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1 Introduction

I first met Solomon Feferman at the 1978 Logic Colloquium meeting in Mons,
Belgium. He gave a survey talk about various approaches to constructive
mathematics and presented his own constructive theory of functions and
classes. The written form [12] of his talk is published in the proceedings
volume of that conference and is one of the three landmark papers about
explicit mathematics. This was the time when I was working for my disser-
tation and, of course, Sol was already known to me very well by his many
influential papers on proof theory and the foundations of mathematics. After
that I had the privilege to learn from Sol in direct personal contact when we
both spent the academic year 1979-1980 at the University of Oxford. We
have been in close scientific and personal contact since then, including my
visit as an assistant professor at Stanford University in the academic year
1982-1983.

Sol’s influence on my scientific development has been manifold. One very
important aspect is that he widened the range of my proof-theoretic interests
and led me to work on new topics dealing with foundational questions,
different from those I had previously studied. Maybe the most typical
example along these lines is explicit mathematics, a subject that has never
left me since then. It was characteristic of Sol that he was always asking
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for conceptual clarity and insisting on a clear methodological approach, not
obscured by a self-satisfying technical machinery.

A general operational approach has been extremely successful in connec-
tion with the λ-calculus and combinatory logic leading, for example, to a
variety of functional programming languages. The formal operational ap-
proach in mathematics, on the other hand, has not been so popular although
many working mathematicians freely make use of operations and the opera-
tional machinery whenever convenient, but typically informally and without
caring for its foundations. Church’s approach to base the foundations of
mathematics entirely on operations turned out to be inconsistent.

Feferman’s explicit mathematics changed the picture. Motivated by the
desire to set up a proper formal framework for Bishop’s Foundations of
Constructive Analysis [2] he proposed a new kind of formalism, baptized
explicit mathematics. Bishop’s book had enormous influence on the discussion
of the foundations of mathematics. Bishop showed in his book, putting aside
all ideological considerations, that most of the important theorems in real
analysis can be established up to equivalence by constructive methods. The
success of this book stimulated many logicians to develop formal frameworks
for Bishop’s approach, and Feferman’s system (or family of systems) turned
out to pave a very influential way. At the same time, his framework provided
a way to account for predicative mathematics and descriptive set theory as
well, which could not be done in the other approaches.

Soon after the first presentation of explicit mathematics in Feferman [9],
its relevance for other parts of proof theory became evident. For example,
systems of explicit mathematics – based on classical or intuitionistic logic –
have their natural place in reductive proof theory and constitute a natural
setting for studying various forms of abstract computability and recursion in
higher type functionals.

In this article I will try to sketch some of the main lines in the research
about explicit mathematics. A textbook by Solomon Feferman, Gerhard
Jäger, and Thomas Strahm on the foundations of explicit mathematics is
in preparation, aiming at providing a systematic approach to the topics
mentioned above. In addition to that, Ulrik Buchholtz has set up an online
bibliography of explicit mathematics and related topics at http://home.inf.
unibe.ch/~ltg/em_bibliography.

The second main topic of this article is operational set theory, a further
central stream in Feferman’s operational approach. It goes back to Feferman
[18] and is further elaborated in Feferman [19], where also much about the
original ideology of operational set theory is explained. Further advances
and technical results will be presented in Section 5 of this article.

Feferman’s unfolding program is a third field under the operational
perspective. However, we will not treat it in this article since Strahm’s
contribution for this volume is dedicated to unfolding. In addition, the
reader will find a useful introduction to all three fields in Feferman [22].

2



My aim here is to survey some developments in explicit mathematics and
operational set theory from a common operational perspective, to sketch
some of Feferman’s main achievements in these to fields, and to relate them
to the work of others. The focus of my approach is on ontological questions,
a point of view that has been neglected so far. But I am convinced that such
ontological questions will play a crucial role in the further development of a
general operational penumbra.

2 The general operational framework

Before turning to systems of explicit mathematics and operational set theory
we set up the general operational framework. However, in contrast to Church
(cf. [7, 8]), who wanted to base the foundations of mathematics solely on
operations and whose approach turned out to be inconsistent, we confine
ourselves to a consistent and relatively weak core operational theory. The
basic idea is simple: The universe of discourse is a partial combinatory
algebra; its elements are operations and share the following properties:

• Operations may be partial, they may freely be applied to each other,
and self-application of operations is permitted.

• As a consequence, the general theory of operations is type-free. If
needed sets or classes of operations can be added with the purpose to
partly structure the universe.

• Operations are intensional objects; extensionality of operations is only
assumed or claimed axiomatically in very special situations.

Since we will be dealing with possibly undefined objects, it is convenient
to work with Beeson’s logic of partial terms, see Beeson [1], rather than
ordinary classical or intuitionistic logic. Terms are formed in this logic from
the variables and constants of the language by simple term application, and
we have atomic formulas of the form (t↓) to express that the term t has a
value or is defined.

In his first articles [9, 11, 12] about explicit mathematics, Feferman did
not make use of the logic of partial terms but worked with a three place
relation App[x, y, z] to express that operation x applied to y has value z.

Scott’s [58] presents one of several alternative possibilities of dealing with
existence and partiality in a logical context. In this E-logic we have a specific
relation symbol E , where E (t) has the intuitive interpretation “t exists”.
In the Beeson/Feferman approach all constants have a value and the free
variables range over existing objects, in contrast to Scott’s approach where
they can also stand for possibly non-existing objects. In both approaches,
quantifiers are supposed to range over existing objects only. In spite of this
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different philosophically attitude, both approaches are technically more or
less equivalent; see Troelstra and van Dalen [61].

Any operational language L comprises the following primitive first order
symbols:

(PS.1) Countably many individual variables a, b, c, f, g, h, u, v, w, x, y, z (pos-
sibly with subscripts) and countably many individual constants,
including k, s (combinators), p, p0, p1 (pairing and unpairing).

(PS.2) The binary function symbol ◦ for (partial) term application.

(PS.3) For every natural number n a countable (possibly empty) set of
relation symbols, including the unary relation symbol ↓ for definedness
and the binary relation symbol = for equality.

(PS.4) The logical symbols ¬ (negation), ∨ (disjunction), and ∃ (existential
quantification).

The individual terms (r, s, t, r0, s0, t0, . . .) of an operational language L
are inductively generated as follows:

(T.1) The individual variables and individual constants of L are individual
terms of L.

(T.2) If r and s are individual terms of L, then so also is ◦(r, s).

In the following ◦(r, s) is usually written as (r ◦ s), as (rs), or – if no
confusion arises – simply as rs. The convention of association to the left is
also adopted so that r1r2 . . . rn stands for (. . . (r1r2) . . .), and we often also
write s(r1, . . . , rn) for sr1 . . . rn. General n-tupling is defined by induction
on n ≥ 1 as follows:

<r1> := r1 and <r1, . . . , rn+1> := p(<r1, . . . , rn>, rn+1).

Finally, the formulas (A,B,C,A0, B0, C0, . . .) of L are inductively gener-
ated by the following three clauses:

(F.1) All expressions (r↓), (rs↓), and (r = s) are (atomic) formulas of L.

(F.2) If L contains additional n-ary relation symbols R, then all expressions
R(r1, . . . , rn) are further (atomic) formulas of L.

(F.3) If A and B are formulas of L, then so also are (¬A), (A ∨ B), and
∃xA.

In this article we confine ourselves to classical logic. Hence the remaining
logical connectives and the universal quantifier can be defined as usual. Also,
(r 6= s) is short for ¬(r = s).
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We will often omit parentheses and brackets whenever there is no danger
of confusion. Moreover, we frequently make use of the vector notation ~E
as shorthand for a finite string E1, . . . , En of expressions whose length is
not important or is evident from the context. The set of free variables of
a formula A is defined in the standard way. An L formula without free
variables is called a closed L formula; the closed L terms are those without
variables.

Suppose now that ~a = a1, . . . , an and ~r = r1, . . . , rn, where a1, . . . , an are
pairwise (syntactically) different variables. Then A[~r/~a ] is the L formula
that is obtained from the L formula A by simultaneously replacing all free
occurrences of the variables ~a by the L terms ~r; in order to avoid collision of
variables, a renaming of bound variables may be necessary. In case the L
formula A is written as A[~a ], we often simply write A[~r ] instead of A[~r/~a ].
Further variants of this notation will be obvious. The substitution of L terms
for variables in L terms is treated accordingly.

As deduction system for the logic of partial terms we make use of a
so-called Hilbert calculus, consisting of the following axioms and rules of
inference.

Propositional axioms and propositional rules. These comprise the
usual axioms and rules of inference of some sound and complete Hilbert
calculus for classical propositional logic

Quantifier axioms and quantifier rules. The axioms for the existential
quantifier consist of all L formulas

A[r] ∧ r↓ → ∃xA[x],

where r may be an arbitrary L term. The rules of inference for the existential
quantifier, on the other hand, are all configurations

A→ B

∃xA→ B

for which the variable x does not occur free in B. Because of axiom (DE.1)
below it is not necessary to claim in the premise that a is defined.

Definedness and equality axioms. For all constants r, all L terms s, all
variables a, b, and all atomic formulas A[u] of L:

(DE.1) r↓ ∧ a↓.

(DE.2) A[s] → s↓.

(DE.3) (a = a).

(DE.4) (a = b) ∧A[a] → A[b].
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The axioms (DE.2) are often referred to as strictness axioms. Important
special cases are, for example, all assertions

(s = t) → s↓ ∧ t↓ and (st)↓ → s↓ ∧ t↓,

stating that two terms can be equal only in case both have a value and that
a compound term has a value only in case all its subterms have values as
well. Thus the determination of the value of a term follows a call-by-value
strategy. Observe that the axioms (DE.3) and (DE.4) are formulated for
variables only. We must not claim (r = r) in general since r may not have
a value. However, we can introduce the notion of partial equality ' à la
Kleene,

(r ' s) := (r↓ ∨ s↓) → (r = s),

and obtain for all formulas A[u] and terms r, s of L that (r ' s) and A[r]
imply A[s].

As mentioned above, it is an important aspect of the logic of partial terms
that constants are defined and variables only range over defined objects. To
point this out explicitly, we include axiom (DE.1). But observe that assertion
a↓ follows from (DE.2) and (DE.3).

The semantics of the logic of partial terms is based on partial structures
consisting of a non-empty universe, interpretations of all constants within
this universe, interpretations of all n-ary relation symbols as n-ary relations
over this universe, and a partial binary function on this universe to take care
of application. It is not difficult to shown that the above Hilbert system is
sound and complete with respect to this semantics.

The basic theory BO(L) of operations for the language L comprises these
axioms and rules of the logic of partial terms and axioms formalizing that the
universe is a partial combinatory algebra and that pairing and projections
are as expected.

Combinatory axioms, pairing and projections

(Co.1) k 6= s.

(Co.2) kab = a.

(Co.3) sab↓ ∧ sabc ' (ac)(bc).

(Co.4) p0<a, b> = a ∧ p1<a, b> = b.

In general, totality of application is not assumed; but if it is required in
a special situation we add the statement

(Tot) ∀x∀y(xy↓).

Two fundamental principles are an immediate consequence of the combi-
natory axioms: λ-abstraction and the fixed point theorem. In more detail:
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With any L term r, we associate an L term (λx.r) whose variables are those
of r excluding x, such that BO(L) proves

(λx.r)↓ ∧ (λx.r)x ' r ∧ (s↓ → (λx.r)s ' r[s/x]).

As usual we can generalize λ-abstraction to several arguments by simply
iterating abstraction for one argument. In addition, we have the following
fixed point theorems for the partial and the total case.

Theorem 1 (Fixed points). There exist closed L terms fix and fixt such that
BO(L) proves for any f and a:

1. fixf↓ ∧ fix(f, a) ' f(fixf, a).

2. (Tot) → fixtf = f(fixtf).

This basic operational framework is an adaptation of λ-calculus and
combinatory algebra to the partial case. According to my knowledge it has
been set up in this form and in all details for the first time in Feferman [9].

We end this section with mentioning an interesting ontological relationship
between full definition by cases and operational extensionality. For this
purpose we assume that L contains an individual constant d and consider
the additional axiom

(d) (u = v → d(a, b, u, v) = a) ∧ (u 6= v → d(a, b, u, v) = b).

This is “full definition by cases” since it tests for arbitrary elements of the
universe whether they are equal. Later we will also introduce restricted
versions of (d). Clearly, BO(L) + (d) is consistent.

Operational extensionality is the principle that claims that two operations
are identical in case they have the same “input-output” behavior,

(Op-Ext) ∀f∀g(∀x(fx = gx) → f = g).

Also BO(L) + (Op-Ext) is consistent. However, (d) and (Op-Ext) as well as
(d) and (Tot) are incompatible with each other.

Theorem 2. Let L be an operational language with the constant d. Then
BO(L) + (d) + (Op-Ext) and BO(L) + (d) + (Tot) are inconsistent.

Proof. To show the first inconsistency, set r := fix(λyx.d(k, s, y, λz.s)). In
view of the fixed point theorem we then have r↓ and

(*) ∀x(rx ' d(k, s, r, λz.s)).

From r = λz.s we would be able to deduce by (d) and (*) that ∀x(rx = k),
in contradiction to the assumption r = λz.s. Hence r 6= λz.s. Since r and
λz.s are defined, (d) and (*) now give us ∀x(rx = s). But then operational
extensionality (Op-Ext) yields r = λz.s; again a contradiction.

To establish the second inconsistency, we work with the term fixt and let
r be the term fixt(λx.d(k, s, x, s)). Now a simple calculation shows that r = s
implies r = k, and r 6= s yields r = s; again a contradiction.
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3 Applicative theories

Now I do not follow the historic timeline. Originally, Feferman’s interest in
the operational approach was triggered by his work on explicit mathematics
to which we will turn in the following section. Most approaches to explicit
mathematics choose a sort of second order operational approach that permits
the formation of classes of operations and includes class formation principles
of various strengths.

In this section we set a slower pace, stay first order and carefully extend
the basic theory BO(L) by some elementary axioms for the natural numbers.
Then we consider various forms of induction on the natural numbers, and
later the numerical choice operator µ and the Suslin operator E1. These
theories constitute the first order part of explicit mathematics, and we call
them applicative theories.

Let L1 be an operational language that in addition to the primitive
first order symbols mentioned on page 4 comprises constants 0 (zero), sN
(numerical successor), pN (numerical predecessor), dN (definition by numerical
cases), rN (primitive recursion), µ (unbounded search), E1 (Suslin operator),
and the unary relation symbol N for the collection of all natural numbers.
Then we often use (r ∈ N) interchangeably with N(r) and set

(r : Nk → N) := (∀x1, . . . , xk ∈ N)(r(x1, . . . , xk) ∈ N),

where k is supposed to be a positive natural number. Furthermore, in the
following we generally write (r : N→ N) for (r : N1 → N) and r′ for sNr.

The basic theory of operations and numbers BON is the extension of
BO(L1) by the following groups of axioms, dealing with the natural numbers.

Natural numbers.

(Nat.1) 0 ∈ N ∧ (a ∈ N → a′ ∈ N).

(Nat.2) a ∈ N → (a′ 6= 0 ∧ pN(a′) = a).

(Nat.3) (a ∈ N ∧ a 6= 0) → (pNa ∈ N ∧ (pNa)′ = a).

Definition by numerical cases.

(Nat.4) (a, b ∈ N ∧ a = b) → dN(u, v, a, b) = u.

(Nat.5) (a, b ∈ N ∧ a 6= b) → dN(u, v, a, b) = v.

Primitive recursion.

(Nat.6) (a ∈ N ∧ f : N2 → N) → rN(a, f) : N→ N.

(Nat.7) (a, b ∈ N ∧ f : N2 → N ∧ g = rN(a, f)) →
(g0 = a ∧ g(b′) = f(b, gb)).
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Axioms for the the constants µ and E1 follow later. Thus far no induction
principles are available, and this is the reason that the axioms (Nat.6) and
(Nat.7) are needed for representing all primitive recursive functions within
BON. But with these axioms at hand, it is straightforward to prove the
following.

Theorem 3 (Primitive recursive functions). For every k-ary primitive re-
cursive function F there exists a closed term prfF of L1 such that BON
proves prfF : Nk → N as well as the (canonical translations of the) defining
equations of F .

Several forms of induction have been considered over BON. The weakest
form, called basic induction, applies induction only to operations that are
known to be total from N to N.

Basic induction on N (B-IN).

(f : N → N ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0 → f(x′) = 0)) →
(∀x ∈ N)(fx = 0).

The assumption f : N→ N is central in this formulation and responsible
for its relative weakness (see below): Basic induction allows us to prove
properties of total operations from N to N; however, in general it cannot
be employed to show that certain operations are total from N to N. Basic
induction is, of course, a special case of the schema of induction on the
natural numbers for arbitrary L1 formulas.

L1 induction on N (L1-IN). For all L1 formulas A[u],

A[0] ∧ (∀x ∈ N)(A[x] → A[x′]) → (∀x ∈ N)A[x].

The canonical model of BON + (L1-IN) has the natural numbers N as
universe and interprets application ◦ as the partial function ◦N from N× N
to N such that, for all e, n ∈ N,

(e ◦N n) ' {e}(n),

where {e} for e = 0, 1, . . . is the usual indexing of the partial recursive
functions on N. There are also partial and total term models of BON +
(L1-IN), see, e.g., Beeson [1], Feferman [12], and Troelstra and van Dalen
[62]. Probably the simplest way to set up a model satisfying operational
extensionality is to start off from a term model of the λη-calculus (extended
by reduction rules for the additional constants of L1) and to use the standard
translation of combinatory logic into the λ-calculus.

In the following theorem we summarize several consistency and incon-
sistency results concerning BON. The two stated inconsistencies are direct
consequences of Theorem 2 since in the presence of ∀x(x ∈ N) definition by
numerical cases is full definition by cases.
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Theorem 4. We have the following consistency and inconsistency results:

1. BON + (Tot) + (Op-Ext) + (L1-IN) is consistent.

2. BON + ∀x(x ∈ N) + (d) + (L1-IN) is consistent.

3. BON + ∀x(x ∈ N) + (Op-Ext) is inconsistent.

4. BON + ∀x(x ∈ N) + (Tot) is inconsistent.

The axioms of BON take care of the induction-free part of primitive
recursive arithmetic PRA, equipped with the combinatorial machinery of
BO(L1), which does not contribute to proof-theoretic strength. Depending
on what form of induction we add to BON we thus obtain systems equivalent
to primitive recursive arithmetic PRA or Peano arithmetic PA; there are also
intermediate forms of induction that we omit.

Theorem 5. BON + (B-IN) is proof-theoretically equivalent to PRA and
BON + (L1-IN) to PA.

Adding, for example, the assertion ∀x(x ∈ N) would not spoil these
two equivalences. However, the situation becomes much more interesting
as soon as further axioms for the type-2 functionals µ and E1 are taken
into consideration. The numerical choice operator µ is characterized by the
following two axioms.

Axioms for µ.

(µ.1) f : N→ N ↔ µf ∈ N

(µ.2) (f : N→ N ∧ (∃x ∈ N)(fx = 0)) → f(µf) = 0.

µ is a non-constructive but predicatively acceptable operator, closely
related to the well-known operator E0 for quantification over the natural
numbers. The relationship between µ and E0 on the basis of BON has been
studied in Kahle [47] in full detail: E0 can be defined within BON from µ;
for deriving µ from E0 Kahle extends BON by specific (proof-theoretically
irrelevant) strictness assertions.

The non-constructive operator µ and the functional E0 are a well-studied
objects in higher recursion theory, cf., for example, Feferman [10] and Hin-
man [27] for a comprehensive survey. It is known that the 1-sections of
µ and E0 are identical; they coincide with the set of natural numbers in
the constructible hierarchy up to the first non-recursive ordinal ωck1 , and,
hence, with the collection of hyperarithmetic sets of natural numbers. Con-
sequently, the structure (N, 1-sec(E1), . . .) is the minimal standard model of
∆1

1 comprehension.
If one wants to speak about well-foundedness in this context, the natural

step is to add the Suslin operator E1 that tests for well-foundedness of binary
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relations on the natural numbers. For the formulation of the axioms of E1 it
is convenient to introduce the descending chain condition DCC [f ],

DCC[f ] := (∃g ∈ (N→ N))(∀x ∈ N)(f(g(x′), gx) = 0),

stating that there exists a total operation g from N to N describing a
descending chain g0, g1, . . . with respect to the binary relation coded by f .

Axioms for E1.

(E1.1) f : N2 → N ↔ E1f ∈ N.

(E1.2) f : N2 → N → (DCC [f ] ↔ E1f = 0).

The recursion theory of E1 is well established; see, for example, Hinman [27].
An important result states that the 1-section of E1 coincides with the set
of natural numbers in the constructible hierarchy up to the first recursively
inaccessible ordinal ι0. This ordinal is also the least ordinal not recursive in
E1. Also, Gandy showed that the 1-section of E1 builds the least standard
model of ∆1

2 comprehension.
From the ontological point of view, the operators µ and E1 behave as

expected. µ takes care of quantification over the natural numbers. Therefore,
if µ and the axioms for µ are available, every arithmetically definable set of
natural numbers can be represented by a total operation from N to N. If, in
addition, E1 and the axioms for E1 are at our disposal, we can operationally
check for well-foundedness and thus the Π1

1 normal form theorem allows us
to represent all Π1

1 sets of natural numbers as total operations from N to N.
In the following we write BON(µ) for the extension of BON by the axioms

(µ.1) and (µ.2). In spite of its “recursion-theoretic strength”, BON(µ)+(B-IN)
is fairly weak proof-theoretically as shown in Feferman and Jäger [23].

Theorem 6. We have the following proof-theoretic equivalences:

1. BON(µ) + (B-IN) ≡ PA ≡ ACA0 ≡ ∆1
1-CA0.

2. BON(µ) + (L1-IN) ≡ Π0
1-CA<ε0 ≡ ∆1

1-CA.

In this theorem and whenever we mention subsystems of second order
arithmetic or set theory later we follow the standard nomenclature and
refrain from further explanations; see, for example, Buchholz, Feferman,
Pohlers, and Sieg [3] or Simpson [59].

The theory BON(µ) + (B-IN) is particularly interesting in connection
with Feferman’s philosophical analysis of Weyl’s Das Kontinuum and his
reconstruction of the axiom system of Das Kontinuum in modern terms;
see Feferman [16, 17]. One of his key results is that Weyl’s approach can
be developed within a conservative extension of PA. This system W can be
easily reduced to BON(µ) + (B-IN).
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Now we briefly turn to the proof theory of E1. The applicative theory for
E1 is called SUS and consists of BON(µ) and the additional axioms (E1.1) and
(E1.2). The proof-theoretic analysis of SUS plus various forms of induction
is carried through in detail in Jäger and Strahm [43] and Jäger and Probst
[41].

Theorem 7. We have the following proof-theoretic equivalences:

1. SUS + (B-IN) ≡ Π1
1-CA0 ≡ ∆1

2-CA0.

2. SUS + (L1-IN) ≡ Π1
1-CA<ε0 ≡ ∆1

2-CA.

For the lower bounds of SUS plus various forms of induction we exploit
the fact that the Suslin operator has the power to deal with Π1

1 compre-
hension, provably in SUS + (B-IN). Upper bounds are established in Jäger
and Strahm [43] by making use of a very specific positive ∆1

2 inductive
definition in the framework of theories of admissible sets and by interpreting
the application operation by a Σ definable fixed point of this inductive
definition. A more direct approach to the computation of the upper bounds
in question is provided in Jäger and Probst [41]; several theories featuring
the Suslin operator are embedded into ordinal theories tailored to dealing
with non-monotone inductive definitions that enable a smooth definition of
the application relation.

4 Explicit mathematics

As already mentioned above, Feferman [9] is the starting point of explicit
mathematics. The two other “big elephants” are Feferman [11], in which
explicit mathematics is discussed in the context of recursion theory, and
Feferman [12], which discusses the relationship between explicit mathematics
and several alternative approaches to constructive mathematics.

Originally, explicit mathematics was formulated in a single sorted first
order language with a unary relation symbol Cl and a binary relation symbol
η, where Cl(u) expressed that u is a class and (v η u) that v has the property
described by u in case Cl(u) holds. Later it turned out to be more convenient
to formulate explicit mathematics in an extension of the logic of partial terms
with class variables; see Jäger [29].

The underlying ontological idea is that we have two sorts of objects: the
individuals as in the case of applicative theories and collections of such objects,
called classes. The individuals form a partial combinatory algebra and are
conceived as being given intensionally and explicitly as before, whereas the
classes are subsets of the applicative universe and may even be considered
to exist in a Platonic sense; this is purposely left open. Membership of
individuals in classes is as usual, and we have extensionality on the level of
classes.
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But also the classes can be addressed explicitly, though in an indirect way:
We add a new binary relation < to express that the individual x represents
or names class X, written <(x,X). Classes are explicitly generated with
reference to their names in an operational way, and this process is made
uniform in the parameters. For example, we will have a constant nat that
names the class of natural numbers and a constant un such that un(u, v) is
the name of the union of the classes U and V provided that u is the name of
U and v the name of V .

A suitable language for our purpose is the extension L2 of L1 by class
variables U, V,W,X, Y, Z, . . . (possibly with subscripts), two new binary
relation symbols ∈ (membership) and < (naming, representation) and the new
individual constants nat (natural numbers), id (identity), co (complement),
un (union), dom (domain), inv (inverse image), j (join), and i (inductive
generation). The atomic formulas of L2 are all expressions r↓, (r = s), N(r),
(r ∈ U), (U = V ), and <(r, U), where r and s are individual terms of L2.

The formulas (A,B,C,A0, B0, C0, . . .) of L2 are generated from the
atomic L2 formulas by closing under the propositional connectives and
quantification in both sorts. An L2 formula is called elementary if it con-
tains neither the relation symbol < nor bound class variables. The stratified
formulas are those L2 formulas that do not contain the relation symbol <.

Some individual terms represent (or name) classes, and we write (r ∈ <)
to express that r is a name,

(r ∈ <) := ∃X<(r,X).

If r names class X, then X can be regarded as the extension of r, and in
this sense we can transfer an element relation and extensional equality to
the level of individuals:

(r ∈̇ s) := ∃X(<(s,X) ∧ r ∈ X),

(r =̇ s) := ∃X(<(r,X) ∧ <(s,X)).

Clearly, (r 6∈ U) and (r 6∈̇ s) are short for ¬(r ∈ U) and ¬(r ∈̇ s), respectively.
Since we have extensionality on the level of classes, the subclass relation on
classes is as usual with the corresponding notion on the level of individual
terms

(U ⊆ V ) := ∀x(x ∈ U → x ∈ V ),

(r ⊆̇ s) := ∃X∃Y (<(r,X) ∧ <(s, Y ) ∧ X ⊆ Y ).

Finally, if ~r is the string r1, . . . , rn of individual terms and ~U the string
U1, . . . , Un of class variables of the same length, we set

<(~r, ~U) :=

n∧
i=1

<(ri, Ui) and (~r ∈ <) :=

n∧
i=1

(ri ∈ <).
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Observe that all formulas <(~r, ~U), (~r ∈ <), (r ∈̇ s), (r =̇ s), and (r ⊆̇ s) are
not stratified.

4.1 Elementary explicit comprehension

The logic of the first order part of our systems of explicit mathematics is
still Beeson’s logic of partial terms as in the previous sections, of course
formulated now for the language L2. In particular, the definedness axioms
extend to atomic L2 formulas and, therefore, (r ∈ U) and <(r, U) imply that
the term r has a value. The logic for the second order part of the systems of
explicit mathematics is classical predicate logic with equality.

The non-logical axioms of the elementary theory EC of classes and names
comprises the non-logical axioms of BON plus the following two groups of
class axioms for classes.

Explicit representation and extensionality.

(Cl.1) ∃x<(x, U).

(Cl.2) <(r, U) ∧ <(r, V ) → U = V .

(Cl.3) ∀x(x ∈ U ↔ x ∈ V ) → U = V .

These axioms state that each class has a name, that there are no
homonyms and that equality of classes is extensional. The second group of
axioms for classes ensures the build-up of some basic classes, in parallel with
a uniform naming process.

Basic class existence axioms.

(Cl.4) nat ∈ < ∧ ∀x(x ∈̇ nat ↔ N(x)).

(Cl.5) id ∈ < ∧ ∀x(x ∈̇ id ↔ ∃y(x = <y, y>)).

(Cl.6) r ∈ < → (co(r) ∈ < ∧ ∀x(x ∈̇ co(r) ↔ x 6∈̇ r)).

(Cl.7) r, s ∈ < → (un(r, s) ∈ < ∧ ∀x(x ∈̇ un(r, s) ↔ (x ∈̇ r ∨ x ∈̇ s))).

(Cl.8) r ∈ < → (dom(r) ∈ < ∧ ∀x(x ∈̇ dom(r) ↔ ∃y(<x, y> ∈̇ r))).

(Cl.9) r ∈ < → (inv(r, f) ∈ < ∧ ∀x(x ∈̇ inv(r, f) ↔ fx ∈̇ r)).

These axioms formalize that the natural numbers form a class and that
there is the identity class; furthermore, classes are closed under complements,
unions, domains and inverse images. It is important that the axioms (C.4) –
(C.9) provide a finite axiomatization of uniform elementary comprehension.

Theorem 8 (Elementary comprehension). For every elementary formula
A[u,~v, ~W ] with at most the indicated free variables there exists a closed term
tA such that EC proves:
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1. ~z ∈ < → tA(~y, ~z) ∈ <,

2. <(~z, ~Z) → ∀x(x ∈̇ tA(~y, ~z) ↔ A[x, ~y, ~Z]).

Immediate obvious consequences of this theorem are, for example, the
existence of the empty class ∅ and the universal class V, the closure of the
collection of all classes under complements, finite unions, finite intersections,
finite Cartesian products, and the finitely iterated formation of function
spaces.

By a model construction following Feferman [9, 12] it can be shown that
EC is consistent with stratified comprehension, whereas a simple Russell-style
argument shows that it is inconsistent with comprehension for arbitrary L2

formulas.
Interesting induction principles in the context of EC are (B-IN) and (L1-IN)

as before plus two new forms of induction: class induction and the schema
of induction for all L2 formulas.

Class induction on N (C-IN).

∀X(0 ∈ X ∧ (∀x ∈ N)(x ∈ X → x′ ∈ X) → (∀x ∈ N)(x ∈ X)).

L2 induction on N (L2-IN). For all L2 formulas A[u],

A[0] ∧ (∀x ∈ N)(A[x] → A[x′]) → (∀x ∈ N)A[x].

All combinations of EC and its extension EC(µ) by the type-2 functional
µ with these forms of first and second order induction have been analyzed
proof-theoretically; a detailed presentation will be given in Feferman, Jäger,
and Strahm [24]. As illustration we mention three results.

Theorem 9. We have the following proof-theoretic equivalences:

1. EC + (C-IN) ≡ BON + (L1-IN) ≡ ACA0 ≡ PA.

2. EC + (L2-IN) ≡ ACA.

3. EC(µ) + (B-IN) ≡ BON(µ) + (B-IN) ≡ PA,

In Feferman [10, 12, 16] it is convincingly argued that EC-like systems
provide a natural framework for dealing with large parts of predicative
mathematics. In particular, the theory EC(µ) + (B-IN) is a natural extension
of BON(µ) + (B-IN) and as such perfectly suited for developing Weyl’s
approach to the continuum. It is also shown in Feferman [10] that the
intensional and extensional variants of finite type theories find their natural
place within EC.
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4.2 Join and inductive generation

Of course, the theorem about elementary comprehension tells us that in EC
the classes are closed under the formation of finite unions and intersections.
But in order to form the unions, intersections, and Cartesian products of
general possibly infinite families of classes, Feferman introduced a further
axiom, and here the constant j comes into play.

Join axiom.

(J) (a ∈ < ∧ (∀x ∈̇ a)(f(x) ∈ <)) → (j(a, f) ∈ < ∧ DU [a, f, j(a, f)]),

where the formula DU [a, f, b] is short for

∀x(x ∈̇ b ↔ x = <(x)0, (x)1> ∧ (x)0 ∈̇ a ∧ (x)1 ∈̇ f((x)0)).

This axiom states that given a class named by a and an operation f from
this class to names, j(a, f) is the name of the disjoint union of the classes
named by these f(x) with x ∈̇ a. Clearly, the generation of j(a, f) is uniform
in a and f .

Finally, let us turn to inductive generation and introduce an auxiliary
abbreviation. Given an L2 formula A[u] we write Prog [a, b, A] for

(∀x ∈̇ a)(∀y(<y, x> ∈̇ b → A[y]) → A[x]).

Moreover, Prog [a, b, c] stands for Prog [a, b, C] with C[u] being the formula
(u ∈̇ c). If we think of b coding a binary relation on the class named a, then
Prog [a, b, A] states that formula A[u] is progressive on a with respect to b.
Feferman’s axioms about inductive generation guarantee the existence of
accessible parts of classes with respect to binary relations.

Axioms for inductive generation.

(IG.1) a, b ∈ < → (i(a, b) ∈ < ∧ Prog [a, b, i(a, b)]).

(IG.2) (a, b ∈ < ∧ Prog [a, b, A]) → (∀x ∈̇ i(a, b))A[x]

for all L2 formulas A[u]. Let a and b be names. According to (IG.1) then
i(a, b) names a class and is progressive on a with respect to b. (IG.2) is an
induction principle and states that the class named i(a, b) is minimal with
respect to this property.

The most famous theory of explicit mathematics is called T0 and extends
EC by join, inductive generation and full induction on the natural numbers
for arbitrary L2 formulas,

T0 := EC + (J) + (IG.1) + (IG.2) + (L2-IN).

Many subsystems of T0 - obtained, for example, by restricting the induc-
tion principles or omitting inductive generation - have been introduced and
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studied in Chapter II (written by Feferman and Sieg), of Buchholz, Feferman,
Pohlers, and Sieg [3].

As far as T0 itself is concerned, [3] also provides an argument that it can
be embedded into the system ∆1

2-CA + (BI) of second order arithmetic. Then
Jäger and Pohlers [40] determined the upper bound of the proof-theoretic
strength the latter system via the theory KPi of iterated admissible sets, and
Jäger [28] showed by a well-ordering proof within (even the intuitionistic
version of) T0 that this bound is sharp.

Theorem 10. T0 ≡ ∆1
2-CA + (BI) ≡ KPi.

Recently Sato presented an interesting reduction of ∆1
2-CA + (BI) to T0

without employing a well-ordering proof; see [56].
Feferman [9] also introduces the extension of T0 by the non-constructive µ

and baptizes it T1. He makes a point that T0 provides an elegant framework
for Borelian and hyperarithmetic mathematics. In particular, he advocates
studying a generalization of hyerarithmetic model theory by means of formal-
ization in T0. Feferman [13] contains further conceptual work and technical
results along similar lines.

Glaß and Strahm [26] mentiones that T0 and T1 are equiconsistent and
determines the proof-theoretic strengths of many subsystems of T1. Finally,
ongoing work of Probst is about extensions of T1 by the Suslin operator E1.
One of his observations is that the second order framework provides several
ways of formulating E1-like operators that may turn out not to be equivalent.

4.3 Monotone inductive definitions

A further interesting principle is introduced in Feferman [15]. It expresses
that every monotone operation from classes to classes has a least fixed point.
Define

Mon[f ] := (∀x, y ∈ <)(x ⊆̇ y → fx ⊆̇ fy),

Lfp[f, a] := fa =̇ a ∧ (∀x ∈ <)(fx ⊆̇ x → a ⊆̇ x).

In view of our definition of (u ⊆̇ v), Mon[f ] implies that f maps names to
names; similarly, Lfp[f, a] implies that a is a name. Then (MID) is the axiom
stating that every monotone operation has a least fixed point,

(MID) ∀f(Mon[f ] → ∃aLfp[f, a]).

The analysis (MID) turned out to be very interesting. Adding (MID) to T0 or a
(natural) subsystem of T0 leads to an enormous increase of its proof-theoretic
strength. A first result in Takahashi [60] says that T0+(MID) is interpretable
in Π1

2-CA + (BI). Later Rathjen in a series of articles [50, 51, 53, 52] and
Glass, Rathjen, Schlüter [25] managed to provide a complete proof-theoretic
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analysis of (MID) and the uniform version (UMID) of this principle over T0

and some of its natural subsystems. They were able to determine the exact
relationship between these systems of explicit mathematics and systems of
second order arithmetic with Π1

2 comprehension.

4.4 Universes

Universes have been introduced into explicit mathematics in Feferman [14],
Marzetta [48], Jäger, Kahle and Studer [38], and Jäger and Strahm [42] as a
powerful method for increasing its expressive and proof-theoretic strength.
Informally speaking, universes play a similar role in explicit mathematics as
admissible sets in weak set theory and the sets Vκ (for regular cardinals κ) in
full classical set theory; explicit universes are also closely related to universes
in Martin-Löf type theory. More formally, universes in explicit mathematics
are classes which consist of names only and reflect the theory EC + (J).

Let C[U, a] be the closure condition that is formed by the disjunction of
the following L2 formulas:

(1) a = nat ∨ a = id,

(2) ∃x(a = co(x) ∧ x ∈ U).

(3) ∃x∃y(a = un(x, y) ∧ x ∈ U ∧ y ∈ U),

(4) ∃x(a = dom(x) ∧ x ∈ U).

(5) ∃x∃f(a = inv(x, f) ∧ x ∈ U),

(6) ∃x∃f(a = j(x, f) ∧ x ∈ U ∧ (∀y ∈̇ x)(fx ∈ U)).

Thus the formula ∀x(C[U, x] → x ∈ U) states that U is a class that is
closed under (the finite axiomatization of) elementary comprehension and
join. If, in addition, all elements of U are names, we call U a universe and
write Univ [U ] to express this fact,

Univ [U ] := ∀x(C[U, x] → x ∈ U) ∧ (∀x ∈ U)(x ∈ <).

Also, U[a] states that the individual a is a name of a universe,

U[a] := ∃X(<(a,X) ∧ Univ [X]).

It is an immediate consequence of the closure properties of universes that
they satisfy elementary comprehension and join. The first important axiom
in connection with universes is the limit axiom. We assume that L2 contains
a fresh individual constant ` and express this by

(Lim) a ∈ < → U[`a] ∧ a ∈̇ `a.
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Hence this axiom states that the individual ` uniformly picks for each name
x of a class the name `x of a universe containing x. Since universes are the
explicit analogue of admissible sets, the axiom (Lim) is the explicit analog
of the limit axiom in admissible set theory which enforces that any set is
contained in an admissible set. The limit axiom (Lim) together with EC + (J)
provides the explicit analogue of (recursive) inaccessibility.

There is a very natural way in explicit mathematics to go a step further
and couch (recursive) Mahloness into this framework. To simplify the notation
we set

(f ∈ < → <) := ∀x(x ∈ < → fx ∈ <),

(f ∈̇ a→ a) := ∀x(x ∈̇ a → fx ∈̇ a)

and let m be a further fresh individual constant of L2. Then the Mahlo axiom
is the assertion

(Mahlo)
a ∈ < ∧ f ∈ (< → <) →

U[m(a, f)] ∧ a ∈̇ m(a, f) ∧ f ∈ (m(a, f)→ m(a, f)).

This means that given a name a and an operation f from names to names
the individual m uniformly picks a universe m(a, f) that contains a and is
closed under f .

For the proof-theoretic analysis of (Lim) and (Mahlo) over the relevant
metapredicative and impredicative systems of explicit mathematics we refer
to Jäger, Kahle, and Studer [38] and Jäger and Strahm [24]. In all cases
there is a direct correspondence to systems of iterated admissible sets, but
space does not permit to go into details here. Jäger and Strahm [44] even
explains how stronger reflection principles can be formulated within the
explicit framework.

4.5 Names of classes and universes

One of the very central ontological observations is that the names of a class
never form a class, no matter how simple this class may be. This theorem
follows immediately from Jäger [31] and is proved in full detail in Jäger [30]
and Feferman, Jäger, and Strahm [24].

Theorem 11. EC ` ∀X¬∃Y ∀z(z ∈ Y ↔ <(z,X)).

In Section 2 we introduced the notion of operational extensionality.
Clearly, there is also a corresponding notion of class extensionality:

(Cl-Ext) (∀x, y ∈ <)(x =̇ y → x = y),

claiming that two names are identical provided that they name the same
class. Although at a first glance this principle may appear to be acceptable
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or even natural, we have to dismiss it since it is inconsistent with EC. The
following theorem is a consequence of Theorem 11 above. An alternative
proof, due to Gordeev, of a similar result is presented in Beeson [1].

Corollary 12. (Cl-Ext) is inconsistent with EC.

Proof. Pick, for example, the class of natural numbers. From (Cl-Ext) we
could conclude that all names of this class are identical to nat and thus form a
class (in view of elementary comprehension), contradicting Theorem 11.

Hence T0 + (Cl-Ext) is inconsistent as well, thus answering a question
raised in Feferman [12]. Although the names of a class never form a class, it
is consistent to claim that there exists the class of all names. This can be
seen by extending the model construction for EC that is presented in detail
in Feferman [12] and Feferman, Jäger, and Strahm [24].

Theorem 13. The assertion ∃X∀x(x ∈ X ↔ x ∈ <) is consistent with EC,
but not provable in EC.

With some additional effort even a strengthening of this result is possible:
We can consistently assume in EC that all objects are names.

Let us now take a look at power classes. In principle, one could think
of two forms of power classes. The strong power class axiom states that for
every class X there exists a class Y such that Y contains exactly the names
of all subclasses of X,

(SP) ∀X∃Y ∀z(z ∈ Y ↔ ∃Z(<(z, Z) ∧ Z ⊆ X)).

On the other hand, the weak power class axiom asks for less. Then we only
claim that for each class X there exists a class Y such that each element of
Y names a subclass of X and for any subclass of X at least one of its names
belongs to Y ,

(WP) ∀X∃Y ((∀z ∈ Y )(∃Z ⊆ X)(<(z, Z)) ∧ (∀Z ⊆ X)(∃z ∈ Y )<(z, Z)).

Clearly, each of these can be formulated uniformly by adjunction of suitable
constants. Neither the strong nor the weak power class axiom is provable in
EC. Much worse, by Theorem 11 we know that in EC the names of the empty
class cannot form a class, and thus the strong power class of the empty class
cannot exist.

Corollary 14. (SP) is inconsistent with EC.

As the following remark shows, the weak power class axiom is less
problematic in this respect. Its consistency with EC is a consequence of
Theorem13.
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Corollary 15. EC + ∃X∀x(x ∈ X ↔ x ∈ <) proves

∃f(∀a ∈ <)((∀b ∈̇ fa)(b ⊆̇ a) ∧ (∀b ⊆̇ a)(∃c ∈̇ fa)(b =̇ c).

Hence the (uniform version of the) weak power class axiom is provable in
EC + ∃X∀x(x ∈ X ↔ x ∈ <) and thus consistent with EC.

Proof. Let Z be the class of all names and let z be a name of Z. Also, let r
be the closed term λxy.co(un(co(x), co(y))). This means that for all names
a and b, r(a, b) is a name of the intersection of the classes represented by a
and b. Now we consider the elementary formula

A[u, v,W ] := (∃x ∈W )(u = r(v, x))

and choose tA according to Theorem 8. Then tA(v, w) is a name in case w is
a name, and we have

<(w,W ) → ∀u(u ∈̇ tA(v, w) ↔ (∃x ∈W )(u = r(v, x))).

Since Z is supposed to be the class of all names and z one of its names, this
implies

∀u(u ∈̇ tA(v, z) ↔ (∃x ∈ <)(u = r(v, x))).

Put s := λv.tA(v, z). Clearly, r(a, b) ⊆̇ a for all a, b ∈ < and s(a, b) =̇ b
for any b ⊆̇ a. Hence s is a witness for the existential assertion we have to
prove.

However, we have to be careful. The join axiom (J) is incompatible with
the weak power class axioms.

Theorem 16. EC + (J) proves the negation of (WP). Also, in EC + (J) the
names cannot form a class.

Proof. Working in EC + (J), we let a be a name of the universal class V and
assume (WP). Then there exists an element b ∈ < – namely a name of a
weak power class of V – such that:

(∀x ∈̇ b)(x ⊆̇ a),(1)

(∀x ∈ <)(∃y ∈̇ b)(x =̇ y).(2)

Assertion (1) implies that all elements of (the class represented by) b are
names. Now we apply (J) to b and the operation λz.z and obtain that
j(b, λz.z) ∈ < and

∀x(x ∈̇ j(b, λz.z) ↔ (∃y1 ∈̇ b)∃y2(x = <y1, y2> ∧ y2 ∈̇ y1).

By elementary comprehension we can thus form a class X satisfying

∀x(x ∈ X ↔ <x, x> 6∈̇ j(b, λz.z)).
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According to (2), X has a name u ∈̇ b. However, this implies

u ∈ X ↔ ¬(u ∈̇ b ∧ u ∈̇ u) ↔ u 6∈̇ u ↔ u 6∈ X.

This is a contradiction. Hence V cannot have a weak power class, and (WP)
has been refuted. Therefore, it is also clear in view of the previous corollary
that the names must not form a class.

Now we turn to some remarkable ontological properties of universes.
A first observation, proved in Marzetta [48], reveals that no universe may
contain one of its names. We have mentioned already that the names of a
class do not form a class. In connection with universes, a stronger result is
possible: Each class has so many names that not all of them can be contained
in a single universe; in other words, no universe is large enough to contain all
names of a given type. For a proof of this result see Jäger, Kahle, and Studer
[38] or Minari [49]. This result implies that in the presence of the limit axiom
(Lim), a name a cannot have the same extensions as the universe represented
by `a. Also, the operation ` does not preserve extensional equality; see [38]
for details.

Theorem 17.

1. EC ` Univ [U ] ∧ <(a, U) → a /∈ U .

2. EC + (J) ` Univ [U ] → ∃x(<(x, V ) ∧ x /∈ U).

3. EC + (J) + (Lim) ` (∀x ∈ <)(x 6=̇ `x) ∧ (∃x, y ∈ <)(x =̇ y ∧ `x 6=̇ `x).

In this section several important ontological properties of explicit math-
ematics have been collected. For more along these lines consult Feferman
[12], Jäger, Kahle, and Studer [38], and Jäger and Zumbrunnen [46].

5 Operational set theory

Feferman’s original motivation for operational set theory was to provide a
setting for the operational formulation of large cardinal statements directly
over set theory in a way that seemed to him to be more natural mathematically
than the metamathematical formulations using reflection and indescribability
principles, etc. He saw operational set theory as a natural extension of
the von Neumann approach to axiomatizing set theory. Another principal
motivation was to relate formulations of classical large cardinal statements
to their analogues in admissible set theory. However, in view of Jäger and
Zumbrunnen [45] this aim of operational set theory has to be analyzed further;
see below.

The central systems of present day operational set theory can be consid-
ered as an applicative (based) reformulation of systems of classical set theory
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ranging in strength from Kripke-Platek set theory to von Neumann-Bernays-
Gödel set theory and a bit beyond.

The basic system OST has been introduced in Feferman [18] and further
discussed in Feferman [19] and Jäger [32, 33, 34, 35]. For a gentle introduction
into operational set theory and some general motivation we refer to these
articles, in particular to [19].

There is also an interesting relationship between some more constructive
variants of operational set theory and constructive or semi-constructive set
theory, but we will not discuss this line of research here. For a profound
discussion of this topic and some interesting technical results see Cantini and
Crosilla [5, 6], Cantini [4], and Feferman [20].

5.1 The central systems

Let L be a typical language of first order set theory with the binary symbols
∈ and = as its only relation symbols and countably many set variables
a, b, c, f, g, u, v, w, x, y, z, . . . (possibly with subscripts). We further assume
that L has a constant ω for the collection of all finite von Neumann ordinals.
The formulas of L are defined as usual.

The language L◦ of operational set theory extends L by the binary
function symbol ◦ for partial term application, the unary relation symbol ↓
for definedness and a series of constants: (i) the combinators k and s, (ii) >,
⊥, el, non, dis, e, and E for logical operations, (iii) D, U, S, R, C, and P
for set-theoretic operations. The meaning of these constants will be specified
by the axioms below.
L◦ is an operational language in the sense of Section 2, and we define

the terms and formulas of L◦ exactly as there. To increase readability, we
freely use standard set-theoretic terminology. For example, if A[x] is an L◦
formula, then {x : A[x]} denotes the collection of all sets satisfying A; it may
be (extensionally equal to) a set, but this is not necessarily the case. Special
instances are

V := {x : x↓}, ∅ := {x : x 6= x}, and B := {x : x = > ∨ x = ⊥}

so that V denotes the collection of all sets (it is not a set itself), ∅ stands for
the empty collection, and B for the unordered pair consisting of the truth
values > and ⊥ (it will turn out that ∅ and B are sets in OST). The following
shorthand notation, for n an arbitrary natural number greater than 0,

(f : an → b) := (∀x1, . . . , xn ∈ a)(f(x1, . . . , xn) ∈ b)

expresses that f , in the operational sense, is an n-ary mapping from a to
b. It does not say, however, that f is an n-ary function in the set-theoretic
sense. In this definition the set variables a and b may be replaced by V and
B. So, for example, (f : a→ V) means that f is total on a, and (f : V→ b)
means that f maps all sets into b.
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As in the case of explicit mathematics, all systems of operational set
theory start off from the basic theory BO(L◦). The additional non-logical
axioms of OST comprise some basic set-theoretic axioms, the representation
of elementary logical connectives as operations, and operational set existence
axioms.

Basic set-theoretic axioms. They comprise: (i) the usual extensionality
axiom; (ii) assertions that give the appropriate meaning to the constant ω;
(iii) ∈-induction for arbitrary formulas A[u] of L◦,

∀x((∀y ∈ x)A[y]→ A[x]) → ∀xA[x].

Logical operations axioms.

(L.1) > 6= ⊥,

(L.2) (el : V2 → B) ∧ ∀x∀y(el(x, y) = > ↔ x ∈ y),

(L.3) (non : B→ B) ∧ (∀x ∈ B)(non(x) = > ↔ x = ⊥),

(L.4) (dis : B2 → B) ∧ (∀x, y ∈ B)(dis(x, y) = > ↔ (x = > ∨ y = >)),

(L.5) (f : a→ B) → (e(f, a) ∈ B ∧ (e(f, a) = > ↔ (∃x ∈ a)(fx = >))).

Set-theoretic operations axioms.

(S.1) Unordered pair: D(a, b)↓ ∧ ∀x(x ∈ D(a, b) ↔ x = a ∨ x = b).

(S.2) Union: U(a)↓ ∧ ∀x(x ∈ U(a) ↔ (∃y ∈ a)(x ∈ y)).

(S.3) Separation for definite operations:

(f : a→ B) → (S(f, a)↓ ∧ ∀x(x ∈ S(f, a) ↔ (x ∈ a ∧ fx = >))).

(S.4) Replacement:

(f : a→ V) → (R(f, a)↓ ∧ ∀x(x ∈ R(f, a) ↔ (∃y ∈ a)(x = fy))).

(S.5) Choice: ∃x(fx = >) → (Cf↓ ∧ f(Cf) = >).

This finishes our description of the system OST. OST(P) is OST + (P) and
OST(E,P) is OST + (P) + (E), where (P) and (E) are axioms providing for
the operational form of power set and unbounded existential quantification,
respectively:

(P : V→ V) ∧ ∀x∀y(x ∈ Py ↔ x ⊂ y),(P)

(f : V→ B) → (E(f) ∈ B ∧ (E(f) = > ↔ ∃x(fx = >))).(E)

Finally, OSTr(E,P) is obtained from OST(E,P) by restricting the schema of
∈-induction for arbitrary L◦ formulas to ∈-induction for sets.
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Theorem 18. We have the following proof-theoretic equivalences:

1. OST ≡ KP.

2. OST(P) ≡ KP(P).

3. OSTr(E,P) ≡ ZFC.

4. OST(E,P) ≡ NBG+.

KP is Kripke-Platek set theory with infinity, KP(P) is Power Kripke-
Platek set theory as in Rathjen [55], ZFC is Zermelo-Fraenkel set theory with
the axiom of choice, and NBG+ is von Neumann-Bernays-Gödel theory NBG
for sets and classes extended by a suitable form of (Σ1

1-AC) for classes and
∈-induction for all formulas.

For proofs of the first equivalence see Feferman [18, 19] and Jäger [32],
the second equivalence is due to Rathjen (see his [54, 55] and private commu-
nication); it should also be provable via an adaptation of the method in Sato
and Zumbrunnen [57]. The third equivalence is proved in Jäeger [32], and
the fourth follows from Jäger [33] together with Jäger and Krähenbühl [39].

5.2 Operational closure

With respect to ontological properties, it is a natural question to ask what it
means for a set to be operationally closed. As it turns out, this has a very
direct relationship to the concept of stability. More precisely, operationally
closed sets behave like Σ1 substructures of the universe. The detailed proof-
theoretic analysis of the concept of operational closure is carried through in
Jäger [35].

Definition 19.

1. A set d is called operationally closed, in symbols Opc[d], iff d is
transitive, contains the constants of L◦ as elements, and satisfies

(∀x, f ∈ d)(fx↓ → fx ∈ d).

2. The operational limit axiom states that every set is an element of
an operational closed set,

(OLim) ∀x∃y(x ∈ y ∧ Opc[y]).

An immediate consequence of this definition is that all closed terms of
L◦ that have a value are contained in every operationally closed set. Also,
if we have a λ-term of L◦ whose free variables belong to an operationally
closed d, then this term belongs to d as well. The strength of the concept of
operational closure and its connection to Σ1 substructures becomes evident
by the following observation.
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Theorem 20. For any ∆0 formula A[~u, v] of the language L with at most
the variables ~u, v free, the theory OST proves that

Opc[d] ∧ ~a ∈ d ∧ ∃xA[~a, x] → (∃x ∈ d)A[~a, x].

Recall that a transitive set d with ω ∈ d is called a Σ1-elementary
substructure of the transitive class M iff d ∈M and for all Σ1 formulas A[~u]
with parameters ~u and all ~a ∈ d,

d |= A[~a] ⇐⇒ M |= A[~a].

Hence the preceding theorem says that any operationally closed set is an Σ1-
elementary substructure of the universe V. Also it implies that all instances
of

(Σ1-Sep) ∀x∃y∀z(z ∈ y → z ∈ x ∧A[z]),

where A[u] is a Σ1 formula of L, are provable in OST + (OLim).

Theorem 21. KP + (Σ1-Sep) is contained in OST + (OLim).

On the other hand, an ordinal α is called stable (in symbols Stab[α]) iff
Lα is a Σ1-elementary substructure of the constructible universe L. Then
KP + (V=L) + (Σ1-Sep) proves that every ordinal α is majorized by a stable
ordinal,

KP + (V=L) + (Σ1-Sep) ` ∀α∃β(a < β ∧ Stab[β]).

Since by means of the inductive model construction presented in Jäger and
Zumbrunnen [45] the theory OST + (OLim) can be reduced to KP + (V=L) +
∀α∃β(a < β ∧ Stab[β]), and adding (V=L) to KP+(Σ1-Sep) does not increase
its proof-theoretic strength, we obtain the following characterization.

Theorem 22. We have the following proof-theoretic equivalences:

OST+(OLim) ≡ KP+(V=L)+∀α∃β(α < β ∧ Stab[β]) ≡ KP+(Σ1-Sep).

In Jäger [35] it is also shown that OST + ∃xOpc[x] is equiconsistent to
KP plus parameter-free Σ1 separation on ω.

So we notice that the concept of operational closure is proof-theoretically
very powerful, lifting OST to a new dimension. However, from a operational
perspective, this notion is somewhat problematic: The uniform version of
(OLim), with a new constant OC,

∀x(x ∈ OC(x) ∧ Opc[OC(x)]),

is easily seen to lead to inconsistency.
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5.3 Relativizing operational set theory

A further motivation for operational set theory, formulated in Feferman
[18, 19], was to use his general applicative framework for explaining the
admissible analogues of various large cardinal notions. Everything works
out fine as along as only one (classically or recursively) regular universe is
concerned. However, in view of Jäger and Zumbrunnen [45] this aim of OST
had to be analyzed further. It is shown in [45] that a direct relativization
of operational reflection leads to theories that are significantly stronger
than theories formalizing the admissible analogues of classical large cardinal
axioms. This refutes the conjecture 14(1) on p. 977 of Feferman [19].

The main reason is that simply restricting quantifiers to specific sets and
operations to operations from and to those sets does not affect the global
application relation and thus substantial strength may be imported – so
to say – through the back door. Hence relativizing operational set theory
requires a more cautious approach.

In a nutshell: The applicative structure must also be relativized when
explaining the notion of relativized regularity in the context of OST. In
contrast to the usual way of relativizing formulas with respect to a given set
d, we now relativize our formulas A with respect to a set d and a set e ⊆ d3
to formulas A(d,e); then d is the new universe and e takes care of application
in the sense described below. This way of relativizing operational set theory
is worked out in all details in Jäger [37].

First we add to L◦ a fresh binary relation symbol Reg to express relativized
regularity and a fresh constant reg for the operational representation of
Reg in the sense of the following axiom that has to be added to the logical
operations axioms,

(L.6) (reg : V2 → B) ∧ ∀x∀y((reg(x, y) = > ↔ Reg(x, y)).

Then we turn to relativizing application: For all L◦ terms r and variables
e we define the formula (r ∂ e) by induction on the complexity of r as follows:

1. If r is a variable or a constant of L◦, then (r ∂ e) is the formula (r = r).

2. If r is the L◦ term r1r2, then choose some variable x not appearing in
r1, r2 and different from e and let (r ∂ e) be the formula

(r1 ∂ e) ∧ (r2 ∂ e) ∧ ∃x(〈r1, r2, x〉 ∈ e).

Think of e as a ternary relation; then (r ∂ e) formalizes that the term r
is defined if application within r is treated according to e. For us only such
relations are interesting that are compatible with the real term application.
To single those out, we set

Comp[e] := ∀x∀y∀z(〈x, y, z〉 ∈ e → xy = z).
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Clearly, if Comp[e] and (r ∂ e), then r↓. However, observe that in general
we may have Comp[e] and r↓, but not (r ∂ e); so it is possible that term r
has a value without being defined in the sense of e.

In a next step this form of relativizing application via e is combined with
restricting the universe of discourse to d. For all L◦ formulas A we define
the relativized formula A(d,e) by induction on the complexity of A as follows:

(r = s)(d,e) := (r ∂ e) ∧ (s ∂ e) ∧ r = s,

(r ∈ s)(d,e) := (r ∂ e) ∧ (s ∂ e) ∧ r ∈ s,

(r↓)(d,e) := (r ∂ e) ∧ r ∈ d,

Reg(r, s)(d,e) := (r ∂ e) ∧ (s ∂ e) ∧ Reg(r, s),

(¬A)(d,e) := ¬A(d,e),

(A ∨B)(d,e) := (A(d,e) ∨ C(d,e)),

((∃x ∈ r)A)(d,e) := (r ∂ e) ∧ (∃x ∈ r)A(d,e),

(∃xA)(d,e) := (∃x ∈ d)A(d,e),

Now the relation Reg comes into play. Reg(d, e) is supposed to state that
set d is regular with respect to e, and has the following intuitive interpretation:
(i) d is a transitive set containing all constants of L◦ as elements and e is a
ternary relation on d compatible with the general application relation; (ii)
if application is interpreted in the sense of e, then d satisfies the axioms of
OST; (iii) we claim a linear ordering of those pairs 〈d, e〉 for which Reg(d, e)
holds. To make this precise, we add to OST additional so-called Reg-axioms.
Here TranCon[d] is short for the L◦ formula stating that d is transitive and
contains all constants of L◦.

Axioms for Reg.

(Reg.1) Reg(d, e) → (TranCon[d] ∧ e ⊆ d3 ∧ Comp[e]).

(Reg.2) If A is an applicative axiom, logical operations axiom, or set-theoretic
operations axiom with at most the variables ~x free such that neither
the variables d, e do not appear in the list ~x, then

Reg(d, e) → (∀~x ∈ d)A(d,e).

(Reg.3) Reg(d1, e1) ∧ Reg(d2, e2) → d1 ∈ d2 ∨ d1 = d2 ∨ d2 ∈ d1.

(Reg.4) Reg(d1, e1) ∧ Reg(d2, e2) ∧ d1 ∈ d2 → e1 ∈ d2 ∧ e1 ⊆ e2.

In the following we write OST(LR) for the extension of OST by the axioms
(Reg.1)-(Reg.4) and the limit axiom for (relativized) regular sets,

(Lim-Reg) ∀x∃y∃z(x ∈ y ∧ Reg(y, z)).
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One of the central results of Jäger [37] is that OST(LR) is proof-theo-
retically equivalent to the theory KPi of iterated admissible sets and thus
describes an recursively inaccessible universe from an operational perspective.

Theorem 23. OST(LR) ≡ KPi.

As can be seen from the proof of this equivalence, our notion of relativized
regularity is the operational analogue of admissibility and thus provides a first
essential step in capturing recursive analogues of large cardinal assertions.
There is no intrinsic reason to stop at inaccessibility, and it seems that we
can deal with, for example, Mahloness in an analogous way. The hope is that
also the recursive versions of very strong forms of reflection can be handled
in this way.

6 Future work

Explicit mathematics and operational set theory are couched in an operational
framework and as such have a lot in common. However, there are also
significant differences. The article Jäger and Zumbrunnen [46] tries to
clarify this relationship more systematically, especially from an ontological
perspective.

A basic and significant difference is that in explicit mathematics we deal
with individuals and classes, whereas operational set theory is completely
first order. Hence it is an interesting question whether there exist natural
operational theories of sets and classes. Feferman’s draft notes [21] present
some first ideas and Jäger [36] discusses several technical and conceptual
problems; it also presents a “technically working” system that, however, does
not satisfy the criterion of naturalness.

In explicit mathematics we can take a given applicative structure and
build the universe of classes above this structure without being forced to
change the underlying applicative structure; no new individuals are created.
In an operational theory of sets and classes the situation is different: Again we
may start off from the applicative universe, which now models set-theoretic
axioms. However, building classes above this universe may force us to
generate new sets, in particular if we want the “Aussonderungsprinzip” to
be satisfied: given a set x and a class Y , the intersection x ∩ Y is a set.
Therefore, a sort of strong impredicativity makes the interplay between sets
and classes very delicate.

In spite of such difficulties it is worthwhile to search for “good” operational
theories of sets and classes, even if they can only cope with systems of very
high consistency strength. If successful, this framework is likely to be very
useful in studying strong reflection principles from an operational perspective.

The analysis of strong forms of reflection is also a topic in explicit
mathematics. This together with the development of a convincing operational
descriptive set theory are major tasks for the future.
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