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Abstract

We study elementary second order extensions of the theory ID� of non�

iterated inductive de�nitions and the theory PA� of Peano arithmetic with

ordinals� We determine the exact proof�theoretic strength of those extensions

and their natural subsystems� and we relate them to subsystems of analy�

sis with arithmetic comprehension plus ��

�
comprehension and bar induction

without set parameters�

� Introduction

This paper grew out of the need to set up a proper framework for the proof�theoretic
analysis of some extension of elementary explicit type theory with non�constructive
minimum operator EET���� which are presented in Feferman and J�ager ��	
 During
this research work it became clear� more or less immediately� that certain second
order theories with ordinals and elementary comprehension are tailored for this
purpose


However� it also turned out that second order theories with ordinals and elementary
comprehension are interesting for their own sake and that the concentration on those
theories needed for the treatment of elementary explicit type theory with unbounded
minimum operator is too narrow
 One obtains a much clearer picture by studying
second order theories with ordinals and elementary comprehension in a broader
context� and their careful analysis yields some relevant proof�theoretic information


Following a rather general principle it is possible to assign so�called G�odel�Bernays
extensions to arbitrary �rst order theories Th� One simply reformulates Th in a
second order language and adds further principles about the existence of second
order objects
 Of course the whole process is very sensitive to these set or class
existence axioms and to the way in which the interplay of �rst and second order
objects is regulated
 In particular� it makes a di
erence in most cases whether
induction principles are available for �rst or second order properties


�Research supported by the Swiss National Science Foundation�

�



In the following we study the G�odel�Bernays extensions which are generated from
the theory ID� of non�iterated inductive de�nitions and the theory PA� of Peano
arithmetic with ordinals �cf
 J�ager ���	� by elementary comprehension
 This process
yields two second order theories EID� and E� of proof�theoretic strength greater
than ID� and PA�
 In addition� we consider natural subsystems of EID� and E�
which are obtained by restricting induction �on the natural numbers� �xed points
and ordinals�


It is a matter of routine to obtain similar results for elementary G�odel�Bernays exten�
sions of variants of Kripke�Platek set theory
 But instead of going into this direction
here� we apply our results about EID�� E� and their subsystems to systems of
second order arithmetic with arithmetic comprehension plus ��

� comprehension and
bar induction without set parameters
 This gives the exact proof�theoretic analysis
of some second order theories introduced in Feferman ��	


� The syntax of second order theories with

ordinals and elementary comprehension

All systems considered in this article will be based on the usual language L of second
order arithmetic or on one of the languages L� and L� with ordinals
 L contains
the following basic symbols�

�
 Countably many number variables �v� w� x� y� z� v�� w�� x�� y�� z�� � � �� and count�
ably many set variables �V�W�X� Y� Z� V��W�� X�� Y�� Z�� � � ��


�
 Symbols for all primitive�recursive functions and relations and a further unary
relation symbols U which will have no speci�c interpretation


�
 The symbol � for forming the complements of these relation symbols


�
 The symbols � and �� for the membership relation and the nonmembership
relation between numbers and sets


�
 The propositional connectives � and � and the quanti�es � and �


As auxiliary symbols we have parentheses and commas� primitive�recursive func�
tions and relations are often identi�ed with the corresponding function and relation
symbols
 Observe that there is no propositional connective � for negation


The number terms �a� b� c� a�� b�� c�� � � �� of L are de�ned as usual
 The positive literals
of L are all expressions R�a�� � � � � an� so that R is a symbol for an n�ary primitive�
recursive relation and all expressions U�a�� the negative literals of L are all expres�
sions �E so that E is a positive literal of L
 The formulas of L are generated as
follows�

�
 All literals of L and �a � X� as well as �a �� X� are L formulas


�



�
 If A and B are L formulas� then �A �B� and �A �B� are L formulas


�
 If A is an L formula� then �xA� �xA� �XA and �XA are L formulas


The arithmetic formulas are the L formulas which do not contain bound set variables�
however� they may contain free set variables
 L is de�ned to be the �rst order part
of L� i
e
 L is the sublanguage of L which we obtain by omitting the relation symbol
� and all set variables


An arithmetic formula is said to be X�positive if it has no subformulas of the form
�a �� X�
 We call X�positive arithmetic formulas which contain no other free vari�
ables than x and X inductive operator forms and let A�X� x� range over such forms


Now we extend L to a new second order language L� by adding a new sort of ordinal
variables ��� �� �� �� ��� ��� ��� ��� � � ��� new binary relation symbols 	 and � for the
less relation and the equality relation on ordinals and a binary relation symbol PA
for each inductive operator form A�X� x�


The positive literals of L� are the positive literals of L as well as the expressions
�� 	 ��� �� � �� and PA��� a�� the negative literals of L� are all expressions �E so
that E is a positive literal of L� 


The formulas �A�B�C�A�� B�� C�� � � �� of L� are inductively generated as follows�

�
 Each literal of L� as well as �a � X� and �a �� X� are L� formulas


�
 If A and B are L� formulas� then �A �B� and �A �B� are L� formulas


�
 If A is an L� formula� then �xA� �xA� �XA and �XA are L� formulas


�
 If A is an L� formula� then ��� 	 ��A� ��� 	 ��A� ��A and ��A are L�

formulas


The elementary L� formulas are the L� formulas which do not contain bound set
variables� as in the case of arithmetic formulas� however� they may contain free set
variables
 Similar to above� L� is de�ned to be the �rst order part of L� � i
e
 L� is
the sublanguage of L� which we obtain by omitting the relation symbol � and all
set variables


The negation �A of an arbitrary L� formula A is inductively de�ned as usual by
making use of the law of double negation and de Morgan�s laws
 This means in
particular that �A is �A if A is a positive literal and �A is B if A is �B for some
positive literal B of L� 
 Now we set �A� B� �� ��A�B�� and we de�ne �A	 B�
as usual
 Additional abbreviations are�

P �
A�a� �� PA��� a�� P��

A �a� �� ��� 	 ��P �
A�a�� PA�a� �� ��P �

A�a��

Quanti�ers of the form �Q� 	 �� are called bounded ordinal quanti�ers
 For every
L� formula A we write A� to denote the L� formula which is obtained from A

�



by replacing all unbounded ordinal quanti�ers Q� in A by the bounded ordinal
quanti�er �Q� 	 ��


In the following we introduce several classes of L� formulas which will be important
for the ordinal part of the theories considered later
 The ��

� formulas are the
L� formulas which do not contain unbounded ordinal quanti�ers� and the �� ���	
formulas are the L� formulas which do not contain unbounded universal �existential	
ordinal quanti�ers
 The collection of all �� and �� formulas is denoted by r�

Please keep in mind that all r� formulas do not contain set variables
 Obviously a
formula A is a �� formula if and only if �A is a �� formula
 It is also clear that
each arithmetic formula without set variables is a ��

� formula


Induction principles will play a major role� and we distinguish between induction
on the natural numbers and induction on the ordinals
 Let F be a collection of L�
formulas
 Then F induction on the natural numbers consists of all formulas

�F �IN� A��� � �x�A�x�� A�x��� � �xA�x�

so that A belongs to the collection F 
 On the other hand� F induction on the
ordinals comprises all formulas

�F �I�� ������ 	 ��A���� A���	 � ��A���

where A is in F 
 In the following we consider the schemes ���
� �IN�� ��

�
� �I��� �El�IN��

�El�I��� �L� �IN� and �L� �I�� in which induction is available for all ��
� formulas�

elementary L� formulas and arbitrary L� formulas� respectively


By an L� theory we mean a collection of L� formulas
 Further� if Th is an L�

theory� then we write Th 
 A if the L� formula A is derivable from Th by the usual
axioms and rules of the many sorted predicate calculus with equality


LetTh be an L� theory which comprises the induction schemes �L� �IN� and �L� �I��

Then one can introduce the following interesting subtheories of Th�

�i� gTh is the subsystem which is obtained from Th by restricting induction on

the ordinals to elementary L� formulas� dTh on the other hand results from
Th by restricting induction on the ordinals to ��

� formulas


�ii� W�Th is the subsystem which is obtained from Th by restricting induction
on the natural numbers to elementary L� formulas� R�Th on the other hand
results from Th by restricting induction on the natural numbers to ��

� for�
mulas


It is also permitted to combine forms of restriction �i� and �ii�� and the resulting

theories are denoted in the obvious way �e
g
 W�gTh�


Now we are ready to introduce several second order theories with elementary com�
prehension and ordinals
 The strongest of those is the theory E� and contains the
following groups of non�logical axioms


�



I� Number�theoretic axioms� These comprise the axioms of Peano arithmetic
PA with exception of complete induction on the natural numbers


II� Inductive operator axioms� For all inductive operator forms A�X� x��

P �
A�a�	 A�P��

A � a��

III� �� re�ection axioms� For every �� formula A�

����Ref� A� ��A��

IV� Linearity axioms

�LO� � �	 � � �� 	 � � � 	 � � � 	 �� � �� 	 � � � � � � � 	 ���

V� Elementary comprehension� For every elementary formula A of L� �

�ECA� �X�x�x � X 	 A�x���

VI� Formula induction on the natural numbers and the ordinals� The
above introduced schemes �L� �IN� and �L� �I��


In this paper we carry through the proof�theoretic analysis of the following theo�
ries� R�dE�� W�dE�� W�gE�� dE�� gE� and E�
 We determine their proof�theoretic
ordinals and relate them to well�known �sub�systems of �rst and second order arith�
metic


Systems in which induction on the ordinals is allowed for a larger class of formulas
than induction on the natural numbers are not considered since we expect that
forms of I� without counterpart in IN cannot be exploited properly
 In a di
erent
context Cantini also considered theories with induction on the natural numbers and
the ordinals and made exactly the same observation �cf
 e
g
 ��	�


There exist several �more or less equivalent� methods to measure the proof�theoretic
strength of formal systems� and one standard way is to assign a proof�theoretic
ordinal to each theory
 Given a binary primitive recursive relation� and an arbitrary
formula A�x�� we set as usual�

Prog��� A� �� �x��y�y � x� A�y��� A�x���

TI ��� A� �� Prog��� A�� �xA�x��

De�nition � Let Th be a theory which is formulated in a language containing the
�rst order part of L


�
 We say that an ordinal 
 is provable in Th� if there exists a primitive recursive
wellordering � of ordertype 
 so that Th 
 TI ��� U�


�
 The proof�theoretic ordinal of Th� denoted by jThj� is the least ordinal which
is not provable in Th


In this de�nition we make use of the anonymous relation symbol U so that our
formulation corresponds to the usual ��

� de�nition of proof�theoretic ordinal �cf
 e
g

Sch�utte ���	�


�



� An ordinal notation system

In this section we brie�y mention an ordinal notation system which is adequate for
the treatment of all the theories considered in this article� and we introduce some
conventions concerning the use of ordinal terms in this paper


The notation system used in the following is the notation system �T�	� which is
developed in all details in Sections �� and �� of Pohlers ���	
 Hence� ordinal terms in
T are composed from �� � �the �rst regular � ��� �� 
 �the Veblen functions�� and
�
 In the sequel we presuppose that the reader is familiar with the system �T�	� of
���	 or a similar notation system
 In particular� K�
� denotes the set of components

and SC �
� the set of strongly critical subterms of an ordinal term 
 � T 
 We also
write M 	 
 if M is a subset of T so that � 	 
 for all � �M 


Furthermore� we have a collapsing function D de�ned from � with the property
D
 � T for all 
 � T 
 Based on D one de�nes as usual the binary essentially less

relation 
 on T by setting



 � ��� 
 	 � � D
 	 D�

for all 
� � � T 
 Then one easily veri�es the fundamental characterization property
of 
 given by



 � �� 
 	 � � SC �
� � � 	 D��

Notice that for 
� � � T � � one has 
 
 � if and only if 
 	 �
 For important
closure properties of the 
 relation the reader is referred to ���	
 In the sequel we
often write 

� for 

 � �
 � �� and if M � T � then M

 means that �


for all � �M 


Finally� we use the following de�nition� which corresponds to a similar de�nition of
���	
 The addition of k in clause ��� is not signi�cant and postulated for technical
reasons only �cf
 e
g
 the proof of Proposition ���


De�nition � Assume that n � � and 
 � T � and let f be an n�ary function from
T � � to T 
 Then we write f 
 
� if the following two conditions are satis�ed�

��� For all ��� � � � � �n � T � � and all k 	 ��

f���� � � � � �n� � k 	 
�

��� If � � T and 

 �� then for all ��� � � � � �n � T � ��

��� � � � � �n 
 � �� f���� � � � � �n�
 ��

Let us �nish this section by adopting some conventions concerning the encoding of
�T�	� into arithmetic� which will be used in the wellordering proofs below
 In the
following we identify T � 	� K� SC � �� �� �� 
 and � with their primitive recursive
arithmetizations
 In particular� we freely use expressions like a � T and a � K�b�
instead of their obvious formalization in arithmetic
 Moreover� we assume that the
ordinal term � � T is coded by the numeral �
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� The proof�theoretic strength of R� dE�� W� dE�

and W� gE�

The analysis of the theories R�dE�� W�dE� and W�gE� is given by showing that they
are conservative extensions of suitable �xed point theories over Peano arithmetic
with ordinals
 These �rst order theories PAr

�� PA
w

� and PA� have been introduced
and studied in J�ager ���	


In our present formalism� PAr

�
is the theory which is formulated in the �rst order

language L� and contains all axioms of R�dE� with the exception of elementary
comprehension� i
e
 PAr

�
is the restriction of R�dE� to the �rst order language L�


PAw

�
is the extension of PAr

�
by the scheme of complete induction on the natural

numbers for all L� formulas
 PA�� �nally� results from PAw

� by adding the scheme
of induction on the ordinals for all L� formulas


It is shown in ���	 that these theories are closely related to Peano arithmetic PA� to
the �xed point theorydID� of Feferman ��	 and to the well�known theory ID� of non�
iterated inductive de�nitions �cf
 e
g
 ��� �	�
 More precisely� the exact connections
between these theories are as follows


Theorem 	 
Conservative extensions I� We have�

�� PAr

�
is a conservative extension of PA with respect to L�

�� PAw

� is a conservative extension of dID� with respect to L�

	� PA� is a conservative extension of ID� with respect to L�

It follows a simple model�theoretic observation which makes it very easy to relate
the second order theories R�dE�� W�dE� and W�gE� and the �rst order theories
PAr

�
� PAw

�
and PA�
 Its proof is standard
 One simply expands the given �rst

order structure M to M� by interpreting the set variables to range over all subsets
of the universe jMj of M which are de�nable by formulas of L� with parameters
from jMj


Lemma � Let M be a model of PAr

�
� Then there exists a model M� of R�dE�

which has the following properties�

�� M� is an extension of M in the sense that we have for all sentences A of L��

M� j� A �� M j� A�

�� If M is a model of �L��IN�� then M
� is a model of �El�IN��

	� If M is a model of �L��I��� then M
� is a model of �El�I���

�



This lemma is now immediately applied to obtain the following result which char�
acterizes R�dE� and its extensions by elementary induction in terms of the theories
PAr

�
� PAw

�
and PA�
 A proof�theoretic proof of the following theorem would be

possible as well but will not be given here


Theorem 
 
Conservative extensions II� We have�

�� R�dE� is a conservative extension of PAr

�
with respect to L��

�� W�dE� is a conservative extension of PAw

�
with respect to L��

	� W�gE� is a conservative extension of PA� with respect to L��

By combining Theorem � and Theorem �� and by making use of standard re�
sults about proof�theoretic ordinals� we obtain the following result about the proof�
theoretic strength of the theories R�dE�� W�dE� and W�gE�


Corollary � We have the following proof�theoretic equivalences�

R�dE� � PA� W�dE� �dID�� W�gE� � ID��

In addition� the proof�theoretic ordinals of the three theories R�dE�� W�dE� and

W�gE� are given by�

j R�dE� j� ��� jW�dE� j� 
���� jW�gE� j� ������

� Fixed point theories with elementary

comprehension

Before we continue with the proof�theoretic analysis of second order theories with
ordinals and elementary comprehension� we turn to �xed point theories with ele�
mentary comprehension
 These systems are interesting for their own sake but will
be used here mainly for establishing proof�theoretic lower bounds
 The basic idea
is to lift the �xed point theory dID� and the theory ID� of one inductive de�nition�
which have both been mentioned before� to the language of second order arithmetic
and to add the possibility of elementary comprehension


Fixed point theories with elementary comprehension are formulated in the second
order language LFP which extends L by adding �xed point constants PA for all
inductive operator forms A�X� x�
 The elementary formulas of LFP are the LFP

formulas which do not contain bound set variables� they may contain� however� free
set variables and �xed point constants
 EFP denotes the collection of all elementary
LFP formulas


The theories dEID�� gEID� and EID� are formulated in the language LFP and com�
prise the axioms of Peano arithmetic PA with the scheme of complete induction

�



on the natural numbers for all LFP formulas
 In addition� there is the scheme of
elementary comprehension

�EFP�CA� �X�x�x � X 	 A�x��

for all elementary LFP formulas A
 The further axioms of our three theories refer to
the �xed point constants


In dEID� it is simply stated that the relation symbols PA represent �xed points of
the inductive operator forms A�X� x�� i
e
 we have the �xed point axioms

�FP�PA� �x�A�PA� x�	 PA�x��

for all inductive operator forms A�X� x�
 In EID� these �xed point axioms are
replaced by the following closure and induction axioms�

�PA
�� �x�A�PA� x�� PA�x���

�PA
�� �x�A�B� x�� B�x�� � �x�PA�x�� B�x��

for all inductive operator forms A�X� x� and arbitrary LFP formulas B
 gEID�� ��
nally� is a theory lying between dEID� and EID�
 It results from EID� by restricting
the induction scheme �PA
�� to elementary LFP formulas B


It is obvious that the �xed point properties �FP�PA� are provable in gEID� and in
EID�
 Hence� EID� expresses that PA is a �xed point of the inductive operator
form A�X� x� which is minimal with respect to all de�nable sets� in gEID� it is only
minimal with respect to all elementary sets� and in dEID� it may be any �xed point


Remark � Let dEID�� and gEID�� be the subsystems of dEID� and gEID� in which
the scheme of complete induction on the natural numbers is restricted to elemen�
tary LFP formulas
 Then an easy model�theoretic argument shows that dEID�� is a
conservative extension ofdID� and gEID�� a conservative extension of ID�


The theories gEID� and EID� are closely related to systems of second order arith�
metic based on certain axioms which are presented in detail for example in Feferman
��	
 As usual we write ACA for the theory� formulated in L� which contains PA�
the scheme of complete induction on the natural numbers for all L formulas plus
the scheme of arithmetic comprehension for all arithmetic L formulas A�

���
��CA� �X�x�x � X 	 A�x���

The theory ACA����
��CA�

�
is the extension of ACA in which ��

� comprehension

without set parameters is permitted as well
 More precisely� this means that in
addition to the axioms of ACA we have

���
��CA�

�
�X�x�x � X 	 �Y B�Y� x��

for all arithmetic formulas B so that �Y B�Y� x� does not contain free set variables

This theory� which played some role in the discussion of theories for non�iterated
inductive de�nitions �cf
 e
g
 ��� �	�� can be shown to be equivalent to gEID�


�



Theorem � We have for all L formulas A�

gEID� 
 A �� ACA� ���
��CA�

�

 A�

Proof� The direction from left to right is obvious
 Given an inductive operator
form A�X� x�� one interprets the formula PA�v� of LFP as the following ��

� formula
IA�v� of L� obviously IA�v� does not contain set�parameters


IA�v� �� �X��x�A�X� x�� x � X�� v � X	�

Then the translation of �PA
�� is logically valid
 In order to deal with the other
axioms of gEID�� one only has to observe that the translations of all elementary LFP
formulas de�ne sets in ACA � ���

��CA�
�
� since parameter�free ��

� comprehension
and arithmetic comprehension with parameters are available there


The direction from right to left is more or less obvious
 One �rst observes that one
obtains a theory equivalent to ACA� ���

��CA�
�
if ��

� comprehension is restricted
to ��

� formulas without set and number parameters
 In a second step one proceeds
similar to Feferman ��	 and makes use of the following consequence of the ��

� normal
form theorem� Let B�v� be a ��

� formula with v as its only free variable
 Then there
exist an inductive operator form A�X� x� and a primitive recursive function f so
that

gEID� 
 B�v�	 PA�f�v���

Since the relations PA de�ne sets in gEID�� parameter�free ��
� comprehension is

provable there� arithmetic comprehension is taken care of in gEID� by �EFP�CA�

Hence ACA� ���

��CA�
�
is contained in gEID�
 �

We obtain a natural system of second order arithmetic which is equivalent to EID� if
we add to ACA����

��CA�
�
the scheme of primitive recursive bar induction without

set parameters
 Let R be a ternary primitive recursive relation and let A�x� be an
arbitrary L formula
 Given a number parameter a� the progressiveness of Ra� the
trans�nite induction along Ra with respect to A�x� and the wellfoundedness of Ra

are expressed by the following formulas�

Prog�Ra� A� �� �x��y�R�a� y� x�� A�y��� A�x���

TI �Ra� A� �� Prog�Ra� A�� �xA�x��

WF �Ra� �� �XTI �Ra� X��

Now the scheme of primitive recursive bar induction without set parameters consists
of all formulas of the form

�BIpr�
�

WF �Ra�� TI �Ra� A�

so that R is a ternary primitive recursive relation and A�x� an arbitrary L formula

The presence of the number parameter a is crucial� see Remark �� below


��



Theorem � We have for all L formulas A�

EID� 
 A �� ACA� ���
��CA�

�
� �BIpr�

� 
 A�

Proof� In order to show the direction from left to right we proceed as in the proof
of Theorem � and translate PA�v� by IA�v� for all inductive operator forms A�X� x�

As before� this settles the axioms �PA
�� and �EFP�CA�
 To prove the translation of
the induction principles �PA
�� we only have to employ the result of Feferman ��	
that

ACA� �BIpr�
� 
 �XB�X�� B�C�

for all arithmetic formulas B�X� and arbitrary L formulas C� provided that �XB�X�
does not contain set parameters
 This is the case for the formula IA�v�


Now we show the direction from right to left
 In the following argument we pre�
suppose some standard primitive recursive coding machinery� ha�� � � � � an��i is the
sequence number associated to the numbers a�� � � � � an�� with the related projections
���i so that �ha�� � � � � an��i�i � ai for � � i 	 n
 Seqn�v� means that v is a sequence
number of length n
 Given the symbol R for a ternary primitive recursive relation
we set

A�X� x� �� Seq��x� � �y�Seq��y� � �y�� � �x�� � R��x��� �y��� �x��� � x � X��

A�X� x� is an inductive operator form and� therefore� there exists a relation symbol
PA so that the axioms �PA
�� and �PA
�� are satis�ed in EID�
 It is easy to see
that

EID� 
WF �Ra�� �xPA�ha� xi�� ���

Further� to every L formula B�v� and number parameter a we associate the formula
Ba�v� which is de�ned as follows�

Ba�v� �� Seq��v� � ��v�� � a� B��v���	�

Some trivial transformations then imply that

EID� 
 �x��y�R�a� y� x�� B�y��� B�x�	 � �x�A�Ba� x�� Ba�x�	� ���

In view of ��� and ���� the de�nition ofBa�v� and by applying �PA
�� we can conclude
that

EID� 
WF �Ra�� TI �Ra� B��

Hence� primitive recursive bar induction without set parameters is provable in EID�

and� therefore� ACA� ���
��CA�

�
� �BIpr�

� is contained in EID�
 �

Remark �� Our form of primitive recursive bar induction without set parameters is
formulated for a ternary primitive recursive relation in order to keep the notation as
simple as possible
 It does not change the strength of the theory if we allow arbitrary
primitive recursive relations or even arithmetic relations with number but without
set parameters
 By a result of Rathjen ���	 the presence of number parameters is
important� He showed that ACA plus primitive recursive bar induction without
number and set parameters is signi�cantly weaker than ACA� �BIpr�

�


��



We end this section with the straightforward observation that the theories dEID��
gEID� and EID� are contained in dE�� gE� and E�� respectively
 For each relation
symbol PA of LFP � translate the LFP formula PA�v� by the �� formula PA�v� of L� 

This determines a translation of LFP formulas A in L� formulas A� which leaves L
unchanged and interprets elementary LFP formulas as elementary L� formulas


Lemma �� We have for all LFP formulas A�

�� dEID� 
 A �� dE� 
 A��

�� gEID� 
 A �� gE� 
 A��

	� EID� 
 A �� E� 
 A��

The proof of this lemma is standard
 From the inductive operator and �� re�ection
axioms we deduce that each PA describes a �xed point of the inductive operator
form A�X� x�� the induction principles of dEID�� gEID� and EID� go over into the
induction principles available in dE�� gE� and E�


	 Three semiformal systems

The purpose of this section is to introduce three semiformal systems E��
�� E�

�
� and

Z�� which will be used in the following sections for establishing the upper bounds
of dE�� gE� and E�
 They combine aspects of Sch�utte�s RA� with extensions of
in�nitary systems for the treatment of ID�
 The application of methods of pred�
icative proof theory and �the �rst bits� of impredicative proof theory is a matter of
routine


��� The systems E��

�
and E��

�

The systems E��
� and E��

� as well as the system Z� of the next subsection are
based on the language L� which extends L� by adding constants  
 for all ordinals

 � T �� and by permitting the explicit formation of set terms
 The ordinal terms

��� ��� ��� � � �� of L� are the ordinal variables and the ordinal constants of L� 
 The
literals of L� are the literals of L� plus all expressions which result from the literals
of L� by replacing some ordinal variables by ordinal constants
 To simplify the
notation we often write A�
� instead of A� 
� if 
 is an element of T � �


The set terms �S� T� S�� T�� � � �� and elementary formulas of L� are introduced by a
simultaneous inductive de�nition�

�
 Each set variable is a set term


�
 If A is an elementary formula of L� � then fx � A�x�g is a set term of L� 


�
 Every literal of L� is an elementary formula of L� 


��



�
 If a is a number term and S a set term of L� � then �a � S� and �a �� S� are
elementary formulas of L� 


�
 If A and B are elementary formulas of L� � then �A � B� and �A � B� are
elementary formulas of L� 


�
 If A is an elementary formula of L� � then �xA� �xA� ��A� ��A� ��� 	 ��A
and ��� 	 ��A are elementary formulas of L� 


Finally� the formulas of L� are generated from the elementary formulas of L� as
follows�

�
 Every elementary formula of L� is an L� formula


�
 If A and B are L� formulas� then �A � B� and �A � B� are L� formulas


�
 If A is an L� formula� then �xA� �xA� ��A� ��A� ��� 	 ��A� ��� 	 ��A�
�XA and �XA are L� formulas


L� formulas in which the symbols � and �� do not occur are called �rst order
formulas of L� 
 The ��

� formulas of L� are the �rst order formulas of L� which
do not contain unbounded ordinal quanti�ers
 The ��� �� and r� formulas of L�
are de�ned in an analogous way


Two L� formulas A and B are called numerically equivalent if they di
er in closed
number terms with identical value only
 Furthermore� a closed literal of L� is called
primitive if it is not of the form U�a�� �U�a�� P �

A�a� or �P
�
A�a�
 Obviously� every

primitive literal of L� is either true or false� and in the following we write True
for the set of true primitive literals


For the formulas of L� we introduce a speci�c measure of complexity� which will be
used for proving partial cut elimination for E��

�
and E��

�



De�nition �� The degree dg�A� of an L� formula A is inductively de�ned as
follows�

�
 If A is a r� formula of L� � then dg�A� �� �


�
 If A is a formula �a � X� or �a �� X�� then dg�A� �� �


�
 If A is a formula �a � fx � B�x�g� or �a �� fx � B�x�g� so that dg�B� � 
�
then dg�A� �� 
 � �


�
 If A is a formula �B �C� or �B �C� so that dg�B� � 
� dg�C� � � and B or
C is not a r� formula of L� � then dg�A� �� max �
� �� � �


�
 If A is a formula �xB or �xB so that dg�B� � 
 and B is not a r� formula
of L� � then dg�A� �� 
 � �


��



�
 If A is a formula �XB or �XB so that dg�B� � 
� then

dg�A� �� max��� 
� ���

�
 If A is a formula ��B or ��B so that dg�B� � 
 and B is not a r� formula
of L� � then dg�A� �� 
 � �


�
 If A is a formula ��� 	 ��B or ��� 	 ��B and B is not a r� formula of L� �
then dg�A� �� 
 � �


Hence� the degree of an L� formula becomes in�nite as soon as bound set variables
occur
 The following lemma� whose proof is straightforward� collects some important
observations


Lemma �	 We have for all L� formulas A�

�� dg�A� � � if and only if A is a r� formula of L� �

�� � 	 dg�A� 	 � if and only if A is an elementary formula of L� but not a r�

formula of L� �

	� � � dg�A� 	 � � � if and only if A is not elementary�

Derivations in E��
�� E�

�
� and Z� are presented in a Tait�style manner
 Accord�

ingly� their axioms and rules of inference are formulated for �nite sets of formulas
which have to be interpreted disjunctively
 The capital greek letters !� "�#�$� � � �
�possibly with subscripts� denote �nite sets of formulas� and we write �for example�
!� #� A� B for the union of !� # and fA�Bg


The following basic axioms and rules are the usual axioms and rules of the �many�
sorted� Tait calculus with ��rule
 The principal axioms of E��

�
and E��

�
correspond

to the ordinal�theoretic axioms of dE� and gE�


In E��
�
and E��

�
we restrict ourselves to simple L� formulas� i
e
 L� formulas

containing neither free number variables nor constants for ordinals
 Such formulas
will be called SL� formulas in the following


I� Basic axioms of E��
�
and E��

�

 For all �nite sets ! of SL� formulas� all

numerically equivalent SL� formulas A� and A�� and all literals B of L which belong
to True�

!� �A�� A� and !� B

II� Ordinal equality axioms of E��
�
and E��

�

 For all �nite sets ! of SL�

formulas and all r� formulas A of SL� �

!� � �� �� �A���� A���

III� Principal axioms of E��
�
and E��

�
� part �
 For all �nite sets ! of SL�

formulas� all inductive operator axioms or linearity axioms A of E� without free
number variables�

!� A

��



IV� Principal axioms of E��
�
and E��

�
� part �
 For all �nite sets ! of SL�

formulas and all simple �� formulas A�

!� �A� ��A�

V� Principal axioms of E��
�
and E��

�
� part 	
 For all �nite sets ! of SL�

formulas and all simple ��
� formulas B�

!� �� ���� 	 ��B��� � �B���	� ��B���

In E��
� these axioms are extended to the stronger form in which B is permitted to

be an elementary formula of SL� 


VI� Basic rules of E��
�
and E��

�
� part �
 For all �nite sets ! of SL� formulas

and all SL� formulas A�B and C�a��

!� A

!� A � B

!� B

!� A �B

!� A !� B

!� A �B

!� C�a�

!� �xC�x�

!� C�b� for all closed number terms b

!� �xC�x�
����

VII� Basic rules of E��
�
and E��

�
� part �
 For all �nite sets ! of SL� formulas�

all elementary SL� formulas A�a�� all SL� formulas B�S� and all free set variables
Y which do not occur in !� �XB�X��

!� A�a�

!� a � fx � A�x�g

!� �A�a�

!� a �� fx � A�x�g

!� B�S�

!� �XB�X�

!� B�Y �

!� �XB�X�

VIII� Basic rules of E��
� and E��

�� part 	
 For all �nite sets ! of SL� formulas�
all SL� formulas A and all ordinal variables � and � so that the usual variable
conditions are satis�ed�

!� A���

!� ��A���

!� A���

!� ��A���

!� � 	 � � A���

!� ��� 	 ��A���

!� � 	 � � A���

!� ��� 	 ��A���

IX� Cut rules of E��
� and E��

�
 For all �nite sets ! of SL� formulas and all
SL� formulas A�

!� A !� �A

!

��



The formulas A and �A are called the cut formulas of this cut� the degree of a cut
is the degree of its cut formulas


The rule ���� is the usual ��rule
 It will be used to deal with the scheme of complete
induction on the natural numbers� which is available in dE�
 Part � and � of the
principal axioms of E��

� and E��
� correspond to the �� re�ection axioms and the

ordinal induction for ��
� formulas and elementary formulas of SL� � respectively


Based on these axioms and rules of inference derivability in the systems E��
� and

E��
�
is de�ned in the standard way
 For � � �� � the notation E��

�

�

�
! expresses

that ! is provable in E��

� by a proof whose depth is bounded by 
 and whose cut
degree is bounded by �


De�nition �� Assume that � � � or � � � and let ! be a �nite set of SL� formulas

Then we de�ne E��

�

�

�
! for all ordinals 
 and � in T by induction on 



�
 If ! is basic or principal axiom of E��

� � then we have E��

�

�

�
for all ordinals


 and � in T 


�
 If E��

�

�i

�
!i and 
i 	 
 for every premise !i of a basic rule� a principal rule

or a cut of E��

� whose degree is less than �� then we have E��

�

�

�
! for the

conclusion ! of this rule


Because of the ordinal equality axioms and the principal axioms it is not possible to
obtain complete cut elimination for E��

�
and E��

�

 However� the main formulas of

all ordinal equality axioms and all principal axioms of E��
� are of degree � and the

main formulas of all principal axioms of E��
�
are of degree less than �
 Hence� partial

cut elimination can be proved by standard techniques as presented� for example� in
Sch�utte ���	


Theorem �
 
Partial cut elimination� We have for all �nite sets ! of SL� for�

mulas and all ordinals 
� �� � � T �

�� E��
�

�

��	�
! and � � � �� E��

�


��

�
!�

�� E��
�

�

��	�
! and � � � �� E��

�


��

�
!�

��� The system Z�

For the introduction of the system Z� we also start o
 from the language L� 

However� for Z� only those L� formulas are relevant which do not contain free
number and free ordinal variables
 Such formulas� which we call CL� formulas�
may contain free set variables and are therefore closed only with respect to the �rst
order part of L� 


In order to measure the complexity of cuts in Z� we assign a rank to each CL�

formula
 This de�nition is tailored so that the process of building up stages of an
inductive de�nition is re�ected by the rank of the formulas P �

A�a�


��



De�nition �� The rank rn�A� of a CL� formula A is inductively de�ned as follows�

�
 If A is a literal of L or a literal �
 	 ��� ��
 	 ��� �
 � �� or ��
 � �� for
some ordinals 
 and �� then rn�A� �� �


�
 If A is a literal P �
A�a� or �P

�
A�a� for some ordinal 
� then rn�A� �� ��
� ��


�
 If A is a formula �a � X� or �a �� X�� then rn�A� �� � � �


�
 If A is a formula �a � fx � B�x�g� or �a �� fx � B�x�g� so that rn�B�a�� � 
�
then rn�A� �� 
 � �


�
 If A is a formula �B � C� or �B � C� so that rn�B� � � and rn�C� � �� then
rn�A� �� max��� �� � �


�
 If A is a formula �xB�x� or �xB�x� so that rn�B���� � 
� then rn�A� �� 
��


�
 If A is a formula �XB or �XB so that rn�B� � 
� then

rn�A� �� max �� � �� 
� ���

�
 If A is a formula ��� 	 
�B��� or ��� 	 
�B��� for some ordinal 
� then

rn�A� �� supfrn�B���� � � � � 	 
g�

�
 If A is a formula ��B��� or ��B���� then

rn�A� �� sup�f�g � frn�B���� � � � � � T � �g��

If A is an L� formula without free number variables� then we write A���� � � � � �n	 in
order to indicate that all free ordinal variables of A come from the list ��� � � � � �n

In addition� we write oc�B� for the set of ordinal constants which occur in the L�
formula B
 Accordingly� if ! is a �nite set of L� formulas� then oc�!� denotes the
union of the sets oc�B�� where B is a formula in !


The proof of the following lemma is a matter of routine


Lemma �� Let A be a ��
� formula of CL�� B��	 a ��

� formula of L� � and C an

arbitrary formula of CL� � Assume further that 
 is an element of T � � and that

a is a closed number term� Then we have�

�� rn�A�P��
A � a�� 	 rn�P �

A�a���

�� If oc�A� 	 
� then rn�A� 	 �
� ��

	� rn���B��	� � ��


� If C is an elementary but not a ��
� formula of CL� � then � � rn�C� 	 ����

��



�� If C is not elementary� then � � � � rn�C� 	 � � � � ��

The system Z� contains the following axioms and rules of inference


I� Axioms of Z�
 For all �nite sets ! of CL� formulas� all numerically equivalent
CL� formulas A� and A�� all numerically equivalent �� formulas B� and B� of CL� �
all ordinals 
 � � � T � �� and all literals C in True�

!� �A�� A� and !� �B�
� � B

�
� and !� C

II� Predicative rules� part �
 For all �nite sets ! of CL� formulas� all CL�
formulas A�B and C�a��

!� A

!� A �B

!� B

!� A �B

!� A !� B

!� A � B

!� C�a�

!� �xC�x�

!� C�b� for all closed number terms b

!� �xC�x�
����

III� Predicative rules� part �
 For all �nite sets ! of CL� formulas� all elementary
CL� formulas A�a�� all CL� formulas B�S� and all free set variables Y which do
not occur in !� �XB�X��

!� A�a�

!� a � fx � A�x�g

!� �A�a�

!� a �� fx � A�x�g

!� B�S�

!� �XB�X�

!� B�Y �

!� �XB�X�

IV� Predicative rules� part 	
 For all �nite sets ! of CL� formulas� all inductive
operator forms A�X� x�� all closed number terms a and all ordinals 
 � T � ��

!� A�P��
A � a�

!� P �
A�a�

!� �A�P��
A � a�

!� �P �
A�a�

V� Predicative rules� part �
 For all �nite sets ! of CL� formulas� all L�
formulas A��	 and all ordinals 
 	 � � T � ��

!� A�
	

!� ��A��	

!� A�
	

!� ��� 	 ��A��	

!� A��	 for all � 	 �

!� ��� 	 ��A��	

VI� ���rules
 For all �nite sets ! of CL� formulas� all natural numbers m � � and
all L� formulas A���� � � � � �m	 and B���� � � � � �m� � 	�

!� A�
�� � � � � 
m	 for all 
�� � � � � 
m � T � �

!� ���� � � � � �mA���� � � � � �m	
������

!� A�
�� � � � � 
m	� B�
�� � � � � 
m� �	 for all 
�� � � � � 
m� � � T � �

!� ���� � � � � �m�A���� � � � � �m	 � ��B���� � � � � �m� �	�
������

��



VII� Impredicative rules
 For all �nite sets ! of CL� formulas and all �� formulas
A of CL� �

!� A

!� ��A�

VIII� Cuts of Z�
 For all �nite sets ! of CL� formulas and all CL� formulas A�

!� A !� �A

!

The formulas A and �A are the cut formulas of this cut� the rank of a cut is the
rank of its cut formulas


This fairly unusual form of the ���rules is necessary in our approach in order to
obtain a su%ciently short embedding of E��

�
into Z�
 In particular� we do not see

how Lemma �� and Theorem �� can be proved with the traditional form

!� A�
� for all 
 � T � �

!� ��A���

only
 Then too many applications of this rule would be needed� and our ordinal
bounds would be spoilt


The impredicative rules are impredicative in the sense that the rank of the main
formula of the premise of such a rule is in general greater than the rank of the main
formula of the corresponding conclusion
 Hence� derivations must be measured in a
rather complex way in order to permit a proper proof�theoretic treatment
 Here we
follow J�ager ��	� J�ager and Pohlers ���	 and Pohlers ���	


De�nition �� Let ! be a �nite set of CL� formulas
 Then we de�ne Z�
�

�
! for

all ordinals 
� � � T by induction on 



�
 If ! is an axiom of Z�� then we have Z�
�

�
! for all 
� � � T so that oc�!�




�
 Let �#i � i � I� be the family of the premises and let # be the corresponding
conclusion of a predicative rule� an impredicative rule or a cut of Z� whose
rank is less than �
 Assume that

��� Z�
�i

�
#i and 
i 
 
 for all i � I�

��� # � ! and oc�!�
 



Then we have Z�
�

�
!


�
 Let m be a natural number greater than �� let f be a m�ary function from
T � � to T � and let A���� � � � � �m	 be an L� formula
 Assume that

��� Z�
f���������m�

�
#� A���� � � � � �m	 for all ��� � � � � �m � T � ��

��� f 
 
�

��� #� ���� � � � � ��mA���� � � � � �m	 � ! and oc�!�
 



Then we have Z�
�

�
!


��



�
 Let m be a natural number greater than �� let f be a �m � ���ary function
from T � � to T � and let A���� � � � � �m	 and B���� � � � � �m� � 	 be L� formulas

Assume that

��� Z�
f���������m�
�

�
#� A���� � � � � �m	� B���� � � � � �m� �	

for all ��� � � � � �m� � � T � ��

��� f 
 
�

��� #� ���� � � � � ��m�A���� � � � � �m	 � ��B���� � � � � �m� �	� � ! and oc�!�
 



Then we have Z�
�

�
!


Now we list a series of propositions similar to those in J�ager ��	� J�ager and Pohlers
���	 and Pohlers ���	
 We omit their proofs since they can easily be reconstructed
from the proofs in ��� ��� ��	
 The general form of our �����rules and the fact that
Z� comprises identity axioms !� �A�� A� for arbitrary numerically equivalent CL�
formulas A� and A� do not cause serious problems


Proposition �� 
Collapsing� We have for all �nite sets ! of �� formulas of CL�
and all ordinals 
� � � T �

Z�
�

�
! and � � � �� Z�

D�

�
!�

Proposition �� 
Persistency� We have for all �nite sets ! of CL� formulas� all
�� formulas A of CL� � all �� formulas B of CL� � and all ordinals 
� �� �� � � T so
that � � � � 
 	 ��

�
 Z�
�

�
!� A
 �� Z�

�

�
!� A�


�
 Z�
�

�
!� B� �� Z�

�

�
!� B



Proposition �� 
Boundedness� We have for all �nite sets ! of �� formulas of
CL� � all �� formulas A of CL� and all ordinals 
� � � T �

Z�
�

�
!� A and 
 	 � and � � � �� Z�

�

�
!� A��

Proposition �� 
Inversion� We have for all �nite sets ! of CL� formulas� all
CL� formulas A and all ordinals 
� �� � � T �

�
 Z�
�

�
!� ��A��� and � 	 � �� Z�

�����

�
!� A���


�
 Z�
�

�
!� ��A��� and � 	 � �� Z�

�����

�
!� ��� 	 ��A���


Proposition �	 
Weak elimination� We have for all �nite sets ! and # of CL�
formulas� all CL� formulas A and all ordinals 
� �� � � T �

Z�
�

�
!� A and Z�

�

�
#��A and rn�A� � � �� � �� Z�

�����

�
!� #�

��



Proposition �� 
Strong elimination� Let ! be a �nite set of �� formulas of
CL� � 
 and � elements of T � and assume that

�A�� Z�
�

�
!� ��A����� � � � � ��An���� ��B����

�A�� Z�
�

�
!� ��A����� � � � � ��An���� ���B����

�A�� A���	� � � � � An��	 and B��	 are ��
� formulas of L� 


Then we have Z�
������n���

�
!� ��A����� � � � � ��An���


These propositions provide the instruments for deducing the following three cut
elimination theorems
 Predicative cut elimination is as usual �cf
 ���	� and does not
make use of collapsing techniques� of course


Theorem �
 
Predicative cut elimination� We have for all �nite sets ! of

CL� formulas and all ordinals 
� �� � � T �

Z�
�

��	�
! and � �� � and � 	 � �� Z�


��

�
!�

The following theorem about complete elimination of level � cuts is proved by in�
duction on 
 and using intermediate collapsing and the fact that the rank of a cut
formula can be controlled in the sense of the 
 relation by 

 For details see ���	
and ���	


Theorem �� 
Complete elimination of ��
� cuts� We have for all �nite sets !

of �� formulas of CL� and all ordinals 
 � T �

Z�
�

�
! �� Z�

���

�
!�

The impredicative cut elimination theorem is an immediate consequence of strong
elimination� it is proved by induction on 
 �cf
 ��� ��� ��	�
 By rn�#� � � we mean
that the rank of all formulas in # is less than or equal to �


Theorem �� 
Impredicative cut elimination� We have for all �nite sets ! of

�� formulas of CL� � all �nite sets # of CL� formulas and all ordinals 
 � T �

Z�
�

���
!� # and rn�#� � � �� Z�

	���

�
!� #�

Now we combine the previous results and obtain the following corollary
 Together
with the embedding theorems in Sections �
� and �
� it is the crucial step in deter�
mining the upper bounds of the proof�theoretic strength of gE� and E�


Corollary �� Let ! be a �nite set of �� formulas of CL� � Then we have�

�� If Z�
���

��	
! for some ordinal 
 	 ��� then there exists an ordinal � 	 ������

so that Z�
�

�
!�

��



�� If Z�
��	�

��	�n
! for some n 	 �� then there exists an ordinal � 	 ������ so

that Z�
�

�
!�

We conclude this section with stating a well�known result� which says that cut�
free derivations provide upper bounds for the order type of provable wellorderings

Similar results are proved in detail in ���� ��	


Theorem �� Let � be a primitive recursive wellordering so that Z�
�

�
TI ��� U�

for some 
 � T � �� Then the order type of � is bounded by �
�


 The proof�theoretic strength of dE� and dEID�

In the remaining three sections of this article we determine the proof�theoretic
strength of the theories mentioned in Lemma ��
 The general strategy is always
the same� lower bounds for dEID�� gEID� and EID�� and upper bounds for dE�� gE�
and E�


We begin with the systems dEID� and dE�� and we show that they have the same
proof�theoretic strength as the second order system 
��

�
�CA����� 
 In particular�

both theories have the proof�theoretic ordinal 
����


��� Lower bounds

Lower bounds of dEID�� gEID� and EID� are established in this article by proving
wellorderings with respect to the primitive recursive notation system �T�	� of Sec�
tion �
 Therefore� in the wellordering proofs of Sections �
�� �
� and �
� the symbols
	 and � generally stand for the less and less or equal relation on T and neither for
the less relation on the natural numbers nor the less relation on the ordinals� as it
is available in L� 
 In this context we need the following notation with respect to
�T�	�� If C is a subrelation of the less relation 	 on T � then we set

TI �C� a� A� �� Prog�C� A�� ��x C a�A�x��

In this section we show that each ordinal less than 
���� is provable in dEID�
 Since
dEID� contains ACA� it follows from standard proof theory �cf
 e
g
 Sch�utte ���	�
that TI �	� a�X� is derivable in dEID� for each a 	 ���
 By �EFP�CA� this yields
TI �	� a� A� for all elementary LFP formulas A


Lemma 	� We have for all elementary LFP formulas A�x� and all a 	 ����

dEID� 
 TI �	� a� A��

Furthermore� let us assume that we have primitive recursive auxiliary functions h
and e from T to T satisfying

� h��� � e��� � �� h��a� � � and e��a� � a�

��



� if a � �a� � � � ���an for more than one summand so that an � � � � � a�� then
h�a� � �a� � � � �� �an�� and e�a� � an


In the sequel we will make us of some sort of jump operator J 
 Since we use J in
an inductive operator form below� we de�ne it as a pair �J�� J�� as follows�

J��X� Y� a� �� �y ���x 	 y��x � Y � � ��x 	 y � a��x � X�	�

J��X� Y� a� �� �y ���x 	 y��x � X� � ��x 	 y � a��x � Y �	�

In order to prove TI �	� a� U� for each a 	 
����� we build up a hierarchy of sets
�Hb�b�a with initial set U � for each a 	 ���
 The de�nition of the hierarchy cor�
responds to the formula R�P�Q� t� of Sch�utte ���	� p
 ��� 

� formalized in the
framework of dEID�
 The idea is to de�ne the hierarchy along 	 by means of a �xed
point PA of a certain inductive operator form A�X� x�
 The elements of the �xed
point will be triples ha� i� xi� where a � T and i equals � or �� depending on whether
x belongs to the ath stage of the hierarchy


In the de�nition below we will use the abbreviation c � �X�a�b for ha� b� ci � X
 The
inductive operator form A�X� x� is de�ned to be the disjunction of the following
formulas ���&����

��� Seq	�x� � �x�� � � � �x�� � � � U��x���

��� Seq	�x� � �x�� � � � �x�� � � � �U��x���

��� Seq	�x� � � 	 �x�� � �x�� � � �

�z �h��x��� � z 	 �x�� � J���X�z��� �X�z��� 
�e��x���� �x����	

��� Seq	�x� � � 	 �x�� � �x�� � � �

�z �h��x��� � z 	 �x�� � J���X�z��� �X�z��� 
�e��x���� �x����	


From the �xed point axioms alone it is not possible to prove the fact that the mem�
bership and non�membership relation de�ned above are complementary� i
e
 that

Comp�b� �� b � T � �y�PA�hb� �� yi�	 �PA�hb� �� yi��

is derivable in dEID� for all sets �coded by� b


Lemma 	� We have for all a 	 ����

dEID� 
 ��x 	 a�Comp�x��

Proof� First observe that Comp�x� is an elementary LFP formula
 Furthermore�
it is easily veri�ed that

dEID� 
 Prog�	�Comp��

where essential use is made of the �xed point axioms �FP�PA� for PA
 Now the
claim immediately follows from Lemma ��
 �

��



In the following we write Hb�x� instead of PA�hb� �� xi�
 According to the previous
lemma� �Hb�b�a is well�de�ned for each a 	 ��� in the sense that �Hb�x� is equivalent
to PA�hb� �� xi� for each b 	 a


Remark that the ordinal �� of our notation system is the ordinal !� of Sch�utte
���	 and up to this ordinal both notation systems coincide
 Let us de�ne a form of
restricted progressivness Prg���A� by setting

Prg���A� �� ��x 	 ������y 	 x�A�y�� A�x���

The next lemma is essential in the wellordering proof for dEID�
 It corresponds to
Lemma � of Sch�utte ���	� p
 ���� and its proof is very similar to the proof of Lemma
�
 Therefore� we omit it


Lemma 	� Assume that a 	 ���� Then we have that

dEID� 
 � 	 x 	 a � ��y 	 x�Prg���Hy� � Prg���Hx��

We have prepared the ground in order to show that 
a� is provable in dEID� for
each a 	 ���
 This will immediately imply the desired lower bound


Theorem 		 We have for all a 	 ����

dEID� 
 TI �	�
a�� U��

Proof� In the following we work informally in dEID�
 Let us assume that a 	 ���
and choose b �� �a � �
 Then we have a 	 b 	 ���
 By Lemma �� we know that
�Hx�x�b is a well�de�ned hierarchy of sets� and by de�nition H� � U 
 Hence� we
have

Prog�	�U� � Prg���H��� ���

From ��� we can conclude by the previous lemma

Prog�	�U� � x 	 b � ��y 	 x�Prg���Hy� � Prg���Hx�� ���

If we put A�x� �� x 	 b� Prg���Hx�� then ��� amounts to

Prog�	�U� � Prog�A�� ���

Since A�x� is an elementary LFP formula and b 	 ���� we know by Lemma �� that
TI �	� b� A� holds in dEID�
 Hence� we can derive from ��� that

Prog�	�U� � Prg���H	a�� ���

Furthermore� we trivially have

Prg���H	a� � H	a���� ���

��



Since h��a� � � and e��a� � a� we get by the de�nition of H	a that

H	a��� � J��H���H�� 
a��� ���

In addition� the de�nition of J� immediately yields

J��H���H�� 
a�� � ��x 	 
a��H��x�� ���

From ���&��� we now obtain

Prog�	�U� � ��x 	 
a��H��x�� ���

Since H� � U this amounts to TI �	�
a�� U�
 �

Corollary 	� 
���� � j dEID�j � jdE�j�

Proof� Let a 	 
����
 Then there is a b 	 ��� so that a 	 
b�
 By the theorem
we have that

dEID� 
 TI �	�
b�� U��

yielding the claim of the corollary
 �

Remark 	
 Notice that the anonymous relation symbol U occurs positively and
negatively in the inductive operator form A�X� x� used in the proof above� and
this fact is crucial� If we do not allow U in inductive operator forms� then the
corresponding modi�cation of dEID� has proof�theoretic ordinal ��� �in the sense of
De�nition � or similar de�nitions�
 See J�ager and Primo ���	 for this and related
results


Let us mention that in Feferman and J�ager ��	 a lower bound of dE� is obtained by
embedding a certain system of explicit mathematics with non�constructive minimum
operator� which in turn is shown to contain 
��

��CA����� 
 However� the methods

used there do not yield an interpretation of 
��

�
�CA����� in dEID� via the corre�

sponding system of explicit mathematics� since the reduction of the latter to dE�
makes essential use of the stages of an inductive de�nition and ��

� induction on the
ordinals� which are not available in dEID�


Remark 	� Instead of giving a direct wellordering proof up to 
����� it is also pos�
sible to interpret the second order system 
��

��CA����� into dEID�
 This approach
makes use of formalized recursion theory


��



��� Upper bounds

We obtain the upper bound for dE� by the following two step reduction� First dE�
is embedded into the semiformal system E��

�
� afterwards the r� part of E��

�
is

reduced to Z� via a so�called asymmetric interpretation


The following embedding theorem is proved in a standard way
 Since �L� �IN� is
handled by means of the rule ����� we have to deal with in�nitary derivations
 For
a detailed presentation of similar results we refer� for example� to Sch�utte ���	


For notational convenience we call L� formulas which do not contain free number
variables numerically closed
 Hence each numerically closed formula A is an SL�

formula


Theorem 	� 
Embedding of dE�� Let A be a numerically closed L� formula

which is provable in dE�� Then there exists ordinals 
� � 	 � � � so that

E��

�

�

�
A�

A combination of Theorem �� and Theorem �� yields the following corollary
 It
means that for every numerically closed L� formula which is provable in dE� there
exists a proof in E��

�
of depth less than ��� so that all cut formulas which occur in

this proof are of degree �� i
e
 r� formulas of SL� 


Corollary 	� Let A be a numerically closed L� formula which is provable in dE��
Then there exists an ordinal 
 	 ��� so that

E��

�

�

�
A�

This corollary implies� in particular� that a numerically closed r� formula which is
provable in dE� has a E��

� proof of depth less than ��� which consists ofr� formulas
only
 This observation is important for the reduction of the r� part of E��

�
to Z�


Let ! be a �nite set of numerically closed L� formulas and suppose that 
 and �
are ordinals
 Then a �nite set # of ��

� formulas of CL� is called a ��� 
��instance
of ! if it results from ! by replacing

�i� each ordinal variable in the formulas of ! by an ordinal less than ��

�ii� each universal ordinal quanti�er �� in the formulas of ! by ��� 	 ���

�iii� each existential ordinal quanti�er �� in the formulas of ! by ��� 	 
�


Then the reduction of the r� part of E��
�
to Z� is provided by the following

asymmetric interpretation


Theorem 	� 
Asymmetric interpretation� Let ! be a �nite set of numerically

closed r� formulas so that E��
�

�

�
! for some ordinal 
 	 ���� Then we have for

all ordinals � 	 ��� and all �nite sets # of ��
� formulas of CL� that

# is a ��� � � ��� instance of ! �� Z�
	���

�

	��������
#�

��



This theorem is proved by induction on 

 One simply has to follow the pattern of
similar asymmetric interpretations� for example J�ager ��� ��	 and Sch�utte ���	
 For
the case of ��

� induction on the ordinals see also Lemma �� below


Because of Theorem �� and Corollary �� we may therefore conclude that the closed
�� fragment of dE� can be embedded into Z� as follows


Theorem �� Let A be a closed �� formula which is provable in dE�� Then there

exists an 
 	 
���� and a � 	 ��� so that Z�
�

�
A��

By Theorem �� we obtain that 
���� is an upper bound for the provable ordinals
of dE�
 Together with Lemma �� and Corollary �� this completes the computation
of the proof�theoretic ordinal of dEID� and dE�
 In addition� a careful formalization
of the previous arguments also provides the proof�theoretic equivalence of these
theories to 
��

�
�CA����� 


Corollary �� The proof�theoretic strength of the two theories dEID� and dE� can

be characterized as follows�

�� jdE�j � j dEID�j � 
�����

�� dE� � dEID� � 
��

�
�CA����� �

� The proof�theoretic strength of gE�� gEID� and

ACA � ���
��CA�

�

It is a big step from dEID� and dE� to gEID� and gE�� it leads from predicative the�
ories to impredicative systems which are slightly stronger than ID�
 More precisely�
we will show in this section that gEID� and gE� have the proof�theoretic ordinal
������
 As a consequence of previous considerations this is also the proof�theoretic
ordinal of ACA� ���

��CA�
�



��� Lower bounds

In this section we show that gEID� proves the wellfoundedness of each initial seg�
ment of ������
 We presuppose the impredicative notation system �T�	� of Section
�� and the reader is assumed to be familiar with the wellordering proof for ID�

Nevertheless� let us repeat the basic de�nitions used in this wellordering proof
 The
relation 	� between elements of T is given by

a 	� b �� a 	 b � b 	 ��

Furthermore� let Acc be the accessible part of 	�� i
e
 Acc denotes the �xed point
constant PA of the positive operator form A�X� x� given by

A�X� x� �� x 	 � � �y�y 	� x� y � X��

��



In addition� the set M and the relation 	� on T are de�ned by

M�a� �� a � T � �y�y � SC �a� � y 	 �� Acc�y���

a 	� b �� M�a� � a 	 b�

The following lemma is an immediate consequence of the induction axiom for Acc
in gEID� and EID�� respectively


Lemma �� We have for all elementary LFP formulas A�x� and arbitrary LFP for�

mulas B�x��

�� gEID� 
 Prog�	�A�� �x�Acc�x�� A�x���

�� EID� 
 Prog�	�B�� �x�Acc�x�� B�x���

The next two results are standard and� therefore� their proofs are omitted
 Detailed
proofs can be found� e
g
� in Pohlers ���	


Proposition �	 The set Acc is closed under ordinal addition and the 
�function�
provably in gEID�


Proposition �� 
Condensation� Let Th be gEID� or EID�
 Then we have for
all a � T �

Th 
 TI �	�� a�X� �Ka 	 a �M�a� �� Th 
 TI �	��a�X��

The de�nition of the 	� relation is tailored so that trans�nite induction up to ���
is trivially provable in gEID� for all elementary LFP formulas� in the presence of full
induction on the accessible part it is even derivable for arbitrary LFP formulas


Lemma �
 We have for all elementary LFP formulas A�x� and arbitrary LFP for�

mulas B�x��

�� gEID� 
 TI �	��� � �� A��

�� EID� 
 TI �	��� � �� B��

Proof� For the proof of the �rst part of our assertion we work informally in gEID�

Let A�x� be an elementary LFP formula and assume Prog�	�� A�
 We have to show
��x �� ��A�x�
 Let x	��� i
e
 M�x� � x 	 �
 From M�x� and by Proposition
�� we can conclude Acc�x�
 This immediately yields A�x� by Lemma ��� since
Prog�	�� A� implies Prog�	�A�
 Hence� we have established ��x	���A�x�� from
which we derive A��� by Prog�	�� A�
 We have shown ��x �� ��A�x�� as desired

The proof of the second part runs in exactly the same way except that we use the
second part of Lemma ��
 �

Let us now turn to the speci�c wellordering proof for gEID�
 The following lemma
is crucial


��



Lemma �� We have for all a 	 ���

gEID� 
 TI �	�� ���a� X��

Proof� Let a 	 �� be given
 We �rst claim that

gEID� 
 x � T � ���y	�x��XTI �	�� ���y� X�� �XTI �	�� ���x� X�	 � ���

If x � �� then ���x � � and� therefore� ��� is a consequence of the previous lemma

In the case x � � one proceeds exactly as in the wellordering proof for ACA
 For
the detailed argument the reader is referred to Sch�utte ���	� p
 ��� 

 Therefore� by
setting

A�x� �� x � T � �XTI �	�� ���x� X��

we have established Prog�	�� A� in gEID�
 Furthermore� from standard proof theory
one knows that gEID� 
 TI �	�� a� B� for arbitrary LFP formulas B�x�
 Hence� we
can conclude from ��� that

gEID� 
 ��x	�a�A�x�� ���

yielding gEID� 
 A�a� by ��� again
 This is our claim
 �

Theorem �� We have for all a 	 ���

gEID� 
 TI �	�����a� X��

Proof� The claim of the theorem is an immediate consequence of the previous
lemma and condensation� since M����a� and K����a� 	 ���a are trivially provable
in gEID� for each a 	 ��
 �

Corollary �� ������ � j gEID�j � jgE�j�

��� Upper bounds

In order to establish the upper bound for gE� we �rst embed gE� into the semiformal
system E��

�
 The following theorem is the analogue of Theorem �� with the only
di
erence that the scheme of elementary induction on the ordinals� which is available
in gE� is taken care of by the corresponding axioms of E��

�


Theorem �� 
Embedding of gE�� Let A be a numerically closed L� formula

which is provable in gE�� Then there exists ordinals 
� � 	 � � � so that

E��

�

�

�
A�

Now we apply Theorem �� and eliminate all cuts of degree greater than or equal
to �
 Observe� however� that we cannot do better since the main formulas of the
principal axioms of E��

�
can be arbitrary elementary formulas


��



Corollary 
� Let A be a numerically closed L� formula which is provable in gE��
Then there exists an ordinal 
 	 �� so that

E��

�

�

	
A�

Now we turn to the interpretation of E��
�
into Z�
 In a preliminary step we deal

with �� re�ection and induction on the ordinals


Lemma 
� Assume that A is a �� formula of SL� and B an arbitrary SL� for�

mula� Assume further that C is the universal closure of one of the following two

formulas�

�i� �A � ��A�� �ii� �� ���� 	 ��B��� � �B���	 � ��B����

Then we have Z�
�

�
C�

Proof� Let us �rst assume that C is the universal closure of �i�
 Then the claim
is immediate by the identity axioms� the rule for �� re�ection and the ������ rules�
which are all available in Z�
 Secondly� let C be the universal closure of �ii� and
let ��� � � � � �n be all the free variables of ��B���
 If 
�� � � � � 
n � T � �� then let
B���� denote the formula B���� where ��� � � � � �n are replaced by 
�� � � � � 
n
 Then
one proves by an easy induction on � that

Z�
��	���

�
�� ���� 	 ��B���� � �B����	� B����

holds for all � � T ��� where 
 � 
�' � � �'
n
 Now the claim is immediate by an
application of the ������ rule
 �

For formulating the interpretation theorem in compact form it is convenient to
introduce the following abbreviation� If ! is a �nite set of SL� formulas� then we
write ��!� for the set of all universal closures of some disjunction of the formulas in
the set !


Lemma 
� Let ! and # be �nite sets of SL� formulas so that ! � #� Then we

have for all CL� formulas A and B�

A � ��!� and B � ��#� �� Z�
�

�
�A�B�

The proof of this lemma is straightforward� since the identity axioms are formulated
for arbitrary formulas and the ������ rule is available in Z�


Theorem 
	 Let ! be a �nite set of elementary SL� formulas and A an elementary

CL� formula� Then we have for all ordinals 
 	 ���

E��

�

�

	
! and A � ��!� �� Z�

��	�

��	
A�

��



Proof� The theorem is proved by induction on 

 If ! is an axiom for �� re�ection
or induction on the ordinals in E��

�
� then the claim is immediate from Lemma ��

and the previous lemma by a cut
 Further� the induction operator axioms of E��
�
are

easily handled by the corresponding rules in Z�
 The remaining basic and principal
axioms of E��

�
follow from the axioms of Z�
 If ! is the conclusion of a basic rule

of E��
�� then the claim essentially follows from the induction hypothesis
 Consider

e
g
 the case where ! is the conclusion of the introduction of an universal ordinal
quanti�er
 Hence� ! has the form #� ��B���� and there is a � 	 
 so that

E��

�

�

	
#� ��B���� B���� ���

Let us assume that C is some �xed disjunction of the formulas in #
 Furthermore�
let D be the universal closure of C � ��B��� and let D� be the universal closure of
�C � ��B���� � B
 Then it is easy to establish that

Z�
�

�
�D�� D� ���

where again essential use is made of the ���rules
 Furthermore� by ��� and the

induction hypothesis we know that Z�
��	�

��	
D�
 By a cut with ��� this amounts

to Z�
��	���

��	
D
 Now if A � ��!�� then an application of Lemma �� yields

Z�
��	�

��	
A ���

by a cut as desired
 This �nishes the discussion of the basic rules of E��
�

 Further�

more� if ! is the conclusion of a cut rule� then the claim immediately follows from
the induction hypothesis
 �

The proof�theoretic reduction of the �� part of gE� is now straightforward from
Corollary ��� Theorem �� and Corollary ��


Theorem 
� Let A be a closed �� formula which is provable in gE�� Then there

exists an 
 	 ������ so that Z�
�

�
A�

By Theorem ��� Lemma ��� Corollary �� and formalization of the previous theorem
we have established the following corollary


Corollary 

 The proof�theoretic strength of the three theories gE�� gEID� and

ACA� ���
��CA�

�
can be characterized as follows�

�� jgE�j � j gEID�j � jACA� ���
��CA�

�
j � �������

�� gE� � gEID� � ACA� ���
��CA�

�
�

��



� The proof�theoretic strength of E�� EID� and

ACA � ���
��CA�

�
� �BIpr�

�

It remains to provide the proof�theoretic treatment of the elementary G�odel�Bernays
extensions of ID� and PA� with full induction on the natural numbers and full in�
duction on the �xed points and ordinals� respectively
 The treatment of the theories
EID� and E� is simpler than that of the previous theories in the sense that the
wellordering proof for EID� is a straightforward combination of the wellordering
proofs of ACA and ID� and the upper bound for E� can be established by a direct
interpretation into Z� without a previous partial cut elimination argument


��� Lower bounds

In the sequel we show that EID� proves the wellfoundedness of each initial segment
of ������
 We will make use of the framework which we have developed in Section

�
� for the wellordering proof for gEID�
 In addition� we need the following standard
de�nition �n 	 ���

���� � �� �� � � �� �n���� � �� �� �	n������

Lemma 
� We have for all LFP formulas A�x� and for all n 	 ��

EID� 
 TI �	�� �n�� � ��� A��

Proof� The claim is proved by induction on n
 For n � � we are done by the second
part of Lemma ��
 If n � �� then we use the induction hypothesis and proceed as
in the wellordering proof for PA �cf
 e
g
 Sch�utte ���	�
 This is possible� since we
have complete induction on the natural numbers available in EID� for arbitrary
LFP formulas
 �

Lemma 
� We have for all n 	 ��

EID� 
 TI �	�� �	n������ X��

Proof� Let us �x n 	 �
 The proof of this assertion runs in a similar way as the
proof of Lemma ��
 Again one proceeds as in the wellordering proof for ACA and
establishes that

EID� 
 x � T � ���y	�x��XTI �	�� �y� X�� �XTI �	�� �x� X�	 � ���

i
e
 we have that EID� 
 Prog�	�� A�� where A is given by

A�x� �� x � T � �XTI �	�� �x� X��

Using the previous lemma this immediately yields

EID� 
 ��x	� �n�� � ���A�x�� ���

Again by ��� we get EID� 
 A��n�� � ���� and we are done
 �

��



Theorem 
� We have for all n � N�

EID� 
 TI �	���	n������ X��

Proof� We �rst observe that for each n � N � we trivially have M��	n������ and
K��	n������ 	 �	n������ provably in EID�
 Then the theorem follows from the
previous lemma by condensation
 �

We have established the following lower bound for EID� and E�� since one has
sup
n�	

��	n����� � ������


Corollary 
� ������ � jEID�j � jE�j�

��� Upper bounds

The computation of the upper bound for E� is a matter of routine
 One simply
establishes a direct interpretation of E� into Z� in a completely standard way

In particular� �� re�ection and full induction on the ordinals follow from Lemma
��� and complete induction on the natural numbers is proved in the usual way by
making use of the � rule� which is available in Z�
 Summarizing� one easily proves
the following interpretation theorem


Theorem �� Let A be a closed L� formula which is provable in E�� Then there

exists an n 	 � so that

Z�
��	�

��	�n
A�

As a consequence of this theorem and Corollary �� we immediately obtain the fol�
lowing reduction theorem for E�


Theorem �� Let A be a closed �� formula which is provable in E�� Then there

exists an 
 	 ������ so that Z�
�

�
A�

The �nal proof�theoretic equivalences are now available by Theorem ��� Lemma ���
Corollary �� and some standard formalization arguments


Corollary �� The proof�theoretic strength of the three theories E�� EID� and

ACA� ���
��CA�

�
� �BIpr�

�
can be characterized as follows�

�� jE�j � jEID�j � jACA� ���
��CA�

�
� �BIpr�

�j � �������

�� E� � EID� � ACA� ���
��CA�

�
� �BIpr�

�
�

On the previous pages we have studied the G�odel�Bernays extension EID� of ID��
the G�odel�Bernays extension E� of PA� and a series of natural subsystems of EID�

and E�
 Research in this direction can be generalized for example in the following
two ways�

�i� Consider G�odel�Bernays extensions of ID� and PA� generated by stronger
comprehension principles


�ii� Start o
 from other �rst order theories and analyze their G�odel�Bernays ex�
tension


��
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