
The Complexity of Non-Iterated Probabilistic
Justification Logic

Ioannis Kokkinis

Institute of Computer Science, University of Bern, Switzerland
kokkinis@inf.unibe.ch

Abstract. The logic PJ is a probabilistic logic defined by adding (non-
iterated) probability operators to the basic justification logic J. In this
paper we establish upper and lower bounds for the complexity of the
derivability problem in the logic PJ. The main result of the paper is
that the complexity of the derivability problem in PJ remains the same
as the complexity of the derivability problem in the underlying logic J,
which is Πp

2 -complete. This implies hat the probability operators do not
increase the complexity of the logic, although they arguably enrich the
expressiveness of the language.

Keywords: justification logic, probabilistic logic, complexity, derivability, sat-
isfiability

1 Introduction

Traditional modal epistemic logic uses formulas of the form �α to express that an
agent believes α. The language of justification logic [5] ‘unfolds’ the �-modality
into a family of so-called justification terms, which are used to represent evidence
for the agent’s belief. Hence, instead of �α, justification logic includes formulas
of the form t : α meaning

the agent believes α for reason t.

Artemov [2, 3] developed the first justification logic, the Logic of Proofs, to pro-
vide intuitionistic logic with a classical provability semantics. There, justification
terms represent formal proofs in Peano Arithmetic. However, terms may also rep-
resent informal justifications. For instance, our belief in α may be justified by
direct observation of α or by learning that a friend heard about α. This general
reading of justification led to a big variety of epistemic justification logics for
many different applications [6, 7, 19]. In [15, 16] we extended justification logic
with probability operators in order to accommodate the idea that

different kinds of evidence for α lead to different degrees of belief in α.

For example it could be the case that the agent learns α from some unreliable
source (e.g. from some friend of his) or that the agent reads about α in some

reliable newspaper. In both cases the agent has a justification for α: in the first
case he has the statement of his friend and in the second case the text of the
newspaper. However, it is natural that the agent does not want to put the same
credence in both sources of information. This differentiation in credulity cannot
be expressed in classical justification logic. So, the main contribution of justifica-
tion logics with probability operators (probabilistic justification logics [15, 16])
is the ability to compare different sources of information. Uncertain reasoning in
justification logic has also been studied in [21, 12, 11]. See [15, 16] for an extended
comparison between our approach and the ones from [21, 12, 11].

Probabilistic logics are logics than can be used to model uncertain reasoning.
Although the idea of probabilistic logic was first proposed by Leibnitz, the mod-
ern development of this topic started only in the 1970s and 1980s in the papers of
H. Jerome Keisler [13] and Nils Nilsson [22]. Following Nilsson’s research, Fagin,
Halpern and Meggido [10] introduced a logic with arithmetical operations built
into the syntax so that Boolean combinations of linear inequalities of probabili-
ties of formulas can be expressed. The probabilistic logic of [10] can be considered
as a probabilistic logic with classical base. The derivability problem in this logic
is proved to be coNP -complete, the same as that of classical propositional logic.
Following the lines of [10], Ognjanović, Rašković and Marković [23] defined the
logic LPP2, which is also a probabilistic logic with classical base. The logic LPP2

makes use of an infinitary rule which makes the proof of strong completeness
possible (as opposed to the finitary system of [10] which is only simply complete).
The LPP2-derivability problem is again coNP -complete.

Following the lines of [23] the logic PJ was defined in [15]. PJ is a probabilistic
logic defined over the basic justification logic J.1 The language of PJ contains
formulas of the form P≥sα meaning

the probability of truthfulness of the justification formula α is at least s.

So, in the logic PJ, statements like “evidence t serves as a justification for α
with probability at least 30%” can be expressed. PJ does not allow iterations of
the probability operator. In [16] we study an extension of PJ, the logic PPJ,2

where iterations of the probability operator as well as justification operators over
probability operators are allowed.

The results of [17, 20, 8, 1] showed that, under some reasonable assumptions,
the derivability problem for the justification logic J is Πp

2 -complete, i.e. it is
complete in the second level of the polynomial hierarchy. In this paper we show
that under the same assumptions the derivability problem for the probabilistic
justification logic PJ remains in the class Πp

2 -complete. We achieve this, by
showing that the satisfiability problem for the logic PJ, which is dual to the
derivability problem, belongs to the class Σp

2 -complete. The methods we use are
adaptations from [10] and [17]. As it is the case in [23] and [10] we also make
use of some well known results from the theory of linear programming. The
main result of the paper is that the probability operators do not increase the

1 J stands for justification, whereas PJ stands for probabilistic justification.
2 the two P’s stand for iterations of the probability operator.

complexity of the logic, although they arguably enrich the expressiveness of the
logical framework.

The rest of the paper is organized as follows. In section 2 we briefly recall the
justification logic J and the probabilistic justification logic PJ. In section 3 we
establish a small model theorem for PJ. In section 4 we present an algorithm that
decides the satisfiability problem for the logic PJ and evaluate its complexity.
We close the paper in section 5 with some final observations.

An earlier version of the present paper is available in arXiv [14].

2 The logics J and PJ

In this section we briefly recall the basic justification logic J [5] and the proba-
bilistic justification logic PJ [15].

Justification terms are built according to the following grammar:

t ::= c | x | (t · t) | (t+ t) | !t

where c is a constant and x is a variable. Tm denotes the set of all terms. For
any term t and any non-negative integer n we define:

!0t := t and !n+1t := ! (!nt)

Terms are used to provide justifications for formulas. Constants are used as
justifications for axioms, whereas variables are used as justifications for arbitrary
formulas. The operator · can be used by the agents to apply modus ponens (see
axiom (J) in Figure 1), the operator + is used for concatenation of proofs (see
axiom (+) in Figure 1) and the operator ! is used for stating positive introspection
(see rule (AN!) in Figure 2). That is, if the agent has a justification c for α then
he has a justification !c for the fact that c is a justification for α and so on.

Let Prop denote a countable set of atomic propositions. Formulas of the lan-
guage LJ (justification formulas) are built according to the following grammar:

α ::= p | ¬α | α ∧ α | t : α

where t ∈ Tm and p ∈ Prop. Any formula of the form t : α for t ∈ Tm and α ∈ LJ

will be called a justification assertion. We will use the letter p possibly primed
or with subscripts to represent an element of Prop and lower-case Greek letters
like α, β, γ, . . . for LJ-formulas. In Figure 1 we present the axioms schemes of the
logic J.

In order to build justifications for arbitrary formulas in the logic J we need
to start by some justifications for the axioms. That is why we need the notion
of a constant specification. A constant specification is any set CS that satisfies
the following condition:

CS ⊆ {(c, α) | c is a constant and α is an instance

of some axiom scheme of the logic J}

A constant specification CS will be called:

(P) finitely many axiom schemes for classical

propositional logic in the language of LJ

(J) ` u : (α→ β)→ (v : α→ u · v : β)

(+) `
(
u : α ∨ v : α

)
→ u+ v : α

Fig. 1. Axioms Schemes of J

axiomatically appropriate: if for every instance of a J-axiom, α, there exists
some constant c such that (c, α) ∈ CS, i.e. every instance of a J-axiom scheme
is justified by at least one constant.

schematic: if for every constant c the set{
α
∣∣ (c, α) ∈ CS

}
consists of all instances of several (possibly zero) axiom schemes, i.e. if every
constant specifies certain axiom schemes and only them.

decidable: if the set CS is decidable. In this paper when we refer to a decidable
CS, we will always imply that CS is decidable in polynomial time.

finite: if CS is a finite set.
almost schematic: if CS = CS1∪CS2 where CS1∩CS2 = ∅, CS1 is a schematic

constant specification and CS2 is a finite constant specification.
total: if for every constant c and every instance α of a J-axiom scheme, (c, α) ∈

CS.

Let CS be any constant specification. The deductive system JCS is presented
in Figure 2.

axioms schemes of J

+

(AN!) ` !n+1c : !nc : · · · : !c : c : α, where (c, α) ∈ CS and n ∈ N
(MP) if T ` α and T ` α→ β then T ` β

Fig. 2. System JCS

As usual T `L α means that the formula α is provable from the set of formulas
T using the rules and axioms of the logic L. When L is clear from the context it
will be omitted.

Now we present the semantics for the logic J. The models for a JCS are the so
called JCS-evaluations (see Definition 1). We use T to represent the truth value
“true” and F to represent the truth value “false”. Let P(W) denote the powerset
of the set W .

Definition 1 (JCS-Evaluation). Let CS be any constant specification. A JCS-
evaluation is a function ∗ such that ∗ : Prop→ {T,F} and ∗ : Tm→ P(LJ) and
for u, v ∈ Tm, for a constant c and α, β ∈ LJ we have:

(1)
(
α→ β ∈ u∗ and α ∈ v∗

)
=⇒ β ∈ (u · v)∗

(2) u∗ ∪ v∗ ⊆ (u+ v)∗

(3) if (c, α) ∈ CS then for all n ∈ N we have3:

!n−1c : !n−2c : · · · :!c : c : α ∈ (!nc)∗

We will usually write t∗ and p∗ instead of ∗(t) and ∗(p) respectively.

Now we will define the binary relation .

Definition 2 (Truth under a JCS-Evaluation). We define what it means for
an LJ-formula to hold under a JCS-evaluation ∗ inductively as follows:

∗ p⇐⇒ p∗ = T

∗ ¬α⇐⇒ ∗ 6 α

∗ α ∧ β ⇐⇒
(
∗ α and ∗ β

)
∗ t : α⇐⇒ α ∈ t∗

We have the following theorem.

Theorem 1 (Completeness of J [4, 19]). Let CS be any constant specifica-
tion. Let α ∈ LJ. Then we have:

`JCS α ⇐⇒ CS α.

where CS α means that α holds under any JCS-evaluation.

Let S be the set of all rational numbers from the interval [0, 1]. The formulas
of the language LP (the so called probabilistic formulas) are built according to
the following grammar:

A ::= P≥sα | ¬A | A ∧A

where s ∈ S, and α ∈ LJ. We use capital Latin letters like A,B,C, . . . for
LP-formulas. We employ the standard abbreviations for classical connectives.
Additionally, we set:

P<sα ≡ ¬P≥sα P≤sα ≡ P≥1−s¬α
P>sα ≡ ¬P≤sα P=sα ≡ P≥sα ∧ P≤sα

The axioms schemes of PJ are presented in Figure 3. For any constant spec-
ification CS the deductive system PJCS is presented in Figure 4. Definitions 3–5
describe the semantics for the logic PJ.

Definition 3 (Algebra over a set). Let W be a non-empty set and let H be a
non-empty subset of P(W). H will be called an algebra over W iff the following
hold:
3 We agree to the convention that the formula !n−1c : !n−2c : · · · : !c : c : α represents

the formula α for n = 0.

(P) finitely many axiom schemes for classical

propositional logic in the language of LP

(PI) ` P≥0α

(WE) ` P≤rα→ P<sα, where s > r

(LE) ` P<sα→ P≤sα

(DIS) ` P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β)→ P≥min(1,r+s)(α ∨ β)

(UN) ` P≤rα ∧ P<sβ → P<r+s(α ∨ β), where r + s ≤ 1

Fig. 3. Axioms Schemes of PJ

axiom schemes of PJ

+

(MP) if T ` A and T ` A→ B then T ` B
(CE) if `JCS α then `PJCS P≥1α

(ST) if T ` A→ P≥s− 1
k
α for every integer k ≥ 1

s
and s > 0

then T ` A→ P≥sα

Fig. 4. System PJCS

– W ∈ H
– U, V ∈ H =⇒ U ∪ V ∈ H
– U ∈ H =⇒W \ U ∈ H

Definition 4 (Finitely Additive Measure). Let H be an algebra over W
and µ : H → [0, 1]. We call µ a finitely additive measure iff the following hold:
(1) µ(W) = 1
(2) for all U, V ∈ H:

U ∩ V = ∅ =⇒ µ(U ∪ V) = µ(U) + µ(V)

Definition 5 (PJCS-Model). Let CS be any constant specification. A PJCS-
model, or simply a model, is a structure M = 〈W,H, µ, ∗〉 where:
– W is a non-empty set of objects called worlds.
– H is an algebra over W .
– µ : H → [0, 1] is a finitely additive measure.
– ∗ is a function from W to the set of all JCS-evaluations, i.e. ∗(w) is a JCS-

evaluation for each world w ∈W . We will usually write ∗w instead of ∗(w).

Definition 6 (Measurable model). Let M = 〈W,H, µ, ∗〉 be a model and
α ∈ LJ. We define the following set:

[α]M = {w ∈W | ∗w α}

We will omit the subscript M , i.e. we will simply write [α], if M is clear from the
context. A PJCS-model M = 〈W,H, µ, ∗〉 is measurable iff [α]M ∈ H for every
α ∈ LJ. The class of measurable PJCS-models will be denoted by PJCS,Meas.

Definition 7 (Truth in a PJCS,Meas-model). Let CS be any constant specifi-
cation. Let M = 〈W,H, µ, ∗〉 be a PJCS,Meas-model. We define what it means for
an LP-formula to hold in M inductively as follows4:

M |= P≥sα⇐⇒ µ([α]M) ≥ s
M |= ¬A⇐⇒M 6|= A

M |= A ∧B ⇐⇒
(
M |= A and M |= B

)
In the sequel we may refer to PJCS,Meas-models simply as models if there is

no danger for confusion. We have the following theorem.

Theorem 2 (Strong Completeness for PJ [15]). Any PJCS is sound and
strongly complete with respect to PJCS,Meas-models, i.e. for any T ⊆ LP and any
A ∈ LP:

T `PJCS A⇐⇒ T |=PJCS A

Let CS be any constant specification. A formula A ∈ LP is satisfied in M ∈
PJCS,Meas iff M |= A. A will be called PJCS,Meas-satisfiable or simply satisfiable if
there is a PJCS,Meas-model that satisfies A. We define the PJCS,Meas-satisfiability
problem to be the decision problem defined as follows:

“For a given A ∈ LP and a given CS is A PJCS,Meas-satisfiable?”

A formula α ∈ LJ is satisfied in a JCS-evaluation ∗ iff ∗ α. α will be called
JCS-satisfiable or simply satisfiable if there is some JCS-evaluation ∗ that satisfies
α. We define the JCS-satisfiability problem to be the decision problem defined as
follows:

“For a given α ∈ LJ and a given CS is α JCS-satisfiable?”

3 Small Model Property

The goal of this section is to prove a small model property for the logic PJ. The
small model property will be the most important tool for establishing the upper
bound for the complexity of PJ.

Definition 8 (Subformulas). The set subf(·) is defined recursively as follows:
For LJ-formulas:
– subf(p) := {p}
– subf(t : α) := {t : α} ∪ subf(α)
– subf(¬α) := {¬α} ∪ subf(α)
– subf(α ∧ β) := {α ∧ β} ∪ subf(α) ∪ subf(β)

For LP-formulas:
– subf(P≥sα) := {P≥sα} ∪ subf(α)

4 Observe that the satisfiability relation of a JCS-evaluation is represented with
whereas the satisfiability relation of a model is represented with |=.

– subf(¬A) := {¬A} ∪ subf(A)
– subf(A ∧B) := {A ∧B} ∪ subf(A) ∪ subf(B)

Observe that for A ∈ LP we have that subf(A) ⊆ LP ∪ LJ.

Definition 9 (Atoms). Let A be an LP- or an LJ-formula. Let X be the set
that contains all the atomic propositions and the justification assertions from the
set subf(A). An atom of A is any formula of the following form:∧

B∈X
±B (1)

where ±B denotes either B or ¬B. We will use the lowercase Latin letter a for
atoms, possibly with subscripts.

Let A be an LP- or an LJ-formula. Assume that A is either of the form
∧
iBi

or of the form
∨
iBi. Then C ∈ A means that for some i, Bi = C.

Definition 10 (Sizes). The size function | · | is defined as follows:
For LP-formulas: (recursively)
– |P≥sα| := 2
– |¬A| := 1 + |A|
– |A ∧B| := |A|+ 1 + |B|

For sets:
Let W be a set. |W | is the cardinal number of W .
For non-negative integers:
Let r be an non-negative integer. We define the size of r to be equal to the length
of r written in binary, i.e.:

|r| :=

{
1 , r = 0

blog2(r) + 1c , r ≥ 1

where b·c is the function that returns the greatest integer that is less than or
equal to its argument.
For non-negative rational numbers:
Let r = s1

s2
, where s1 and s2 are relatively prime non-negative integers with

s2 6= 0, be a non-negative rational number. We define:

|r| := |s1|+ |s2|

Let A ∈ LP we define:

||A|| := max
{
|s|
∣∣ P≥sα ∈ subf(A)

}
Lemma 1 was originally proved in [23] for the logic LPP2. The proof for the

logic PJ is given in [15].

Lemma 1. For any constant specification CS, we have:

`JCS α↔ β ⇐⇒ `PJCS P≥sα↔ P≥sβ

A proof for Theorem 3 can be found in [9, p. 145].

Theorem 3. Let S be a system of r linear equalities. Assume that the vector5

x is a solution of S such that all of x’s entries are non-negative. Then there is
a vector x∗ such that:
(1) x∗ is a solution of S.
(2) all the entries of x∗ are non-negative.
(3) at most r entries of x∗ are positive.

Theorem 4 establishes some properties for the solutions of a linear system.

Theorem 4. Let S be a linear system of n variables and of r linear equalities
and/or inequalities with integer coefficients each of size at most l. Assume that
the vector x = x1, . . . , xn is a solution of S such that for all i ∈ {1, . . . , n},
xi ≥ 0. Then there is a vector x∗ = x∗1, . . . , x

∗
n with the following properties:

(1) x∗ is a solution of S.
(2) for all i ∈ {1, . . . , n}, x∗i ≥ 0.
(3) at most r entries of x∗ are positive.
(4) for all i ∈ {1, . . . , n}, if x∗i > 0 then xi > 0.
(5) for all i, x∗i is a non-negative rational number with size bounded by

2 ·
(
r · l + r · log2(r) + 1

)
.

Proof. In S we replace the variables that correspond to the entries of x that are
equal to zero (if any) with zeros. This way we obtain a new linear system S0,
with r linear equalities and/or inequalities and m ≤ n variables. x is a solution6

of S0. It also holds that any solution of S0 is a solution7 of S.
Assume that the system S0 contains an inequality of the form

b1 · y1 + . . .+ bmym ♦ c (2)

for ♦ ∈ {<,≤,≥, >} where y1, . . . , ym are variables of S and b1, . . . , bm, c are
constants that appear in S. x is a solution of (2). We replace the inequality (2)
in S0 with the following equality:

b1 · y1 + . . .+ bmym = b1 · x1 + . . .+ bl · xm

We repeat this procedure for every inequality of S0. This way we obtain a system
of linear equalities which we call S1. It is easy to see that x is a solution of S1
and that any solution of S1 is also a solution of S0 and thus of S.

5 We will always use bold font for vectors.
6 In the proof of Theorem 4 all vectors have n entries. The entries of the vectors are

assumed to be in one to one correspondence with the variables that appear in the
original system S.

Let y be a solution of a linear system T . If y has more entries than the variables of
T we imply that entries of y that correspond to variables that appear in T compose
a solution of T .

7 Assume that system T has less variables than system T ′. When we say that any
solution of T is a solution of T ′ we imply that the missing variables are set to 0.

Now we will transform S1 to another linear system by applying the following
algorithm.
Algorithm:
We set i = 1, ei = r, vi = m, xi = x and we execute the following steps:

(i) If ei = vi then go to step (ii). Otherwise go to step (iii).
(ii) If the determinant of Si is non-zero then stop. Otherwise go to step (v).
(iii) If ei < vi then go to step (iv), else go to step (v).
(iv) We know that the vector xi is a non-negative solution for the system Si.

From Theorem 3 we obtain a solution xi+1 for the system Si which has at
most ei entries positive. In Si we replace the variables that correspond to
zero entries of the solution xi+1 with zeros. We obtain a new system which
we call Si+1 with ei+1 equalities and vi+1 variables. xi+1 is a solution of
Si+1 and any solution of Si+1 is a solution of Si. We set i := i + 1 and we
go to step (i).

(v) From any set of equalities that are linearly dependent we keep only one
equation. We obtain a new system which we call Si+1 with ei+1 equalities
and vi+1 := vi variables. We set i := i + 1 and xi+1 := xi. We go to step
(i).

Let I be the final value of i after the execution of the algorithm. Since the only
way for our algorithm to terminate is through step (ii) it holds that system SI
is an eI × eI system of linear equalities with non-zero determinant (for eI ≤ r).
System SI is obtained from system S1 by replacing some variables that corre-
spond to zero entries of the solution with zeros. So any solution of SI is also a
solution of system S1 and thus a solution of S. From the algorithm we have that
xI is a solution of SI . Since SI has a non-zero determinant Cramer’s rule can
be applied. Hence the vector xI is the unique solution of system SI . Let xIi be
an entry of xI . xIi will be equal to the following rational number∣∣∣∣∣∣∣

a11 . . . a1eI
. . .

aeI1 . . . aeIeI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b11 . . . b1eI

. . .

beI1 . . . beIeI

∣∣∣∣∣∣∣
where all the aij and bij are integers that appear in the original system S. By
properties of the determinant we know that the numerator and the denominator
of the above rational number will each be at most equal to r! · (2l − 1)r. So we
have that:

|xIi | ≤ 2 ·
(

log2(r! · (2l − 1)r) + 1
)

=⇒
|xIi | ≤ 2 ·

(
log2(rr · 2l·r) + 1

)
=⇒

|xIi | ≤ 2 ·
(
r · log2(r) + l · r + 1

)

As we already mentioned the final vector xI is a solution of the original linear
system S. We also have that all the entries of xI are non-negative, at most
r of its entries are positive and the size of each entry of xI is bounded by
2 · (r · log2 r+ r · l+ 1). Furthermore, since the variables that correspond to zero
entries of the original vector x were replaced by zeros, we have that for every i,
if the i-th entry of xI is positive then the i-th entry of x is positive too. So xI

is the requested vector x∗.

The following theorem is an adaptation of the small model theorem from
[10]. Similar techniques have also been used in [23] to obtain decidability for the
logic LPP2.

Theorem 5 (Small Model Property). Let CS be any constant specification
and let A ∈ LP. If A is PJCS,Meas-satisfiable then it is satisfiable in a PJCS,Meas-
model M = 〈W,H, µ, ∗〉 such that:

(1) |W | ≤ |A|
(2) H = P(W)
(3) For every w ∈W , µ({w}) is a rational number with size at most

2 ·
(
|A| · ||A||+ |A| · log2(|A|) + 1

)
(4) For every V ∈ H

µ(V) =
∑
w∈V

µ({w})

(5) For every atom of A, a, there exists at most one w ∈W such that ∗w a.

Proof. Let CS be any constant specification and let A ∈ LP. Let a1, . . . , an be
all the atoms of A. By propositional reasoning (in the logic PJCS) we can prove
that:

PJCS ` A↔
K∨
i=1

li∧
j=1

P♦ijsij (βij)

where all the P♦ijsij (βij) appear in A and ♦ij ∈ {≥, <}.
By using propositional reasoning again (but this time in the logic JCS) we

can prove that each βij is equivalent to a disjunction of some atoms of A. So,
by using Lemma 1 we have that:

PJCS ` A↔
K∨
i=1

li∧
j=1

P♦ijsij (αij)

where each αij is a disjunction of some atoms of A. By Theorem 2 we have that
for any M ∈ PJCS,Meas:

M |= A⇐⇒M |=
K∨
i=1

li∧
j=1

P♦ijsij (αij) (3)

Assume that A is satisfiable. By (3) there must exist some i such that

li∧
j=1

P♦ijsij (αij)

is satisfiable. Let M ′ = 〈W ′, H ′, µ′, ∗′〉 be a model such that:

M ′ |=
li∧
j=1

P♦ijsij (αij) (4)

For every k ∈ {1, . . . , n} we define:

xk = µ′([ak]M ′) (5)

In every world of M ′ some atom of A must hold. Thus, we have:

W ′ =

n⋃
k=1

[ak]M ′

And since µ′(W ′) = 1 we get:

µ′
(n⋃
k=1

[ak]M ′

)
= 1 (6)

The ak’s are atoms of the same formula, so we have:

k 6= k′ =⇒ [ak]M ′ ∩ [ak′]M ′ = ∅ (7)

By (6), (7) and the fact that µ′ is a finitely additive measure we get:

n∑
k=1

µ′([ak]M ′) = 1

and by (5):
n∑
k=1

xk = 1 (8)

Let j ∈ {1, . . . , li}. From (4) we get:

M ′ |= P♦ijsij

(
αij
)
.

This implies that µ′([αij]M ′) ♦ij sij , i.e.

µ′

([∨
ak∈αij

ak

]
M ′

)
♦ij sij

which implies that

µ′

(⋃
ak∈αij

[ak]M ′

)
♦ij sij

By (7) and the additivity of µ′ we have that:∑
ak∈αij

µ′([ak]M ′) ♦ij sij

and by (5): ∑
ak∈αij

xk ♦ij sij .

So we have that

for every j ∈ {1, . . . , li},
∑

ak∈αij

xk ♦ij sij (9)

Let S be the following linear system:

n∑
k=1

zk = 1∑
ak∈αi1

zk ♦i1 si1

...∑
ak∈αili

zk ♦ili sili

where the variables of the system are z1, . . . , zn. We have the following:
(i) By (8) and (9) the vector x = x1, . . . , xn is a solution of S.

(ii) From (5) every xk is non-negative.
(iii) Every sij is a rational number with size at most ||A||.
(iv) System S has at most |A| equalities and inequalities.
From (i)-(iv) and Theorem 4 we have that there exists a vector y = y1, . . . , yn
such that:
(I) y is a solution of S.

(II) every yi is a non-negative rational number with size at most

2 ·
(
|A| · ||A||+ |A| · log2(|A|) + 1

)
.

(III) at most |A| entries of y are positive.
(IV) for all i, if yi > 0 then xi > 0.

Assume that y1, . . . , yN are the positive entries of y where

N ≤ |A| (10)

We define the quadruple M = 〈W,H, µ, ∗〉 as follows:

(a) W = {w1, . . . , wN}, for some w1, . . . , wN .

(b) H = P(W).

(c) for all V ∈ H:

µ(V) =
∑
wk∈V

yk .

(d) Let i ∈ {1, . . . , N}. We define ∗wi
to be some JCS-evaluation that satisfies the

atom ai. Since yi is positive, by (IV), xi is positive too, i.e. µ′([ai]M ′) > 0,
which means that [ai]M ′ 6= ∅, i.e. that the atom ai is JCS-satisfiable.

It holds:

µ(W) =
∑
wk∈W

yk

=

n∑
k=1

yk

(I)
= 1

Let U, V ∈ H such that U ∩ V = ∅. It hods:

µ(U ∪ V) =
∑

wk∈U∪V
yk

=
∑
wk∈U

yk +
∑
wk∈V

yk

= µ(U) + µ(V)

Thus µ is a finitely additive measure. By Definitions 5 and 6 we have that
M ∈ PJCS,Meas.

We will now prove the following statement:

(∀1 ≤ k ≤ n)
[
wk ∈ [αij]M ⇐⇒ ak ∈ αij

]
(11)

Let k ∈ {1, . . . , n}. We prove the two directions of (11) separately.

(=⇒:) Assume that wk ∈ [αij]. This means that ∗wk
 αij . Assume that

ak /∈ αij . Then, since αij is a disjunction of atoms of A, there must exist some
ak′ ∈ αij , with k 6= k′, such that ∗wk

 ak′ . However, by definition we have
that ∗wk

 ak. But this is a contradiction, since ak and ak′ are different atoms
of the same formula, which means that they cannot be satisfied by the same
JCS-evaluation. Hence, ak ∈ αij .

(⇐=:) Assume that ak ∈ αij . We know that ∗wk
 ak, which implies that

∗wk
 αij , i.e. wk ∈ [αij]M .

Hence, (11) holds. Now, we will prove the following statement:(
∀1 ≤ j ≤ li

)[
M |= P♦ijsijα

ij
]

(12)

Let j ∈ {1, . . . , li}. It holds

M |= P♦ijsij (αij) ⇐⇒
µ([αij]M) ♦ij sij ⇐⇒∑

wk∈[αij]M

yk ♦ij sij
(11)⇐⇒

∑
ak∈αij

yk ♦ij sij

The last statement holds because of (I). Thus, (12) holds.

By (12) we have that M |=
∧li
j=1 P♦ijsij (αij), which implies that

M |=
K∨
i=1

li∧
j=1

P♦ijsij (αij),

which, by (3), implies that M |= A.
Let wk ∈W . It holds:

µ({wk}) =
∑

wi∈{wk}

yi = yk (13)

Now we will show that conditions (1)–(5) in the theorem’s statement hold.

– Condition (1) holds because of (a) and (10).
– Condition (2) holds because of (b).
– Condition (3) holds because of (13) and (II).
– For every V ∈ H, because of (13), we have:

µ(V) =
∑
wk∈V

yk =
∑
wk∈V

µ({wk}) (14)

Hence condition (4) holds.
– By (d) every world of M satisfies a unique atom of α. Thus condition (5)

holds.

So M is the model in question.

4 Complexity

Lemmata 2 and 3 can be proved by straightforward induction on the complexity
of the formula. Lemma 2 tells us that if two JCS-evaluations agree on some atom
of a justification formula then they agree on the formula itself.

Lemma 2. Let CS be any constant specification. Let α ∈ LJ and let a be an
atom of α. Let ∗1, ∗2 be two JCS-evaluations and assume that

∗1 a⇐⇒ ∗2 a .

Then we have:
∗1 α⇐⇒ ∗2 α .

Lemma 3. Let α ∈ LJ and let a be an atom of α. Let ∗ be a JCS-evaluation and
assume that ∗ a. The decision problem

does ∗ satisfy α?

belongs to the complexity class P .

Kuznets [17] presented an algorithm for the JCS-satisfiability problem for a
total constant specification CS. Kuznets’ algorithm is divided in two parts: the
saturation algorithm and the completion algorithm. Let α ∈ LJ be the formula
that is tested for satisfiability.

– The saturation algorithm produces a set of requirements that should be
satisfied by any JCS-evaluation that satisfies α. The saturation algorithm
operates in NP -time8.

– The completion algorithm determines whether a JCS-evaluation that satisfies
α exists or not. The completion algorithm operates in coNP -time.

If the saturation and the completion algorithm are taken together, then we obtain
a Σp

2 -algorithm for the JCS-satisfiability problem (for a total CS). The completion
algorithm (adjusted to our notation) is stated in Theorem 6.

Theorem 6. Let CS be a total constant specification. Let a be an atom of some
LJ-formula. The decision problem

is a JCS-satisfiable?

belongs to the complexity class coNP .

Now we are ready to prove the upper bound for the complexity of the
PJCS,Meas-satisfiability problem.

Theorem 7. Let CS be a total constant specification. The PJCS,Meas-satisfiability
problem belongs to the complexity class Σp

2 .

Proof. First we will describe an algorithm that decides the problem in question
and we will explain its correctness. Then we will evaluate the complexity of the
algorithm.
Algorithm:
Let A ∈ LP. It suffices to guess a small model M = 〈W,H, µ, ∗〉 that satisfies A
and also satisfies the conditions (1)–(5) that appear in the statement of Theo-
rem 5. We guess M as follows: we guess n atoms of A, call them a1, . . . , an, and
we also choose n worlds, w1, . . . , wn, for n ≤ |A|. Using Theorem 6 we verify
that for each i ∈ {1, . . . , n} there exists a JCS-evaluation ∗i such that ∗i ai.
We define W = {w1, . . . , wn}. For every i ∈ {1, . . . , n} we set ∗wi

= ∗i. Since we
are only interested in the satisfiability of justification formulas that appear in A,
by Lemma 2, the choice of the ∗wi is not important (as long as ∗wi satisfies ai).

8 A reader unfamiliar with notions of computational complexity theory may consult
a textbook on the field, like [24].

We assign to every µ({wi}) a rational number with size at most:

2 ·
(
|A| · ||A||+ |A| · log2(|A|) + 1

)
.

We set H = P(W). For every V ∈ H we set:

µ(V) =
∑
wi∈V

µ({wi}) .

It is then straightforward to see that the conditions (1)–(5) that appear in the
statement of Theorem 5 hold.

Now we have to verify that our guess is correct, i.e. that M |= A. Assume
that P≥sα appears in A. In order to see whether P≥sα holds we need to calculate
the measure of the set [α]M in the model M . The set [α]M will contain every
wi ∈ W such that ∗wi α. Since ∗wi satisfies an atom of A it also satisfies an
atom of α. So, by Lemma 3, we can check whether ∗wi satisfies α in polynomial
time. If

∑
wi∈[α]M µ({wi}) ≥ s then we replace P≥sα in A with the truth value

T, otherwise with the truth value F. We repeat the above procedure for every
formula of the form P≥sα that appears in A. At the end we have a formula that
is constructed only from the connectives ¬, ∧ and the truth constants T and F.
Using a truth table we can verify in polynomial time that the formula is true.
This, of course implies that M |= A.
Complexity Evaluation:
All the objects that are guessed in our algorithm have size that is polynomial
on A. Also the verification phase of our algorithm can be made in polynomial
time. Furthermore the application of Theorem 6 is possible with an NP -oracle
(an NP -oracle can obviously decide coNP problems too). Thus our algorithm is
an NPNP algorithm and since Σp

2 = NPNP the claim of the Theorem follows.

5 Final Remarks and Conclusion

As a continuation of [15] and [16] we showed that results for justification logic
and probabilistic logic can be nicely combined. Recall that the probabilistic jus-
tification logic PJ is obtained by adding probability operators to the justification
logic J. In [17] it was proved that under some assumptions on the constant spec-
ification the complexity of the satisfiability problem for the logic J belongs to
the class Σp

2 . By Theorem 7 we have that, under the same assumptions on the
constant specification, the complexity of the satisfiability problem for the logic
PJ remains in the same complexity class. Hence, the probabilistic operators do
not increase the complexity of the satisfiability problem, although they increase
the expressiveness of the language.

As it is pointed out in [18], Theorem 6 holds for a decidable almost schematic
constant specification. Theorem 7 uses Theorem 6 as an oracle. So, obviously
Theorem 7 holds for a decidable almost schematic constant specification too.

The upper complexity bound we established is tight. By a result from [20]
which was later strengthened in [8] and [1] we have that for a decidable, schematic

and axiomatically appropriate constant specification CS the JCS-satisfiability
problem is Σp

2 -hard. For any α ∈ LJ it is not difficult to prove that:

α is JCS-satisfiable ⇐⇒ P≥1α is PJCS,Meas-satisfiable (15)

Hence, the JCS-satisfiability problem can be reduced to the PJCS,Meas-satisfiability
problem, which implies that the PJCS,Meas-satisfiability problem is Σp

2 -hard too.
Thus the JCS-satisfiabilty problem as well as the PJCS,Meas-satisfiability problem
are Σp

2 -complete.
Observe that by Theorem 2 and our previous remarks we have that, for

a decidable schematic and axiomatically apropriate constant specification, the
derivability problem for the logic PJCS is Πp

2 -complete.
In [16] the probabilistic justification logic PPJ is defined. PPJ is a natural

extension of PJ that supports iterations of the probability operator as well as jus-
tifications over probabilities. An interesting open problem related to the present
work is to determine complexity bounds for PPJ.

Funding:
The author is supported by the SNSF project 153169, Structural Proof Theory
and the Logic of Proofs.

Acknowledgements:
The author is grateful to Antonis Achilleos, Thomas Studer and the anonymous
referees for valuable comments and remarks that helped him improve the quality
of the paper substantially.

References

1. Achilleos, A.: Nexp-completeness and universal hardness results for justification
logic (2015), cSR 2015: 27-52

2. Artemov, S.N.: Operational modal logic. Tech. Rep. MSI 95–29, Cornell University
(Dec 1995)

3. Artemov, S.N.: Explicit provability and constructive semantics. Bulletin of Sym-
bolic Logic 7(1), 1–36 (Mar 2001)

4. Artemov, S.N.: The ontology of justifications in the logical setting. Studia Logica
100(1–2), 17–30 (Apr 2012), published online February 2012

5. Artemov, S.N., Fitting, M.: Justification logic. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Fall 2012 edn. (2012),
http://plato.stanford.edu/archives/fall2012/entries/logic-justification/

6. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Journal
of Applied Non-Classical Logics 21(1), 35–60 (Jan–Mar 2011)

7. Bucheli, S., Kuznets, R., Studer, T.: Partial realization in dynamic justification
logic. In: Beklemishev, L.D., de Queiroz, R. (eds.) Logic, Language, Information
and Computation, 18th International Workshop, WoLLIC 2011, Philadelphia, PA,
USA, May 18–20, 2011, Proceedings, Lecture Notes in Artificial Intelligence, vol.
6642, pp. 35–51. Springer (2011)

8. Buss, S.R., Kuznets, R.: Lower complexity bounds in justification logic. Annals of
Pure and Applied Logic 163(7), 888–905 (Jul 2012)

9. Chvátal, V.: Linear programming. W. H. Freeman and Company, New York (1983)
10. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities.

Information and Computation 87, 78128 (1990)
11. Fan, T., Liau, C.: A logic for reasoning about justified uncertain beliefs. In: Yang,

Q., Wooldridge, M. (eds.) Proc. IJCAI 2015. pp. 2948–2954. AAAI Press (2015)
12. Ghari, M.: Justification logics in a fuzzy setting. ArXiv e-prints (Jul 2014)
13. Keisler, J.: Hyperfinite model theory. In: Gandy, R.O., Hyland, J.M.E. (eds.) Logic

Colloquim 1976, p. 510. North-Holland (1977)
14. Kokkinis, I.: On the complexity of probabilistic justification logic (2015), arXiv

e-prints
15. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards prob-

abilistic justification logic. Logic Journal of the IGPL 23(4), 662–687 (2015)
16. Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. In: Arte-

mov, S., Nerode, A. (eds.) Symposium on Logical Foundations in Computer Science
2016 (2016), to appear

17. Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G., Schwicht-
enberg, H. (eds.) Computer Science Logic, 14th International Workshop, CSL 2000,
Annual Conference of the EACSL, Fischbachau, Germany, August 21–26, 2000,
Proceedings, Lecture Notes in Computer Science, vol. 1862, pp. 371–383. Springer
(2000)

18. Kuznets, R.: Complexity Issues in Justification Logic. Ph.D. thesis, City University
of New York (May 2008), http://gradworks.umi.com/33/10/3310747.html

19. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander,
T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, Volume 9,
pp. 437–458. College Publications (2012)

20. Milnikel, R.S.: Derivability in certain subsystems of the Logic of Proofs is Πp
2 -

complete. Annals of Pure and Applied Logic 145(3), 223–239 (Mar 2007)
21. Milnikel, R.S.: The logic of uncertain justifications. Annals of Pure and Applied

Logic 165(1), 305–315 (Jan 2014)
22. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 7187 (1986)
23. Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. Zbornik radova,

subseries “Logic in Computer Science” 12(20), 35–111 (2009)
24. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

