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Abstract

Previous intuitionistic justification logics included explicit justifi-
cations for all admissible rules of intuitionistic logic in order to get
completeness with respect to provability semantics. We present the
justification logic iJT4, which does not have these additional justifica-
tion terms. We establish that iJT4 is complete with respect to modular
models and that there is a realization of intuitionistic S4 into iJT4.
Hence iJT4 can be seen as an explicit version of intuitionistic S4.

1 Introduction

Justification logics are explicit modal logics in the sense that they unfold
the �-modality in families of so-called justification terms. Instead of formu-
las �A, meaning that A is known, justification logics include formulas t : A,
meaning that A is known for reason t.

Artemov’s original semantics for the first justification logic, the Logic of
Proofs LP, was a provability semantics that interpreted t : A roughly as t
represents a proof of A in the sense of a formal proof predicate in Peano
Arithmetic [1, 2, 19].

Later Fitting [13] interpreted justifications as evidence in a more general
sense and introduced epistemic, i.e., possible world, models for justification
logics. These models have been further developed to modular models as we
use them in this paper [5, 17]. This general reading of justification led to
many applications in epistemic logic [3, 4, 7, 8, 9, 10, 14, 16, 18].

Given the interpretation of LP in Peano Arithmetic, it was a natural
question to find an intuitionistic version iLP of LP that is the logic of proofs
of Heyting Arithmetic. The work by Artemov and Iemhoff [6] and later by
Dashkov [11] provides such an iLP. It turned out that iLP is not only LP with
the underlying logic changed to intuitionistic propositional logic. In order to
get a complete axiomatization with respect to provability semantics, one also
has to include certain admissible rules of Heyting Arithmetic as axioms in
iLP so that they are represented by novel proof terms.
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The main contribution of the present paper is that these additional axioms
are not needed if we are interested in completeness with respect to modu-
lar models. We introduce the intuitionistic justification logic iJT4, which
is simply LP over an intuitionistic base instead of a classical one but with-
out any additional axioms. We introduce possible world models for iJT4
that are inspired by the Kripke semantics for intuitionistic S4 and establish
completeness of iJT4 with respect to these models.

In the last part of the paper, we establish that iJT4 is an explicit version of
the intuitionistic modal logic iS4. That means iS4 is the forgetful projection
of iJT4 and there is a realization of iS4 into iJT4. Our realization procedure
is a straightforward adaptation of Artemov’s original realization of S4 into
the Logic of Proofs LP [2].

2 Intuitionistic Modal Logic

We present the intuitionistic modal logic iS4. We will start with introducing
the language LI of iS4. For our purpose, we will only consider the �-modality
but not the ♦-modality.

Definition 2.1 (Intuitionistic modal language). We assume a countable
set Prop of atomic propositions. The set of formulas LI is inductively de-
fined by:

1. every atomic proposition is a formula;

2. the constant symbol ⊥ is a formula;

3. If A and B are formulas, then (A ∧ B), (A ∨ B) and (A → B) are
formulas;

4. if A is a formula, then �A is a formula.

There are various semantics available for intuitionistic modal logic. The
intuitionistic Kripke models that we introduce in this section are the same as
Ono’s [20] I-models of type 0. Moreover, these models are equivalent to the
models used by Fischer Servi [12], Plotkin and Stirling [21], and Simpson [22].
Jäger and Marti [15] provide a detailed discussion and comparison of these
different approaches.

The semantics for iS4 is given by Kripke models that use two accessibility
relations: ≤ to model the intuitionistic base logic and R to interpret the
�-modality.
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Definition 2.2. An intuitionistic Kripke model for iS4 is a tuple

M = (W,≤, R, V )

such that

(i) W 6= ∅

(ii) R is a reflexive and transitive binary relation on W

(iii) ≤ is a partial order (reflexive and transitive) on W

(iv) V : Prop → P(W ), and for any atomic proposition p, the set V (p) is
upwards closed, i.e., : w ≤ v, w ∈ V (p) =⇒ v ∈ V (p)

(v) w ≤ v =⇒ R[v] ⊆ R[w]

where R[v] := {w ∈ W | (v, w) ∈ R}.

Definition 2.3 (Satisfaction in Kripke models). We define the satisfaction
relation (M, w) � A by induction on the LI-formula A.

• (M, w) 2 ⊥;

• (M, w) � p iff w ∈ V (p);

• (M, w) � A ∧B iff (M, w) � A and (M, w) � B;

• (M, w) � A ∨B iff (M, w) � A or (M, w) � B;

• (M, w) � A→ B iff (M, v) � B for all v ≥ w with (M, v) � A;

• (M, w) � �A iff (M, v) � A for all v ∈ R[w].

An LI-formula A is valid with respect to Kripke models if for all Kripke models
M = (W,≤, R, V ) and all w ∈ W we have (M, w) � A.

Intuitionistic modal logic has the following monotonicity property.

Lemma 2.4 (Monotonicity).

(M, w) � A and w ≤ v =⇒ (M, v) � A.

We will need two different deductive systems for iS4. The system HiS4 is
a Hilbert-style calculus whereas the system GiS4 is a Gentzen-style sequent
calculus for the intuitionistic modal logic iS4.
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Definition 2.5 (The proof system HiS4). The system HiS4 consists of the
following axioms:

• All axioms for intuitionistic propositional logic

• �(A→ B)→ (�A→ �B) (K)

• �A→ A (T)

• �A→ ��A (4)

The rules of HiS4 are modus ponens and necessitation:

A→ B A (MP)
B

A (nec)
�A

Theorem 2.6. HiS4 is sound and complete with respect to intuitionistic
Kripke models.

Proof. Soundness and completeness follow from [20, Theorem 3.2 on p. 696]
and the observation that that Ono’s I-models of type 0 are the same as our
intuitionistic Kripke models.

Definition 2.7 (The proof system GiS4). A sequent is an expression of the
form Γ ⊃ A, where Γ is a finite multiset of formulas and A is a formula.
The Gentzen-style system GiS4 derives sequents and consists of the following
axioms and rules:

Γ ⊃ A if A ∈ Γ or ⊥ ∈ Γ

Γ, A ⊃ C Γ, B ⊃ C
(∨ ⊃)

Γ, A ∨B ⊃ C

Γ ⊃ A (⊃ ∨)1Γ ⊃ A ∨B
Γ ⊃ B (⊃ ∨)2Γ ⊃ A ∨B

Γ, A,B ⊃ C
(∧ ⊃)

Γ, A ∧B ⊃ C
Γ ⊃ A Γ ⊃ B (⊃ ∧)

Γ ⊃ A ∧B

Γ ⊃ A Γ, B ⊃ C
(→⊃)

Γ, A→ B ⊃ C
Γ, A ⊃ B

(⊃→)
Γ ⊃ A→ B
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A,Γ ⊃ B
(� ⊃)

�A,Γ ⊃ B
�Γ ⊃ A (⊃ �)
�Γ ⊃ �A

Γ ⊃ A (weakening)
Γ,∆ ⊃ A

Γ, A,A ⊃ B
(contraction)

Γ, A ⊃ B

As usual, we say that a formula A is provable in GiS4 if the sequent ⊃ A
is provable.

Theorem 2.8. GiS4 is sound and complete with respect to intuitionistic
Kripke models.

Proof. In this proof, theorems and systems refer to [20]. By Theorem 3.2 the
Hilbert system L0 is complete with respect to I-models of type 0, which are
the same as our intuitionistic Kripke models. By Theorem 2.1, the sequent
system G0 is equivalent to the Hilbert system L0. The sequent systems G0

and K0 are equivalent, and by Theorem 3.3, we have cut-elimination for K0.
Therefore, the cut-free version of K0 is complete with respect to intuitionistic
Kripke models. Finally observe that cut-free K0 is the same as our GiS4.

3 Intuitionistic Justification Logic

In this section, we introduce the syntax for the justification logic iJT4CS,
which is the explicit analogue of the intuitionistic modal logic iS4.

Definition 3.1 (Justification terms). We assume a countable set of justi-
fication constants and a countable set of justification variables. The set of
justification terms Tm is inductively defined by:

1. each justification constant and each justification variable is a justifica-
tion term;

2. if s and t are justification terms, then so are

• (s · t), read s dot t,

• (s+ t), read s plus t,

• !s, read bang s.

Definition 3.2 (Formulas). We start with the same set Prop of atomic propo-
sitions as in LI. The set of formulas LJ is inductively defined by:

1. every atomic proposition is a formula;
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2. the constant symbol ⊥ is a formula;

3. If A and B are formulas, then (A ∧ B), (A ∨ B) and (A → B) are
formulas;

4. if A is a formula and t a term, then t : A is a formula.

Definition 3.3. The axioms of iJT4 consist of the following axioms:

1. all axioms for intuitionistic propositional logic

2. t : (A→ B)→ (s : A→ t · s : B)

3. t : A→ t+ s : A and s : A→ t+ s : A

4. t : A→ A

5. t : A→ !t : t : A

A constant specification CS is any subset

CS ⊆ {(c, A) | c is a constant and A is an axiom of iJT4}.

A constant specification CS is called:

• axiomatically appropriate if for each axiom A of iJT4, there is a constant
c such that (c, A) ∈ CS.

• schematic if for each constant c, the set of axioms {A | (c, A) ∈ CS}
consists of all instances of several (possibly zero) axiom schemes of iJT4.

For a constant specification CS the deductive system iJT4CS is the Hilbert
system given by the axioms above and by the rules modus ponens and axiom
necessitation:

A→ B A (MP)
B

(c, A) ∈ CS
(AN)

c : A

As usual in justification logic, we can establish the Deduction Theorem
and the Lifting Lemma.

Theorem 3.4 (Deduction Theorem). For every set of formulas M and all
formulas A,B we have that

M ∪ {A} `iJT4CS B ⇐⇒ M `iJT4CS A→ B.

6



Lemma 3.5 (Lifting Lemma). Let CS be an axiomatically appropriate con-
stant specification. For arbitrary formulas A,B1, . . . , Bm, C1, . . . , Cn and ar-
bitrary justification terms r1, . . . , rm, s1, . . . , sn, if

r1 : B1, . . . , rm : Bm, C1, . . . , Cn `iJT4CS A,

then there is a justification term t such that

r1 : B1, . . . , rm : Bm, s1 : C1, . . . , sn : Cn `iJT4CS t : A.

Definition 3.6 (Substitution). A substitution is a mapping from justification
variables to justification terms. Given a substitution σ and an LJ-formula
A, the formula Aσ is obtained from A by simultaneously replacing all occur-
rences of x with σ(x) in A for all justification variables x.

As usual in justification logic, we have the following substitution property
for schematic constant specifications.

Lemma 3.7 (Substitution Property). Let CS be a schematic constant spec-
ification. We have for any LJ-formula A and any substitution σ

B1, . . . , Bn `iJT4CS A implies B1σ, . . . , Bnσ `iJT4CS Aσ.

We find that iJT4CS is a conservative extension of intuitionistic proposi-
tional logic. Hence iJT4CS is consistent.

Lemma 3.8 (Conservativity). iJT4CS is a conservative extension of intuition-
istic propositional logic Int, i.e., for any formula A of intuitionistic proposi-
tional logic,

`iJT4CS A iff `Int A.

Proof. The implication from right to left is trivial. For the other direction
consider the mapping (·)s from LJ to formulas of intuitionistic propositional
logic given by:

⊥s := ⊥ ps := p

(A ∧B)s := As ∧Bs (A ∨B)s := As ∨Bs

(A→ B)s := As → Bs (t : B)s := Bs

For any formula C of LJ, we can show

`iJT4CS C implies `Int Cs

by induction on the length of the iJT4CS-derivation. Thus the claim imme-
diately follows from As = A.
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Lemma 3.9 (Consistency of iJT4CS). For any constant specification CS, the
logic iJT4CS is consistent.

Proof. Assume towards a contradiction that iJT4CS were not consistent, that
means `iJT4CS ⊥. By the conservativity of iJT4CS over propositional intu-
itionistic logic Int (previous lemma), it would then follow that `Int ⊥, which
is not the case.

4 Basic Modular Models

Basic modular models are syntactic models for justification logic. Yet, our
basic modular models will include possible worlds in order to deal with the
intuitionistic base logic. After defining basic modular models for intuitionistic
justification logic, we will prove soundness and completeness.

In this and the next section, derivability always refers to derivbability in
iJT4CS. Accordingly we use ` to mean `iJT4CS .

Definition 4.1 (Basic evaluation). A basic evaluation is a tuple (W,≤, ∗)
where

W 6= ∅ and ≤ is a partial order on W,

∗ : Prop×W → {0, 1} ∗ : Tm×W → P(LJ)

(where we often write t∗w for ∗(t, w) and p∗w for ∗(p, w)), such that for arbitrary
s, t ∈ Tm and any formula A,

(1) s∗w · t∗w ⊆ (s · t)∗w;

(2) s∗w ∪ t∗w ⊆ (s+ t)∗w;

(3) (t, A) ∈ CS =⇒ A ∈ t∗w;

(4) s : s∗w ⊆ (!s)∗w.

Furthermore, it has to satisfy the following monotonicity conditions:

(M1) p∗w = 1 and w ≤ v =⇒ p∗v = 1;

(M2) w ≤ v =⇒ t∗w ⊆ t∗v.

Strictly speaking we should use the notion of a CS basic evaluation be-
cause condition (3) depends on a given CS. However, the constant specifi-
cation will always be clear from the context and we can safely omit it. The
same also holds for modular models (to be introduced later).
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Definition 4.2 (Truth under basic evaluation). Let M = (W,≤, ∗) be a
basic evaluation. For w ∈ W , we define (M, w) � A by induction on the
formula A as follows:

• (M, w) 2 ⊥;

• (M, w) � p iff p∗w = 1;

• (M, w) � A ∧B iff (M, w) � A and (M, w) � B;

• (M, w) � A ∨B iff (M, w) � A or (M, w) � B;

• (M, w) � A→ B iff (M, v) � B for all v ≥ w with (M, v) � A;

• (M, w) � t : A iff A ∈ t∗w.

We immediately obtain the monotonicity property for intuitionistic jus-
tification logic.

Lemma 4.3 (Monotonicity). For any basic evaluation M = (W,≤, ∗), states
w, v ∈ W and any formula A:

(M, w) � A and w ≤ v =⇒ (M, v) � A.

Definition 4.4 (Factive evaluation). A basic evaluation M = (W,≤, ∗) is
called factive iff

A ∈ t∗w =⇒ (M, w) � A

for all formulas A, all justification terms t and all states w ∈ W .

Definition 4.5 (Basic modular model). A basic modular model is a basic
evaluation (W,≤, ∗) that is factive.

We say that a formula A is valid with respect to basic modular models if for
all basic modular models M = (W,≤, ∗) and all w ∈ W we have (M, w) � A.

Lemma 4.6 (Soundness of iJT4CS with respect to basic modular models).
For every formula A:

` A implies A is valid with respect to basic modular models.

In order to show completeness, we need some auxiliary definitions and
lemmas.

Definition 4.7. We call a set of formulas ∆ prime iff it satisfies the following
conditions:
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(i) ∆ has the disjunction property, i.e., A ∨B ∈ ∆ =⇒ A ∈ ∆ or B ∈ ∆;

(ii) ∆ is deductively closed, i.e., for any formula A, if ∆ ` A, then A ∈ ∆;

(iii) ∆ is consistent, i.e., ⊥ /∈ ∆.

From now on, we will use Σ,∆,Γ for prime sets of formulas.

Lemma 4.8. Let N be an arbitrary set of formulas and let A,B and C be
formulas. If

N ∪ {A ∨B} 0 C, then N ∪ {A} 0 C or N ∪ {B} 0 C.

Proof. By contraposition. Assume that

N ∪ {A} ` C and N ∪ {B} ` C

Then there are finite subsets N1 ⊆ N ∪ {A} and N2 ⊆ N ∪ {B} such that

`
∧

N1 → C and `
∧

N2 → C

Now let N ′1 := N1 \ {A} and N ′2 := N2 \ {B}. Then N ′1, N
′
2 are finite

subsets of N , and

`
∧

(N ′1 ∪ {A})→ C and `
∧

(N ′2 ∪ {B})→ C.

So
`
∧

N ′1 → (A→ C) and `
∧

N ′2 → (B → C).

Strengthening the antecedent, we get

`
∧

(N ′1 ∪N ′2)→ (A→ C) and `
∧

(N ′1 ∪N ′2)→ (B → C))

and, therefore,

`
∧

(N ′1 ∪N ′2)→ ((A→ C) ∧ (B → C)).

By propositional reasoning we get

`
∧

(N ′1 ∪N ′2)→ ((A ∨B)→ C),

which means that

`
∧

(N ′1 ∪N ′2 ∪ {A ∨B})→ C.

Since N ′1 and N ′2 are finite subsets of N , (N ′1∪N ′2∪{A∨B} is a finite subset
of N ∪ {A ∨B}, so by definition

N ∪ {A ∨B} ` C.
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Theorem 4.9 (Prime Lemma). Let B be a formula and let N be a set of
formulas such that N 0 B. Then there exists a prime set Π with N ⊆ Π and
Π 0 B.

Proof. Let (An)n∈N be an enumeration of all formulas.
Now we define N0 := N ,

Ni+1 :=

{
Ni ∪ {Ai}, if Ni ∪ {Ai} 0 B
Ni, otherwise

and finally

N? :=
⋃
i∈N

Ni

By induction in i, one can easily show that for all i ∈ N : Ni 0 B and,
therefore, N? 0 B.

It remains to show that N? is prime. We have the following:

• ⊥ /∈ N?: Since ⊥ /∈ Ni for all i ∈ N, which can be shown by induction
on i.

• N? is deductively closed: Assume it is not, i.e., there is a formula A
with

N? ` A but A /∈ N?

Since N? ` A but N? 0 B, we know that

N? ∪ {A} 0 B
Otherwise, by the Deduction Theorem 3.4

N? ` A→ B and N? ` A

so by propositional reasoning,

N? ` B, which contradicts our observation above.

Since (An)n∈N is an enumeration of all formulas, there is some i such
that A = Ai. But then

Ni ∪ {Ai} 0 B.
So by construction

Ni+1 = Ni ∪ {Ai}
and, therefore,

A = Ai ∈ Ni+1 ⊆ N?,

which contradicts our assumption.
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• N? has the disjunction property: Assume that C∨D ∈ N?. Then there
is some i such that C ∨D = Ai and there are i1, i2 such that

C = Ai1 and D = Ai2

Now we have
N? = N? ∪ {C ∨D} 0 B

By the lemma above it follows that

N? ∪ {C} 0 B or N? ∪ {D} 0 B

In the first case, we have that

Ni1 ∪ {Ai1} 0 B

so by the definition of Ni1+1,

Ni1+1 = Ni1 ∪ {Ai1} = Ni1 ∪ {C}

which means that C ∈ Ni1+1 and therefore C ∈ N?. The second case
is analogous.

Lemma 4.10. Let ∆ be a prime set and t be a justification term. Then

t−1∆ ⊆ ∆.

Proof. Let A ∈ t−1∆. Then t : A ∈ ∆. Since ∆ is deductively closed, it
contains all axioms, thus t : A → A ∈ ∆. Again, since ∆ is deductively
closed, it follows by (MP) that A ∈ ∆.

Definition 4.11 (Canonical basic modular model). The canonical basic
modular model is

Bcan := (W can,≤can, ∗can)

where

(i) W can := {∆ ⊆ LJ | ∆ is prime}

(ii) ≤can := ⊆

(iii) ∗can(p,∆) = 1 iff p ∈ ∆

(iv) ∗can(t,∆) := t−1∆ := {A | t : A ∈ ∆}

Lemma 4.12. Bcan is a basic evaluation.
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Proof. W 6= ∅: By the consistency of iJT4CS we have that ∅ 0 ⊥, it follows
by the Prime Lemma 4.9 that there exists a prime set, so W can 6= ∅.

Next, we check the conditions on the sets of formulas t∗
can

∆ .

(1) s∗
can

∆ · t∗can∆ ⊆ (s · t)∗can∆ . Let A ∈ s∗can∆ · t∗can∆ . Then there is a formula
B ∈ t∗can∆ such that B → A ∈ s∗can∆ . So s : B → A ∈ ∆ and t : B ∈ ∆.
Since ∆ is a prime set, it is deductively closed, so it contains the axiom
s : (B → A)→ (t : B → s · t : A). Again since ∆ is deductively closed,
it follows by (MP) that s · t : A ∈ ∆, so A ∈ (s · t)−1∆ = (s · t)∗can∆ .

(2) s∗
can

∆ ∪t∗can∆ ⊆ (s+t)∗
can

∆ . Let A ∈ s∗can∆ ∪t∗can∆ . Case 1: A ∈ s∗can∆ = s−1∆.
Then s : A ∈ ∆. Since ∆ is deductively closed, it contains the axiom
s : A → (s + t) : A. Thus by (MP) we find (s + t) : A ∈ ∆, i.e.,
A ∈ (s+ t)−1∆ = (s+ t)∗

can

∆ . The second case is analogous.

(3) (t, A) ∈ CS =⇒ A ∈ t∗
can

∆ . By axiom necessitation we find that
` t : A, so ∆ ` t : A. Since ∆ is deductively closed, it follows that
t : A ∈ ∆, so A ∈ t−1∆ = t∗

can

∆ .

(4) s : s∗
can

∆ ⊆ (!s)∗
can

∆ . Let A ∈ s : s∗
can

∆ . Then A is of the form s : B
for some formula B ∈ s∗can∆ = s−1∆, i.e., s : B ∈ ∆. We find that the
axiom (s : B) → !s : (s : B) ∈ ∆, so !s : (s : B) ∈ ∆, which means
that s : B ∈ (!s)−1∆ = (!s)∗

can

∆ .

Now we check the monotonicity conditions.

(M1) Assume that p∗
can

Γ = 1 and Γ ⊆ ∆. By the definition of of ∗can we have
that p ∈ Γ, so p ∈ ∆ hence p∗

can

∆ = 1.

(M2) Now assume that Γ ⊆ ∆. Then t−1Γ ⊆ t−1∆, which is t∗
can

Γ ⊆ t∗
can

∆ .

Lemma 4.13 (Truth Lemma). For any formula A and any prime set ∆ :

A ∈ ∆ ⇐⇒ (∗can,∆) � A.

Proof. By induction on the formula A. We distinguish the following cases.

1. A = p or A = ⊥. By definition.

2. A = B ∧ C. Assume that B ∧ C ∈ ∆. Since ∆ is deductively closed,
we have B ∈ ∆ and C ∈ ∆, so it follows by the induction hypothesis
that (∗can,∆) � B and (∗can,∆) � C.

For the other direction assume that (∗can,∆) � B∧C, so (∗can,∆) � B
and (∗can,∆) � C. By the induction hypothesis, we get that B ∈ ∆
and C ∈ ∆. Since ∆ is deductively closed, it follows that B ∧ C ∈ ∆.
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3. A = B∨C. Assume that B∨C ∈ ∆. Since ∆ has the disjunction prop-
erty, it follows that B ∈ ∆ or C ∈ ∆, so by the induction hypothesis,
(∗can,∆) � B or (∗can,∆) � C, so (∗can,∆) � B ∨ C.

For the other direction assume that (∗can,∆) � B ∨ C. Then

(∗can,∆) � B or (∗can,∆) � C,

so by the induction hypothesis, B ∈ ∆ or C ∈ ∆. Since ∆ is deductively
closed, it follows that B ∨ C ∈ ∆.

4. A = B → C. Assume that B → C ∈ ∆. We have to show that
(∗can,∆) � B → C, so let Γ be a prime set such that ∆ ⊆ Γ and
(∗can,Γ) � B. It follows by the induction hypothesis that B ∈ Γ, and
since B → C ∈ Γ and Γ is deductively closed, we have that C ∈ Γ.
Applying the induction hypothesis again, we get that (∗can,Γ) � C.

For the other direction assume that (∗can,∆) � B → C. We have to
show that B → C ∈ ∆. Assume for a contradiction that B → C /∈ ∆.
Since ∆ is deductively closed, it follows that ∆ 0 B → C. It follows
by the Deduction Theorem 3.4 that ∆ ∪ {B} 0 C. By the Prime
Lemma 4.9, there is a prime set Γ such that ∆ ∪ {B} ⊆ Γ and Γ 0 C,
so in particular, C /∈ Γ. By the induction hypothesis it follows that
(∗can,Γ) � B and (∗can,Γ) 2 C, contradicting our assumption that
(∗can,∆) � B → C.

5. A = t : B. We have

t : B ∈ ∆ ⇐⇒ B ∈ t−1∆ = ∗can(t,∆) ⇐⇒ (∗can,∆) � t : B.

Lemma 4.14. Bcan is a basic modular model.

Proof. We only have to show factivity, for which we use the Truth Lemma.
Assume that

A ∈ ∗can(t,∆) = t−1∆.

By Lemma 4.10 we know that t−1∆ ⊆ ∆, so we have A ∈ ∆. By the
Truth Lemma for the canonical basic modular model, we can conclude that
(∗can,∆) � A. So factivity is shown.

Theorem 4.15 (Completeness of iJT4CS with respect to basic modular mod-
els). For any formula A:

A is valid with respect to basic modular models implies ` A.
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Proof. By contraposition. Assume that 0 A. By the Prime Lemma 4.9, there
exists a prime set ∆ such that ∆ 0 A. In particular, A /∈ ∆. By the Truth
Lemma 4.13, it follows that

(∗can,∆) 2 A

since this structure is a basic modular model, it follows that A is not valid
with respect to basic modular models.

5 Modular Models

In this section, we introduce modular models for intuitionistic justification
logic. Modular models are epistemic logics in the sense that they feature
possible worlds to model the notion of knowledge. The main principle of
these logics is called justification yields belief, which means that if there is a
justification for a formula A, then that formula must hold in all accessible
worlds.

In the second part of this section, we study so-called fully explanatory
modular models. These models additionally require that if a formula holds
in all accessible worlds, then there must be a justification for that formula.
This principle can be seen as the reverse direction of justification yields belief.

Definition 5.1 (Quasimodels). A quasimodel is a tuple

M = (W,≤, R, ∗),

such that (W,≤, ∗) is a basic evaluation, and R is a binary relation on W .

Definition 5.2 (Truth in quasimodels). We define what it means for a for-
mula A to hold at a world w ∈ W of a quasimodel M = (W,≤ R, ∗), written
(M, w) � A, inductively as follows:

• (M, w) 2 ⊥;

• (M, w) � p iff p∗w = 1;

• (M, w) � A ∧B iff (M, w) � A and (M, w) � B;

• (M, w) � A ∨B iff (M, w) � A or (M, w) � B;

• (M, w) � A→ B iff (M, v) � B for all v ≥ w with (M, v) � A;

• (M, w) � t : A iff A ∈ t∗w.
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Further we define �w := {A ∈ LJ | (M, v) � A for all v ∈ R[w]}.

Lemma 5.3 (Locality of truth in quasimodels).

(M, w) � A ⇐⇒ (∗, w) � A.

Definition 5.4 (Factive quasimodel). A quasimodel M = (W,≤, R, ∗) is
called factive if A ∈ t∗w implies (M, w) � A for all w ∈ W, t ∈ Tm, and
formulas A.

Definition 5.5 (Modular models). A modular model is a quasimodel M =
(W,≤ R, ∗) that meets the following conditions:

(1) t∗w ⊆ �w for all t ∈ Tm and w ∈ W (JYB);

(2) R is reflexive;

(3) R is transitive;

(4) w ≤ v =⇒ R[v] ⊆ R[w] (Compatibility of ≤ with R).

We say that a formula A is valid with respect to modular models if for all
modular model M = (W,≤, ∗) and all w ∈ W we have (M, w) � A.

The abbreviation JYB stands for justification yields belief, which is the
main principle of modular models. This notion goes back to Artemov [5].

Lemma 5.6 (Modular models are factive). All modular models are factive.

Proof. Whenever A ∈ t∗w for some formula A, some t ∈ Tm, and some w ∈ W ,
we have A ∈ �w by JYB. Since R(w,w) by the reflexivity of R, we obtain
(M, w) � A from the definition of �w.

Corollary 5.7 (Factivity of basic evaluations used in modular models). For
any modular model M = (W,≤, R, ∗) and any world w ∈ W , the basic
evaluation (W,≤, ∗) is factive and, hence, a basic modular model.

Proof. Assume that for the basic evaluation (W,≤, ∗) , we have A ∈ t∗w for
some formula A and some term t ∈ Tm. Then A ∈ t∗w in the modular
model notation. By the previous lemma, we get (M, w) � A, from which we
conclude (∗, w) � A by the locality of truth in quasimodels 5.3.

Lemma 5.8 (Justifications remain relevant). Let M = (W,≤, R, ∗) be a
modular model. Then for any t ∈ Tm and for arbitrary w, v ∈ W , if R(w, v),
then t∗w ⊆ t∗v , i.e., justifications remain relevant in accessible worlds.
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Proof. Assume R(w, v) and A ∈ t∗w for some formula A. Then we have
t : A ∈ (!t)∗w because (W,≤, ∗) is a basic evaluation. Therefore, t : A ∈ �w

by JYB and, in particular, (M, v) � t : A by the definition of �w, which
means that A ∈ t∗v .

Theorem 5.9 (Soundness and completeness: modular models). For any
constant specification CS and any formula A we have

` A ⇐⇒ A is valid with respect to modular models.

Proof. It is sufficient to prove that any formula refutable by a basic modular
model can be refuted at a world in a modular model and vice versa.

Soundness. Let M = (W,≤, R, ∗) be a modular model. We need to
show that any formula A such that ` A holds at any world w ∈ W . By
Corollary 5.7, we know that (W,≤, ∗) is a basic modular model. By soundness
of iJT4CS with respect to basic modular models, we get (∗, w) � A. Hence,
(M, w) � A by the locality of truth in quasimodels (Lemma 5.3).

Completeness. For the opposite direction, suppose 0 A . By completeness
of iJT4CS with respect to basic modular models, there exists a basic modular
model (W,≤, ∗) and a world w ∈ W such that (∗, w) 2 A. We define a quasi-
model M := (W,≤, R, ∗) with R :=≤. By locality of truth for quasimodels
(Lemma 5.3), we have that (M, w) 2 A, and it only remains to show that M
is a modular iJT4CS-model, i.e., that all the restrictions on R and the condi-
tion JYB are met. The reflexivity and transitivity of R are trivial. We check
condition (4) (Compatibility of ≤ with R) i.e., w ≤ v =⇒ R[v] ⊆ R[w].
Assume w ≤ v and u ∈ R[v]. This means that v ≤ u, so by transitivity
of ≤ we have w ≤ u which means that u ∈ R[w]. Let us finish the proof
by demonstrating JYB. Assume that A ∈ t∗w and R(w, v). From this we get
that (∗, w) � t : A and w ≤ v. By monotonicity for basic modular models,
it follows that (∗, v) � t : A, so A ∈ t∗v. By the factivity of basic modular
models, we get that (∗, v) � A, and by the locality of truth in quasimodels,
(M, v) � A. Since v was arbitrary, we conclude that A ∈ �w.

Definition 5.10 (Fully explanatory modular models). A modular model
M = (W,R, ∗) is fully explanatory if for any w ∈ W ,

�w ⊆
⋃
t∈Tm

t∗w,

i.e., A ∈ �w implies A ∈ t∗w for some t ∈ Tm.

We need the following auxiliary definition.

17



Definition 5.11.

Γ/] := {A ∈ LJ | t : A ∈ Γ for some t ∈ Tm}.

Lemma 5.12.
Γ ⊆ ∆ =⇒ Γ/] ⊆ ∆/]

Proof. Assume that Γ ⊆ ∆ and let A ∈ Γ/]. By definition, there exists a
term t, such that t : A ∈ Γ, so t : A ∈ ∆ and A ∈ ∆/].

Lemma 5.13 (Soundness and completeness: fully explanatory modular
models). Let CS be an axiomatically appropriate constant specification. Then
iJT4CS is sound and complete with respect to fully explanatory modular mod-
els.

Proof. Soundness immediately follows from soundness with respect to all
modular models (and holds independently of whether CS is axiomatically
appropriate).

We define the canonical model as

Mcan := (W can,≤can, Rcan, ∗can)

where

(i) W can := {∆ ⊆ LJ | ∆ is prime}

(ii) ≤can := ⊆

(iii) ∗can(p,∆) = 1 iff p ∈ ∆

(iv) ∗can(t,∆) := t−1∆ := {A | t : A ∈ ∆}

(v) Rcan(Γ,∆) iff Γ/] ⊆ ∆

To show that Mcan is a modular iJT4CS-model, it remains to establish
that the set W can is non-empty, that Rcan is reflexive and transitive, that
≤can is compatible with Rcan and that the condition JYB is satisfied. We
start with showing W can 6= ∅. We have already shown that the empty set
is iJT4CS-consistent, so by the Prime Lemma 4.9, there exists a prime set
extending ∅, which is an element of W can.

To show that ≤ is compatible with Rcan, assume that Γ ⊆ ∆. We need
to show that Rcan[∆] ⊆ Rcan[Γ], so we pick Π ∈ Rcan[∆] and show that
Π ∈ Rcan[Γ]. Π ∈ Rcan[∆] means that ∆/] ⊆ Π. By the lemma above, we
have that Γ/] ⊆ ∆/], and therefore Γ/] ⊆ Π, i.e., Π ∈ Rcan[Γ].

18



To show JYB, assume A ∈ t∗canΓ for some formula A , some t ∈ Tm, and
some Γ ∈ W can . We need to show that A ∈ �Γ , i.e., that (Mcan,∆) � A
whenever Rcan(Γ,∆). Consider any such ∆ ∈ W can. We have t : A ∈ Γ by
the definition of t∗

can

Γ and A ∈ ∆ by the definition of Rcan . By the truth
lemma for basic evaluations, it follows that (∗can,∆) � A. By the locality of
truth in quasimodels, we have (Mcan,∆) � A.

To show that Rcan is reflexive, consider any Γ ∈ W can. Assume that
A ∈ Γ/], i.e., that t : A ∈ Γ for some t ∈ Tm. Since Γ is prime, it is
deductively closed. t : A→ A is an axiom, so t : A→ A ∈ Γ. Again, since Γ
is deductively closed, it follows by (MP) that A ∈ Γ. Therefore, Γ/] ⊆ Γ,
which means that Rcan(Γ,Γ).

To show that Rcan is transitive, consider arbitrary Γ,∆,Π ∈ W can such
that Rcan(Γ,∆) and Rcan(∆,Π). Assume that A ∈ Γ/], i.e., that t : A ∈ Γ
for some t ∈ Tm. Since Γ is prime, it is deductively closed, and since t :
A → !t : t : A is an axiom of iJT4CS we conclude !t : t : A ∈ Γ. Hence
t : A ∈ Γ/] ⊆ ∆ and A ∈ ∆/] ⊆ Π. Therefore, Γ/] ⊆ Π, which means
Rcan(Γ,Π).

Finally, we show that Mcan is fully explanatory. Assume that A ∈ �Γ for
some formula A and prime set Γ. Then

Γ/] ` A (2.6)

Indeed, assume for a contradiction that Γ/] 0 A. By the Prime Lemma,
there exists a prime set ∆ such that Γ/] ⊆ ∆ and ∆ 0 A. By the definition
of Rcan, we have Rcan(Γ,∆), and from ∆ 0 A we get that A /∈ ∆. By the
Truth Lemma for basic evaluations, it follows that (∗can,∆) 2 A. By the
locality of truth in quasimodels, we have (Mcan,∆) 2 A, contradicting our
assumption that A ∈ �Γ. By (2.6), it follows that there exists a finite set
Σ = {G1, . . . , Gn} ⊆ Γ/], such that

` G1 ∧ · · · ∧Gn → A

so
{G1, . . . , Gn} ` A.

Since each Gi ∈ Γ/] , there must exist terms si ∈ Tm such that si : Gi ∈ Γ
for each 1 ≤ i ≤ n.

By Lemma 3.5, given the axiomatic appropriateness of CS, there exists a
term t such that

s1 : G1, . . . , sn : Gn ` t : A

By the Deduction Theorem

` s1 : G1 → (s2 : G2 → · · · → (sn : Gn → t : A) . . . ).

19



Γ is prime, so it is deductively closed, and therefore

t : A ∈ Γ

and finally
A ∈ t−1Γ = t∗

can

Γ .

So Mcan is fully explanatory.

6 Realization

We establish in this section that the justification logic iJT4 is the explicit
counterpart of the intuitionistic modal logic iS4.

First we show that iS4 is the forgetful projection of iJT4. We need the
following definition: if A is a formula of LJ, then A◦ is the formula of LI that
is the result of replacing all occurrences of t : in A with �. We immediately
get the following theorem.

Theorem 6.1 (Forgetful projection). Let CS be an arbitrary constant spec-
ification. For each LJ-formula A,

`iJT4CS A implies `HiS4 A◦.

Proof. By induction on the length of the iJT4CS derivation.
It is easy to see that for each axiom A of iJT4CS, we have `HiS4 A◦.
If A is the conclusion of an application of modus ponens from premises B

and B → A, then by induction hypothesis and the definition of ·◦ we get

`HiS4 B◦ and `HiS4 B◦ → A◦

and thus `HiS4 A◦ by modus ponens.
If A is the conclusion of an instance of axiom necessitation, then A has the

form c : B for some axiom B of iJT4CS. Therefore, as shown above, `HiS4 B◦.
An application of necessitation yields `HiS4 �B◦, which is `HiS4 A◦.

Now we show the converse direction, namely that iJT4 realizes iS4. For
this, we need the following definition: a realization r is a mapping from LI

to LJ such that for each LI-formula A we have that

(r(A))◦ = A.

A realization is normal if all negative occurrences of � are realized by justi-
fication variables.
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Theorem 6.2 (Realization). Let CS be an axiomatically appropriate and
schematic constant specification. Then there exists a realization r such that
for each LI-formula A we have

`GiS4 A implies `iJT4CS r(A).

Proof. It turns out that Artemov’s original realization proof for the Logic
of Proofs [2] also works in the intuitionistic case. We will only give a proof
sketch here.

We start with defining positive and negative occurrences of � in a sequent
as usual. Observe that the rules of GiS4 respect these polarities so that (⊃ �)
introduces positive occurrences of � and (� ⊃) introduces negative occur-
rences of �. Occurrences of � are related if they occur in related formulas of
premises and conclusions of rules; we close this relationship of related occur-
rences under transitivity. All occurrences of � in a GiS4-derivation naturally
split into disjoint families of related occurrences. We call a family essential
if at least one of its members is introduced by a (⊃ �) rule. Note that an
essential family is positive (i.e. contains only positive occurrences).

Now let D be the GiS4 derivation that proves A. The desired realization r
is constructed by the following three steps. We reserve a large enough set of
justification variables as provisional variables.

1. For each negative family and each non-essential positive family, replace
all � occurrences by x : where we choose a fresh justification variable
for each family.

2. Pick an essential family f . Enumerate all occurrences of (⊃ �) rules
that introduce a �-operator to this family. Replace each � with a
justification term

v1 + · · ·+ vnf

where each vi is a fresh provisional variable. Do this for each essential
family. The resulting tree D′ is labelled by LJ-formulas.

3. Replace the provisional variables starting with the leaves and working
toward the root. By induction on the depth of a node in D′ we establish
that after the process passes a node, the sequent assigned to this node
becomes derivable in iJT4CS where derivability of Γ ⊃ A means

Γ `iJT4CS A.

We distinguish the following cases.

(a) The axioms Γ ⊃ A with A ∈ Γ or ⊥ ∈ Γ are derivable in iJT4CS.
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(b) For every rule other than (⊃ �) we do not change the term as-
signment and establish that the conclusion of the rule is derivable
in iJT4CS if the premises are.

(c) Let an occurrence of a (⊃ �) rule have number i in the enumer-
ation of all (⊃ �) rules in a given family f . The corresponding
node in D′ is labelled by

y1 : B1, . . . , yk : Bk ⊃ A
y1 : B1, . . . , yk : Bk ⊃ u1 + · · ·+ unf

: A

where the y’s are justification variables, the u’s are justification
terms, and ui is a provisional variable. By the induction hypoth-
esis y1 : B1, . . . , yk : Bk ⊃ A is derivable in iJT4CS. Using the
Lifting Lemma, we construct a term t such that

y1 : B1, . . . , yk : Bk `iJT4CS t : A.

Thus

y1 : B1, . . . , yk : Bk `iJT4CS u1 + · · ·+ui−1 + t+ui+1 + · · ·+unf
: A.

Substitute t for ui everywhere in D′. By Lemma 3.7, this does not
affect the already established derivability results.

Eventually, all provisional variables are replaced with terms of non-
provisional variables in D′ and we have established that its root se-
quent r(A) is derivable in iJT4CS. The realization r built by this con-
struction is normal.

7 Conclusion

We have established that if we take the classical Logic of Proofs and change
the underlying classical propositional logic to intuitionistic propositional logic,
then we obtain an explicit counterpart of intuitionistic modal logic. This is
an interesting result since the known inituitionistic Logic of Proofs includes
additional axioms that introduce special justification terms for all admissible
rules of intuitionistic logic. This seems necessary to obtain completeness with
respect to provability semantics where the justification relation is interpreted
by formal provability in Heyting Arithmetic.

Our results now show that these additional axioms and justification terms
are not needed if we are interested in the explicit counterpart of intuitionistic
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modal logic and the corresponding possible world semantics for justification
logic.

Moreover, we believe that intuitionistic justification logics will help to
understand intuitionistic modal logics better. In particular, they will help
to clarify the role of additional principles for the �-modality and the cor-
responding conditions on the accessibility relation. However, this is left for
future research.
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