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Abstract

Systems based on theories with partial self-application are relevant to the
formalization of constructive mathematics and as a logical basis for functional
programming languages. In the literature they are either presented in the form
of partial combinatory logic or the partial A calculus, and sometimes these two
approaches are erroneously considered to be equivalent.

In this paper we address some defects of the partial A calculus as a constructive
framework for partial functions. In particular, the partial A calculus is not
embeddable into partial combinatory logic and it lacks the standard recursion-
theoretic model. The main reason is a concept of substitution, which is not
consistent with a strongly intensional point of view. We design a weakening
of the partial A calculus, which can be embedded into partial combinatory
logic. As a consequence, the natural numbers with partial recursive function
application are a model of our system. The novel point will be the use of
explicit substitutions, which have previously been studied in the literature in
connection with the implementation of functional programming languages.

Keywords: Explicit mathematics, logic of partial terms, partial A calculus, partial
combinatory logic, explicit substitutions

1 Introduction

Partial applicative theories form the basis of various formal systems for constructive
mathematics and functional programming. Feferman introduced in [6] and [7] par-
tial applicative theories of operations and classes in order to give a logical account to
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Bishop’s style of constructive mathematics (BCM). More recently, Feferman’s sys-
tems of explicit mathematics were used to develop a unitary axiomatic framework
for representing programs, stating properties of programs, and proving properties
of programs. The programs considered are taken from functional programming lan-
guages, which are mainly based on the untyped A calculus. Important references for
the use of systems of explicit mathematics in the context of functional programming
are Feferman [8], [9], [10], Jdger [16], [17] and Marzetta [22], [23].

As far as the explicit representation of a theory with partial self-application in
the previous literature is concerned, people either took partial combinatory logic
or the partial A calculus (without the rule £) as the applicative basis. The former
possibility was chosen in [2], [6], [7], [11], [16], [17], [23], [29], the latter in [8], [9], [10]
and [22]. At first sight, these two approaches seem to be completely equivalent, and
sometimes they are treated as such in the literature. But they are only equivalent
in the presence of a total logic, since then A calculus (without £) can be embedded
into combinatory logic and vice versa. For a detailed discussion of the total case
also in the context of reductions, the reader is referred to Hindley [14], and Hindley
and Longo [15].

The situation changes drastically if one considers a partial application operation.
Then the partial A calculus (without ) is no longer embeddable into partial combi-
natory logic. This is due to the fact that the coding of A abstraction in the context of
partial combinatory logic is more complicated than usual. The modified definition of
A does not permit to push a substitution 6 inside an abstraction (Az.t), a principle,
which is valid for the partial A calculus for obvious reasons. For example, the terms
(Ax.y)[zz/y] and (Ax.zz) are not equal in partial combinatory logic. Hence, the
stronger concept of substitution in the partial A calculus makes its embedding into
partial combinatory logic fail. For the same reason, the standard recursion-theoretic
model of partial combinatory logic is no longer a model of the partial A calculus.
Recently, Pezzoli [26] even proved that there is no (reasonable) recursion-theoretic
interpretation of the partial A calculus at all.

As a consequence, it is not possible to determine proof-theoretical upper bounds
of applicative theories based on the partial A calculus by means of the recursion-
theoretic model, as it can be done for the corresponding systems based on partial
combinatory logic. Although the upper bounds of those systems can be determined
by formalizing a total term model (cf. Jiger and Strahm [18]), the adequacy of the
partial A calculus as a constructive framework for partial functions is seriously put
into question. The system simply does not seem to have any reasonable models with
a perspicuous constructive meaning that are truly partial. Not only the recursion-
theoretic model but also other partial models of partial combinatory logic do not
have their counterparts as models of the partial A calculus.



In the following we propose a modification of the partial A calculus, which can be
embedded into partial combinatory logic via a natural embedding. As a consequence,
this weakened form of the partial A calculus has all the partial models which we have
for partial combinatory logic. In particular, it is possible to determine upper bounds
of systems of explicit mathematics based on our modified version of the partial A
calculus using the recursion-theoretic model.

The novel point of our system will be the use of explicit substitutions. According to
this approach substitution is no longer a notion of the metalanguage, but an oper-
ation axiomatized in the theory under consideration. If ¢, s4,...,s, are terms and
0 is the substitution {si/z1,...,s,/x,} then ¢ is no longer an abbreviation in the
metalanguage for the term ¢ with the variables x; simultaneously replaced by the
terms s;, but a purely syntactical object. The evaluation of # has to be described by
appropriate axioms or rules. So it is possible to provide a very controlled process of
substitution. In particular, substitution can be axiomatized in a way that is consis-
tent with the recursion-theoretic model and partial combinatory logic, respectively.
Hence, a substitution # can no longer be pushed inside an abstraction (Az.t).

The theory of explicit substitutions has been treated in the literature before, but
from a different point of view. The main work has been done in the context of imple-
mentation of functional programming languages, and application in those systems
is always total. The very concern of the present work, however, is to study a partial
application operation. A key reference for the previous work on explicit substitu-
tion is the paper by Abadi, Cardelli, Curien and Lévy [1]. Further investigations
are presented in Curien [4], Curien, Hardin and Lévy [5], Hardin and Lévy [13] as
well as in Lescanne and Rouyer [20].

Recently, Martin-Lof [21] introduced a calculus of explicit substitutions in connection
with his intuitionistic theory of types, which is worked out in Tasistro [28].

Let us briefly sketch the procedure of these investigations. In Section 2 we first
introduce partial combinatory logic CL, and the (usual) partial A calculus A, (with-
out &). In particular, we recapitulate Beeson’s logic of partial terms. After having
sketched some interesting partial models of CL,, we discuss the substitution prob-
lems, which prevent the embedding of A, into CL,, and we give Pezzoli’s result
mentioned above. In Section 3 we give a detailed formulation of the system A,o,
which is a modification of A, by explicit substitutions. The system incorporates an
adaptation of Beeson’s logic of partial terms to the framework of explicit substitu-
tions, and rules to evaluate substitutions, of course. We further show that A,o is
embeddable into CL,, via a natural embedding and that CL, is also contained in A,o
via the standard embedding. In Section 4, finally, we study the reduction relation
on A,o terms corresponding to the system A,o. We give a long and tedious proof



for the Church Rosser property of this relation.

We finish this introduction by mentioning that recently Stark [27] has established
a natural relationship between the A,o calculus and the programming language
SCHEME.

2 The systems CL, and A,

Let us first define partial combinatory logic CL, and the usual partial A calculus Ay,
without the rule £. The language of CL, includes an infinite list of object variables (in
the metalanguage: x,y, z, f, g, h,u,v,w, ...), constants k and s (partial combinatory
algebra), the binary function symbol o (application), the equality symbol =, the
symbol | (defined) and the usual propositional connectives and first order quantifiers.
The language of A, contains the same symbols except that k and s are replaced by
the abstractor .

The terms of CL, and A, (in the metalanguage: r, s,t,...) are given by the following
definitions.

Definition 1 (CL, terms)
1. Every variable is a CL, term.
2. k and s are CL, terms.

3. If s and ¢ are CL, terms, then (sot)is a CL, term.

Definition 2 (X, terms)
1. Every variable is a A, term.
2. If tis a A, term, then (Ax.t) is a A, term.

3. If s and t are A, terms, then (sot)is a A, term.

In the following we write (st) for (s o t). Additionally, we adopt the convention of
association to the left, i.e. titots...t, stands for (... ((tit9)t3)...1,). Finally, we
often write (Axy...x,.t) instead of Azy.(Axa.(. .. (Azp.t)...)).

The formulas of CL, (in the metalanguage: A, B,C,...) are defined in the obvious
way.

Definition 3 (CL, formulas)

1. If s and ¢ are CL,, terms, then (s = ¢) is a CL, formula.
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2. If tis a CL, term, then ¢] is a CL, formula.

3. If A and B are CL, formulas, then ~A, (AV B), (AA B) and (A — B) are
CL, formulas.
4. If Ais a CL, formula, then 3xA and VxA are CL, formulas.
The formulas of A, are defined in exactly the same way as the CL, formulas.

If t is a term of CL, or A,, then fvar(t) denotes the set of free variables of ¢. As
usual, t[s;/xy,...,s,/xy,] is the term ¢ in which the free occurrences of zy,...,z,
are simultaneously substituted by si,...,s,. If t is a A, term, then in the case of
variable collisions bound variables have to be renamed. Analogously, fvar(A) and

Alsi/x1, ..., Sp/xy,] are defined.
Definition 4
L. (A= B) = (A= B)A(B— A)).
2. (t~s) = ((tlVvs])—t=s).

Together with the axioms stated below it will become clear that (¢ ~ s) is equivalent
to
(tIANs|ANt=3s)V (at]| AN=s]),

i.e. ~ is a partial equality relation as it is used e.g. in a recursion-theoretic frame-
work.

In the following we give the axioms and rules of inference of the systems CL, and
Ap, respectively. The logic of both CL, and A, is the classical logic of partial terms
due to Beeson [3] and [2]. It corresponds to E* logic as it is discussed in Troelstra
and van Dalen [30]. All our results also hold if intuitionistic logic is chosen as a
basis of CL, and A, respectively.

Definition 5 The system CL, is formulated in the language of CL,, and contains
the following list of axioms and rules of inference.

A. PROPOSITIONAL LOGIC

(1) Some complete axiom schemes of classical propositional logic
B. QUANTIFIER AXIOMS

(2) VeANLt] — Alt/z]

(3) Aft/z]At] — JzA
C. EQuALITY AXIOMS

(4) == t=s—s=t t=sANs=r—t=r

(5) tl = S1 A tg = S9 — tth ™~ S51S9



D. STRICTNESS AXIOMS
(6) =]
() ti=ty =t | At hital =Tl Atp]
(8) kl s|  sayl
E. PARTIAL COMBINATORY ALGEBRA
(9) kzy ~x
(10) szyz ~ zz(y=z)

F. RULES OF INFERENCE

(1) A A—B
B
A—B A—B
(12)

dzA — B A —VzB

In the inference rules (12) = does not appear free in the conclusion.

Definition 6 The system A, is formulated in the language of A, and contains the
same axioms and rules of inference as CL, except that the strictness axioms (8) are
replaced by

(Ax.t) |

and the axioms of a partial combinatory algebra are replaced by the 3 axiom

(B)  (Az.t)y ~tly/x].

It is important to notice that in the system A, we do not have the partial analogue

of the rule (&),
t~s

(& Av.t = \1.5

The principle (£) induces a weak form of extensionality, which is not consistent with
the strongly intensional character of (indices of) partial functions as met e.g. in
a recursion-theoretic framework. Formally, this means that it is a priori hopeless
to embed A calculus into combinatory logic in the presence of (£). Moreover, the
absence of (£) is in accord with most implementations of A calculus based languages:
Functions are considered as values, and are only evaluated when arguments are fed
in. As already mentioned in the introduction, A calculus without (&) in the context
of a total application operation is discussed in [14] and [15].



Nevertheless, we will shortly address fully extensional versions of CL, and A, re-
spectively, i.e. we will consider the strong extensionality axiom (Ext),

(Ext) Va(fr~gz) — (f=9).

Let us briefly sketch some models of CL,. As we are mainly interested in partiality,
we will only discuss truly partial models. Of course, there are many models of CL,
where application is a total operation, e.g. each model of the A calculus is a model
of CL,. In the following we give two partial models of CL,.

The recursion-theoretic model PRO. The universe of the model PRO of partial
recursive operations consists of the set of natural numbers w. Application o is
interpreted as partial recursive function application, i.e. z oy means {z}(y) in PRO,
where {z} is a standard enumeration of the partial recursive functions. It is easy
to find appropriate interpretations of k and s such that the axioms of a partial
combinatory algebra are satisfied. PRO provides a natural example of a domain
where objects may be programs as well as inputs to programs. The model underlines
the constructive and operational character of applicative theories.

The normal term model CNT. This model is based on standard notions of term re-
duction for combinatory logic, i.e. kt;ty reduces to t; and st;tyts reduces to t1t3(tats).
The universe of CNT consists of all closed CL, terms in normal form, k and s are
interpreted by themselves, and t; o ty means InFirst(tity). InFirst(tits) denotes the
uniquely determined normal term s provided that ¢,¢, can be reduced to s accord-
ing to the leftmost minimal strategy, InFirst(tits) is undefined otherwise. Using
the leftmost minimal strategy, at each stage of a reduction sequence the leftmost
minimal redex is contracted, where a redex is called minimal, if it does not contain
any other redexes. It is necessary to use the leftmost minimal strategy in order to
be consistent with the strictness axioms of CL,. The model CNT provides us with
another interesting operational semantics of CL,. For a detailed description of CNT
the reader is referred to Beeson [2], p. 119 ff.

As we will see below, the models just described cannot be made into models of the
system A, in a reasonable way. This is due to a stronger concept of substitution,
which is inherent in the partial A calculus A,.

Our next aim is to code A abstraction in CL,. We have to be careful in defining it in
the context of the logic of partial terms, because we want Ax.t to be defined for each
term t. As we will see below, this modified A abstraction will have very unpleasant
properties as far as substitution is concerned.

Definition 7 (Xi.t)
For each term ¢ of CL, a term Xu.t is defined by induction on the complexity of ¢.



1. If t is the variable x, then Xz.t := skk.
2. If t is a variable different from x or a constant, then Xz.t := kt.
3. If t is the term (t1t9), then Xu.t := s(Xuw.t;)(Nw.ta).
Lemma 8 We have for all CL, terms t and s:
1. foar(Xz.t) = foar(t) \ {z}.
2. CL, F Xt .
3. CL, - (Xz.t)r ~t.
4. CL, Fs| — (Xu.t)s >~ t[s/x].
PROOF (1)-(3) are proved by induction on the complexity of t. (4) is a direct

consequence of (3). O

In the context of a total logic, one normally defines Xz.t = k¢, if © & fvar(t). So
we have e.g. Xz.(yz) = k(yz). The example shows that Xz.t | does not hold for the
usual definition of A abstraction.

As already mentioned, the A\ abstraction of Definition 7 behaves very badly as far
as substitution in A expressions is concerned. For a usual A abstraction we have

(Az.t)[s/y] = Aw.t]s/y], ()

provided that z # y and x ¢ fvar(s). This property (which we only need for s | in
a partial setting) fails for the X* defined above: We have e.g. (Xz.y)[zz/y] = k(zz),
but Xz.zz = s(kz)(kz).

The fact that the substitution property (x) does not hold for the A\ abstraction of
Definition 7 is not just a technical inconvenience, but has rather strong consequences
for the system A, as a constructive framework for partial functions. Since (x) triv-
ially holds in A,, the standard embedding of A, into CL, fails. As a consequence,
the CL, models PRO and CNT described above do not translate into models of A,.

An illustrative consequence of the stronger substitution concept of A, is a very weak
form of (§), which is derivable in A,. Let s, be A, terms, and = be a variable with
x & foar(s) U fvar(t). Then it is easy to see that the principle

s=t— A\x.s = \x.t (%)

is derivable in A, only from (f) and the fact that equality respects application. For
(s =t) implies (Ay.A\x.y)s =~ (Ay.A\x.y)t, and hence we can conclude by the § axiom

Az.s = (Ay.Ar.y)s = (Ay. Ax.y)t = A\x.t.
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Note that in the argument above, we pushed the substitutions [s/y] and [t/y] inside
the abstraction (Az.y). The principle (xx) can be considered as an extremely weak
form of extensionality, and therefore, it has to be rejected from a strongly intensional
point of view.

We have seen above that the A abstraction of Definition 7 does not yield a recursion-
theoretic interpretation of A,. The question arises whether it is possible to find
another encoding of A in the model PRO satisfying the substitution property ().
It is easily checked that all A encodings known from the literature (cf. e.g. Kleene
[19], p. 344 ff.) do not validate (x), and all attempts to define another such \ failed.

Very recently, Pezzoli [26] found an elegant formal argument showing that the exis-
tence of a recursion-theoretic interpretation of A, which has a partial recursive term
evaluation function contradicts the undecidability of the halting problem.

Theorem 9 (Pezzoli) It is not possible to make the partial recursive functions
model PRO of CL, into a model of the partial X\ calculus A, in such a way that
the term evaluation function f(t,p) =~ ||t||,, for t a X, term and p an assignment of
variables, 1s partial recursive.

PROOF Let us assume that we can make the partial recursive functions into a model
of A, such that ||¢||, is partial recursive. By (4) of Lemma 8 and the substitution
property (%) we know that A, proves

(z2)] — (Azy.x)(22) = Ay.2z,
which immediately yields
(22) | = Aw.((Ary.x)(22)) = Awy.2z (% % %)

by the principle (s*) mentioned above. Now consider ||Aw.((Azy.x)(22))||, = a, and
|Awy.zz||, = b,, which are defined for every p since A abstraction is always defined.
By (¥%x) we have a, = b, whenever {p(2)}(p(2)) |; if {p(2)}(p(2)) T, then a, must be
an index of the always undefined function and b, an index for the constant function
n — ||Ay.2z||,, so in this case a, # b,. However, by hypothesis, we can compute a,
and b,, and therefore, we can decide whether {n}(n)|. This is not possible. O

The following corollary is immediate from the fact that PRO is a model of CL,,.
Corollary 10 There is no recursive encoding of A in CL, validating (x).

It should be stressed that the problems described above completely disappear in the
presence of the extensionality axiom (Ext). In particular, (%) holds in CL,+ (Ext).



Lemma 11 We have for all CL, terms t,s and all variables x,y such that x # y
and = & foar(s):

CL, + (Ext) F s| — (Xw.t)[s/y] = Xx.t[s/y].

PROOF Assume s|. By Lemma 8 we have (Xu.t)r ~ t and (XNz.t[s/y])r ~ t[s/y].
Since s | and x # y we can conclude that

(Nz.t)[s/yle = tls/y] ~ (Xzt]s/y])z,
which by (Ext) immediately implies the claim of the lemma. O

As an immediate consequence of this lemma we get the following theorem, which is
also stated in Moggi [24].

Theorem 12 The systems CL,+ (Ext) and A, + (Ext) are equivalent with respect
to the standard embeddings.

3 The system A\,o

In the following, we introduce the system A,o, which is a modification of the system
A, by explicit substitutions. The language of A,o is an extension of the language
of A, by the set brackets {, }, the slash / and commas. The new symbols will be
used in order to form finite sets of variable bindings, i.e. substitutions.

The terms (in the metalanguage: r, s, t,...) and substitutions (in the metalanguage:
,0,7,...) of A,o are given by a simultaneous inductive definition.

Definition 13 (A, terms and A,o substitutions)
1. Every variable is a A,o term.
2. If t is a Ayo term, then (Az.t) is a Ay o term.
3. If s and t are A\, o terms, then (sot)is a A,o term.
4. If tis a Ao term and if 0 is a A o substitution, then (¢0) is a A o term.

5. If t,...,t, are A,o terms and if zy,...,z, are variables with z; # z; for
1 <i<j<mn,then {t;/x1,...,t,/z,} is a Ayo substitution.

In the following we will often write ¢tfo instead of (¢6)o.

The formulas of A,o are defined in exactly the same way as the formulas of A,
e.g. we have an atomic formula ¢| for each A,o term ¢. In the following we often
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speak of terms, substitutions, and formulas instead of A,o terms, A,o substitutions,
and Ao formulas.

We again want to stress the difference between t[s/z| and ¢{s/x}. In the first
expression substitution is an abbreviation in the metalanguage for the term ¢ with
all free occurrences of = replaced by s. t{s/x}, however, is a purely syntactical
object where the substitution {s/x} can only be evaluated by means of appropriate
axioms to be described below.

We will often use the following abbreviations.

Definition 14 Let 0 = {t;/xq,...,t,/x,} and 0" = {s1/x1,...,$p/x,} be substi-
tutions and let r be an arbitrary term. Then we define:

1. dom@ := {x1,...,2,}.
2.0 =t NNty .
3.0 ~0" :=t; s N Nt, >~ 5.

4. t/x -0 = {t/x} U0, where 77 is § with a possible binding for x deleted,
i.e. t/x - 0 denotes the update of § by {t/x}.

5. € := {} (the empty substitution).

The set of free variables fvar(t) of a A,o term ¢ is computed in the obvious way.
For reasons of completeness we give the exact inductive definition below.

Definition 15 (fvar(t))
1. If ¢ is the variable z, then fvar(t) := {z}.

2. If t is the term (A\z.s), then foar(t) = foar(s) \ {z}.

3. If t is the term (f1ty), then foar(t) := foar(t)) U foar(ts).

4. Tf  is the term (s6) and 6 = {s,/z1, ..., $n/zs}, then
foar(t) = (foar(s) \ dom) U | foar(s),

icl
where I = {i:1 <i <n and x; € foar(s)}.

Once fvar(t) is defined, we get fvar(A) as the set of free variables of a A,o formula
A in the usual way.

We will sometimes use the notation # [ ¢ for the substitution # with all variable
bindings s/y deleted for y & fvar(t).

In the sequel we define a A,o formula Af for each A,o formula A and each A,o
substitution #. The definition is by induction on the complexity of A.
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Definition 16 (Af)
1. If A is the formula (s =t), then A# is the formula (sf = t6).
2. If A is the formula ¢ |, then Af is the formula ¢6 |.

3. If Ais the formula =B, (BV C), (BAC) or (B — C), then Af is the formula
=(B0), (BO Vv C0), (BO A CO) or (Bl — C0), respectively.

4. If A is the formula JzB or VB, then Af is the formula 3y (Bly/x]f) or
Vy (Bly/x]0) respectively, where y is a “fresh” variable.!

The composition of two substitutions # and o is defined in the usual way.

Definition 17 Let 0 = {t;/z1,...,t,/z,} and 0 = {s1/y1, ..., Sm/Ym } be substitu-
tions. The substitution fo is obtained by deleting all variable bindings of the form
si/y; in the set
{tlo—/xla Tt 7tn0—/xna Sl/yla T Sm/ym}a

such that y; =z fora 1 < j < n.

Now we are ready to give the exact formulation of the system A,o. The logic of
A, is an adaptation of Beeson’s logic of partial terms to the framework of explicit
substitutions. The novel point of this axiom system compared to the system A, are
the substitution axioms (E), which incorporate rules to evaluate substitutions step

by step. Furthermore, an extended form of the # axiom in the context of explicit
substitutions is given.

Definition 18 The system Ao is formulated in the language of A,o and contains
the following list of axioms and rules of inference.

A. PROPOSITIONAL LoOGIC

(1) Some complete axiom schemes of classical propositional logic
B. QUANTIFIER AXIOMS

(2) VEANG| — Af

(3) AOANO| — ITA (Z=121,...,2,; domb = {Z})
C. EQuALITY AXIOMS

4) z=zx t=s—s=t t=sANs=r—t=r

! Bly/x] is the formula B, where each free occurrence of x is replaced by y in the usual sense.
The exact definition of Bly/z] is straightforward, but tedious.
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(5) t1 = 81 ANty = 89 — t1ty = $189
(6) 0 ~0" — th ~ to'
D. STRICTNESS AXIOMS
(7) =]
(8) ti=ty —t1 | Nta ] tite] =t ANty ]
(9) (A1)l
E. SUBSTITUTION AXIOMS
10) 26 ~t (t/x € 0)
11) (ts)0 ~ (t0)(s0)
12) (t0)o ~ t(0o)

14)

~+~

(
(
(
(13) t(s/x - 0) ~t0 (x & foar(t) U dom0)
(14) te ~
F.

0 AXIOM
5)

(15) (Az.t)fy ~ t(y/z - 0)

G. RULES OF INFERENCE

A A— B
1 -
1) 24
(17) A— B A— B

dzA — B A —VzB

In the inference rules (17) = does not appear free in the conclusion.

It should be observed that among the substitution axioms (E) we do not have an
axiom, which allows us to push a substitution @ inside an abstraction (Az.t). This
is exactly what we want to prevent. Terms of the form (Ax.t)# can only be resolved
if applied to another object, say y. This is reflected in the extended ( axiom (15),
where an interleaving substitution @ is allowed. If # is the empty substitution € then
we have the usual [ axiom.

Weak A calculi (i.e. A calculi without (£) or substitution under \) with explicit
substitutions have been considered in the literature before. These include Curien’s
Ap calculus [4], the conditional weak theory Ao, in Curien, Hardin and Lévy [5]
as well as the weak theory Aoy, of [5]. The main difference (among other minor
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differences) between Ap, Aoy, Aoy, and A,o lies in the fact that application in the
former three calculi is always total, whereas the main concern of the A,o calculus
is to model a partial application operation. As we argued in the previous section,
such a partial A calculus must not allow (§) and substitution under A in order to be
consistent with the intended recursion-theoretic interpretation.

Lemma 19 We have for all terms t, s and all substitutions 0:
1. Aot s| — (Axt)s ~t{s/x}.
2. Mo Fs| — (Ax.t)fs ~t(s/z - 0).
8. Ao Etd~t (dom6n fuar(t) =0).

PROOF by easy reasoning in A,o. [

In the following we give an embedding (-)“" of the system A,o into partial combina-
tory logic CL,. This embedding is made possible by a careful concept of substitution
in the system A,o corresponding to substitution in CL,. As an immediate conse-
quence of this interpretation we get that the recursion theoretic model PRO and the
normal term model CNT are models of A,o. This makes A,o into a system with a
reasonable computational and constructive meaning.

Let us first define a CL, term ¢ for each A,o term ¢. The definition is by induction
on the complexity of ¢.

Definition 20 (t°%)
1. If t is a variable, then t“ := ¢.
2. If t is the term (A\z.s), then t%F = (X2.s°F).
3. If t is the term (#,ty), then ¢t = (¢t{EtSE).

4. If ¢ is the term (sf) where 0 = {s;/x1,...,5,/x,}, then t°" is the term
sl s Jxy, ..., sE0 x,).

Once (-)%" is defined for terms of A,o, the translation for formulas is uniquely
determined by the requirement that it commutes with =, |, the logical connectives,
and the quantifiers. Hence, we have a CL, formula A%" for each A,o formula A.
From the definition of (-)¢% it is immediate that foar(t“L) = fvar(t), foar(A°Y) =
foar(A), and A{t,/zy, ... ty)2, } 0 = ALY oy, o 1O [y,

We are ready to state the embedding theorem.
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Theorem 21 We have for all Ayo formulas A:
ANobFA = CL,FA“?

PROOF by induction on the length of a proof of A in Ayo. The propositional axioms
do not cause any problems, of course. Also the quantifier axioms are easily handled
using the properties of (-)““ mentioned above. The equality axioms are trivial, and
in order to establish the translation of (Az.t) | one makes immediate use of Lemma
8. The substitution axioms are easily verified, too. The extended [ axiom (15) is
treated in exactly the same way as in the proof of Lemma 11. Finally, it is trivial
to check the inference rules. O

In the sequel we show that A,o also includes CL,, by giving an embedding (-)* from
CL, into A,o. We first give the translation (-)* for terms of CL,,.

Definition 22 ()
1. If t is a variable, then t* = t.
2. If t is the constant k, then t* := \uv.u.
3. If t is the constant s, then t* := luvw.uw(vw).

4. If t is the term (t1t5), then t* = (£}¢3).

A A

For formulas, (+) commutes with =, |, the

logical connectives, and the quantifiers. Again it is obvious that fvar(t*) = fvar(t)
and fvar(A*) = foar(A).

is given in the obvious way, i.e. ()

Lemma 23 We have for all CL, terms t and s:
Ao ts/a] ~ tM st x).

PROOF by straightforward induction on the complexity of ¢. Essential use is made
of the substitution axioms, in particular axiom (13). O

Corollary 24 We have for all CL, formulas A, and for all CL, terms t:
Ao = Alt/z]) « ANz}

PROOF by an easy induction on the complexity of A using the above lemma. O

ZNotice that the converse of this theorem does not hold. To see this, take e.g. for A the formula
T=yY — Az2.T = Az.y.
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Lemma 25
1. Ao b (kzy ~ z)*.
2. Ao b (svyz ~ x2(y2))*.
8. Apo F (szy |)*.

PrROOF We only prove (1). The proof of (2) and (3) is similar. As we will see,
essential use is made of the extended (3 axiom (15). First of all we have

(Auwv.w)r ~ (A.aw){z/u}, (1)
which by axiom (15) immediately implies

Awvaw)zy ~ (M) {z/uly ~ u{z/u,y/v}. (2)
Furthermore, we have
w{z/u,y/v} ~ . (3)

This finishes the proof of our claim. [

Lemma 26 We have for all CL, formulas A:
CL,FA = Xk AN

PROOF by induction on the length of a proof of A in CL,. Again the propositional
axioms are trivial. The translation of the quantifier axioms is provable in A,o by
Corollary 24. The same corollary also helps in establishing the equality axiom (6).
The strictness axioms (9) and the axioms for a partial combinatory algebra were
already treated in Lemma 25. The inference rules of CL, readily translate into
inference rules of Ayo. O

The converse of the above lemma also holds.

Lemma 27 We have for all CL, formulas A:
Ao kAN = CL,F A

PROOF We define a modification (-)* of the translation ()" from A o into CL,,.
(-)* is defined in the same way as (-)“"
coding A\* of A abstraction instead of X*. The term M.t is inductively defined as
follows.

, except that it uses the more complicated

1. If t is the variable x, then A\z.t := skk.
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2. If t is a variable different from x or a constant, then \z.t := kt.
3. If t is the term (sx), where s € {y,k,s,sy} and y # z, then Xz.t = s.
4. If t is the term (¢t3), and if (3) does not apply, then Xz.t := s(XNx.t1)(Nx.ty).

One easily verifies that (k)* = k and (s*)* = s. As an immediate consequence
we have (t*)* = ¢ and (A*)* = A for all CL, terms ¢ and all CL, formulas A,
respectively. Furthermore, Lemma 8 holds for A*, too. In particular, we have \x.t |
for all CL, terms ¢t. We can, therefore, establish Theorem 21 for (-)* instead of (-)“".

Hence, we have
oA = CL, A

for all A,o formulas A. Now the claim of the lemma immediately follows from the
fact that (-)® is the inverse of (-)*, as we have mentioned above. [

Here is the final embedding theorem.

Theorem 28 We have for all CL, formulas A:
CL,FA < XoF AN

PROOF Immediate from the previous two lemmas. [

4 Confluent reductions

Once we have introduced the system A,o, it is natural to study the correspond-
ing reduction relation on A,o terms. We now define a binary relation > on A,o
terms, which reflects a directed equality relation for the system A,o. > is defined
inductively as follows.

Definition 29 The relation > between A,o terms is generated by the following
clauses (1)—(13).

A. IDENTITY
(1) t>t

B. # REDUCTIONS
(2) (A\x.t)s > t{s/x}

(3) (Az.t)fs > t(s/x-0)

17



C. SUBSTITUTION REDUCTIONS

4) z0 >t (t/z € 6)

5) (ts)0 > (t0)(s0)

(4)
(5)
(6) (t8)o > t(0o)
(7) t(s/z-0) >0 (z & foar(t) U domB)
(8)

) te >t

D. STRUCTURAL RULES
9)t>s = r(t/x-0)>r(s/z-0)
t>s = O s
t>s = rt>rs
(12) t>s = tr>sr
E. TRANSITIVITY
(13) t>s, s>r = t>r

Notice that we have to state two clauses for 3 reduction, since (2) is no longer
derivable from (3) in the context of reductions. Furthermore, it should be observed
again that we do not have the rule (&),

t> s
Ax.t > A\zx.s

()

among the structural rules (D).

Remark 30 We want to stress that the reduction relation > does not take into
consideration partiality in A,o. Hence, [> rather corresponds to a total version of
Apo. This is, however, in complete analogy to the system CL,, where truly partial
term models are constructed using special reduction strategies of a total reduction
relation (cf. p.7), and partiality is reflected by non-terminating reduction sequences.
Summarizing, > provides a general term reduction framework giving rise to partial
and total term models for A,o.

In the following >, denotes the restriction of > to substitution reductions, i.e. t >, s
holds if and only if there is a derivation of ¢ > s according to the above clauses, which
does not use (2) and (3). Analogously, >4 is the restriction of > to § reductions.
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Finally, we write ¢ >! s if ¢ > s is derivable from (2)-(12), i.e. >' denotes one step
reduction. The relations >} and >} are defined in the same way.

In the sequel we want to show that [> satisfies the Church Rosser property. As
usual, this will guarantee that all terminating rewrite sequences yield identical re-
sults, i.e. we will have uniqueness of normal forms. All attempts to find a direct
proof for the confluence of > failed. In particular, parallelization does not seem
to work in order to show confluence of A,o. Instead we will make use of an in-
terpretation technique due to Hardin, which was identified in [12]. This method
has subsequently been used several times in order to show confluence for systems of
explicit substitutions.

A first step towards the proof of the Church Rosser property for > is to show that
>, is Church Rosser. In order to apply an old result by Newman [25], we establish
that ! is weakly Church Rosser and wellfounded.

Lemma 31 >! is weakly Church Rosser, i.e. we have for all terms t,t1,ty: Ift > ¢
and t >} ty, then there is a term t3 such that t; >, t3 and ty >, t3.

PROOF One shows by a straightforward, but tedious induction on the length of a
derivation of ¢ >! ¢ that for all ¢ >! ¢, there exists a ¢3 such that #; >, 3 and
to >y t3. O

In order to prove that i>! is wellfounded, we define a measure function ¥ from the
A0 terms and A,o substitutions to w.

Definition 32 (U(t); ¥(0))
1. If ¢ is a variable, then ¥(¢) := 1.
2. If t is the term (Ax.s), then U(t) := 1.
3. If t is the term (t1t3), then W(t) := W(ty) + V(L) + 1.
4. If ¢ is the term (s0), then W(t) := ¥(s)- (V(H) + 1).
5. If 0 is the substitution {t,/x1,...,t,/z,}, then U(0) := U(t;)+---+V(t,)+1.

Notice that U(t) > 0 for all terms ¢ and W(f) > 0 for all substitutions 0, e.g. we
have U(e) = 1.

The composition (6o) of two substitutions § and o is bounded as follows w.r.t. V.

Lemma 33 We have for all substitutions 0 and o:

U(ho) < U(0) - (U(0) + 1).
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PROOF by an easy calculation. O

We are ready to prove that W is strictly decreasing on 1>!.

Lemma 34 We have for all termst and s:
t>ls = Ut) > U(s).

PROOF by a straightforward induction on the length of a derivation of ¢ >! s. Let
us only discuss the substitution reduction (6), i.e. t = (rf)c and s = r(fo) for some
term r. Then we have

U((rf)o) = ¥(r)- (V) +1)-(¥(o)+1) > U(r)-[¥(O)-  (¥(o)+1)+1].

But U(r) - [U(0) - (¥(o)+1)+1] > ¥(r) - [¥(0o) + 1] by the previous lemma. The
claim is proved, since U(r) - [¥(fo) + 1] = U(r(fo)). O

Corollary 35 >! is wellfounded.

Together we have established the following theorem.
Theorem 36 >, is Church Rosser.

PROOF The theorem is immediate from Lemma 31 and Corollary 35 and a result by
Newman [25] saying that a reduction relation, which is weakly Church Rosser and
wellfounded satisfies the full Church Rosser property. [

Corollary 37 Every Ay,o term has a unique substitution normal form.

In the following we denote the substitution normal form of a term ¢ with X(¢). A
substitution 6§ = {¢;/xq,...,t,/x,} is in substitution normal form, if for all 7 with
1 < i < n the term ¢; is in substitution normal form. Analogously, ¥(6) denotes the
substitution normal form of a substitution 6.

As a further step towards the Church Rosser property of > we make use of a rela-
tion >g,, which corresponds to  reduction on terms in substitution normal form,
i.e. terms satisfying ¥(t) = . We define >4, via its “parallel” version »&, ie. >g,

will be the transitive closure of +2%. Then the Church Rosser property of Dn, carries
over to >3, by a well-known diagram chase.

. . 3 o
For notational convenience we define —— on substitutions, too.

Definition 38 The relation -2 between Ao terms and A,o substitutions in sub-
stitution normal form is simultaneously generated by the following clauses (1)—(6):
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A. TERMS
(1) tes e
2) sy = (Art)sS IS /2))
(3) sin s, 0% 0 =  (Aat)fs 2o X(t(s' Jz - 0))
4) 0250 = (xS (ONat)e
(5) t&t’, s g = syl
B. SUBSTITUTIONS

6) i sty .t sy = {ti/21, . tafTa} {51 /70, Sn) T}

Definition 39 Let >, be the transitive closure of s

Lemma 40
1. ]ft&t’ then we have %(t0) N (t'0") for all RN

[f9 —= @' then we have 2(90) (0'd’) for all o Do,

PROOF (1) and (2) are proved simultaneously by induction on the complexity of ¢
and @, respectively. [

The next lemma says that ", is Church Rosser on terms and substitutions.
Lemma 41
1. [ftli t1 then for all t& ty there is a ts such that t; 'ﬁ)tg and tq N ts.
2. If 0 LN 01 then for all LN 0, there is a 05 such that 0, LN 05 and 0 LN 05.

PROOF We prove (1) and (2) simultaneously by induction on 2% ¢, and 6+ 6y,

respectively. Let us first prove (1). According to t&tl we can distinguish the
following five cases:

(1) 2% ¢, is £+ ¢. Then we can choose t3 = to.

(2) ¢ Dy s (Ax.r)s N Y(r{s'/x}) and is a consequence of s D, According to

RN ty we can distinguish the following two subcases:

(2.1) ety s (Az.r)s &(Ax.r)s" and is a consequence of s+-2% s”. By the in-

duction hypothesis there is a term s” with s 0 s and 8" s s T we take
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ty = Y(r{s"/x}) then obviously t, . ¢,. By the previous lemma we also have
by .

(2.2) 01, is (Ax.r)s&E(r{s”/x}) and is a consequence of 52 5, By the
QLN B et ts be
Y(r{s"/x}). Using the previous lemma one easily Verlﬁes tr 2 by and ¢y 2 1.

induction hypothesis there exists a term s with s "and s

(3) e ¢ is (A\x.r)0s N Y(r(s'/x-0")) and is a consequence of s s s and 0420 ¢,
According to RN ty we can distinguish the following two subcases:

(3.1) t Pty is (Ax.r)0s n&()\x.r)ﬁ”s” and is a consequence of 6 & 0" and s 2% 5"

By the induction hypothesis there are s” and 6" with s+ " s”»ﬂ—">s’” and

9’1&9”’, N If we take t3 = X(r(s"/x - 6")) then obV1ously ty % 1. By

the fact that s'/x - ¢’ LN s" [z - 0" and the previous lemma we also have t; sty

(3. 2) 12 4y s (A\x. r)ﬁsnﬁi]( (s"/x - 6")) and is a consequence of 3|ﬂ—">s” and

LN 0” By the 1nduct10n hypothesis there are s and 0" with ' L, gt 8" Dy g
and ¢’ 2 = 0" 0" s 0 Let ¢y = Y(r(s"/x-0")). Then, by the previous lemma,

we have t; l’@—>t3 and t, »’6—>t3, since s'/x -0’ KN s"[x-0" and s" [x-0" — on s"[x-0".

(4) £ 1 s (Ax.r)0 »—">()\x.r)9’ and is a consequence of ¢ s 9/, Then ¢+ ¢, is
(Az.r) o —(Az.r)0" and is a consequence of 02 0. By the induction hypothesis
there is a 0" with ' 2% " and 6" +2% 6. The claim holds for t; := (Ax.r)o".

(5) t by is rs 2 's’ and s a consequence of 2% ' and s 2% s'. According to

RN ty we can distinguish the following three subcases:

(5.1) t by s rs s and s a consequence of reZsp and s 2 s, By
the inductlon hypothe51s there are terms " and s" with 2% ¢/ , ! Pns i and
RN , 8" n, " The claim immediately follows for t3 := r"s".

(5.2) et s (Ax.r”)s&E(r”{s”/x}) and is a consequence of s g, By the
induction hypothesis there is an s with &' D g and s s s, Furthermore, it is
clear that r = r' = (Az.r”). If we take t3 := X(r"{s" /x}) then obviously ¢ LN
By the previous lemma we also have 2, nﬂ—">t3.

(5. 3) £ 1, is (Ax.r")0s LN (r'"{s"/xz - 0")) and is a consequence of s s s and
N By the induction hypothesis there is an s with s Lny s and s s gt
Furthermore r 2% ' has the form (Az.r")0 n&()\x r")0" and is a consequence of
6’ 0. By the induction hypothesis there is a 9'" with 6/ 2% 9 and @7 L g 1
we take t3 := X(r"(s"/x - 0")) then obviously ¢, s b, By the previous lemma we

also have ¢, o ts.
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This finishes the proof of (1). The proof of (2) is straightforward. Assume 6 N

and 07 0y, where

0 = {ti/z1,... ,tn/xn},

0, = {s1/z1,...,80/T0},

O, = {s\/x1,...,8,/xn}
Bn

and t; —> s;, t; LN s; for 1 <4 < n. By the induction hypothesis there are terms ;
with s; nﬁwi and s/ nﬁwi for 1 < i < n. If we take 03 := {ri/xq,...,ry/x,}, then

we immediately get 6, LN 03 and 0, iR 0;. O

The proof of the Church Rosser property of >, is complete.

Theorem 42 >3 s Church Rosser.

PrROOF By the previous lemma, P, is Church Rosser. By Definition 39, >g, is

the transitive closure of »&, which, by a simple diagram chase, implies that >g, is
confluent, too. O

The last step towards the Church Rosser property of > is to show that
t>gs = X(t)>g, S(s)

holds for all A,o terms ¢ and s. Then the confluence of > will be an immediate
consequence. In order to establish the above claim, we have to define another

intermediate relation, the reduction relation N

Definition 43 The relation 2= between A,0 terms and Ao substitutions is given
by the following clauses (1)—(8):

A. TERMS

(1) st

2) (\z.t)s s t{s/z}
(3) (Az.t)0s+2ot(s/z - 0)
4) 00 = ol

(5) t—s = 0+ 50

(6)tli>s —  rt-ers
(7)t|i>s =  trssr

23



B. SUBSTITUTIONS
8) il st, . tarts s, = {ti/21, .. tafTa ) {81 /70, Sn/Tn}

The relation 2> can be considered as an extended form of one step ( reduction,
where substitutions can be reduced in parallel.

Lemma 44 We have for all terms t and s:

trls s = D) >y, S(s).

PrROOF We prove the claim by main induction on W(t) and side induction on the
complexity of £. According to the structure of ¢, we can distinguish the following
four cases:

(1) t is a variable. Then the claim is trivial.

(2) t is the term (Az.t'). The claim is trivial, too.

(3) t is the term (¢1t5). According to t+25 s we can distinguish the following four
subcases:

(3.1) t2s s is t1ts - tit, and is a consequence of t; - t1. By the side induction
hypothesis we have X(¢,) >3, X(t}). This implies

S(tts) = S(8)S(ts) B, S(E)(ts) = S(ts).

(3.2) ¢ S A t1ty and is a consequence of ¢, N t,. This case is treated in
the same way as (3.1).

(3.3) t-2s s is (Ax.r)r! im{r’/a:}. Then we have
YS((Az.r)r')y =S Axr)E(r') = Aer)S(r') g, S(r{Z(r")/z}) = S(r{r'/z}).

(3.4) ts s is (Ax.r)0r' »Lr(r’/x - 0). First assume that foar(Az.r) N dom # ().
Then we have for §' := 0] (\x.r)

S((Ax.r)r') = Ax.r)S(0)2(r") g, S(r(E(r) /x - 2(0"))) = 2(r(r' [z - 0)).

The case foar(Az.r) N dom@ = ) is treated in a similar way.

(4) t is the term (¢'#). According to the structure of ¢ we can distinguish the
following four subcases:

(4.1) ¢’ is the variable x. Then s is of the form z6’, where 0250, If » ¢ dom?
then Y(zf) = x = X(x#') and there is nothing to prove. Therefore, assume r/z € 0,
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r'/x € 0" and r 21" for some terms r and . Then it is 20 >1 r and by the main
induction hypothesis we have

Y(z) = X(r) g, X(r') = X(xb").

(4.2) ¢’ is the term (Ax.t"). Then s is of the form (Az.t")#', where 020 1
foar(Az.t")Ndom O = O then L((Ax.t")0) = Ax.t" = L((Az.t")¢) and there is nothing
to prove. Otherwise, by the side induction hypothesis, we have

S((at")0) = \zt")(0 [ M\wt")) 5, Aat") (0 ] (Az.t")) = D((Axt")0").

(4.3) t' is the term (#,t}). According to ¢’ s, we can distinguish the following
five subcases:
(4.3.1) #0255 is (t1t5)0 i>(t’1’t’2)9 and is a consequence of t] iﬂf’l’ Then it is
(tt5)0 > (#,0)(t,0) and by the main induction hypothesis we have

S((£115)0) = Z((#1,0)(t50)) >, T((#0)(150)) = T((t11)0).

4.3.2) 0% s is (#14)0 s (##)0 and is a consequence of ¢! Lo This case is
1l2 1l2 2 2
treated in the same way as (4.3.1).

(4.3.3) #0255 is (t1t5)0 i>(t’1t’2)9’ and is a consequence of 050", Then it is
)0 >L (¢0)(t,0) and by the main induction hypothesis we get X(¢,0) >4, S(¢, 6’
192 o \"1 2 1 Bn 1

and X(t50) >, X(t40'). This implies

S((#115)0) = Z((110)(150)) = B(010)5(850) B, T(H16") D (850") = B((t185)0)-

(4.3.4)t'0 s s ((Az.r)r')6 N r{r'/x}0. First assume that foar(Az.r)Ndom6 # (.
Then we have for ¢ := 0] (\x.r)

Y((Az.r)r")0) = (Aar)S(0)S(r'0) >p, (r(X(r') /o - £(0"))) = S(r{r'/x}0).

The case foar(Az.r) N dom@ = ) is treated in a similar way.

(4.3.5) #0255 is ((Ax.r)m")@»ir(r’/x -0)f. Let us first assume that we have
foar(Az.r) N dom(cf) # 0. Then we get for p := (a0) [ (Ax.7)

Y((Az.r)or)0) = Az.r)Z(p)2(r'0) 5, S(r(X(r'0)/z - X(p))) = Z(r(r' [z - 0)8).

The case foar(Az.r) N dom(cf) = () is treated in a similar way.

(4.4) t' is the term (¢"¢). Since t"0g0 >L t"(c6) we can apply the main induction
hypothesis to t"(c#). According to t'0 L s we can distinguish the following three
subcases:
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(4.4.1)t'0 L sis 00 L 00! and is a consequence of 0 L Then, by the main
induction hypothesis, we have

S(t'00) = D(t"(08)) >4, St (00)) = S(¢"00).

(4.4.2) #0255 is t700+251"0'0 and is a consequence of o+2s¢'. This case is
treated in a very similar way as (4.4.1).

(4.4.3) #9055 is 100+ L5 100 and is a consequence of vy Then, by the
main induction hypothesis, we have

Y(t"00) = X(t"(00)) >p, (" (00)) = (" 00).
This finishes the proof of our claim. [
Since t Dé s trivially implies ¢ SN s, we get the following corollary.
Corollary 45 We have for all terms t and s:
t>ys = XN(t)>g, 2(s).
Corollary 46 We have for all terms t and s:
t>s = X(t)>g, X(s).

PROOF Assume ¢ > s. Then there is a sequence of terms t¢q,...,t, so that we have
ty =t t,=sand forall 1 <i<n

t; D; tiv1 or D}; tiv1-

In the first case we have X(¢;) = X(¢;41) and in the latter, by the previous corol-
lary, X(t;)>p, S(ti+1). Together we immediately get X(t) >g, X(s), since >g, is
transitively closed. O

We are ready to prove the confluence of .
Theorem 47 > is Church Rosser.

PROOF Let ¢,t; and ¢ be A,o terms and assume that
t > tl and t > tz. (1)
Then the previous corollary immediately implies

S(t) >, B(t)  and  S(t) >4, N(t). 2)
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By Theorem 42 we know that >z, is confluent, hence there is a Ayo term s in
substitution normal form satisfying

Y(t1)>p, s and  X(ta)D>g, s. (3)
Since >, C >, we get from (3)
Y(t)>s and  X(ty) > s, (4)
which immediately implies
th>X(t)>s  and  ty > X(te) > s. (5)

The claim is established. O

5 Conclusion

We have addressed some defects of the partial A calculus A, as a constructive frame-
work for partial functions. The drawbacks of A, become even more perspicuous in
the light of Pezzoli’s theorem (cf. Theorem 9). We have proposed a modification
Ao of A, by explicit substitutions. The system A,o is embeddable into partial
combinatory logic CL,, and therefore, inherits all its models. In particular, A,o has
a standard interpretation in terms of ordinary recursion theory. We have studied a
reduction relation for A,o and we have established a confluence result. The reduc-
tion relation gives rise to direct constructions of term models for A,o. The detailed
constructions will be discussed later.

As already mentioned, the theory of explicit substitutions has been treated be-
fore, primarily in connection with the implementation of functional programming
languages. The main reference on weak calculi of explicit substitutions is [5]. In
contrast to our approach, not only equality between terms, but also equality be-
tween substitutions has been axiomatized in most of the previous work on explicit
substitutions (an exception is [20]). Although this can easily be achieved, the sys-
tems have much more axioms, and we think that — especially from a foundational
point of view — the real concern is to axiomatize and control the notion of a sub-
stitution applied to a term, whereas equality between substitutions can be treated
in the metalanguage. Furthermore, the previous systems of explicit substitutions
are mainly term rewriting systems, and — this is the main difference to our A,o
calculus — application in those systems is always total. The very purpose of our
work, however, was to study questions of substitution in the context of partiality,
and to design a more perspicuous version of the partial A calculus, which has natural
partial models and is equivalent to partial combinatory logic.
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The question arises, why one should use a fairly complicated system like A,o at
all, instead of the formally more simple partial combinatory logic CL,. We think
that A,o has advantages over CL,. The main reason is that in the system CL,, the
intuitive clarity of the A notation is completely lost. Additionally, many mistakes
in the literature concerning substitution in CL, suggest that it is also worth having
an explicit treatment of substitution as in A,o. We, therefore, think that A,o can
serve as an adequate applicative basis for systems of explicit mathematics.

As already mentioned in the introduction, Stérk [27] has recently given a very natural
relationship between the programming language SCHEME and the A, o calculus. In
his approach, partiality of A,o is essential. The results of Stark give further evidence
for the foundational significance of the A,o calculus.
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