
Controlled Query Evaluation
in General Semantics

with Incomplete Information

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Johannes Martin Werner

aus Deutschland

Leiter der Arbeit:

Prof. Dr. T. Studer
Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, den 23. April 2015 Der Dekan:

Prof. Dr. G. Colangelo

Acknowledgements

To begin with, I want to thank Prof. Dr. T. Studer for his

support, advice and guidance in preparation of and during

my stay in Bern and also Prof. Dr. K. Stoffel for serving as

second examiner of this thesis.

Many thanks are due to Prof. Dr. G. Jäger and all members of

the Logic and Theory Group for providing an excellent work

environment and stimulating discussions.

Additionally, I thank my family and friends for their support

and patience.

Contents

1 Introduction 1

2 Definitions 5

2.1 Notations . 5

2.2 Semantics . 8

2.2.1 Generalized Semantics 9

2.2.2 Structural properties 13

2.3 Incomplete Evaluation 18

2.4 Censors for Databases 20

2.4.1 Databases . 20

2.4.2 Censors . 22

2.4.3 Logging and Handling Facilities: Clouds . . . 25

2.4.4 Privacy: The Qualities of a Censor 28

3 Example Semantics 35

3.1 Propositional Logic 35

3.1.1 Semantics . 37

3.1.2 Basic Properties 40

v

3.2 Boolean Description Logic 41

3.2.1 Semantics . 42

3.2.2 A Running Example 44

4 Dependencies on Language Structures 51

4.1 Handling Negation 51

4.2 Pseudo-Atomicity and Evaluation 54

5 Generalized Censors 71

5.1 Basic Properties . 72

5.1.1 Cloud Translation 73

5.1.2 Ignorance . 77

5.1.3 Standard Repudiation Sequences 79

5.2 Truthful Censors . 81

5.3 Cooperative Lying Censors 92

6 Conclusion 103

Index 107

Bibliography 109

Chapter 1

Introduction

Beginning in the past century, the possibilities to collect and use

data of various kinds aggrandised dramatically. This development

war accompanied by an enormous growth in computational power.

The combination of both lead to a situation, where information is

not only used for a single purpose that it was initially collected for,

but also connected to various other information, reinterpreted and

perhaps used or abused for purposes nobody could imagine. With

the new possibilities of data usage, unfortunately there also arose

possibilities to abuse provided information. Especially it lead to a

huge loss in privacy.

Because of this development, it became insufficient to consider

only data that is directly stored in a database or a direct consequence

thereof. It is also necessary to protect against various other kinds of

situations. For one, answers of a database, e.g. containing communi-

cation information, can lead to possible harmful believes, e.g. when a

1

CHAPTER 1. INTRODUCTION

potential employer knows about contacts to a lawyer or to a (known)

subject in a criminal case, this might raise suspicion and hence cause

an application to fail. It turns out that possible meta analyses of

controlled answers are even more problematic. Those can result in

situations, where agents that query a protected database utilizing

additional knowledge, e.g. the used method of data-protection, can

infer the information, that was supposedly hidden. However, since it

seems desirable to allow usage of not harmful information, the pro-

tection of knowledge should not lead to totally blocking all requests

for data. Moreover, the need to protect some information from being

revealed is often directly opposed by the need to be certain about

some related information. For instance in healthcare it is necessary

to have information about the spread of an infection and possible

infection zones, but not desirable to give away any identifying data

of infected people to avoid e.g. any harassment. Hence it is manda-

tory to simultaneously address both, the need to make as much safe

information public as possible and the protection from potentially

malicious usage of attainable data.

To cope with this newly recognized problem, in recent research

various approaches and methods were studied and developed. One of

the most successful variants in privacy protection are so called con-

trolled query evaluation mechanisms that were pioneered in [Bis00]

and [BW08]. The main idea is the following: The access-system of

a database is equipped with a so called censor. This censor acts

as a mediator between a querying agent and the database. There-

fore separating storing information and maintaining privacy. As

such, the censor has full access to the knowledge stored and im-

plied by the database. In order to ensure privacy, the censor has

2

the abilities to distort the result before answering the query. For

instance, it might chose to refuse ([SDJR83]) to answer or even to

lie ([BKS95]), i.e. give an answer not matching the stored informa-

tion. To maintain privacy in a consistent manner, even over multiple

queries and answers, it can also be equipped with a history of an-

swers or additional checking methods, other than plain database

evaluation. The framework for controlled query evaluation has been

applied for a variety of data models and control mechanisms, see for

instance [BB04a, BB04b, BB07, BW08].

Another aspect of data hoarding is the failure of the closed world

assumption, i.e. assuming not directly inferable information to be

false. It was replaced by the open world assumption, that distin-

guishes between knowledge, i.e. facts that the database can decide to

be either true of false, and unknowledge, i.e. statements that cannot

be decided, e.g. because of insufficient data: A database containing

climate information of the server-room does not know whether it

rains outside or not.

Hence, in systems with Boolean incomplete information, the def-

inition of the standard truth values slightly changes: The standard

values t (true) and f (false) have to be read as “known to be true”

and “known to be false” respectively. Additionally, a third truth

value u (unknown) has to be added to describe that the statement

can not be decided.

Goal of this thesis is to connect both, controlled query evalua-

tion and incomplete knowledge, in a very wide framework. To this

end, we adapt a specific approach for propositional logic presented in

[BW08] to incomplete databases defined on general semantics, sim-

ilar to the comparable approach in [Stu13]. Furthermore, we show

3

CHAPTER 1. INTRODUCTION

that in case the underlying semantics has enough structure, data-

bases on this semantics can essentially be treated like a propositional

database.

Outline: In chapter 2 we explicitly state what is meant by the

concepts of “semantics” and “incomplete evaluation” in a formal

way. Also we introduce all basic notions and give an overview and

motivation to privacy related definitions.

In chapter 3 we present example semantics to serve three pur-

poses: Firstly, to allow comparison of the presented semantical def-

initions in widely known concrete realisations, secondly, to provide

a more concise motivation on structural properties of semantics and

lastly, to establish a general example setting against which all de-

fined censors of chapter 5 can be tested.

In the following chapter 4, we show simplifications of the general

semantic framework, that can be achieved in case the semantics is

equipped with structural properties (e.g. a negation operator or an

atomic base).

Finally, in chapter 5, we present censors, that work on all data-

bases with general semantics. Let us point out, that a specialized

version of the presented censors was presented in [SW14], in which

the presented examples can also be found.

4

Chapter 2

Definitions

2.1 Notations

In this section, we clarify how quite common notions are represented

within this work. This is mainly to avoid confusion with seemingly

common notations, that are introduced in the upcoming sections in

a more rigorous way. Since all introduced notations and concepts

are well known, we will only give an informal meaning.

Definition 2.1.1

A function from A to B, written f : A → B, is a mapping, that

assigns an element of B to each element of A. The set A is called

domain and B is called range. 2

Let us point out, that all functions used and defined in this work

are total, i.e. they are defined on their whole domain.

5

CHAPTER 2. DEFINITIONS

The usual notations for set operations are used throughout the

whole text. In particular we use the following:

Definition 2.1.2

• ∅ the empty set, i.e. a set without any elements,

• {a ∈ A | P (a)} the set containing all elements of A, which

satisfy property P ,

• {f(b) | b ∈ B} the set containing the image of a function f

restricted to a set B,

• A ∩ B intersection of the sets A and B, and
⋂
i∈I

Ai describing

the (possibly infinite) intersection of some indexed sets,

• A ∪ B union of the sets A and B, and analogously
⋃
i∈I

Ai de-

scribing the (possibly infinite) union of some indexed sets,

• A \B complement of B in A,

• A×B the Cartesian product of A and B. 2

In order to keep notational overhead due to bookkeeping to a

minimum, we use two special sets to denote natural numbers. Of

which one contains the element 0 and the other does not.

Definition 2.1.3

The set of natural numbers is defined as N0 := {0, 1, 2, . . .} and the

set of nonzero natural numbers as N := {1, 2, 3, . . .}. 2

Let us already point out, that in most cases –like the upcoming defi-

nition of sequences– the positive natural numbers N is used as index

set. This allows to encode initial states with the special index 0,

removing extra treatments of those cases.

6

2.1. NOTATIONS

Definition 2.1.4 (tuples/sequences)

A tuple on a set V of length n = #v̄ is a function v̄ : {1, . . . n} → S,

they are represented in the usual tuple notation v̄ = (v1, . . . , vn).

Likewise a sequence on a set S is a function s : N→ S. Sequences are

represented in the usual way, either as compact notation s = (si)i∈N
or as “infinite tuple” s = (s1, s2, . . .). 2

Definition 2.1.5

• Two tuples v̄, w̄ are identical, iff they have the same length, i.e.

#v̄ = #w̄ and all their components are identical, i.e. si = ti

for all 1 ≤ i ≤ #v̄.

• Analogously two sequences s and t are equal, written s = t,

iff their components agree, i.e. si = ti for all i ∈ N.

• A sequence s = (si)i∈N has the finite restriction

s|n = (s1, . . . , sn)

to a tuple of length n. 2

Definition 2.1.6

A partition (P1, . . . Pn) of a set S is tuple of disjoint subsets of S,

dividing all members of the set in the members of the collection, i.e.⋃
i∈I

Pi = S and Pi ∩ Pj = ∅ for all i ∈ I (Pi ⊆ S already follows).

2

Finally, to ease up several tedious inductive definitions, we make

use of a tool used in theoretical computer science to formally specify

context-free languages. Details of this notation can be found e.g. in

[BBG+63] and [Sch08]

7

CHAPTER 2. DEFINITIONS

Definition 2.1.7 (Backus–Naur form)

For two sets T (terminals) and N (non-terminals), a grammar is a

collection of rules that have the form

n ::= s1 . . . sn,

where n ∈ N and si ∈ T ∪N for all 1 ≤ i ≤ n.

The rule means, that the non-terminal n can be substituted by the

string s1 . . . sn, which might contain more non-terminals. The lan-

guage L derived from a starting symbol s ∈ N is the set of all strings

of terminals, that can be derived from s by successively substituting

all occurrences of nonterminals according to the given rules.

Notice, that there might be multiple rules for each non-terminal.

Hence, to ease notation further, we adapt two common abbrevia-

tions that allow collecting rules for the same non-terminal into the

same line:

Firstly we use the symbol “ | ” to split several derivable strings and

secondly we use “ a |
a∈A

” to add a derivation to each a ∈ A ⊆ T . 2

2.2 Semantics

One of the main tools we use is (generalised) semantics. In common

use a semantics is applied to attach a meaning to a language. When

dealing with controlled query evaluation however, it turns out, that

in most cases the structure of the language is irrelevant. This is

due to the fact, that most queries can be handled by only looking

at the model class of the queried formula. Hence, we separate the

structured parts, that mainly restrict the language with respect to

its satisfaction symbol.

8

2.2. SEMANTICS

2.2.1 Generalized Semantics

As already stated, semantics in one of its most general forms is used:

Definition 2.2.1 (Semantics)

A semantics is a triple (L, I,�), consisting of

• a language L (i.e. a non-empty set of strings on an alphabet),

• a class of interpretations I (models) for that language and

• a satisfaction relation � ⊆ I × L.

An element of the language is also called a formula. A formula

ϕ ∈ L is satisfied in an interpretation i ∈ I, iff (i, ϕ) ∈ � . As usual

the standard notation i � ϕ is used, when a formula is satisfied,

and i 6� ϕ, when it is not. 2

Throughout this work, only non-trivial semantics are discussed, i.e.

the language, the class of interpretations and the satisfaction relation

are non-empty (as sets).

There are two helpful addenda to the definition of satisfaction,

to help in dealing with multiple formulae. The first is to allow sets

of formulae on the right hand side, meaning that all of the contained

formulae must be satisfied or unsatisfied simultaneously:

Definition 2.2.2

For C ⊆ L and i ∈ I

• i � C means that i � ϕ for all ϕ ∈ C, and

• i �
co

C means that i 6� ϕ for all ϕ ∈ C.

C is called satisfiable, iff there is an interpretation i ∈ I, s.t. i � C.2

9

CHAPTER 2. DEFINITIONS

The second tool is allowing sets of formulae on the left hand side,

too, in order to deal simultaneously with all interpretations that

satisfy or dissatisfy exactly all formulae contained in the specified

sets.

To ease notation, the formulae that must be satisfied and those

that must be dissatisfied can be handled as a bundle.

Definition 2.2.3 (Knowledge-Base)

A Knowledge-base on a semantics S = (L, I,�) is a pair

KK = (TKK ,FKK), where

1. TKK ⊆ L is the set of stored positive knowledge (or known true

formulae).

2. FKK ⊆ L is the set of stored negative knowledge (or known

false formulae).

A knowledge-base is called purely positive [purely negative], iff no

negative [positive] knowledge is stored, i.e. FKK = ∅ [TKK = ∅].
It is called satisfiable or consistent , iff there is an interpretation i ∈ I,

s.t. i � TKK and i �
co

FKK . In this case, i is called interpretation of

the knowledge-base, written i � KK. 2

Definition 2.2.4 (Semantical Implication)

Given a fixed semantics (L, I,�) and sets of formulae T,F,R ⊆ L,

we define:

• T,F semantically imply R, written T,F � R, iff

{i ∈ I | i � T} ∩ {i ∈ I | i �
co

F} ⊆ {i ∈ I | i � R}

i.e. all interpretations which satisfy all formulae in T, but none

of F, also satisfy all formulae in F.

10

2.2. SEMANTICS

• T,F semantically co-imply R, written T,F �
co

R, iff

∅ 6= {i ∈ I | i � T} ∩ {i ∈ I | i �
co

F} ⊆ {i ∈ I | i �
co

R}

i.e. none of the interpretations, satisfying all formulae in T,
but none in F, satisfies any formula of R.

• for two knowledge-bases (T0 ,F0) , (T1 ,F1), semantical implica-

tion T0 ,F0 � T1 ,F1 is given by

{i ∈ I | i � (T0 ,F0)} ⊆ {i ∈ I | i � (T1 ,F1)}}

which is equivalent to

{i ∈ I | i � T0 } ∩ {i ∈ I | i �
co

F0 }

⊆ {i ∈ I | i � T1 } ∩ {i ∈ I | i �
co

F1} 2

In the definition above the set T acts as set of positive knowledge,

containing all facts known to be true. The contrasting set F acts

as negative knowledge, containing all facts known to be false. For

the sake of simplification, set brackets on the right side can be al-

ways omitted. The set brackets on the left are necessary to distinct

between positive and negative knowledge. However, in case the set

of negative knowledge F is empty, the set or its brackets may be

omitted.

Lemma 2.2.5

For T,F ⊆ L, the pair (T,F) is satisfiable, iff

T,F �
co

∅
2

11

CHAPTER 2. DEFINITIONS

Proof It holds {i ∈ I | i �
co

∅} = I. Hence, any i ∈ I, s.t. i � T
and i �

co

F will witness ∅ 6= {i ∈ I | i � T} ∩ {i ∈ I | i �
co

F}.
The other direction follows by reversing the argument. �

Remark 2.2.6

In the definition of semantical co-implication the set of interpreta-

tions of T violating (i.e. do not satisfy) all formulae in F may not

be empty. This is mainly a technical trick, to achieve simpler defi-

nitions of the database-evaluators.

Also the notion of being a semantical co-implication is stronger than

just not being a semantical implication: T,F 6� R only means, that

there is an interpretation i ∈ I, s.t. i � T and i �
co

F, but i 6� R.

However, it allows interpretations to exist, where this does not hold,

i.e. there still can be j ∈ I, s.t. j � T, j �
co

F and j � R. Semantic

co-implication forbids this existence. Furthermore, it requires that

especially T has at least one interpretation.

Hence, the symbols 6� and �
co

should not be misinterpreted (likewise

the symbols � and 6�
co

). 2

Definition 2.2.7

The set of tautologies TTS (always true formulae) and the set of un-

satisfiables FFS (always false formulae) are defined by

TTS := {ϕ ∈ L | for all i ∈ I i � ϕ}

FFS := {ϕ ∈ L | for all i ∈ I i 6� ϕ} 2

12

2.2. SEMANTICS

2.2.2 Structural properties

In some cases it does matter, if a language has special properties.

Mainly it concerns the possession of operators on the language, that

allow the language to internalise some of the properties of the sat-

isfaction relation. In some settings, those operators allow a sim-

plification of the censoring systems presented in chapter 5, namely

if negation is internalised into the language. In other cases, e.g. if

the language is atomic, they can cause problems if some additional

knowledge is introduced to the setting as well.

Definition 2.2.8 (Subboolean language)

A language L is called subboolean, iff there are

• a non-empty, finite set of operators O on L,

i.e. o ∈ O is a function o : Ldeg(o) → L for some deg(o) ∈ N,

• and a basis B ⊆ L, i.e. for all o ∈ O and ψ1, . . . , ψdeg(o) ∈ B

o(ψ1, . . . , ψdeg(o)) 6∈ B

s.t. L =
⋃
i∈N0

Ln, where Ln is inductively defined by

• L0 := B and

• Ln+1 := Ln ∪
⋃
o∈O

{o(ψ1, . . . , ψdeg(o)) | ψ1, . . . , ψdeg(o) ∈ Ln}.

The formulae contained in B are called base formulae and the for-

mulae in L \B are called compound formulae of L. 2

13

CHAPTER 2. DEFINITIONS

Definition 2.2.9

A semantics (L, I,�) is called subboolean, iff its language is sub-

boolean and the satisfaction of compound formulae can be induc-

tively calculated from the base formulae and Boolean functions as-

signed to the operators. I.e.

• for each operator o ∈ O there is a Boolean function

bo : {0, 1}deg(o) → {0, 1},

• to each interpretation i ∈ I and formula ψ ∈ L there are values

viψ ∈ {0, 1}, s.t. viψ = 1 iff i � ψ and viψ = 0 iff i 6� ψ,

• and the values viψ can be obtained by

– if ψ ∈ B = L0,

then viψ = 1 iff i � ψ and viψ = 0 iff i 6� ψ

– if ψ = o(ψ1, . . . , ψdeg(o)) ∈ Ln+1 \ Ln,

then viψ = bo(v
i
ψ1
, . . . , viψdeg(o)

). 2

14

2.2. SEMANTICS

Definition 2.2.10 (Atomicity)

A subboolean semantics (L, I,�) is called atomic, iff the sets of

interpretations of sets of basic formulae are independent.

I.e. for all C1, C2 ⊆ B the conditions

• C1, C2 are semantic separable, i.e.

{i ∈ I | i � C1} 6= {i ∈ I | i �
co

C2}

• and C1, C2 are semantic inclusive, i.e.

C1 ⊆ C2 iff C2 � C1

hold. 2

Remark 2.2.11

One immediate property of atomicity is, that no basic formula ψ ∈ B

can be a tautology or unsatisfiable. Otherwise, either

{i ∈ I | i � {ψ}} 6= {i ∈ I | i �
co

∅}
or {i ∈ I | i � ∅} 6= {i ∈ I | i �

co

{ψ}}

would be violated.

It is also worth noticing, that from the definition follows

{i ∈ I | i � C1} = {i ∈ I | i � C2} iff C1 = C2

as well, for all C1, C2 ⊆ B. 2

Example 2.2.12

As simple example consider the semantics (L, I,�), with

• L := {a, b}?

= {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, aab, abb, bbb, . . .}

15

CHAPTER 2. DEFINITIONS

• I := {k, j} and

• � := {(k, a), (j, b)} ∪ {(k, w), (j, w) | w ∈ L \ {a, b, ε}}.

This semantics is subboolean with base formulae B := {ε, a, b} and

a single operator concat(ψ1, ψ2) = ψ1ψ2 and bconcat = max(v1, v2).

However, since

{i ∈ I | i � {a}} = {i ∈ I | i �
co

{b}} = {k}

holds, it is not atomic (or alternatively, because ε ∈ B is unsatisfi-

able and remark 2.2.11). 2

Definition 2.2.13

A knowledge-base KK = (T,F) on an atomic semantics is called

atomic, iff T,F ⊆ B. 2

A semantics defines truth and falsity for any formula based on

the model it is interpreted on. On most common languages exists

a special unary negation operator. The corresponding semantics

internalize this operator by interchanging this truth and falsity of a

formula within a model into the language.

Definition 2.2.14 (negation operator)

A semantics (L, I,�) has a negation operator ¬, iff

• L is closed under ¬, i.e. ϕ ∈ L iff ¬ϕ ∈ L.

• and for each ϕ ∈ L and i ∈ I, it holds i � ϕ iff i 6� ¬ϕ. 2

It is worth noticing, that ¬ might not be an explicit symbol of the

language. In view of the given definition, it could also be a complex

transformation of the formula, e.g. ¬(ϕ) = ϕ→ ⊥ in sequential style

propositional logics.

16

2.2. SEMANTICS

Remark 2.2.15

The converse of the second negation property, for each ϕ ∈ L
and i ∈ I it is

i � ¬ϕ iff i 6� ϕ,

also holds:

Otherwise either both, i � ¬ϕ and i � ϕ, violating the resulting

i 6� ¬ϕ, or both, i 6� ¬ϕ and i 6� ϕ, violating i � ϕ, would hold. 2

Example 2.2.16 (2.2.12 cont’d)

There is a way to modify the presented into an atomic version. One

can add a second operator to the set of operators, particularly a

negation defined element-wise by

¬ε = ab

¬a = b

¬b = a

¬w = ε

for all w ∈ L \ {ε, a, b}. Seeing that this is a negation is a straight

forward check of satisfaction in the two interpretations:

k � a and k 6� ¬a

k � w and k 6� ¬w

j � b and j 6� ¬b

j � w and j 6� ¬w

Obviously, the Boolean function b¬(v) := 1 − v can be assigned to

the negation operator. Together with the operator concat a possible

17

CHAPTER 2. DEFINITIONS

choice of base formulae is B := {a}, which is trivially atomic. Notice,

that ε = ¬(concat(¬(a), a)) is not an element of the basis anymore,

but can be expressed in terms of the basis and the operators as

presented. 2

2.3 Incomplete Evaluation

The second main tool is incomplete evaluation. The incomplete

evaluator qualifies, to what extend a formula is known within a

knowledge-base. An evaluated formula that is known, i.e. is either

semantically implied or co-implied, can be evaluated to t (known

to be true) or f (known to be false). But also a third option is

possible, namely that the formula is not known. This is denoted by

an evaluation u (unknown).

Definition 2.3.1 (Incomplete Evaluator)

Let (L, I,�) be a semantics. The full incomplete evaluator eval(·)
on this semantics is defined by:

eval :

℘ (L)× ℘ (L)× L → {t, f, u}

(T,F, ϕ) 7→

t if T,F � ϕ

f if T,F �
co

ϕ

u else

The positive incomplete evaluator eval(·) on this semantics is defined

18

2.3. INCOMPLETE EVALUATION

by

eval :

℘ (L)× L → {t, f, u}

(T, ϕ) 7→

t if T, ∅ � ϕ

f if T, ∅ �
co

ϕ

u else

with a different signature.

For any given knowledge-base (T,F). the short-notation eval(T,F) is

declared by

eval(T,F)(ϕ) = eval(T,F, ϕ)

and evalT is declared by

evalT(ϕ) = eval(T, ϕ) = eval(T, ∅, ϕ)
2

Both definitions of eval are highly dependent on the underly-

ing semantics. Thus, in case changing semantics are observed, one

should add the currently used semantics into its signature. How-

ever, since in this work the actually used semantics is fixed in most

situations, it is omitted in favour of readability.

Remark 2.3.2

As is easily seen, for any C ⊆ L evalC is a function: a formula ϕ ∈ L
is evaluated to t, iff all interpretations i ∈ I of C (i � C) are also

interpretations of ϕ (i � ϕ). It is evaluated to f , iff none of them is

an interpretation of ϕ (i 6� ϕ).

Especially ϕ is evaluated to u, iff there are interpretations i, k ∈ I,

s.t. i � C and k � C, but i � ϕ and k 6� ϕ. 2

19

CHAPTER 2. DEFINITIONS

2.4 Censors for Databases

2.4.1 Databases

There are several different approaches to querying databases. A

well-known possibility are databases for so-called retrieval queries,

i.e. queries that formalize a predicate and databases returning a list

of elements which satisfy this predicate.

Another approach is to consider Boolean queries, i.e. queries for-

malizing questions that can be answered with true (t) or false (f).

Of course, since almost no knowledge-base is omniscient, there are

questions that the database cannot decide by means of its stored

(and supposedly true) information.

In this work we study the three-valued approach in a general

framework and show how to apply it in the context of a database con-

taining (incomplete) information. That means the decision whether

a formula is evaluated to true, false or unknown is based on incom-

plete evaluation.

A general database, which is capable of answering true, false or

unknown, can by formalized as follows:

Definition 2.4.1 (Boolean Database)

An (incomplete, generalized) Boolean database D = (SD, TD ,FD) is a

semantics SD, together with a knowledge-base (TD ,FD) on SD.
A Boolean database is called complete iff u is not in the range

of eval(TD ,FD).

A Boolean database E is a sub-database of D, iff SD = SE and

TD ,FD � TE ,FE .
2

20

2.4. CENSORS FOR DATABASES

General Boolean databases are only useful, if the underlying se-

mantics is subject to change. Most times in this work, the semantics

will be fixed throughout every chapter.

Remark 2.4.2

In semantics with a negation operator it is sufficient to store only the

positive knowledge. This is simply done by adding negated versions

of the false formulae to the set of positive knowledge. Also, it suffices

to consider the positive evaluator only in this setting. In essence, in

any logic with negation operator, all databases can be treated to be

purely positive (or purely negative). 2

There are mainly two ways to query a Boolean database: An

agent can ask a formula of the database’s semantics, then receive

the result and maybe follow up to continue asking, or the agent can

ask several queries at once and get a mapping of the query-set to

the results.

However, since there is always an order in which the evaluation

has to happen, the second way reduces to the first as well.

Definition 2.4.3 (Queries and Results)

• A query on a Boolean database D is a formula in the language

of the database q ∈ LD. It has the result r = eval(TD ,FD)(q).

• A query-sequence on a Boolean database D is a sequence

q = (qi)i∈N ∈ LN.

It has the result-sequence r = (eval(TD ,FD)(qi))i∈N. 2

Query sequences are particularly useful. They provide a hand-

some tool to simulate answering a stream of queries without the

21

CHAPTER 2. DEFINITIONS

need to define an independent log. However, at a first glance they

appear a bit counter-intuitive, since a guarding algorithm—having

access to the modelled full stream of querryies—could “look into the

future” and choose its answers dependent on this divination. To

cope with this, we will introduce the quality-property of continuity

(definition 2.4.19), that restricts an answer determination to past

information.

2.4.2 Censors

When talking about privacy, we need to specify not only what is to

be kept secret, but also which means can be used to achieve it. We

make use of three knowledge-bases, namely

• the (incomplete) knowledge-base CK (Censored Knowledge) con-

cealed behind the censor,

• the a priori-knowledge AK (Attacker’s Knowledge) describ-

ing the (incomplete and restricted) knowledge of the attacker

(which, in this work, is shared with the censor), and

• the (not necessarily satisfiable) secrets SK (Secret Knowledge)

containing protected formulae.

Here we mean by protected that after any sequence of queries none

of the formulae contained in SK may be revealed to the attacker. For

the sake of simplicity we will assume that the attacker believes at

the beginning only in true statements, i.e. we will assume CK |= AK.

22

2.4. CENSORS FOR DATABASES

Definition 2.4.4 (Privacy Configuration)

A privacy configuration on a semantics S = (L, I,�) is a triple

PC = (CK,AK,SK),

where CK (Censored Knowledge), AK (Attacker’s Knowledge) and

SK = (TSK ,FSK) (Secret Knowledge, divided in positive and negative

secrets) are knowledge-bases on S, s.t.

PC-A) CK � AK (Truthful Start).

PC-B) CK is satisfiable (Consistency).

PC-C) AK 6� σ for all σ ∈ TSK and AK 6�
co

σ for all σ ∈ FSK
(Hidden Secrets). 2

Notably, the secret knowledge SK does not need to be satisfiable.

Moreover, it can even be very unsatisfiable, i.e. it contains formulae

that are not simultaneously satisfiable, or even have the same set of

formulae as positive and negative secrets, i.e. TSK = FSK .

Remark 2.4.5

As a consequence of 2.4.4, the (supposed) pre-knowledge of the

querying agent AK is satisfiable as well:

Either as a direct consequence of PC-C) by the definition of �
co

, or

by combining the properties PC-A) and PC-B), since an interpreta-

tion of CK is also one for AK. 2

To achieve protection of the secret formulae, it is obviously neces-

sary to disallow a querying agent to directly access the database, i.e.

the database’s evaluator. Moreover, one might want to add the pos-

sibility of returning an answer differing from the full truth, but might

23

CHAPTER 2. DEFINITIONS

stay “close to” it. In particular, we want a mechanism that responds

to a querying agent in such a way, that after any sequence of queries

all secrets remain safely hidden. To this end, we add a new func-

tion, called censor to the database, that acts as mediator between a

querying agent and the full stored information. As stated before, the

censor also needs to see what the querying agent has as its a priori

knowledge. Hence, it not only can make use of the query-sequence

and access to the evaluation function of the database, but also sees

the contextual information stored in the privacy-configuration.

Definition 2.4.6 (Censor)

A censor for a semantics S is a mapping that assigns an answering

function

censorPC : LN → AN

to each given privacy configuration PC = (CK,AK,SK) on S.

The set A contains the potential answers a censor might give.

Given a query-sequence q ∈ LN, the sequence

a = censorPC(q) = (ai)i∈N ∈ AN

is called answer-sequence of censor given PC. 2

Typically, only {t, f, u, r} and {t, f, u} are choices for A.

This coincides with the structure of the result-sequences. The first

variant just adds a special symbol r (refusal) to the set of possible

outcomes, to provide a syntactical representation of refusing to give

any answer.

So far a censor can randomly answer and does not provide any

safety.

24

2.4. CENSORS FOR DATABASES

Example 2.4.7 (Evaluation Censors)

A trivial censor is the revealing evaluation censor that assigns the

actual answer to each query:

censor(CK,AK,SK)(q) = (eval(CK, qi))i∈N

A better, but also not very convenient censor is the overprotective

evaluation censor given by

censor(CK,AK,SK)(q) = (eval(AK, qi))i∈N

that tells the attacker only answers that it could calculate itself. 2

Clearly, neither the trivial nor the overprotective censor is of any

use. However, to introduce quality properties of censors, we will

have to define several additional helper structures.

2.4.3 Logging and Handling Facilities: Clouds

To effectively decide what answer should be chosen next by a censor,

it is necessary to reflect not only the current view presented to a

querying agent, but also keep track of the change of that views. Since

an attacker is often enough quite aware that a database is censored,

the information how the censor tries to change the attacker’s believe,

might be used to gain knowledge of an actually stored secret. Hence,

in this section we introduce tools to model the believe of the querying

agent after every stage of answering. To achieve this, we build up

a meta-semantics called cloud and introduce a translation of truth

meanings from given answers into the newly built up language.

Throughout this section, we fix a semantics S = (L, I,�).

25

CHAPTER 2. DEFINITIONS

Definition 2.4.8 (Cloud Formulae)

A cloud-formula is a formula of L, prefixed by exactly one of the

symbols �, �, ♦ or �. Hence, the set of cloud-formulae over L is

given by

CL := {�ψ,�ψ,♦ψ,�ψ | ψ ∈ L}
2

Definition 2.4.9 (Cloud)

A (S-) cloud is a pair C = (WC, ιC), where

• WC is a nonempty set of worlds (names of interpretations) and

• ιC : WC → I is a function, i.e. for each w ∈ WC, ιC(w) ∈ I is

an interpretation. 2

Introducing ιC is actually unnecessary in this work, since it would

suffice to store a set of interpretations directly. However, some proofs

turn out to be more simple, when multiple names for the same in-

terpretation can be used to keep track of different properties of that

interpretation.

Clouds on a semantics, so far consisting of the shown prefixed

formulae as cloud-language and a set of cloud-interpretations, essen-

tially consisting of subsets of the preliminary interpretations, build—

of course—another semantics. The satisfaction-relation for the cloud

formulae is built up by modifying the underlying relation as follows:

Definition 2.4.10 (CL-satisfiability)

Satisfiability of a formula Φ ∈ CL within a S-cloud C = (WC, ιC) is

given in the following way:

• C � �ψ iff for all w ∈WC it is ιC(w) � ψ

• C � �ψ iff for all w ∈WC it is ιC(w) 6� ψ

26

2.4. CENSORS FOR DATABASES

• C � ♦ψ iff there is a w ∈WC, s.t. ιC(w) � ψ

• C � �ψ iff there is a w ∈WC, s.t. ιC(w) 6� ψ

A formula Φ is valid iff it is satisfied in all S-clouds. 2

All notions of semantic implication defined in section 2.2 are ex-

tended to the thus newly built semantics. Especially, we make use

of (cloud-) satisfaction of sets of cloud-formulae and semantic impli-

cation and co-implication of sets of formulae.

To provide a translation of a query’s answer value to the new

logging structure, we introduce a function, that assigns to each such

pair an intended content.

Definition 2.4.11 (Content)

Let ψ ∈ L and a ∈ {t, f, u, r}. The (intended) content of a as answer

to ψ is given by

Cont(ψ, a) =

{�ψ} if a = t

{�ψ} if a = f

{♦ψ,�ψ} if a = u

∅ if a = r
2

Remark 2.4.12

In case L is viewed in context of a semantics with a negation oper-

ator, the definition can be simplified to

Cont(ψ, a) =

{�ψ} if a = t

{�¬ψ} if a = f

{♦ψ,♦¬ψ} if a = u

∅ if a = r

27

CHAPTER 2. DEFINITIONS

So in fact, negative knowledge, denying a formula, is being trans-

formed to positive knowledge, enforcing a negated formula. 2

As already stated, meta inferences make dealing with contents

more difficult. In chapter 5 we present situations, where a given an-

swer changes the view of a querying agent in a harmful way. Specif-

ically, it becomes able to infer actually stored values of queries, de-

spite the fact, that a different value was given as answer. Hence, in

order to keep track of the intended believe at each stage of answer-

ing (and hence also its change), we introduce a censor’s state cloud,

that strongly depends on the context where it is build up.

Definition 2.4.13 (StateCloud)

On a fixed Boolean database D, let censor be a censor

and PC = (CK,AK,SK) be a privacy configuration.

We define the state cloud wrt. a query-sequence q ∈ LN at stage n

by

SCPC,q(n) :=
⋃
ϕ∈AK

Cont(ϕ, t) ∪
n⋃
i=1

Cont(qi, ai),

where a := censor(CK,AK,SK)(q). 2

Notice, that state clouds depend heavily on all available con-

text information, i.e. privacy configuration, query sequence and the

calculated answer-sequence.

2.4.4 Privacy: The Qualities of a Censor

There are two levels at which the quality of a censor can be measured.

The first level involves the answers directly returned by the censor.

28

2.4. CENSORS FOR DATABASES

Since they provide a believe to any querying agent, they should be—

to some extend—believable, that is consistent. Also the provided

believe should not give away any secret. Otherwise, the censor would

appear useless.

On a second level, a censor should also fulfil more indirect con-

cerns. To start with, it should stay as close to “the truth” as possible.

This means, it should provide as much actually stored information to

a querying agent as possible. Another concern is what happens if the

used algorithm is known to the attacker. This would induce, that the

attacker might be able to reverse engineer the decision process the

censor went through, possibly revealing a conditional necessity that

leaks a secret. Lastly, since the query-sequences we use are only

meant as a technical tool, answers should not depend on queries,

that will happen in the future.

Immediate Qualities

To formalize the first level of qualities, that the directly provided

believe system should have, in this section we introduce two quality

terms: Credibility and Effectiveness.

Credibility means, that the provided information is consistent at

any given point.

Definition 2.4.14 (Credible)

A censor censor is called credible for PC, iff for every sequence q ∈ LN

and every n ∈ N, it holds

SCPC,q(n) is satisfiable
(
CnPC,q

)
It is called credible, iff it is credible for all privacy-configurations.2

29

CHAPTER 2. DEFINITIONS

It is immediately clear, that a censor should not directly or al-

most directly give away the secrets. I.e. effectiveness is given, if any

provided view does not imply the knowledge of any secret.

Definition 2.4.15 (Effective)

A censor censor is called effective for PC = (CK,AK, (TSK ,FSK)), iff

for all sequences q ∈ LN and every n ∈ N it holds

SCPC,q(n) 6� �σ for every σ ∈ TSK
(
EnPC,q

)
and

SCPC,q(n) 6� �σ for every σ ∈ FSK
(
ĒnPC,q

)
(i.e. no secret is semantically implied by a state cloud).

It is called effective, iff it is effective for all privacy-configurations.2

For technical reasons, mainly to allow inductive proofs, we also

introduce a notion of stages. That is, the required properties of

effectiveness and credibility are held for all answers up to a given

point in the query-sequence.

Definition 2.4.16 (Stages)

A censor censor is called credible [effective] for PC up to stage k ∈ N,

iff the condition
(
CnPC,q

)
[
(
EnPC,q

)
and

(
ĒnPC,q

)
], is satisfied for all

n ≤ k.

A censor is called credible [effective] up to stage k ∈ N, if it is for all

privacy-configurations. 2

Example 2.4.17

The revealing evaluation censor from example 2.4.7 is credible, but

not effective. The overprotective evaluation censor is effective and

credible. The censor given by

30

2.4. CENSORS FOR DATABASES

censorPC(CK,AK,SK)(q) =

{
(f)i∈N if SK = (∅, ∅)

(evalAK(qi))i∈N else

is effective, but not credible. Effectiveness follows in the “else”-

case by the definition of PC, which implies evalAK(σ) ∈ {f, u} for all

secrets σ ∈ TSK and evalAK(σ) ∈ {t, u} for all secrets σ ∈ FSK . If

there are no secrets this fact is trivial.

However the censor is not credible, since it will answer f to a query

on a tautology or formula from TAK in any privacy configuration with

an empty set of secrets. 2

Effective but not credible censors are, however, not very com-

mon. The presented censor for example is credible for all privacy

configurations that protect at least one secret. Furthermore in the

above construction one can mainly change the answering function in

case no secrets are to be protected and change to a different effec-

tive and credible censor in case there is something to be kept secret.

This is due to the fact that, if the censors’ answers lead to an un-

satisfiable state cloud at stage n, for any positive [negative] secret

σ (in fact for any formula σ ∈ L) it would follow SCPC,q(n) |= �σ

[SCPC,q(n) |= �σ] immediately, violating the property of effective-

ness. To summarize this:

Lemma 2.4.18

Let PC be a privacy configuration, s.t. SK 6= (∅, ∅). Then every censor

that is effective for PC is also credible for PC. 2

Meta Qualities

There are some properties one might deem useful or desirable for a

censor. Those consist of properties, that restrict the censor in the

31

CHAPTER 2. DEFINITIONS

choice of answers or add safety on a not immediate level. In this

section, we introduce for the first category the notions continuity,

truthful and its negation lying together with the variant cooperation,

and minimal invasion. For the second kind, we introduce the term

of repudiation and its more restricted atomic version.

Continuity is more a technical necessity, then a privacy condition.

The definition of continuity is the usual term, that is also used in the

standard sequence topology, where sets of sequences with identical

initial sequences act as basis of the open sets.

Definition 2.4.19 (Continuous)

A censor censor is called continuous for a privacy-configuration PC,
iff for all sequences q, r ∈ LN and all n ∈ N, it is

q|n = r|n → censor(q)|n = censor(r)|n ,

where a|n denotes the initial segment of a of length n, i.e. (a1, . . . , an).

The censor is called continuous, iff it is continuous for all privacy-

configurations. 2

A censor being truthful translates to the requirement, that the censor

should not make any querying agent believe something false.

Definition 2.4.20 (Truthful)

The censor censor is called truthful, iff for all privacy configura-

tions PC, for all question sequences q and for all i:

ai ∈ {r, evalCK(qi)} ,

where a := censorPC(q).

A censor that is not truthful is called lying. 2

32

2.4. CENSORS FOR DATABASES

Minimal invasion means that the censor should only hide an-

swers, that are directly harmful, i.e. answers leading to an inconsis-

tent view or a view that implies a secret.

Definition 2.4.21 (Minimal Invasion)

Let the censor censorPC be effective and credible for PC.
It is called minimally invasive for PC, iff whenever ai 6= evalCK(qi)

replacing ai by evalCK(qi) would lead to a violation of either effec-

tiveness or credibility. A censor is called minimally invasive, iff it is

minimally invasive for all privacy-configurations. 2

It might seem useful, that a censor should always honour a re-

quest for information, i.e. return an answer that is actually a possible

evaluation. Although, this translates to either giving up on hiding

information, and hence the intent of censoring, or to lie and not

refuse whenever necessary. Obviously, in this work we make use of

the second option.

Definition 2.4.22 (Cooperation)

A censor censorPC is called cooperative in a privacy configuration

PC = (CK,AK,SK), iff for all query-sequences q and indices i ∈ N

r 6= censorPC(q)i

I.e. r is not a possible answer for censorPC 2

In view of the fact that no algorithm can be hidden forever, an

additional goal is to ensure that a continuous censor should provide

unrevealing answers even if the method of determination is revealed

and the attacker even knows the potential secrets. The condition of

repudiation intuitively reads that there is a knowledge-base in which

33

CHAPTER 2. DEFINITIONS

all secrets are (simultaneously) not stored (directly or indirectly)

and, supplied to a censor, would produce the same answers as the

original. Notice that this definition provides a version of plausible

deniability to all secrets, depending on the query sequence.

Definition 2.4.23 (Repudiation)

A censor censorPC is called repudiating, iff for each privacy configu-

ration (CK,AK,SK) and each query sequence q there are alternative

knowledge-bases RKi, s.t.

R-A) for all n ∈ N

censor(CK,AK,SK)(q)|n = censor(RKn,AK,SK)(q)|n,

R-B) for all n ∈ N and all σ ∈ TSK : RKn 6� σ, and

for all n ∈ N and all σ ∈ FSK : RKn 6�
co

σ,

R-C) for all n ∈ N (RKn,AK,SK) is a privacy configuration.

If in addition censor is defined on an atomic semantics, it is called

atomic repudiating, iff. the knowledge-bases RKn are atomic, too. 2

Remark 2.4.24

The presented definition of (non atomic) repudiation works very well

to protect the data in the general semantics. However, in case an

attacker knows enough of the structure of the protected CK –e.g. if

CK is atomic–, it turns out to be insufficient. 2

34

Chapter 3

Example Semantics

3.1 Propositional Logic

Propositional logic is the most basic case for treating information.

In various settings that deal with propositional data the following

formalization is used: mostly all data that somehow can be called

basic are modeled as propositional atoms. Then, making use of this

basic structure, more complex formulae are evaluated.

Usually a (incomplete) propositional knowledge-base consists of

these atoms and stores the information whether they are true or

false, implicitly storing the rest as unknown. A knowledge-base of

this kind, i.e. one that stores only atomic propositions and their

truth values, is immediately atomic in the meaning given by def-

inition 2.2.13. The evaluation of a complex formula depends on

whether all assignments of the unknown atoms to true and false re-

sult in the same truth value for the complex formula. Consider, for

35

CHAPTER 3. EXAMPLE SEMANTICS

instance, the formula p ∧ q. If p is unknown and q is false, then

p∧ q will be evaluated to false since in both cases—p is true and p is

false—the formula p ∧ q will have the truth value false. However, if

p is unknown and q is true, then the formula p∧ q will be evaluated

to unknown since there is an assignment of p that makes p ∧ q true

and there is another assignment of p that makes p ∧ q false.

In this work and especially with the censors in chapter 5, mostly

general knowledge-bases are discussed, namely such that can store

more complex formulae.

A careful examination of the literature on data privacy for propo-

sitional databases [BB04a, BB04b, BB07, BW08, BKS95, SDJR83]

reveals that almost always only atomic databases are considered to

settle the data privacy question.

This leads to several interesting questions.

1. Is the generalization from storing atomic to storing complex

facts really necessary?

2. To what extent can the storage of facts be reduced / simplified?

3. Is it necessary for an attacking agent to know the atoms that

are actually used in the knowledge-base?

In chapter 4 we will address the first two questions in an even

more general context: With respect to the first question, it turns out

that for each propositional knowledge-base, there exists a pseudo-

atomic database and a translation such that the answer evaluation

of a given query over the knowledge-base equals the evaluation of

the translated query over the pseudo-atomic knowledge-base. This

is established by showing that all query evaluations over a general

36

3.1. PROPOSITIONAL LOGIC

database can be done via an evaluation function that only knows the

truth values of certain base formulae. Hence these base formulae can

then be translated to atomic formulae, which can be stored in an

atomic database.

Furthermore, we establish that these sets of base formulae are

minimal, which answers the first two questions partially: For propo-

sitional knowledge-bases it is always possible to store either the pos-

itive or the negative part as only atoms.

It also shows how switching to the atomic knowledge-bases sim-

plifies query evaluation.

Since pseudo-atomic knowledge-bases act almost like fully atomic

knowledge-bases, the third question can be answered: An attacking

agent needs to at least know the atoms that are needed to encode

the secrets, and it is irrelevant whether the knowledge-base internally

uses a finer granularity.

3.1.1 Semantics

Since propositional logic is well known and discussed in literature,

we give only a brief overview to help adapting to the used notations.

The semantics of propositional logic is given by

PA = (LA, IA,�)

as presented below.

37

CHAPTER 3. EXAMPLE SEMANTICS

Language/Syntax

Definition 3.1.1

The language of propositional logic LA over a set of propositional

letters A is defined by the following Backus–Naur form:

ψ ::= a |
a∈A

| (¬ψ) | (ψ ∧ ψ)

The length #ψ of a propositional formula is defined to be the number

of logical connectors (¬, ∧) in the formula. 2

To ease notation, brackets will be left away, whenever it is clear

where they should be, e.g. outermost brackets.

Standard Interpretations

Constructing the set of interpretations happens to some extend in

a reverse way of the definition of semantical implication in section

2.2. First it is declared, how a (complete) atomic knowledge-base

semantically implies specific formulae. Afterwards this is general-

ized to gain a definition of the satisfaction relation. Then it nor-

mally proceeds by entailing all other defined uses, like e.g. general

knowledge-bases.

Definition 3.1.2

The set of interpretations for PA is the set of Boolean functions

IA := {f | f : A→ {0, 1}}. 2

38

3.1. PROPOSITIONAL LOGIC

Definition 3.1.3 (Atomic Semantic Implication)

Let (TA,FA) be a partition of A. We will refer to the sets as true

(TA) and false (FA) atoms, respectively.

Atomic semantic implication of a propositional formula ψ ∈ PA by

(TA,FA), in symbols

TA,FA � ψ,

is inductively defined as follows:

• TA,FA � a if a ∈ TA

• TA,FA 6� a if a ∈ FA

• TA,FA � ¬ψ if (TA,FA) 6� ψ

• TA,FA 6� ¬ψ if (TA,FA) � ψ

• TA,FA � ψ1 ∧ ψ2 if (TA,FA) � ψ1 and (TA,FA) � ψ2

• TA,FA 6� ψ1 ∧ ψ2 if (TA,FA) 6� ψ1 or (TA,FA) 6� ψ2 2

Definition 3.1.4 (Propositional Satisfiability)

For any Boolean function f : A→ {0, 1} let

• TA(f) := {a ∈ A | f(a) = 1} and

• FA(f) := {a ∈ A | f(a) = 0}.

Then define

f � ϕ, iff TA(f),FA(f) � ϕ. 2

39

CHAPTER 3. EXAMPLE SEMANTICS

Lemma 3.1.5 (� is well defined)

For all formulae ϕ ∈ PA and all interpretations i

either i � ϕ or i 6� ϕ. 2

Proof Straightforward by induction on the length of the formula.�

Definition 3.1.6

We extend the notion of satisfiability in the way given by the defini-

tions 2.2.2 and 2.2.4 to semantic implication of sets of formulae and

knowledge-bases. 2

Remark 3.1.7

Obviously, if semantical implication is restricted to sets of atomic

propositional formulae on the left side and a single formula on the

right side, then the semantical implication matches the definition of

atomic semantic implication. 2

3.1.2 Basic Properties

Remark 3.1.8

Since (TA,FA) is a partition of A, we obviously have

(TA,FA) 6� ψ if and only if not (TA,FA) � ψ

for all formulae ψ. We will use the following easy-to-check properties

without explicitly mentioning them:

• (TA,FA) � ψ iff (TA,FA) 6� ¬ψ,

• (TA,FA) 6� ψ iff (TA,FA) � ¬ψ,

• ¬ψ ∈ TTS iff ψ ∈ FFS ,

40

3.2. BOOLEAN DESCRIPTION LOGIC

• ψ ∈ TTS iff ¬ψ ∈ FFS ,

• ψ1 ∧ ψ2 ∈ TTS iff ψ1, ψ2 ∈ TTS and

• ψ1 ∧ ψ2 ∈ FFS iff ψi ∈ FFS for at least one i ∈ {1, 2} 2

The next lemma is an immediate consequence of the presented

definitions.

Lemma 3.1.9

Propositional logic is a subboolean, atomic semantics with negation.

The base formulae B = A and operators O = {¬,∧}, where ¬ is a

negation operator. 2

Proof By construction, it is easy to see, that

• b∧(v1, v2) = min(v1, v2) and

• b¬(v) = 1− v

fulfil all requirements. �

3.2 Boolean Description Logic

Often, not only information has to be protected, that can be pressed

into an atomic semantics, but also has structural information. One

commonly used framework to model structural information is de-

scription logic. Since it has also the property of not being atomic

in most of its varieties, it also provides a perfect basis to act as a

running example to show how the censors discussed in chapter 5 an-

swer. Hence, the goal of this section is to remind of the definition

of Boolean ALC and build up a standard situation that can be used

as common example.

41

CHAPTER 3. EXAMPLE SEMANTICS

It is also possible to define privacy in the original ALC as an on-

tological setup. Methods following this approach have been studied

for example in [SS09] and [SS07].

3.2.1 Semantics

Language/Syntax

Despite the fact that ALC usually denotes only satisfiability of con-

ceptual knowledge [BCM+03], namely T-Boxes, i.e. sets of subsump-

tion statements, and A-Boxes, i.e. (positive) assertional statements

about individuals, in this work Boolean ALC will mostly be referred

to as ALC to adapt it to the used semantical view.

Definition 3.2.1 (ALC)

Given two disjoint sets of symbols AC (atomic concepts) and AR

(atomic roles), the language of ALC is defined by the following gram-

mar in Backus–Naur form:

ψ ::= ψ ∧ ψ | ¬ψ | C v C

C ::= Ci |
Ci∈AC

| ⊥ | > | C u C | C | ∃R.C | ∀R.C

R ::= Ri |
Ri∈AR

Here Ci ∈ AC are the atomic concepts and Ri ∈ AR are atomic

roles (or role names). The sets R (Roles), C (Concepts) and LALC

(ALC-formulae) are defined as the sets of words that can be de-

rived starting from R, C and ψ respectively. Further we refer to a

set of ALC-formulae as (positive ALC-) knowledge-base and to the

pair (AR,AC) as its (description) basis. 2

42

3.2. BOOLEAN DESCRIPTION LOGIC

Interpretations

Definition 3.2.2 (ALC-Interpretation)

Given a description basis (AR,AC), an (ALC-) interpretation is a

pair (∆I , ·I), consisting of a non-empty domain ∆I and a function

·I : C ∪ R → ℘(∆I) ∪ ℘(∆I ×∆I)

that satisfies the following conditions:

• >I = ∆I , ⊥I = ∅

• for each atomic concept A ∈ AC : AI ⊆ ∆I

• for each atomic role R ∈ AR: RI ⊆ ∆I ×∆I

• for each compound concept it inductively holds

– (C uD)I = CI ∩DI

– (C)I = ∆I \ CI

– (∃R.C)I = {a ∈ ∆I | ∃b ∈ CI : (a, b) ∈ RI}

– (∀R.C)I = {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ RI → b ∈ CI}2

Definition 3.2.3 (ALC-Satisfiability)

Satisfiability of formulae within an interpretation I = (∆I , ·I) is

defined inductively as follows:

• I � C v D iff CI ⊆ DI

• I � ¬ψ iff not I � ψ (abbreviated by I 6� ψ)

• I � ϕ ∧ ψ iff I � ϕ and I � ψ 2

43

CHAPTER 3. EXAMPLE SEMANTICS

Remark 3.2.4

It should be clear now that expressions of the form C v D and

CuD are of two different types. The expression C v D is a formula,

which thus can be true of false; whereas C uD is a concept, which

is interpreted as a set of objects. 2

3.2.2 A Running Example

All censors of chapter 5 can be used to handle knowledge-bases on

ALC. In this section we present a standard situation to provide

examples of how the censors would behave in it. The presented

examples are a mainly a notational variant of the examples presented

in [SW14].

To avoid over-complicating the example, we introduce straight

forward and intuitive variants and short notations: For two concepts

C and D and (ALC-) formulae ψ1, ψ2 ∈ LALC

• C tD abbreviates (C uD),

• C w D abbreviates D v C,

• C ≡ D abbreviates C v D ∧D v C,

• ψ1 → ψ2 abbreviates ¬(ψ1 ∧ ¬ψ2), and

• ψ1 ∨ ψ2 abbreviates ¬(¬ψ1 ∧ ¬ψ2).

The semantical meaning of the abbreviations follows exactly the

usual usage of these symbols (equivalence or union of sets, resp.

logical implication or conjunction). Let us point out, that the first

abbreviation is on the level of concepts and all others are short

notations of formulae.

44

3.2. BOOLEAN DESCRIPTION LOGIC

To start with the example setup, consider the following setting:

A community of six persons (all with drivers licence) shares two cars,

an Opol and a Persche. One day it happens that one of the cars was

photographed in a speeding-trap. The photograph clearly shows the

driver’s hair colour and the car driven.

In order to determine who drove the car through the speed-trap the

policeman calls at the community to inquire. The gardener (a very

loyal employee) answers the phone.

In our terms we have the following situation: Both, CK (the know-

ledge of the gardener) and AK (the knowledge of the inquiring po-

liceman), contain the following information:

• Alice, Bob, Carol, Dave, Eve and Floyd are Persons,

A v Person∧B v Person∧ . . . ∧ F v Person

Here A, B, C, D, E and F are quasi-nominals. A nominal is a

concept that is satisfied by exactly one individual. In ALC we

cannot express that a concept is a nominal but we can tacitly

add information like ¬(A ≡ ⊥) or (A uB) ≡ ⊥, which give us

the desired properties.

• Opol and Persche are Cars and the car in question (TheCar)

is one of them:

O v Car∧P v Car, TheCar ≡ O ∨ TheCar ≡ P

(again, O, P are quasi-nominals)

45

CHAPTER 3. EXAMPLE SEMANTICS

• Any Person is either blond, brunette or red-haired:

RedtBlondtBrunette ≡ Person∧ReduBlond ≡ ⊥ ∧ . . .

• The community consists of exactly those persons:

Community ≡ A tB t . . . t F

• The car in question had only one driver, who is from the com-

munity:

∃DriverOf.TheCar ≡ A ∨ . . . ∨ ∃DriverOf.TheCar ≡ F

In addition, the policeman knows the hair colour (HairColor) of

the driver of the car (∃DriverOf.TheCar), that is

∃DriverOf.TheCar v HairColor

where HairColor is exactly one of Blond, Red or Brunette. The

policeman also knows the driven car (TheCar), which is either O or

P . Hence we have

HairColor ≡ Blond∧TheCar ≡ O

or

HairColor ≡ Red∧TheCar ≡ P

or

. . . .

46

3.2. BOOLEAN DESCRIPTION LOGIC

Note that we have only one of them but not several simultaneously.

We do not fix this knowledge now so that we can discuss several

different settings.

To the knowledge of the gardener we add following:

• He knows the hair colours:

A,B,C v Blond, D,E v Brunette and F v Red

(notice, that e.g. from this and the previously given informa-

tion ReduBlond ≡ ⊥ it follows ¬F v Blond, so the gardener

knows the exact hair colour of community members)

• He has seen Alice, Carol and Floyd go to the carport and heard

them leave by car:

∃DriverOf.TheCar v A t C t F

• If they took the Persche, certainly Floyd was its driver:

TheCar ≡ P → (F ≡ ∃DriverOf.P ∧ (A t C) w ∃DriverOf.O)

(notice, that ∃DriverOf.O v (AtC) does not mean they actu-

ally took the other car, since ∃DriverOf.O) ≡ ⊥ could hold.)

Since the gardener does not want one of the group to be fined, he

must not give the policeman a chance to infer who drove that car.

Hence the secrets are

A ≡ ∃DriverOf.TheCar,

B ≡ ∃DriverOf.TheCar,

47

CHAPTER 3. EXAMPLE SEMANTICS

. . . ,

F ≡ ∃DriverOf.TheCar.

So far we do not have a privacy configuration, since CK |= AK
does not hold. However, once the policeman told (prior to start-

ing his inquiries) the gardener that the community’s Persche was

photographed by a speed-camera (i.e. TheCar ≡ P), and hence the

gardener knows

F ≡ ∃DriverOf.TheCar

this is achieved, since now also the driver’s hair colour (red)

∃DriverOf.TheCar v Red

can be inferred by the gardener.

In order to establish a privacy configuration in the situation where

the Opol was driven, the policeman has to give out both information:

TheCar ≡ O and ∃DriverOf.TheCar v HairColor

We define two query sequences of the policeman to provide ex-

emplary answers of the presented censor-functions:

P1 := (∃DriverOf.TheCar ≡ A,∃DriverOf.TheCar ≡ B,

. . . ,∃DriverOf.TheCar ≡ F, t, t, . . .)

P2 := (∃DriverOf.TheCar v HairColor,

A v HairColor, B v HairColor, . . . , F v HairColor, t, t, . . .
)

We keep these queries very simple in order to not increase the com-

48

3.2. BOOLEAN DESCRIPTION LOGIC

plexity of this already very long example set-up. The first sequence

asks only the hidden secrets, the second only information on the

hair-colours.

In order to qualify our gardener as an answering-function (here,

the privacy configuration is fixed), he needs to be sure about the

knowledge of the policeman. So we assume, he himself has some

experience with photographs taken by speeding-cameras and hence

knows, that only hair-colours and license-plates are visible on them.

To upgrade him to a censor, we would have to make him independent

of the observed situation as well. E.g. he would have to be able

to react even if no one drove or the policeman had less or more

knowledge (as long as all secrets are kept in the start) or even in a

completely different start situation (like no knowledge at all).

Example 3.2.5 (Evaluation Censors)

So equipped, our gardener can choose both “strategies” of example

2.4.7: the revealing and the overprotective censor. However neither

of these is a good choice. The revealing strategy is trivially no choice,

since—so far our assumption—he wants to protect his employers, but

would confirm that Floyd drove the car or imply this, e.g. by ruling

out all others. So with the trivial censor our gardener would answer

(for TheCar ≡ P):

censorPC ...(P
1) = (f, f, f, f, f, t, t, t, . . .)

censorPC ...(P
2) = (t, t, t, t, t, t, f, t, t, . . .)

In both sequences the policeman has the perpetrator after the sixth

answer.

With the overprotective approach on the other side, he might raise

49

CHAPTER 3. EXAMPLE SEMANTICS

the policeman’s suspicion, since the policeman might conclude (on

a meta level) that the gardener must know all details to be able to

copy his knowledge. For example, because the gardener “told him”

(in our view confirmed) the red hair-colour of the driver (again with

TheCar ≡ P).

censorPC ...(P
1) = (u, u, u, u, u, u, t, t, . . .)

censorPC ...(P
2) = (t, u, u, u, u, u, u, t, t, . . .)

2

50

Chapter 4

Dependencies on

Language Structures

4.1 Handling Negation

In case a semantics possesses a negation, the situation that has to be

This is due to the fact that negative knowledge of a formula can be

replaced by positive knowledge of a negated formula. In this section

we will proof that one can then just use the positive notations of all

defined symbols.

51

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

Definition 4.1.1

Let ψ ∈ L and a ∈ {t, f, u, r}. The (intended) positive content (in a

semantics with negation) of a as answer to ψ is given by

Cont(ψ, a) =

{�ψ} if a = t

{�¬ψ} if a = f

{♦ψ,♦¬ψ} if a = u

∅ if a = r

(Repeating remark 2.4.12).

Analogously, their negative content is given by

Cont(ψ, a) =

{�¬ψ} if a = t

{�ψ} if a = f

{�ψ,�¬ψ} if a = u

∅ if a = r

in the natural way. 2

Definition 4.1.2

Let KK = (T,F) be a knowledge-base.

Then, the knowledge-base given by

KK := (T ∪ {¬ψ | ψ ∈ F}, ∅)

is called positive version of KK and the knowledge-base given by

KK := (∅,F ∪ {¬ψ | ψ ∈ T})

is called negative version of KK. 2

52

4.1. HANDLING NEGATION

Lemma 4.1.3

Let KK be a knowledge-base. Then the knowledge-bases KK and KK
satisfy the same interpretations as KK. 2

Proof To show {i ∈ I | i � KK} = {i ∈ I | i � KK}:
In case FKK = ∅ this is trivial.

Otherwise let i � KK. By definition, this means i � TKK and

i �
co

FKK . Hence, for all ψ ∈ FKK it is i 6� ψ.

Therefore, by remark 2.2.15 it follows that i � ¬ψ, resulting in

i � {¬ψ | ψ ∈ F} and hence i � KK.

Let i � KK. Then, clearly we have i � TKK and i � ¬ψ for all

ψ ∈ FKK . Hence, by definition of the negation operator 2.2.14, we

have i 6� ψ.

Therefore, it holds i �
co

FKK , and hence i � KK.

The equivalence {i ∈ I | i � KK} = {i ∈ I | i � KK} fol-

lows analogously. �

The following theorem is now immediate:

Theorem 4.1.4

Let censor be any censor on a semantics with negation. If replacing

• the usual content (defined in 2.4.11) by the positive [negative]

content,

• and accordingly all knowledge-bases by their positive [negative]

versions,

does not change any of the censor’s answers, all quality proper-

ties (i.e. continuous, credible, effective, truthful, minimal invasive,

[atomic] repudiating) of the censor remain unchanged. 2

53

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

Proof Continuity follows, because it is completely independent

from the knowledge-bases.

For the other properties: If all answers remain unchanged, so do the

sets of interpretations of the state cloud by lemma 4.1.3. Since also

all evaluations remain unchanged, the claim follows. �

4.2 Pseudo-Atomicity and Evaluation

When trying to formalize real situations (e.g. statements in natural

language) as propositional statements, often the following approach

is used. First, more or less independent basic statements are iso-

lated and represented by a propositional letter (atom). Second, the

so separated letters are used to rebuild the original dependencies.

Finally, the thus found formulae form a knowledge-base on which

further reasoning is based.

This approach has several advantages, mainly that it is easy and

straightforward. However, it has the disadvantage that the selection

of the basic statements is usually not unique. Moreover it is not

clear whether dependencies of ignored substatements affect query

evaluation.

In this section we show that the evaluation of known statements

is not affected by unknown substatements. Therefore, the typical

modelling approach is indeed safe. Furthermore, the approach still

works on all sorts of subboolean semantics, as long as their basis-

formulae are atomic.

To provide a formal proof of this fact, we define an alterna-

tive incomplete evaluator, which is based on the knowledge of the

truth-values of some basis-formulae. We will proceed to show that

54

4.2. PSEUDO-ATOMICITY AND EVALUATION

this evaluator is immediately usable on atomic knowledge-bases and

then adapt the base sets to identify necessary conditions on basis-

formulae. With this tools, we are able to prove that in presence

of reasonable assumptions, the propositional subformulae of pseudo-

atomic elements do indeed not affect the calculations of truth-values

and furthermore, that these formulae can be safely assumed to be

atomic.

The following lemma can be found in multiple variants in most

introductory textbooks to propositional logic:

Lemma 4.2.1

Every Boolean function b : {0, 1}n → {0, 1} can be expressed as com-

bination of the two Boolean functions b¬(v) = 1− v (negation) and

b∧(v1, v2) = min(v1, v2) (conjunction).

I.e. for each Boolean function b there is a representation of the func-

tion b′ ∈ B¬,∧
n , where the set of Boolean functions of degree n and

∧,¬ combinations B¬,∧
n is inductively defined by

• πni ∈ B¬,∧ (i-th projection),

with πi(v1, . . . , vn) = vi for all 1 ≤ i ≤ n

• if t1, t2 ∈ B¬,∧ then b∧ ◦ (t1, t2) ∈ B¬,∧,

with the pairing (t1, t2) /∈ B¬,∧ being defined by

(t1, t2)(v1, . . . , vn) = (t1(v1, . . . , vn), t1(v1, . . . , vn))

• if t ∈ B¬,∧ then b¬ ◦ t ∈ B¬,∧

(the application order by ◦ is from right to left), and for all tuples

(v1, . . . , vn) ∈ {0, 1}n it holds b(v1, . . . , vn) = b′(v1, . . . , vn). 2

55

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

Notice that the lemma can be read like this: When viewing the el-

ements of B¬,∧ as functions (and not as representations of functions),

the sets {b | b : {0, 1}n → {0, 1}} and B¬,∧ are identical. Choosing

¬ and ∧ as operators has plainly technical reasons. Mainly that it

allows to keep negation (and hence its properties from the previous

section). The operator ∧ was chosen, because it allows to push truth

“inward”, as will be shown below: If a formula ψ1 ∧ ψ2 is true, so

are ψ1 and ψ2. This will be used to reduce evaluation overhead by

storing formulae that are as short as possible in the knowledge-base.

Of course the arguments in this section could be similarly done by

using ∨ (disjunction) and hence pushing falsity inward.

Example 4.2.2

The constant Boolean function

b(v1, . . . , vn) = 1

could be calculated by

b(v1, . . . , vn) = 1−min(1− v1, v1)

and hence could be represented by

b′ = b¬ ◦ b∧ ◦ (b¬ ◦ π1, π1)

This representation is obviously not unique. 2

Definition 4.2.3 (Boolean Completion)

Let S = (L, I,�) be a subboolean semantics with base formulae B

and operators O. Then the Boolean completion S? = (L?, I?,�?)

is defined as follows:

56

4.2. PSEUDO-ATOMICITY AND EVALUATION

• L? is defined by all words derived by ϕ in the Backus–Naur

form

ϕ ::= b |
b∈B

| (¬ϕ) | (ϕ ∧ ϕ)

where ¬, ∧ are new symbols and hence do not appear in L,

• I? := {(T,F) | T ∪F = B and T ∩F = ∅} is the set of binary

partitions of B, and

• (T,F) �? ψ is inductively defined by

– For ψ ∈ B:

ψ ∈ T iff (T,F) �? ψ

– For ψ = ¬ψ′:

(T,F) �? ψ iff (T,F) 6�? ψ′

– For ψ = ψ1 ∧ ψ2:

(T,F) �? ψ iff (T,F) �? ψ1 and (T,F) �? ψ2

In addition, the length #ψ of a L? formula is defined to be the

number of logical connectors (¬, ∧) in the formula. 2

Example 4.2.4

Propositional logic is its own Boolean completion, i.e. PA = P?A 2

Remark 4.2.5

It is worth noticing, that the extension of �? to satisfaction and

co-satisfaction of sets of formulae, defined in 2.2.4, or to knowledge-

bases, defined in 2.2.3, does not cause ambiguity problems. In def-

inition 4.2.3 the pair (T,F) ∈ I? refers to a specific interpretation.

57

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

However, if (T,F) refers to a knowledge-base over S?, the same

formulae are satisfied or co-satisfied. Especially, the semantical im-

plications

• (T,F) �? (T,F)

• (T,F) �? T

• (T,F) �?
co

F

hold in all defined meanings. 2

Definition 4.2.6 (Boolean Embedding)

Let S = (L, I,�) be a subboolean semantics with base formulae B

and operators O and let S? = (L?, I?,�?) its Boolean completion.

Then the embedding ? : L → L? as defined as follows is called

Boolean embedding.

For each operator o(ψ1, . . . , ψdeg o) ∈ O fix an equivalent repre-

sentation b′o of bo via lemma 4.2.1 consisting of combinations of b¬

and b∧.

The embedding ? : L → L? is inductively defined as follows:

• If ψ ∈ B:

?(ψ) = ψ

• If ψ = o(ψ1, . . . , ψdeg(o)):

?(ψ) = I(b′o)

and I is inductively defined as follows:

– I(π
deg(o)
i) = ?(ψi)

58

4.2. PSEUDO-ATOMICITY AND EVALUATION

– I(b¬ ◦ t) = (¬I(t))

– I(b∧ ◦ (t1, t2)) = (I(t1) ∧ I(t2))

(The function I provides a transformation of the Boolean func-

tions into L? formulae. Obviously, it depends as well on the

subformulae ψ1, . . . , ψdeg(o), which we omitted from the for-

mula’s signature for simplification). 2

Let us point out, that ? is in general not deterministic (and hence

not a function), since there might be several ways to construct a

formula from the base-formulae by means of the operators.

Example 4.2.7

Assume a semantic S with language L = {x, y} with y ∈ TTS , the

constant operator o : L → L with

o(x) = o(y) = y

has the constant Boolean function bo = 1, which has the represena-

tiation

b′ = b¬ ◦ b∧ ◦ (b¬ ◦ π1, π1)

seen in example 4.2.2. A possible basis is B := {a}.
As translation ?(b) only ?(o(a)) can be used, which is calculated to

be

?(b) = ¬(¬a ∧ a)
2

59

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

Lemma 4.2.8

Let S = (L, I,�) be a subboolean semantics with base formulae B

and operators O, let S? = (L?, I?,�?) its Boolean completion and

let ? be their Boolean embedding.

Then ? is a function, iff all combined formulae ψ ∈ L\B are uniquely

expressible by base formulae and operators.

If additionally S is atomic, then

1. the satisfaction of embedded formulae is independent of the

choice of the operator representations, i.e. for two embeddings

?1 and ?2 and all formulae ψ ∈ L it holds

(T,F) �? ?1(ψ) iff (T,F) �? ?2(ψ),

2. and all formulae ψ ∈ L are semantically implied by an atomic

knowledge-base (T,F) over S iff they are satisfied in the in-

terpretation (T,F) of S?, i.e. for all ψ ∈ L and T,F ⊆ B it

holds

(T,F) � ψ iff (T,F) �? ?(ψ). 2

Proof The first part of the lemma is trivial, since it is just a sub-

stitution of operators.

For the second part it suffices to show claim 2. Claim 1 then follows

by definition of being subboolean (2.2.9) and observing that satis-

faction of the formulae ?(ψ) is only dependent on the satisfaction of

base formulae and the Boolean function. Its representation does not

matter.

60

4.2. PSEUDO-ATOMICITY AND EVALUATION

Claim 2 is shown by induction on the structure of L:

• If ψ ∈ B is a base formula:

Assume (T,F) � ψ. Then there are three cases:

– ψ ∈ T:
If (T,F) is not satisfiable, this follows as in the next case.

Otherwise, by atomicity T∩F = ∅ and all interpretations

(T ′,F ′) ∈ I?, with (T ′,F ′) �? (T,F), satisfy T ⊆ T ′

and F ⊆ F ′. Hence ψ = ?(ψ) ∈ T ′ and (T ′,F ′) �? ?(ψ).

– ψ ∈ F:

Then, no interpretation i ∈ I satisfies (T,F), since this

would simultaneously imply i � ψ and i 6� ψ.

However, by atomicity, this implies that there is a base

formula ϕ ∈ T ∩ F. Hence, there is no interpretation

(T ′,F ′) ∈ I?, that satisfies (T ′,F ′) �? (T,F), since

ϕ would have to be an element of both T ′ and F ′, in

violation of (T ′,F ′) being a partition.

– ψ ∈ B \ (T ∪ F):

Then, by atomicity, there is an interpretation i ∈ I, s.t.

i ∈ {j ∈ I | j � T} ∩ {j ∈ I | j �
co

{ψ}}

in violation of the assumption (T,F) � ψ.

The case (T,F) 6� ψ follows analogously.

61

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

• if ψ = o(ψ1, . . . ψdeg(o)):

By induction hypothesis, we have for all 1 ≤ i ≤ deg(o)

(T,F) � ψi iff (T,F) �? ?(ψi).

The claim follows by the definition of being subboolean. �

Remark 4.2.9

It is worth noticing, that in the above lemma 4.2.8, the identity

(T,F) � ψ iff (T,F) �? ?(ψ)

holds indeed for all subsets T,F ⊆ B and hence, (T,F) is not (nec-

essarily) a partitions of B. Thus, on the right side the semantic

implication is by an atomic knowledge-base (of L?) and not (neces-

sarily) by an interpretation (in I?). 2

Definition 4.2.10 ((Pseudo-)Atomic Evaluator)

Let S = (L, I,�) be an atomic semantics with base formulae B and

S? = (L?, I?,�?) be its structured completion. Furthermore, let

TTS? denote the tautologies and FFS? the unsatisfiables of S? (compare

definition 2.2.7). Furthermore, let T,F ⊆ L? \ (TTS? ∪ FFS?).

The atomic evaluator evala(T,F) of S? is defined on formulae of

L? by

• If ψ ∈ T ∪ F ∪B ∪ TTS? ∪ FFS? , then

evala(T,F)(ψ) =

t ψ ∈ T ∪ TTS?

f ψ ∈ (F ∪ FFS?) \ T
u else (i.e. ψ ∈ B \ (T ∪ F))

62

4.2. PSEUDO-ATOMICITY AND EVALUATION

• Otherwise we make a case distinction on the outermost con-

nective of ψ

– if ψ = ¬ψ′ then

evala(T,F)(ψ) =

t evala(T,F)(ψ

′) = f

f evala(T,F)(ψ
′) = t

u else

– and if ψ = ψ1 ∧ ψ2, then

evala(T,F)(ψ) =

t iff.
evala(T,F)(ψ1) = t and

evala(T,F)(ψ2) = t

f iff.
evala(T,F)(ψ1) = f or

evala(T,F)(ψ2) = f

u else

2

Lemma 4.2.11

In the situation of definition 4.2.10, the incomplete evaluator (def-

inition 2.3.1) of S? is equivalent to the atomic evaluator of S? for

consistent knowledge-bases. I.e. if (T,F) is a consistent, atomic

knowledge-base on S?, then it holds

evala(T,F)(ψ) = eval(T,F)(ψ)

on all ψ ∈ L?. 2

Proof It is to prove that each formula gets assigned the same truth

value in either case of calculation.

63

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

We proceed by induction on the structure of the formulae.

Base case:

For all atoms a ∈ B: By remark 2.2.11, a 6∈ TTS? ∪ FFS? . Hence, by

atomicity and consistency of (T,F) this case is obvious.

Induction step:

For simplicity we will only write (TA,FA) for all partitions of B, that

satisfy (TA,FA) �? (T,F).

By atomicity, those are exactly the partitions satisfying T ⊆ TA and

F ⊆ FA.

Case ψ = ¬ψ′.

This case is obvious.

Case ψ := ψ1 ∧ ψ2. We distinguish the following cases:

• Assume eval(T,F)(ψ) = t.

In case ψ ∈ TTS? , evala(T,F)(ψ) = t follows immediately.

Otherwise by definition, eval(T,F)(ψ) = t holds if and only if

in all partitions (TA,FA) we have (TA,FA) �? ψ, which means,

by definition of �? , that (TA,FA) �? {ψ1, ψ2}.
Hence eval(T,F)(ψ1) = t and eval(T,F)(ψ2) = t and the case

follows by IH. and the definition of evala(T,F).

• Assume eval(T,F)(ψ) = f .

In case ψ ∈ FFS? , evala(T,F)(ψ) = f follows immediately.

Otherwise there is a partition (TA,FA), such that (TA,FA) �? ψ

(therefore ψ /∈ TTS?), hence

not (TA,FA) �? ψ1 or not (TA,FA) �? ψ2.

64

4.2. PSEUDO-ATOMICITY AND EVALUATION

We assume wlog that not (TA,FA) �? ψ1: By IH. we get

evala(T,F)(ψ1) = f and hence by construction evala(T,F)(ψ) = f .

• Assume eval(T,F)(ψ) = u.

Then there are partitions (TA,FA) �? ψ and (TA′,FA′) 6�? ψ,

hence ψ /∈ TTS? and ψ /∈ FFS? .

Also (at least) one of (TA′,FA′) 6�? ψ1 or (TA′,FA′) 6�? ψ2 holds.

Assume wlog the first.

Hence eval(T,F)(ψ1) = u and eval(T,F)(ψ2) ∈ {t, u}. By IH.

and construction follows evala(T,F)(ψ) = u

The other directions follow by reversing the arguments. �

Remark 4.2.12

Notice, that there are two critical checks above:

First, that subformulae evaluating to u do not directly affect the

calculation of the total value. Indeed the only direct check on being

unknown is done in the case of base formulae. Second, that we need

to deal with tautologies and unsatisfiables. Especially this check

must be executed prior to the calculation on subformulae, since the

three cases in the build up of the evaluator are not structuredly

distinct. 2

Combining lemmata 4.2.11 and 4.2.8 the following corollary fol-

lows immediately:

Corollary 4.2.13

In the situation of definition 4.2.10, and using the structured embed-

ding ?. It holds for all consistent atomic knowledge-bases (T,F) of

S, that

eval(T,F)(ψ) = evala(T,F) (?(ψ))

65

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

for all ψ ∈ L. (The left evaluation is determined on S, but the right

evaluation on S?.) 2

Lemma 4.2.14

In the situation of definition 4.2.10, let (T,F) be a consistent knowl-

edge-base of S (not necessarily atomic).

Furthermore define a knowledge-base (T ?,F?) by

• T ? := {?(ψ) ∈ L? | ψ ∈ T}

• F? := {?(ψ) ∈ L? | ψ ∈ F}

Then there exist unique subsets

• T a ⊆ {ψ ∈ L? | eval(T ?,F?)(ψ) = t} \ TTS?and

• Fa ⊆ {ψ ∈ L? | eval(T ?,F?)(ψ) = f} \ FFS?

that satisfy the following conditions: for all ψ,ψ1, ψ2 ∈ L?

p1) evala(T a,Fa)(ψ) = eval(T ?,F?)(ψ),

p2) ¬ψ /∈ T a ∪ Fa

(formulae are free of negation prefixes)

p3) if ψ1 ∧ ψ2 ∈ T a ∪ Fa,

then eval(T ?,F?)(ψ1) = u and eval(T ?,F?)(ψ2) = u

(all subformulae are unknown).

Moreover, it holds T a ⊆ B. 2

Proof The existence of subsets with the two minimality properties

p2) and p3) is obvious since both just filter out undesired formulae.

To proof the equality of evala(T a,Fa) and eval(T ?,F?) we assume that

evala(T a,Fa) 6= eval(T ?,F?)

66

4.2. PSEUDO-ATOMICITY AND EVALUATION

and let ψ ∈ L? be a shortest witness. That is

• evala(T a,Fa)(ψ) 6= eval(T ?,F?)(ψ) and

• evala(T a,Fa)(ψ
′) 6= eval(T ?,F?)(ψ

′) implies #ψ′ ≥ #ψ.

Obviously, by definitions of TTS? , FFS? and evala(T a,Fa), it is

ψ /∈ TTS? ∪ FFS? .

We distinguish all possibilities for eval(T ?,F?)(ψ) depending on the

outermost connective of ψ and show that in all cases

evala(T a,Fa)(ψ) = eval(T ?,F?)(ψ)

holds, contradicting our assumptions.

• Assume eval(T ?,F?)(ψ) = t.

– If ψ ∈ B: obviously, then ψ ∈ T a and hence, by definition

of the atomic evaluator evala(T a,Fa)(ψ) = t.

– If ψ = ¬ψ′: then f = eval(T ?,F?)(ψ
′) = evala(T a,Fa)(ψ

′),

the first equality by definition of eval(T ?,F?) and the sec-

ond because #ψ′ < #ψ.

Since ψ starts with a negation, it is ψ /∈ T a ∪ Fa.

Hence, since we already ruled out, that ψ is a tautology,

it is evala(T a,Fa)(ψ) = t, as a result of the negation calcu-

lation in the definition of evala(T a,Fa).

– If ψ = ψ1 ∧ ψ2: then by definition

eval(T ?,F?)(ψ1) = eval(T ?,F?)(ψ2)

= evala(T a,Fa)(ψ1)

= evala(T a,Fa)(ψ2) = t.

67

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

It follows, that ψ /∈ T a.

Obviously, we have ψ /∈ Fa as well, since

eval(T ?,F?)(ψ) 6= f

by definition.

Hence the value of evala(T a,Fa)(ψ) = t.

• Assume eval(T ?,F?)(ψ) = f :

– If ψ ∈ B: as above.

– If ψ = ¬ψ′: as above

– If ψ = ψ1 ∧ ψ2: we distinguish the following cases.

If eval(T ?,F?)(ψ1) = f or eval(T ?,F?)(ψ2) = f ,

then ψ /∈ Fa, and, by reasoning analogous to above, it is

evala(T a,Fa)(ψ) = f .

If eval(T ?,F?)(ψ1) = t, then eval(T ?,F?)(ψ2) = f , and

hence, the previous case applies.

Analogously for eval(T ?,F?)(ψ2) = t.

If eval(T ?,F?)(ψ1) = eval(T ?,F?)(ψ2) = u:

Then ψ ∈ Fa and the desired evala(T a,Fa)(ψ) = f follows

from the base-case in the definition of the atomic evalua-

tor.

• Assume eval(T ?,F?)(ψ) = u:

it immediately follows that neither eval(T ?,F?)(ψ) = t nor

eval(T ?,F?)(ψ) = f and hence ψ /∈ T a ∪ Fa.

Again we distinguish:

– If ψ ∈ B, then evala(T a,Fa)(ψ) = u is immediate.

68

4.2. PSEUDO-ATOMICITY AND EVALUATION

– If ψ = ¬ψ′: This follows exactly as in the above cases.

– If ψ = ψ1 ∧ ψ2: Then at least one of ψ1, ψ2 evaluates

to u as well, wlog. eval(T ?,F?)(ψ1) = u. Also neither

can evaluate to f . Hence since ψ /∈ T a ∪ Fa, we have

evala(T a,Fa)(ψ) = u.

The last claim T a ⊆ B follows by the two properties p2) and p3)

and observing that evala(T a,Fa)(ψ1 ∧ ψ2) = t always implies

evala(T a,Fa)(ψ1) = evala(T a,Fa)(ψ2) = t.

Hence, no compund formula can be in T a. �

Definition 4.2.15

The knowledge-base (T a,Fa) (of S?) found in the previous lemma is

called pseudo-atomic version of the knowledge-base (T,F) (of S). 2

Summing up the presented lemmata in this section, it was proven:

Theorem 4.2.16

Let S = (L, I,�) be an atomic semantics with Boolean completion

S? and structured embedding ?. Furthermore let (T,F) be a consis-

tent S-knowledge-base. Then it holds

eval(T,F)(ψ) = evala(T a,Fa)(?(ψ))

for all formulae ψ ∈ L. 2

69

CHAPTER 4. DEPENDENCIES ON LANGUAGE
STRUCTURES

70

Chapter 5

Generalized Censors

In this chapter, we discuss various censors that work on all general

semantics, as well as restrictions and obstacles that arise from quality

restriction. We start by proving some general properties, that are

handsome tools in proving desired attributes of censors. Starting

with some purely technical tools, as first major consequence will

arise, that truthful censors are always credible. The second major

consequence is, that in the (non-atomic) general semantics an answer

of unknown (u) is strong enough to allow very simple lying censors in

comparison to the censors found in settings of atomic propositional

logic (like [BW08]).

Afterwards we will define and discuss two classes of censors,

namely truthful and cooperative lying censors. Since the later ones

turn out to have all the desired properties, uncooperative lying cen-

sors can not add additional features, and hence there is no need to

discuss them.

71

CHAPTER 5. GENERALIZED CENSORS

Finally, we use this chapter to show that indeed all of the pre-

sented quality properties are independent. To this end, we will give

examples of censors for each configuration.

5.1 Basic Properties

Lemma 5.1.1 (Quartum non datur)

Let ψ ∈ LALC and let C be a CALC-cloud. Then exactly one of the

following statements holds:

• C |= {�ψ}

• C |= {�ψ}

• C |= {♦ψ,�¬ψ} 2

Proof Trivial. �

Lemma 5.1.2

Let censor be a credible and effective censor, n ∈ N,

• F := {ψ | �ψ ∈ SCPC,q(n)} and

• T := {ψ | �ψ ∈ SCPC,q(n)}

for a fixed privacy configuration PC = (CK,AK,SK), then the follow-

ing hold:

a) (T,F) is satisfiable.

b1) eval(T,F)(ψ) ∈ {u, f} for each ψ ∈ TSK

b2) eval(T,F)(ψ) ∈ {u, t} for each ψ ∈ FSK

72

5.1. BASIC PROPERTIES

c1) eval(T,F)(ψ) = t if �ψ ∈ SCPC,q(n)

c2) eval(T,F)(ψ) = f if �ψ ∈ SCPC,q(n)

d) eval(T,F)(ψ) = u if ♦ψ ∈ SCPC,q(n) (or if �ψ ∈ SCPC,q(n)) 2

Proof Ad a): Since censorPC is credible, there is a cloud-model

(W, ι) of SCPC,q(n). For w ∈ W by definition ι(w) satisfies T and

co-satisfies F.

Ad b): Since {�ψ | ψ ∈ T} ∪ {�ψ | ψ ∈ F } ⊆ SCPC,q(n) this

follows by definition of effectiveness.

Ad c1): By definition of satisfiability ψ must be semantically implied

by T, hence by definition of eval the statement follows. c2) follows

analogously.

Ad d): By construction of SCPC,q(n) from Cont whenever ♦ψ or �ψ

is contained in SCPC,q(n), the other one is included as well. Hence by

credibility, in the cloud-model (W, ι) of SCPC,q(n), there are worlds

w1, w2 ∈ W , such that ι(w1) � ψ and ι(w2) � ¬ψ. As in a) ι(w1)

and ι(w2) are models of (T,F). Hence ψ is neither semantically

implied nor semantically co-implied by (T,F). By definition of eval

follows the proposition. �

5.1.1 Cloud Translation

There is a slightly less intuitive characterisation of truthful censors

via the following translation, which we use to show that every truth-

ful censor is credible:

73

CHAPTER 5. GENERALIZED CENSORS

Definition 5.1.3 (Cloud-Translation)

Let KK ⊆ L be a knowledge-base. Then the set

ClTr(KK) :=
⋃
ψ∈L

Cont(ψ, evalKK(ψ))

is called (universal) cloud translation of KK. 2

Some facts are immediate:

Proposition 5.1.4 (Properties)

Let KK be an arbitrary knowledge-base, let ψ ∈ L and let C be a

S-cloud. The following statements hold

• If C � ClTr(KK), then C � �ψ iff �ψ ∈ ClTr(KK)

• If C � ClTr(KK), then C � �ψ iff �ψ ∈ ClTr(KK)

• If ClTr(KK) � {♦ψ,�ψ} and KK is satisfiable,

then ψ /∈ TKK ∪ FKK .

• At least one of the formulae �ψ, �ψ, ♦ψ or �ψ is an element

of ClTr(KK).

• Cont(ψ, evalKK(ψ)) ⊆ ClTr(KK).

• Let

VK := ({η ∈ L | �η ∈ ClTr(KK)}, {η ∈ L | �η ∈ ClTr(KK)})

then evalKK(ψ) = evalVK(ψ) and

VK =
(
{ψ ∈ L | KK � ψ}, {ψ ∈ L | KK �

co

ψ}
)

. 2

74

5.1. BASIC PROPERTIES

Lemma 5.1.5 (Cloud-Translation Preserves Satisfiability)

Let KK be a knowledge-base. Then KK is satisfiable iff ClTr(KK)

is satisfiable. 2

Proof Left to right:

Let U := {ψ ∈ L | u = evalKK(ψ)}.
Assume U 6= ∅.
By definition of the evaluation for all ψ ∈ U there are interpretations

iψ and jψ,

such that iψ � (TKK ∪ {ψ},FKK) and jψ � (TKK ,FKK ∪ {ψ}).

Define C by WC := U × {t, f} and ιC by setting ιC((ψ, t)) := iψ

and ιC((ψ, f)) := jψ. Hence by choice of iψ and jψ the following are

immediate:

• C � �ϕ for all ϕ with evalKK(ϕ) = t,

• C � �ϕ for all ϕ with evalKK(ϕ) = f ,

• C � ♦ψ for all ψ with evalKK(ψ) = u (ψ ∈ U) and

• C � �ψ for all ψ with evalKK(ψ) = u (ψ ∈ U).

Therefore C � ClTr(KK).

If U = ∅ (meaning KK is complete), assume k � KK.

Then we have that C with WC = {w} and ιC(w) := k is a model of

ClTr(KK) as is easily seen.

75

CHAPTER 5. GENERALIZED CENSORS

Right to left:

Let C be a model of ClTr(KK). By definition

C � {�ψ | t = evalKK(ψ)} ∪ {�ψ | f = evalKK(ψ)}.

Hence for any w ∈WC it is ιC(w) � KK. �

Lemma 5.1.6 (Truth by Cloud-Translation)

A censor censor is truthful iff for every privacy configuration PC =

(CK,AK,SK), every query sequence q and every n ∈ N0 we have

ClTr(CK) � SCPC,q(n).
2

Proof Left to right:

We show SCPC,q(n) ⊆ ClTr(CK) by induction on n:

Since CK � AK, then, for every ψ ∈ TAK , we have that evalCK(ψ) = t.

Likewise, we have for every ψ ∈ FAK , that evalCK(ψ) = f

Hence

SCPC,q(0) = {�ψ | ψ ∈ TAK } ∪ {�ψ | ψ ∈ TAK }

=
⋃
ψ∈AK

Cont(ψ, evalCK(ψ)) ⊆ ClTr(CK)

Step: Since censorPC is truthful, an+1 ∈ {r, evalCK(qn+1)}. Thus

either

SCPC,q(n+ 1) = SCPC,q(n) ∪ Cont(qn+1, r) = SCPC,q(n)

and we are done by I.H. or

SCPC,q(n+ 1) = SCPC,q(n) ∪ Cont(qn+1, evalCK(qn+1))

76

5.1. BASIC PROPERTIES

which follows by I.H. and Cont(qn+1, evalCK(qn+1)) ⊆ ClTr(CK) by

definition of ClTr.

Right to left:

Assume there is an index n, s.t. an 6∈ {r, evalCK(qn)}. Wlog. let this

index be minimal for q. Let C be a cloud model, s.t. C � SCPC,q(n).

Then C 6� Cont(qn, eval(CK, qn)) by Lemma 5.1.1. Hence (in fact) no

model C of SCPC,q(n) satisfies C � ClTr(CK). But By Lemma 5.1.5

there is at least one model of ClTr(CK), since CK is satisfiable by

definition of privacy configuration. We conclude that this model of

ClTr(CK) cannot be a model of SCPC,q(n) and, therefore, ClTr(CK) 6�
SCPC,q(n) as required. �

The previous two lemmata combine very nicely:

Corollary 5.1.7

Every truthful censor is credible. 2

5.1.2 Ignorance

In this section we show that a given answer u does not have any

implicational strength when considering general knowledge-bases.

As we show in section 5.3 this turns out to be a valuable tool when

dealing with lying censors: answers that would violate privacy can

simply be replaced by u in order to maintain privacy. However,

even when dealing with truthful censors it is quite helpful since it

also removes the need to check for a possible privacy violation in the

cases where the query directly evaluates to u.

77

CHAPTER 5. GENERALIZED CENSORS

Lemma 5.1.8

Let ϕ, η ∈ L and let censorPC be a censor. Further assume that each

of ♦ϕ, �ϕ, and ♦η is consistent with SCPC,q(n). Then if

SCPC,q(n) ∪ Cont(ϕ, u) � �η.

it follows SCPC,q(n) � �η.

Likewise, if �η is consistent with SCPC,q(n), then if

SCPC,q(n) ∪ Cont(ϕ, u) � �η,

it follows SCPC,q(n) � �η. 2

Proof Since ♦ϕ,�ϕ are satisfiable in SCPC,q(n), there are cloud-

models

L � SCPC,q(n) ∪ {♦ϕ} and M � SCPC,q(n) ∪ {�ϕ}.

Hence there are worlds l ∈ WL and m ∈ WM with I := ιL(l) � ϕ,

J := ιM(m) �
co

ϕ and for all formulae ρ ∈ L, s.t. �ρ ∈ SCPC,q(n), it

holds I � ρ and J � ρ.

Likewise for all formulae ρ ∈ L, s.t. �ρ ∈ SCPC,q(n), it holds I �
co

ρ

and J �
co

ρ.

Let C be an arbitrary cloud-model of SCPC,q(n) and w ∈WC. Then

in ιC(w) it either ϕ is satisfied or co-satisfied. Assume ϕ is satisfied:

By adding a fresh world j to WC with ιC(j) = J we obtain a new

model that satisfies SCPC,q(n)∪Cont(ϕ, u), since by construction all

�- and �-formulae are satisfied and for each ♦-formula there is at

least one world satisfying the corresponding L-formula. Let us point

out, that this is sufficient only because there are no logical connec-

tives that combine cloud-formulae, especially no kind of disjunction

78

5.1. BASIC PROPERTIES

or negation.

Thus by presumption this model satisfies �η. Therefore by defini-

tion η is satisfied in all ι(w) where w ∈WC∪{j}. Hence η is satisfied

in all ι(w) where w ∈WC and hence C � �η.

The case, in which ϕ is co-satisfied, follows analogously by adding I.

The second part of the lemma follows similarly. �

Corollary 5.1.9 (Security in Ignorance)

Let censor be a censor. For privacy configuration PC, query-sequence

q ∈ LN and a := censorPCPC(q), let censorPC fulfil the conditions(
CnPC,q

)
,
(
EnPC,q

)
, and

(
ĒnPC,q

)
.

If both ♦qn+1 and �qn+1 are satisfiable in SCPC,q(n) then setting

the corresponding answer to an+1 := u leads to satisfaction of the

conditions
(
Cn+1

PC,q

)
,
(
En+1

PC,q

)
and

(
E
n+1

PC,q

)
. 2

5.1.3 Standard Repudiation Sequences

Basically repudiation is a property that enforces the existence of

alternative, non-harmful knowledge-bases. These knowledge-bases

should act as replacement of the censored knowledge-base and the

censor should reproduce the same answers when equipped with those

alternatives. This way, meta-inference by reverse engineering possi-

ble databases and hence revealing hidden secrets by an attacker is

effectively blocked.

79

CHAPTER 5. GENERALIZED CENSORS

A good candidate as such a cover-up-sequence of knowledge-bases

turns out to be

AltK(n) := ({ψ | �ψ ∈ SCPC,q(n)}, {ψ | �ψ ∈ SCPC,q(n)})

at least for effective censors. The main reason is the following fact:

Proposition 5.1.10

For all n ∈ N and ψ ∈ L, if a censor is effective up to stage n it

holds

SCPC,q(n) � �ψ iff AltK(n) � ψ,

and

SCPC,q(n) � �ψ iff AltK(n) �
co

ψ.
2

Proof Concerning the first part:

Right to left is trivial.

By effectiveness it exists a model of SCPC,q(n).

Assume AltK(n) 6� ψ.

Let M � SCPC,q(n) and I � AltK(n) with I 6� ψ.

Then the model constructed by N = (WN, ιN) with WN := WM∪{i}
and

ιN(w) =

{
ιM(w) if w ∈WM

I if w = i

is a model of SCPC,q(n). But N 6� �ψ.

Concerning the second part: Co-satisfaction is a stronger notion

than satisfiability, since it requires an interpretation to exist.

So if AltK 6�
co

ψ, there are two cases: AltK is not satisfiable or it has

an interpretation I � AltK(n), where I � ψ.

The first case can not happen, because since by effectiveness, there

80

5.2. TRUTHFUL CENSORS

is a model M � SCPC,q(n). But for all worlds w ∈ WM of this

model we have for all named interpretations: ιC(w) � AltK.

Hence the second case applies, where the statement follows similar

as the proof of the first part of the lemma. �

Corollary 5.1.11

Let censor be truthful. Then CK � AltK(n) for any privacy configu-

ration PC and all n. 2

Proof Let ψ ∈ TAltK(n) .

By proposition 5.1.10 SCPC,q(n) � �ψ. Hence by lemma 5.1.6 it

is ClTr(CK) � �ψ. By definition of the cloud translation it follows

�ψ ∈ ClTr(CK) and by the same definition CK � ψ.

Similarly follows CK �
co

ψ, when ψ ∈ FAltK(n) .

5.2 Truthful Censors

In this section the censors must be truthful. So they might refuse to

answer every query, meaning in this context assigning r as answer,

but they cannot assign an answer from {t, f, u} that differs from the

actual evaluation.

An interesting point in this setting is the possibility to complete

the separation of effectiveness from repudiation. To this end we will

discuss two truthful censors which are both continuous, effective and

credible, but only one is repudiating. The failure of being repudiat-

ing will also show how a leak of the censor algorithm can present a

way of obtaining secrets.

81

CHAPTER 5. GENERALIZED CENSORS

Algorithm 1 Calculate RTCensPC(q)

Require: PC = (CK,SK,AK) as privacy configuration
Require: q ∈ LN

1: a = (a1, a2, . . .)← (u, u, . . .)
2: SCPC,q(0)←

⋃
ϕ∈TAK

Cont(ϕ, t) ∪
⋃

ϕ∈FAK

Cont(ϕ, f)

3: for n← 1 . . .∞ do
4: compliant ← true
5: for σ ∈ TSK do
6: if SCPC,q(n− 1) ∪ Cont(qn, t) � �σ

or SCPC,q(n− 1) ∪ Cont(qn, f) � �σ then
7: an ← r
8: compliant ← false
9: end if

10: end for
11: for σ ∈ FSK do
12: if SCPC,q(n− 1) ∪ Cont(qn, t) � �σ

or SCPC,q(n− 1) ∪ Cont(qn, f) � �σ then
13: an ← r
14: compliant ← false
15: end if
16: end for
17: if compliant then
18: an ← evalCK(qn)
19: end if
20: SCPC,q(n)← SCPC,q(n− 1) ∪ Cont(qn, an)
21: end for
22: return a

82

5.2. TRUTHFUL CENSORS

Algorithm 2 Calculate TCensPC(q)

Require: PC = (CK,SK,AK) as privacy configuration
Require: q ∈ LN

1: a = (a1, a2, . . .)← (u, u, . . .)
2: SCPC,q(0)

⋃
ϕ∈TAK

Cont(ϕ, t) ∪
⋃

ϕ∈FAK

Cont(ϕ, f)

3: for n← 1 . . .∞ do
4: compliant ← true
5: p← evalCK(qn)
6: for σ ∈ TSK do
7: if SCPC,q(n− 1) ∪ Cont(qn, p) � �σ then
8: an ← r
9: compliant ← false

10: end if
11: end for
12: for σ ∈ FSK do
13: if SCPC,q(n− 1) ∪ Cont(qn, p) � �σ then
14: an ← r
15: compliant ← false
16: end if
17: end for
18: if compliant then
19: an ← p
20: end if
21: SCPC,q(n)← SCPC,q(n− 1) ∪ Cont(qn, an)
22: end for
23: return a

83

CHAPTER 5. GENERALIZED CENSORS

Definition 5.2.1 (Truthful Censors)

We denote the censor determined by algorithm 1 as RTCens (re-

pudiating, not minimally invasive truthful censor) and the censor

determined by algorithm 2 as TCens (non repudiating, minimally

invasive truthful censor). 2

The difference between both algorithms is the choice when they

refuse to answer. The censor TCens only refuses if a truthful answer

leads to a SCPC,q(·) in which a secret is violated. The censor RTCens

also refuses when a response of t or f would lead to this violation of

effectiveness. It is immediately clear that RTCens is not minimally

invasive.

At a first glance and having corollary 5.1.9 in mind it appears,

that RTCens should also answer unknown, if that is the evaluated

answer. However this would lead to a censor violating repudiation.

Example 5.2.2 (Non-Repudiation in Truthful Ignorance)

Assume RTCens would answer u, whenever evalCK(qi) = u. In this

case the proofs of continuity, truth, credibility and effectiveness given

in the coming lemmata still work fine (after shifting around some

cases). We give a counter example to show a failure in repudiation:

Assume PC := (CK,AK,SK) with

• CK := (∅, {σ}),

• AK := (∅, ∅) and

• SK := (∅, {σ, ρ}),

with σ, ρ ∈ P{a,b,c,...}.

We ask the query sequence

84

5.2. TRUTHFUL CENSORS

q := (σ ∧ ρ, ρ, σ, a ∧ ¬a, a ∧ ¬a, . . .).

As is easily calculated, we get:

evalCK(σ ∧ ρ) = f

evalCK(ρ) = u

evalCK(σ) = f

It is simple to infer the answer given by the modified RTCensPC (with

unknown):

a = (f, u, r, f, . . .)

The violation of repudiation happens after the refusal:

First notice that after the second answer, any knowledge-base (T,F)

that produces the same answers has to semantically co-imply σ ∧ ρ,

but must also not imply or co-imply ρ. Hence there are two options

left for σ: either it evaluates to u (meaning σ ∧ ρ is a consequence

of more complex axioms) or it evaluates to f . Since in the first case

our modified censor would answer u, which it does not (a3 = r),

there is only one option left and this is eval(T,F)(σ) = f . 2

Example 5.2.3 (3.2.2 cont’d)

Let us calculate the answers of both truthful censors in the case

where TheCar ≡ P :

TCens. . .(P1) = (f, f, f, f, r, r, t, t, . . .)

TCens. . .(P2) = (t, t, t, t, t, r, r, t, t, . . .)

The non-repudiating censor refuses to answer on two questions in

both sequences. In P1, since correctly answering f to ∃DriverOf.P ≡

85

CHAPTER 5. GENERALIZED CENSORS

D, would already imply ∃DriverOf.P ≡ F to be true in any inter-

pretation.

Similarly in the answer to P2.

However, in contrast to example 5.2.2 above, Floyd is still not lost

when the policeman knows the algorithm, since it is clear, that f

would be a safe answer to ∃DriverOf.P ≡ E, as well as ∃DriverOf.P ≡
F . So both cases remain as possible interpretations.

For the repudiating version, we obtain the answers:

RTCens. . .(P1) = (r, r, r, r, r, r, t, t, . . .)

RTCens. . .(P2) = (t, t, t, t, t, r, r, t, t, . . .)

In the first answer, since every answer to true would immediately

yield a secret. And in the second query’s answer, which is the same

answer that TCens gave to P2, by understanding that changing any

of the given r to either f or t would give away one of the community-

members as driver. However, the given answer rules out A,B,C and

D as possible drivers. 2

The continuity of both censors is immediate:

Lemma 5.2.4 (Continuity)

The censors RTCens and TCens are continuous. 2

Proof Clear by inspection of the algorithm: All decisions are based

only on the state-clouds that are constructed in a step before and

the current query. �

Lemma 5.2.5 (Truth)

The censors RTCens and TCens are truthful. 2

86

5.2. TRUTHFUL CENSORS

Proof In both algorithms the answer is only modified to r (if at

all). Hence the condition an ∈ {r, evalCK(qn)} is always satisfied. �

The previous lemma in combination with corollary 5.1.7 provides

immediately:

Corollary 5.2.6 (Credibility)

The censors RTCens and TCens are credible. 2

Lemma 5.2.7 (Effectiveness)

The censors RTCens and TCens are effective. 2

Proof Let censorPC ∈ {RTCens,TCens}, PC be a privacy configura-

tion and q be a query sequence. Set a := censorPCPC(q) and assume

that for all m < n the required properties - for all σ ∈ TSK not

SCPC,q(m) � �σ and for all σ ∈ FSK not SCPC,q(m) � �σ - holds.

We prove that for n this holds as well:

Case evalCK(qn) = u:

For both TCens and RTCens: In case u is selected as answer, effec-

tiveness in stage n is immediate from corollary 5.1.9. Only RTCens

can also refuse in this case. Then it is

SCPC,q(n) = SCPC,q(n− 1) ∪ ∅ = SCPC,q(n− 1)

and the property follows by induction hypothesis.

Case evalCK(qn) = t (for both censors):

If the property is violated, there is a σ ∈ TSK , s.t. SCPC,q(n) � �σ

or a σ ∈ FSK , s.t. SCPC,q(n) � �σ. But, by construction of the

state-cloud, we have

SCPC,q(n) = SCPC,q(n− 1) ∪ Cont(qn, t)

87

CHAPTER 5. GENERALIZED CENSORS

and hence, in case σ ∈ TSK , we have SCPC,q(n−1)∪Cont(qn, t) � �σ

in contradiction to the refusal-selection in line 7 in TCens and line 6

in RTCens, respectively. In the other case, σ ∈ FSK , analougously

we have SCPC,q(n − 1) ∪ Cont(qn, t) � �σ, in contradicting to the

refusal-selection in the corresponding line 13 in TCens and line 12

in RTCens, respectively.

Hence both censors would have refused to answer then leaving

SCPC,q(n) = SCPC,q(n− 1) ∪ ∅

and thus fulfilling the property by I.H.

Case evalCK(qn) = f (for both censors): follows analogously. �

Lemma 5.2.8 (Repudiation)

The censor RTCens is repudiating. 2

Proof Let PC = (CK,AK,SK) be a privacy configuration and q be

a query sequence. Set a := RTCensPC(q).

We show that AltK(n) is a possible choice.

Ad R-C)): PCn := (AltK(n),AK,SK) is a privacy configuration:

-PC-A): AltK(n) � AK.

Lines 2 and 20 of algorithm 1 reflect the definition of a state cloud

as given in definition 2.4.13.

Since by this definition it is

SCPC,q(n) ⊇ {�ψ | ψ ∈ TAK } ∪ {�ψ | ψ ∈ FAK } = SCPC,q(0),

we have TAK ⊆ TAltK(n) and FAK ⊆ FAltK(n) .

-PC-B): AltK(n) are satisfiable as a consequence of credibility.

-PC-C): is obvious, since SK and AK are unchanged.

88

5.2. TRUTHFUL CENSORS

Ad R-B): By effectiveness and proposition 5.1.10.

Ad R-A): Let b := RTCens(AltK(n),AK,SK)(q).

To show: For 1 ≤ i ≤ n it is ai = bi.

Observe that

SCPC,q(0) = SCPCn,q(0) =
⋃

ψ∈TAK

Cont(ψ, t) ∪
⋃

ψ∈FAK

Cont(ψ, f)

holds. Assume we have checked that ak = bk for all k < i ≤ n.

Hence for those k (and especially k = i− 1)

SCPC,q(k) = SCPCn,q(k) (?)

Case ai = t:

If SCPC,q(i − 1) � qi, by (?) also SCPCn,q(i − 1) � qi. Hence we

have bi = t.

Else by (?): SCPCn,q(i−1)∪Cont(qi, t) and SCPCn,q(i−1)∪Cont(qi, f)

do not imply any secret (otherwise already ai = r).

Therefore bi := eval(AltK(n), qi) must hold. But qi ∈ AltK(n), since

�qi ∈ SCPC,q(n).

Hence, it is eval(AltK(n), qi) = t and thus bi = t.

Case ai = f : analogous.

Case ai = u: By (?) follows:

• SCPCn,q(i− 1) 6� �qi and

• SCPCn,q(i− 1) 6� �qi.

Also by (?) we obtain

• SCPCn,q(i− 1) ∪ Cont(qi, t) 6� �σ and

89

CHAPTER 5. GENERALIZED CENSORS

• SCPCn,q(i− 1) ∪ Cont(qi, f) 6� �σ

for any σ ∈ TSK and

• SCPCn,q(i− 1) ∪ Cont(qi, t) 6� �σ and

• SCPCn,q(i− 1) ∪ Cont(qi, f) 6� �σ

for any σ ∈ FSK . Hence, with CK � AltK(n) (corollary 5.1.11), it

follows

bi = eval(AltK(n), qi) = u.

Case ai = r: Hence a positive secret (from TSK) or negative secret

(from FSK) must have been violated.

If it is a positive secret,

• either SCPC,q(i− 1) ∪ {�qi} � �σ

• or SCPC,q(i− 1) ∪ {�qi} � �σ

for a σ ∈ TSK . Hence by (?)

• either SCPCn,q(i− 1) ∪ {�qi} � �σ

• or SCPCn,q(i− 1) ∪ {�¬qi} � �σ.

Hence bi = r.

If a negative secret is violated, this follows analogously. �

Lemma 5.2.9 (Minimally invasive)

The censor TCens is minimally invasive. 2

Proof Let PC be a privacy-configuration, q a query-sequence and

set a := TCensPC(q).

90

5.2. TRUTHFUL CENSORS

Assume there is an index i, s.t. ai 6= evalKK(qi). By inspection of

the algorithm, this can only be a consequence of lines 8 or 14 setting

ai = r. Hence either by line 7 there is a secret σ ∈ TSK such that

SCPC,q(i− 1) ∪ Cont(qi, evalCK(qi)) � �σ,

or by line 13 there is a secret σ ∈ FSK such that

SCPC,q(i− 1) ∪ Cont(qi, evalCK(qi)) � �σ,

in violation of effectiveness. �

Unfortunately, truthful censors have the problem, that either

they have to be more uncooperative than one could hope for, or they

are vulnerable to repudiation attacks that infer knowledge of secrets

even if the state cloud does not semanically imply them. Hence,

it is generally impossible for truthful censors to have all presented

quality properties.

Theorem 5.2.10

A continuous truthful censor satisfies at most two of the properties

effectiveness, minimal invasion and repudiation. 2

Proof Assume censorPC is continuous, truthful, credible, effective

and minimally invasive. We will show that it is not repudiating.

As above, examine the privacy-configuration PC, given by

CK := ({σ}, ∅) , AK := (∅, ∅) and SK := ({σ}, ∅) ,

and the query q := (σ, σ, . . .). We set a := censorPC(q). Obviously

a1 = r must hold, otherwise censorPC either lies or reveals a se-

91

CHAPTER 5. GENERALIZED CENSORS

cret. Assume a censored knowledge-base RK1 as alternative to CK at

stage 1 and define a′ := censorPCRK1,AK,SK(q).

There are three cases:

• RK1 � σ

• RK1 �
co

σ

• both RK1 6� σ and RK1 6�
co

σ

It suffices to show, that the later two cannot occur.

Assume RK1 �
co

σ.

As consequence of being truthful, the first answer must be either

a′1 = f or a′1 = r. By the fact SCPC,q(0)∪{�σ} 6� �σ and minimal

invasion (it is the first given answer!) it follows that a′1 = f and

hence we obtain the contradiction to f = a′1
!
= a1 = r.

Analogously in the third case it follows a′1 = u.

Hence only knowledge-bases that semantically imply σ are possible

alternatives to CK, contradicting repudiation. �

Corollary 5.2.11 (Non-repudiation)

The censor TCens is not repudiating. 2

Corollary 5.2.12

Effectiveness, continuity, credibility and minimal invasion do not

imply repudiation. 2

5.3 Cooperative Lying Censors

Since the refusing approach did turn out to be unsatisfying, we next

want to consider a censor that is capable of lying but not refusing

to answer.

92

5.3. COOPERATIVE LYING CENSORS

Formally this means that they are not truthful, but the possible

answers are limited to A = {t, f, u}. Let us point out that one could

adapt all proofs to the full answer set (including r) and require that a

censor in any situation has an answer different from r. Such a censor

is denoted (seemingly) cooperative (compare definition 2.4.22).

In this section we will discuss censors that are minimally invasive,

lying and not refusing.

Definition 5.3.1 (Minimally Invasive Lying Censor)

We denote the censor determined by algorithm 3 as MILCens. 2

Let us remark that the only difference to TCens is the replace-

ment of the refusal in lines 8 and 14 with the answer u.

Example 5.3.2 (3.2.2 cont’d)

Calculating the answers of MILCens in the case where TheCar ≡ P

yields:

MILCens. . .(P1) = (f, f, f, f, u, u, t, t, . . .)

MILCens. . .(P2) = (t, t, t, t, t, u, u, t, t, . . .)

We find that the censor lies to answer on two questions in both

sequences. Unsurprisingly the answers refused by TCens are now set

to u for the same reasons TCens refused them. 2

Lemma 5.3.3 (Continuity)

The censor MILCens is continuous. 2

Proof Clear by inspection of the algorithm: simply notice that the

determination of the answer an in lines 8, 14 and 19 only depends

on SCPC,q(n − 1), which is determined in the prior loop, and the

current query qn. �

93

CHAPTER 5. GENERALIZED CENSORS

Algorithm 3 Calculate MILCensPC(q)

Require: PC = (CK,SK,AK) as privacy configuration
Require: q ∈ LN

1: a = (a1, a2, . . .)← (u, u, . . .)
2: SCPC,q(0)←

⋃
ϕ∈TAK

Cont(ϕ, t) ∪
⋃

ϕ∈FAK

Cont(ϕ, f)

3: for n← 1 . . .∞ do
4: compliant ← true
5: p← evalCK(qn)
6: for σ ∈ TSK do
7: if SCPC,q(n− 1) ∪ Cont(qn, p) � �σ then
8: an ← u
9: compliant ← false

10: end if
11: end for
12: for σ ∈ FSK do
13: if SCPC,q(n− 1) ∪ Cont(qn, p) � �σ then
14: an ← u
15: compliant ← false
16: end if
17: end for
18: if compliant then
19: an ← p
20: end if
21: SCPC,q(n)← SCPC,q(n− 1) ∪ Cont(qn, an)
22: end for
23: return a

94

5.3. COOPERATIVE LYING CENSORS

Proposition 5.3.4

For the state-clouds of the censor MILCens holds: For all security

configurations, query sequences and all n ∈ N0:

if �ψ ∈ SCPC,q(n), then evalCK(ψ) = t,

if �ψ ∈ SCPC,q(n), then evalCK(ψ) = f .

Furthermore CK � AltK(n). 2

Proof By construction in the algorithm, if �ψ ∈ SCPC,q(n) [or

resp. �ψ ∈ SCPC,q(n)] it results from line 2 or from line 5 in com-

bination with line 19. In either case, by the definition of Cont,

evalCK(ψ) = t [evalCK(ψ) = f] is immediate. �

If n = 0 in the above proposition, then SCPC,q(n) encodes exactly

the attacker’s knowledge and hence the claim trivially holds by the

conditions on privacy configurations.

Lemma 5.3.5 (Credibility, effectiveness)

The censor MILCens is credible and effective. 2

Proof Let q be a query-sequence, a := censorPC(q) its answer-

sequence and n ∈ N. Assume that for all m < n the required

properties(
CmPC,q

)
SCPC,q(m) is satisfiable(

EmPC,q
)

for all σ ∈ TSK not SCPC,q(m) � σ(
ĒmPC,q

)
for all σ ∈ FSK not SCPC,q(m) �

co

σ

hold. We prove that for n these properties hold as well:

In case SK = ∅, this is immediate, since the censor will only give

95

CHAPTER 5. GENERALIZED CENSORS

true answers and CK is satisfiable.

Otherwise there are three cases:

First case: Assume evalCK(qn) = t:

There are four sub-cases:

(1) SCPC,q(n − 1) � �qn: In this case
(
CnPC,q

)
,
(
EnPC,q

)
and(

ĒnPC,q
)

are immediate.

(2) SCPC,q(n − 1) 6� �qn and no secret is violated by the next

state-cloud, i.e. SCPC,q(n−1)∪Cont(qn, t) 6� �σ for all σ ∈
TSK and SCPC,q(n − 1) ∪ Cont(qn, t) 6� �σ for all σ ∈ FSK :

Then an = t is given by the algorithm and

SCPC,q(n) = SCPC,q(n− 1) ∪ Cont(qn, t)

is satisfiable, since otherwise in all models (there are none!)

all secrets would be violated. Hence
(
CnPC,q

)
,
(
EnPC,q

)
and(

ĒnPC,q
)

follow.

(3) SCPC,q(n − 1) 6� �qn and a secret is violated by the next

state-cloud, i.e. SCPC,q(n − 1) ∪ Cont(qn, t) � �σ for a

σ ∈ TSK or SCPC,q(n− 1)∪Cont(qn, t) � �σ for a σ ∈ FSK :

Then an = u is returned. If SCPC,q(n) = SCPC,q(n − 1) ∪
Cont(qn, u) would not be satisfiable, then either �qn or

�qn is semantically implied by SCPC,q(n − 1). The first

being refused by assumption. If �qn is semantically im-

plied by SCPC,q(n− 1), then by proposition 5.1.10 AltK(n−
1) �

co

qn and hence by proposition 5.3.4 CK �
co

qn contradict-

ing evalCK(qn) = t. Hence we have
(
CmPC,q

)
and by lemma

5.1.9 follow
(
EnPC,q

)
and

(
ĒnPC,q

)
.

96

5.3. COOPERATIVE LYING CENSORS

The case evalCK(qn) = f follows analogous.

The last case evalCK(qn) = u: Obviously an = u is returned. Satis-

faction of the conditions
(
CnPC,q

)
,
(
EnPC,q

)
and

(
ĒnPC,q

)
follows as in

sub-case (3) above. �

Lemma 5.3.6 (Minimally invasive and lying)

The censor MILCens is minimally invasive and lying. 2

Proof Ad “minimally invasive”:

Assume a = MILCensPC(q) and an 6= evalCK(qn). Then an was set

in line 8 or 14. By the corresponding security check in line 7 or 13

effectiveness would have been violated else.

Ad “lying”:

We give a privacy configuration, a sequence of questions and an

index such that the censor will lie:

CK := ({σ}, ∅), AK := (∅, ∅), SK := ({σ}, ∅) and q = (σ, σ, . . .)

will produce a := (u, u, . . .), but a1 = u 6∈ {r, t = evalCK(q1)}. �

Lemma 5.3.7 (Repudiation)

The censor MILCens is repudiating. 2

Proof Let q be a fixed question series and a = MILCens(q).

We show, that AltK(n) is a possible choice of alternate databases:

From lemma 5.3.5 (effectiveness) and since

{�ϕ | ϕ ∈ TAltK(n) } ∪ {�ϕ | ϕ ∈ FAltK(n) } ⊆ SCPC,q(n)

it follows that no secret is valid in AltK(n), hence property R-B).

97

CHAPTER 5. GENERALIZED CENSORS

Ad R-A)): observe that each query qi, where i ≤ n, exactly one of

the following holds:

• qi ∈ TAltK(n) iff AltK(n) � qi iff ai = t

• qi ∈ FAltK(n) iff AltK(n) �
co

qi iff ai = f

• qi /∈ TAltK(n) ∪ FAltK(n) iff AltK(n) 6� qi and AltK(n) 6�
co

qi

iff ai = u

This is immediate by credibility and construction.

Hence for all i ≤ n eval(AltK(n), qi) = ai.

Furthermore the security conditions from lines 7 and 13 of the al-

gorithm are never satisfied, since otherwise by proposition 5.1.10

AltK(n) would violate this condition opposing lemma 5.3.5 (as above).

Therefore all questions qi, i ≤ n, are answered by ai and hence prop-

erty R-A) follows.

Ad R-C)): Since satisfiability of AltK(n) was shown (PC-B)) and nei-

ther AK nor SK were changed (PC-C)), it remains to show

that AltK(n) � AK (PC-A)). This is immediate, since

SCPC,q(n) ⊇ {�ψ | ψ ∈ TAK } ∪ {�ψ | ψ ∈ FAK }

by construction. Therefore AK ⊆ AltK(n) and hence the proof. �

Example 5.3.8

Despite the last lemma, the censor is not atomic repudiating.

Here we consider propositional logic over A := {a, b, c, . . .}.
Let PC = (CK,AK,SK) be given by

• CK := (∅, {a})

98

5.3. COOPERATIVE LYING CENSORS

• AK := (∅, {a ∧ b})

• SK := (∅, {a})

Consider the query-sequence q = (b, b, . . .) The censor MILCens

would give the following answers

MILCensPC(q = (u, u, . . .)

There are only two options that an atomic knowledge-base could

cause the censor to answer u: The value is actually u, which implies,

that the value of a is known to be f—violating a secret—, or b’s value

is t, which implies exactly the same. 2

To finish the section, we give a non-effective (and thus also not

minimally invasive) but credible censor, that satisfies repudiation.

This will prove that repudiation does not imply effectiveness.

Definition 5.3.9 (Ineffective repudiating censor)

We denote the censor determined by algorithm 4 as IeRLCens. 2

Lemma 5.3.10

The censor IeRLCens is credible. 2

Proof Observe that only the last else-clause in line 16 in the algo-

rithm can lead to a not satisfiable SCPC,q(n) in line 19: when the

algorithm answers within the first two checks the class of models of

SCPC,q(n − 1) and SCPC,q(n) remains the same. In the next four

checks the desired satisfiability of the resulting SCPC,q(n) is an ex-

plicit condition.

99

CHAPTER 5. GENERALIZED CENSORS

Algorithm 4 Calculate IeRLCensPC(q)

Require: PC = (CK,SK,AK) as privacy configuration
Require: q ∈ LN

1: a = (a1, a2, . . .)← (u, u, . . .)
2: SCPC,q(0)←

⋃
ϕ∈TAK

Cont(ϕ, t) ∪
⋃

ϕ∈FAK

Cont(ϕ, f)

3: for n← 1 . . .∞ do
4: if SCPC,q(n− 1) � Cont(qn, t) then
5: an ← t
6: else if SCPC,q(n− 1) � Cont(qn, f) then
7: an ← f
8: else if SCPC,q(n− 1) ∪ Cont(qn, t) is satisfiable

and SCPC,q(n− 1)∪Cont(qn, t) � �σ for a σ ∈ TSK then
9: an ← t

10: else if SCPC,q(n− 1) ∪ Cont(qn, f) is satisfiable
and SCPC,q(n−1)∪Cont(qn, f) � �σ for a σ ∈ TSK then

11: an ← f
12: else if SCPC,q(n− 1) ∪ Cont(qn, t) is satisfiable

and SCPC,q(n−1)∪Cont(qn, t) � �σ for a σ ∈ FSK then
13: an ← t
14: else if SCPC,q(n− 1) ∪ Cont(qn, f) is satisfiable

and SCPC,q(n−1)∪Cont(qn, f) � �σ for a σ ∈ FSK then
15: an ← f
16: else
17: an ← u
18: end if
19: SCPC,q(n)← SCPC,q(n− 1) ∪ Cont(qn, an)
20: end for
21: return a

100

5.3. COOPERATIVE LYING CENSORS

Concerning the last step, it follows from the first two steps, that both

SCPC,q(n−1)∪{♦qn} and SCPC,q(n−1)∪{♦¬qn}must be satisfiable.

Hence by corollary 5.1.9 we conclude that SCPC,q(n−1)∪Cont(qn, u)

is satisfiable. �

Lemma 5.3.11

The censor IeRLCens is not effective. 2

Proof Consider the privacy configuration PC given by

CK := AK := (∅, ∅) and SK := ({σ}, ∅).

In this case the query sequence (σ, σ, . . .) yields (t, t, . . .) and hence

leads to the privacy violation SCPC,q(1) � �σ. �

As a matter of fact, the discussed censor is massively ineffective.

It will imply or even confirm a secret whenever it gets a chance

without risking its credibility. An option to become “even more”

ineffective would be to narrow into a secret, e.g. if a sub-query would

be (. . . , ψ1∧· · ·∧ψn → σ, ψ1, . . . ψn . . .) the censor should answer t to

ψ1 to ψn (if possible), which is not necessarily done by the presented

censor. But this would involve a structured analysis of the queried

formulae, a feature that we -so far- do not want to equip our censors

with. Additionally continuity would have to be dropped.

Lemma 5.3.12 (Repudiation)

The censor IeRLCens is repudiating. 2

Proof Let PC = (CK,AK,SK) be a privacy configuration and q be

a query-sequence. By construction of the algorithm it is clear that

the given answers only depend on AK and not -by any means- on

the actual database.

101

CHAPTER 5. GENERALIZED CENSORS

Hence RKi := AK is a possible choice as such a sequence.

As remarked, R-A) is immediate.

For R-B) notice, that –by definition of PC– AK does not validate any

secret.

From AK � AK also follows, that (AK,AK,SK) is indeed a privacy-

configuration and hence R-C), which completes the proof. �

Let us remark, that the presented censor is only interesting as an

example to separate effectiveness and repudiation. A somehow rea-

sonable censor should at least release sometimes “new” information

(i.e. not known by the attacker yet) from the protected knowledge-

base. In the above setting, the attacker only can learn the potential

secrets in case it did not know them already. The censor is also

extremely far from being minimally invasive.

102

Chapter 6

Conclusion

In this thesis we presented high quality censors against a singular

attacker that achieve the presented privacy goals. For this purpose

we established two levels of quality properties:

On a first level we formalized quality properties that are based

on the belief presented by the censor, namely

credibility: the presented view is always consistent

effectiveness: all hidden secrets are not directly inferable from the

presented view

On a second level, we discussed properties restricting the censor

based on its answer selection methodology:

continuity: answer selection only depends on previously given an-

swers

103

CHAPTER 6. CONCLUSION

Truthful/Lying: whether the censor is restricted to true state-

ments, or is allowed to lie

Cooperation a censor should always give an answer that matches

the possible evaluation of a query (forcing a censor to lie)

Minimal Invasion: the censor should only distort an answer when

answering the actual evaluation violates either credibility or

effectiveness

Repudiation there should always be a database that does not vi-

olate any secret, but protected by the same censor would pro-

duce the exactly same answers

It was shown, that it is impossible for a truthful censor to have

simultaneously all such properties. However, maximal truthful cen-

sors were presented:

RTCens being credible, effective, continuous and repudiating, but

not minimal invasive

TCens being credible, effective, continuous and minimal invasive,

but not repudiating

On the other hand, lying censors turned out to be optimal in

that respect. Indeed they can have all desired properties. To this

end, the—in this respect—best censor was constructed:

MILCens being credible, effective, continuous, minimal invasive and

repudiating

All of them are however restricted to so called privacy configu-

rations, that is start-situations in which the censor has access to the

104

full pre-knowledge of the attacker and the attacker does not know

any secret at the start.

105

CHAPTER 6. CONCLUSION

106

Index

ALC, 42

AltK, 80

B, 13

F, 10

FFS , 12

N0, 6

O, 13

T, 10(
CnPC,q

)
, 29(

EnPC,q
)

, 30(
ĒnPC,q

)
, 30

∅, 6

� , 9

6� , 9

i � C, 9

s, 7

×, 6

∩, 6

\, 6

∪, 6

?, 58

TTS , 12

atomic

knowledge-base, 16

semantics, 15

Backus–Naur form, 8

basis, 13

Boolean

completion, 56

embedding, 58

Boolean database, 20

censor, 24

cloud, 26

formula, 26

consistent, 10

content, 27

negative, 52

positive, 52

continuous, 32

cooperative, 33

107

INDEX

credible, 29

effective, 30

eval, 18

evaluator

incomplete, 18

Formula, 9

formula

base, 13

compound, 13

function, 5

implication

semantical, 10

Interpretation, 9

knowledge

negative, 10

positive, 10

knowledge-base, 10

Language, 9

language

subboolean, 13

minimal invasive, 33

N, 6

negation, 16

operators, 13

partition, 7

privacy configuration, 23

query, 21

sequence, 21

range, 5

repudiating, 34

result, 21

sequence, 21

Satisfaction, 9

satisfiable

knowledge-base, 10

set, 9

Semantics, 9

semantics

subboolean, 14

sequence, 7

restriction, 7

stage, 30

state cloud, 28

Tautologies, 12

truthful, 32

tuple, 7

Unsatisfiables, 12

108

Bibliography

[BB04a] Biskup, Joachim ; Bonatti, Piero A.: Controlled

query evaluation for enforcing confidentiality in com-

plete information systems. In: Int. J. Inf. Sec. 3

(2004), Nr. 1, S. 14–27. http://dx.doi.org/10.1007/

s10207-004-0032-1. – DOI 10.1007/s10207–004–0032–

1

[BB04b] Biskup, Joachim ; Bonatti, Piero A.: Controlled

Query Evaluation for Known Policies by Combining Ly-

ing and Refusal. In: Ann. Math. Artif. Intell. 40 (2004),

Nr. 1-2, S. 37–62

[BB07] Biskup, Joachim ; Bonatti, Piero A.: Controlled

query evaluation with open queries for a decidable re-

lational submodel. In: Annals of Mathematics and Arti-

ficial Intelligence 50 (2007), Nr. 1-2, S. 39–77. http:

//dx.doi.org/10.1007/s10472-007-9070-5. – DOI

10.1007/s10472–007–9070–5. – ISSN 1012–2443

109

http://dx.doi.org/10.1007/s10207-004-0032-1
http://dx.doi.org/10.1007/s10207-004-0032-1
http://dx.doi.org/10.1007/s10472-007-9070-5
http://dx.doi.org/10.1007/s10472-007-9070-5

BIBLIOGRAPHY

[BBG+63] Backus, J. W. ; Bauer, F. L. ; Green, J. ; Katz,

C. ; McCarthy, J. ; Perlis, A. J. ; Rutishauser,

H. ; Samelson, K. ; Vauquois, B. ; Wegstein,

J. H. ; Wijngaarden, A. van ; Woodger, M.: Re-

vised Report on the Algorithm Language ALGOL 60.

In: Commun. ACM 6 (1963), Januar, Nr. 1, S. 1–17.

http://dx.doi.org/10.1145/366193.366201. – DOI

10.1145/366193.366201. – ISSN 0001–0782

[BCM+03] Baader, Franz (Hrsg.) ; Calvanese, Diego (Hrsg.)

; McGuinness, Deborah L. (Hrsg.) ; Nardi, Daniele

(Hrsg.) ; Patel-Schneider, Peter F. (Hrsg.): The de-

scription logic handbook: theory, implementation, and

applications. New York, NY, USA : Cambridge Univer-

sity Press, 2003. – ISBN 0–521–78176–0

[Bis00] Biskup, Joachim: For unknown secrecies refusal is

better than lying. In: Data & Knowledge Engineer-

ing 33 (2000), Nr. 1, 1-23. http://dx.doi.org/10.

1016/S0169-023X(99)00043-9. – DOI 10.1016/S0169–

023X(99)00043–9. – ISSN 0169–023X

[BKS95] Bonatti, Piero A. ; Kraus, Sarit ; Subrahmanian,

V. s.: Foundations of Secure Deductive Databases.

In: Transactions on Knowledge and Data Engineering

7 (1995), Nr. 3, S. 406–422. http://dx.doi.org/10.

1109/69.390247. – DOI 10.1109/69.390247. – ISSN

1041–4347

110

http://dx.doi.org/10.1145/366193.366201
http://dx.doi.org/10.1016/S0169-023X(99)00043-9
http://dx.doi.org/10.1016/S0169-023X(99)00043-9
http://dx.doi.org/10.1109/69.390247
http://dx.doi.org/10.1109/69.390247

BIBLIOGRAPHY

[BW08] Biskup, Joachim ; Weibert, Torben: Keeping secrets

in incomplete databases. In: Int. J. Inf. Secur. 7 (2008),

Mai, Nr. 3, S. 199–217. http://dx.doi.org/10.1007/

s10207-007-0037-7. – DOI 10.1007/s10207–007–0037–

7. – ISSN 1615–5262

[Sch08] Schöning, U.: Theoretische Informatik - kurz

gefasst. Spektrum Akademischer Verlag, 2008 (Spektrum

Hochschultaschenbücher). – ISBN 9783827418241

[SDJR83] Sicherman, George L. ; De Jonge, Wiebren ; Riet,

Reind P. d.: Answering queries without revealing secrets.

In: ACM Trans. Database Syst. 8 (1983), Nr. 1, S. 41–59.

http://dx.doi.org/10.1145/319830.319833. – DOI

10.1145/319830.319833. – ISSN 0362–5915

[SS05] Stoffel, Kilian ; Studer, Thomas: Provable Data

Privacy. In: Viborg, K. (Hrsg.) ; Debenham, J. (Hrsg.)

; Wagner, R. (Hrsg.): DEXA 2005 Bd. 3588, Springer,

2005 (LNCS), S. 324–332

[SS07] Stouppa, Phiniki ; Studer, Thomas: A formal model

of data privacy. In: Virbitskaite, Irina (Hrsg.) ;

Voronkov, Andrei (Hrsg.) ; Springer (Veranst.): Pro-

ceedings of Perspectives of System Informatics Bd. 4378

Springer, Springer, 2007, 401-411

[SS09] Stouppa, Phiniki ; Studer, Thomas: Data Privacy

for ALC Knowledge Bases. In: Artemov, S. (Hrsg.) ;

Nerode, A. (Hrsg.): LFCS 2009 Bd. 5407, Springer,

2009 (LNCS), S. 409–421

111

http://dx.doi.org/10.1007/s10207-007-0037-7
http://dx.doi.org/10.1007/s10207-007-0037-7
http://dx.doi.org/10.1145/319830.319833

BIBLIOGRAPHY

[Stu13] Studer, Thomas: A Universal Approach to Guaran-

tee Data Privacy. In: Logica Universalis 7 (2013), Nr.

2, 195-209. http://www.iam.unibe.ch/ltgpub/2012/

stu12b.pdf

[SW14] Studer, Thomas ; Werner, Johannes: Censors

for Boolean Description Logic. In: Transactions on

Data Privacy 7 (2014), 223-252. http://www.tdp.cat/

issues11/abs.a138a13.php. – ISSN 1888–5063

112

http://www.iam.unibe.ch/ltgpub/2012/stu12b.pdf
http://www.iam.unibe.ch/ltgpub/2012/stu12b.pdf
http://www.tdp.cat/issues11/abs.a138a13.php
http://www.tdp.cat/issues11/abs.a138a13.php

Erklärung
gemäss Art. 28 Abs 2 RSL 05

Name/Vorname: Werner Johannes

Matrikelnummer: 11-104-429

Studiengang: Doktorand

Bachelor � Master � Dissertation �

Titel der Arbeit: Controlled Query Evaluation

in General Semantics

with Incomplete Information

Leiter der Arbeit: Prof. Dr. T. Studer

Ich erkläre hiermit, dass ich diese Arbeit selbstständig ver-

fasst und keine anderen als die angegebenen Quellen benutzt

habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen

entnommen wurden, habe ich als solche gekennzeichnet. Mir

ist bekannt, dass andernfalls der Senat gemäss Artikel 36 Ab-

satz 1 Buchstabe r des Gesetzes vom 5. September 1996 über

die Universität zum Entzug des auf Grund dieser Arbeit ver-

liehenen Titels berechtigt ist.

Bern, den 23. April 2015

Ort/Datum

Unterschrift

Lebenslauf

1983 Geboren am 30. Juli in Erlangen

1989-1993 Loschge-Grundschule Erlangen

1993-2002 Christian-Ernst-Gymnasium Erlangen

2002-2008 Diplomstudiengang Informatik an der

Friedrich-Alexander-Universität Erlangen-

Nürnberg mit Schwerpunktfach: Theoretis-

che Informatik

2004-2009 Diplomstudiengang Mathematik an der

Friedrich-Alexander-Universität Erlangen-

Nürnberg mit Schwerpunktfach: Darstel-

lungstheorie

2009-2011 Wissenschaftlicher Mitarbeiter am Depart-

ment Informatik Lehrstuhl 10 - Systemsim-

ulation der Friedrich-Alexander-Universität

Erlangen-Nürnberg

2011-2015 Doktorand bei Prof. Dr. Studer an der Uni-

versität Bern, Forschungsgruppe Logic and

Theory Group

	Introduction
	Definitions
	Notations
	Semantics
	Generalized Semantics
	Structural properties

	Incomplete Evaluation
	Censors for Databases
	Databases
	Censors
	Logging and Handling Facilities: Clouds
	Privacy: The Qualities of a Censor

	Example Semantics
	Propositional Logic
	Semantics
	Basic Properties

	Boolean Description Logic
	Semantics
	A Running Example

	Dependencies on Language Structures
	Handling Negation
	Pseudo-Atomicity and Evaluation

	Generalized Censors
	Basic Properties
	Cloud Translation
	Ignorance
	Standard Repudiation Sequences

	Truthful Censors
	Cooperative Lying Censors

	Conclusion
	Index
	Bibliography

