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Abstract. We present a propositional logic for reasoning about higher-
order upper and lower probabilities. The main technical result is the
proof of decidability of the introduced logical system. We also show that
the axiomatization for the corresponding logic without iterations of op-
erators, which we developed in our previous work, is also complete for
the new class of models presented in this paper.
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1 Introduction

In the last few decades, uncertain reasoning has become an active topic of in-
vestigation for researchers in the fields of computer science, artificial intelligence
and cognitive science. One particular line of research concerns the formalization
in terms of logic. The frameworks designed for reasoning about uncertainty often
use probability-based interpretation of knowledge or belief. In the first of those
papers [28] motivated by development of an expert system in medicine, Nilsson
tried to give a logic with probabilistic operators as a well-founded framework
for uncertain reasoning. The question of providing an axiomatization and de-
cision procedure for Nilsson’s logic attracted the attention of other researchers
in the field, and triggered investigation about formal systems for probabilistic
reasoning [6–9, 11, 16, 25, 29–32].

However, in many applications, sharp numerical probabilities appear too sim-
ple for modeling uncertainty. In order to model some situations of interest, var-
ious imprecise probability models are developed [4, 5, 23, 26, 35–37, 39]. Some of
those approaches use sets of probability measures instead of one fixed measure,
and the uncertainty is represented by two boundaries, called lower probability
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and upper probability [14, 22]. Halpern and Pucella [13] give the following ex-
ample: a bag contains 100 marbles, 30 of them are red and the remaining 70
are either blue or yellow, but we do not know their exact proportion. Obvi-
ously, we can assign exact probability 0.3 to the event that a randomly picked
ball from the bag is red. On the other hand, for each possible probability p for
picking a blue ball, we know that the remaining probability for yellow one is
0.7-p. This way we obtain a set of possible probability measures P . Based on P
we can define the following two functions: the upper probability and the lower
probability measure, which assign to an event X the supremum (resp. the infi-
mum) of the probabilities assigned to X by the measures in P . Formally, if the
uncertainty about probabilities is modeled by a set P of probability measures
defined on given algebra H, then the lower probability measure P? and the up-
per probability measure P ? are defined by P?(X) = inf{µ(X) | µ ∈ P} and
P ?(X) = sup{µ(X) | µ ∈ P}, for every X ∈ H. Those two functions are related
by the formula P?(X) = 1− P ?(Xc).

Those probability notions were previously formalized in the logic developed
in [13], where lower and upper probability operators are applied to propositional
formulas, and in [33], where first-order logic is considered (a formula is a Boolean
combination of formulas in which lower and upper probability operators are
applied to first-order sentences).

In this paper, we use the papers [13, 33] as a starting point and generalize
them in a way that we reason not only about lower and upper probabilities an
agent assigns to a certain event, but also about her uncertain belief about other
agent’s imprecise probabilities. Thus, we introduce separate lower and upper
probability operators for different agents, and we allow nesting of the operators,
similarly as it has been done in [7], in the case of simple probabilities1. Our
preliminary research on the topic is published in [34], where we axiomatized a
first-order logic with nesting of lower and upper probability operators. However,
since that logic extends standard first-order logic, it is obviously undecidable.
To overcome that problem, in this paper we present a propositional variant of
this logic, which we denote by ILUPP2; we prove that the logic is decidable and
we propose a sound and strongly complete axiomatization for the logic.

Our language contains the upper and lower probability operators Ua≥r and
La≥r, for every agent a and every rational number r from the unit interval (we
also introduce the operators with other types of inequalities, like Ua=r). Consider
the following example, essentially taken from [34]. Suppose that an agent a is
planning to visit a city based on the weather reports from several sources, and
she decides to take an action if the probability of rain is at most 1

10 , according
to all reports she considers. Since she wishes to go together with b, she should
be sure with probability at least 9

10 that b (who might consult different weather
reports) has the same conclusion about the possibility of rain. In our language,

1 For a discussion on higher-order probabilities we refer the reader to [10].
2 The notation is motivated by the logic LUPP from [34], where LUP stands for “lower

and upper probability”, while the second P indicates that the logic is propositional.
We add I to denote iteration of upper and lower operators.
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this situation can be formalized as

Ua≤ 1
10
Rain ∧ La≥ 9

10
(U b≤ 1

10
Rain),

where Rain is a primitive proposition of the corresponding language. The ap-
propriate modal semantics consists of a specific class of Kripke models, in which
every world is equipped with sets of probability measures (one set for each agent).

Our main technical result is that the satisfiability problem for ILUPP logic is
decidable. In the proof, we combine the method of filtration [15] and a reduction
to linear programming. In the first part of the proof, we show that a formula α is
satisfiable in a world w of an ILUPP model if and only if it is satisfiable in a finite
model, i.e., a model with a finite number of worlds, bounded by a number which
is a function of the length of α, and such that the sets of probabilitiy measures
are finite in every world of the model. Note that, while in a standard modal
framework this is enough to prove decidability, since for every natural number
k there are only finitely many modal models with k worlds, this is not the case
for our logic. Indeed, since our models involve sets of probability measures, for
every finite set of k worlds, there are uncountably many probability measures
defined on them, and uncountably many models with k worlds. However, in the
second part of the proof we use a reduction to linear programming to solve the
probabilistic satisfiability in a finite number of steps.

We also propose a sound and strongly complete axiomatization of the logic.
Interestingly, we use the same axiomatization that we used in [33] for the logic
LUPP, and we show that it is also complete for the richer logic ILUPP. Of course,
the instances of the axiom schemata are different, because the sets of formulas
of ILUPP is larger, due to nesting of lower and upper probability operators,
and due to the presence of more agents. Also, the definition of the syntactical
consequence (proof) ` is different, due to the different interpretation of classical
formulas. Since the class of formulas and the class of models are different, the
proof techniques are modified. In order to achieve completeness, we use a Henkin-
like construction, following some of our earlier developed methods [17, 19, 20, 29,
32, 33].

The interesting situation that one axiomatic system is sound and complete
for more than one class of models is not an exception. For example, modal system
K is also sound and complete with respect to the class of all irreflexive models
[15].

The paper is organized as follows: in Section 2 we introduce the set of formulas
of the logic ILUPP and we define the corresponding semantics. Then, in Section
3 we prove that the satisfiability problem for the logic ILUPP is decidable. In
Section 4 we provide an axiomatic system for the logic, and we prove that the
axiomatization is strongly complete. Finally, Section 6 contains some concluding
remarks.

2 The logic ILUPP

In this section we introduce the syntax and the semantics of the logic ILUPP.
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2.1 Syntax

Let Σ = {a, b, . . . } be a finite, non-empty set of agents. Let S = Q ∩ [0, 1] and
let L = {p, q, r, . . . } be a denumerable set of propositional letters. The language
of the logic ILUPP consists of:

– the elements of set L,
– classical propositional connectives ¬ and ∧,
– the list of upper probability operators Ua≥s, for every a ∈ Σ and every s ∈ S,
– the list of lower probability operators La≥s, for every a ∈ Σ and every s ∈ S.

Definition 1 (Formula) The set ForILUPP of formulas is the smallest set con-
taining all elements of L and that is closed under following formation rules: if
α, β are formulas, then La≥sα, Ua≥sα, ¬α and α ∧ β are formulas as well. The
formulas from ForILUPP will be denoted by α, β, . . .

Intuitively, Ua≥sα means that according to an agent a, upper probability that
a formula α is true is greater or equal to s and analoguosly La≥sα means that
according to an agent a lower probability that a formula α is true is greater or
equal to s.

Note that we use conjunction and negation as primitive connectives, while
∨, → and ↔ are introduced in the usual way. We also use abbreviations to
introduce other types of inequalities:

– Ua<sα is ¬Ua≥sα, Ua≤sα is La≥1−s¬α, Ua=sα is Ua≤sα ∧ Ua≥sα, Ua>sα is ¬Ua≤sα,
– La<sα is ¬La≥sα, La≤sα is Ua≥1−s¬α, La=sα is La≤sα ∧ La≥sα, La>sα is ¬La≤sα.

For example, the expression

p ∧ Ua=0.9L
b
=0.3(p ∨ q)

is a formula of our language.

2.2 Semantics

The semantics for the logic ILUPP is based on the possible-world approach. Every
world is equipped with an evaluation function on propositional letters, and one
generalized probability space for each agent.

Definition 2 (ILUPP-structure) An ILUPP-structure is a tuple 〈W,LUP, υ〉,
where:

– W is a nonempty set of worlds,
– LUP assigns, to every w ∈W and every a ∈ Σ, a space, such that LUP (a,w) =
〈W (a,w), H(a,w), P (a,w)〉, where:
• ∅ 6= W (a,w) ⊆W ,
• H(a,w) is an algebra of subsets of W (a,w), i.e. a set of subsets of
W (a,w) such that:
- W (a,w) ∈ H(a,w),
- if A,B ∈ H(a,w), then W (a,w) \A ∈ H(a,w) and A ∪B ∈ H(a,w),
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• P (a,w) is a set of finitely additive probability measures defined on H(a,w),
i.e. for every µ(a,w) ∈ P (a,w), µ(a,w) : H(a,w) −→ [0, 1] and the fol-
lowing conditions hold:
∗ µ(a,w)(W (a,w)) = 1,
∗ µ(a,w)(A ∪B) = µ(a,w)(A) + µ(a,w)(B), whenever A ∩B = ∅.

– υ : W × L −→ {true, false} provides for each world w ∈ W a two-valued
evaluation of the primitive propositions.

Now we define satisfiability of the formulas from ForILUPP in the worlds
of ILUPP-structures. As we mentioned in the introduction, for any set P of
probability measures defined on given algebra H, the lower probability measure
P? and the upper probability measure P ? are defined by

– P?(X) = inf{µ(X) | µ ∈ P} and
– P ?(X) = sup{µ(X) | µ ∈ P},

for every X ∈ H. It is easy to check that

P?(X) = 1− P ?(Xc), (1)

for every X ∈ H. In the context of the definition of an ILUPP-structure, we will
denote P?(a,w)([α]aM,w) = inf{µ([α]aM,w) | µ ∈ P (a,w)} and P ?(a,w)([α]aM,w) =
sup{µ([α]aM,w) | µ ∈ P (a,w)}, where [α]aM,w = {u ∈W (a,w) |M,u |= α}.

Definition 3 (Satisfiability relation) For every ILUPP structure M =
〈W,LUP, υ〉 and every w ∈ W , the satisfiability relation |= fulfills the following
conditions:

– if p ∈ L, M,w |= p iff υ(w)(p) = true,
– M,w |= ¬α iff it is not the case that M,w |= α,
– M,w |= α ∧ β iff M,w |= α and M,w |= β,
– M,w |= Ua≥sα iff P ?(a,w)([α]aM,w) ≥ s,
– M,w |= La≥sα iff P?(a,w)([α]aM,w) ≥ s.

We will omit M when it’s clear from context. The possible problem with the
previous definition is that it might happen that for some M , w , a and α the
set [α]aM,w doesn’t belong to W (a,w). For that reason, we will consider only so
called measurable structures.

Definition 4 (Measurable structure) The structure M is measurable if for
every a ∈ Σ and every w ∈ W , H(a,w) = {[α]aw | α ∈ ForILUPP}. The class of
all measurable structures of the logic ILUPP will be denoted by ILUPPMeas.

Definition 5 (Satisfiability of a formula) A formula α ∈ ForILUPP is sat-
isfiable if there is a world w in an ILUPPMeas-model M such that w |= α; α
is valid if it is satisfied in every world in every ILUPPMeas-model M . A set of
formulas T is satisfiable if there is a world w in an ILUPPMeas-model M such
that w |= α for every α ∈ T .
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3 Decidability

In this section, we prove our main technical result. Recall the satisfiability prob-
lem: given an ILUPP-formula α, we want to determine if there exists a world
w in an ILUPPMeas-model M such that w |= α. Decidability for ILUPP will be
proved in two steps:

– first, we show that an ILUPP-formula is satisfiable iff it is satisfiable in a
measurable structures with a finite number of worlds,

– second, we show that we can consider only finite measurable structures, i.e.,
measurable structure with finite number of worlds and with finite sets of
probability measures in every world and for every agent, and

– third, we reduce the satisfiability problem in those finite models to a decid-
able linear programming problem.

In the first part of the proof, we will use the method of filtration [15]. Like
the previous papers on the logical formalization of upper and lower probabilities
[13, 33], we also use the characterization theorem by Anger and Lembcke [2]. It
uses the notion of (n, k)-cover.

Definition 6 ((n, k)-cover) A set A is said to be covered n times by a multiset
{{A1, . . . , Am}} of sets if every element of A appears in at least n sets from
A1, . . . , Am, i.e., for all x ∈ A, there exists i1, . . . , in in {1, . . . ,m} such that for
all j ≤ n, x ∈ Aij . An (n, k)-cover of (A,W ) is a multiset {{A1, . . . , Am}} that
covers W k times and covers A n+ k times.

Now we can state the characterization theorem.

Theorem 1 (Anger and Lembcke [2]) Let W be a set, H an algebra of sub-
sets of W , and f a function f : H −→ [0, 1]. There exists a set P of probability
measures such that f = P ? iff f satisfies the following three properties:

(1) f(∅) = 0,
(2) f(W ) = 1,
(3) for all natural numbers m,n, k and elements A1, . . . , Am in H, if the multiset
{{A1, . . . , Am}} is an (n, k)-cover of (A,W ), then k+nf(A) ≤

∑m
i=1 f(Ai).

Let SF (α) denote the set of all subformulas of a formula α, i.e.

SF (α) = {β | β is a subformula of α}.

Theorem 2 If a formula α is satisfiable, then it is satisfiable in an ILUPPMeas-
model with at most 2|SF (α)| worlds.

Proof. Suppose that a formula α holds in some world of the model M =
〈W,LUP, υ〉 and let k = |SF (α)|. By ≈, we will denote an equivalence relation
over W 2, such that

w ≈ u if and only if for every β ∈ SF (α), w |= β iff u |= β.
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Since there are finitely many subformulas of α, we know that the quotient set

W/≈ = {Cwi
| wi ∈W}

is finite, where

Cwi
= {u ∈W | u ≈ wi}

is the class of equivalence of wi. More precsely,

|W/≈| ≤ 2k.

Next, from each class of equivalence Cwi , we choose an element wi.
Consider a tuple M = 〈W,LUP, υ〉, where:

– W = {w1, w2, . . . },
– For every a and for every wi LUP (a,wi) = 〈W (a,wi), H(a,wi), P (a,wi)〉 is

defined as follows:

- W (a,wi) = {wj ∈W | (∃u ∈ Cwj
)u ∈W (a,wi)}

- H(a,wi) = 2W (a,wi)

- P (a,wi) is any set of finitely additive measures, such that for every

D ∈ H(a,wi), P
?
(a,wi)(D) = P ?(a,wi)(

⋃
wj∈D(Cwj ∩W (a,wi)))

– υ(wi)(p) = υ(wi)(p), for every primitive proposition p ∈ L.

First, we have to prove that P
?
(a,wi) satisfies the conditions (1)− (3) from

Theorem 1, which will guarantee the existence of sets P (a,wi), for every agent
a and each wi ∈W .

(1) P
?
(a,wi)(∅) = P ?(a,wi)(

⋃
wj∈∅(Cwj

∩W (a,wi))) = P ?(a,wi)(∅) = 0;

(2) P
?
(a,wi)(W (a,wi)) = P ?(a,wi)(

⋃
wj∈W (a,wi)

(Cwj ∩W (a,wi))) =

= P ?(a,wi)(W (a,wi)) = 1;
(3) Let {{D1, . . . , Dm}} be an (n, k)-cover of (D,W (a,wi)). That means:

i) every element from D appears in at least n+ k sets from D1, . . . , Dm;
ii) every element from W (a,wi) appears in at least k sets from D1, . . . , Dm.

Therefore,

iii) every element from (
⋃
u∈D(Cu ∩W (a,wi)) appears in at least n+ k sets

from
⋃
u∈D1

(Cu ∩W (a,wi)), . . . ,
⋃
u∈Dm

(Cu ∩W (a,wi));
iv) every element from W (a,wi) appears in at least k sets from⋃

u∈D1
(Cu ∩W (a,wi)), . . . ,

⋃
u∈Dm

(Cu ∩W (a,wi)).

Hence, by definition, we obtain that a multiset

{{
⋃
u∈D1

(Cu ∩W (a,wi)), . . . ,
⋃

u∈Dm

(Cu ∩W (a,wi))}}

is an (n, k)-cover of

(
⋃
u∈D

(Cu ∩W (a,wi)),W (a,wi)).
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Hence, using the fact that P ?(a,wi) is an upper probability, from Theorem 1,
we have that

k + nP ?(a,wi)(
⋃
u∈D

(Cu ∩W (a,wi))) ≤
m∑
j=1

P ?(a,wi)(
⋃
u∈Dj

(Cu ∩W (a,wi))),

and therefore

k + nP
?
(a,wi)(D) ≤

m∑
j=1

P
?
(a,wi)(Dj).

Using induction on the complexity of a formula from the set SF (α), we can
prove that for every w ∈W and every β ∈ SF (α),

M,w |= β if and only if M,w |= β.

If a formula is a propositional letter or obtained using Boolean connectives, the
claim is trivial. So, let us consider the case when β = Ua≥sγ:

M,w |= Ua≥sγ iff

P ?(a,w)({u ∈W (a,w) |M,u |= γ}) ≥ s iff

P ?(a,w)(
⋃

M,u|=γ

Cu ∩W (a,w)) ≥ s iff (ind. hyp)

P
?
(a,w)({u ∈W ?

(a,w) |M,u |= γ}) ≥ s iff

M,w |= Ua≥sγ.

Using the equation (1) and the fact that P
?
(a,w) is an upper probability,

the case when β = La≥sγ can be proved analogously. �

In the second part of the proof, we use the following result of Halpern and
Pucella [13].

Theorem 3 ([13]) Let P be a set of probability measures defined on an algebra
H over a finite set W . Then there exists a set P ′ of probability measures such
that, for each X ∈ H, P ∗(X) = (P ′)∗(X). Moreover, there is a probability
measure µX ∈ P ′ such that

µX(X) = P ∗(X).

As a direct consequence of Theorem 2 and Theorem 3, we obtain the following
result.

Lemma 1 If a formula α is satisfiable, then it is satisfiable in an ILUPPMeas-
model with at most 2|SF (α)| worlds and for every agent a ∈ Σ and every w ∈W ,
H(a,w) = 2W (a,w) and

|P (a,w)| = |H(a,w)|.
Furthermore, for each X ∈ H(a,w), there exists a µX ∈ P (a,w) such that

µX(a,w)(X) = P ∗(a,w)(X).
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With this lemma we are ready to prove the decidability result for the ILUPP
logic.

Theorem 4 Satisfiability problem for ILUPPMeas is decidable.

Proof. Let M = 〈W,LUP, υ〉 be an ILUPPMeas-model and α an arbitrary
formula. Also, let

SF (α) = {β1, . . . , βk}.

In every w ∈W , exactly one of the formulas of the following form:

±β1 ∧ · · · ∧ ±βk

holds, where ±βi denotes βi or ¬βi. We will call that formula a characteristic
formula for a world w (characteristic formula for a world wi will be denoted by
αi).
By Lemma 1, we know that there exists an ILUPPMeas-model M with

1) at most 2k worlds and

2) at most 22
k

probabilistic measures (for any agent and any world),

such that α holds in some world of the model M iff α holds in some world of a
model M .
For every l ≤ 2k, we will consider models with

– l worlds, w1, . . . , wl, and
– for every agent a and every world w, sets of probability measures P (a,w),

such that |P (a,w)| = 2|W (a,w)|, for every W (a,w) ⊆ {w1, . . . wl}.

In each of these worlds, exactly one characteristic formula holds. So, for each l,
we will consider all possible sets of l characteristic formulas such that:

GDE SMO NAPISALI DA SE INF I SUP DOSTIZU U NEKOJ OD MERA???

(a) Let αi be a characteristic formula. In αi we replace every occurrence of a for-
mula starting with a probabilistic operator with an atomic proposition (all
the occurrences of the same formula are assigned the same atomic proposi-
tion). Then we obtain a propositional formula, α′i. Using any algorithm for
propositional satisfiability we check whether α′i is satisfiable. If α′i passes the
test, then αi is further considered for probabilistic tests (as in the paper). If
α′i does not pass the test, then αi is no longer considered;

(b) At least one formula contains α.

For each choice, and each world wi, we will consider following set of linear equal-
ities and inequalities (by β ∈ (αj)

+ we will denote that β is a conjuct in αj and
by β ∈ (αj)

− we will denote that ¬β is a conjuct in αj):

1) µ(a,wi)({wj}) ≥ 0, for each µ(a,wi) ∈ P (a,wi) and j = 1, . . . , l;
2)

∑
wj∈W (a,wi)

µ(a,wi)({wj}) = 1, for every µ(a,wi) ∈ P (a,wi);
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3)
∑

wj∈X
µX(a,wi)({wj}) ≥

∑
wj∈X

µY (a,wi)({wj}), for every X,Y ⊆W (a,wi);

4)
∑

wj :β∈(αj)+
µX(a,wi)({wj}) ≥ s, if Ua≥sβ ∈ αi, X = {wj | β ∈ (αj)

+};

5)
∑

wj :β∈(αj)+
µX(a,wi)({wj}) < s, if ¬Ua≥sβ ∈ αi, X = {wj | β ∈ (αj)

+};

6)
∑

wj :β∈(αj)−
µX(a,wi)({wj}) ≤ 1− s, if La≥sβ ∈ αi, X = {wj | β ∈ (αj)

−};

7)
∑

wj :β∈(αj)−
µX(a,wi)({wj}) > 1− s, if ¬La≥sβ ∈ αi, X = {wj | β ∈ (αj)

−}.

- First inequality states that all the measures must be nonnegative.
- Second equality assures that the probability of the set of all possible worlds

has to be equal to 1.
- Third inequality corresponds to the fact that µX(a,w)(X) = P ∗(a,w)(X)

and therefore

µX(a,w)(X) ≥ µ(a,w)(X), for all µ(a,w) ∈ P (a,w).

- For the fourth and fifth inequality, note that if X = {wj | β ∈ (αj)
+}∑

wj :β∈(αj)+

µX(a,wi)({wj}) = P ∗(a,wi)([β]awi
),

so these inequalities reflect the appropriate constraints.
- In order to understand sixth and seventh inequality, first recall the equality

connecting upper and lower probabilty:

P ∗([¬β]awi
) = 1− P∗([β]awi

).

Next, note that if X = {wj | β ∈ (αj)
−}∑

wj :β∈(αj)−

µX(a,wi)({wj}) = P ∗(a,wi)([¬β]awi
).

Consequently, if
P∗([β]awi

) ≥ s,

then
P ∗([¬β]awi

) ≤ 1− s,

and similarly for the case when P∗([β]awi
) < s.

The equations and inequalities 1–7 form a finite system of linear equalities
and inequalities and it is well known that solving this system is decidable. If
for some fixed l and fixed choice of characteristic formulas, and each choice of
subsets W (a,w) of considered sets of worlds (for every agent a and every consid-
ered world w), corresponding system is solvable, then in each world, probabilistic
space can be defined. Moreover, in every world w of the model, the character-
istic formula of the world holds in w. Since α belongs to at least one of the
corresponding characteristic formulas, we have that α is satisfiable.
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If the test fails, and there is another possibility of choosing l and/or the set
of l worlds and/or subsets W (a,w) of chosen sets of worlds, we continue with
the procedure. Otherwise, if for any l, any choice of characteristic formulas and
any choice of subsets W (a,w), appropriate system is not solvable, using Lemma
1, we conclude that α is not ILUPPMeas-satisfiable.

Note that in the previously described method we consider only finitely many
systems of linear equation and inequalities. Therefore, the satisfiability problem
is decidable. �

4 A complete axiomatization

Having settled the decidability issue the for the logic ILUPP, we turn to the
problem of developing an axiomatic system for the logic ILUPP. That system
will be denoted by AxILUPP.

4.1 The axiomatization AxILUPP

We start with the observation that, like any other real-valued probabilistic logic,
ILUPP is not compact. Indeed, consider the set of formulas T = {¬U=0α} ∪
{U< 1

n
α | n is a positive integer }.Obviously, every finite subset of T is ILUPPMeas-

satisfiable, but the set T is not. Consequently, any finitary axiomatic system
would be incomplete [38]. In order to achieve completeness, we use two infini-
tary rules of inference, with countably many premises and one conclusion.

In order to axiomatize upper and lower probabilities, we need to completely
characterize them with a small number of properties. There are many complete
characterizations in the literature, and the earliest appears to be by Lorentz [24].
We will use Theorem 1 from the previous section.

For the logic ILUPP, we use a minor modification of the axiomatic system
for the logic LUPP in [33].

Axiom schemes

(1) all instances of the classical propositional tautologies
(2) Ua≤1α ∧ La≤1α
(3) Ua≤rα→ Ua<sα, s > r
(4) Ua<sα→ Ua≤sα
(5) (Ua≤r1α1 ∧ · · · ∧ Ua≤rmαm)→ Ua≤rα, if α→

∨
J⊆{1,...,m},|J|=k+n

∧
j∈J αj and∨

J⊆{1,...,m},|J|=k
∧
j∈J αj are tautologies, where r =

∑m
i=1 ri−k
n , n 6= 0

(6) ¬(Ua≤r1α1 ∧ · · · ∧ Ua≤rmαm), if
∨
J⊆{1,...,m},|J|=k

∧
j∈J αj is a tautology and∑m

i=1 ri < k
(7) La=1(α→ β)→ (Ua≥sα→ Ua≥sβ)

Inference Rules

(1) From α and α→ β infer β
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(2) From α infer La≥1α
(3) From the set of premises

{α→ Ua≥s− 1
k
β | k ≥ 1

s
}

infer α→ Ua≥sβ
(4) From the set of premises

{α→ La≥s− 1
k
β | k ≥ 1

s
}

infer α→ La≥sβ.

The axioms 5 and 6 together capture the third condition from the Theorem 1
(see [33]. The rules 3 and 4 are infinitary rules of inference and intuitively state
that if an upper/lower probability is arbitrary close to a rational number s then
it is at least s.

Now we define some proof theoretical notions.

- ` α (α is a theorem) iff there is an at most denumerable sequence of for-
mulas α1, α2, . . . , α, such that every αi is an axiom or it is derived from the
preceding formulas by an inference rule;

- T ` α (α is derivable from T) if there is an at most denumerable sequence of
formulas α1, α2, . . . , α, such that every αi is an axiom or a formula from the
set T , or it is derived from the preceding formulas by an inference rule, with
the exception that Inference Rule 2 can be applied only to the theorems;

- T is consistent if there is at least one formula α ∈ ForILUPP that is not
deducible from T , otherwise T is inconsistent;

- T is maximal consistent set if it is consistent and for every α ∈ ForILUPP,
either α ∈ T or ¬α ∈ T ;

- T is deductively closed if for every α ∈ ForILUPP, if T ` α, then α ∈ T .

Note that T is inconsistent iff T ` ⊥. Also, it is easy to check that every maximal
consistent set is deductively closed.

It is easy to check that the axiomatic system AxILUPP is sound with respect
to the class of ILUPPMeas-models.

4.2 Completeness

We prove that the axiomatization AxILUPP is complete, using a Henkin-like con-
struction. Due to the presence of infinitary rules, the standard completion tech-
nique (Lindenbaum’s theorem) has to be modified in the following way: if the
current theory is inconsistent with the current formula and that formula can be
derived by one of infinitary inference rules, than one of the premises must be
blocked.

The proof of completeness is a direct combination of the proof techniques
presented in our papers [33] and [34]. Thus, here we only present a sketch of the
proof, and for details and the completion of the proof we refer the reader to [33,
34].
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Theorem 5 (Strong completeness) If α is a formula, and T is a set of for-
mulas of the logic ILUPP, then T ` α iff T |= α.

Sketch of the proof. First we point out that the theorem follows from sound-
ness of the axiomatic system AxILUPP, and the following usual formulation of
strong completeness:

Every consistent set of formulas T is satisfiable.

Let us prove this statement. First, we will extend T to a maximal consistent
set T ∗. We assume an enumeration α0, α1, . . . of all formulas. Then we define
the chain of sets Ti, i = 0, 1, 2, . . . and the set T ∗ in the following way:

(1) T0 = T ,
(2) for every i ≥ 0,

(a) if Ti ∪ {αi} is consistent, then Ti+1 = Ti ∪ {αi}, otherwise
(b) if αi is of the form β → Ua≥sα, then Ti+1 = Ti ∪ {¬αi, β → ¬Ua≥s− 1

n

α},
for some positive integer n, so that Ti+1 is consistent, otherwise

(c) if αi is of the form β → La≥sα, then Ti+1 = Ti ∪ {¬αi, β → ¬La≥s− 1
n

α},
for some positive integer n, so that Ti+1 is consistent, otherwise

(d) Ti+1 = Ti ∪ {¬αi}.
(3) T ? =

⋃∞
i=0 Ti.

The proof that T ∗ is a maximal consistent set is based on the following obser-
vations:

– Natural numbers (n), from the steps 2(b) and 2(c) of the construction exist;
this follows from Deduction Theorem, which holds in ILUPP logic (the deduc-
tion theorem can be proved using the implicative form of the two infinitary
inference rules, and the fact that the application of Rule 2 is restricted to
theorems only).

– Each Ti is consistent, by construction.
– T ∗ does not contain all the formulas, by construction, using the fact that all
Ti’s are consistent.

– For every formula α, either α ∈ T ∗ or ¬α ∈ T ∗, by construction (steps (1)
and (2)).

– For every formula α, if T ? ` α, then α ∈ T ? (the proof of this fact is by the
induction on the length of the inference).

– By the last two facts, T ? is a deductively closed set, and T ? does not contain
all the formulas, so it is consistent. Therefore, T ? is a maximal consistent
set.

Now we define the canonical model MCan = 〈W,LUP, υ〉 such that:

– W = {w | w is a maximal consistent set of formulas},
– for every world w and every propositional letter p, υ(w)(p) = true iff p ∈ w,
– for every a ∈ Σ and w ∈ W , LUP (a,w) = 〈W (a,w), H(a,w), P (a,w)〉 is

defined in the following way:
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• W (a,w) = W ,
• H(a,w) = {{u | u ∈W (a,w), α ∈ u} | α ∈ ForILUPP},
• P (a,w) is any set of probability measures such that
P ?(a,w)({u | u ∈W (a,w), α ∈ u}) = sup{s | U≥sα ∈ w}.

We have the following properties of MCan:

– For every formula α and every w ∈W , α ∈ w iff MCan, w |= α (the proof is
on the complexity of the formula α).

– For every a ∈ Σ, every w ∈ W and every formula α, {u | u ∈ W (a,w), α ∈
u} = [α]aw. (this follows from the previous item).

– MCan is a well defined measurable structure (the proof that P ?(a,w) is an
upper probability measure follows from Theorem 1 and the axioms 5 and 6).

Recall that we extended T to the maximal consistent set T ∗. We showed that
for every formula α, and every w ∈ W , MCan, w |= α iff α ∈ w. Since T ∗ ∈ W ,
we obtain MCan, T

∗ |= T . �

5 Conclusion

In this paper we present the proof-theoretical analysis of a logic which allows
making statements about upper and lower probabilities. The introduced formal-
ism can be used for reasoning not only about lower and upper probabilities an
agent assigns to a certain event, but also about her uncertain belief about other
agent’s imprecise probabilities. The language of ILUPP is a modal language which
extends propositional logic with the unary operators Ua≥r and La≥r, where a is an
agent and r ranges over the unit interval of rational numbers. The correspond-
ing semantics ILUPPMeas consists of the measurable Kripke models with sets of
finitely additive probability measures attached to each possible world world.

We prove that the satisfiability problem for ILUPP logic is decidable. In the
proof, we use the method of filtration [15] to show that if a formula is satisfiable
in a world w of an ILUPP structure, then it is satisfiable in a finite structure.
We also use a reduction to linear programming to deal with infinitely many
probability measures definable on finite algebras, and to solve the satisfiability
problem in a finite number of steps.

We also prove that the proposed axiomatic system AxILUPP is strongly com-
plete with respect to the class of ILUPPMeas-models. Since the logic is not com-
pact, the axiomatization contains infinitary rules of inference. In [33] it is shown
that the same axiomatic system (the only difference is that in [33] only one agent
is considered) is sound and complete for a class of LUPPMeas-models. This situ-
ation is not an exception. For example, modal system K is sound and complete
with respect to the class of all modal models, but also with respect to the class
of all irreflexive models [15].

We propose two topics for future work. First, we will try to prove decid-
ability for the logic ILUPP by employing a tableau procedure. Such a method
is developed in [21] for a probabilistic logic with iterations of standard proba-
bility operators. We believe that a similar tableaux method can be applied for
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ILUPP. Finally, the upper and lower probabilities are just one approach in devel-
opment of imprecise probability models. In future work, we also wish to logically
formalize dierent imprecise probabilities.
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logic with approximate conditional probabilities. Logic Journal of the IGPL vol. 22,
no. 4: 539–564. 2014.
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