
Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

On the proof theory of type 2 functionals

Thomas Strahm

Institut für Informatik und angewandte Mathematik
Universität Bern

Oberwolfach, March 2005

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

1 The formal framework of applicative theories

2 The non-constructive µ-operator and the E1 functional

3 Applicative theories based on primitive recursive operations

4 Bounded applicative theories and higher type feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Applicative theories

Operational core of Feferman’s systems of explicit
mathematics (Feferman ’75)

Untyped universe of operations or rules, which can freely be
applied to each other: self-application is meaningful, though
not necessarily total

Natural setting for studying notions of abstract computability,
especially from a proof-theoretic perspective

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Applicative theories

Operational core of Feferman’s systems of explicit
mathematics (Feferman ’75)

Untyped universe of operations or rules, which can freely be
applied to each other: self-application is meaningful, though
not necessarily total

Natural setting for studying notions of abstract computability,
especially from a proof-theoretic perspective

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Applicative theories

Operational core of Feferman’s systems of explicit
mathematics (Feferman ’75)

Untyped universe of operations or rules, which can freely be
applied to each other: self-application is meaningful, though
not necessarily total

Natural setting for studying notions of abstract computability,
especially from a proof-theoretic perspective

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Aim of this talk

Discussing various aspects relating to the proof theory of type
2 functionals in Feferman-style applicative theories

Functionals from generalized recursion theory (E0 and E1)

Addressing the proof theory of these functionals also on the
basis of Schlüter’s partial enumerative algebra

Provability ot type 2 functionals in weak applicative
frameworks, thus discussing questions about type two
feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Aim of this talk

Discussing various aspects relating to the proof theory of type
2 functionals in Feferman-style applicative theories

Functionals from generalized recursion theory (E0 and E1)

Addressing the proof theory of these functionals also on the
basis of Schlüter’s partial enumerative algebra

Provability ot type 2 functionals in weak applicative
frameworks, thus discussing questions about type two
feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Aim of this talk

Discussing various aspects relating to the proof theory of type
2 functionals in Feferman-style applicative theories

Functionals from generalized recursion theory (E0 and E1)

Addressing the proof theory of these functionals also on the
basis of Schlüter’s partial enumerative algebra

Provability ot type 2 functionals in weak applicative
frameworks, thus discussing questions about type two
feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Aim of this talk

Discussing various aspects relating to the proof theory of type
2 functionals in Feferman-style applicative theories

Functionals from generalized recursion theory (E0 and E1)

Addressing the proof theory of these functionals also on the
basis of Schlüter’s partial enumerative algebra

Provability ot type 2 functionals in weak applicative
frameworks, thus discussing questions about type two
feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

1 The formal framework of applicative theories

2 The non-constructive µ-operator and the E1 functional

3 Applicative theories based on primitive recursive operations

4 Bounded applicative theories and higher type feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦

Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦

Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦

Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦

Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)

t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic language of applicative theories

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, 0, sN, pN, rN, ...

relation symbols =, ↓, N

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)
t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ N := N(t)
t ∈ Nk → N := (∀x1 . . . xk ∈ N)tx1 . . . xk ∈ N

t ∈ NN × N → N := (∀f ∈ N → N)(∀x ∈ N)tfx ∈ N

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).

The non-logical axioms of BON include:

partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

pairing p with projections p0 and p1

defining axioms for the natural numbers N with 0, sN
(successor) and pN (predecessor)

definition by numerical cases dN on N

primitive recursion rN on N (optional)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

pairing p with projections p0 and p1

defining axioms for the natural numbers N with 0, sN
(successor) and pN (predecessor)

definition by numerical cases dN on N

primitive recursion rN on N (optional)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

pairing p with projections p0 and p1

defining axioms for the natural numbers N with 0, sN
(successor) and pN (predecessor)

definition by numerical cases dN on N

primitive recursion rN on N (optional)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

pairing p with projections p0 and p1

defining axioms for the natural numbers N with 0, sN
(successor) and pN (predecessor)

definition by numerical cases dN on N

primitive recursion rN on N (optional)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

pairing p with projections p0 and p1

defining axioms for the natural numbers N with 0, sN
(successor) and pN (predecessor)

definition by numerical cases dN on N

primitive recursion rN on N (optional)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

pairing p with projections p0 and p1

defining axioms for the natural numbers N with 0, sN
(successor) and pN (predecessor)

definition by numerical cases dN on N

primitive recursion rN on N (optional)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

partial combinatory algebra:

kxy = x, sxy↓ ∧ sxyz ' xz(yz)

pairing p with projections p0 and p1

defining axioms for the natural numbers N with 0, sN
(successor) and pN (predecessor)

definition by numerical cases dN on N

primitive recursion rN on N (optional)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Additional axioms and sets of natural numbers

Totality (Tot)
(∀x, y)xy↓

Extensionality (Ext)

(∀x)(fx ' gx) → f = g

Sets of natural numbers

are represented via their total characteristic functions:

f ∈ P(N) ⇔ (∀x ∈ N)(fx = 0 ∨ fx = 1)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Additional axioms and sets of natural numbers

Totality (Tot)
(∀x, y)xy↓

Extensionality (Ext)

(∀x)(fx ' gx) → f = g

Sets of natural numbers

are represented via their total characteristic functions:

f ∈ P(N) ⇔ (∀x ∈ N)(fx = 0 ∨ fx = 1)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Additional axioms and sets of natural numbers

Totality (Tot)
(∀x, y)xy↓

Extensionality (Ext)

(∀x)(fx ' gx) → f = g

Sets of natural numbers

are represented via their total characteristic functions:

f ∈ P(N) ⇔ (∀x ∈ N)(fx = 0 ∨ fx = 1)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Additional axioms and sets of natural numbers

Totality (Tot)
(∀x, y)xy↓

Extensionality (Ext)

(∀x)(fx ' gx) → f = g

Sets of natural numbers

are represented via their total characteristic functions:

f ∈ P(N) ⇔ (∀x ∈ N)(fx = 0 ∨ fx = 1)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

explicit definitions (λ-abstraction)

recursion theorem

fixf↓ ∧ (∀x)(fixfx ' f(fixf)x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

explicit definitions (λ-abstraction)

recursion theorem

fixf↓ ∧ (∀x)(fixfx ' f(fixf)x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

explicit definitions (λ-abstraction)

recursion theorem

fixf↓ ∧ (∀x)(fixfx ' f(fixf)x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

explicit definitions (λ-abstraction)

recursion theorem

fixf↓ ∧ (∀x)(fixfx ' f(fixf)x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Induction principles on N

Set induction on N (S-IN)

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0 → f(x′) = 0)
→ (∀x ∈ N)(fx = 0)

N induction on N (N-IN)

f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N → f(x′) ∈ N) → (∀x ∈ N)(fx ∈ N)

Formula induction on N (L-IN)

The full induction schema.

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Induction principles on N

Set induction on N (S-IN)

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0 → f(x′) = 0)
→ (∀x ∈ N)(fx = 0)

N induction on N (N-IN)

f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N → f(x′) ∈ N) → (∀x ∈ N)(fx ∈ N)

Formula induction on N (L-IN)

The full induction schema.

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Induction principles on N

Set induction on N (S-IN)

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0 → f(x′) = 0)
→ (∀x ∈ N)(fx = 0)

N induction on N (N-IN)

f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N → f(x′) ∈ N) → (∀x ∈ N)(fx ∈ N)

Formula induction on N (L-IN)

The full induction schema.

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Induction principles on N

Set induction on N (S-IN)

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0 → f(x′) = 0)
→ (∀x ∈ N)(fx = 0)

N induction on N (N-IN)

f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N → f(x′) ∈ N) → (∀x ∈ N)(fx ∈ N)

Formula induction on N (L-IN)

The full induction schema.

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Induction principles on N

Set induction on N (S-IN)

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0 → f(x′) = 0)
→ (∀x ∈ N)(fx = 0)

N induction on N (N-IN)

f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N → f(x′) ∈ N) → (∀x ∈ N)(fx ∈ N)

Formula induction on N (L-IN)

The full induction schema.

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Induction principles on N

Set induction on N (S-IN)

f ∈ P(N) ∧ f0 = 0 ∧ (∀x ∈ N)(fx = 0 → f(x′) = 0)
→ (∀x ∈ N)(fx = 0)

N induction on N (N-IN)

f0 ∈ N ∧ (∀x ∈ N)(fx ∈ N → f(x′) ∈ N) → (∀x ∈ N)(fx ∈ N)

Formula induction on N (L-IN)

The full induction schema.

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

A folklore theorem

Theorem

1 BON + (S-IN) ≡ BON + (N-IN) ≡ PRA.

2 BON + (L-IN) ≡ PA.

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

1 The formal framework of applicative theories

2 The non-constructive µ-operator and the E1 functional

3 Applicative theories based on primitive recursive operations

4 Bounded applicative theories and higher type feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The type two functionals E0 and E1

α, β, γ, · · · : N → N.

The E0 functional:

E0(α) =
{

0 ∃nα(n) = 0,
1 else

The E1 functional:

E1(α) =
{

0 ∃β∀nα(〈β(n+1), β(n)〉) = 0,
1 else

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The type two functionals E0 and E1

α, β, γ, · · · : N → N.

The E0 functional:

E0(α) =
{

0 ∃nα(n) = 0,
1 else

The E1 functional:

E1(α) =
{

0 ∃β∀nα(〈β(n+1), β(n)〉) = 0,
1 else

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The type two functionals E0 and E1

α, β, γ, · · · : N → N.

The E0 functional:

E0(α) =
{

0 ∃nα(n) = 0,
1 else

The E1 functional:

E1(α) =
{

0 ∃β∀nα(〈β(n+1), β(n)〉) = 0,
1 else

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The type two functionals E0 and E1

α, β, γ, · · · : N → N.

The E0 functional:

E0(α) =
{

0 ∃nα(n) = 0,
1 else

The E1 functional:

E1(α) =
{

0 ∃β∀nα(〈β(n+1), β(n)〉) = 0,
1 else

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Some facts from recursion theory

I ω1[I] recursive in I r.e. in I

E0 ω1 Lω1 ∩ P(N) Σ1 on Lω1

E1 i0 Li0 ∩ P(N) Σ1 on Li0

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Some facts from recursion theory

I ω1[I] recursive in I r.e. in I

E0 ω1 Lω1 ∩ P(N) Σ1 on Lω1

E1 i0 Li0 ∩ P(N) Σ1 on Li0

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Some facts from recursion theory

I ω1[I] recursive in I r.e. in I

E0 ω1 Lω1 ∩ P(N) Σ1 on Lω1

E1 i0 Li0 ∩ P(N) Σ1 on Li0

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Formalizing the functionals in the applicative setting

The µ functional

(µ.1) f ∈ (N → N) ↔ µf ∈ N,

(µ.2) f ∈ (N → N) ∧ (∃x ∈ N)(fx = 0) → f(µf) = 0.

The E1 functional

(E1.1) f ∈ (N2 → N) ↔ E1f ∈ N,

(E1.2) f ∈ (N2 → N) →

[(∃g ∈ N → N)(∀x ∈ N)(f(gx′)(gx) = 0) ↔ E1f = 0].

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Formalizing the functionals in the applicative setting

The µ functional

(µ.1) f ∈ (N → N) ↔ µf ∈ N,

(µ.2) f ∈ (N → N) ∧ (∃x ∈ N)(fx = 0) → f(µf) = 0.

The E1 functional

(E1.1) f ∈ (N2 → N) ↔ E1f ∈ N,

(E1.2) f ∈ (N2 → N) →

[(∃g ∈ N → N)(∀x ∈ N)(f(gx′)(gx) = 0) ↔ E1f = 0].

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Formalizing the functionals in the applicative setting

The µ functional

(µ.1) f ∈ (N → N) ↔ µf ∈ N,

(µ.2) f ∈ (N → N) ∧ (∃x ∈ N)(fx = 0) → f(µf) = 0.

The E1 functional

(E1.1) f ∈ (N2 → N) ↔ E1f ∈ N,

(E1.2) f ∈ (N2 → N) →

[(∃g ∈ N → N)(∀x ∈ N)(f(gx′)(gx) = 0) ↔ E1f = 0].

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Formalizing the functionals in the applicative setting

The µ functional

(µ.1) f ∈ (N → N) ↔ µf ∈ N,

(µ.2) f ∈ (N → N) ∧ (∃x ∈ N)(fx = 0) → f(µf) = 0.

The E1 functional

(E1.1) f ∈ (N2 → N) ↔ E1f ∈ N,

(E1.2) f ∈ (N2 → N) →

[(∃g ∈ N → N)(∀x ∈ N)(f(gx′)(gx) = 0) ↔ E1f = 0].

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Formalizing the functionals in the applicative setting

The µ functional

(µ.1) f ∈ (N → N) ↔ µf ∈ N,

(µ.2) f ∈ (N → N) ∧ (∃x ∈ N)(fx = 0) → f(µf) = 0.

The E1 functional

(E1.1) f ∈ (N2 → N) ↔ E1f ∈ N,

(E1.2) f ∈ (N2 → N) →

[(∃g ∈ N → N)(∀x ∈ N)(f(gx′)(gx) = 0) ↔ E1f = 0].

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Formalizing the functionals in the applicative setting

The µ functional

(µ.1) f ∈ (N → N) ↔ µf ∈ N,

(µ.2) f ∈ (N → N) ∧ (∃x ∈ N)(fx = 0) → f(µf) = 0.

The E1 functional

(E1.1) f ∈ (N2 → N) ↔ E1f ∈ N,

(E1.2) f ∈ (N2 → N) →

[(∃g ∈ N → N)(∀x ∈ N)(f(gx′)(gx) = 0) ↔ E1f = 0].

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Proof theory of µ (or E0)

Theorem (Feferman, Jäger, S.)

1 BON(µ) + (S-IN) ≡ PA,

2 BON(µ) + (N-IN) ≡ (∆1
1-CR),

3 BON(µ) + (L-IN) ≡ (∆1
1-CA).

Furthermore, all these equivalences also hold in the presence of
(Tot) and (Ext).

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Proof theory of E1

Theorem (Jäger, S.)

1 BON(µ,E1) + (S-IN) ≡ (∆1
2-CA)�,

2 BON(µ,E1) + (N-IN) ≡ (∆1
2-CR),

3 BON(µ,E1) + (L-IN) ≡ (∆1
2-CA).

Furthermore, all these equivalences also hold in the presence of
(Tot) and (Ext).

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

1 The formal framework of applicative theories

2 The non-constructive µ-operator and the E1 functional

3 Applicative theories based on primitive recursive operations

4 Bounded applicative theories and higher type feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Schlüter’s partial enumerative algebra

Define a weakening of a partial combinatory algebra for
enumerated classes of functions

It is not necessarily assumed that the enumerating function
itself belongs to that class of functions

Standard interpretation in the primitive recursive indices
possible

Aim: study the proof theory of this new algebra augmented
with the type two functionals µ and E1

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Schlüter’s partial enumerative algebra

Define a weakening of a partial combinatory algebra for
enumerated classes of functions

It is not necessarily assumed that the enumerating function
itself belongs to that class of functions

Standard interpretation in the primitive recursive indices
possible

Aim: study the proof theory of this new algebra augmented
with the type two functionals µ and E1

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Schlüter’s partial enumerative algebra

Define a weakening of a partial combinatory algebra for
enumerated classes of functions

It is not necessarily assumed that the enumerating function
itself belongs to that class of functions

Standard interpretation in the primitive recursive indices
possible

Aim: study the proof theory of this new algebra augmented
with the type two functionals µ and E1

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Schlüter’s partial enumerative algebra

Define a weakening of a partial combinatory algebra for
enumerated classes of functions

It is not necessarily assumed that the enumerating function
itself belongs to that class of functions

Standard interpretation in the primitive recursive indices
possible

Aim: study the proof theory of this new algebra augmented
with the type two functionals µ and E1

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a, b and i:

kxy = x ix = x

p0〈x, y〉 = x ∧ p1〈x, y〉 = y

a〈x, y〉↓ ∧ a〈x, y〉z ' 〈xz, yz〉
b〈x, y〉↓ ∧ b〈x, y〉z ' x(yz)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a, b and i:

kxy = x ix = x

p0〈x, y〉 = x ∧ p1〈x, y〉 = y

a〈x, y〉↓ ∧ a〈x, y〉z ' 〈xz, yz〉
b〈x, y〉↓ ∧ b〈x, y〉z ' x(yz)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a, b and i:

kxy = x ix = x

p0〈x, y〉 = x ∧ p1〈x, y〉 = y

a〈x, y〉↓ ∧ a〈x, y〉z ' 〈xz, yz〉
b〈x, y〉↓ ∧ b〈x, y〉z ' x(yz)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a, b and i:

kxy = x ix = x

p0〈x, y〉 = x ∧ p1〈x, y〉 = y

a〈x, y〉↓ ∧ a〈x, y〉z ' 〈xz, yz〉

b〈x, y〉↓ ∧ b〈x, y〉z ' x(yz)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a, b and i:

kxy = x ix = x

p0〈x, y〉 = x ∧ p1〈x, y〉 = y

a〈x, y〉↓ ∧ a〈x, y〉z ' 〈xz, yz〉
b〈x, y〉↓ ∧ b〈x, y〉z ' x(yz)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or
something computed out of it is not applied to anything else. In
this case we get λ-abstraction as usual:

(λx.t)↓ ∧ (λx.t)x ' t

Not allowed: λz.xz(yz), λx.(x)0(x)1
Allowed: λz.〈xz, yz〉

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or
something computed out of it is not applied to anything else. In
this case we get λ-abstraction as usual:

(λx.t)↓ ∧ (λx.t)x ' t

Not allowed: λz.xz(yz), λx.(x)0(x)1
Allowed: λz.〈xz, yz〉

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or
something computed out of it is not applied to anything else. In
this case we get λ-abstraction as usual:

(λx.t)↓ ∧ (λx.t)x ' t

Not allowed: λz.xz(yz), λx.(x)0(x)1
Allowed: λz.〈xz, yz〉

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or
something computed out of it is not applied to anything else. In
this case we get λ-abstraction as usual:

(λx.t)↓ ∧ (λx.t)x ' t

Not allowed: λz.xz(yz), λx.(x)0(x)1

Allowed: λz.〈xz, yz〉

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or
something computed out of it is not applied to anything else. In
this case we get λ-abstraction as usual:

(λx.t)↓ ∧ (λx.t)x ' t

Not allowed: λz.xz(yz), λx.(x)0(x)1
Allowed: λz.〈xz, yz〉

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Proof theory of µ (or E0) on the basis of PRON

Theorem (Steiner, S.)

1 PRON(µ) + (S-IN) ≡ PA,

2 PRON(µ) + (L-IN) ≡ (Π0
1-CA).

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Proof theory of E1 on the basis of PRON

Theorem (Steiner, S.)

1 PRON(µ,E1) + (S-IN) ≡ (Π1
1-CA)�,

2 PRON(µ,E1) + (L-IN) ≡ (Π1
1-CA).

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

1 The formal framework of applicative theories

2 The non-constructive µ-operator and the E1 functional

3 Applicative theories based on primitive recursive operations

4 Bounded applicative theories and higher type feasibility

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Bounded applicative theories and higher type functionals

General program

Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

Exhibit relationship to systems of bounded arithmetic, higher
type functionals

Higher types arise naturally in an untyped applicative setting!

In the sequel: Presentation of an applicative theory PT which
characterizes the type 2 basic feasible functionals

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Bounded applicative theories and higher type functionals

General program

Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

Exhibit relationship to systems of bounded arithmetic, higher
type functionals

Higher types arise naturally in an untyped applicative setting!

In the sequel: Presentation of an applicative theory PT which
characterizes the type 2 basic feasible functionals

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Bounded applicative theories and higher type functionals

General program

Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

Exhibit relationship to systems of bounded arithmetic, higher
type functionals

Higher types arise naturally in an untyped applicative setting!

In the sequel: Presentation of an applicative theory PT which
characterizes the type 2 basic feasible functionals

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Bounded applicative theories and higher type functionals

General program

Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

Exhibit relationship to systems of bounded arithmetic, higher
type functionals

Higher types arise naturally in an untyped applicative setting!

In the sequel: Presentation of an applicative theory PT which
characterizes the type 2 basic feasible functionals

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Bounded applicative theories and higher type functionals

General program

Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

Exhibit relationship to systems of bounded arithmetic, higher
type functionals

Higher types arise naturally in an untyped applicative setting!

In the sequel: Presentation of an applicative theory PT which
characterizes the type 2 basic feasible functionals

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The language of PT

LW is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, ∗, ×
relation symbols =, ↓, W

arbitrary term application ◦

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The language of PT

LW is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, ∗, ×

relation symbols =, ↓, W

arbitrary term application ◦

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The language of PT

LW is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, ∗, ×
relation symbols =, ↓, W

arbitrary term application ◦

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

The language of PT

LW is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, ∗, ×
relation symbols =, ↓, W

arbitrary term application ◦

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:

partial combinatory algebra

pairing and projections

defining axioms for the binary words W with ε and the binary
successors s0 and s1, predecessor dW and definition by cases
dW on W

word concatenation ∗ and word multiplication ×

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:

partial combinatory algebra

pairing and projections

defining axioms for the binary words W with ε and the binary
successors s0 and s1, predecessor dW and definition by cases
dW on W

word concatenation ∗ and word multiplication ×

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:

partial combinatory algebra

pairing and projections

defining axioms for the binary words W with ε and the binary
successors s0 and s1, predecessor dW and definition by cases
dW on W

word concatenation ∗ and word multiplication ×

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:

partial combinatory algebra

pairing and projections

defining axioms for the binary words W with ε and the binary
successors s0 and s1, predecessor dW and definition by cases
dW on W

word concatenation ∗ and word multiplication ×

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:

partial combinatory algebra

pairing and projections

defining axioms for the binary words W with ε and the binary
successors s0 and s1, predecessor dW and definition by cases
dW on W

word concatenation ∗ and word multiplication ×

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

A natural induction principle for PT

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧B(f, x, y))

for B positive and W-free

Σb
W-induction on W

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s0x) ∧A(s1x))

→ (∀x ∈ W)A(x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

A natural induction principle for PT

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧B(f, x, y))

for B positive and W-free

Σb
W-induction on W

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s0x) ∧A(s1x))

→ (∀x ∈ W)A(x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

A natural induction principle for PT

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧B(f, x, y))

for B positive and W-free

Σb
W-induction on W

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s0x) ∧A(s1x))

→ (∀x ∈ W)A(x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

A natural induction principle for PT

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧B(f, x, y))

for B positive and W-free

Σb
W-induction on W

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s0x) ∧A(s1x))

→ (∀x ∈ W)A(x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

A natural induction principle for PT

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧B(f, x, y))

for B positive and W-free

Σb
W-induction on W

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s0x) ∧A(s1x))

→ (∀x ∈ W)A(x)

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

PT characterizes the type 2 basic feasible functionals

Theorem (S)

The provably total type two functionals of PT coincide with BFF2,
the basic feasible functionals of type two.

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Final remark and an open problem

PT and PVω

Indeed, the basic feasible functionals in all finite types are provably
total in PT.

Question

Is every provably total functional of type ≥ 3 of PT basic feasible?

Conjecture: Yes

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Final remark and an open problem

PT and PVω

Indeed, the basic feasible functionals in all finite types are provably
total in PT.

Question

Is every provably total functional of type ≥ 3 of PT basic feasible?

Conjecture: Yes

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Final remark and an open problem

PT and PVω

Indeed, the basic feasible functionals in all finite types are provably
total in PT.

Question

Is every provably total functional of type ≥ 3 of PT basic feasible?

Conjecture: Yes

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Final remark and an open problem

PT and PVω

Indeed, the basic feasible functionals in all finite types are provably
total in PT.

Question

Is every provably total functional of type ≥ 3 of PT basic feasible?

Conjecture: Yes

T. Strahm On the proof theory of type 2 functionals



Formal framework
Functionals E0 and E1

Primitive recursive operations
Higher type feasibility

Final remark and an open problem

PT and PVω

Indeed, the basic feasible functionals in all finite types are provably
total in PT.

Question

Is every provably total functional of type ≥ 3 of PT basic feasible?

Conjecture: Yes

T. Strahm On the proof theory of type 2 functionals


	The formal framework of applicative theories
	The non-constructive -operator and the E1 functional
	Applicative theories based on primitive recursive operations
	Bounded applicative theories and higher type feasibility

