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Abstract
This paper deals with the proof theory of first order applicative theories with
non-constructive p operator and a form of the bar rule, yielding systems of
ordinal strength I'y and 20, respectively. Relevant use is made of fixed point
theories with ordinals plus bar rule.

1 Introduction

In the past few years there have been rather extensive proof-theoretic investigations
on Feferman’s explicit mathematics (cf. [6, 7]) with a predicatively justified quan-
tification operator p, cf. the papers Feferman and Jéger [9, 10], Glal and Strahm
[13], Jéger and Strahm [17, 18] and Marzetta and Strahm [19]. The systems studied
in the context of p range from pure first order applicative frameworks to theories of
types and names with universes.

It is the aim of the present article to continue these investigations; more precisely,
we want to study the role of the bar rule in pure applicative theories with non-
constructive p operator. We will show that the corresponding theory AutBON(p)
has the same proof-theoretic strength as predicative analysis and, hence, its proof-
theoretic ordinal is exactly the Feferman-Schiitte ordinal ['y. Further, we will shortly
discuss the effect of replacing the applicative basis of AutBON(u) by Schliiter’s
[21] applicative axioms for primitive recursive application; we will see that the so-
obtained theory with p operator and bar rule has proof-theoretic ordinal ¢20.

The upper bound computations for explicit mathematics with p carried through in
[9, 10, 13, 17, 18, 19] have made substantial use of so-called fixed point theories
with ordinals which go back to Jager [15]. The adequate system for the treatment
of AutBON(p) is the system PA{ of [15] plus a suitable substitution rule (Subst).
In this paper we establish the upper bound 'y for an extension of PAY + (Subst),
namely PA}, + (Subst); the latter system includes induction on the ordinals for
statements which are ¥ in the ordinals. PA§ + (Subst) is also used in a crucial way
for establishing proof-theoretic bounds of theories for least fixed point recursion in
the paper Feferman and Strahm [11].

The exact procedure of this paper is as follows. In Section 2 we introduce the for-
mal framework of the theory AutBON(yx). Section 3 is devoted to the lower bound
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computation for AutBON(z): we show that the theory Aut(II}) for autonomously
iterated II} jumps is contained in AutBON(p). In Section 4 we discuss fixed point
theories with ordinals and a substitution rule. In particular, we give a complete
ordinal analysis of the system PA& + (Subst). In Section 5 we conclude the up-
per bound computation for AutBON(x), and in Section 6 theories with primitive
recursive operations plus 4 and bar rule are considered.

2 The theory AutBON(u)

In this section we introduce the applicative framework AutBON(y), which is obtained
from the basic theory of operations and numbers BON (cf. [9]) by adding a suitable
axiomatization of the non-constructive p operator and a form of the bar rule.

2.1 The basic theory of operations and numbers BON

Our applicative language £ is a first order language of partial terms with individ-
ual variables a, b, c,z,y, z,u,v,w, f,g,h, ... (possibly with subscripts). £ includes
individual constants k,s (combinators), p, po, p1 (pairing and unpairing), 0 (zero),
sy (numerical successor), py (numerical predecessor), dy (definition by numerical
cases), £ (unbounded minimum operator), and cy (characteristic function of U).
Further, £ has a binary function symbol - for (partial) term application, unary rela-
tion symbols | (defined), N (natural numbers) and U (free relation symbol) as well
as a binary relation symbol = (equality). The free relation symbol U will be used
in order to formulate the substitution rule below.

The individual terms (r, s, t,r1, s1,11,...) of £ are inductively defined as follows:
1. The individual variables and individual constants are individual terms.
2. If s and ¢ are individual terms, then so also is (s - t).

In the following we write (st) or just st instead of (s-t), and we adopt the convention
of association to the left, i.e. sysy...s, stands for (...(sys2)...s,). We also write
(t1,t2) for ptity and (tq,ts, ..., t,) for (t1, (t2, ..., t,)). Further we put t' := syt and
1:=0"

The formulas (A, B,C, Ay, By, C4,...) of L are inductively defined as follows:
1. Each atomic formula N(¢), U(t), ¢t} and (s = t) is a formula.
2. If A and B are formulas, then so also are =A, (AV B), (AAB) and (A — B).

3. If A is a formula, then so also are (3x)A and (Vx)A.



Our applicative theories are based on partial term application. Hence, it is not
guaranteed that terms have a value, and t] is read as “¢ is defined” or “¢ has a
value”. The partial equality relation ~ is introduced by

s>t = (slVit]) = (s=1).

In addition, we write (s # t) for (s] A tL A =(s =t)). Finally, we use the following
abbreviations concerning the predicate N:

teN = N(1),
(Fxr eN)A = (Fz)(x e NAA),
(Vz e N)A = (Vz)(x € N = A),
(t:N—N) = (Vz € N)(tx €N),
(t:N™' - N) = (Vo €N)(tz:N™ - N).

The underlying logic of BON is the classical logic of partial terms due to Beeson [1];
it corresponds to E™ logic with strictness and equality of Troelstra and Van Dalen
[25]. The non-logical axioms of BON are divided into the following five groups.

|. Partial combinatory algebra.
(1) kzy ==,
(2) szyl A szyz ~ xz2(yz).
[1. Pairing and projection.
(3) po(x,y) =2 A pi(2,y) = .
[11. Natural numbers.
(4) 0 e N A (Vz € N)(2' € N),
(5) (Vo € N)(a' # 0 Apn(a') = @),
(6) (V€ N)(z #0 — pyz € NA (pnz) = x).
[V. Definition by numerical cases.
(7) ae NAbEN A a=0b— dyzyab = z,
(8) ae NAbEN A a#b— dyzyab =y.
V. Characteristic function of U.
(9) (Vz € N)(cyz =0 V cyz = 1),
(10) (Vz € N)(U(z) > cyz =0).



As usual the axioms of a partial combinatory algebra allow one to define A abstrac-
tion and to prove a recursion or fixed point theorem. For proofs of these standard
results the reader is referred to [1, 6].

In contrast to the axiomatization of BON e.g. in Feferman and Jéger [9], we omit
axioms about primitive recursion on N. This is justified by the fact that we will not
consider BON in the context of restricted induction principles and, hence, axioms
V. of [9] become derivable by means of the recursion theorem and a certain amount
of complete induction on N.

2.2 The non-constructive u operator and the bar rule

On our way to the exact formulation of the theory AutBON(u), let us now consider
the non-constructive p operator. We follow its axiomatization in Jager and Strahm
[17, 18]. For a discussion of different formulations of p, the reader is referred to [18].

The unbounded minimum operator
(11) (F:N=N) & uf €N,

(n-2) (f:N—=N)A @@z eN)(fz=0) = f(uf)=0.

In a next step we turn to the formulation of the bar rule. For that purpose, let < be
a binary primitive recursive relation which is naturally represented in our applicative
framework as usual. Then we set

Prog(<,A) = (VzeN)((Vy e N)(y <z — A(y)) = A(x)),
TI(<,A) := Prog(<,A) — (Vz € N)A(z).

An instance of the bar rule (BR) has now the form

TI(=,U)

(BR) TI(<,A)’

for < a primitive recursive relation and A(z) and arbitrary formula of £. Further,
the schema of complete induction on the natural numbers (IND) is spelled out as

(IND) A0) A (Vz € N)(A(x) — A(2")) — (Vx € N)A(z)

for A(z) again an arbitrary formula of £. The theory AutBON(u) is now obtained
from BON by adding axioms (u.1) and (4.2) for the unbounded minimum operator,
all instances of the bar rule (BR) and complete induction on the natural numbers.

We call an ordinal o provable in the theory T if there exists a primitive recursive
wellordering < of ordertype « so that T = TI(<,U). The least ordinal « that is not
provable in T is called the proof-theoretic ordinal of T, in symbols, |T].

In the sequel we show that AutBON(u) is proof-theoretically equivalent to predica-
tive analysis and, hence, its proof-theoretic ordinal is exactly the Feferman-Schiitte
ordinal I['y.



3 A lower bound of AutBON(u)

In this section we establish that the subsystem of second order arithmetic Aut(TT})
for autonomously iterated IIj jumps is contained in AutBON(p). Since Aut(TT}) has
the same strength as predicative analysis, RA.r,, this yields I'y as a lower bound
for the proof-theoretic strength of AutBON(p).

3.1 The theory Aut(II})

In the following we introduce various theories for iterating arithmetic comprehension,
in particular the theory Aut(IL}), cf. e.g. Feferman and Jager [8].

Let £; denote the usual first order language of arithmetic with number variables
a,b,c,u,v,w,x,y, 2, ..., the constant 0 as well as function symbols for all primitive
recursive functions. We further assume that £; contains the free unary relation
symbol U. The language £, of second order arithmetic extends £y by set variables
X,Y, Z, ... (possibly with subscripts) and the binary relation symbol € for element-
hood between numbers and sets. Terms and formulas of £, are defined as usual. We
write s € (X); for (s,t) € X, where (-,-) is a standard primitive recursive pairing
function with associated projections (-)p and (-);. An £, formula is called arithmetic,
if it does not contain bound set variables; let TI} denote the class of arithmetic £,
formulas. All £, theories considered in this article contain the system (IT}-CA)[ of
arithmetic comprehension together with the induction axiom.

Let us now turn to theories for iterating IIj comprehension. We assume that the
reader is familiar with the Veblen functions ¢a, the ordinal I'y as well as primitive
recursive standard wellorderings of order type up to I'y, cf. [20, 22]. For such a
wellordering < and a IT} formula A(X,Y,a,y) with at most X,Y,a,y free, we can
define the A jump hierarchy along < with parameter X by the following transfinite
recursion:

(Y)a = {m: AX,(Y)" a,m)},

where (Y)* denotes the set {(m,b) : b < a Am € (Y),}. Let us write H3(X,Y)
for the arithmetic £, formula which formalizes this definition. For a < I'y, the £,
theory (II}-CA),, is defined to be (IT}-CA)| plus the axioms

(VX)@AY)HI(X,Y) and TI(<,B),

for < a primitive recursive standard wellordering of ordertype o, A(X,Y,a,y) a IT}
formula and B an arbitrary £, formula. The union of the theories (IIj-CA)j for
B < a is denoted by (IT}-CA) 4.

Instead of iterating arithmetic comprehension along externally given wellorderings,
the theory Aut(IT}) claims the existence of the A jump hierarchy only along those
primitive recursive <, whose wellfoundedness has previously been established within



Aut(IT}). Accordingly, the theory Aut(IT}) of autonomously iterated arithmetic com-
prehension is defined to be (II}-CA)| plus the bar rule (BR) and the following rule
of inference:

TI(<,U)
(VX) @) HA(X, )
Here < denotes a primitive recursive relation and A a IIj formula. It is well-known
that Aut(II}) is equivalent to (IT}-CA).r,, and the proof-theoretic ordinal of both

systems is Iy, cf. [3, 8]. For more information about theories with iterated compre-
hension and autonomous processes, the reader is referred to [4, 5, 12, 24].

3.2 Embedding Aut(II}) into AutBON(u)

In this paragraph we sketch the main lines of an embedding of the theory Aut(II})
into AutBON( 1), thus generalizing similar lower bound arguments given in Feferman
and Jéger [9, 10] and Glafl and Strahm [13].

Let us first recall that sets of natural numbers are most naturally understood in
our applicative framework via their characteristic functions which are total on N.
Accordingly, we define

f€P(N) := VzeN)(fe=0V fz=1),

with the intention that an object z belongs to the set f € P(N) if and only if
(fx =0). For example, axiom (9) of BON claims that cy € P(N).

There is an obvious embedding (-)N of the language £; into £. We now extend this
embedding to the language £, as follows. The set variables of £, are supposed to
range over P(N) and, accordingly, an atomic £, formula (z € V) is translated into
(yx = 0), where z and y are the variables of £ which are associated to the variables
x and Y of L,, respectively. Hence, the extended translation () is such that

(AX)AX))" = (3w € P(N)) A% (),

and similarly for universal quantifiers. In order to simplify the notation, we identify
terms and formulas of £, and their translation into £ when there is no danger of
confusion.

This is the right place to mention a crucial application of the unbounded x operator,
namely elimination of number quantifiers (cf. [9]). The following lemma is proved
by straightforward induction on the complexity of A.

Lemma 1 For every arithmetic £, formula A(X, ) with at most X, free there
exists an individual term t4 of L so that

1. AutBON(u) - (VZ € P(N))(V§ € N)(tAZF = O V 1477 = 1),
2. AutBON(p) - (V& € P(N))(V§ € N)(AN(Z, ) ¢ t4Z7 = 0).



The central step in verifying the (-)N embedding of Aut(I}) in AutBON(s) consists
in proving the existence of the A jump hierarchy along a provably wellfounded
primitive recursive <. The proof of the following lemma is a generalization of similar
arguments in Feferman and Jéger [9] and Gla and Strahm [13].

Lemma 2 Let < be primitive recursive so that AutBON(u) = TI(<,U). Further
assume that A(X,Y,a,y) is an arithmetic L, formula. Then there exists a closed L
term h so that we have:

AutBON(u) -2 € P(N) — hz € P(N) A H;(x, hx).

Proof. Let t4 and tp be the £ terms which are associated to the arithmetic £,
formulas A(X,a,y) and B(z,a) by the previous lemma, where B(z, a) denotes the
formula

72 =((2)o, (2)1) A (2)1 < a. (1)

Further, the operation f is given by
f = Azaz.(dy(x(2)1(2)0)1(tpza)0). (2)

If = is assumed to be an operation which enumerates the sets xb, then fza is a
characteristic function of the disjoint union of the sets (zb)y<,. In the following we
work informally in the theory AutBON(s). By the recursion theorem we can find an
operation g which satisfies the following recursion equation:

gray = tax(f(gz)a)ay.
We have that gza represents the ath level of the A jump hierarchy with parameter
x, but it remains to show that indeed gxa € P(N) provided z € P(N). The natural
way to prove this is by transfinite induction along <, of course. By assumption we
know TI(<,U), which by (BR) yields TI(=<, C) for arbitrary £ statements C'. One
readily verifies

z € P(N) = Prog(<, gza € P(N)), (3)
and, therefore, we get by transfinite induction
z € P(N) = (Va € N)gza € P(N). (4)

Our argument is finished by setting h := Azy.gx(y)1(y)o. O

As the remaining axioms and rules of Aut(IT}) are easily dealt with, too, we are now
in a position to state the following embedding theorem.

Theorem 3 We have for every L, formula A(X,§) with at most X, free:
Aut(IT)) - A(X, ) = AutBON(p)FZe P(N)AGeN — AN(Z, 7).

Using the definition of proof-theoretic ordinal of Section 3.1, we have thus established
the following corollary.

Corollary 4 'y < |[AutBON(pu)|.

In the following two sections we will show that I'y is in fact also an upper bound for
the proof-theoretic ordinal of AutBON(u).
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4 Fixed point theories over Peano arithmetic with
ordinals and a substitution rule

Fixed point theories over Peano arithmetic with ordinals have been introduced in
Jéger [15], and extended to second order theories with ordinals in Jiger and Strahm
[16]. They have been used in the proof-theoretic analysis of systems of explicit
mathematics with the non-constructive y operator in an essential way, cf. Feferman
and Jager [9, 10], GlaBl and Strahm [13], Jiger and Strahm [17, 18], and Marzetta
and Strahm [19].

The system that is adequate for the treatment of AutBON(u) is the theory PA{
of [15] plus a suitable substitution rule (Subst); in Section 5 we will describe an
embedding of AutBON(x) into PA + (Subst). The theory PAY includes a very weak
form of induction on the ordinals, so-called A induction. Although A§ induction
on the ordinals is sufficient for the treatment of AutBON(u), it turns out that one
can even allow induction on the ordinals with respect to statements which are X
in the ordinals: the corresponding theory PA{ together with the substitution rule

(Subst) is still predicative. In the following we give a complete ordinal analysis of
PAY + (Subst), thereby showing that |PA& + (Subst)| < Ty.

As we have already mentioned in the introduction, the theory PA{ + (Subst) is
also crucial for establishing some proof-theoretic results due to S. Feferman and the
author, which are reported in Feferman and Strahm [11]. For this work, the presence
of % induction on the ordinals is essential.

4.1 The theories PAY, + (Subst) and PA{, + (Subst)

Let us now specify the exact formulation of fixed point theories over Peano arithmetic
with ordinals plus substitution rule.

We first introduce the notion of an inductive operator form. Let P be an n-ary
relation symbol which does not belong to the language £, and let £, (P) denote the
extension of £; by P. An £;(P) formula is called P positive if each occurrence of P
in it is positive. We call P positive formulas which contain at most ¥ = x1,..., 2,
free inductive operator forms; we let A(P, Z) range over such forms. Observe that
the relation symbol U can have positive and negative occurrences in an inductive
operator form A(P, %).

Now we extend L£; to a new first order language L by adding a new sort of ordinal
variables (o,7,n,€,0...), new binary relation symbols < and = for the less relation
and the equality relation on the ordinals’ and an (n + 1)-ary relation symbol P4 for
each inductive operator form A(P, Z) for which P is n-ary.

'In general it will be clear from the context whether < and = denote the less and equality
relation on the nonnegative integers or on the ordinals.



The number terms of Lo are the number terms of £;; the ordinal terms of Lq are
the ordinal variables of Lq. The formulas of Lq (A, B, C, .. .) are inductively defined
as follows:

1. If R is an n-ary relation symbol of £;, then R(sy,...,s,) is an atomic formula
of ,CQ

2. The formulas (0 < 7), (0 = 7) and P4(o, §) are atomic formulas of Lq.

3. If A and B are L formulas, then so also are =A, (AV B), (A A B) and
(A — B).

4. If A is an Lq formula, then so also are (3z)A and (Vz)A.

5. If A is an Lg formula, then so also are (I < o)A, (V€ < o)A, (F€)A and
(VE)A.

For every L formula A we write A% to denote the Lo formula which is obtained
by replacing all unbounded ordinal quantifiers (Q¢) in A by (Q¢ < o). Additional
abbreviations are:

Pi(5) == Pa(0.8), P5(5) = (3 <o)P4(), Pa(d) = (OP4().

We introduce several classes of L formulas, which will be important for the ordinal
part of our fixed point theories. The Af} formulas are the Lo formulas which do
not contain unbounded ordinal quantifiers; the ¢ [[I%] formulas are the Lg for-
mulas which do not contain positive universal [existential] and negative existential
[universal] ordinal quantifiers. The union of ¥ and 1 is denoted by V<.

We are now ready to give the exact formulation of Peano arithmetic with ordinals,
PAgq. It is based on the usual two-sorted predicate calculus with equality and classical
logic. The non-logical axioms of PAq are divided into the following six groups:

[. Number-theoretic axioms. The axioms of Peano arithmetic PA with the exception
of complete induction on the natural numbers.

II. Inductive operator axioms. For all inductive operator forms A(P, Z):
P§(5) & A(P5",5).
1. £ Reflection axioms, (X?-Ref). For all X9 formulas A:
A — ()AL,
[V. Linearity axioms.

oo N(c<TAT<n—=0<n A(c<TVo=1VT<o0).

V. Formula induction on the natural numbers, (F-ly). For all Lq formulas A(z):

A(0) A (Vo) (A(z) — A(a')) — (Vo)A(z).
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VI. Formula induction on the ordinals, (F-lg). For all Lq formulas A(¢):

(VOI(¥n < &) A(n) = A(&)] = (VEA(E).

This finishes the description of PAg. From the inductive operator and £ reflec-
tion axioms one can easily deduce that the X formulas P4 describe fixed points
of the inductive operator form A(P,Z). Moreover, it is well-known that PAq is
proof-theoretically equivalent to ID; and many of its subsystems are of predicative

strength, cf. Jager [15] and Jiger and Strahm [18] for detailed information.

By the bar or substitution rule we now mean the following rule of inference:

A(U)
(SUbSt) M,
for A(U) in £; and B(x) an arbitrary Lq formula. Here A(B) is obtained from A(U)
by replacing each subformula U(t) by B(t).

In the following we will be interested in studying the substitution rule (Subst) to-
gether with two fragments of PAg, namely PAY and PA{. We obtain PAY% from PAq
by allowing induction on the ordinals for Af} formulas only, and PA{ is the subsys-
tem of PAg where induction on the ordinals is restricted to £ formulas. Summing
up, in PA% and PA{;, we replace (F-lg) by (Af-lg) and (X%-lg), respectively, so that
we have

PAY C PA, C PAq.

In the sequel we show that the strength of PA{ + (Subst) is bounded by 'y and,
hence, |PAY + (Subst)| < Ty, too. Later we will also see that AutBON(x) can be
embedded into PAY + (Subst).

We finish this paragraph by mentioning that the theory PAY (without the substi-
tution rule) is closely related to the subsystem of Kripke Platek set theory KPu® +
(INDy) + (X;-IND¢) (cf. Jéger [14]). More precisely, both systems have proof-
theoretic ordinal ¢(pg00)0 (joint work of M. Rathjen and the author).

4.2 The infinitary system T,

In this section we introduce the infinitary system T, which will be used for the
proof-theoretic treatment of PA{, below. It is based on the language L., which
extends Lq by constants @ for all ordinals o < T'y. The ordinal terms (6, 6,0, . ..)
of L, are the ordinal variables and the ordinal constants of L.,. The literals of L.,
are the literals of L extended to the language L,,. To simplify the notation we
often write A(«) instead of A(@) if «v is an ordinal less than T'y.

The formulas of L, are inductively generated as follows:
1. Every literal of L, is an L, formula.

2. If A and B are L, formulas, then so also are (AV B) and (A A B).
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3. If Ais an L formula, so also are (3z)A, (Vx)A, (I < 0)A and (V€ < 0)A.

Since T, is a Tait-style system, we assume that the negation —A of an £, formula
A is defined as usual by making use of De Morgan’s laws and the law of double
negation. Notice that L., formulas do not contain unbounded ordinal quantifiers.
The LS, formulas are the L., formulas which do not contain free number and free
ordinal variables. Furthermore, a literal of £ is called primitive if it is not of
the form U(s), =U(s), P(5) or =P%(5). Obviously, every primitive literal of £ is
either true or false, and in the following we write TRUE for the set of true primitive
literals. Finally, two L, formulas are called numerically equivalent, if they differ in
closed number terms with identical value only.

In order to measure the complexity of cuts in T, we assign a rank to each LS
formula. This definition is tailored so that the process of building up stages of an
inductive definition is reflected by the rank of the formulas P%(5).

Definition 5 The rank rn(A) of a £, formula A is inductively defined as follows:

1. If Ais a literal R(5), ~R(5), U(s), =U(s), (o < B), (o £ B), (« = B) or
(o # ), then rn(A) := 0.

2. If A is a literal P§(3) or =P%(5), then rn(A) := w(a + 1).

3. If Ais a formula (B V C) or (B A C) so that rn(B) = 8 and rn(C) =+, then
rn(A) := max(5,v) + 1.

4. If A is a formula (3x)B(z) or (Vx)B(z) so that rn(B(0)) = «, then rn(A) :=
a+ 1.

5. If Ais a formula (3¢ < o) B(&) or (V€ < a)B(€), then

rn(A) ;= sup{rn(B(f)) +1: 8 < a}.
We write oc(B) for the set of ordinal constants which occur in the £, formula B.

The proof of the following lemma is a matter of routine (cf. [16, 18]).

Lemma 6 We have for all inductive operator forms A(P, %), all LS formulas A and
all ordinals o < T'y:

1. rn(A(P3%,35)) < rn(P%(9)).
2. If p <« forall p € oc(A), then rn(A) < wa + w.

The system T, is formulated as a Tait-style calculus for finite sets (I', A, ...) of £,
formulas (cf. e.g. [23]). If A is an £ formula, then I'; A is a shorthand for TU{A},
and similarly for expressions like I, A, B. T, contains the following axioms and
rules of inference.
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|. Axioms. For all finite sets I' of LS formulas, all closed number terms s and ¢ with
identical value, and all literals A in TRUE:

I, =U(s), U(t) and T, A.

[l. Propositional rules. The usual Tait-style rules for conjunction and disjunction.
[Il. Number quantifier rules. For all finite sets I' of £ formulas and all £ formulas
A(s):

[, A(s) [, A(t) for all closed number terms ¢ ()
L @A) . (V) A(2) o

IV. Ordinal quantifier rules. For all finite sets I" of £ formulas, all £S formulas A(«)
and all ordinals # with a < 8 < I'y:

I, A(a) [, A(y) for all v < 8
', (3§ < B)A(E)’ I, (V€ < B)A(E)

V. Inductive operator rules. For all finite sets ' of £ formulas, all inductive operator
forms A(P, ), all closed number terms § and all ordinals « < T'y:
L, A(Pja,g’) L, _'A(Piaﬂg)
L, Pﬁ(g) 7 L, _'P.?l(g)

VI. Cut rules. For all finite sets I' of LS, formulas and all £S, formulas A:

IA T, -A
= .

The formulas A and —A are the cut formulas of this cut; the rank of a cut is the
rank of its cut formulas.

As usual, for a and p less than T'y, we write T }% [ if T is provable in T, by a
proof of depth less than or equal to « so that all cuts in this proof have rank less
than p. Further, we write T, li—z [, if there exists o/ < a and p' < p so that
Too 15 T

It is easy to check that the assignment of ranks and the rules of inference are tailored
so that the methods of predicative proof theory yield full cut elimination for T,.
Therefore, we omit the proof of the following theorem and refer to Pohlers [20] or
Schiitte [22].

Theorem 7 (Cut elimination for T,) We have for all finite sets ' of LS, for-
mulas and all ordinals «, B, p < T'y:

Ty |—gpr I = T Lga T.
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We finish this paragraph by mentioning a tautology and a persistency lemma, which
we will use in the next section. The proofs proceed as usual.

Lemma 8 (Tautology lemma for T,) We have for all finite sets I of LS, for-
mulas and all numerically equivalent LS, formulas A and B:

T P2 -4 B,

Lemma 9 (Persistency lemma) We have for all finite sets I' of LS, formulas,
all X% formulas A(E) and I formulas B(€) of Lq with free variables among those
indicated, all ordinals «, 3,7,6, p < 'y so that § < d:

LTS, A%7) = TolT, A(9).

p

2. Tl T, B°(7) = Tk T, BY(9).

This finishes our description of the system T.. In a next step we want to give the
exact upper bound computation of PAY + (Subst).

4.3 The proof-theoretic reduction of PA{, + (Subst)

In this section we show that |PA{ + (Subst)| < T'g. We first introduce an infinitary
Tait-style version T of PA{, which is subsequently reduced to T, via an asymmetric

interpretation. Suitable iteration of this argument will finally yield the desired upper
bound.

In a first step let us describe a semiformal Tait-style reformulation T of PA{; es-
sentially, T is PA{, where full induction on the naturals is replaced by the w rule.
Accordingly, the language L§, of T is L without free number variables, and negation
in Lq is defined. We briefly address the axioms and rules of inference of T.

|. Axioms. For all finite sets I' of £§, formulas, all numerically equivalent % formulas
Ay and Ay of L§, all L, literals B in TRUE and all linearity axioms C":

F, _|A1, A2 and F, o % T, _|A1(U), AQ(T) and F, B and F, C.

Il. Propositional and quantifier rules. These include the usual Tait-style inference rules
for the propositional connectives and all sorts of quantifiers; a universal number
quantifier is introduced via the w rule.

[1. Inductive operator rules. These are formulated as for T.,, but with ordinal vari-
ables instead of constants.

IV. ©¥ reflection. For all finite sets T' of £, formulas and for all % formulas A:

T, A
T, (3¢)As

13



V. ¥ induction on the ordinals. For all finite sets ' of £, formulas, all ¥ formulas
A(o) and all ordinals variables £ which do not occur in I'; A(0):

L, ﬁ(VW < f)A(U)7 A(f)
I, A(o) '

VI. Cut rules. These are formulated in the same way as for T.

The degree dg(A) of an L, formula A measures the complexity of A over its X%
and I1% subformulas. Accordingly, dg(A) = 0 for A in V® and it is computed in the
usual way otherwise. In particular, dg(A) < w for all L§, formulas A. Moreover, we
have a standard derivability relation T I% fora < T’y and k£ < w.

Since the main formulas of all non-logical axioms and rules of T are V®, we obtain
the following partial cut elimination theorem for T; here 2;(«) is given as usual by
20() = o and 2j11 () = 2%,

Theorem 10 (Partial cut elimination for T) We have for all finite sets I" of L5,
formulas, all « < 'y and k < w:

TET — TR

The tautology lemma for T reads as usual; as a consequence, we get a substitution
lemma which will be used for the reduction of PA{, + (Subst) below.

Lemma 11 (Tautology lemma for T) We have for all finite sets I of LS, formu-
las and all numerically equivalent L, formulas A and B:

2-dg(A)

Too }T F, _|A, B

Lemma 12 (Substitution lemma for T) Let I'(U) be a finite set of closed L4
formulas and B(x) an Lq formula so that B(0) is in L. Further assume that
Tt (V) for some infinite ordinal o < I'q. Then we have that T 5~ I'(B).

In a next step we want to provide an asymmetric interpretation of the V fragment
of T into T,. For that purpose, we introduce the crucial notion of a (3, &) instance.
Let I' be a finite set of Lf, formulas, A a finite set of LS formulas and «, 3 < T'y.
Then A is called an (3, ) instance of ' if it results from ' by replacing

(i) each free ordinal variable by an ordinal less than 3;
(ii) each universal ordinal quantifier (V¢) in the formulas of T" by (V¢ < 3);
(iii) each existential ordinal quantifier (3¢) in the formulas of I by (3¢ < «).

We are ready to state the asymmetric interpretation theorem. For similar asymmet-
ric interpretations, cf. Cantini [2] and Jéger [14].

14



Theorem 13 (Asymmetric interpretation of T into T.,) Assume that T is a
finite set of V** formulas of LS, so that T I% I' for some ordinal o < I'y. Then we
have for all limit ordinals f < T’y and every (3, pa( + (3)) instance A of T':
pa(B+5)
Too pa(B+5) A

Proof. The theorem is proved by induction on «. In the following let us exemplary
discuss the case of £ induction on the ordinals. We make tacitly use of Lemma 9.

Let us assume that I is the conclusion of £ induction on the ordinals. Then there
exists a ¥ formula A(c) and an ag < « so that

T |a1_0 L, _'(vn < f)A(ﬁ), A(€)7 (1)

for £ a fresh variable. Now we fix a limit ordinal $ and define a sequence of ordinals
By (v < ) which is given by

B = eon(B 40 frar = poo(By+ B): By = supfy. (o limi).
7<

One easily verifies that (i) (3,) is strictly increasing, (ii) £, is a limit, and (iii)
By < pa(f + B). We want to establish by side induction on v < § that

Brr1+l 1
Too }W{"ﬂ) Aa Aﬁ’H— (7)2 (2)

The claim is easily verified in the case of v = 0. So assume that v > 0 and (2) is
true for all § < v < 3. Then we immediately obtain by persistency

By+1 8
Too (BT A, AP(0) (3)
for all 6 < . As a consequence we have
2
Too batanar A (V1 <) A% (). (4)

Now we apply the main induction hypothesis to (1) with the pair (3,, 3,11) and
obtain

Too boitiisr Ay (V0 < ) A% (), A%+ (7). (5)

pa
Now we can apply a cut to (4) and (5). One readily verifies by the properties of 3,
and Lemma 6 that the corresponding cut formula has rank less than (5 + ) so
that we can derive (2) as desired. This finishes our side induction. Moreover, we
have 3,41 +1 < pa(f + () and, hence, our argument is complete. [

We are now ready to put all pieces together in order to yield the upper bound I'y
for PA& + (Subst). For that purpose, let us write PA& + (Subst)<" for the subsystem
of PA{, + (Subst) where at most n applications of (Subst) are allowed. Moreover, let
Yo :=€o and Y41 := ¢©¥,0. Then we have the following crucial theorem.

2To be more precise, we mean the instance of A%+1(y) where all free ordinal variables are
replaced according to A.

15



Theorem 14 (Reduction of PA{, + (Subst)) Let C' be an LS, formula and A a
closed L, formula. Then we have for all natural numbers n:

1. PAS + (Subst)*" - C' = T2 C.

2. PAG + (Subst)< A = T, -2 4,

Proof. We proof 1. and 2. together by induction on n. Let us first establish the
<w—+tw

theorem for n = 0. In the case of 1. we have by a standard embedding that T }———
C whenever PAY = C and, hence, we get by Theorem 10 that T }% C. For 2.,
assume that PAS = A for an arithmetic A, which yields T I% A by 1. Thus we
obtain by the above asymmetric interpretation theorem T I% A, and by full cut

elimination for T, (Theorem 7) T, }% A.

Let us now establish the claims of the theorem for n + 1 assuming that they are
true for n. Again we first treat 1. and want to establish an embedding of PA{ +
(Subst)<"*! into T. Here the crucial case occurs when we derive A(B) from A(U)
for A arithmetic and B arbitrary, assuming that PA& + (Subst)<" + A(U). But
then we know from the induction hypothesis of 2. that T }% A(U), and hence
also T }% A(U), which by the substitution lemma (Lemma 12) yields T }%
A(B). All together we see that we get a (relativized) standard embedding so that
T }% C whenever PA}, + (Subst)<"*! - C and by partial cut elimination for
T this yields T }% C as desired. For the verification of the induction step of
2. let PA{, + (Subst)<"*! = A for an arithmetic A. We have just shown that this
yields T % A, so that we obtain T I%Zii A by the asymmetric interpretation
theorem. Finally, we get T, }% A by full cut elimination for T,,. This finishes
our argument. [

As usual, lengths of cut free derivations give rise to upper bounds of the proof-
theoretic ordinal (cf. [20, 22]), so that we are able to state the following corollary.

Corollary 15 |PA}, + (Subst)| < T.

4.4 A remark on II® induction on the ordinals

In the following let us briefly indicate how to extend the upper bound computation
for PA{, + (Subst) in the presence of I induction on the ordinals. We show that IT
induction in the ordinals, (IT1%-Ig), follows from the principle (II$-Ref), so-called IT
reflection on the ordinals, and we argue that (II-Ref) is apt for a proof-theoretic
treatment by means of asymmetric interpretation as presented above.

By (II-Ref) we mean the collection of statements
(VOBMAE ) — (Vo) Br > 0)(V€ < 1) 3T < A7)

for each A2 formula A(€, 7). The following lemma shows that indeed I1? induction
on the ordinals follows from A§ induction on the ordinals plus (II5-Ref).

16



Lemma 16 We have that PAY + (II$-Ref) proves each instance of (IT1-lg).

Proof. By (X-Ref) we may assume that a given II? formulas A(n) has the form
(Vo)B(o,n) for B(o,n) a Af formula. In the following we work informally in the
theory PAY + (II$-Ref) and assume

(VO)I(Vn < &)A(n) — A, (1)

which is spelled out as

(VO)[(vn < §)(Yo)B(o,n) = (Vo)B(0,£)]. (2)

Given arbitrary ordinals &, 0y, we must derive B(&y,0¢). First observe that (2) is
equivalent to

(V&, 7)30)[(vn < &) B(o,n) — B(r,£)]. (3)
Applying (II2-Ref) to (3) yields an ordinal § > o, & so that we have
(V&7 < 6)(30 < 9)[(Vn < §)B(o,n) — B(,8)], (4)
which in turn is equivalent to
(V& < 0)[(Vn < &) (Vo < 0)B(o,n) — (Vo < 8)B(0,)]. (5)
Applying A2 induction on the ordinals to (5) yields
(V€ < 6)(Vo < 6)B(0, ). (6)

In particular, we have B(0y,&) as desired. [

As we have mentioned above, (II3-Ref) enjoys a very straightforward asymmetric
interpretation. Basically, Theorem 13 just carries over to the presence of (II$}-Ref);
the details are left to the reader. Hence, PA{, + (II$-Ref) + (Subst) is not stronger
than PA{, + (Subst), so that we can state the following theorem.

Theorem 17 |PA{, + (II$-Ref) + (Subst)| < I.
From the previous lemma we can thus conclude:
Corollary 18 |PAS + (I1%-1g) + (Subst)| < T.

This finishes our short addendum concerning I1* induction on the ordinals.
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5 The upper bound of AutBON(u)

In this section we establish the upper bound I'y for the theory AutBON(u) by sketch-
ing an interpretation into the fixed point theory with ordinals PAY + (Subst). As
this embedding is very similar to the one given in Feferman and Jéger [9], we sketch
the main lines of the argument only and indicate the modifications which arise in
the presence of the bar rule.

In [9] the application operation with p is treated by a so-called generated model
construction in the framework of Peano arithmetic with ordinals. More specifi-
cally, application is modeled as a fixed point of a suitable ternary operator form
A(P,z,y, z) so that the £ formula (zy ~ z) is translated as P4(x,y, 2); this inter-
pretation is lifted to a translation (-)* of £ into Lq in a straightforward manner.
For the treatment of AutBON(u) we can work with essentially the same operator
form A(P,x,y,z) as in [9], p. 258, except for the following modifications: (i) the
clauses for primitive recursion ry can be omitted; (ii) the clauses for p have to be
modified in a straightforward manner in order to validate our slight strengthening
of the axiomatization of y; (iii) we have to add two clauses for the characteristic
function cy of U, namely:

r==¢y A z=0 A U(y); r=¢cy A z=1A =U(y).

Here ¢y denotes a suitable code for cy. Again the presence of Af} induction on the
ordinals is crucial in order to verify that the so-obtained application operation Py
is functional in its third argument.

We have that the bar rule (BR) in £ can easily be validated by an instance of (Subst)
in Lo and, hence, we are able to formulate the following embedding theorem.

Theorem 19 We have for every L formula A:
AutBON(p) = A = PAg + (Subst) - A*.

From Theorem 3 and Corollary 15 we are now able to derive the following proof-
theoretic equivalences.

Corollary 20 We have the following proof-theoretic equivalences:
AutBON(p) = Aut(ITj) = PAY + (Subst) = (I1;-CA).r, = RA_p,.
The proof-theoretic ordinal of all these theories is T'.

We can further strengthen our applicative axioms by assuming that application is
always total, (Tot), and that operations are extensional, (Ext). It is established
in Jiger and Strahm [17] that the presence of (Tot) and (Ext) does not raise the
proof-theoretic strength of various applicative theories including p, and one readily
verifies that these methods carry over to the present situation. Hence, the system
AutBON(u) + (Tot) + (Ext) is not stronger than AutBON(z).

Theorem 21 We have the following proof-theoretic equivalence:

AutBON(y) + (Tot) + (Ext) = AutBON(p).
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6 AutBON(u) based on primitive recursive
operations

In this section we shortly address the effect of replacing the axioms for a partial
combinatory algebra in BON by weaker axioms that allow an interpretation in terms
of the primitive recursive indices. We sketch that the corresponding modification
AutPRON (1) of AutBON(1) has the same proof-theoretic strength as (ITI}-CA) + (BR)

and, hence, its proof-theoretic ordinal is exactly ¢20.

Applicative systems allowing for an interpretation in the primitive recursive func-
tions go back to Schliiter. In [21] he introduced an abstract theory of rules for
enumerated classes of functions with the primitive recursive ones as a guiding ex-
ample. Instead of the axioms of a partial combinatory algebra, we have axioms for
a so-called partial enumerative algebra, where it is assumed that i,a and b are new
constants of our language:*

kxy = z; iz = x;
a(z,y)d A a(z,y)z ~ (x2,y2);
b(z,y)d A b(z,y)z = x(yz2).

It is shown in [21] that the axioms of a partial enumerative algebra allow one to
define a careful concept of lambda abstraction as well as to prove a weak form of
the recursion theorem.

The theory PRON of primitive recursive operations and numbers is now obtained
from BON by replacing the axioms for a partial combinatory algebra by those for
a partial enumerative algebra, and by adding an operation ry which axiomatizes
closure under primitive recursion, cf. [21] for details. The system AutPRON(u)
extends PRON(u) by the axioms about p, (IND) and (BR).

Let us now briefly address the proof-theoretic strength of AutPRON(u). For that
purpose, it is helpful to make a few comments on how to model application in
PRON( ). It is possible to obtain a standard recursion-theoretic model of PRON( )
in terms of arithmetic recursion theory. In particular, a suitable application relation
capturing “primitive recursive in p” can be defined so that the sets in the sense of
P(N) with respect to this interpretation are exactly the arithmetic sets. This is in
sharp contrast to the recursion-theoretic model of BON(u), which is based on IT}
recursion theory: here P(N) coincides with the hyperarithmetic sets.

Formalization of the standard model of PRON(yu) easily yields an embedding of
PRON(p) plus full induction on the naturals into (II;-CA). Further, if the model
is relativized to the relation U with its characteristic function cy, one can establish
a reduction of AutPRON(u) to (IT3-CA) + (BR). Moreover, it is straightforward to

3To be precise, terms are now defined from constants by closing against pairs and application,
cf. [21] for details.
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show that (II}-CA) + (BR) is contained in AutPRON(p) via the embedding (-)N.
Finally, standard methods of predicative proof theory serve to determine 20 as the
proof-theoretic ordinal of (IT}-CA) + (BR); 20 is also the proof-theoretic ordinal of
ramified analysis in all finite levels, RA_,.

Theorem 22 We have the following proof-theoretic equivalences:

AutPRON(p) = (ITL-CA) + (BR) = RA.,..

The proof-theoretic ordinal of all these theories is p20.

This finishes our sketchy remarks on an applicative theory with primitive recursive
operations, u operator, and bar rule.
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