allow for a
more simplified proof-theoretic approach in the setting of Tait-style proof
systems. Let L be a fixed language with LPA ⊆ L.

Definition 13.1 (Dropping implication →). The basic logical symbols
(with equation) shall be restricted to the symbols ¬,∧,∨,∀,∃,=.

Definition 13.2 (Adaptation of formulas). We define L formulas as usual
inductively from L and the basic symbols but with the restriction that the
negation symbol ¬ is only allowed to occur in front of an atomic formula.
We still use A,B,C,D as syntactic variables for L formulas. A literal is
either an atomic formula or its negated version. In case of a compound
formula A, its negation

¬A

now stands for the translation of A according to De Morgan’s laws and the
law of double negation. Moreover, we introduce the abbreviation

A→ B := ¬A ∨B

and we call a formula A arithmetical in case of A ∈ L2
PA. If P is a unary

relation symbol of L and A an L formula, then we say that P occurs
positively in A if A does not contain the negated formula ¬P (t) for any term
t. This corresponds to the definition of positive from Part II. Moreover, we
now prefer the notation t ∈ P instead of P (t) and t 6∈ P instead of ¬P (t).

177

13. The Theory SID<ω of Stratified Induction

Definition 13.3 (Sequents). We use capital Greek letters Γ,∆,Σ as syn-
tactic variables for L sequents, i.e., finite (possibly empty) lists of L formu-
las (e.g., A0, . . . , Ak) that are identified with finite sets (i.e., {A0, . . . , Ak}).
Therefore, Γ, A is understood as Γ∪{A} and accordingly Γ,∆ is identified
with Γ ∪∆.

Definition 13.4 (Ordinals from Part I). By ordinals we now mean ordinals
smaller than the first strongly-critical ordinal Γ0, in particular we will work
with the binary Veblen-function ϕ. In fact, we will need only ordinals below
ϕ(ε0, 0) and for most of the results even ordinals below ε0 will suffice.

Notation 13.5. Unlike in Part II on typed induction, we do not need
Klammersymbols, so we shall drop the convention of using small Greek
letters as syntactic variables for Klammersymbols. Instead, small Greek
letters

α, β, γ, δ, ξ, π, ν, τ, . . .

shall be used as syntactic variables for ordinals. Furthermore, we shall work
with ordinals from an informal, set-theoretic standpoint. In particular, we
use < instead of ≺ and we identify N with ω.

13.2. Definition of SID<ω and SIDn

Definition 13.6. For each A and 1 ≤ n < ω let PA
n denote a new and

distinguished unary relation symbol. Furthermore, define for each n < ω:

L0 := LPA Ln+1 := Ln ∪ {PA
n+1 : A is a positive operator form }

From now on, let A,B,C,D range over formulas of the language

L<ω :=
⋃

n<ω
Ln

Definition 13.7. For each n < ω, the theory SIDn with language Ln
consists of the following axioms.

I. Number-theoretic and logical axioms:
Axioms of PA with the scheme of complete induction for all Ln formulas.

178

13.3. The Lower Bound of SID<ω

II. Stratified induction axioms for 1 ≤ m ≤ n and B ∈ Lm−1:

∀x(A(B, x)→ B(x))→ ∀x(x ∈ PA
m → B(x))

III. Fixed-point axioms for 1 ≤ m ≤ n:

∀x(A(PA
m, x)↔ x ∈ PA

m)

Finally, we define

SID<ω :=
⋃

n<ω
SIDn

over the language L<ω. We also presume that a derivability notion SIDn `
A is given for each n < ω and A ∈ Ln as indicated in Chapter 1. Accord-
ingly, SID<ω ` A for A ∈ L<ω just means that A ∈ Ln and SIDn ` A hold
for some n < ω.

13.3. The Lower Bound of SID<ω

Theorem 13.8.

ÎD1 ` A =⇒ SID1 ` A

holds for each A ∈ LPA. Therefore, we have ϕ(ε0, 0) ≤ |SID<ω|.

Proof. Recall that |ÎD1| = ϕ(ε0, 0) holds and note that ÎD1 is essentially
SID1 without II. from its definition.

179

13. The Theory SID<ω of Stratified Induction

13.4. Strategy for the Upper Bound of SID<ω.
We will work with infinitary proof systems SID∞n with n < ω that are
suitable for partial cut-elimination, asymmetric interpretation, and in case
of n = 0 full predicative cut-elimination. The steps to reach the main result
of Chapter 14 will be the following:

1. Add unary relation symbols Q<ξA for each A and ξ to the language.

2. Set up an infinitary proof-system SID∞n for each n < ω. For n > 0,
we obtain a useful result on partial cut elimination (p.c.e.), while for
the case n = 0, we can even achieve full predicative cut-elimination
(f.c.e.).

3. Establish the connection between the systems SID∞n+1 and SID∞n for
any n < ω by making use of asymmetric interpretation (a.i.), given
that we deal with derivations where we partially removed cuts first.
In particular, the symbols PA

n+1 are interpreted by Q<ξA for suitable
ξ.

4. The theme is to start with a formal derivation in SIDn+1 of an arith-
metical formula A, embed it into SID∞n+1 such that the proof complex-
ity stays below ε0, combine a p.c.e. followed by an a.i. iteratively, and
end up with a derivation in SID∞0 with proof complexity still below
ε0. Then f.c.e. yields the desired sharp bound ϕ(ε0, 0) for |SID<ω|
via a standard boundedness argument:

SIDn+1
embed
 SID∞n+1

p.c.e.
 SID∞n+1

a.i.
 SID∞n · · · SID∞0

f.c.e.
 SID∞0

Besides the care needed to maintain a proof-complexity below ε0, we
also have to cope with the fact that in general an infinitary proof sys-
tem may yield derivations whose cuts cannot be globally bounded. In
particular for our iterative use of p.c.e. that started with embedding
a formal derivation (e.g., from SIDn+1 into SID∞n+1), we depend on
the method of a.i. to provide always a derivation whose cut-formulas
are bounded by a finite ordinal. To guarantee this, we shall fix a
finite ordinal ` and restrict the derivability relation for SID∞n with
n > 0 such that the cut-formulas have to be globally bounded by `.

180

14. Proof-Theoretic Results for
the Theory SID<ω

Convention 14.1. Fix some finite ordinal ` for the rest of this chapter.
In particular, we will define the derivability relation for the proof systems
SID∞n such that ` globally bounds the length of the cut-formulas that are
allowed in an application of a cut-rule if n > 0 holds. Compare the proof
of Lemma 14.13 to see why this bound should not hold for the case n = 0.

14.1. The Infinitary Proof System SID∞n

Definition 14.2. Let Q<ξA be a fresh unary relation symbol for each A
and ξ. For each n < ω, let

L∞n := Ln ∪ {Q<ξA : ξ < Γ0 & A is a positive operator form }

In the following, let A,B,C,D range over formulas of the language

L∞<ω :=
⋃
n<ω

L∞n

Definition 14.3. The length lh(A) of a formula A is defined as the number
of basic logical symbols that occur in A. In particular, lh(A) = lh(Ax(t))
holds for all terms t.

Definition 14.4. Let rk0(A) := 0 for each A ∈ L∞0 . For 1 ≤ n < ω, we
say that A ∈ L∞n is n-atomic if A ∈ L∞n−1 or if it is a literal of the form
t ∈ PA

n or t 6∈ PA
n . We define two new rank-notions as follows:

181

14. Proof-Theoretic Results for the Theory SID<ω

• The n-rank rkn(A) < ω is defined for 1 ≤ n < ω and formulas
A ∈ L∞n by

rkn(A) :=

0 if A is n-atomic, or otherwise
max(rkn(B), rkn(C)) + 1 if A = B ∧ C or A = B ∨ C
rkn(B) + 1 if A = ∀xB or A = ∃xB

• The ordinal-rank rk(A) < Γ0 is defined for formulas A ∈ L∞<ω by

rk(A) :=

0 if A is a literal and A ∈ L<ω
ω · ξ if A = t ∈ Q<ξA or A = t 6∈ Q<ξA

max(rk(B), rk(C)) + 1 if A = B ∧ C or A = B ∨ C
rk(B) + 1 if A = ∀xB or A = ∃xB

Furthermore for 1 ≤ n < ω and A ∈ L∞n , we write A ∈ Pos↑n to denote that
PA
n occurs at most positively in A for every A, and we write A ∈ Neg↑n to

denote ¬A ∈ Pos↑n.

Notation 14.5. The n-rank and the ordinal rank are not defined for L2
PA

formulas. Therefore, we introduce the following abbreviations for arith-
metical operator forms A and each n ∈ N:

rkn(A) := rkn(A(U, 0))
rk(A) := rk(A(U, 0))

Remark 14.6. For A ∈ L∞n and 1 ≤ n < ω, we have that lh(A) < ` implies
rkn(A) < `, and that rkn(A) 6= 0 implies that A is not a literal.

Definition 14.7. For each n < ω, the infinitary Tait-style proof system
SID∞n with language L∞n is defined by means of the following inferences
(i.e., axioms and inference rules). SID∞n shall derive L∞n sequents that
consist of closed formulas only, therefore we assume in this definition that
the sequents of the axioms and the sequents that occur in the premiss of
a rule consist of closed L∞n formulas only. Note that the inference rules
(
∧
∀xA) and (

∧
t6∈Q<τ

A
) have infinitely many premisses.

182

14.1. The Infinitary Proof System SID∞n

I. Number-theoretic and logical axioms:

Γ, A if A is a true LPA literal
Γ,A(s),¬A(t) if sN = tN holds and A is Λa.A for an atomic A ∈ Ln

II. Stratified induction axioms for 1 ≤ m ≤ n and B ∈ Lm−1:

Γ,∃x(A(B, x) ∧ ¬B(x)), t 6∈ PA
m,B(t)

III. Fixed-point rules for 1 ≤ m ≤ n:

Γ,A(PA
m, t) (Fixt∈PA

m
)

Γ, t ∈ PA
m

Γ,¬A(PA
m, t) (Fixt 6∈PA

m
)

Γ, t 6∈ PA
m

IV. Predicative rules:

Γ, A
(
∨A
A∨B)Γ, A ∨B

Γ, B
(
∨B
A∨B)Γ, A ∨B

Γ, A Γ, B (
∧
A∧B)Γ, A ∧B

Γ, Ax(t)
(
∨t
∃xA)Γ,∃xA

for t ∈ Ter0
Γ,A(Q<ξA , t) (

∨ξ
t∈Q<τ

A

)
Γ, t ∈ Q<τA

for ξ < τ

. . . Γ, Ax(t) . . . (t ∈ Ter0)
(
∧
∀xA)

Γ,∀xA

. . . Γ,¬A(Q<ξA , t) . . . (ξ < τ) (
∧
t 6∈Q<τ

A
)

Γ, t 6∈ Q<τA

V. Cut rule:

Γ, C Γ,¬C (CutC)Γ

For each of the above mentioned inferences, we define the notions side
formula, minor formula, and main formula as usual. In particular, (CutC)

183

14. Proof-Theoretic Results for the Theory SID<ω

has no main formulas, the axioms in I and II do not have minor formulas,
and for every inference the formulas in the sequent Γ are the side formulas.

Definition 14.8. The derivability notion SID∞n `αρ,r Γ for n, r < ω is
defined inductively on α:

• SID∞n `αρ,r Γ holds for all α, ρ, and r < ω if Γ is an axiom of SID∞n .

• SID∞n `αρ,r Γ holds if there is a rule of SID∞n in III or IV such that Γ
is its conclusion and SID∞n `αιρ,r Γι holds for each of its premisses Γι
with some αι < α.

• SID∞n `αρ,r Γ holds if SID∞n `α0
ρ,r Γ, C and SID∞n `α1

ρ,r Γ,¬C hold for
some α0, α1 < α and we have rk(C) < ρ, rkn(C) < r, and in case of
n > 0 also lh(C) < `.

Moreover, SID∞n `<αρ,r Γ means that SID∞n `α0
ρ,r Γ holds for some α0 < α.

Remark 14.9. Recalling the end of Chapter 13 where we explained the
strategy for investigating SID<ω, we note here that for n > 0, the condition
lh(C) < ` in the third case of the above definition is needed in order to
globally bound the occurring (cut-)formulas’ syntactical complexity by a
finite ordinal, namely `. Having in mind the property of most derivability
notions for infinitary proof systems that the underlying derivations may
contain cut-formulas whose complexity cannot be globally bounded by a
finite ordinal, we decided to add the condition lh(C) < ` since otherwise
it would have been more cumbersome to check and guarantee the well-
behaviour of our iterative use of partial cut elimination and asymmetric
interpretation that we are going to apply below. Furthermore, we put no
extra effort in encoding such a property into rkn because we wanted to
keep rkn as perspicuous as possible.

Lemma 14.10 (Weakening).

SID∞n `αρ,r Γ & α ≤ β & ρ ≤ η & r ≤ k & Γ ⊆ ∆ =⇒ SID∞n `
β
η,k ∆

Proof. By a straight-forward induction on α. Note that the condition con-
cerning ` can be preserved here.

Remark 14.11. SID∞n `αρ,r Γ with ρ = 0 or r = 0 implies SID∞n `α0,0 Γ.
Note also that SID∞0 `αρ,r Γ implies SID∞0 `αρ,1 Γ since rk0(A) = 0 for each

184

14.2. Partial and Full Cut-Elimination

A ∈ L∞0 . Furthermore, we note that in the following we will not mention
every use of Lemma 14.10 explicitly.

14.2. Partial and Full Cut-Elimination
Lemma 14.12. For each 1 ≤ n < ω and C ∈ L∞n with lh(C) < `, we have

rkn(C) = 1 + r

& SID∞n `αρ,1+r Γ, C

& SID∞n `
β
ρ,1+r Γ,¬C

 =⇒ SID∞n `
α#β
ρ,1+r Γ

Proof. By induction on α# β and the following case distinction.
1. C or ¬C is not among the main formulas of the last inference used for
SID∞n `αρ,1+r Γ, C or SID∞n `

β
ρ,1+r Γ,¬C, respectively: The claim follows

immediately from the induction hypothesis or, in case of an axiom, by
reapplying the inference with suitable side formulas.
2. Otherwise, we note first that rkn(C) 6= 0 holds. Hence, C is not n-
atomic and only the following cases are possible:
2.1. C = C0 ∨ C1 and SID∞n `α0

ρ,1+r Γ, C, C0 for some α0 < α: Then we
also get SID∞n `

β0
ρ,1+r Γ,¬C,¬C0 for some β0 < β, so by the induction

hypothesis we get SID∞n `
α0#β
ρ,1+r Γ, C0 and SID∞n `

α#β0
ρ,1+r Γ,¬C0. Since α0 #

β, α#β0 < α#β, rkn(C0) < rkn(C) = 1+r, and also lh(C0) < lh(C) hold,
we can apply (CutC0) in order to obtain SID∞n `

α#β
ρ,1+r Γ. The other cases

where SID∞n `α0
ρ,1+r Γ, C, C1 or C = C0 ∧ C1 holds are treated similarly.

2.2. C = ∃xD or C = ∀xD: The claim follows similar to the previous
case, noting that lh(Dx(t)) = lh(D) < lh(C) holds for any term t.

Lemma 14.13. For each C ∈ L∞0 , we have

rk(C) = ρ

& SID∞0 `αρ,r Γ, C
& SID∞0 `βρ,r Γ,¬C

 =⇒ SID∞0 `α#β
ρ,r Γ

Proof. By induction on α#β and almost literally as Lemma 14.12 because
of a similar behaviour of the n-rank rkn and the ordinal-rank rk in combi-
nation with the build-up of formulas. The following two special situations

185

14. Proof-Theoretic Results for the Theory SID<ω

illustrate the advantage of the ordinal-rank rk and why this does not work
for SID∞n with n > 0. Assume that both C and ¬C are among the main
formulas of the last inference.
1. C is the main formula of an axiom: Then it can only be due to an
instance of I, so C and ¬C are LPA literals. If C is Us for some term s,
then we have ¬Ut,Ut′ ∈ Γ for some t, t′ with tN = sN = t′N, and hence Γ is
already an instance of I. Otherwise, the claim again follows easily from I.
2. C = t ∈ Q<τA with SID∞0 `αξρ,r Γ, C,A(Q<ξA , t) for some ξ < τ and
αξ < α: Now ρ = ω · τ and ¬C = t 6∈ Q<τA hold. Because of the definition
of SID∞0 , we do not have SID∞0 `βρ,r Γ,¬C due to a logical axiom and hence
¬C must be the main formula of (

∧
t6∈Q<τ

A
). Then we have SID∞0 `βξρ,r

Γ,¬C,¬A(Q<ξA , t) available with βξ < β for every ξ < τ , so the claim
follows very similar as in the proof of Lemma 14.12. Note that in the
setting of SID∞0 , we do not have to guarantee lh(A(Q<ξA , t)) < `, and that
we have rk(A(Q<ξA , t)) < ω · (ξ + 1) ≤ ρ because of ξ < τ .

Theorem 14.14 (Cut-elimination).

(a) Partial cut-elimination:

SID∞n `αρ,1+r Γ implies SID∞n `
ωr(α)
ρ,1 Γ for each 1 ≤ n < ω, where we

let ω0(α) := α and ωk+1(α) := ωk(ωα).

(b) Full predicative cut-elimination:

SID∞0 `αγ+ωδ,1 Γ implies SID∞0 `
ϕ(δ,α)
γ,1 Γ.

Proof. The theorem follows from the previous lemmas by a standard argu-
ment, and we refer to [Poh09] for details.

14.3. Asymmetric Interpretation
Convention 14.15. We fix n < ω for this section and will only deal with
the proof systems SID∞n and SID∞n+1.

Definition 14.16. For L∞n+1 formulas A, L∞n+1 sequents Γ, and ordinals
ξ, ξ1, . . . , ξk, we write the following:

186

14.3. Asymmetric Interpretation

Aξ for the L∞n formula obtained from A by substituting
any PA

n+1 in A with the corresponding symbol Q<ξA ,

[Γ]ξ for the L∞n sequent obtained from Γ by substituting
every occurring formula A with Aξ,

and if Γ is explicitly given as a list A1, . . . , Ak, we write

[Γ]ξ1,...,ξk for the L∞n sequent Aξ11 , . . . , A
ξk
k .

Lemma 14.17.

(a) SID∞n `αρ,r Γ,B(s1),¬B′(s2) for each s1, s2 with sN1 = sN2 implies that
for each t1, t2 with tN1 = tN2 also

SID∞n `α+2·rk(A)
ρ,r Γ,A(B, t1),¬A(B′, t2)

holds.

(b) sN = tN and ν ≤ π imply SID∞n `ω·ν0,0 s ∈ Q<πA , t 6∈ Q<νA .

(c) sN = tN and A ∈ L∞n imply SID∞n `
2·rk(A)
0,0 A(s),¬A(t).

(d) B ∈ Ln implies SID∞n `ω·τ0,0 ∃x(A(B, x) ∧ ¬B(x)), t 6∈ Q<τA ,B(t).

Proof. Statement (a) is proven by a straight-forward induction on rk(A) <
ω and we leave the proof to the reader. Statement (b) is proven by induction
on ν: The case ν = 0 follows from (

∧
t6∈Q<0

A
). If ν > 0 holds, then the

induction hypothesis and (a) yield SID∞n `
ω·ξ+2·rk(A)
0 A(Q<ξA , s),¬A(Q<ξA , t)

for all ξ < ν. Since ν ≤ π holds, the claim follows from (
∨ξ
t∈Q<π

A

) and
(
∧
s 6∈Q<ν

A
), and note that A ∈ L2

PA implies rk(A) < ω and hence ω · ξ + 2 ·
rk(A) + 1 < ω · (ξ + 1) ≤ ω · ν holds for all ξ < ν. Statement (c) is proven
by a straight-forward induction on rk(A), and we leave the proof to the
reader, noting that (b) is used for the case that A is of the form Λa.(r ∈
Q<ξA). Finally, statement (d) is proven by induction on τ and we let D :=
∃x(A(B, x) ∧ ¬B(x)). If τ = 0, we immediately get SID∞n `0

0,0 D,B(t), t 6∈
Q<0

A from (
∧
t 6∈Q<0

A
). If τ > 0, we get by the induction hypothesis that

SID∞n `
ω·ξ
0,0 D,B(t), t 6∈ Q<ξA (14.1)

187

14. Proof-Theoretic Results for the Theory SID<ω

holds for all ξ < τ and all t. Using (a) with (14.1) and (c) with B(t) yields

SID∞n `
ω·ξ+2·rk(A)
0,0 D,A(B, t),¬A(Q<ξA , t)

SID∞n `
2·rk(B(t))
0,0 D,¬A(Q<ξA , t),B(t),¬B(t)

Since B(t) ∈ Ln, we have rk(B(t)) < ω and hence we get for some m < ω

SID∞n `
ω·ξ+m
0,0 D,A(B, t) ∧ ¬B(t),¬A(Q<ξA , t),B(t)

Using (
∨t
D) and that ω · ξ+m+ 1 < ω · (ξ+ 1) ≤ ω · τ holds for each ξ < τ ,

the claim follows with an (
∧
t6∈Q<τ

A
) inference.

Lemma 14.18 (Persistence). Let L∞n+1 sequents ∆− := A0, . . . , Aq and
∆+ := B0, . . . , Br be given with ∆− ⊆ Neg↑n+1 and ∆+ ⊆ Pos↑n+1, then the
following holds for all ordinals ν0, ν

′
0, . . . , νq, ν

′
q with (∀i ≤ q)(ν′i ≤ νi), all

ordinals π0, π
′
0, . . . , πp, π

′
p with (∀i ≤ p)(πi ≤ π′i), and each L∞n sequent Γ:

SID∞n `αρ,r Γ, [∆−]ν0,...,νq , [∆+]π0,...,πp

=⇒ SID∞n `αρ,r Γ, [∆−]ν
′
0,...,ν

′
q , [∆+]π

′
0,...,π

′
p

Proof. By induction on α. In case that all main formulas of the last infer-
ence are among Γ or if the last inference is an instance I or II, a fixed-point
rule in III, or a cut-rule inV, then the proof is straight-forward. Otherwise
the last inference is a rule in IV and we consider the following cases:
1. (

∨ξ
C) with ξ < πi and C = t ∈ Q<πiA for some 1 ≤ i ≤ p: Then we have

SID∞n `α0
r,ρ Γ, [∆−]ν0,...,νq , [∆+]π0,...,πp ,A(Q<ξA , t)

and α0 < α. The induction hypothesis (keeping A(Q<ξA , t) unchanged) and
(
∨ξ
C′) with C ′ := t ∈ Q<π

′
i

A yield the claim since ξ < π′i holds by πi ≤ π′i.
2. (

∧
C) with C = t 6∈ Q<νiA for 1 ≤ i ≤ q: As the case above (use ν′i ≤ νi).

3. (
∧
C) with C = C0 ∧ C1 and w.l.o.g., let C = Aν0

0 : Then C0 = Dν0
0

and C1 = Dν0
1 for some D0, D1 ∈ Neg↑n+1: We can apply the induction

hypothesis here as well but change C0, C1 now toDν′0
0 andDν′0

1 , respectively.
(
∧
C′) with C ′ := D

ν′0
0 ∧D

ν′0
1 yields the claim.

4. Another rule of inference from IV: Similar as in the previous case.

188

14.3. Asymmetric Interpretation

Theorem 14.19 (Asymmetric interpretation). Assume that we have

SID∞n+1 `αρ,1 ∆−,∆+

for some ∆− ⊆ Neg↑n+1 and ∆+ ⊆ Pos↑n+1. Let ν and π be given such that
π = ν + 2α and ρ ≤ ω · π hold, then we have

SID∞n `ω·π+α
ω·π,` [∆−]ν , [∆+]π

Proof. By induction on α and a case distinction for the last inference.
1. Axioms in I: In case of t ∈ PA

n+1 ∈ ∆+ and s 6∈ PA
n+1 ∈ ∆− with

sN = tN, we can use (b) in Lemma 14.17 for t ∈ Q<πA and s 6∈ Q<νA . The
other cases are trivial by taking appropriate instances of the corresponding
axiom schemes.
2. Axioms in II: If we have an instance for some PA

m with 1 ≤ m ≤ n,
the axiom can be reused immediately. Otherwise it is an instance for some
PA
n+1, and then the claim follows by using (d) in Lemma 14.17 for Q<νA .

3. (CutC) with rk(C) < ρ ≤ ω · π and rkn+1(C) = 0 (and also lh(C) < `):
3.1. If C is of the form t ∈ PA

n+1 (or t 6∈ PA
n+1): We have SID∞n+1 `

α0
ρ,1

∆−,∆+, t ∈ PA
n+1 and SID∞n+1 `

α1
ρ,1 ∆−,∆+, t 6∈ PA

n+1 for some α0, α1 < α.
The induction hypothesis yields with ν and π0 := ν + 2α0

SID∞n `ω·π0+α0
ω·π0,`

[∆−]ν , [∆+]π0 , t ∈ Q<π0
A

and it also yields with π0 and π1 := π0 + 2α1

SID∞n `ω·π1+α1
ω·π1,`

[∆−]π0 , [∆+]π1 , t 6∈ Q<π0
A

After some weakening and applying Lemma 14.18 (using in particular ν <
π0 and π1 = π0 +2α1 ≤ ν+2α = π), the claim follows by (Cutt∈Q<π0

A
) since

we have rk(t ∈ Q<π0
A) = ω · π0 < ω · π, rkn(t ∈ Q<π0

A) = 0, and in case of
n > 0, we also have lh(t ∈ Q<π0

A) = lh(C) < `.
3.2. Otherwise C ∈ L∞n : First note that we have rkn(C) ≤ lh(C) < `,
so we can use the induction hypothesis and then reuse (CutC) in SID∞n to
obtain the claim.
4. Fixed-point rules in III:
4.1. (Fixt∈PA

n+1
): We get SID∞n+1 `

α0
ρ,1 ∆−,∆+,A(PA

n+1, t) for some α0 < α

with A(PA
n+1, t) ∈ Pos↑n+1, and hence the induction hypothesis with ν and

189

14. Proof-Theoretic Results for the Theory SID<ω

π0 := ν + 2α0 < π yields SID∞n `ω·π0+α0
ω·π0,`

[∆−]ν , [∆+]π0 ,A(Q<π0
A , t). Then

the claim follows from (
∨π0
t∈Q<π

A
), Lemma 14.18, and some weakening.

4.2. (Fixt 6∈PA
n+1

): We have now SID∞n+1 `
α0
ρ,1 ∆−,∆+,¬A(PA

n+1, t) for some
α0 < α with ¬A(PA

n+1, t) ∈ Neg↑n+1, so we get with π0 := ν + 2α0 by the
induction hypothesis

SID∞n `ω·π0+α0
ω·π0,`

[∆−]ν , [∆+]π0 ,¬A(Q<νA , t)

and hence by Lemma 14.18 and some weakening, we get for each ξ < ν

SID∞n `ω·π+α0
ω·π,` [∆−]ν , [∆+]π,¬A(Q<ξA , t)

By using (
∧
t6∈Q<ν

A
), the claim follows.

4.3. (Fixt∈PA
m

) or (Fixt 6∈PA
m

) for some 1 ≤ m ≤ n: We can apply the induc-
tion hypothesis for the premiss and reuse the rule because it is available in
SID∞n and its minor formulas do not contain PA

n+1.
5. Predicative rules in IV: Use the induction hypothesis and repeat the
rule with an appropriate instance.

Remark 14.20. An inspection of the proof of Theorem 14.19 yields that in
case of ρ = 0, we even obtain SID∞n `ω·π+α

0,0 [∆−]ν , [∆+]π in the conclusion
of Theorem 14.19. We do not need this stronger result, though.

14.4. Arithmetical Derivability
Theorem 14.21 (Arithmetical derivability). Let Γ ⊆ LPA and r, n < ω.
If SID∞n `<ε0ρ,r Γ holds for some ρ < ε0, then SID∞0 `<ε0η,1 Γ holds for some
η < ε0.

Proof. By induction on n. The case n = 0 is clear (see Remark 14.11). We
can also assume r > 0 w.l.o.g. and get SID∞n `<ε0ρ,1 Γ by Theorem 14.14.(a).
Now Theorem 14.19 yields SID∞n−1 `

<ε0
η,` Γ for some η < ε0 and hence the

claim by the induction hypothesis.

190

15. The Upper Bound of SID<ω

Theorem 15.1. If SIDn ` A for a closed Ln formula A, then there is
an ` < ω such that the derivability relation for SID∞n and this ` yields
SID∞n `<ω+ω

`,` A.

Proof. As usual and inductively with respect to the underlying derivability
notion SIDn ` A. Note that complete induction can be proven by use of
the infinitary inference rule (

∧
∀xB) and that no inferences are needed that

involve symbols of the form Q<ξA when inductively translating from SIDn `
A to the proof-system SID∞n (hence cuts of finite rank ` are sufficient).

Corollary 15.2. |SID<ω| ≤ ϕ(ε0, 0).

Proof. For any closed arithmetical formula A with SIDn ` A, we know
from Theorem 15.1 that SID∞n `<ε0`,` A holds for some ` < ω. According to
Theorem 14.21, this means SID∞0 `<ε0ρ,1 A for some ρ < ε0. By weakening
we have SID∞0 `<ε0ωρ,1 A since ρ ≤ ωρ(< ε0), so Theorem 14.14.(b) yields
SID∞0 `<ϕ(ε0,0)

0,0 A because α, ρ < ε0 implies ϕ(ρ, α) < ϕ(ρ, ϕ(ε0, 0)) =
ϕ(ε0, 0), using ε0 < ϕ(ε0, 0). Finally, we get |SID<ω| ≤ ϕ(ε0, 0) by a
standard boundedness argument.

191

16. Concluding Remarks on
Stratified Induction

We finish our investigations on the theory SID<ω of finitely stratified induc-
tion over fixed-points with some remarks on the proof-theoretic methods
that we applied here and the generalization to transfinitely stratified induc-
tion. In this context, an immediate question is the relation of transfinite
stratification to the iteration of fixed-point definitions. We established the
connection of SID<ω to the non-iterated theory ÎD1 and will now briefly
explain the concept of (finite) iteration of fixed-point definitions: Since ÎD1
is based on positive (arithmetical) operator forms A1 that are formulated
in the language L2

PA, the theory ÎD2 is based on positive operator forms A2

that are formulated in the language L̂1 (i.e., ÎD2 axiomatizes fixed-points of
A2 by means of new unary relation symbols PA2 for each such A2, resulting
in the language L̂2 of ÎD2). This is similarly defined for ÎDn with arbitrary
2 < n < ω, and it further extends to transfinite iterations of fixed-point
definitions ÎDα. As remarked in the introduction, we know for instance
that |ID∗β | = |ÎDβ | holds for any ordinal β, and we refer to [JKSS99] and
[Pro06] for details on results and definitions.

16.1. Comparison with Proof-Theoretic Methods
for ÎDn

Considering only the case n = 2 and the reduction of ÎD2 to ÎD1, we first
note that similar methods (e.g., asymmetric interpretation) are used as in
the reduction of SID2 to SID1 but with the difference that |ÎD1| < |ÎD2|
holds and that we actually established |SID1| = |SID2| here. This is due
to the following observation: Without going into too many details, let
ÎD
∞
2 and ÎD

∞
1 be the infinitary proof-systems assigned to ÎD2 and ÎD1,

respectively, which are defined in a similar way as the infinitary proof-

193

16. Concluding Remarks on Stratified Induction

systems in Section 14.1. The difference is that stratified induction axioms
are missing and that for ÎD

∞
2 , we have fixed-point rules

Γ,A2(PA2 , t)
(Fixt∈PA2)

Γ, t ∈ PA2

Γ,¬A2(PA2 , t) (Fixt 6∈PA2)
Γ, t 6∈ PA2

for positive operator forms A2 ∈ L̂1 that may contain symbols PA1 for
positive operator forms A1 ∈ L̂0(= LPA) in arbitrary position. This is not
the case for SID2 where the operator form is arithmetical. As remarked
above, the reduction from ÎD2 to ÎD1 uses asymmetric interpretation of
ÎD
∞
2 in ÎD

∞
1 , therefore ÎD

∞
1 has for example predicative rules of the form

Γ,A2(Q<ξA2
, t)

(
∨ξ
t∈Q<τ

A2
)

Γ, t ∈ Q<τA2

for ξ < τ (#)

with A2 being a positive operator form over the language L̂2 rather than L̂1.
This is needed in order to be able to interpret a (Fixt∈PA2) inference, but it
also makes it more difficult to remove cuts partially. Recall that in order to
be able to use Theorem 14.19, we first had to partially remove cuts in SID∞2
before doing an asymmetric interpretation (this was needed to make the
proof by induction of Theorem 14.19 work). Similarly, ÎD

∞
2 needs first to

partially remove cuts, and because of the existence of rule of inferences such
as (#) this is only possible by doing a partial cut-elimination that involves
a cut-reduction for formulas of transfinite rank (compare Lemma 14.13).
In contrast to this, we were able to avoid such cut-reductions for SID∞2 so
that it was needed only once in the very end for SID∞0 . We refer to the
references for more details on the proof-theoretic analysis of ÎDn for n < ω
(yielding |ÎD<ω| = Γ0) and the generalization to the transfinite.

16.2. Transfinite Stratification
As described in the introduction, the equality ϕ(ε0, 0) = |ÎD1| = |SIDn| =
|SID<ω| (with n < ω) established here still leaves the question open con-
cerning the relationship of stratification to iteration. For this, we refer to
[JP15] where a generalization of stratification to the transfinite gives an
answer to it. See also Table 2 on page 10.

194

A. Appendix: Remaining Proofs
of Chapter 3

A.1. Theorem 3.6.
Proof. In order to show that (OT,≺) is a strict total order, we need to show
irreflexivity, antisymmetry, totality, and transitivity for ≺. For irreflexivity,
we show that

a 6≺ a

holds for each a ∈ OT by induction on a, using the following case distinc-
tion. With this, we also get that ≺lex is irreflexive.
1. a = 0 or a = 1̃: Clearly, a 6≺ a.
2. a = a1 ⊕ a2 and a2 6= 0: By the induction hypothesis, we have a1 6≺ a1
and a2 6≺ a2, hence by Definition 3.4 also a 6≺ a.
3. a = φā(m+1)0̄(k) with am+1 6= 0: By the induction hypothesis, we have
ai 6≺ ai for all 1 ≤ i ≤ m + 1 and hence a 6≺lex a. By Definition 3.4, this
yields a 6≺ a.

For antisymmetry, we show that

a ≺ b =⇒ b 6≺ a

holds for all a, b ∈ OT by induction on a+N b.
With this, we also get that ≺lex is antisymmetric: For any a, b ∈ PTOT

with a ≺lex b, this is clear if lh(a) < lh(b) holds. If a = φc̄(n)ā(k) and b =
φc̄(n)b̄(k) hold with a1 ≺ b1, then we have b1 6� a1 by irreflexivity (b1 = a1
would contradict a1 ≺ b1) and antisymmetry of ≺, yielding b 6≺lex a.

Now turning to the antisymmetry of ≺, assume a ≺ b. Hence a, b ∈ OT
holds with b 6= 0, and we consider the following cases.
1. a = 0 and b 6= 0: This is obvious.
2. a = 1̃, b 6= 0, and b 6= 1̃: This is also obvious.

195

A. Appendix: Remaining Proofs of Chapter 3

3. a ∈ PT+ with φā(m+1)0̄(k) and am+1 6= 0: Since a ≺ b holds, we must
have b = b′1 ⊕ b′2 with b′1 ∈ PT+ where b′2 = 0 may hold, and we consider
the following two cases:
3.1. b′2 6= 0: If a = b′1, we get b = a ⊕ b′2 6≺ a ⊕ 0 = a due to b′2 6= 0.
Otherwise a 6= b′1 and a ≺ b′1 holds, so b 6≺ a follows from the induction
hypothesis b′1 6≺ a.
3.2. b′2 = 0: Then b′1 = b ∈ PT+ must hold, and we consider now b =
φb̄(n+1)0̄(l) with bn+1 6= 0.
3.2.1. a ≺lex b and ai ≺ b for all 1 ≤ i ≤ m + 1: By the induction
hypothesis, we have b 6≺ ai for all 1 ≤ i ≤ m + 1. If b ≺ a holds, then by
Definition 3.4, we need either b � aj for some 1 ≤ j ≤ m or b ≺ am+1.
Both is impossible due to ai ≺ b for all 1 ≤ i ≤ m + 1, either by the
induction hypothesis or by irreflexivity.
3.2.2. b ≺lex a and a ≺ bj for some 1 ≤ j ≤ n + 1: By the induction
hypothesis, we have bj 6≺ a for this 1 ≤ j ≤ n + 1. If b ≺ a would hold,
then b ≺lex a would imply that bi ≺ a holds for all 1 ≤ i ≤ n+ 1 which is
impossible.
3.2.3. b ≺lex a and a = bj for some 1 ≤ j ≤ n: Again b ≺ a is impossible
since then bj ≺ a would hold, yielding a contradiction to irreflexivity.
4. a = a1 ⊕ a2 with a2 6= 0: Then a ≺ b means that b = b1 ⊕ b2 holds for
some b1, b2 ∈ OT with b1 ∈ PT and we have the following cases:
4.1. a1 = b1 and a2 ≺ b2: By the induction hypothesis, we have b2 6≺ a2,
hence b ≺ a is impossible.
4.2. a1 ≺ b1: By the induction hypothesis, we have b1 6≺ a1, hence for
b ≺ a to hold, we need b1 = a1 and b2 ≺ a2. But b1 = a1 and a1 ≺ b1
contradicts irreflexivity.

For totality, we show that

a ≺ b or a = b or b ≺ a

holds for all a, b ∈ OT by induction on a+N b.
With this, we also get that ≺lex is total: For any a, b ∈ PTOT, if not

already lh(a) < lh(b) or lh(b) < lh(a) holds, we get a = φā(n) and b = φb̄(n)

with a1, . . . , an, b1, . . . , bn ∈ OT. So, we get the claim by totality of ≺.
Now turning to the totality of ≺, let a, b ∈ OT and consider the

following cases.
1. a = 0: This is obvious.
2. a = 1̃: Again, this is obvious. In case of b = 0, we get b ≺ a, and in

196

A.1. Theorem 3.6.

case of b = 1̃, we get a = b. Otherwise, we have a ≺ b by Definition 3.4.
3. a ∈ PT+ with a = φā(m+1)0̄(k) and am+1 6= 0:
3.1. b = 0 or b = 1̃: By definition, b ≺ a holds already due to a 6= 0 and
a 6= 1̃.
3.2. b ∈ PT+ with b = φb̄(n+1)0̄(l) and bn+1 6= 0: We have the following
cases (and due to the induction hypothesis if necessary1):
3.2.1. a ≺lex b: Again due to the induction hypothesis, we can distinguish
the following cases.
3.2.1.1. ai ≺ b for all 1 ≤ i ≤ m+ 1: Then we get a ≺ b by Definition 3.4.
3.2.1.2. aj = b for some 1 ≤ j ≤ m: Then we get b ≺ a by Definition 3.4.
3.2.1.3. am+1 = b and ai 6= b for all 1 ≤ i ≤ m: Then am+1 ∈ PT+ and
because of a ≺lex b = am+1 and a ∈ OT, we have b = am+1 � aj for some
1 ≤ j ≤ m, yielding b ≺ a by Definition 3.4.
3.2.1.4. ai 6= b for all 1 ≤ i ≤ m+ 1 and b ≺ aj for some 1 ≤ j ≤ m+ 1:
Since a ≺lex b holds, we get immediately b ≺ a.
3.2.2. b ≺lex a: Analogously as for the previous case.
3.2.3. Otherwise and since a, b ∈ OT holds, this implies that we have
m = n, k = l, and ai = bi for all 1 ≤ i ≤ m+ 1, yielding a = b.
3.3. b = b1 ⊕ b2 with b2 6= 0: By the induction hypothesis, we have a � b1
or b1 ≺ a. Then we obviously get a � b or b ≺ a, while for the case a1 = b2,
note that b2 6= 0 implies 0 ≺ b2, hence a = a⊕ 0 ≺ b.
4. a = a1 ⊕ a2 with a2 6= 0: Analogously to the previous cases.

Finally for transitivity, the claims for (OT,≺) and (PTOT,≺lex) are
proven simultaneously, i.e., we show

a, b, c ∈ OT & a ≺ b & b ≺ c =⇒ a ≺ c (∗)
a, b, c ∈ PTOT & a ≺lex b & b ≺lex c =⇒ a ≺lex c (∗∗)

by induction on a+N b+N c. Now, let a, b, c ∈ N be arbitrary.
For statement (∗∗), assume that a, b, c ∈ PTOT holds with a ≺lex b

and b ≺lex c. In particular, we have (a)0 = (b)0 = (c)0 = 1. If lh(a) < lh(b)
or lh(b) < lh(c) holds, then also lh(a) < lh(c) and so a ≺lex c holds by
definition of ≺lex. Otherwise lh(a) = lh(b) = lh(c) and some j1, j2 < lh(a)
exist with

1More precisely, if lh(a) 6= lh(b) holds, then we have directly a ≺lex b or b ≺lex a.
If lh(a) = lh(b) holds, then we use the induction hypothesis for ā(m+1), 0̄(k) and
b̄(n+1), 0̄(l).

197

A. Appendix: Remaining Proofs of Chapter 3

• aj1 ≺ bj1 and ai = bi for all 1 ≤ i < j1, and

• bj2 ≺ cj2 and bi = ci for all 1 ≤ i < j2.

If j1 = j2 holds, then we get aj1 ≺ bj1 and bj1 ≺ cj1 , so by the induction
hypothesis on statement (∗), we have aj1 ≺ cj1 and hence a ≺lex c. If
j1 < j2 holds, then we get ai = bi = ci for all 1 ≤ i < j1 and aj1 ≺ bj1 = cj1 ,
hence again a ≺lex c holds. If j1 > j2 holds, then we get ai = bi = ci for
all 1 ≤ i < j2 and aj2 = bj2 ≺ cj2 , hence a ≺lex c by definition. This
shows (∗∗).

Now turning to statement (∗) for the transitivity of ≺, assume that
a, b, c ∈ OT holds with a ≺ b and b ≺ c, hence b 6= 0 and c 6= 0 hold.
Keeping in mind that we have shown (∗∗) for the given numbers a, b, c ∈ N
(and that (∗∗) actually holds in all combinations of a, b, c), we consider the
following case distinction.
1. a = 0: b ≺ c implies c 6= 0, hence a ≺ c.
2. a = 1̃: a ≺ b implies b 6= 0 and b 6= 1̃, hence b ≺ c implies also c 6= 0
and c 6= 1̃ (since otherwise we have c ≺ b which contradicts antisymmetry).
This yields a ≺ c.
3. a ∈ PT+ with a = φā(m+1)0̄(k) and am+1 6= 0: Due to a ≺ b, we have
the following cases.
3.1. b ∈ PT+ with b = φb̄(n+1)0̄(l) and bn+1 6= 0: Due to b ≺ c, we have
further the following cases.
3.1.1. c ∈ PT+ with c = φc̄(p+1)0̄(q) and cp+1 6= 0: We distinguish the
following situations.
3.1.1.1. a ≺lex b and b ≺lex c: By (∗∗), we get a ≺lex c, hence since here
ai ≺ b holds for all 1 ≤ i ≤ m+ 1, and since we have b ≺ c, we get ai ≺ c
by the induction hypothesis on ai, b, and c for all 1 ≤ i ≤ m+ 1, yielding
a ≺ c.
3.1.1.2. a ≺lex b and c ≺lex b: Due to antisymmetry, the case a = c is
impossible, since otherwise c = a ≺ b and b ≺ c would hold. Hence totality
induces the following two situations:

(i) If c ≺lex a: With b ≺ c and c ≺lex b, we have b ≺ cp+1 or b � cj
for some 1 ≤ j ≤ p. Hence a ≺ b and the induction hypothesis yields a ≺ cj
for some 1 ≤ j ≤ p+ 1, and we get a ≺ c by the definition of ≺ and due to
c ≺lex a.

(ii) If a ≺lex c: With a ≺ b and a ≺lex b, we have ai ≺ b for all
1 ≤ i ≤ m+1, hence by the induction hypothesis ai ≺ c for all 1 ≤ i ≤ m+1
and we get a ≺ c due to a ≺lex c.

198

A.1. Theorem 3.6.

3.1.1.3. b ≺lex a and b ≺lex c: Due to b ≺ c, we have bi ≺ c for all
1 ≤ i ≤ n + 1, and due to a ≺ b, we have the following two situations:
If a ≺ bj holds for some 1 ≤ j ≤ p + 1, then we get by the induction
hypothesis a ≺ c since we have here bj ≺ c. Otherwise a = bj holds for
some 1 ≤ j ≤ p, and since bj ≺ c holds, we immediately get a ≺ c.
3.1.1.4. b ≺lex a and c ≺lex b: By (∗∗), we get c ≺lex a and due to b ≺ c,
we have the following two situations: If b ≺ cp+1 holds, we get by the
induction hypothesis a ≺ cp+1 since we have a ≺ b. Hence with c ≺lex a
and Definition 3.4 also a ≺ c holds. Otherwise, we have b = cj for some
1 ≤ j ≤ p, and then a ≺ b yields a ≺ cj and with c ≺lex a, we are done.
3.1.2. c = c1 ⊕ c2 with c2 6= 0: We get b � c1 from b ≺ c because of
b ∈ PT+. So by the induction hypothesis (if necessary), a ≺ b yields
a ≺ c1 and since a ∈ PT+ holds, we hence get a ≺ c by Definition 3.4.
3.2. b = b1⊕b2 with b2 6= 0: We get a � b1 from a ≺ b because of a ∈ PT+.
We have b1 = b1 ⊕ 0 ≺ b1 ⊕ b2 = b since b2 6= 0 holds, hence b1 ≺ b, so by
the induction hypothesis and with b ≺ c, we get b1 ≺ c, and hence with
a � b1 and using (if necessary) the induction hypothesis once more, we get
a ≺ c.
4. a = a1 ⊕ a2 with a2 6= 0:
4.1. b ∈ PT: Then a ≺ b implies a1 ≺ b, hence by the induction hypothesis
and b ≺ c, we get a1 ≺ c.
4.1.1. c ∈ PT: Then also a ≺ c holds by definition.
4.1.2. c 6∈ PT: Since c 6= 0 (due to b ≺ c), we have c = c1 ⊕ c2 with
c2 6= 0. So we get b � c1 from b ≺ c and hence a1 ≺ c1 from a1 ≺ b by the
induction hypothesis (if necessary). This yields a ≺ c by definition.
4.2. b 6∈ PT: Since b 6= 0 (due to a ≺ b), we have b = b1 ⊕ b2 with b2 6= 0,
so we get a1 � b1.
4.2.1. c ∈ PT: Then b1 ≺ c because b ≺ c and a1 � b yield a1 ≺ c by the
induction hypothesis (if necessary), hence a ≺ c by definition.
4.2.2. c 6∈ PT: Again we have c = c1 ⊕ c2 with c2 6= 0. If b1 ≺ c1,
the induction hypothesis (if necessary) and a1 � b1 yield a1 ≺ c1, hence
a ≺ c by definition. If b1 = c1 and a1 ≺ b1 hold, then also a1 ≺ c1 by
the induction hypothesis, hence a ≺ c. If a1 = b1 = c1, then a2 ≺ b2 and
b2 ≺ c2 hold, yielding a2 ≺ c2 by the induction hypothesis and hence again
a ≺ c.

199

A. Appendix: Remaining Proofs of Chapter 3

A.2. Lemma 3.15
Proof. We note first that the lemma follows easily if one of the ordinal
notations involved is 0. Therefore, we assume a 6= 0, b 6= 0, and c 6= 0 and
further that we have

a = a1 ⊕ a2 b = b1 ⊕ b2 c = c1 ⊕ c2

with a1, b1, c1 ∈ PT. This will render the following computations more
readable.

For (a), we assume a ⊕ b ∈ OT, hence we get hd(b) � a and a ∈ PT.
Given c � b, we get hd(c) � hd(b) � a = hd(a) and a +̃ c = hd(a)⊕ (tl(a) +̃
c) = a⊕ (0 +̃ c) = a⊕ c since we assumed a, c 6= 0.

For (b), we argue by induction on a and the following case distinction.
Note that we have a2 <N a since we assumed a 6= 0.
1. a1 ≺ b1: a +̃ b = b and (a +̃ b) +̃ c = b +̃ c. Now, we have only the
following cases (since b, c 6= 0):
1.1. b1 ≺ c1: Then b +̃ c = c and with a1 ≺ c1 also a +̃ c = c, hence
a +̃ (b +̃ c) = a +̃ c = c and we are done.
1.2. c1 � b1: Then b +̃ c = b1⊕ (b2 +̃ c) holds. So we get a +̃ (b +̃ c) = b +̃ c
and we are done.
2. b1 � a1: We have a +̃ b = a1⊕ (a2 +̃ b) and consider the following cases.
2.1. a1 ≺ c1: Then a +̃ c = c and also b1 ≺ c1, hence b +̃ c = c. So we
have a +̃ (b +̃ c) = a +̃ c = c. Moreover, a +̃ b = a1 ⊕ (a2 +̃ b), hence also
(a +̃ b) +̃ c = c.
2.2. c1 � a1: We have either hd(b +̃ c) = b1 or hd(b +̃ c) = c1, hence
by b1 � a1 and c1 � a1 we get a +̃ (b +̃ c) = a1 ⊕ (a2 +̃ (b +̃ c)) and
(a +̃ b) +̃ c = (a1 ⊕ (a2 +̃ b)) +̃ c = a1 ⊕ ((a2 +̃ b) +̃ c), using the induction
hypothesis.

For (c), we argue again by induction on a. Let b ≺ c, so we have
b1 � c1 by definition of ≺.
1. a1 ≺ b1: Then a1 ≺ c1 and a +̃ b = b ≺ c = a +̃ c.
2. b1 � a1:
2.1. a1 ≺ c1: Then a +̃ b = a1 ⊕ (a2 +̃ b) ≺ c1 ⊕ c2 = c = a +̃ c.
2.2. c1 � a1: By the induction hypothesis, we have a2 +̃ b ≺ a2 +̃ c, hence
a +̃ b = a1 ⊕ (a2 +̃ b) ≺ a1 ⊕ (a2 +̃ c) = a +̃ c.

For (d), we argue again by induction on a. Let a � c, hence a1 � c1.
1. a1 ≺ c1: a +̃ c = c, so let d := c.

200

A.3. Auxiliary Corollary A.3.1

2. a1 = c1: Then we have a2 � c2 and the induction hypothesis yields
a2 +̃d = c2 for some d ∈ OT. Hence with (b), we get a+̃d = (a1 +̃a2)+̃d =
a1 +̃ (a2 +̃ d) = a1 +̃ c2 = c1 +̃ c2 = c.

For (e), let a � c and c ≺ a +̃ b. We have c = a +̃ d for some d ∈ OT
by (d), hence a +̃ d = c ≺ a +̃ b. This implies d 6= b and due to (c) also
b 6≺ d, hence d ≺ b by totality.

For (f), we recall first that we consider only the case a, b 6= 0 here.
Then (c) implies a = a +̃ 0 ≺ a +̃ b. Furthermore, if a1 ≺ b1, then a +̃ b = b,
and if b1 ≺ a1, then b ≺ a ≺ a +̃ b. Now, for the remaining case a1 = b1,
we have b = a1 +̃ b2 ≺ a1 +̃ b with (c) by using b2 ≺ b from Lemma 3.8.

For (g), let a � c. We have c = a +̃ d for some d ∈ OT by (d),
and by (f), we have, b � d +̃ b. Hence with (c) and (b), we get a +̃ b �
a +̃ (d +̃ b) = (a +̃ d) +̃ b = c +̃ b.

For (h), we have a +̃ b = a 6= 0 if b = 0, and a +̃ b = b 6= 0 if a = 0.
Otherwise, a +̃ b = a1 ⊕ (a2 +̃ b) 6= 0.

For (i), let a ≺ b +̃ 1̃ and assume a 6� b. Then b ≺ a and a = b +̃ d for
some d ≺ 1̃ by (e), hence d = 0 and b = a, a contradiction.

For (k), let a ∈ Lim and b ≺ a. Assume b+̃1̃ 6≺ a, so we have a � b+̃1̃.
Note that by the definition of +̃, we have that last(b +̃ 1̃) = 1̃ holds, so
a = b +̃ 1̃ contradicts a ∈ Lim. Further, a ≺ b +̃ 1̃ implies a � b by (i),
contradicting b ≺ a.

For (l), we argue by induction on a. If a2 = 0, then a = 1̃ 6∈ PT+,
hence let d := 0. If a2 6= 0, then obviously a 6∈ PT+ holds and we have
also last(a2) = 1̃, so we get by the induction hypothesis that a2 6∈ PT+
and a2 = d2 +̃ 1̃ hold for some d2 ∈ OT. Hence with (b), we get a =
a1 +̃ (d2 +̃ 1̃) = (a1 +̃ d2) +̃ 1̃ and we can set d := a1 +̃ d2.

A.3. Auxiliary Corollary A.3.1

Corollary A.3.1. Let k,m ∈ N and a1, . . . , am, b, c ∈ OT. Then we have:

b ≺ c =⇒ ϕ̃(ā(m), b, 0̄(k)) ≺ ϕ̃(ā(m), c, 0̄(k))

Proof. Assume b ≺ c and consider the following cases. By Lemma 3.17, we
can assume without loss of generality that a1 6= 0 holds.

201

A. Appendix: Remaining Proofs of Chapter 3

1. If φā(m)b0̄(k) 6∈ OT and φā(m)c0̄(k) 6∈ OT: From Lemma 3.17, we get

ϕ̃(ā(m), b, 0̄(k)) = b ≺ c = ϕ̃(ā(m), c, 0̄(k))

2. If φā(m)b0̄(k) ∈ OT and φā(m)c0̄(k) ∈ OT: From the definition of ≺, we
get

ϕ̃(ā(m), b, 0̄(k)) = φā(m)b0̄(k) ≺ φā(m)c0̄(k) = ϕ̃(ā(m), c, 0̄(k))

using b ≺ c from our assumption to get φā(m)b0̄(k) ≺ φā(m)c0̄(k) and
a1, . . . , am, c ≺ φā(m)c0̄(k) from Lemma 3.8.
3. If φā(m)b0̄(k) 6∈ OT and φā(m)c0̄(k) ∈ OT: Using Lemma 3.8, we get

ϕ̃(ā(m), b, 0̄(k)) = b ≺ c ≺ φā(m)c0̄(k) = ϕ̃(ā(m), c, 0̄(k))

4. If φā(m)b0̄(k) ∈ OT and φā(m)c0̄(k) 6∈ OT: We have

ϕ̃(ā(m), b, 0̄(k)) = φā(m)b0̄(k) ≺ c = ϕ̃(ā(m), c, 0̄(k))

because φā(m)c0̄(k) 6∈ OT implies c ∈ PT+ with φā(m)c0̄(k) ≺lex c by
Lemma 3.17. Hence, b ≺ c implies φā(m)b0̄(k) ≺lex φā

(m)c0̄(k) ≺lex c, and
we get φā(m)b0̄(k) ≺ c from the definition of ≺ since a1, . . . , am ≺ c holds
by Lemma 3.8 and b ≺ c by assumption.

A.4. Lemma 3.21

Proof. Let a, b ∈ OT. For (a): Immediate by induction on a.
For (b): By induction on a+b ∈ OT and a case distinction on b ∈ OT.

1. If b = 0: Then we have nothing to show.
2. If b = 1̃(= φ0): This is obvious because of a = 0 and o(b) = ϕ(0) = 1.
3. If b = b1 ⊕ b2 with b2 6= 0: Then let a = a1 ⊕ a2 for some a1, a2 ∈ OT.
Now a ≺ b implies either a1 ≺ b1 or a1 = b1 with a2 ≺ b2. The induction
hypothesis and the definition of o(a) and o(b) yield immediately the claim.
4. b = φb̄(n+1)0̄(l) with b1, bn+1 6= 0:
4.1. If a = 0: The claim is trivial since here o(b) 6= 0 holds due to o(b1) 6= 0
and the definition of o(b).

202

A.4. Lemma 3.21

4.2. If a = φā(m+1)0̄(k) with a1, am+1 6= 0: Then we have

o(a) = ϕ(o(a1), . . . , o(am+1), 0̄(k))
o(b) = ϕ(o(b1), . . . , o(bn+1), 0̄(l))

Assuming a ≺ b, we show o(a) < o(b) via the following two cases. (The
reverse direction holds analogously.)

(i) If a ≺lex b holds with ai ≺ b for all 1 ≤ i ≤ m+1: Let p := lh(b)−
lh(a), and so we get o(a) = ϕ(0̄(p), o(a1), . . . , o(am+1), 0̄(k)). Moreover, the
induction hypothesis yields for all 1 ≤ i ≤ m+ 1

o(ai) < o(b) (A.1)

In case of p 6= 0, Corollary 2.18 directly yields the claim together with
0 < o(b1) and (A.1). If p = 0 holds, then we have m ≤ n and some
1 ≤ r ≤ m+ 1 exists such that ai = bi holds for all 1 ≤ i < r and such that
ar ≺ br holds. The induction hypothesis and Corollary 2.18 yield then the
claim, using again (A.1).

(ii) Otherwise, b ≺lex a holds with a ≺ bn+1 or a � bj for some 1 ≤
j ≤ n: For p := lh(a)− lh(b), we get o(b) = ϕ(0̄(p), o(b1), . . . , o(bn+1), 0̄(l)).
Moreover, the induction hypothesis yields

o(a) < o(bn+1) or
(
o(a) ≤ o(bj) for some 1 ≤ j ≤ n

)
(A.2)

We can argue as for the previous case, using Corollary 2.18 and (A.2).
4.3. If a = a1 ⊕ a2 with a2 6= 0: Note that a ≺ b implies a1 ≺ b with
a1 ∈ PT. We can then argue as in the previous case if b ∈ PT+.

For (c): By induction on a and the following case distinction.
1. If b = 0: Then o(a +̃ b) = o(a) = o(a) + o(b).
2. If a = 0 and b 6= 0: Then o(a +̃ b) = o(b) = o(a) + o(b).
3. If a, b 6= 0 and hd(b) � hd(a): Then o(a +̃ b) = o(hd(a) ⊕ (tl(a) +̃
b)) = o(hd(a)) + o(tl(a) +̃ b). Since a 6= 0, we have tl(a) ≺ a, so with
the induction hypothesis yielding o(tl(a) +̃ b) = o(tl(a)) + o(b), we get
o(a +̃ b) = o(hd(a)) + o(tl(a)) + o(b) = o(hd(a)⊕ tl(a)) + o(b) = o(a) + o(b).
4. Otherwise, we have a, b 6= 0 and hd(a) ≺ hd(b): Then o(a +̃ b) = o(b)
and by (b), we have o(hd(a)) < o(hd(b)). We have by the definition of
OT that a = hd(a) ⊕ tl(a) holds with tl(a) � hd(a). By (b), we get
o(tl(a)) � o(hd(a)). Since hd(b) ∈ PT implies o(b) ∈ P by (a), we now get

203

A. Appendix: Remaining Proofs of Chapter 3

o(a) + o(b) = o(b) and hence the claim.

For (d): By Lemma 3.19, it suffices to show that o(a) < νn holds for
some n ∈ N, and we shall prove this by induction on a.

1. If a = 0: Use ν0 = fω
(

1
0
)

= ω0 = 1.
2. If a = 1̃(= φ0): Use ν1 = fω

(
1
1
)

= ω1 = ω.
3. If a = a1 ⊕ a2 with a2 6= 0: Then a1, a2 <N a holds and the induction
hypothesis yields n1, n2 such that o(a1) < ν1 and o(a2) < ν2. Letting
n := max{n1, n2} yields o(a1), o(a2) < νn by Lemma 3.19. Since νn =
fω
(

1
n

)
∈ PT holds, we get o(a) < νn by (c).

4. If a = φā(m+1)0̄(l) with a1, am+1 6= 0: We get by Lemma 2.16 that
o(a) = ϕ(o(a1), . . . , o(am+1), 0̄(l)) = fω

(am+1 ... a1
0 ... m

)
holds. The induc-

tion hypothesis yields n1, . . . , nm such that o(ai) < νni holds for each
i ∈ {n1, . . . , nm+1}. By letting n := max{n1, . . . , nm+1}, we get that
o(a1), . . . , o(am+1) < νn holds, and so o(a) = fω

(o(am+1) ... o(a1)
0 ... m

)
< νn

holds by Proposition 2.15.

For (e): By transfinite induction on γ < ϑΩω. By Proposition 2.34,
we have ϑΩω = fω

(
1
ω

)
. Now, γ < fω

(
1
ω

)
implies γ < fω

(1
γ

)
because oth-

erwise, we would have fω
(1
γ

)
= γ < fω

(
1
ω

)
and hence γ < ω by Proposi-

tion 2.10, contradicting with ω = fω
(

1
0
)
≤ fω

(1
γ

)
= γ. With Lemma 2.28,

we therefore get

γ = γ1 + . . .+ γn

for some n ≥ 1 and where γ ≥ γ1 ≥ . . . ≥ γn and

γi = f
(αi,1 ... αi,ki
βi,1 ... βi,ki

)
holds for some k1, . . . , kn ∈ N with αi,j , βi,j < γi for 1 ≤ i ≤ n and
1 ≤ j ≤ ki. Fix now 1 ≤ i ≤ n, so the induction hypothesis yields
ai,j ∈ OT with

αi,j = o(ai,j)

for each 1 ≤ j ≤ ki. If αi,j = 0 holds for all 1 ≤ j ≤ ki, then γi =
fω
(

0
0
)

= fω(0) hold and we set ci := 1̃. Otherwise, αi,j 6= 0 holds for some

204

A.4. Lemma 3.21

1 ≤ j ≤ ki, so let

j0 := min({j : αi,j 6= 0})
j1 := max({j : αi,j 6= 0})

and we shall show that γi = o(ci) holds for

ci := φai,j1 0̄(lj1)ai,j1−10̄(lj1−1) . . . φai,j0 0̄(lj0)

and some lj0 , . . . , lj1 ∈ N. We shall show in particular that ci ∈ OT holds.
Having done this for every 1 ≤ i ≤ n, we get that

c := c1 ⊕ (. . . (cn−1 ⊕ cn) . . .)

implies c ∈ OT with γ = o(c) because o(ci) = γi and γ1 ≥ . . . ≥ γn yield
cn � . . . � c1 by (b), hence we can use the definition of OT. It rests now
to show that o(ci) = γi and ci ∈ OT holds in case of αi,j 6= 0 for some
1 ≤ j ≤ ki: Note that

αi,j < γi ≤ γ < f
(

1
ω

)
(for all 1 ≤ j ≤ ki)

implies
(αi,1 ... αi,ki
βi,1 ... βi,ki

)
<
(

1
ω

)
with respect to the lexicographic order on

Klammersymbols (see Chapter 2) since otherwise our assumption that
αi,j <

(
1
ω

)
holds for all j would contradict Proposition 2.15. Now, as

we have
(αi,1 ... αi,ki
βi,1 ... βi,ki

)
<
(

1
ω

)
with respect to the lexicographic order on

Klammersymbols and αi,j for all 1 ≤ j ≤ ki, we get that

βi,j < ω

holds for all 1 ≤ j ≤ ki, and from this follows together with Lemma 2.16
that

γi = ϕ(αi,j1 , 0̄(lj1), αi,j1−10̄(lj1−1), . . . , αi,j0 , 0̄(lj0))

holds, hence we get immediately γi = o(ci) if ci ∈ OT holds. Now, to show

205

A. Appendix: Remaining Proofs of Chapter 3

the latter, we have due to ai,j1 6= 0 only to show:

(ai,j0 ∈ PT+ =⇒ ai,j0 ≺lex ci)
&
(
ai,j0 ∈ PT+ =⇒ (ci ≺lex ai,j0 & ai,j0 � aj for some j0 < j ≤ j1)

)
Note that this follows essentially from Lemma 2.20 and by making use
of (b) since we have that αi,j < γi holds for all j, i.e., we have γi =NF
ϕ(αi,j1 , 0̄(lj1), αi,j1−10̄(lj1−1), . . . , αi,j0 , 0̄(lj0)).

A.5. Theorem 3.25
Proof. (a) is obvious since d ∈ Suc implies d = d0 +̃ 1 for some d0 ∈ OT
and hence d[x] = (d0 + 1)[x] = d0 ≺ d by Lemma 3.15.

We show (b) by induction on d ∈ Lim, i.e., using (Ind), and via the
following case distinction (while note that Lemma 3.15 implies either d ∈
PT+ or d = a⊕b with b ∈ Lim). In particular, we have to verify d[x] ∈ OT
for each x.
1. d = a⊕b with b ∈ Lim: By the induction hypothesis, we have b[x] ∈ OT,
b[x] 6= 0, b[x] ≺ b, and b[x] ≺ b[x +N 1]. Since d[x] = a +̃ (b[x]), we hence
get d[x] ∈ OT, d[x] 6= 0, d[x] ≺ d[x+N 1] by Lemma 3.15.
2. d = φa with a 6= 0:
2.1. a ∈ Lim: The induction hypothesis yields a[x] ∈ OT, hence d[x] =
ϕ̃(a[x]) ∈ OT and clearly d[x] 6= 0. Now a[x] ≺ a[x +N 1] implies d[x] =
ϕ̃(a[x]) ≺ ϕ̃(a[x+N 1]) = d[x+N 1].
2.2. a = a0 +̃ 1̃: Since ϕ̃(a0) ∈ OT holds, we have d[x] = ϕ̃(a0) ·̃ (x+N 1) ∈
OT and clearly d[x] 6= 0. We have ϕ̃(a0) ≺ ϕ̃(a) = φa and d[x] = ϕ̃(a0)⊕
(ϕ̃(a0) ·̃ x), therefore d[x] ≺ φa = d. Further, ϕ̃(a0)⊕ (ϕ̃(a0) ·̃ x) ≺ ϕ̃(a0)⊕
(ϕ̃(a0) ·̃ (x+N 1)) holds via a side induction on x, noting that ϕ̃(a0) ≺
ϕ̃(a0)⊕ ϕ̃(a0) holds because of ϕ̃(a0) 6= 0, so this yields d[x] ≺ d[x+N 1].
3. d = φā(m)b0̄(k+1) with b 6= 0:
3.1. If b ∈ Lim: By the main induction hypothesis, we have b[x] ∈ OT,
b[x] 6= 0, b[x] ≺ b[x +N 1], and b[x] ≺ b for each x. Hence, d[x] =
ϕ̃(ā(m), b[x], 0̄(k+1)) ∈ OT holds by Lemma 3.13. Moreover, d[x] ∈ PT
holds by Lemma 3.17, implying d[x] 6= 0, and Corollary A.3.1 yields
d[x] ≺ d[x+N 1] and d[x] ≺ d.
3.2. If b ∈ Suc: We show the claim by a side induction on x.
3.2.1. If x = 0: We have d[0] = 1̃ ∈ PT ∩OT and therefore d[0] 6= 0, and

206

A.5. Theorem 3.25

d[0] ≺ d (since d 6= 0 and d 6= 1̃ hold). Moreover, we have

d[1] =
{
φ1̃0̄(k) if m = 0 and b = 1̃
φā(m)(b[0])1̃0̄(k) otherwise

using Lemma 3.17. Hence d[1] ∈ OT holds and d[0] = 1̃ ≺ d[1] is obvious.
3.2.2. If x = x0 +N 1: We have

d[x] = ϕ̃(ā(m), b[x0], d[x0], 0̄(k))
d[x+N 1] = ϕ̃(ā(m), b[x], d[x], 0̄(k))

implying d[x], d[x +N 1] ∈ OT and d[x], d[x +N 1] 6= 0 by Lemma 3.13 and
3.17, using d[x0] ∈ OT from the side induction hypothesis. Furthermore, we
get d[x0] ≺ d[x] and b[x0] = b[x], while recalling for the latter that b ∈ Suc
holds. So, we get d[x] ≺ d[x+N 1] by Corollary A.3.1. In particular, we get

d[x] =
{
φd[x0]0̄(k) if m = 0 and b = 1̃
φā(m)(b[x0])d[x0]0̄(k) otherwise

from d[x0] 6= 0 and d[x0] ≺ d[x] together with Lemma 3.17, yielding d[x] ≺
d from the definition of ≺, noting that we have b[x0] ≺ b by (a) and
d[x0] ≺ d by the side induction hypothesis.

4. d = φā(m)b0̄(k)c with b 6= 0 and c ∈ Suc with c = c0 +̃ 1̃: Let

d′ := ϕ̃(ā(m), b, 0̄(k), c0)

Then we get d′ ∈ OT and d′ ≺ d due to Corollary A.3.1 because of c0 ≺ c.
We show the claim by a side induction on x.
4.1. If x = 0: Note that we have

d[0] = d′ +̃ 1̃
d[1] = ϕ̃(ā(m), b[0], d[0], 0̄(k)) =

=
{
φ(d[0])0̄(k) if m = 0 and b = 1̃
φā(m)(b[0])(d[0])0̄(k) otherwise

because we have b[0] ∈ OT and d[0] ∈ Suc and can use Lemma 3.17. In

207

A. Appendix: Remaining Proofs of Chapter 3

particular, we get d[0] ≺ d[1] by Lemma 3.8. Moreover, d ∈ Lim and
d[0] ∈ Suc imply d[0] ≺ d by Lemma 3.15.
4.2. For x = x0 +N 1: We get

d[x] = ϕ̃(ā(m), b[x0], d[x0], 0̄(k))

and in particular d[x] ∈ OT since b[x0], d[x0] ∈ OT holds by the main
and side induction hypothesis. Also d[x] 6= 0 holds due to d[x] ∈ PT by
Lemma 3.17. This implies

d[x] =
{
φ(d[x0])0̄(k) if m = 0 and b = 1̃
φā(m)(b[x0])(d[x0])0̄(k) otherwise

(A.3)

using Lemma 3.17 and d[x0] ≺ d[x] from the side induction hypothesis.
Now, d[x] ≺lex d holds (while using b[x0] ≺ b in case of m 6= 0 and b 6= 1̃).
With d[x0] ≺ d from the side induction hypothesis, a1, . . . , an+1 ≺ d, and
0 ≺ d, we get d[x] ≺ d by the definition of ≺. Now, turning to d[x] ≺
d[x+N 1], we recall that

d[x+N 1] = ϕ̃(ā(m), b[x], d[x], 0̄(k))

holds and we are now going to show that

d[x+N 1] =
{
φ(d[x])0̄(k) if m = 0 and b = 1̃
φā(m)(b[x])(d[x])0̄(k) otherwise

(∗)

holds. For this, note first that we have d[x] � d[x +N 1] by Lemma 3.17.
Furthermore, we have b[x0] � b[x] (using the main induction hypothesis in
case of b ∈ Lim) and d[x0] ≺ d[x] from the side induction hypothesis. Hence
with (A.3) and (∗), this readily yields d[x] ≺lex d[x +N 1]. The definition
of ≺ then yields d[x] ≺ d[x+N 1] because we have a1, . . . , an+1 ≺ d[x+N 1],
b[x0] � b[x] ≺ d[x+N 1], and d[x0] ≺ d[x] � d[x+N 1].

For (∗), it suffices to show φ(d[x])0̄(k) ∈ OT in case of m = 0 and
b = 1̃, and φā(m)(b[x])(d[x])0̄(k) ∈ OT otherwise. Therefore, we consider
the following cases:
4.2.1. If m = 0 and b = 1̃: Then b[x] = 0, hence d[x+N 1] = ϕ̃((d[x]), 0̄(k))
holds by Lemma 3.17. We have d[x] ∈ PT+ by (A.3) and we have d[x] =
φd[x0]0̄(k) ≺lex φd[x]0̄(k), so φd[x]0̄(k) ∈ OT holds by the definition of OT.

208

A.6. Theorem 3.27

4.2.2. Otherwise: Then b[x] 6= 0 holds. By (A.3), we get that d[x] =
φā(m)(b[x0])d[x0]0̄(k) ∈ PT+ and d[x] ≺lex φā

(m)(b[x])d[x]0̄(k) from b[x0] �
b[x] and d[x0] ≺ d[x], hence we get φā(m)(b[x])d[x]0̄(k) ∈ OT.
5. d = φā(m)b0̄(k)c with b 6= 0 and c ∈ Lim: By the main induction
hypothesis, we have c[x] ∈ OT, c[x] 6= 0, c[x] ≺ c[x+N 1], and c[x] ≺ c for
each x. Then d[x] ∈ OT and d[x] 6= 0 hold by Lemma 3.13 and Lemma 3.17,
respectively. Now, Corollary A.3.1 yields d[x] ≺ d[x+N 1] and d[x] ≺ d.

A.6. Theorem 3.27
Proof. Let d ∈ Lim and d0 ≺ d. We prove the theorem by induction on d
and a side induction on d0, i.e., using (Ind). Note that the case d0 = 0 is
clear, since d[0] 6= 0 holds by Theorem 3.25. Assuming now d0 6= 0, we can
write

d0 = d1 ⊕ d2

with d1 ∈ PT (and where d2 = 0 may hold here). Then d1 ≺ d must
hold since we have either d1 = d0 ≺ d if d2 = 0 holds, or d1 ≺ d0 ≺ d by
Lemma 3.8 if d2 6= 0 holds. Moreover, we can also write

d1 = φf̄ (p+1) (A.4)

for some f1, . . . , fp+1, and we get f1, . . . , fp+1 ≺ d1 by Lemma 3.8. We
proceed by a case distinction on the build-up of d.
1. d = a ⊕ b with b ∈ Lim: We have d[x] = a +̃ (b[x]). Now, either
d0 ≺ a holds, which gives already d0 ≺ d[0], or a � d0 holds and hence also
d0 = a +̃ b0 for some b0 ≺ b by Lemma 3.15. Since b0 ≺ b[x] holds for some
x by the induction hypothesis, we get d0 ≺ d[x].
2. d = φa with a 6= 0:
2.1. a ∈ Lim: Recall the build-up of d1 from (A.4).
2.1.1. If p = 0: We get d1 = φf1 with f1 ≺ a by the definition of ≺.
Because of a ∈ Lim and the induction hypothesis, there is some x such that
f1 ≺ a[x] holds, i.e., we get d1 = ϕ̃(f1) ≺ ϕ̃(a[x]) = d[x] by Corollary A.3.1.
d0 ≺ ϕ̃(a[x]) now holds by the definition of ≺ using that ϕ̃(a[x]) ∈ PT holds
by Lemma 3.17.
2.1.2. If p 6= 0: We get d = φa ≺lex φf̄

(p+1) = d1, and hence d1 ≺ a must
hold by the definition of ≺. As before, there is some x such that d1 ≺ a[x]

209

A. Appendix: Remaining Proofs of Chapter 3

holds, and we have a[x] � ϕ̃(a[x]) = d[x], using Lemma 3.17. This yields
d1 ≺ d[x] and hence d0 ≺ d[x].

2.2. a = a0+̃1̃: We have d[x] = ϕ̃(a0)̃·(x+N 1) and we show that d0 ≺ d[x]
holds for some x by a side induction on d0 6= 0. Note first that we have

d2 ≺ d[x0]

for some x0, namely: If d2 = 0 holds, then we can use x0 = 0. If d2 6= 0
holds, then we have d2 ≺ d0 ≺ d by Lemma 3.8 and also d2 <N d0, so the
side induction hypothesis on d2 yields x0 with d2 ≺ d[x0].

We shall show below that d1 � ϕ̃(a0) holds, and then we get

d0 = d1 ⊕ d2 ≺ ϕ̃(a0)⊕ (d[x0])

i.e., d0 ≺ d[x] for x := x0 +N 1. In order to show d1 � ϕ̃(a0), recall
from (A.4) that d1 = φf̄ (p+1) holds and consider the following cases:

2.2.1. p = 0: Then d1 = φf1 holds, and we get f1 ≺ a = a0 +̃ 1̃ from
d1 ≺ d = φa, hence f1 � a0 holds. This yields d1 = ϕ̃(f1) � ϕ̃(a0) by
Corollary A.3.1.
2.2.2. p 6= 0: We have then d = φa ≺lex φf̄ (p+1) = d1 and so by d1 ≺ d
and the definition of ≺, we must have d1 ≺ a. Hence, d1 � a0 � ϕ̃(a0).

3. d = φā(m)b0̄(k)c with b 6= 0 and either c ∈ Suc or c = 0 with b ∈ Suc:
We show now that d0 ≺ d[x] holds for some x by a side induction on d0 6= 0.
We shall make the representation of d1 from (A.4) more explicit, namely
let n, l ∈ N be such that

d1 = φf̄ (n+1)0̄(l) & fn+1 6= 0

where we have in particular f1 6= 0. Since d0 ≺ d implies d1 ≺ d, we
distinguish the following cases:

3.1. d1 ≺lex d: Then we have lh(d1) ≤ lh(d). Moreover, d1 ≺ d implies
now fi ≺ d for all 1 ≤ i ≤ n + 1, and the side induction hypothesis gives
x1, . . . , xn+1 such that fi ≺ d[xi] for all 1 ≤ i ≤ n+ 1. Then let

x0 := max{x1, . . . , xn+1}
x :=x0 +N 1

210

A.6. Theorem 3.27

so together with Theorem 3.25, we have

fi ≺ d[x0] ≺ d[x] for all 1 ≤ i ≤ n+ 1 (A.5)

Note that we have b 6= 0 and that in case of m 6= 0, we also have
a1 6= 0 because of d = φā(m)b0̄(k)c and d ∈ OT, and further note that we
defined x such that x 6= 0 holds.
3.1.1. If m = 0 and b = 1̃: Then we have d = φ1̃0̄(k)c.
3.1.1.1. If lh(d1) = lh(d): We must have d1 = φ1̃0̄(k+1) and hence c 6= 0
due to d1 ≺lex d, i.e., we have c ∈ Suc and hence c = c0 +̃ 1̃ for some
c0. Then clearly d1 = ϕ̃(1̃, 0̄(k), 0) � ϕ̃(1̃, 0̄(k), c0) holds and therefore
d1 ≺ ϕ̃(1̃, 0̄(k), c0) +̃ 1̃ = c[0].
3.1.1.2. If lh(d1) < lh(d): We have

d[x] = φd[x0]0̄(k)

by Corollary 3.26 and hence lh(d[x]) = lh(d)− 1 = k + 1. If lh(d1) = k + 1
holds, then we get d1 ≺lex d[x] with f1 ≺ d[x0] from (A.5). Otherwise, we
get d1 ≺lex d[x] immediately. Hence, together with (A.5) and the definition
of ≺, we obtain d1 ≺ d[x].
3.1.2. Otherwise, m 6= 0 or 1̃ ≺ b: Then we get

d[x] = φā(m)b[x0]d[x0]0̄(k)

again by Corollary 3.26. If lh(d1) < lh(d) holds, then we have d1 ≺lex d[x]
because of lh(d) = lh(d[x]), and again d1 ≺ d[x] holds by (A.5). Otherwise,
we have lh(d1) = lh(d) = lh(d[x]) and can consider the following cases that
are induced by d1 ≺lex d.
3.1.2.1. If fj ≺ aj holds for some 1 ≤ j ≤ min{m,n + 1}: Then we have
again d1 ≺lex d[x], hence d1 ≺ d[x] by (A.5).
3.1.2.2. If n ≥ m holds and some 1 ≤ j ≤ n+ 1 exists with fj ≺ b with
fi = ai for all 1 ≤ i < j:

(i) If b = b0 +̃ 1̃, then we have fj � b0 = b[x0] and we get d1 ≺lex d[x]
(where in case of fj = b0, we can use 0 ≺ d[x0] if j = n+ 1, or fj+1 ≺ d[x0]
otherwise), hence d1 ≺ d[x] by (A.5).

(ii) If b ∈ Lim, we get fj ≺ b[y] for some y from the main induction
hypothesis. Then take z := max{x0, y}, and so we get fj ≺ b[z], hence
d1 ≺lex d[z+N 1]. Since d[x0] � d[z] ≺ d[z+N 1] holds by Theorem 3.25, we
get by (A.5) also fi ≺ d[z +N 1] for all 1 ≤ i ≤ n+ 1, hence d1 ≺ d[z +N 1].

211

A. Appendix: Remaining Proofs of Chapter 3

3.1.2.3. Otherwise: We have n+ 1 = m+ k+ 2 and d1 = φā(m)b0̄(k)fn+1,
hence fn+1 ≺ c must hold, and so we have c ∈ Suc with c = c0 +̃ 1̃ for
some c0 since we assumed c 6∈ Lim. We get fn+1 � c0 and then d1 =
ϕ̃(ā(m), b, 0̄(k), fm+1) � ϕ̃(ā(m), b, 0̄(k), c0) ≺ ϕ̃(ā(m), b, 0̄(k), c0) +̃ 1̃ = d[0],
using Corollary A.3.1 (with Lemma 3.15 and Lemma 3.17).
3.2. d ≺lex d1 with m = 0 and b = 1̃: We have d = φ1̃0̄(k)c. Then d1 ≺ d
and d ≺lex d1 imply by the definition of ≺ that d1 � 1̃ or d1 ≺ c holds. The
first is impossible (note that d1 ∈ PT holds, so only the case d1 = 1̃ = φ0
would make sense, but this would contradict d ≺lex d1). So the latter must
hold, and so we have c 6= 0 and hence c ∈ Suc with c = c0 +̃ 1̃ for some c0.
Then we get d1 ≺ d[0] because we have d[0] = ϕ̃(ā(m), b, 0̄(k), c0) +̃ 1̃ and
since d1 � c0 � ϕ̃(ā(m), b, 0̄(k), c0) holds by Lemma 3.17.
3.3. d ≺lex d1 with m 6= 0 or 1̃ ≺ b: This means that for every x, we have

d[x+N 1] = φā(m)b[x]d[x]0̄(k) (A.6)

by Corollary 3.26. Moreover, we get d[x +N 1] ≺lex d since b[x] ≺ b holds
(using Theorem 3.25 in case of b ∈ Lim). Together with d ≺lex d1, this
implies

d[x+N 1] ≺lex d1

for every x, using that ≺lex is transitive here (by Theorem 3.6). Now,
d1 ≺ d and d ≺lex d1 imply the following cases.
3.3.1. d1 ≺ c: Then c 6∈ Lim implies c ∈ Suc with c = c0 +̃ 1̃ for some
c0, and so d1 � c0 holds. Hence d1 ≺ d[0] holds because of d1 � c0 �
ϕ̃(ā(m), b, 0̄(k), c0) ≺ ϕ̃(ā(m), b, 0̄(k), c0) +̃ 1̃ = d[0].
3.3.2. d1 � b: We consider the following two situations.
3.3.2.1. d1 = b: Due to d1 ≺ d and the definition of ≺, this is only
possible in case of c 6= 0. Hence we have c ∈ Suc with c = c0 +̃ 1̃ for some
c0 since we assumed c 6∈ Lim. Then we have d1 = b � ϕ̃(ā(m), b, 0̄(k), c0) ≺
ϕ̃(ā(m), b, 0̄(k), c0) +̃ 1̃ = d[0], using Lemma 3.17.
3.3.2.2. d1 ≺ b: If b = b0 +̃ 1̃ holds, then we get d1 ≺ d[1] because we get
d1 � b0 = b[0] ≺ φā(m)b[0]0̄(k) = d[1] by Lemma 3.8 and (A.6). If on the
other hand b ∈ Lim holds, then we get d1 ≺ b[x] for some x by the main
induction hypothesis, hence d1 ≺ d[x+N 1].
3.3.3. d1 � aj for some 1 ≤ j ≤ m: Then we get d1 � aj ≺ φā(m)b[0]0̄(k) =
d[1] by Lemma 3.8 and (A.6). Hence d1 ≺ d[1] follows from d[1] ≺lex d1.

212

A.6. Theorem 3.27

4. Otherwise: Then we have either d = φā(m)b0̄(k+1) with b ∈ Lim or
d = φā(m)b0̄(k)c with b 6= 0 and c ∈ Lim. Now, we have

d[x] =
{
ϕ̃(ā(m), b[x], 0̄(k+1)) if c = 0 and b ∈ Lim
ϕ̃(ā(m), b, 0̄(k+1), c[x]) if c ∈ Lim

for every x. From d1 ≺ d, we get the following cases, recalling the build-up
φf̄ (p+1) of d1 from (A.4).

4.1. d1 ≺lex d: Then fi ≺ d holds for all 1 ≤ i ≤ p+ 1, and as before (and
using the side induction hypothesis) there is some x0 such that fi ≺ d[x0]
holds for all 1 ≤ i ≤ p+ 1. Moreover, the main induction hypothesis yields
some x1 such that we have fi ≺ b[x1] or fi ≺ c[x1], respectively, and for all
1 ≤ i ≤ p+ 1. Letting x := max{x0, x1}, it suffices to show d1 ≺lex d[x] in
order to get d1 ≺ d[x]. So, we have to show

d1 ≺lex

{
φā(m)(b[x])0̄(k+1) if c = 0 and b ∈ Lim
φā(m)b0̄(k)(c[x]) if c ∈ Lim

(∗)

while note that φā(m)(b[x])0̄(k+1) 6∈ OT or φā(m)b0̄(k)(c[x]) 6∈ OT might
hold, respectively. Now, to show (∗) we note that d1 ≺lex d implies either
lh(d1) < lh(d) which immediately gives us (∗), or we have lh(d1) = lh(d).
For the latter, we can work with d1 ≺lex d and that

fi ≺

{
b[x] if c = 0 and b ∈ Lim
c[x] if c ∈ Lim

holds for all 1 ≤ i ≤ p+ 1.
Finally, we show d1 ≺lex d[x]: If we have φā(m)(b[x])0̄(k+1) ∈ OT

or φā(m)b0̄(k)(c[x]) ∈ OT, respectively, then d[x] = φā(m)(b[x])0̄(k+1) or
d[x] = φā(m)b0̄(k)(c[x]) also holds, respectively, and we use (∗). Otherwise,

d[x] =
{
b[x] if c = 0 and b ∈ Lim
c[x] if c ∈ Lim

holds with φā(m)(b[x])0̄(k+1) ≺lex b[x] or φā(m)b0̄(k)(c[x]) ≺lex c[x], respec-
tively, and by Lemma 3.17.(d). Then using (∗) and that ≺lex is transitive

213

A. Appendix: Remaining Proofs of Chapter 3

here (by Theorem 3.6) yield

d1 ≺lex

{
b[x] = d[x] if c = 0 and b ∈ Lim
c[x] = d[x] if c ∈ Lim

and we are done.
4.2. d ≺lex d1: We distinguish the following two situations.
4.2.1. If c = 0 and b ∈ Lim: Now d1 ≺ d induces the following cases.

(i) d1 ≺ b: Then d1 ≺ b[x] � ϕ̃(ā(m), b[x], 0̄(k+1)) = d[x] holds for
some x by the induction hypothesis and Lemma 3.17.

(ii) d1 � aj for some 1 ≤ j ≤ m: We can use that aj ≺ d[x] holds by
Lemma 3.17.(g).
4.2.2. If c ∈ Lim: Now d1 ≺ d induces the following cases.

(i) d1 ≺ c: Then d1 ≺ c[x] � ϕ̃(ā(m), b, 0̄(k), c[x]) = d[x] holds for
some x by the induction hypothesis and Lemma 3.17.

(ii) d � b or d1 � aj for some 1 ≤ j ≤ m: We can use that b, aj ≺ d[x]
holds by Lemma 3.17.(g).

214

Bibliography
[Acz77a] Peter Aczel. An introduction to inductive definitions. In Jon Barwise,

editor, Handbook of Mathematical Logic, volume 90, pages 739–782.
North-Holland, Amsterdam, 1977.

[Acz77b] Peter Aczel. The strength of Martin-Löf’s type theory with one uni-
verse. Technical report, Dept. of Philosophy, University of Helsinki,
1977.

[AR10] Bahareh Afshari and Michael Rathjen. A note on the theory of positive
induction, ID∗1. Archive for Mathematical Logic, 49:275–281, 2010.
10.1007/s00153-009-0168-9.

[Bee85] Michael J. Beeson. Foundations of Constructive Mathematics: Meta-
mathematical studies. Springer Verlag, Berlin, Heidelberg, New York,
1985.

[BFPS81] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried
Sieg. Iterated Inductive Definitions and Subsystems of Analysis: Re-
cent Proof-Theoretical Studies, volume 897 of Lecture Notes in Math-
ematics. Springer Verlag, Berlin, Heidelberg, New York, 1981.

[Bri75] Jane Bridge. A simplification of the Bachmann method for generating
large countable ordinals. The Journal of Symbolic Logic, 40(2):171–
185, 1975.

[BS88] Wilfried Buchholz and Kurt Schütte. Proof Theory of Impredicative
Subsystems of Analysis, volume 2 of Studies in Proof Theory Mono-
graphs. Bibliopolis, Napoli, 1988.

[Buc05] Wilfried Buchholz. Prädikative Beweistheorie (Predicative proof the-
ory). Lecture notes, University of Munich, 2004–2005.

[Buc15] Wilfried Buchholz. A survey on ordinal notations around the
Bachmann-Howard ordinal. In Reinhard Kahle, Thomas Strahm,
and Thomas Studer, editors, Advances in Proof Theory. Birkhaeuser,
Springer Basel, 2015.

[Can85] Andrea Cantini. A note on a predicatively reducible theory of iterated
elementary induction. Boll. Unione Mat. Ital., VI. Ser., B, 4:413–430,
1985.

215

Bibliography

[Can86] Andrea Cantini. On the relation between choice and comprehension
principles in second order arithmetic. The Journal of Symbolic Logic,
51(2):360–373, 1986.

[Fef70] Solomon Feferman. Formal theories of transfinite iterations of gener-
alized inductive definitions and some subsystems of analysis. In R.
E. Vesley A. Kino, J. Myhill, editor, Intuitionism and Proof Theory,
pages 303—-326. North-Holland, Amsterdam, 1970. Proceedings of
the summer conference at Buffalo, N.Y., 1968.

[Fef82] Solomon Feferman. Iterated inductive fixed-point theories: application
to Hancock’s conjecture. In George Metakides, editor, Patras Logic
Symposion, volume 109 of Studies in Logic and the Foundations of
Mathematics, pages 171–196. Elsevier, Amsterdam, 1982.

[Fef92] Solomon Feferman. Logics for termination and correctness of func-
tional programs, II. Logics of strength PRA. In Peter Aczel, Harold
Simmons, and Stanley S. Wainer, editors, Proof Theory, pages 195–
225. Cambridge University Press, 1992.

[FJ83] Soloman Feferman and Gerhard Jäger. Choice principles, the bar
rule and autonomously iterated comprehension schemes in analysis.
Association for Symbolic Logic, 48(1):63–70, 1983.

[FJS] Solomon Feferman, Gerhard Jäger, and Thomas Strahm. Foundations
of Explicit Mathematics. Book in preparation.

[Hin78] Peter G. Hinman. Recursion-Theoretic Hierarchies. Perspectives in
Logic. Springer Verlag, Berlin, Heidelberg, New York, 1978.

[Jäg05] Gerhard Jäger. Metapredicative and explicit Mahlo: a proof-theoretic
perspective. In Rene Cori, Alexander Razborov, Stevo Todorcevic, and
Carol Wood, editors, Proceedings of Logic Colloquium ’00, volume 19
of Association of Symbolic Logic Lecture Notes in Logic, pages 272–
293. AK Peters, 2005.

[Jer14] Jeroen Van der Meeren and Michael Rathjen and Andreas Weier-
mann. An order-theoretic characterization of the howard-bachmann-
hierarchy, 2014. Preprint, http://arxiv.org/abs/1411.4481.

[JKSS99] Gerhard Jäger, Reinhard Kahle, Anton Setzer, and Thomas Strahm.
The proof-theoretic analysis of transfinitely iterated fixed point theo-
ries. The Journal of Symbolic Logic, 64(1):53–67, 1999.

[JP15] Gerhard Jäger and Dieter Probst. A proof-theoretic analysis of theo-
ries for stratified inductive definitions. In Reinhard Kahle and Michael
Rathjen, editor, Gentzen’s Centenary: The Quest for Consistency.
Springer Verlag, Berlin, Heidelberg, New York, 2015.

216

http://arxiv.org/abs/1411.4481

Bibliography

[JS99] Gerhard Jäger and Thomas Strahm. Bar induction and ω model re-
flection. Annals of Pure and Applied Logic, 97(1–3):221–230, 1999.

[JS05] Gerhard Jäger and Thomas Strahm. Reflections on reflections in ex-
plicit mathematics. Annals of Pure and Applied Logic, 136(1–2):116–
133, 2005. Festschrift on the occasion of Wolfram Pohlers’ 60th birth-
day.

[Lei94] Daniel Leivant. Intrinsic theories and computational complexity. In
Daniel Leivant, editor, Logic and Computational Complexity, volume
960 of Lecture Notes in Computer Science, pages 177–194. Springer
Verlag, Berlin, Heidelberg, New York, 1994.

[Poh09] Wolfram Pohlers. Proof Theory: The First Step into Impredicativ-
ity. Universitext. Springer Verlag, Berlin, Heidelberg, New York, 2nd
edition, 2009.

[Pro06] Dieter Probst. The proof-theoretic analysis of transfinitely iterated
quasi least fixed points. The Journal of Symbolic Logic, 71(3):721–
746, 2006.

[Pro15] Dieter Probst. Modular Ordinal Analysis of Subsystems of Second-
Order Arithmetic of Strength up to the Bachmann-Howard Ordinal.
Habilitation, Universität Bern, 2015. In preparation.

[Rat91] Michael Rathjen. The role of parameters in bar rule and bar induction.
The Journal of Symbolic Logic, 56(2):715–730, 1991.

[Rat92] Michael Rathjen. Fragments of Kripke–Platek set theory with infinity.
In P. Aczel, H. Simmons, and S.S. Wainer, editors, Proof Theory.
A selection of papers from the Leeds Proof Theory Programme 1990,
pages 251–273. Cambridge University Press, 1992.

[RS14] Florian Ranzi and Thomas Strahm. A note on the theory SID<ω
of stratified induction. Mathematical Logic Quarterly, 60(6):487–497,
2014.

[RW93] Michael Rathjen and Andreas Weiermann. Proof-theoretic investiga-
tions on Kruskal’s theorem. Annals of Pure and Applied Logic, 60:49–
88, 1993.

[Sch54] Kurt Schütte. Kennzeichnung von Ordnungszahlen durch rekur-
siv erklärte Funktionen. Mathematische Annalen, 127:15–32, 1954.
10.1007/BF01361109.

[Sch92] Kurt Schütte. Beziehungen des Ordinalzahlensystems OT(ϑ) zur
Veblen-Hierarchie. Unpublished notes, 1992.

217

Bibliography

[Sim09] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cam-
bridge University Press, second edition, 2009. Cambridge Books On-
line.

[Str99] Thomas Strahm. First steps into metapredicativity in explicit math-
ematics. In S. Barry Cooper and John K. Truss, editors, Sets and
Proofs, volume 258 of London Mathematical Society Lecture Notes,
pages 383–402. Cambridge University Press, 1999.

[Wey76] Richard Weyhrauch. Relations Between Some Hierarchies of Ordinal
Functions and Functionals. PhD thesis, Stanford University, 1976.

218

Index

General Notations
~∗, ∗̄(n), 14
A(t/a), 15
Aa(t), 15
A(B/X), 16
A(B/X), 16
A(t), 15
t ∈ A, 15
FV(A), 14, 72–73
A(A), 21
Λx.A, 15
ΛX.A, 21
|T|, 38
`, 19, 75, 179
`αρ,r, 184

Notations for Languages
LPA, 16
L2

PA, 17, 100
LTID, 79
LFIT, 71
Ln, 178
L<ω, 178
L∞n , 181
L∞<ω, 181

Notations for Theories
ACA0, 101–102
ATR0, 8, 137
FIT, 4, 74, 76–77

FITn, 7, 173
FIT+

n , 7, 173
ID1, 1, 8
ID1(Acc), 118
ÎD1, 2, 10, 179, 193
ID∗1, 2, 9, 100
ID∗1�, 5, 124, 137
KPω− + Π2-Found, 117
KPi0 + (Π3-Ref), 5
LPT, 74–75
PA, 20
Π1
n-BI0, 103

Π1
n+2-RFN0, 8, 103

Π1
n+2-RFN0 + (BR), 8, 134

pn+2(ACA0), 5, 8
p1pn+2(ACA0), 6, 8, 131
QL(F0-IRN), 78
RCA0 + (Π1

1(Π0
3)-CA0)−, 4

SID<ω, 9, 179
SID∞n , 182
SIDn, 9, 178–179
Σ1

1-AC0, 103
Σ1

1-DC0, 8, 103, 137
TID, 5, 80
TIDf , 5, 117
TID+

• , 122
TID−n , 124
TIDn, 6, 8, 122

219

Index

TID+
n , 6, 122

Town, 131
Notations for Axioms,

Axiom Schemes,
and Rules

(ACA), 102
(BR), 134
(BR+), 134
(Cl), 80
(CA+), 76
(FP), 80, 123
(FT-Cl), 77
(FT-ID), 77
(FT-Ind), 76
(F0-IRI), 4
(F0-IRN), 4
(Ind), 80
(Indn), 122
(Nat), 122
(Π1

n-BI), 102
(Π1

n-RFN), 102
(Σ1

1-AC), 102
(Σ1

1-DC), 102
(SUB), 134
(TID), 80
(TIDn), 122
(TID+), 122

Notations for Applicative
Theories

(∀x ∈ F)A, (∃x ∈ F)A, 73
(s)FIT

n , (s)n, 70
〈s̄(n−1)〉FIT, 〈s̄(n−1)〉, 70
A(F/X), 73
ClP,Q(A), 73
F,G,H, 72
P,Q,R, 72
QC, 83, 84
For, 71

For+, 71
{x : A}, 71
IP,Q, 4, 71
N, 69
N, 69
U, 69
Ty, 72
Ty�, 72
·, 69
↓, 69
∈, 69
k, s, p, p0, p1, 0, sN, pN, dN, 69
λx.t, 70
prf , 81
A•, 83
A•N, 85
t•, 83
�, 72
Nn+1 � F, 73
t ∈ P� F, 73
s 6= t, 73
s ' t, 73
t′, 70

Notations for Arithmetical
Theories

(∀-intro), (∃-intro), 19
(∀x ∈ R)A, (∃x ∈ R)A, 20
(∀xC t)A, (∃xC t)A, 20
∀α(. . .),∃α(. . .), 139
cons(m,n),m ∗ n, lh(n), 18
〈n1, . . . , nk〉, 18
0n,S, In+1

i ,C,R, 17
t ∈ R, t 6∈ R, 20
tN, 18
0N,+N, <N,

.−N, 17
Aξ, 186–187
[Γ]ξ, [Γ]ξ1,...,ξk , 186–187
PC, 79

220

Index

PA, 79
PA
n , 178
Q<ξA , 180, 181
Rf , 17, 20
AccC, 21
ClA, 21
ProgC, 21
PR,PRn, 17
Neg0, 80
Pos0, 79
Pos1(a), 79
Pos1, 80
Pos→n , 121
Pos↑n, 182
U, 16, 20, 38
TIC, 21
L-TI(≺a), 90
α ∈ L ∩ P, α ∈ S ∩ P , 140
`, 180, 181
Full(α), 141
Fun(α), 140
Hypkn, 94
HypBase(α), 141
HypFull(α), 141
HypPart(s, α), 141
Large(a, b), 141
Part(s, α), 141
Smallkn, 94
Small(s, α, a), 140
lh(A) (for L∞<ω), 181
rk(A) (for L∞<ω), 181–182
rkn(A) (for L∞<ω), 181–182

Notations for Subsystems
of Second Order
Arithmetic

(QY ∈̇ X)A, 100
(X)t, 100

AX , 100–101
X |= A, 101
X |= Π1

n+2-RFN0, 131
Y ∈̇ X, 100
{a}(b) ' c, 107
Π1
n(T), 104

Π1
n, 101

Σ1
n, 101

T,U, 107
A?, 107–108, 127
A?, 127
P ?C(t), 127
V?
t (x), 107

Acc?P,Q, 108
Π1

1(x, y), 107
FΠ1

n+2-RFN, 131
Ordinal Theoretic Notations

<On, 23
C(α, β), 35
Cn(α, β), 35
Γ0, 24
Ω(n, x), 7, 36
Ωa,Ω, 23
ε0, 24
ϑεΩ+1, 5, 8
ω, 23
ϑα, 35
ϑΩΩ, 6
ϑΩω, 4, 36
ψ0ΩΩω , 36
θΩω0, 36
V, 27
v, 27
α̃, 37
Lim, 23
NFϕn(ā(n)), 30
On, 23

221

Index

P, 24
≡, 25
{α}a, 32
otyp(≺), 38
fκ, 26
ϕ(a1, . . . , an), 24
ϕ1, 24
ϕn+1, 24
ϕ•, 27
ξ =NF ω

γ + δ, 36
b =NF ϕ(ā(n)), 30
fκ, 26

Notations for (OT,≺)
from Chapter 3

(OT,≺), 40
Lim, 45
Suc, 45
≺lex, 40
1̃, 39
o(a), 48
φā(n+1), 39
PT, 39
PT+, 39
cr(〈ā(n)〉), 44
d[x], 49–50
hd(a), 39
last(a), 45
|a|≺, 48
·̃, ω̃, ε̃, 44
ϕ̃n+1, 44
+̃, 43
tl(a), 39
a⊕ b, 39

Notations for (OT,≺)
from Chapter 4

(OT,≺), 63
(OT(L0),≺), 53, 60, 63
(OT(K�),≺), 54

(OT(K),≺), 55
L, L0, Lb,L≺b,L�b, 60
S, S0, Sb,S≺b,S�b, 59–60
Lim, 56
Suc, 56
L, 63
L(K), 58
L(L0), 60, 63
�, 57
ω, ε, ϕ•ω,Γ, ϑΩω, 56
n, 54
⊕, 54
α =NF(K�) β, 56
α =NF(L) α0 ∗ . . . ∗ αm, 61
α =NF(S) β ∗ γ, 61
α =K β, 55
α ∗ β, α ∗K β, 59
c(α), 64
c(α, k), 65
e(α), 64
e(α, k), 65
p(α, k), 65
α|Sk , 65
α|Lk , 65
α⇓ (for α ∈ L0), 64
a⇓ (for a ∈ OT), 58
hdS(α), 64
hdL(α), 64
a0,...,an−1

b , 59
.〈a0,...,an−1〉

b / , 59
lhS(α), 64
lhL(α), 64
lhSuc(a), 59
tlS(α), 64
tlL(α), 64
{α}a, 54, 63
+̃, 56

222

Index

x ∈̇ P , 140

accessible part, 4
additive principal numbers, 24
applicative theory, 4
arithmetical comprehension, see

comprehension
arithmetical formula, see formula
arithmetical operator form, 1, 21
asymmetric interpretation, 180, 189
n-atomic formula (for L∞<ω), 181
atomic formula, see formula

Bachmann-Howard ordinal, see
ordinal

bar induction, see induction
bar rule, 134
base of a Klammersymbol, 64
basic applicative tools, 77
basic logical symbols, 13, 177
binary Veblen function, see fini-

tary Veblen functions
Buchholz ψ-function, 36

choice, 102
dependent, 102

class term, 15
classical logic of partial terms, 74
closure, 80
closure under

the ε-function, 151
the ω-function, 151
the binary Veblen function,

151
the finitary Veblen function,

164
weak Veblen ordinals, 165

club, 23

collapsing function, 7, see also ϑα
complete induction (for PA), see

induction
comprehension

arithmetical, 102
positive, 76

cut-elimination, 186

definition by numerical cases, 76
dependent choice, see choice
derivability

for FIT, 75, 77
for SIDn, 179
for SID∞n , 184
for arithmetical theories, 19
for subsystems of second or-

der arithmetic, 100
derivative, 23

embedding, see interpretation

Feferman-Aczel θ-function, 36
Feferman-Schütte ordinal, see or-

dinal
finitary Veblen functions, 6, 24
fixed-point free value fκ of a

Klammersymbol κ
(under f), 26

fixed-point principle, 80, 123
formula

for L∞<ω, 181
for SIDn, 177
for LFIT, 71
for LPA, L2

PA, 19, 177
for LTID, 19
arithmetical, 19
arithmetical (for SIDn), 177
atomic, 19

223

Index

n-atomic (for L∞<ω), 181
main, 183
minor, 183
positive (for LFIT), 71
positive (for LTID), 19
positive (for SIDn), 177
side, 183

full cut-elimination, 180, 186
full predicate cut-elimination, see

full cut-elimination
function type (for FIT), see type

(for FIT)
fundamental sequence, 49–50

higher type functionals, 4, 7, 172

impredicativity, 4, 7
individual term, see term (for LFIT)
induction

bar, 102
complete (for PA), 20
positive, 9
set, 102
stratified, 9, 183
typed, 4, 80, 122

infix notation, 14
interpretation

of LFIT in L2
PA, 107–108

of LTID in LFIT, 83–84
of LTID in L2

PA, 127

Klammersymbol, 6, 25, 63
labeled, 60
simple, 59–60

labeld normal form, see normal
form

labeled Klammersymbol, see Klam-
mersymbol

labels of OT(K), 58
lambda abstraction, 70
large Veblen ordinal, see ordinal
length (for L∞<ω formulas), 181
(length-sensitive) lexicographic

order ≺lex, 40
lexicographic order <, 26
limit (in OT), 45, 56
literal, 13

main formula, 183
metapredicativity, 4
minor formula, 183
modular ordinal analysis, 4, 6, 100

negation (for SIDn), 177
normal form

labeled, 6, 53, 61
simple, 61
w.r.t. ϕn, 30

normal function, 23
numerical value, 18

ω-model reflection, see reflection
operator forms, see arithmetical

operator form
ordinal, 23, 89

Bachmann-Howard, 5
Feferman-Schütte, 24
large Veblen, 7, 27, 166
proof-theoretic, 38
small Veblen, 3, 5, 7, 27, 165
strong Veblen, 166
weak Veblen, 165

partial combinatory algebra, 76
partial cut-elimination, 180
partition (of a Klammersymbol),

see labeled normal form

224

Index

persistence, 188
Π1
n formulas over T, 104

positive, 19, 177
positive formula, see formula
positive comprehension, see com-

prehension
positive induction, see induction
positive operator forms, 21
positive type (for FIT), see type

(for FIT)
proof-theoretic ordinal, see ordi-

nal

rank
n-rank (for L∞<ω formulas),

181–182
ordinal-rank (for L∞<ω formu-

las), 181–182
refined hierarchies of formulas, 104
reflection, 5, 102
restricted types (for FIT), 72

sequent, 178
set induction, see induction
set parameter, 19
side formula, 183
simple Klammersymbol, see Klam-

mersymbol
simple normal form, see normal

form
small Veblen ordinal, see ordinal
sort (of variables), 13
stratified induction, see induction
strong Veblen ordinal, see ordinal
substitution, 15–16
substitution rule, 134
subsystems of second order arith-

metic, 100

successor (in OT), 45, 56

term
for LFIT, 70
for arithmetical theories, 18

type (for FIT)
function type, 72
positive type, 71

typed inductive definition, 80
typed induction, see induction

universal Π1
1 formula Π1

1(x, y), 107

value fκ of a Klammersymbol κ
(under f), 26

vector notation, 14

weak Veblen ordinal, see ordinal
weakening, 184

225

	Introduction
	Ordinals and General Definitions
	General Definitions
	General Notational Framework
	Vector Notations
	Class Terms and Substitution

	The Base Theory PA of Peano Arithmetic

	Ordinal Theoretic Framework
	The Finitary Veblen Functions
	Klammersymbols
	Recursion Properties
	Klammersymbols as Denotations for Functions
	Representation Properties

	The -function
	Cherry-Picking from schuette92:beziehordinveblenhierar and buchholz15:bachmhowar: = E
	Proof-Theoretic Ordinal

	Ordinal Notations for the Small Veblen Ordinal
	The Ordinal Notation System (OT,)
	Ordinal Arithmetic within (OT,)
	Semantics of (OT,)
	Fundamental Sequences

	Ordinal Notations for the Large Veblen Ordinal
	Towards an Ordinal Notation System OT(bold0mu mumu KKschuette54:kennzordnunfunktKKKK)
	Extending OT(bold0mu mumu KKschuette54:kennzordnunfunktKKKK) to OT(bold0mu mumu KKschuette54:kennzordnunfunktKKKK) with an Equivalence Relation
	Primitive Recursive Properties of OT(bold0mu mumu KKschuette54:kennzordnunfunktKKKK)
	Partitioning via Labeled Klammersymbols yielding OT(bold0mu mumu LLschuette54:kennzordnunfunktLLLL0)
	Motivation and Interpretation
	Primitive Recursive Operations on Labeled Klammersymbols

	Typed Induction
	FIT for Functions, Inductive Definitions, and Types
	Basic Language of FIT
	Full Language of FIT
	The Theory FIT
	Informal Interpretation of FIT

	TID for Typed Inductive Definitions
	The Accessible Part Theory TID
	Embedding TID into FIT

	The Small Veblen Ordinal measures FIT and TID
	Lower Bound for FIT and TID
	The Simple Case for the Binary Veblen Function
	The General Case for the Finitary Veblen Functions

	Upper Bound for FIT and TID
	Subsystems of Second Order Arithmetic
	Upper Bound Results from the Literature
	Some Syntactical Properties of LPA2 Formulas
	Embedding FIT into 13-RFN0

	Considering TIDf for General Positive Operator Forms
	Notes

	TIDn and TID+n as Generalizations of TID
	The Arithmetical Theories TIDn and TID+n
	Alternative Definition of TIDn
	Comparison of TID with the Theory TID1
	Notes

	Embedding for TIDn and Derivability for TID+n
	Embedding TIDn into 1n+2-RFN0
	Arithmetical Derivability in TID+n
	The Reference System Town
	Arithmetical Derivability

	Comparison with a Bar Rule
	Upper Bounds for TIDn and TID+n
	Notes

	Special Considerations for TID0 and TID+0
	Calibrating TID0 with 11-DC0 and (0,)
	Calibrating TID+0 with ATR0 and (0,)

	The Large Veblen Ordinal measures TID+1
	Generalization of Concepts from Chapter 7
	Syntactical Properties
	Motivation and Comparison with Chapter 7

	Basic Results
	Basic Wellordering Results
	Basic Results for the New Notions

	Core Results
	Core Result for Full
	Advanced Wellordering Results
	Core Result for HypFull

	Towards the Large Veblen Ordinal in TID+1 and TID2
	Wellordering Results Getting Beyond
	Weak and Strong Veblen Ordinals
	The Large Veblen Jump in TID+1 and TID2

	Remark on Complete Induction for TID1
	Wellordering Proof for TID+1 and TID2

	Concluding Remarks on Typed Induction
	Higher Type Functionals
	Generalizations of FIT

	Stratified Induction
	The Theory SID< of Stratified Induction
	Adaptations of Syntax from Chapter 1
	Definition of SID< and SIDn
	The Lower Bound of SID<
	Strategy for the Upper Bound of SID<.

	Proof-Theoretic Results for the Theory SID<
	The Infinitary Proof System SIDn
	Partial and Full Cut-Elimination
	Asymmetric Interpretation
	Arithmetical Derivability

	The Upper Bound of SID<
	Concluding Remarks on Stratified Induction
	Comparison with Proof-Theoretic Methods for ID"0362IDn
	Transfinite Stratification

	Appendix: Remaining Proofs of Chapter 3
	Theorem 3.6.
	Lemma 3.15
	Auxiliary Corollary A.3.1
	Lemma 3.21
	Theorem 3.25
	Theorem 3.27

	Bibliography
	Index

