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equivalence between ID1 and ÎD1, both of which are defined in the standard way but with the starting
theory PA replaced by ZFC (or full n+2-th order number theory with global well-ordering).

Keywords subsystems of Morse-Kelley set theory · von Neumann-Bernays-Gödel set theory · higher
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1 Introduction

General Programme. A new research project has been launched: Among the known results in second
order number theory, which hold in general second order theories (including second order set theory and
higher order number and set theories, which can be seen as the second order extensions of one-lower
order theories) and which does not (i.e., specific to second order number theory). While the author’s
previous work [17] in this project was motivated by relative predicativity, i.e., predicativity given infinite
entities (e.g., the sets of reals or of functions, the universe of sets) other than traditional ω, the project
is also motivated by at least three other trends of research.

(1) The present author is working on a long-term project, reverse set theory, which investigates impacts
of infinity axiom and analogues (e.g., large cardinal axioms) over the structure of proof-theoretic
strengths of set-theoretic axioms (see [15]). In order to see an impact of the existence of an inaccessible
cardinal, it is convenient to investigate, via interpretations into second order set theory, the relations
among several extensions of von Neumann-Bernays-Gödel set theory NBG (as, to see that of infinity
or ω, the investigation on interpretations into second order number theory were used in [14]). For the
existence of a number of regular or inaccessible cardinals, higher order number or set theory plays
the role.

(2) Another is from axiomatic truth theory, a field in which the notion of truth is investigated with
techniques from mathematical logic. While the truth axiomatized over number theory has been of
central interest, some truth-theorists now consider the notion over set theory. As interpretations into
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or from second order number theory have played central roles, those into or from second order set
theory play the same roles in the new theory, as in [5]. The notions of truth over the theories of reals
and of functions also seem worthy to investigate.

(3) The last but not least is from proof theory for operational set theory, a framework introduced in order
to extract the core from different styles of mathematics. Jäger [6] identified the proof-theoretic (or,
consistency) strengths of some extensions of the basic operational set theory, using second order set
theory as measure, and he and Krähenbühl [7] enhanced it by obtaining a result whose analogue was
known in second order number theory.

Although second order set theory will be treated as if it is the dominant example in the following
expositions (and even in the title), and although Trends (2) and (3) above motivates only the investi-
gations on second order set theory1, it must be emphasized that the extension of our result to higher
order theories is not the icing on the cake but is significant on its own right. For, our investigation of
higher order number theories is to higher order recursion theory what second order number theory is to
ordinary recursion theory (as pointed out in [17, §7]).

Results from Preceding Researches. On the one hand, the preceding researches show that many results
known in second order number theory survive also in second order set theory: By partial cut elimina-
tion and partial truth predicate we can show that Π1

n+1 comprehension axiom Π1
n+1-CA implies the

consistency of Π1
n-CA with a suitable base theory; Krähenbühl [9] shows that several applications of

proof-theoretic techniques survive, among which is the conservation in the presence of full foundation,
between Σ1

1 -class-collection Σ
1
1-Coll and (∆1

0-CA)⊳E0
, i.e., ∆1

0 transfinite recursion up to E0, the set-
theoretic analogue of ε0 (see [7]).

On the other hand, the previous work [17] of the present author shows that the straightforward
analogues do not always hold: The consistency of ∆1

0-TR, ∆1
0 transfinite recursion for all well-founded

relations, is implied by ∆1
0-FP (which should be called ∆1

0 hat inductive definition) which asserts the
existence of a fixed point of any positive ∆1

0 operator, and also by Π1
1 reduction principle Π1

1 -Red
in second order set theory (and Con(∆n+2

0 -TR) is by ∆n+2
0 -FP and by Πn+2

1 -Red in higher order
theories) whereas in second order number theory all these three are equivalent (see [18, Chapter V]).
Moreover, Fujimoto [5] pointed out that the schemata that we have to consider in second order set
theory include set-separation and set-collection (see Example 10 and Remark 12), not only foundation,
whereas, in second order number theory, the analogues of set-separation and of set-collection are implied
by induction.

Additionally, the previous work [17] of the author discovers a new kind of axiom schema, dependent
transfinite recursion ∆1

0-TRn or dependent iteration of elementary comprehension. It is shown there that
∆1

0-TRn for n ≥ 2 is strictly stronger than the usual transfinite recursion in second order set theory (and
in the higher order theories) whereas they are equivalent in second order number theory. As mentioned
in the work, this new kind of iteration can apply not only to elementary comprehension but also to other
constructions, e.g., fixed-point recursion. It is also worth mentioning that this avoids the general limit
of extensions of transfinite recursion scheme, which Flumini and the present author [4] gave in a quite
general second order framework.

1 Trend (2), nonetheless, could motivate our programme in higher order number theory, especially in the third order for
the same reason as relative predicativity. Namely, the truth axiomatized over full second order number theory should be
an interesting subject. Feferman, one of the founders of axiomatic truth theory, states:

one might argue for an intermediate position between that of conceptual structuralism, which rejects the continuum
as a definite totality, and the set-theoretical account which not only accepts that but also much, much more.
Namely, one may grant as a working apparently robust idea the concept of S(N) [the power set of the set ω of
natural numbers], but nothing higher in the cumulative hierarchy. This would justify the assumption of Dedekind
or Cantor completeness of the real line with respect to all sets definable by quantification over the continuum, thus
going far beyond predicative mathematics into the domain of descriptive set theory. In logical terms, that would
justify working in a system of strength full 2nd order number theory, or “analysis” as it is justly called. [3, p.22]

This view of his motivates well also the research on the “predicativity, given the totality of P(ω) (i.e., real numbers)”, one
of the main themes of the present author’s previous work [17].
Moreover, even Trend (3) motivates our programme in third order number theory: Feferman, who is also the founder of
operational set theory, questioned in [2, Section 4] the strength of OST+(Uni), (or OST(E) in the terminology of [6]). At
this point it seems the most plausible that this system and variants (e.g., OST

r(E) defined with restricted foundation) can
be characterized by extensions of Bernays Gödel expansions of full second order number theory.
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Our Results. In this article, we show that the following hold both in second order number theory where
BT2 = ACA0, and in second order set theory where BT2 = NBG (as well as in the aforementioned
higher order theories where BT2 = ∆n+2

0 -CA0 from [17, Definition 5]), although in the former these
results are less significant or weaker than previously known results (e.g., it is well known that Π0

1 -LFP
is equivalent to ∆1

0-LFP, and that Π1
1 (WF) is essentially Π1

2 , etc.).

1. ∆1
0-LFP, the existence of a least fixed point of a positive ∆1

0 operator, and a strengthened variant
∆1

0-SLFP are both equivalent, over BT2 +Π0
1 -LFP, to ∆1

0-FP (Corollary 9 (i)).
2. Π1

1 (WF)-Red, reduction scheme for those formulae that are Π1
1 in well-foundedness WF, is both

logically and proof-theoretically strictly stronger than ∆1
0-LFP (Corollaries 8 (2) and 12 (1)), and,

moreover, than ∆1
0-LFTR, the transfinite iteration of least fixed-point construction, (Corollary 13);

and even than ∆1
0-LFTRn, the dependent transfinite iteration (see Definitions 16 and 17).

3. BT2+∆1
0-FP cannot prove ∆1

1(WF)-CA nor Σ1
1(WF)-Coll, a second order collection for Σ1

1 in WF
(Corollary 12 (2)), while BT2 +∆1

0-FP, BT2 +∆1
0-FP+∆1

1-CA and BT2 +∆1
0-FP+Σ1

1-Coll are
all Π1

2 -equivalent (Remark 9).
4. ∆1

0-Ref, the existence of a first order model reflecting a ∆1
0-formula, or even weaker Π0

2 -Ref, implies
both Π0

1 -LFP (Proposition 4) and the ∆1
0-ness of WF (Lemma 3).

A contrast appears in ∆1
0-Ref, which does not hold in second order number theory (because WF is

Π1
1 -complete) and which does in second order set theory (as well as in the higher order theories).

First order analogues. As in number theory, the research should involve not only second order systems,
but also “first order analogues”, e.g., IDα and ÎDα, since they provide finer analysis. We can straight-
forwardly define the set-theoretic (or real- and function-theoretic) analogues of them by starting with
ZFC (or full higher order number theory with global well-ordering) instead of PA, and more generally,

F-IDα[T ] and F-ÎDα[T ] starting with theory T , for classes F of formulae. In Section 8 by examining
proofs of our main results, we will see:

5. Reflection principle (in T ) allows us to interpret Π0
1 -IDα[T ] in T ;

6. ID1 is interpretable in Π0
1 -ID1[ÎD1] where F = L1, the starting language, is omitted;

7. IDω and BT2+∆1
0-LFP plus the axiom schemata extended to L2 are L1-equivalent.

In particular, over ZFC (as well as full higher order theories) where reflection principle holds, IDα

and ÎDα are mutually interpretable. This contrasts the well known result over PA that ID1 is proof-
theoretically strictly stronger than ÎDω (and more general ÎDα for reasonable α).

Comparison between second order number and set theories. Combining with the results from the author’s
previous work [17], we can summarize the contrasts between second order number theory and second
order set theory (as well as higher order number and set theories with global well ordering), as in Figure
1, where one-head arrows denote logical implications and where two-head ones denote both logical and
consistency-wise strict implications.

∆1
0-LFTR Π1

1 -TR ∆1
0-LFTR

∆1
0-LFP Π1

1 -CA ∆1
0-LFP Π1

1 -CA

∆1
0-FTR ∆1

0-FTR

∆1
0-FP Π1

1 -Red ∆1
0-FP Π1

1 -Red

∆1
0-TR ∆1

0-TR

✲
✏✏✏✮✏✏✏✮

✛
✏✏✏✮✏✏✏✮ ✏✏✏✮✏✏✏✮

❄
✲
✏✏✏✮✏✏✏✮

✛

❄ ❄✏✏✏✮✏✏✏✮ ✏✏✏✮✏✏✏✮

✻

✲
PPPq ✏✏✏✮
✛

✻

PPPqPPPq

PPP✐PPP✐

PPP✐ ✏✏✏✶

Fig. 1 Comparison between extensions of ACA0 (left) and of NBG (right)

We will see another contrast between second order number and set theories, the way in which Nemoto
hierarchy of least fixed point principles collapses: Nemoto [13, §2.5] defined syntactical analogues of Wadge
classes, by imitating the description of Wadge hierarchy given in [11, §1], and considered a hierarchy of
determinacy statements for such classes. We can consider Nemoto hierarchy also for least fixed point
principles, the segment below ∆1

0 of which collapses into two equivalent classes, one consisting of those
provable in the base theory and the other of those implying full ∆1

0 least fixed point principle. The border
between the two is shown in Figure 2.
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Fig. 2 Nemoto hierarchy of least fixed point principles in second order number/set theory

Outline. Despite the importance of the other higher order number and set theories mentioned above, for
readability we at first concentrate on second order set theory and on the comparison with the already
well investigated second order number theory, and in Section 9 we will make several comments on the
generalizations of our results to the other higher order cases.

2 Preliminaries

As mentioned before, despite the importance of the other higher order number and set theories, at first
we concentrate on second order set theory or on the difference between the already well investigated
second order number theory and the new second order set theory. Therefore we present here several
notations and definitions for second order set theory (while those for second order number theory are
well known), and we will generalize them in Section 9.

Definition 1 (The language L2
S) The language L1

S is the one-sorted first-order language that has no
function symbols and only one predicate symbol ∈ of arity 2, besides equality =.

The language L2
S is the two-sorted first-order language with equality = only for the first sort, with

no function symbols and with one predicate symbol ∈, where the arguments of ∈ are either two sets
(objects of the first sort) or a pair of a set and a class (an object of the second).
L2
N denotes the well known language of second order number theory with exponentiation exp.

The first and second sorts are refereed to as first order and second order, respectively. By convention,
lower- and upper- cases letters denote first and second, respectively, order objects.

Note that the equality = for the second order is not included in L2
S as a primitive symbol. Nevertheless

we let X = Y abbreviate (∀x)(x ∈ X ↔ y ∈ Y ), and X ⊂ Y similarly.

Definition 2 (∆i
0 and Πi

1) A first order quantifier is called bounded if it occurs in the way ∃x(x∈ a ∧
ϕ(x, a)) or ∀x(x∈ a→ ϕ(x, a)), denoted by (∃x∈ a)ϕ(x, a) or (∀x∈ a)ϕ(x, a) respectively.

An L2
S-formula ϕ is ∆0

0 (or called bounded) if it contains no unbounded first order nor second order
quantifiers. An L2

S-formula is Π0
1 if it is of the form (∀x)ϕ(x) for some ∆0

0-formula ϕ(x).
An L2

S-formula ϕ is∆1
0 (or called elementary) if it contains no second order quantifiers. An L2

S-formula
is Π1

1 if it is of the form (∀X)ϕ(X) for some ∆1
0-formula ϕ(X).

More generally, we can define Σ0
n, Π

0
n, Σ

1
n and Π1

n by numbers of first or second order quantifiers as
usual. These are straightforward analogues of those in second order number theory.

For a formula ϕ(x), and ψ({x |ϕ(x)}) denotes the result of replacing all the subformulae t ∈ X of
ψ(X) by ϕ(t) simultaneously. ψ({x |ϕ(x)}) is sometimes denoted also by ψ(ϕ) when it is clear from the
context by which variable we abstract the substituted formula ϕ. Sometimes second order X is regarded
as the abstract {z | z ∈ X}.

Definition 3 (∆1
0(F), Σ

1
n(F) and Π1

n(F)) For a class F of formulae, ∆1
0(F) (Σ1

n(F) and Π1
n(F)) is

the class consisting of all formulae of the form ϕ({x |ψ1(x, θ0, .., θm)}, ..., {x |ψk(x, θ0, .., θm)}) for some
formulae ψ1, ..., ψk from F , some formulae θ0, .., θm from ∆0

0 and ϕ(X1, ..., Xk) from ∆1
0 (Σ1

n and Π1
n,

respectively).

{x, y} denotes the unique set z, whose existence is guaranteed by the axiom below, such that
(∀w)(w ∈ z ↔ w = x ∨ w = y); and 〈x, y〉 denotes {{x, x}, {x, y}}. (X)x denotes {y | 〈x, y〉 ∈ X}.
“W well orders X” stands for WF[W ] ∧ (∀x, y ∈ X)(〈x, y〉 ∈W ∨ x=y ∨ 〈y, x〉 ∈W ), where
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Definition 4 WF[W ] ≡ (∀X)((∀x)((∀y)(〈x, y〉 ∈W → y ∈ X)→ x ∈ X) → (∀x)(x ∈ X)).

Now we introduce von Neumann-Bernays-Gödel class theory NBG, which is our base theory.

Definition 5 NBGC is the L2
S theory generated (over the classical two-sorted first order logic with

equality for the first sort) by (the universal closures of) the following axioms:

Extensionality (∀z)(z ∈ x ↔ z ∈ y) → x = y;
Emptyset, Pair, Union, Powerset, Infinity (as usual in ZFC);
Sep (∃y)(∀z)(z ∈ y ↔ (z ∈ x ∧ z ∈ X));
Repl (∀y ∈ x)(∃!z)(〈y, z〉 ∈ X) → (∃w)(∀y ∈ x)(∃z ∈ w)(〈y, z〉 ∈ X);
∆1

0-CA (∃X)(∀y)(y ∈ X ↔ ϕ(y,x,Y)) for any ∆1
0-formula ϕ(x) in which X is not free;

Found (∀x)((∀y ∈ x)(y ∈ X) → x ∈ X) → (∀x)(x ∈ X);
Choice (∃W )(W well orders V = {x |x = x}).

NBG includes Found but not Choice (i.e., NBGC minus Choice); and the superscript “−” means
the removal of Found, like NBG− and NBGC−.

In literature von Neumann - Bernays - Gödel class theory contains Found, while there seems to be
no agreement on whether it contains Choice. For our purpose in what follows, such differences are not
so important and we consider all the four variants.

Fact 1 NBG−, NBG, NBGC− and NBGC are conservative extension of ZF−, ZF, ZF−+AC or
ZFC, respectively, where ZF− denotes ZF minus foundation axiom.

This fact is the analogue of the conservation betweenACA0 and PA, according to the correspondence
between the two sorts of L2

N and those of L2
S .

We are interested in similarities and dissimilarities to second order number theory, and the analogy
to second order number theory will help the readers to understand our results. Therefore we will treat
the both uniformly as far as possible. We denote, by BT2, both ACA0 and NBG (as well as the
aforementioned variants) when we describe results for both, and by BT1, both PA and ZF (as well
as the corresponding variants). L2 denotes the language of BT2 (i.e., L2

N or L2
S accordingly), and L1

denotes that of BT1. In the following discussion, BT2 can also be BGZ ≡ NBG−Repl, Bernays Gödel
expansion of Zermelo set theory Z (which will be used in the proof of Proposition 21). In later section 9
we will consider a generalization of BT2.

Next we prepare additional axiom schemata, which are to be added to our base theory BT2. Note
that, by virtue of the abbreviations, these are literally the same as in second order number theory (and
easily generalized to other second order frameworks with the notion of pair).

Definition 6 For a class F of formulae, define the following schemata.

F-Coll (∀x)(∃Y )ϕ(x, Y ) → (∃Z)(∀x)(∃y)ϕ(x, (Z)y);
F-TI WF[R] → TI[ϕ](R) where TI[ϕ](R) ≡ (∀x)((∀y ∈ (R)x)ϕ(y)→ ϕ(x)) → (∀x)ϕ(x);
F-CA (∃X)(∀x)(ϕ(x) ↔ x ∈ X);
F-TR WF[W ]→ (∃H)(∀u)((H)u = {x |ϕ(u, x, {〈v, y〉 | v ∈ (W )u ∧ 〈v, y〉 ∈ H})});
∆(F)-CA (∀x)(ϕ(x)↔ ¬ψ(x)) → (∃X)(∀x)(ϕ(x) ↔ x ∈ X);
F-Red (∀x)(ϕ(x) ∨ ψ(x))→ (∃Z)(∀x)((x∈Z → ϕ(x)) ∧ (x /∈Z → ψ(x)));
F-FP (∃F )(∀x)(ϕ(x, F ) ↔ x ∈ F );
F-LFP (∃F )((∀x)(ϕ(x, F ) → x ∈ F ) ∧ (∀Y )((∀x)(ϕ(x, Y )→ x ∈ Y ) → F ⊂ Y )),

for F-formulae ϕ,ψ in which neither Z nor H occurs freely and in which F occurs only positively.

Remark 1 Although we officially defined only∆(F)-CA, we can define∆(F)-Coll,∆(F)-TR,∆(F)-Red,
∆(F)-FP and ∆(F)-LFP etc., similarly. Thus we treat ∆(F) as if it were a class of formulae, following
the standard convention in which ∆1

n abbreviates ∆(Π1
n).

Here we introduce F-reduction schema, instead of (¬F)-separation schema defined as in [18], which
is equivalent over classical logic. For, the term separation has the different meaning in the context of set
theory (as in Definition 5). This is only a matter of name.

Lemma 1 BT2 +Π1
n-CA+Π1

n-Coll proves Σ1
n+1-Red and hence ∆1

n+1-CA.
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Proof Let ϕ and ψ be Π1
n, and assume (∀x)((∃Y )ϕ(x, Y ) ∨ (∃Y )ψ(x, Y )). Then (∀x)(∃Y )(ϕ(x, Y ) ∨

ψ(x, Y )), and Π1
n-Coll yields Z with (∀x)(∃y)(ϕ(x, (Z)y) ∨ ψ(x, (Z)y)). Thus, X = {x | (∃y)ϕ(x, (Z)y)}

satisfies (∀x)(x ∈ X → (∃Y )ϕ(x, Y )) and (∀x)(x /∈ X → (∃Y )ψ(x, Y )).

To describe some of the schemata above, it is convenient to introduce the following notion.

Definition 7 (operator form) An operator from λy.λX,Y.{z |ϕ(z,y,X,Y)} of arity (j, k, l) is an
L2-formula ϕ(z,y,X,Y) (which may have parameters other than z,y,X,Y) in which X occur only
positively, with two kinds of abstractions, one applied to variables X,Y and y, and the other to z, where
|y| = j, |X| = k, |Y| = l. For a class F of formulae, λy.λX,Y.{z |ϕ(z,y,X,Y)} is called an F operator
if ϕ(z,y,X,Y) is in F . We follow the convention for λ-notation, e.g., identification up to α-equivalence
and β-equivalence. ∆i

n(Γ ), Σ
i
n(Γ ), Π

i
n(Γ ) denotes ∆

i
n({ϕ}), Σ

i
n({ϕ}), Π

i
n({ϕ}) respectively,

Using this, the following reformulation is possible, where (H)Wx = {〈y, u〉 ∈ H | y ∈ (W )x}:

F-TR WF(W )→ (∃H)Hier[Γ ](H,W ) for any F operator Γ of arity (1, 0, 1) without free H,
where Hier[Γ ](H,W ) ≡ (∀x)((H)x = Γ (x, (H)Wx));

F-FP (∃F )(F = Γ (F )) for an F -free F operator Γ of arity (0, 1, 0);
F-LFP (∃F )(F = Γ (F ) ∧ ∀Z(Z = Γ (Z)→ F ⊂ Z)) for an F -free F operator Γ of arity (0, 1, 0).

F-TR can be seen as iteration, along any well founded relation, of F comprehension axiom. Similarly
fixed point and least fixed point axioms can also be iterated (cf. [19, §4]):

Definition 8 Let us define

F-FTR WF(W )→ (∃H)FHier[Γ ](H,W ) for a H-free F operator Γ of arity (1, 1, 1),
where FHier[Γ ](H,W ) ≡ (∀x)((H)x = Γ (x, (H)x, (H)Wx));

F-LFTR WF(W )→(∃H)LFHier[Γ ](H,W ) for a H-free F operator Γ of arity (1, 1, 1),
where LFHier[Γ ](H,W ) ≡ FHier[Γ ](H,W ) ∧ (∀x, Z)(Z = Γ (x, Z, (H)Wx)→ (H)x ⊂ Z).

For a specific order type α (e.g., ω, ε0 in number theory, and Ω = Ord, E0 in set theory from [7, §3]),
F-TIα, F-TRα, F-FTRα and F-LFTRα denote F-TI, F-TR, F-FTR and F-LFTR, respectively,
but “WF(W )→” removed and W substituted by the standard well-ordering for α.

Remark 2 Notice that the notion of order type does not always make sense in the formal theories, because
we do not know if the principle called comparison of well-orderings is available (and even we do not have
the well-foundedness of them in the theories).

Here we take an attitude similar to that in second order arithmetic: Even though we do not have
comparability nor well-foundedness in the target theories we are talking about the order types or ordinals
(like ε0) on the meta-level (which can be formalized in e.g., ZF) and we refer, as “the standard well-
ordering”, to specific binary relations representing them in the standard model of second order number
theory. Similarly, here we are talking about the order types or ordinals (like E0) on the meta-level (which
can be formalized in e.g., ZF plus the existence of a strongly inaccessible cardinal), and we refer, as “the
standard well-ordering”, to specific binary relations representing them in the ‘standard model’ of second
order set theory in this context, that is, (Vκ, Vκ+1) for a strongly inaccessible cardinal κ.

This is inessential and just a matter of taste. Actually we can avoid this problem by considering α
as a (class-size) binary relation in the following practice.

In any case, since we can easily generalize the method employed in [7, §3] to define canonically, from
the code of α, a binary relation coding ωα, we can freely use the notation ωα (as indeed we will in Section
6) as well as 2 · α, etc., without any danger of confusion.

3 Reduction of fixed point principles

Our central theme is the investigation of ∆1
0-FP, ∆1

0-LFP and their variants. Here as a preparation for
later sections, we show the finite axiomatizability of these schemata (over BT2).

For this, in Subsection 3.1 we point out that some fragments of the schemata, namely ∆(Σ0
1∨Π

0
1 )-FP

and ∆(Σ0
1 ∨Π

0
1 )-LFP, are strong enough to imply the whole schemata. In the following two subsections,

we answer to the naturally arising question: Whether these reductions to ∆(Σ0
1 ∨ Π

0
1 ) are optimal or

not.
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3.1 Reduction to ∆(Σ0
1 ∨Π

0
1 )

Lemma 2 Over BT2, (a) both (Σ0
1∨Π

0
1 )-FP and (Σ0

1∧Π
0
1 )-FP imply ∆1

0-FP; (b) both (Σ0
1∨Π

0
1 )-LFP

and (Σ0
1 ∧Π

0
1 )-LFP imply ∆1

0-LFP.

The basic idea is as follows. Assume an operator Γ is decomposed as Γ = Γ1 ◦ Γ0. Consider a
“paralleling” operator Γ̃ : X 7→ ({0}×Γ0((X)1))∪ ({1}×Γ1((X)0)). Then a fixed point F of Γ̃ satisfies
(F )0 = Γ0((F )1) and (F )1 = Γ1((F )0), and thus (F )1 = Γ1(Γ0((F )1)) = Γ ((F )1), namely (F )1 is a fixed
point of the original operator Γ . Conversely ifG is a fixed point of Γ then ({0}×Γ0(G))∪({1}×G) is a fixed
point of Γ̃ . We can generalize this argument for n many factors, for a natural number n. E.g., if Γ = Γ2 ◦
Γ1◦Γ0 then the “paralleling” operator isX 7→ ({0}×Γ0((X)2))∪({1}×Γ1((X)0))∪({2}×Γ2((X)1)). Now,
any elementary operator λX.{z | ∀xn∃xn−1...ψ(xn, ..., z,X)} can be decomposed as Γ = Γ∀◦Γ∃◦...◦Γψ, by
a∆0

0 operator Γψ : X 7→ {〈xn, ..., x0, z〉 |ψ(xn, ..., z,X)}, a Σ0
1 operator Γ∃ : X 7→ {z | ∃x(〈x, z〉 ∈X)} and

a Π0
1 operator Γ∀ : X 7→ {z | ∀x(〈x, z〉 ∈X)}. Thus what we have to check is, basically, the “paralleling”

operator according to this decomposition is of the required complexity.

Proof Let λX.{z |ϕ(z,X)} be a ∆1
0 operator of arity (0, 1, 0). We may assume that, for a ∆0

0 formula ψ,

ϕ(z,X) ≡ ∀x2n+2∃x2n+1 · · · ∀x0ψ(x2n+2, x2n+1, · · · , x0, z,X).

Define ϕ̃ as follows, which is equivalently Σ0
1 ∨Π

0
1 since ∆0

0 is closed under the quantifiers of the form
(∃y)(〈x, y〉 = z ∧ ...):

ϕ̃(u, Z) ≡ (∃x0, ..., x2n+2, z)(u = 〈0, 〈x0, ..., 〈x2n+2, z〉...〉〉 ∧ ψ(x2n+2, ..., x0, z, (Z)2n+3))

∨
∨

i≤n+1
(∀x2i)(∃y)(u = 〈2i+ 1, y〉 ∧ 〈x2i, y〉 ∈ (Z)2i)

∨
∨

i≤n
(∃x2i+1)(∃y)(u = 〈2i+ 2, y〉 ∧ 〈x2i+1, y〉 ∈ (Z)2i+1).

Since “
∨
[(Qxi)(∃y)(u = 〈k, y〉 ∧ ...)]” can be replaced by “

∧
[(Qxi)(∀y)(u = 〈k, y〉 → ...)]”, over the ∆0

0

region {u | (∃k ≤ 2n+ 3)(∃y)(u = 〈k, y〉)}, ϕ̃(u, Z) is equivalently Σ0
1 ∧Π

0
1 as well.

Now we have Z with (∀u)(u ∈ Z ↔ ϕ̃(u, Z)). By (meta-)induction on k ≤ 2n+ 3:

〈k, 〈xk, ..., 〈x2n+2, z〉...〉 ∈ Z ↔ (Qk−1xk−1) · · · (∀x0)ψ((x2n+2, x2n+1, · · · , x0, z, (Z)2n+3).

In particular, 〈2n+ 3, z〉 ∈ Z iff ϕ(z, (Z)2n+3). Thus (Z)2n+3 is a fixed point of λX.{z |ϕ(z,X)}.
The ‘least-ness’ of (Z)2n+3 follows from that of Z as follows. If F is a fixed point of λX.{z |ϕ(z,X)},

then F̃ defined below is a fixed point of λX.{u | ϕ̃(u,X)}:

F̃ = ({2n+ 3} × F ) ∪
⋃

k<2n+3
{〈k, 〈xk, ..., 〈x2n+2, z〉...〉 | (Qk−1xk−1) · · · (∀x0)ψ((x2n+2, · · · , x0, z, F )}.

If Z is a least fixed point of λX.{u | ϕ̃(u,X)}, then Z ⊂ F̃ and so (Z)2n+3 ⊂ (F̃ )2n+3 = F .

Remark 3 (1) The proof above actually shows slightly stronger statements: OverBT2, (i)∆(Σ0
1∨Π

0
1 )-FP

implies ∆1
0-FP and (ii) ∆(Σ0

1 ∨Π
0
1 )-LFP implies ∆1

0-LFP (cf. Remark 1).
(2) We have the same results for ∆1

0-FTR, ∆1
0-LFTR, ∆1

0-FTRα and ∆1
0-LFTRα.

(3) Although we did not define officially the first order systems, the proof actually shows that (Σ0
1 ∨

Π0
1 )-ÎD1 and (Σ0

1 ∨Π
0
1 )-ID1 are equivalent to the full systems ÎD1 and ID1 respectively.

This allows us to axiomatize, over BT2, the schemata ∆1
0-FP, ∆1

0-LFP and variants with single
sentences, provided that we have a universal formula.

Definition 9 Assume that there is a universal Υ 0
1 (e, x,X, Y ) among the Π0

1 -formulae whose free vari-
ables are among x,X, Y and in which X occurs only positively. Define:

Υ (e, z, y,X, Y ) ≡ (∃e0, e1)(e = (e0, e1〉 ∧ Υ
0
1 (e0, 〈z, y〉, X, Y ) ∧ ¬Υ 0

1 (e1, 〈z, y〉, {x |x /∈ X}, Y ),

Υ̃ ≡ λY.λX.{u | (∃e, z, y)(u = 〈〈e, y〉, z〉 ∧ Υ (e, z, y, (X)〈e,y〉, Y ))}.

Then obviously Υ is a universal Σ0
1 ∧Π

0
1 -formula positive in X, i.e., it is Σ0

1 ∧Π
0
1 and X occurs only

positively and, for any (Σ0
1 ∧Π

0
1 )-formula ϕ(x, y,X, Y ) with at most x, y,X, Y free in which X occurs

only positively, our base theory BT2 proves (∀x, y,X, Y )(ϕ(x, y,X, Y )↔ Υ (pϕq, x, y,X, Y )).

Corollary 1 If there is such universal formula Υ 0
1 , ∆

1
0-FP and ∆1

0-LFP are axiomatizable by single
Π1

2 - and Π1
3 -sentences, respectively, over BT2. Similarly ∆1

0-FTR and ∆1
0-LFTR are axiomatizable,

over BT2, by single sentences and so are ∆1
0-FTRα and ∆1

0-LFTRα.
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3.2 Reduction of Π0
1 inductive definition to reflection

Now it is natural to ask: Is the reduction of ∆1
0-(L)FP to the ∆(Σ0

1 ∧Π
0
1 )-fragment optimal?

The answer to LFP, in number theory, is no: The smaller fragment Π0
1 -LFP is equivalent to ∆1

0-LFP.
More precisely, since the accessible part of a binary relation W is a least fixed point of the Π0

1 operator
λX.{z | (W )z ⊂ X}, Π

0
1 -LFP allows us to check elementarily the well-foundedness of relations in a given

family; and since well-foundedness is Π1
1 -complete in number theory, Π0

1 -LFP implies, over ACA0,
Π1

1 -CA, which implies ∆1
0-LFP (actually Π1

1 -LFP with the help of Π1
1 -CA ⊢ Σ1

1-Coll).
How about in set theory? Is Π0

1 -LFP equivalent to ∆1
0-LFP also over NBG? Since well-foundedness

is no longer Π1
1 -complete, the same argument does not work. Actually NBG proves Π0

1 -LFP, while, as
shown in [17, Proposition 26, Corollary 33], ∆1

0-LFP has stronger consistency than NBG.
In order to clarify the similarities and the dissimilarities, we extract the source of this difference

between number theory and set theory. It is reflection principle. Though there are several variants
depending on various notions of “model” and of “reflect”, our version is as follows.

Definition 10 (reflection principle) Let ϕa denote the result of replacing (Qx) in ϕ by (Qx∈ a), and
Trans(a) ≡ (∀x ∈ a)(∀y ∈ x)(y ∈ a). For a class F of formulae, F reflection principle is:

F-Ref (∀y)(∃a)[y∈a ∧ Trans(a) ∧ (ϕ(y)→ϕa(y)) ∧ (∀X)(∃x)(∀u)(u∈x↔ u∈a ∧ u∈X)]
for any F formula ϕ(x) whose first order free variables are all among x.

Remark 4 For uniformity with number theory, we define x ∈ y in number theory as “x-th digit of binary
expansion of y is 1”, which is ∆0

0(exp). Then ϕ
a is ∆0

0(exp) as in set theory. However, even Π0
2 -Ref is

inconsistent, since there is no finite set reflecting (∀x)(∃y)(y = x+ 1).
In both number and set theories, the clause (∀X)(∃x)(∀u)(u ∈ x ↔ u ∈ a ∧ u ∈ X) is redundant.

However, to clarify that this fact is essential in the following discussion (and for the extension in the
later section), we explicitly include this clause in the definition of the schema.

Lemma 3 For a Π0
1 operator Γ arity (0, 1, 0), the following hold in BT2 +Π0

2 -Ref:

(1) (i) (∀x)(Γ (xc)⊂xc → F ⊂xc), with xc = {z | z /∈x}, implies (ii) (∀X)(Γ (X)⊂X → F ⊂X).
(2) Both (i) “F is a least fixed point of Γ” and (ii) WF(W ) are equivalently Π0

3 .

Proof (1) Let Γ = λX.{z |ϕ(z,X)} be of Π0
1 . Assume ¬(ii), say y0 ∈ F \X but (∀y)(ϕ(y,X)→ y ∈ X).

(∀y ∈ a)(ϕa(y,X)→ y ∈ X) (∗)

for some transitive a ∋ y0 containing all the set parameters in ϕ. By the redundant clause inΠ0
2 -Ref, with

∆1
0-CA, we can take x = a \X. For y ∈ a, if ϕ(y, xc), by downward persistence of Π0

1 , ϕ
a(y, xc) which

implies y ∈ xc by (∗) with a ∩ xc = a ∩X. For y /∈ a, obviously y ∈ xc. We have seen (∀y)(ϕ(y, xc) →
y ∈ xc). If (i) holds, F ⊂ xc, contradicting y0 ∈ a ∩ (F \X).
(2)(i) is by (1), since “Γ (xc)⊂xc” is Π0

2 . (ii) WF(W ) is equivalent to “ {x | ⊤} is a least fixed point of
a positive Π0

1 operator λX.{z | (W )z ⊂ X}”.

It might be worthwhile to emphasize that (2) can be proved without Choice in set theory, since
∆1

0-Ref is provable in NBG without choice, by the same proof as in ZF (see, e.g., [10, IV.7.4 Theorem]).
In the absence of the axiom of foundation, on the other hand, Choice can substitute, i.e., ∆1

0-Ref is
provable in NBGC− by Skolemization argument. Thus the proof of (2) based on ∆1

0-Ref clarifies the
common feature shared by NBG and NBGC−.

Proposition 4 BT2 +Π0
2 -Ref ⊢ Π0

1 -LFP. Moreover, BT2 +Π0
2 -Ref+∆1

0-TR ⊢ Π0
1 -LFTR.

Proof Let Γ be Π0
1 of arity (0, 1, 0). Define F = {z | (∀x)((Γ (xc) ⊂ xc) → z ∈ xc)}. Then (i) in Lemma

3 (1) holds, and hence so does (ii). Thus it remains to show that Γ (F ) = F .
For x with Γ (xc) ⊂ xc, since F ⊂ xc, Γ (F ) ⊂ Γ (xc) ⊂ xc, and, by arbitrariness of x, Γ (F ) ⊂ F and

so Γ (Γ (F )) ⊂ Γ (F ). Applying Lemma 3 (1)(ii) to X = Γ (F ), we have F ⊂ Γ (F ).

Remark 5 (1) Lemma 3 (2) leads us to define an elementary formula Wf:

Wf(≻) ≡ (∀z)TI[{x |x /∈ z}](≻) ≡ (∀z)[(∀x)((∀y ≺ x)(y /∈ z)→ x /∈ z)→ (∀x)(x /∈ z)],

where ≺ denotes {〈x, y〉 | 〈y, x〉 ∈ ≻}, and the proof above shows that Wf(≻)→ TI[X](≻).
(2) Proposition 4 means that Π0

1 -IDα is interpretable in BT1 = ZF(C) with L1 preserved.
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3.3 Reduction of Σ0
1 inductive definition

We saw that ∆(Σ0
1 ∨ Π

0
1 )-LFP implies the whole ∆1

0-LFP (and ∆(Σ0
1 ∨ Π

0
1 )-FP implies the whole

∆1
0-FP) in Remark 3 (1), and hence so does F-LFP (or F-FP, respectively) for any class F between

∆(Σ0
1 ∨Π

0
1 ) and ∆

1
0. Proposition 4 asserts, on the other hand, F-LFP (and hence F-FP) for any class

F below Π0
1 is provable in the base theory BT2, if BT2 ⊢ Π0

2 -Ref. Is there any other “reasonable”
class of formulae? (Strictly speaking, ∆(Σ0

1 ∨Π
0
1 ) is not a class of formulae, as remarked in Remark 1.)

Obviously Σ0
1 is among such classes. Is it the only one?

As is well known, the hierarchy consisting of Σ0
n’s and Π

0
n’s (with parameters) corresponds to Borel

hierarchy in ωn × (2ω)m. Among those hierarchies treated in descriptive set theory which are finer than
Borel hierarchy is Wadge hierarchy, which is defined as follows. A subset A of a Polish space (e.g.,
ωn × (2ω)m equipped with the product topology of the discrete spaces 2 and ω) is said to be Wadge
reducible to another subset B, if there is a continuous function f such that f−1[B] = A. Wadge hierarchy
consists of those classes of subsets which are closed under Wadge reducibility (such classes are called
topological classes).

Louveau [11, §1] gave a complete description of Wadge hierarchy up to some point (but on ωω),
and Nemoto [13, §2.5] defined several determinacy schemata which formalize the determinacy for such
topological classes, by rewording Louveau’s description into terms of formula (where the difference of the
base spaces are not so important). The hierarchy consisting of such classes of formulae should be called
Nemoto hierarchy.

Since complement (corresponding to ¬), binary and countable unions (to ∨ and first order ∃, resp.)
and binary and countable intersections (to ∧ and first order ∀, resp.) are preserved under continuous
preimages, i.e., Wadge reducibility, any class of formulae, if defined by forms of formulae, must correspond
to a topological class. Thus, if we agree that the “reasonable” classes of formulae must be defined by
forms of formulae, Nemoto hierarchy, the corresponding to Wadge hierarchy, is the finest “reasonable”
hierarchy of classes of formulae.

Since Σ0
1 is known to be the only Wadge (and so Nemoto) class not above ∆(Σ0

1 ∨ Π
0
1 ) nor below

Π0
1 , we can say yes to the question above at least in number theory. And if we further require that

“reasonable” formula-classes be defined uniformly both for number and set theories, we can answer yes
in general.

Thus in order to have a complete description of Nemoto hierarchy of least fixed principles, it remains
to determine Σ0

1-LFP. It is known that Σ0
1-LFP is provable in ACA0, which is enough to claim that

the general reduction (i.e., the uniform proof for both number and set theories) to Σ0
1 is impossible.

Actually, by more or less the same proof as in number theory we can prove the following.

Lemma 5 NBG− +Π0
2 -Ref ⊢ Σ0

1-LFP. Moreover, NBG− +Π0
2 -Ref+∆1

0-TR ⊢ Σ0
1-LFTR.

Proof Let Γ = λX.{z |ϕ(z,X)} be Σ0
1 of arity (0, 1, 0). Define F = {z | (∃〈α, f〉 ∈G)(∃ξ<α)(z ∈ f(ξ))},

where G =
{
〈α, f〉

∣∣∣α ∈ Ord ∧ “f is a function on α” ∧ (∀ξ < α)
(
f(ξ) ⊂ Γ

(⋃
η<ξ

f(η)
))}

.

For X with Γ (X) ⊂ X and 〈α, f〉 ∈ G, the induction on ξ < α shows f(ξ) ⊂ X and hence F ⊂ X. Thus,
if this F is a fixed point, then it is the least. It remains to show Γ (F ) ⊂ F .

Take z ∈ Γ (F ). Π0
2 -Ref provides us a transitive set a with z ∈ a and ϕa(z, F ), i.e., ϕa(z, F ∩ a) such

that (∀x ∈ a)[x ∈ F ↔ (∃〈α, f〉 ∈ G ∩ a)(∃ξ < α)(x ∈ f(ξ))]. Thus

(∀x ∈ F ∩ a)(∃〈α, f〉 ∈ G ∩ a)(∃ξ < α)(x ∈ f(ξ)) (∗)

Define β = sup{α | (∃f)(〈α, f〉 ∈ G ∩ a)}, and

g(ξ) =
⋃
{f(ξ) | (∃η ≤ β)(ξ < η ∧ f ∈ (G ∩ a)η)} for ξ < β; g(β) = F ∩ a; g(β + 1) = {z}.

Then g(β) = F∩a ⊂ Γ (
⋃
ξ<β g(ξ)), by (∗). By upward persistence of Σ0

1 , ϕ
a(z, F∩a) implies z ∈ Γ (F∩a),

i.e., g(β + 1) = {z} ⊂ Γ (F ∩ a) = Γ (g(β)). Thus 〈β + 2, g〉 ∈ G witnesses z ∈ F .

The only Nemoto class which changes its side is Π0
1 : The border between those Nemoto classes F

with F-LFP↔ ∆1
0-LFP and those F with NBG ⊢ F-LFP is drawn in Figure 2 at page 4.

For F-FP, since Σ0
1-FP is equivalent to Π0

1 -FP (actually (¬F)-FP and F-FP are equivalent), the
border is immediately below ∆(Σ0

1 ∨Π
0
1 ) both in number theory and in set theory.
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4 Stage Comparison

The description of a least fixed point in the standard proof of ∆1
0-LFP in Π1

1 -CA is “top-down”. It is
known that alternative “bottom-up” description is more convenient in some occasions, i.e., the union
of Hα’s where Hα = Γ (

⋃
ξ<αHξ), or, Hα is the result of α-time application of Γ to ∅. However, in

BT2 = NBG the von Neumann ordinals are not always enough to reach fixed points of operators on
classes. Thus to formulate this description, we need a (class-size) well-order long enough to reach the fixed
point, and defineH by recursion along it. Since such well-orders might not be unique, the natural question
is: What is the canonical? An answer is stage comparison: Intuitively, this compares the first stages α at
which the given two elements are included inHα. More precisely, letting ||x||Γ = min({α |x ∈ Hα}∪{∞}),
we define x ≺Γ y by ||x||Γ < ||y||Γ . However, since we do not have single well-order coding α’s above,
such a definition would be circular. We need to extract, without mentioning α’s, properties of stage
comparison which guarantee the canonicity.

4.1 Formalizing stage comparison strict preorder

The properties, that we extract, of stage comparison ≺ of Γ are (i) ≺ is well-founded (WF(≻)); (ii) if
y /∈ Γ (≺z) ∋ x for some z then x ≺ y; and (iii) (≺x) =

⋃
y≺x Γ (≺y), where (≺x) = {z | z ≺ x}. We now

formalize the notion with these properties except (i):

Definition 11 (SCSP) For an operator Γ of arity (0, 1, 0), a ∆1
0(Γ )-formula SCSP[Γ ](A) (stand-

ing for Stage Comparison Strict Preorder) is the conjunction of (a) (∀r ∈ A)(∃u, v)(r = 〈u, v〉); (b)
(∃w)(v /∈Γ ((A)w) ∧ u∈Γ ((A)w))→ u∈ (A)v and (c) u∈ (A)v ↔ (∃w)(w∈ (A)v ∧ u∈Γ ((A)w)).

We will see that SCSP[Γ ](A) ∧WF(A) determines A uniquely, if exists.

Lemma 6 For an operator Γ of arity (0, 1, 0), if SCSP[Γ ](A) ∧WF(A), then {x | (∃v)(x∈Γ ((A)v))}
exists as a second order object (i.e., (∃X)(X = {x | (∃v)(x∈Γ ((A)v))})) and is a least fixed point of Γ .

Proof Let Γ (X) ⊂ X. We prove (A)u ⊂ X by induction on u along A. (Note that ∆0
0 transfinite

induction is enough, regardless of the complexity of Γ .) By the last clause (c) of SCSP[Γ ](A), (A)u =⋃
v∈(A)u

Γ ((A)v) ⊂ Γ (X) ⊂ X by induction hypothesis.

If (∀x)(∃v)(x ∈ Γ ((A)v)), then {x | (∃v)(x ∈ Γ ((A)v))} = {x |x = x} is a least fixed point.
Otherwise (∀v)(y /∈ Γ ((A)v)) for some y. For any u, v, if u ∈ Γ ((A)v), v witnesses u ∈ (A)y. Thus

{x | (∃v)(x ∈ Γ ((A)v))} ⊂ (A)y, which implies Γ ((A)y) ⊂ (A)y. By what we have shown at the first with
X = (A)y, we have (∀v)((A)v ⊂ (A)y). Therefore (A)y =

⋃
v∈(A)y

Γ ((A)v) ⊂ {x | (∃v)(x ∈ Γ ((A)v))} ⊂

Γ ((A)y) ⊂ (A)y. (A)y is a least fixed point and is {x | (∃v)(x∈Γ ((A)v))}.

Thus we can define a seemingly stronger variant of least fixed point principle.

Definition 12 (F-SLFP,F-SLFTR) The strong least fixed point principle and strong least fixed point
transfinite recursion for a class F of formulae are

F-SLFP (∃O)(SCSP[Γ ](O) ∧WF(O)) for any F operator Γ of arity (0, 1, 0);
F-SLFTR WF(W )→ (∃H)SLFHier[Γ ](H,W ) for any F operator Γ of arity (1, 1, 1),

where SLFHier[Γ ](H,W ) ≡ (∀x)(SCSP[λX.Γ (x,X, (H)Wx)]((H)x) ∧WF((H)x));
F-SLFTRα is defined accordingly.

If a class F of operators are closed under compositions with ∆0
0 operators, since by composing an

operator with X 7→ {x | (x ∈ ω → x 6= 0 ∧ x− 1 ∈ X) ∨ (x /∈ ω ∧ x ∈ X)} and with the converse, we can
restrict ourselves to consider only those Γ with 0 /∈ Γ (X) without loss of generality, and then the least
fixed point is (A)0, defined by a uniform formula from the given stage comparison strict preorder.

Corollary 2 For any class F of formulae,

(i) BT2 + F-SLFP ⊢ F-LFP,

and if F is closed under compositions with ∆0
0 operators,

(ii) BT2 + F-SLFTR ⊢ F-LFTR and
(iii) BT2 + F-SLFTRα ⊢ F-LFTRα.

Remark 6 If we define a first order correspondence of strong least fixed point principle, say ID+
α , the

proof shows that IDα can be interpreted into ID+
α in such a way that L1 is preserved.
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4.2 Uniqueness of stage comparison

Lemma 7 For an operator Γ of arity (0, 1, 0), SCSP[Γ ](A) ∧WF(A) implies:

(i) (∀u, v, w)(u ∈ (A)v ∧ v ∈ (A)w → u ∈ (A)w) (transitivity of A),
(ii) (∀u, v)[(∃w)(v /∈ Γ ((A)w) ∧ u ∈ Γ ((A)w))← u ∈ (A)v] (the converse of (b)).

Proof (i) Let u ∈ (A)v ∧ v ∈ (A)w. Suppose for contradiction u /∈ (A)w. Then by v ∈ (A)w and (c) in
SCSP[Γ ](A) we have v′ ∈ (A)w with v ∈ Γ ((A)v′). Then, again by (c), u /∈ Γ ((A)v′) which witnesses
v ∈ (A)u, contradicting u ∈ (A)v and WF(A).

(ii) Let u ∈ (A)v. Then by the clause (c) of SCSP[Γ ](A) we have w ∈ (A)v with u ∈ Γ ((A)w). If
v ∈ Γ ((A)w), then, by (c) again, v ∈ (A)v, contradicting WF(A).

Definition 13 For an operator Γ of arity (0, 1, 0), define ∆1
0(Γ )-formulae

ItApp[Γ ](H,W ) ≡ (∀u)((H)u = Γ ((H)Wu)) where (H)Wu = {x | (∃v ∈ (W )u)(x ∈ (H)v)};

θ1[Γ ](y, x,H,W ) ≡ ItApp[Γ ](H,W ) ∧ (∃u)(x ∈ (H)u ∧ y /∈ (H)u);

θ2[Γ ](y, x,H,W ) ≡ ItApp[Γ ](H,W )→ (∀u)(y ∈ (H)u → x ∈ (H)Wu).

Notice the difference between (H)Wu and (H)Wx (introduced below Definition 7).

Lemma 8 For an operator Γ of arity (0, 1, 0), if WF(R) ∧WF(S) then:
(i) ItApp[Γ ](G,R) ∧ ItApp[Γ ](H,S)→ (∀r, s)((G)r⊂(H)Ss ∨ (H)s⊂(G)r),
(ii) (∀x, y)(θ1[Γ ](y, x,G,R)→ θ2[Γ ](y, x,H, S)).

Proof (i) We prove ((G)r ⊂ (H)Ss ∨ (H)s⊂ (G)r) ∧ ((G)r ⊂ (H)s ∨ (H)s⊂ (G)Rr) by induction on r, s.
If there is s′ ∈ (S)s with (G)r ⊂ (H)s′ , then (G)r ⊂ (H)Ss. Otherwise for any s′ ∈ (S)s, by induction
hypothesis for (r, s′), we have (H)s′ ⊂ (G)Rr. Thus (H)Ss ⊂ (G)Rr and (H)s = Γ ((H)Ss) ⊂ Γ ((G)Rr) =
(G)r. Similarly we have (G)r⊂(H)s ∨ (H)s⊂(G)Rr.

(ii) Let θ1[Γ ](y, x,G,R), say x ∈ (G)r 6∋ y, and assume ItApp[Γ ](H,S) and y ∈ (H)s. y witnesses
(H)s 6⊂ (G)r, and hence (G)r ⊂ (H)Ss. Since x ∈ (G)r, we have x ∈ (H)Ss.

Corollary 3 (∀x, y)[(∃G,R)(WF(R) ∧ θ1[Γ ](y, x,G,R))→ (∀H,S)(WF(S)→ θ2[Γ ](y, x,H, S))].

Lemma 9 SCSP[Γ ](O) implies ItApp[Γ ](H,O) if H = {〈u, x〉 |x ∈ Γ ((O)u)}.

Proof By (O)u =
⋃
v∈(O)u

Γ ((O)v) =
⋃
v∈(O)u

(H)v = (H)Ou, we have (H)u = Γ ((O)u) = Γ ((H)Ou).

So far the argument requires only BT2 even if the operator Γ is of higher complexity. In the next
theorem, however, we need some principle for the complexity of Γ . Since the use of such principles is in
transfinite induction for G,H in Lemma 8 and in the minimal element principle in the following proof,
∆1

0(Γ )-CA below can actually be weakened to ∆1
0(Γ )-TI.

Theorem 4 For an operator Γ of arity (0, 1, 0),

BT2 +∆1
0(Γ )-CA ⊢WF(A) ∧WF(B) ∧ SCSP[Γ ](A) ∧ SCSP[Γ ](B)→ A = B.

Proof Assume the antecedents and define G = {〈u, x〉 |x ∈ Γ ((A)u)} and H = {〈u, x〉 |x ∈ Γ ((B)u)} by
∆1

0(Γ )-CA. Then ItApp[Γ ](G,A) and ItApp[Γ ](H,B) by the last lemma.

Let u ∈ (A)v. By Lemma 7 (ii), (∃w)(v /∈ Γ ((A)w) = (G)w ∋ u). Thus θ1[Γ ](v, u,G,A). By Lemma
8 (ii), θ2[Γ ](v, u,H,B) and so (∀w)(v ∈ (H)w = Γ ((B)w)→ u ∈ (H)Bw).

If v ∈ Γ ((B)w) for some w, we can take a B-minimal such w. Then u ∈ (H)Bw, say u ∈ (H)w′ =
Γ ((B)w′) with w′ ∈ (B)w. By the choice of w, we have v /∈ Γ ((B)w′), and thus, by (b) of the definition of
SCSP[Γ ](B) we have u ∈ (B)v. Otherwise v is outside of the least fixed point {z | (∃w)(z ∈ Γ ((B)w))} =
{z | (∃w)(z ∈ Γ ((A)w))} which contains u, and so u ∈ (B)v by (b) of the definition of SCSP[Γ ](B).
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4.3 Stage comparison as fixed point

Informally, we have the following equivalence for x, y with ||x||Γ , ||y||Γ <∞:

x ≺Γ y ↔ ¬(||y||Γ ≤ ||x||Γ ) ↔ ¬(y ∈ Γ
||x||Γ (∅)) ↔ y /∈ Γ ({z | z ≺Γ x}).

Therefore, one may think that the stage comparison can be obtained as a fixed point of Γ ′, where Γ ′(R) =
{〈y, x〉 | ¬(y ∈ Γ ({z | 〈x, z〉 ∈ R}))}. However, this Γ ′ is negative. Nevertheless, replacing “ z ≺ x” in the
right-hand side by using this equivalence itself, we have

x ≺Γ y ↔ y /∈ Γ ({z | z ≺Γ x}) ↔ y /∈ Γ ({z |x /∈ Γ ({z′ | z′ ≺Γ z})}).

Thus we can expect that ≺Γ can be obtained as a fixed-point of the positive operator (Γ ′)2.
Actually, the famous proof of Stage Comparison Theorem (e.g., [12, 2A.2], where “fixed point” means

“least fixed point” in our terminology) tells us that the stage comparison ≺Γ of Γ is the least fixed point
of (Γ ′)2. However F-FP does not give us a least fixed point, but only a fixed point. Thus we have to
check how close to the stage comparison we can reach only with a (not necessarily least) fixed point.

Definition 14 (derivation of operator) For an operator Γ of arity (0, 1, 0), the derived operator is
Γ ′ ◦ Γ ′, where Γ ′ = λR.{u | (∃x, y)(u = 〈x, y〉 ∧ x /∈ Γ ((R)y))}.

Lemma 10 For an operator Γ of arity (0, 1, 0), if Γ ′(F ) = G,Γ ′(G) = F , WF(W ) and ItApp[Γ ](H,W )
hold, then (∀w)((R)w ⊂ F ∧G ⊂ (S)w), where

(R)w = {〈y, x〉 |x ∈ (H)w ∧ y /∈ (H)w} and (S)w = {〈y, x〉 | y ∈ (H)w → x ∈ (H)Ww}.

Proof We prove (a) (R)w ⊂ F and (b) G ⊂ (S)w simultaneously by induction on w along W .
For (b), let 〈y, x〉 ∈ G = Γ ′(F ), i.e., y /∈ Γ ((F )x). To show the contraposition, assume x /∈ (H)Ww.

The induction hypothesis (a) implies
⋃
u∈(W )w

(R)u ⊂ F and hence

(H)Ww =
⋃

u∈(W )w
(H)u =

⋃
{(H)u |u ∈ (W )w ∧ x /∈ (H)u} ⊂

⋃
u∈(W )w

((R)u)x ⊂ (F )x.

Then y /∈ Γ ((F )x) ⊃ Γ ((H)Ww) = (H)w.
For (a), let 〈y, x〉 ∈ (R)w. By (b) and by x ∈ (H)w, (G)x ⊂ ((S)w)x = (H)Ww and so y /∈ (H)w =

Γ ((H)Ww) ⊃ Γ ((G)x), which implies 〈y, x〉 ∈ Γ ′(G) = F .

Theorem 5 For an operator Γ of arity (0, 1, 0), BT2 proves: if (Γ ′)2(F ) = F and WF(W ) then

(∀x, y)[(θ1[Γ ](y, x,H,W )→ 〈y, x〉 ∈ F ) ∧ (〈y, x〉 ∈ F → θ2[Γ ](y, x,H,W ))].

Proof Assume (Γ ′)2(F ) = F and WF(W ). Let ItApp[Γ ](H,W ). We have to show that, for any w,

(x ∈ (H)w ∧ y /∈ (H)w)→ 〈y, x〉 ∈ F and 〈y, x〉 ∈ F → (y ∈ (H)w → x ∈ (H)Ww),

i.e., (R)w ⊂ F ⊂ (S)w in terms of the last lemma. (R)w ⊂ F is from the last lemma with G = Γ ′(F ).
Since F and G are interchangeable in the lemma, we also have F ⊂ (S)w.

This seems to be the best we can say about a fixed point F of (Γ ′)2, and F itself is not necessarily
the stage comparison of Γ . Nevertheless, as Stage Comparison Theorem tells us (on the informal level),
the stage comparison strict preorder is a least fixed point and therefore a subset of F . Main Lemma in
the next section tells us how to cut out the stage comparison from F and the proof is based on this
“sandwich” property. (However, Main Lemma states more: We can cut out the stage comparison from
any F with this “sandwich” property, and we do not need to check if such F is a fixed point of (Γ ′)2.)

Corollary 6 For an operator Γ of arity (0, 1, 0), if Γ ′ ◦ Γ ′(R) = R and if O is defined from R as in
Main Lemma then SCSP[Γ ](O).

This is not significant in number theory (i.e., the case BT2 = ACA0) since to take the accessible
part of R, as required in Main Lemma, we need some principle as strong as ∆1

0 inductive definition.
However this is significant in set theory, since, as we saw or as is well known, the accessible part is ∆1

0

definable and therefore available in the base theory.
As for the first order systems, the proofs above and the proof of Main Lemma given below actually

show that, if BT1 ⊢ L1-Ref, ID+
α , defined as in Remark 6 over BT1, is interpretable into ÎDα (and

therefore so is IDα) defined over BT1 in such a way that L1
S is preserved.
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5 Main Results

5.1 Main Lemma and its consequences

Theorem 7 (Main Lemma) Let Γ be of (0, 1, 0). The following is provable in BT2 +∆1
0(Γ )-TI.

For given R, if R∗, P,O and H satisfy the following:

R∗ = {〈x, y〉 | (∃σ ∈ Finseq)(σ(0) = x ∧ σ(|σ| − 1) = y ∧ (∀k < |σ| − 1)(〈σ(k), σ(k + 1)〉 ∈ R))};

P = {x | “x is in the accessible part of R” ∧ (∀z ∈ (R∗)x)(z ∈ Γ ((R)z))};

O = (R ∩ (P × P )) ∪ (P c × P ) = {〈x, y〉 | (x, y ∈ P ∧ 〈x, y〉 ∈ R) ∨ (x /∈ P ∧ y ∈ P )};

H = {〈x, y〉 | (x ∈ P ∧ y ∈ Γ ((O)x) ∨ (x /∈ P ∧ y ∈ Γ (
⋃

z∈P
Γ ((O)z)))},

then following holds, where x↓= (R∗)x; O↓x = O ∩ (x↓×x↓); H ↾x = {〈u, z〉 ∈ H |u ∈ x↓}:

(∀x, y, z)[(θ1[Γ ](y, x,H↾z,O↓z)→ 〈y, x〉 ∈R) ∧ (〈y, x〉 ∈R→ θ2[Γ ](y, x,H↾z,O↓z))]
→ WF(O) ∧ SCSP[Γ ](O) ∧ P = {x | (∃v)(x ∈ Γ ((O)v))}.

Remark 7 (1) As one can see, R∗ denotes the reflexive transitive closure of R. The others P , O and H
are ∆1

0(F) definable from R and the accessible part of R, and hence can be seen as ∆1
0(F)-formulae

containing the accessible part as a parameter. Thus this theorem provides a sufficient condition for us
to construct the stage comparison strict preorder.
(2) In the first order setting mentioned in Remark 6, we can interpret ID+

α in ÎDα with a new predicate
(and axiom) for the accessible parts. More generally, the iterated inductive definition whose last stage is
ID+-type is interpretable in the same but the last stage replaced by the two stages, the first of which is
ÎD-type and the second is ID-type (restricted to Π0

1 operators). See Remark 11 (IV) in Section 8.

Corollary 8 (1) For any operator Γ of arity (0, 1, 0), BT2 +∆1
0(Γ,WF)-CA proves:

(∃R)(∀x, y)

(
((∃H,W )(WF(W ) ∧ θ1[Γ ](y, x,H,W ))→ 〈y, x〉 ∈ R)
∧ (〈x, y〉 ∈ R→ (∀H,W )(WF(W )→ θ2[Γ ](y, x,H,O)))

)
→ (∃O)

(
SCSP[Γ ](O)
∧WF(O)

)
.

(2) For a class F of formulae, BT2 +Π1
1 (F ,WF)-Red ⊢ F-SLFP.

(3) If F is closed under derivations,

BT2 +Π0
1 -LFP ⊢ F-SLFP↔ F-LFP↔ F-FP.

Proof (1) Immediate from Theorem 7. (2) Since θi[Γ ]’s are ∆
1
0(Γ ), this is by Corollary 3.

(3) By rephrasing Corollary 6, we have this since Π0
1 -LFP gives us the accessible parts.

Actually, we can prove Corollary 8 (1) directly and it might be more comprehensible than Main
Lemma. The reason why we formulate Main Lemma as above is, however, to make it easier to see
that our argument survives also in the first order setting. For, there are no first order analogues of
(∃H,W )(WF(W )∧ θ1[Γ ](y, x,H,W )) and of (∀H,W )(WF(W )→ θ2[Γ ](y, x,H,O)). In this sense, Main
Lemma is a quite refined and seemingly stronger result.

Let us discuss the significances of this corollary with F = ∆1
0. In number theory, these are less

significant: Π0
1 -LFP itself is strong enough to imply Π1

1 -CA; since WF is Π1
1 -complete, Π1

1 (WF)-Red
is equivalent to Π1

2 -Red while ∆1
0-SLFP is proved by Π1

1 -CA. However, in set theory (and in higher
order number or set theory with global well-ordering [17, Definition 5]), these are: Since Π0

1 -LFP is
proven and WF is equivalent to Wf which is ∆1

0, these mean that ∆1
0-SLFP, ∆1

0-LFP and ∆1
0-FP are

all equivalent; and that Π1
1 -Red implies ∆1

0-SLFP and hence ∆1
0-LFP.

Letting F = ∆1
n+2 in Corollary 8 (2), we have BT2 + Π1

n+2-Red ⊢ ∆1
n+2-SLFP, which might be

new even in number theory, where ∆1
n+2-SLFP is as in Remark 1. Among examples of F applicable to

Corollary 8 (3) are essential ∆1
n’s (i.e., non-prenex ∆

1
n’s). Note that [4] shows ∆1

0-FTRα ⊢WF(α).

Corollary 9 (i)(a) BT2 ⊢ ∆1
0-SLFP↔ ∆1

0-LFP; (b) BT2 +Π0
1 -LFP ⊢ ∆

1
0-LFP↔ ∆1

0-FP.
(ii)(a) BT2 ⊢ ∆1

0-SLFTR↔ ∆1
0-LFTR; (b) BT2 +Π0

2 -Ref ⊢ ∆1
0-LFTR↔ ∆1

0-FTR.
(iii)(a) BT2 ⊢ ∆1

0-SLFTRα ↔ ∆1
0-LFTRα; (b) BT2 +Π0

2 -Ref ⊢ ∆1
0-LFTRα ↔ ∆1

0-FTRα.
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Proof For (ii)(a) and (iii)(a), we can replace one step of taking stage comparison strict preorder (in
∆1

0-SLFTR) by the following two stages, that is, taking a (least) fixed point of derived operator, and
then taking the accessible part as required in Main Lemma (in ∆1

0-LFTR). Thus ∆1
0-LFTR2·α →

∆1
0-SLFTRα. This is enough, because 2·α = α if α is limit, and otherwise 2·α = α+ k for some k ∈ ω.
For (ii)(b) and (iii)(b) Π0

2 -Ref allows us to define the accessible parts by the ∆1
0-formula Wf.

5.2 Proof of Main Lemma

Now we are proving the Main Lemma. We are working in BT2 (as before). Let us assume that R∗, P ,
O and H are as in the premise. Assume (♭) and (♯) below for all x, y, z:

(♭) θ1[Γ ](y, x,H↾z,O↓z)→ 〈y, x〉 ∈R (♯) 〈y, x〉 ∈R→ θ2[Γ ](y, x,H↾z,O↓z).

Lemma 11 (a) If y ∈ P then (R)y = (O)y. (b) If y ∈ P and y ∈ (R)x then y ∈ (O)x. (c) If x ∈ (O)y
for some y then x ∈ P . (d) WF(O).

Proof First note that P is R-downward closed, i.e., x ∈ P implies (R)x ⊂ P . Then (a) - (c) follow from
the definitions immediately. (d) holds since we define O by restricting R to a subset P of its accessible
part and by putting all elements outside of P on the top (as maximal elements).

Lemma 12 ItApp(H,O), and for any x ∈ P , (H)Ox = (O)x.

Proof First we prove (a) (H)Ox = (O)x and (b) ItApp(H↾x,O↓x) by induction on x ∈ P along O.
(a) For y ∈ (O)x, Lemma 11 (c) implies y ∈ P and, by the definition of P , y ∈ Γ ((R)y) = Γ ((O)y) =
(H)y ⊂ (H)Ox since (R)y = (O)y by Lemma 11 (a). Conversely, let y ∈ (H)Ox, say y ∈ (H)z and
z ∈ (O)x. If x /∈ (H)z then θ1[Γ ](x, y,H↾z,O↓z), by the induction hypothesis (b) for z, and so by (♭)
and x ∈ P , y ∈ (R)x = (O)x. Suppose x ∈ (H)z for contradiction. By (♯), z ∈ (O)x = (R)x implies
θ2[Γ ](x, z,H↾z,O↓z) and, by ItApp[Γ ](H↾z,O↓z) the induction hypothesis (b), z ∈ (H)Oz = (O)z by
induction hypothesis (a) for z, contradicting Lemma 11 (d).
(b) We have to show (∀y ∈x↓)((H)y = Γ ((H)Oy)). By induction hypothesis, it remains to show (H)x =
Γ ((H)Ox), which follows from (a) (H)Ox = (O)x and the definition of H.

To complete the proof, we have to show (H)x = Γ ((H)Ox) for x /∈ P . If x /∈ P then (O)x = P and
so (H)x = Γ (

⋃
z∈P Γ ((O)z)) = Γ (

⋃
z∈(O)x

(H)z) = Γ ((H)Ox).

Lemma 13 (a) For all x, (H)x ⊂ P and (b) P =
⋃
x∈P Γ ((O)x) = Γ (P ).

Proof (a) We prove this by induction on x along O. Let y ∈ (H)x. Since if y ∈ (H)Ox then by induction
hypothesis y ∈ P , we may assume y /∈ (H)Ox. We have to show y ∈ P .

To see that y in the accessible part, it suffices to show (R)y ⊂ P . Let z ∈ (R)y. Then, by (♯),
θ2[Γ ](y, z,H ↾x,O↓x), by which y ∈ (H)x implies z ∈ (H)Ox ⊂ P by induction hypothesis.

It remains to show (∀z ∈ y ↓)(z ∈ Γ ((R)z)). Since we have shown (R)y ⊂ P ⊂ {z | z ∈ Γ ((R)z)} and
since P is R-downward closed, what we have to show is y ∈ Γ ((R)y).

To prove this, it suffices to show (H)Ox ⊂ (R)y, since y ∈ (H)x = Γ ((H)Ox) ⊂ Γ ((R)y) follows. Take
z ∈ (H)Ox. By y /∈ (H)Ox, we have θ1[Γ ](y, z,H ↾ x,O↓x) and so z ∈ (R)y by (♭).
(b) (i) P ⊂

⋃
x∈P Γ ((O)x): For x ∈ P , by definition and Lemma 11 (a), x ∈ Γ ((R)x) = Γ ((O)x).

(ii)
⋃
x∈P Γ ((O)x) ⊂ Γ (P ): For x ∈ P , by Lemma 12 and (a), Γ ((O)x) = Γ ((H)Ox) ⊂ Γ (P ).

(iii) Γ (P ) ⊂ P : If there is y /∈ P , by (a) and (i), P ⊃ (H)y = Γ (
⋃
x∈P Γ ((O)x)) ⊃ Γ (P ).

Proof of Theorem 7. We first see that SCSP[Γ ](O) holds. (a) of Definition 11 is obviously satisfied.
To see (b) of SCSP[Γ ](O), assume x ∈ Γ ((O)z) and y /∈ Γ ((O)z). If z /∈ P , then Γ ((O)z) = Γ (P ) = P

by Lemma 13 (b) and hence x ∈ (O)y by the definition of O. Otherwise x ∈ (H)z and y /∈ (H)z, which
means θ1[Γ ](y, x,H ↾ z,O ↓ z) and x ∈ (R)y. Now, by Lemma 13 (a), we have x ∈ (H)z ⊂ P and, by
Lemma 11 (b), x ∈ (O)y.

Lemma 12 implies (c) (O)x =
⋃
y∈(O)x

Γ ((O)y) for x ∈ P . If x /∈ P , Lemma 13 (b) implies (O)x =

P =
⋃
y∈P Γ ((O)y) =

⋃
y∈(O)x

Γ ((O)y).

Next we see P = {x | (∃v)(x ∈ Γ ((O)v)}. Lemma 13 (b) implies one inclusion: P ⊂ {x | (∃v)(x ∈
Γ ((O)v)}. For the converse, Lemma 13 (a) implies that, for v ∈ P , Γ ((O)v) ⊂ P , and Lemma 13 (b)
implies that, for v /∈ P , Γ ((O)v) = Γ (P ) = P .
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6 Strictness of Π1
1
(WF)-Red → ∆1

0
-SLFP

In Corollary 8, we have seen that Π1
1 (WF)-Red implies ∆1

0-SLFP. In this section we prove that this
implication is strict, or, more precisely, Π1

1 (WF)-Red proves the consistency of ∆1
0-SLFP. The proof

is divided into two parts: In the second part, we show the strict hierarchy theorem for ∆1
0-SLFTRωα

or, equivalently, for ∆1
0-LFTRωα , i.e., if α ≺ β then ∆1

0-SLFTRωβ implies the consistency of (BT2+)
∆1

0-SLFTRωα ; in the first part we show thatΠ1
1 (WF)-Red is located above this hierarchy, i.e.,Π1

1 (WF)-Red
implies ∆1

0-SLFTR and therefore ∆1
0-SLFTRωα for any reasonable α (which includes ∆1

0-SLFP as the
case of α = 0, which means ωα = 1).

6.1 Above the hierarchy

Proposition 14 (1) BT2 +WF(α) +Π1
1 (F ,WF)-Red ⊢ F-SLFTRα and

(2) BT2 +Π1
1 (F ,WF)-Red ⊢ F-SLFTR.

Proof Let Γ be of arity (1, 1, 1). Below let Γ (x, Y ) denote λX.Γ (x,X, Y ).
We prove (∀ξ ≺ α)(∀u, v)(θ1(ξ, u, v)→ θ2(ξ, u, v)), where θ1(ξ, u, v) and θ2(ξ, u, v) are

(∃O,H,W )
(
(∀η≺ξ)(SCSP[Γ (η, (O)≺η)]((O)η)∧WF((O)η)) ∧

(
WF(W ) ∧ θ1[Γ (ξ, (O)≺ξ)](u, v,H,W )

))
;

(∀O,H,W )
(
(∀η≺ξ)(SCSP[Γ (η, (O)≺η)]((O)η)∧WF((O)η))→

(
WF(W )→θ2[Γ (ξ, (O)≺ξ)](u, v,H,W )

))
.

Let (∀η≺ξ)(SCSP[Γ (η, (O1)
≺η)]((O1)η)∧WF((O1)η)), WF(W1) and θ1[Γ (ξ, (O1)

≺ξ)](u, v,H1,W1). To prove
θ2(ξ, u, v), take O2, H2,W2 with (∀η≺ξ)(SCSP[Γ (η, (O2)

≺η)]((O2)η)∧WF((O2)η)), WF(W2). We have to
show θ2[Γ (ξ, (O2)

≺ξ)](u, v,H2,W2). Theorem 4 with ∆0
0-TI on η � ξ shows (O1)

≺η = (O2)
≺η. Thus

(O1)
≺ξ = (O2)

≺ξ, and hence what we have to show is θ2[Γ (ξ, (O1)
≺ξ)](u, v,H2,W2), which is from

WF(W1), WF(W2) and θ1[Γ (ξ, (O1)
≺ξ)](u, v,H1,W1) because of Corollary 3.

Since θ1 is Σ1
1(F ,WF) and θ2 is Π1

1 (F ,WF), by applying Π1
1 (F ,WF)-Red, we have R with

(∀ξ ∈ α)(∀u, v)[(θ1(ξ, u, v)→ 〈ξ, 〈u, v〉〉 ∈ R) ∧ (〈ξ, 〈u, v〉〉 ∈ R→ θ2(ξ, u, v))]. (∗)

Now we apply the procedure of Main Lemma coordinate-wise: Let R∗ be such that, for any ξ ≺ α,
(R∗)ξ is the reflexive transitive closure of (R)ξ and F such that (F )ξ is the accessible part of (R)ξ, i.e.,
(F )ξ = {x | (R∗)ξ is well founded on ((R∗)ξ)x}. Define P and O accordingly. By definition, WF((O)ξ)
for all ξ ≺ α. Now we prove SCSP[Γ (ξ, (O)≺ξ)]((O)ξ) by induction on ξ ≺ α. By Main Lemma and by
the construction above, it suffices to show that, for any u and v,

(∃H,W )(WF(W ) ∧ θ1[Γ (ξ, (O)≺ξ)](u, v,H,W ))→ 〈u, v〉 ∈ (R)ξ; and

〈u, v〉 ∈ (R)ξ → (∀H,W )(WF(W )→ θ2[Γ (ξ, (O)≺ξ)](u, v,H,W )),

which are immediate from the induction hypothesis and (∗).

Similarly to the standard proof of BT2 +Σ1
1-TI+∆1

1-CA ⊢ ∆1
0-TR, Theorem 4 implies:

Proposition 15 (i) BT2 + F-SLFP+Σ1
1(F ,WF)-TI+∆1

1(F ,WF)-CA ⊢ F-SLFTR.
(ii) BT2 + F-SLFP+Σ1

1(F ,WF)-TIα +∆1
1(F ,WF)-CA ⊢ F-SLFTRα.

6.2 Hierarchy theorem for fixed point transfinite recursion

Our strategy to prove consistency is to construct a coded first order part sharing model (FOPS model,
for short). This is a generalization of coded ω-model in [18, Definition VII.2.1] and was called coded
LOPS model in [17, Definition 31], where the lower order correspond to the first order in the present
setting.

In the rest of this section, we always assume the existence of Υ 0
1 as required in Definition 9. Therefore

we do not know if we can apply the following results to BGZ ≡ NBG−Repl.
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Definition 15 (coded FOPS model) A coded FOPS model is second order M , viewed as encoding
the L2-model whose first and second order parts are {x | ⊤} and {(M)x | ⊤} respectively. Define

M |=ϕ(x) ≡ ϕ(x) if ϕ is atomic; M |=ϕ�ψ ≡ (M |=ϕ)�(M |= ψ) for � ≡ ∧,∨,→;

M |=(Qx)ϕ(x) ≡ (Qx)(M |=ϕ(x)); M |=(QX)ϕ(X) ≡ (Qx)(M |=ϕ((M)x)) for Q ≡ ∀, ∃.

Proposition 16 BT2 +∆1
0-LFTRωα+1 ⊢ ∃M(M |= BT2+∆1

0-LFTRωα).

Proof Let LFHier[Υ̃ ](F, ωα+1), i.e., for any γ ≺ ωα+1, (F )γ is a least fixed point of Υ̃ ((F )≺γ). Define

M = {〈〈ξ, e, y〉, z〉 |Υ 0
1 (e, 〈z, y〉, ∅, (F )ξ), e ∈ ω, ξ ≺ ω

α+1}.

The only non-Π1
1 axiom of BT2 is ∆1

0-CA (where Choice is treated by a new predicate for well-
ordering), or equivalently, Σ0

1-CA, which is an instance of Σ0
1-FP, i.e., Σ0

1-LFPω0 . Thus we have to
show M |= (Σ0

1 ∧Π
0
1 )-LFPωα , i.e., for a (Σ0

1 ∧Π
0
1 ) operator of arity (1, 1, 1) with parameters

Γ = λy.λX, Y.{z |ϕ(z, y0, y,X, Y, (M)〈γ1,e1,y1〉, ..., (M)〈γk,ek,yk〉)}

where γ1, ..., γk ≺ ωα+1, has the hierarchy of least fixed points along ωα of the form (M)〈δ,e,u〉 with
δ ≺ ωα+1, since being a least fixed point of a ∆1

0 operator is downward persistent for coded FOPS
models. Take γ ≺ ωα+1 so that γ1, .., γk ≺ γ. Then (M)〈γi,ei,yi〉’s are ∆0

0 definable from yi’s, γi’s and
(F )≺γ . Let f(ξ) = 〈y,γ, ξ〉 for ξ ≺ ωα. By diagonalization, there is e ∈ ω such that, for any ξ ≺ ωα and
z,

Υ̃ (e, z, f(ξ), X, (F )≺γ+ξ)↔ ϕ(z, y0, ξ, (X)〈e,f(ξ)〉, {〈η, x〉 |x ∈ ((F )γ+η)〈e,f(η)〉, η ≺ ξ}, (M)〈γ1,e1,y1〉, ...).

((F )γ+ξ)〈e,f(ξ)〉 is a least fixed point of λX.{z |ϕ(z, y0, ξ,X, {〈η, x〉 |x∈ ((F )γ+η)〈e,f(η)〉, η≺ξ},M〈γ,e,y〉)},

since (F )γ+ξ is a least fixed point of Υ̃ ((F )≺γ+ξ). Now, {〈ξ, x〉 |x∈ ((F )γ+ξ)〈e,f(ξ)〉, ξ≺ω
α} = (M)〈γ+ωα,e′,f〉

for some e′ ∈ ω. This is what we require, where γ + ωα ≺ ωα+1.

Remark 8 If we are dealing with the first order theories, this proof shows, in terms of Section 8,

IDωα+1 ⊢ “ {〈〈ξ, e, y〉, x〉 |Υ 0
1 (e, 〈x, y〉, ∅, (LΥ̃ )ξ), e ∈ ω, ξ ≺ ω

α+1} |= BT2+∆1
0-LFTRωα”.

With the next lemma we can conclude that the implication from ∆1
0-LFTRωα+1 to ∆1

0-LFTRωα

cannot be reversed, since ∆1
0-LFTRωα+1 implies ∆1

0-TRω (if BT2 +∆1
0-LFTRωα is consistent).

Lemma 17 For an L2-theory T , BT2 +∆1
0-TRω ⊢ (∃M)(M |= T )→ Con(T ).

Proof Since only first order quantifiers are involved in the clauses of the recursive definition of M |= ϕ
given above, ∆1

0-TRω allows us to define the satisfaction relations S so that 〈pϕq,a〉 ∈ S ↔M |= ϕ(a).
Now, by induction on derivation, we can prove that if T ⊢ ϕ then 〈pϕq,x〉 ∈ S for any x. Thus T ⊢ ⊥
implies M |= ⊥, a contradiction.

Example 10 As noted in [18], when BT2 = ACA0, any coded FOPS model (or coded ω-model) sat-
isfies full induction scheme L2

N -Ind. Similarly, when BT2 = NBG, a coded FOPS model satisfies full
transfinite induction L2

S-TI, full set separation L2
S-sSep and full set collection L2

S-sColl, where

F-TI WF(W )→ TI[ϕ](W ) for any F-formula ϕ; F-TIα TI[ϕ](α) for any F-formula ϕ;
F-sSep (∀x)(∃y)(∀z)(z ∈ y ↔ z ∈ x ∧ ϕ) for any F-formula ϕ in which y is not free;
F-sColl (∀y ∈ x)(∃z)ϕ→ (∃u)(∀y ∈ x)(∃z ∈ u)ϕ for any F-formula ϕ in which u is not free.

Corollary 11 Let Sch be any scheme which is satisfied by any coded FOPS model. Then BT2 +
∆1

0-LFTRωα+1 ⊢ Con(BT2 +∆1
0-LFTRωα + L2-Sch).

By combining the results from the last subsection, we have:

Corollary 12 Let Sch be any scheme which is satisfied by any coded FOPS model. Then
(1) BT2 +WF(α) +Π1

1 (WF)-Red ⊢ Con(BT2 +∆1
0-SLFTRα + L2-Sch).

(2) BT2 +WF(α) +∆1
0-LFTRα + L2-Sch 6⊢ ∆1

1(WF)-CA (under enough consistency).
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Proof (1) is by WF(α)→WF(α+1). (2) We may assume that Sch contains TIωβ+1 for some β with ωβ �
α. If the derivability were true, then by Proposition 15, BT2+∆1

0-SLFTRα+Σ
1
1(WF)-TIωβ+1+L2-Sch

(which we assume to be consistent) yields a FOPS model of itself and hence its own consistency.

As an instance, we have NBG+∆1
0-FTRα+L

2
S-TI, -sSep, -sColl 6⊢ ∆1

1-CA (and hence 6⊢ Σ1
1-Coll,

by Lemma 1), which contrasts with the results in number theory (see [1], [18, Theorem V.8.3]): Over
ACA0, the weakest ∆1

0-FP is equivalent to ∆1
0-TR and hence implies Σ1

1-Coll and ∆1
1-CA.

Remark 9 The natural question here is whether the contrast on the implication of ∆1
1-CA from ∆1

0-FP
survives in the sense of consistency-wise implication. Namely, do BT2 +∆1

0-FP and BT2 +∆1
0-FP +

∆1
1-CA have the same proof-theoretic strength? The answer is yes. Either by the method of recursively

saturated model (see [18, IX.4]; for the modification required for ∆1
0-FP, see [17, Remark 38]) or by

the so-called asymmetric interpretation (for the modification required for ∆1
0-FP, see [8]) we can prove

the Π1
2 conservation of BT2 + ∆1

0-FP + Σ1
1-Coll over BT2 + ∆1

0-FP. Here ∆1
0-FP can be replaced

by ∆1
0-FTRα and, in the presence of Π0

2 -Ref (or the ∆1
0-ness of WF), by ∆1

0-FTR, ∆1
0-LFTR and

∆1
0-SLFTR, as well as ∆1

0-LFTRα and ∆1
0-SLFTRα.

Thus the implication of Σ1
1-Coll or of ∆1

1-CA is among dissimilarities in the sense of logical impli-
cation whereas it is among similarities in the sense of consistency-wise implication.

6.3 Dependent transfinite recursion

Having the results in the last subsections, especially Proposition 14, we naturally wonder if ∆1
0-LFTR

is equivalent to Π1
1 -Red. We can separate them, by the same method as the author’s previous work

[17] which separated ∆1
0-TR and ∆1

0-FP. The method was a new kind of way of iteration of a given
construction (e.g., elementary comprehension), called dependent transfinite recursion, which can be seen
as a transfinite recursion of transfinite recursion itself. As pointed out there [17], this can be applied not
only to the comprehension constructions but also to other constructions, like fixed points and least fixed
points. Besides the natural philosophical motivation for this new kind of iteration, this actually helps
us to show, in set theory, that Π1

1 -Red is strictly stronger than ∆1
0-LFTR and that ∆1

0-LFTR is not
capable of implying ∆1

1-CA.

Definition 16 The fixed point 2-fold dependent transfinite recursion is the following schema:

F-FTR2 WF(≻(1)) ∧ (∀w, Y )WF(≻
(0),w
Y ↾w )→(∃H)FHier[Γ ](H,⊕w∈fd(≻(1))≻

(0),w
H↾w ),

for any binary relation u ≻(1) v and u ≻
(0),w
Y v, defined by F-formulae θ1(u, v) and θ0(u, v, w, Y )

with parameters respectively, and for any F operator Γ of arity (1, 1, 1),

where Y ↾w denotes {〈〈w′, u〉, x〉 ∈ Y |w ≻(1) w′} and where

〈w′, u〉(⊕w∈fd(≻(1))≻
(0),w
H↾w )〈w′′, v〉 ↔ (w′ ≻(1) w′′) ∨ (w′ = w′′ ∧ u ≻

(0),w′

H↾w′ v).

The order ≻(1) is called the preceding order.
F-LFTR2, least fixed point 2-fold dependent transfinite recursion, and F-SLFTR2, strong least fixed

point 2-fold dependent transfinite recursion, are defined in the same way with FHier[-](-, -) replaced by
LFHier[-](-, -) and by SLFHier[-](-, -) respectively.

Here the well-founded relation ⊕w∈fd(≻(1))≻
(0),w
H↾w depends on the resulting hierarchyH in the following

manner: If ∗ is the minimal element of ≻(1), since H↾∗ = ∅, the well-founded relation ≻
(0),∗
H↾∗ is fixed at

first, not depending on H. Then, by non-dependent (least) fixed point transfinite recursion along ≻
(0),∗
H↾∗ ,

we have (H)〈∗,x〉’s. If we assume that we have a family of (H)〈w′,x〉’s for all w′ ≺(1) w (as induction

hypothesis), then, since ≻
(0),w
H↾w is now fixed, we can apply non-dependent (least) fixed point transfinite

recursion along it to obtain (H)〈w,x〉’s. The schemata formalize such informal construction, and this is
why we call such a scheme dependent transfinite recursion.

Thus, if the iterant construction is deterministic (like comprehension and least fixed point, as opposed
to fixed point, which is not unique), the resulting hierarchy is unique:
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Lemma 18 In the same syntactic situation as in the definition above, if LFHier[Γ ](H,⊕w∈fd(≻(1))≻
(0),w
H↾w )

and if LFHier[Γ ](G,⊕w∈fd(≻(1))≻
(0),w
G↾w ) then G = H, provided that WF(≻(1)) ∧ (∀w, Y )WF(≻

(0),w
Y ↾w ).

We can further generalize it by allowing ≻(1) to depend on H. Iterating this generalization,

Definition 17 We define the following schemata for k ∈ ω:

F-FTRk+1 (∀wk, ..., w0, Y )
∧
j≤kWF(≻

(j),wk,··· ,wj+1

Y ↾〈wk,··· ,wj+1〉
)→ (∃H)FHier[ϕ](H,Πj≤k≻

(j)
H );

for any F-formulae ϕ and ≻
(j),wk,··· ,wj+1

Y (for j < k), where

〈wk, ..., w0〉(Πj≤k≻
(j)
H )〈vk, ..., v0〉 iff (wk≻

(k)vk) ∨ · · · ∨ (wk=vk ∧ · · · ∧ w1=v1 ∧ w
0≻

(0),wk,··· ,w1

H↾〈wn,··· ,w1〉
v0).

F-LFTRk+1 and F-SLFTRk+1 are defined accordingly. Moreover, F-FTRk+1
α , F-LFTRk+1

α and
F-SLFTRk+1

α denote the schemata with the most preceding order ≻(k) restricted to α.

As also pointed out in the previous work, we can further define F-FTRω, F-LFTRω and F-SLFTRω,

by considering ω-sequences f such that, for all but finite k ∈ ω, f(k) is minimal in ≻
f↾(ω\(k+1))
X (like Ve-

blen hierarchy), and we can replace this ω by any well-order, which, again, depends on the intermediate
stages of resulting hierarchy H, and so on.

Our previously obtained results can easily be generalized to such dependent transfinite recursions as
follows, where for (iii) we need the same trick as [17, Theorem 33], i.e., we collect all the well-founded
relations defined from previous parameters into a disjoint union, by a ∆1

0 formula.

Corollary 13 (i) BT2 ⊢ ∆1
0-SLFTRk+1 ↔ ∆1

0-LFTRk+1; BT2+Π0
2 -Ref ⊢ ∆1

0-LFTRk+1 ↔ ∆1
0-FTRk+1.

(ii) BT2 ⊢ ∆1
0-SLFTRk+1

α ↔ ∆1
0-LFTRk+1

α ; BT2 +Π0
2 -Ref ⊢ ∆1

0-LFTRk+1
α ↔ ∆1

0-FTRk+1
α .

(iii) BT2 +Π0
2 -Ref+∆1

0-LFTRk+1
ωα+1 ⊢ Con(BT2 +∆1

0-LFTRk+1
ωα + L2-Sch).

(iv) BT2+Π1
1 (WF)-Red ⊢ ∆1

0-SLFTRk+1; BT2+∆1
0-SLFP+Σ1

1(WF)-TI+∆1
1(WF)-CA ⊢ ∆1

0-SLFTRk+1.
(v) BT2 +∆1

0-LFTRk+1
α + L2-Sch 6⊢ ∆1

1(WF)-CA (and so 6⊢ Σ1
1(WF)-Coll, 6⊢ Π1

1 (WF)-Red),
if BT2 ⊢ Π0

2 -Ref (and under enough consistency), for any scheme Sch which is satisfied by any
coded FOPS model

In particular, we can conclude, in set theory, that Π1
1 -Red is strictly stronger than ∆1

0-LFTR by
(iii) and (iv), and that ∆1

0-LFTR is not capable of implying ∆1
1-CA by (v) with k = α = 1.

There is a result which might support the view that the dependent transfinite recursion is the iteration
of transfinite recursion: BT2 + ∆1

0-TRn plus ∆1
0-DCΩ (∆1

0 dependent choice along the global well-
ordering whose length is denoted by Ω) isΠ1

2 -conservative over BT2+∆1
0-TRn+1

<Ωω ; and BT2+∆1
0-FTRn

plus∆1
0-DCΩ isΠ1

2 -conservative over BT2+∆1
0-FTRn+1

<Ωω , which shall be included in the author’s future
work. Here Ω does not need to be of the order type Ord. These (with n = 0) should be compared with
(and seen as extensions of) the following well-known results in number theory (e.g., [8]): ACA0+∆

1
0-DC

is Π1
2 -conservative over ACA0 + ∆1

0-TR<ωω ; and ACA0 + ∆1
0-FP + ∆1

0-DC is Π1
2 -conservative over

ACA0 +∆1
0-FTR<ωω .

7 Conservation Results for Some Axioms in NBG

All the results in second order set theory whose equivalents in second order number theory do not hold,
that we saw so far, are based on Π0

2 -Ref. However, the standard proof of it (or more generally ∆1
0-Ref)

heavily depends on Found in NBG, the status of which as an axiom of set theory has been somehow
controversial. Though, even in the absence of it, Skolemization argument allows us to prove ∆1

0-Ref, if
we have Choice, the status of which has also been controversial. Then the natural question is: What
happens if we take, as base theory, NBG− with at most the local choice LC (or, equivalently, the axiom
of choice in the first order formulation)?

We can conclude that the statuses of these axioms do not matter for the investigations of consistency
strengths or proof-theoretic strengths of the schematic extensions of BT2 (and of corresponding first

order systems IDα or ÎDα). More precisely, we can prove the equiconsistency between the most systems
with and without these axioms. Let us start with a preparation.
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Definition 18 (relativization) Z is called transitive (or Trans(Z)) if (∀x ∈ Z)(∀y ∈ x)(y ∈ Z). For a
formula ϕ and an operator Γ , ϕZ and ΓZ are defined as follows:

ψ(y,X)Z ≡ ψ(y,X) if ψ is atomic; (ψ1 �ψ2)
Z ≡ (ψ1)

Z � (ψ2)
Z for � ≡ ∧,∨,→;

((Qy)ψ)Z ≡ (Qy ∈ Z)(ψZ); ((QX)ψ)Z ≡ (QX)(ψZ);

(λy.λX.{z |ϕ(z,y,X)})Z = λy.λX.{z | z ∈ Z ∧ ϕZ(z, ,y,X)}.

Remark 10 (1) (X = Y )Z is (∀x ∈ Z)(z ∈ X ↔ x ∈ Y ) and hence does not imply X = Y .
(2) Up to now we did not consider the field fd(W ) = {x | (∃y)(〈y, x〉 ∈W ∨ 〈x, y〉 ∈W )} by treating
z /∈ fd(W ) as a minimal element, i.e., (W )z = ∅. In this section, however, it is more convenient to restrict
the quantifiers in SCSP[Γ ] (w in Definition 11), and in Hier[Γ ], FHier[Γ ], LFHier[Γ ] and SLFHier[Γ ]
(i.e., x in Definitions 8 and 12), to the fields (of A or W ). It is easy to see that these modifications
preserve the axiom schemata in the sense of provable equivalence.

Lemma 19 (absoluteness) Recall Wf(W ) from Remark 5. Let θ state the Σ1-ness of Wf and the
decreasingness of Wf (i.e., X ⊂ Y ∧ Wf(Y )→Wf(X)) (both of which hold in ZF).

NBG− proves the following: If Trans(Z) and Z is closed under Mostowski pairs, then

(i) Hier[ΓZ ](H ∩Z,W )↔ (Hier[Γ ](H,W ))Z for any W ⊂ Z;
(ii) FHier[ΓZ ](H ∩Z,W )↔ (FHier[Γ ](H,W ))Z for any W ⊂ Z;
(iii) LFHier[ΓZ ](H ∩Z,W )↔ (LFHier[Γ ](H,W ))Z for any W ⊂ Z;
(iv) SCSP[ΓZ ](W )↔ (SCSP[Γ ](W ))Z for any W ⊂ Z;
(v) SLFHier[ΓZ ](H ∩Z,W )↔ (SLFHier[Γ ](H,W ))Z for any W⊂Z;
(vi) Wf(W )↔WfZ(W ), if (a) W,Ord ⊂ Z, (b) (∀z ∈ Z)(z ∩W ∈ Z), (c) Z=

⋃
α∈Ord(Vα)

Z (where Ord
is not relativized to Z) (d) ∆1

0-Ref and (e) θZ .

Proof (i)-(v) are from Remark 10 (all the first-order quantifiers are bounded by fd(W )⊂Z), since second
order quantifiers are not changed by the relativizations and since Γ is F then so is ΓW.
(vi) Assume (a)-(e). Wf(W ) → WfZ(W ) is easy. Suppose, for contradiction, ¬Wf(W ) and WfZ(W ).
(d) yields transitive a with (¬Wf)a(W ), i.e., (¬Wf)a(W ∩ a). By upward persistency of Σ1 formulae,
we have ¬Wf(W ∩ a). W ∩ a ⊂ (Vα)

Z for some α ∈ Ord by (c). WfZ(W ) implies WfZ(W ∩ (Vα)
Z).

By (b) we have W ∩ (Vα)
Z ∈ Z, and so (e) implies Wf(W ∩ (Vα)

Z), contradicting (¬Wf)a(W ∩ a) and
W ∩ a ⊂ (Vα)

Z .

We first treat Found. The main idea is to restrict the domain to what is called well-founded part
W = {x |Wf(∈↾trh(x))}, where trh(x) is the transitive hull of x, the least transitive superset of x.

Proposition 20 Let F be ∆1
0, Σ

1
n or Π1

n. Let T be NBG− plus any combination of

- LC, Choice, ∆(F)-CA, F-Red, F-TR, F-FTR, F-LFTR, F-SLFTR, and
- F-TRα, F-FTRα, F-LFTRα, F-SLFTRα

where the order ≻ for α is ∆0
0-defined with ZF− ⊢WF(≻) ∧ (≻⊂W).

Then T + Found can be interpreted into T by relativizing (the first order part) to W.

Proof We are working in NBG−. (NBG−)W, LC → (LC)W and Choice → (Choice)W are obvious.
To see (Found)W, let (∀x ∈ W)((∀y ∈x)(y ∈X)) → x∈X). For z ∈ W, since {z} ∈ W, we have
TI[{x |x ∈W→ x ∈ X}](∈↾trh({z})) (cf. Remark 5) which implies z ∈ X.

To show F-LFTR → (F-LFTR)W, assume WF(W )W. Let W ′ = W ∩W. Then, by definition,
WF(W ′). For an F operator Γ , F-LFTR yields H with LFHier[ΓW](H,W ′). (LFHier[Γ ](H,W ))W

follows from Lemma 19. We can similarly treat F-SLFTR, F-FTR, F-TR, and α-restricted versions
of them.

It is straightforward to treat ∆(F)-CA. For F-Red, if ((∀x)(ϕ(x) ∨ ψ(x)))W, we can apply F-Red
to (∀x)[(x ∈W→ ϕW(x)) ∨ (x ∈W→ ψW(x))] to get desired Z.

It seems impossible to deal with F = Σ0
n or Π0

n, since the relativization to W does not preserve them.
With F-Coll, it also seems impossible to deal in this way, but possible, by a detour via Remark 9, which
is free from Found: E.g., NBG−+∆1

0-LFTR+Σ1
1-Coll contains NBG−+∆1

0-FTR and so interprets,
by W, NBG+∆1

0-FTR which is, by Remark 9, Π1
2 -equivalent to NBG+∆1

0-FTR+Σ1
1-Coll and, by

our main result, to NBG+∆1
0-SLFTR+Σ1

1-Coll.
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Theorem 14 Let T be NBG− plus any choice of LC, Choice, Σ1
1-Coll, ∆1

0-TR, ∆1
0-FTR, ∆1

0-LFTR,
∆1

0-SLFTR, ∆1
0-TRα, ∆

1
0-FTRα, ∆

1
0-LFTRα and ∆1

0-SLFTRα (with the same condition on α as
above). Then T and T + Found are equiconsistent.

Next we treat the other controversial axioms, LC and Choice, by the notion of constructibility. Let
Lα be the α-th level in the constructable hierarchy. (Though Lα is a set, it can be denoted by a capital
letter, for it is identified with {x |x ∈ Lα}.) Let us restrict the first order domain to L =

⋃
α∈Ord Lα. In

this case we have to restrict also the second order, for otherwise Sep does not hold: For x ∈ L, nothing
guarantees x ∩X ∈ L. How should we do this?

Should we extend the notion of constructibility to classes, in the same way as Simpson [18, VII.3-4]
did for sets in L2

N? In the “standard” model (Vκ, Vκ+1) for strongly inaccessible κ, this works well: L
and the interpretation of constructibility predicate for the classes are Lκ and L∩ Vκ+1 respectively, and
famous Condensation Lemma tells us L∩ Vκ = Lκ. However, the lemma does not seem to hold in “non-
standard” models. We need another way to restrict the second order domain, as below. Note that by the
previous result we can freely use Found, which makes the three variants of fixed point construction be
equivalent.

Proposition 21 Let T be NBG plus any combinations of ∆1
0-TR, ∆1

0-SLFTR, ∆1
0-TRα, ∆

1
0-SLFTRα

where α is as in Proposition 20. Then T +Choice is interpretable into T .

Proof The interpretation l defined below obviously interprets Sep, i.e., (Sep)l.

(Qxϕ)l ≡ (Qx ∈ L)ϕl and (QXϕ)l ≡ (QX ∈ L
2)ϕl where L

2 = {X | (∀z ∈ L)(z ∩X ∈ L)}.

To see (Repl)l, let ((∀x∈ a)(∃y)(〈x, y〉 ∈X))l, i.e., (∀x∈ a)(∃ξ)(∃y ∈Lξ)(〈x, y〉 ∈X). Repl yields β ∈
Ord with (∀x∈ a)(∃ξ<β)(∃y ∈Lξ)(〈x, y〉 ∈X). So ((∀x∈ a)(∃y ∈Lβ)(〈x, y〉 ∈X))l with Lβ ∈ L.

The proof of (∆1
0-CA)l (as well as (∆1

0-TRα)
l and (∆1

0-SLFTRα)
l) is included in the proof of

(∆1
0-TR)l (and (∆1

0-SLFTR)l) below, but not depending on (†) for which we need (NBG)l. Thus
without circularity we have (NBG)l.

Note that, by (NBG)l, definition of (-)l, Lemma 19 (vi) and NBG respectively, for X ∈ L
2,

(WF(X))l ↔ (Wf(X))l ↔ (Wf(X))L ↔Wf(X)↔WF(X). (†)

We prove (∆1
0-TR)l and (∆1

0-SLFTR)l. Let (WF(W ))l with W ∈ L
2. We may assume W ⊂ L. By

(†), ∆1
0-TR or ∆1

0-SLFTR yields H with Hier[ΓL](H,W ) or SLFHier[ΓL](H,W ). By Lemma 19 (i)(v),
it remains to show H ∈ L

2. Take z ∈ L. We have to show H ∩ z ∈ L.
Since we have replacement for ∆1

0 with any parameters (not necessarily in L
2), the standard proof of

reflection within L yields a = (Vα)
L containing z and all the first-order parameters from Γ with a |= θ

(where θ is from Lemma 19) and either (Hier[Γ ](H,W ))a or (SLFHier[Γ ](H,W ))a. By Lemma 19 (i)(v)
with Z = a, Hier[Γ a](H ∩ a,W ∩ a) or SLFHier[Γ a](H ∩ a,W ∩ a). Since (a,PL(a)) |= BGZ+Π1

∞-CA
(where recall BGZ ≡ NBG−Repl), on the other hand, (a,PL(a)) |= ∆1

0-TR ∧ ∆1
0-SLFTR. Thus

(Hier[Γ a])L(h,W ∩ a) or (SLFHier[Γ a])L(h,W ∩ a) for some h ∈ L, since W ∩ a ∈ L. Again by Lemma
19 and (Γ a)L = Γ a, the superscript L can be omitted. By the uniqueness of such h, H ∩ a = h and so
H ∩ z = z ∩ (H ∩ a) = z ∩ h ∈ L.

8 First Order Systems

Whereas we have been working on second order languages, as was mentioned several times many of our
results can be expressed in first order settings, in the same sense as, in number theory, the first order
systems ÎDα and IDα can be seen as refinements of the second order ∆1

0-FP and ∆1
0-LFP respectively.

In what follows, L1 is the first order part of L2, i.e., the language L1
S of the first order set theory or that

L1
N of the first order number theory; and BT1 is (a variant of) Zermelo-Fraenkel set theory or Peano

Arithmetic.

Definition 19 Let L be a language extending L1 and T a schematically extension of BT1 in L.
L[X0, ..., Xk] is L augmented by unary predicates X0, ..., Xk where Xi(y) is denoted by y ∈ Xi. Fol-
lowing this convention, ∆1

0, Σ
0
n and Π0

n have the obvious meanings in L[X]. An L-operator form has of
the form λy.λX,Y.{z |ϕ(z,y,X,Y)} as in L2. Let F be a class of L[X,Y ]-formulae.

(1) F-ÎDα[T ] is the L
′ = L ∪ {FΓ |Γ is a F operator of arity (1, 1, 1)}-theory generated by

20



– T with all the schematic axioms extended to the language L′;
– (∀x ≺ α)((FΓ )x = Γ (x, (FΓ )x, (FΓ )

≺x)).

(2) F-IDα[T ] is the L
′′ = L ∪ {LΓ |Γ is a F operator of arity (1, 1, 1)}-theory generated by

– T with all the schematic axioms extended to the language L′′;
– (∀x ≺ α)((LΓ )x = Γ (x, (LΓ )x, (LΓ )

≺x)); and
– (∀x ≺ α)((∀y)(y ∈Γ (x, ϕ, (LΓ )

≺x)→ϕ(y))→ (∀y ∈ (LΓ )x)ϕ(y)) for any L
′′-formula ϕ.

(3) F-ID+
α [T ] is the L

′′′ = L ∪ {OΓ |Γ is a F operator of arity (1, 1, 1)}-theory generated by

– T with all the schematic axioms extended to the language L′′′;
– (∀x ≺ α)SCSP[λX.Γ (x,X, (OΓ )

≺x)]((OΓ )x); and
– (∀x ≺ α)TI[ϕ]((OΓ )x) for any L

′′′-formula ϕ.

Sometimes we omit “∆1
0” and “[BT1]”: e.g., both IDα and IDα[BT1] denote ∆1

0-IDα[BT1].

Note that F-IDα[F-IDβ [T ]] is mutually interpretable with F-IDβ+α[T ] for reasonable F .

Remark 11 We have the following interpretability results in all of which L-formulae are preserved:

(I) Remark 3 (3) can now be extended to: (Σ0
1 ∨ Π

0
1 )-ÎDα[T ] and (Σ0

1 ∨ Π
0
1 )-IDα[T ] are mutually

interpretable with ∆1
0-ÎDα[T ] and with ∆1

0-IDα[T ] respectively.

(II) Remark 5 (2) states that Π0
1 -IDα[T ] is interpretable in T if T ⊢ L-Ref.

(III) Remark 6 is now extended to: ∆1
0-IDα[T ] is interpretable into ∆1

0-ID
+
α [T ].

(IV) Remark 7 (2) states that ∆1
0-ID

+
1 [T ] is interpretable into Π0

1 -ID1[∆
1
0-ÎD1[T ]].

By (IV) and (II), ID+
1 [ZF] is interpretable into ÎD1[ZF]. More generally, ÎDα[ZF], IDα[ZF] and

ID+
α [ZF] are all pairwise mutually interpretable in such a way that all L1

S-formulae preserved.

Remark 12 Proposition 16 shows that BT2+∆1
0-LFTRωα +L2-AxSch can be interpreted into IDωα+1 ,

where L2-AxSch denotes the axiom schemata (i.e., induction schema in number theory; separation,
collection and transfinite induction schemata in set theory). For the converse, we can interpret ID+

ωα+1 into

BT2+∆1
0-SLFTRωα+L2-AxSch as follows: By induction on n, we can show (∃!H)SLFHier[Γ ](H,ωα·n).

Then OΓ can be interpreted as

{〈ξ, x〉 | (∃n ∈ ω)(∃H)(SLFHier[Γ ](H,ωα·n) ∧ (ξ < ωα·n) ∧ (x ∈ (H)ξ))}.

Thus, by Corollary 9 (iii)(a), the theories BT2+∆1
0-LFTRωα+L2-AxSch, IDωα+1 [BT1], ID+

ωα+1 [BT1]

and BT2+∆1
0-SLFTRωα+L2-AxSch are mutually interpretable.

If BT1 ⊢ L-Ref, we can add BT2+∆1
0-FTRωα+L2-AxSch and ÎDωα+1 [BT1].

9 Generalization of BT2

As mentioned several times before, most of our results have analogues in higher order number theory
and in higher order set theory. In other words, although we have been considering BT2 as ACA0 or
(variants of) NBG (or BGZ), we can consider BT2 as any systems with certain conditions without
losing most results. Among such theories is ∆n+2

0 -CA0 from [17].

In this section we see the certain conditions which guarantee the general treatment of our proofs in
the previous sections.

Definition 20 (s.e.(L)) For a first order language L with at most finitely many sorts and with equalities
for all the sorts, the second order extension s.e.(L) is defined as follows.
(sort) The sorts of s.e.(L) are those of L, called first order, and a distinct one called second order.
(functions) The function symbols of s.e.(L) are those of L with the arity assignment preserved.
(predicates) The predicate symbols of s.e.(L) are those L with the arity preserved, and a distinct binary
one ∈, whose first and second arguments are of first order and of second order, respectively.

21



Note that, although the equalities are included in L, the equality for the second order is not included
as a primitive symbols and is defined by extensionality and the finiteness of sorts.

The languages L2
N of second order number theory and L2

S of second order set theory are our proto-
typical examples of second order extension. Indeed they are the second order extensions of the language
L1
N of first order number theory and of the language L1

S of first order set theory.
Since second order extension is itself a first order language with one more sorts (with the defined

equality for the second order), we can apply the operator s.e. repeatedly.

Example 15 The languages Ln+1
N (or Ln+1

S ) of n+1-th order number (or set) theory is the second order
extension of that LnN (or LnS, respectively) of n-th order number (or set) theory.

By convention, lower case Latin letters denote the terms (or objects, from a semantical point of view)
of the first order, while upper ones denote those of the second order. We define ∆1

0, Σ
1
n, Π

1
n and their

relativizations ∆1
0(F), Σ

1
n(F) and Π

1
n(F) as usual.

Along the line of Example 15, Σ1
k and Π1

k in Ln+1
N are, in the traditional terminology, denoted by Σn

k

and Πn
k respectively. In our terminology, all the orders strictly below the n+1-th are considered as the

first order and only the n+1-th order as the second order.

Assumption 21 (BT2, ∆0
0, Σ

0
n, Π

0
n) BT2 denotes any s.e.(L1)-theory satisfying the following:

1. the only non-Π1
1 -axiom of BT2 is ∆1

0-CA:
∆1

0-CA (∀X,x)(∃Z)(∀z)(ϕ(z,x,X)↔ z ∈ Z), for any ∆1
0 formula ϕ without free Z;

2. there are ∆1
0 formulae x ∈ ω and x < y such that BT2 ⊢ (∀X)((ω,<,X) |= PA[X]), where PA[X]

is PA, formulated only with <, with the induction scheme extended to L1
N [X];

3. there are ∆1
0 formulae finseq(x, n) and ev(x, k; v) such that BT2 proves the basic properties ex-

pected from the intention “x is finite sequence of length n” and “ k-th component of x is v”, e.g.,
(∃x)finseq(x, 0), (∀x)(∀n ∈ ω)[finseq(x, n) → (∀k < n)(∃!v)ev(x, k; v) ∧ (∀u)(∃z)(finseq(z, n + 1) ∧
ev(z, n;u) ∧ (∀k < n)(∃v)(ev(z, k; v) ∧ ev(x, k; v)))];

4. there is a class F of formulae, containing atomic formulae and their negations, such that
(a) there is a F-formula pair(x, y; z) such that F is closed under the quantifiers of the forms

(∃y)(pair(x, y; z) ∧ ...) and (∀y)(pair(x, y; z)→ ...)

and that BT2 ⊢ (∀x, y, u, v)[(∃!z)pair(x, y; z) ∧ (∀z)(pair(x, y; z) ∧ pair(u, v; z)→ x = u ∧ y = v)];
(b) (optionally) there is a F-formula π(e, w, x,X, Y ) at most e, w, x,X, Y free, in which X occurs

only positively, such that for any F-formula ϕ(w, x,X, Y ) in which X occurs only positively,

BT2 ⊢ (∀x,X, Y )[(∃w)ϕ(w, x,X, Y )↔ (∃w)π(pϕq, w, x,X, Y )].

In what follows, we fix such F and pair(x, y; z), which are denoted by ∆0
0 and “ 〈x, y〉 = z”. Then we

can define Σ0
n and Π0

n starting with Σ0
0 = Π0

0 = ∆0
0, and relativizations Σ0

n(F) and Π
0
n(F) accordingly.

(Y )x denotes {z | 〈x, z〉 ∈ Y } as usual. Based on π, we define the X-positive Σ0
1 universal formula:

Υ 0
1 (e, x,X

+, Y ) ≡ (∃w)π(e, w, x,X, Y ).

Remark 13 Since ∆0
0 contains all atomic formulae and their negations, and since BT2 is on classical

logic, for any elementary formula ϕ(x) there are k and ψ(x, y1, ..., yk) in ∆0
0 with BT2 ⊢ (∀x)[ϕ(x) ↔

(∀y1)(∃y2)...(Qyk)ψ(x, y1, ..., yk)]. Thus, ∆
1
0-CA can be replaced by Σ0

1-CA.
By Assumption 21.1 and 21.2, BT2 contains induction on ω for all ∆1

0 formulae.

Example 16 In the cases of L2 = L2
N and L2 = L2

S, ACA0 and NBG (and its variants, with a
modification for Choice, that is, we introduce a new predicate W) can be BT2 with 4(b) satisfied. BGZ
can also be BT2 but not the optional 4(b).

For L2 = Ln+2
N or = Ln+2

S , ∆n+1
0 -CA0 defined in [17] can be BT2 with 4(b), with a modification: We

require that k-th order objects be also k+1-th order, and we define xk+1 ∈k yk+1 by (∃uk ∈k yk+1)(xk+1 =
uk), so that the highest order objects may have objects of all the lower orders. This is inessential, because
k-th order part can be embedded into k+1-th order by singleton.

However, we need more assumption for reflection principle: Though Definition 18 allows us to define
the relativization for second order objects in general L2, for first order objects as required in ∆1

0-Ref,
we have to specify the way how to consider first order objects as second order.
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Assumption 22 We assume there is an L1 formula, denoted by x ∈ y, without other free variables,
such that ∆0

0 is closed under quantifiers bounded by this ∈, i.e., of the form (Qx ∈ y).

Example 17 For L1 = L1
S, the language of set theory, we can choose the elementhood ∈ as the specified

binary relation. For L1 = L1
N , that of number theory, we can choose, say, the ∆0

0(exp) relation “the x-th
digit of binary expression of y is 1” (see Remark 4). For L1 = Ln+3

N ,Ln+3
S , those of higher order number

and set theories, we take the relation (∃un)(xn+1 = (yn+1)u) ∨ x
n+1 ∈n yn+1 (cf. Example 16), where

(y)u is the section of y at u, as defined in [17, Definition 3].

Though ∈ we have introduced must not be confused with the relation symbol also denoted by ∈ in
Definition 20, if we identify a first order a with the second order {z | z ∈ a}, the two relations can be
identified. Accordingly we let ϕa denote ϕZ for Z = {x |x ∈ a}. Based on this convention, F-Ref defined
in Definition 10 makes sense in general L2 with our assumptions.

Example 18 For L2 = L2
S, as mentioned before ∆1

0-Ref holds in NBG and in NBGC−.

For ∆n+2
0 -CA0 from [17, Definition 5], Löwenheim-Skolem argument yields ∆n+2

0 -reflection.

Note that, in all of these examples, the clause (∀X)(∃x)(x = “ a ∩X”) is redundant.

Thus all the results in Sections 3, 4, 5, 6 and A, except Subsection 3.3, can be generalized for such
generalBT2, with literally the same proofs (withΩ being the order-type of the fixed global well-ordering),
where Subsections 6.2 and 6.3 require the optional 4(b). We could say that Figure 1 shows the contrast
between BT2 with countable first order and BT2 with reflection. Note that since the framework of [4]
is much more general the results obtained there also hold for our BT2.

We close this subsection by informally mentioning the generalization of equiconsistency results in
Section 7 to the higher order set theory (with the formulation given in [17]).

For the conservation between the extensions of ∆n+1
0 -CA0 from [17, Def.5] with and without Found

in the first order, it seems convenient to restrict also the higher order domains (except the highest) as
follows: The second order domain to W

2 = {x1 |x1 ⊂W}; the third to W
3 = {x2 |x2 ⊂W

2}; and so on.
Then, since xk ∈ W

k+1 is ∆k
0 (while xk is of type k, i.e., k+1-th order), the argument for Proposition

20 and Theorem 14 works well for n+3-th order set theory.

For global well ordering on the lower order parts, we only need the notion of constructibility for lower
orders because then the argument of Proposition 21 survives. This is planned to be discussed in the
author’s future work [16].

A Disanalogy to Conventional Ordinal Analysis

In the proof of Proposition 21, we used a fact of the form: Strong principles (e.g., even full comprehension) hold in the sense
of a reflecting first order object a, because the last clause of our version of reflection implies (QX)ϕa(X) ↔ (Qx)ϕa(x). This
explains (only informally) why the analogues of conventional ordinal analysis do not work for NBG (and other ∆n

0
-CA0’s).

One might ask if the supremum of provably well-founded ∆0
1
relations of NBG can be described as E0, which Jäger

and Krähenbühl [7, §3] introduced as the set-theoretic analogue of the ordinal ε0 to obtain analogues of some results known
in number theory, and if that of NBG + ∆1

0
-TR can be described by defining the analogue of Γ0 similarly, and so on.

These are not the case as shown below.

Let ≺ be the analogue of any known notation system of recursive ordinal (of course, here is some ambiguity, e.g., the
definition of E0 is obtained by replacing some occurrences of ω in the definition of ε0 with Ω but some ω remaining). It
is at least ∆1

0
. All such notations are provably well-founded in at least full second order number theory. This is the case

even for the notations for the strongest systems whose ordinal analysis has ever been done. Thus it is natural to assume
BGZ+Π1

∞
-CA ⊢ WF(≻). By reflection in NBG, we have a with ¬WF(≻) → (¬WF(≻))a. Since (Π1

∞
-CA)a as explained

above and (BGZ)a, we have (WF(≻))a and so WF(≻).

Thus we could conclude (informally, not as a formal mathematical theorem) that the supremum of provably well-founded
∆0

1
relations of NBG (and of ∆n+2

0
-CA0’s) is far beyond our knowledge; not to mention that of the extensions.
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8. Jäger, G., Strahm, T.: Fixed point theories and dependent choice. Arch. Math. Logic 39(7), 493-508 (2000)
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