On the proof theory of type 2 functionals

Thomas Strahm

Institut fiir Informatik und angewandte Mathematik
Universitat Bern

Oberwolfach, March 2005

T. Strahm On the proof theory of type 2 functionals

@ The formal framework of applicative theories
© The non-constructive p-operator and the E; functional
© Applicative theories based on primitive recursive operations

@ Bounded applicative theories and higher type feasibility

T. Strahm On the proof theory of type 2 functionals

Applicative theories

@ Operational core of Feferman’s systems of explicit
mathematics (Feferman '75)

T. Strahm On the proof theory of type 2 functionals

Applicative theories

@ Operational core of Feferman’s systems of explicit
mathematics (Feferman '75)

@ Untyped universe of operations or rules, which can freely be
applied to each other: self-application is meaningful, though
not necessarily total

T. Strahm On the proof theory of type 2 functionals

Applicative theories

@ Operational core of Feferman’s systems of explicit
mathematics (Feferman '75)

@ Untyped universe of operations or rules, which can freely be
applied to each other: self-application is meaningful, though
not necessarily total

@ Natural setting for studying notions of abstract computability,
especially from a proof-theoretic perspective

T. Strahm On the proof theory of type 2 functionals

Aim of this talk

@ Discussing various aspects relating to the proof theory of type
2 functionals in Feferman-style applicative theories

T. Strahm On the proof theory of type 2 functionals

Aim of this talk

@ Discussing various aspects relating to the proof theory of type
2 functionals in Feferman-style applicative theories

@ Functionals from generalized recursion theory (Eg and E;)

T. Strahm On the proof theory of type 2 functionals

Aim of this talk

@ Discussing various aspects relating to the proof theory of type
2 functionals in Feferman-style applicative theories

e Functionals from generalized recursion theory (Ey and E;)

@ Addressing the proof theory of these functionals also on the
basis of Schliiter’s partial enumerative algebra

T. Strahm On the proof theory of type 2 functionals

Aim of this talk

@ Discussing various aspects relating to the proof theory of type
2 functionals in Feferman-style applicative theories

e Functionals from generalized recursion theory (Ey and E;)

@ Addressing the proof theory of these functionals also on the
basis of Schliiter's partial enumerative algebra

@ Provability ot type 2 functionals in weak applicative
frameworks, thus discussing questions about type two
feasibility

T. Strahm On the proof theory of type 2 functionals

Formal framework

o The formal framework of applicative theories

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:

@ constants k, s, p, po, P1, 0, SN, PN, IN, -

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, Ny -

@ relation symbols =, |, N

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, Ny -
@ relation symbols =, |, N

@ arbitrary term application o

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, Ny -
@ relation symbols =, |, N

@ arbitrary term application o

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, Ny -
@ relation symbols =, |, N
@ arbitrary term application o

Notation

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, Ny -
@ relation symbols =, |, N
@ arbitrary term application o

Notation

@ tity...t, = (...(tlotQ)O"'Otn)

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, N, -
@ relation symbols =, |, N
@ arbitrary term application o
Notation
@ tity...ty := (...(t10tg)0---0ty)
@ty >ty 1= t1] Vig] — t1 =1y

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, N, -
@ relation symbols =, |, N
@ arbitrary term application o
Notation
@ tity...ty := (...(t10tg)0---0ty)
@ty Xty = t1] Vig] — t1 =1ts
e teN = N(t)

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, N, -
@ relation symbols =, |, N
@ arbitrary term application o
Notation
@ tity...ty := (...(t10tg)0---0ty)
@ty Xty = t1] Vig] — t1 =1ts
e teN = N(t)
ot c NF =N := (Voy...2 € N)tzy ...z €N

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic language of applicative theories

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, 0, SN, PN, Ny -
@ relation symbols =, |, N
@ arbitrary term application o
Notation
@ tity...ty := (...(t10tg)0---0ty)
t1 =ty = t1] Vig] — t1 =19
teN = N(t)
teNF =N := (Vay...2p € N)twy... 2 €N
teNNXN—=N := (Vfe€N—N)(Vz € N)tfreN

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

@ partial combinatory algebra:

kry = x, sxyl Asxyz ~ xz(yz)

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

@ partial combinatory algebra:

kry =z, sxyl Asxyz ~ xz(yz)

@ pairing p with projections pg and p;

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

@ partial combinatory algebra:

kry =z, sxyl Asxyz ~ xz(yz)

@ pairing p with projections pg and p1
@ defining axioms for the natural numbers N with 0, sy
(successor) and py (predecessor)

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

@ partial combinatory algebra:

kry =z, sxyl Asxyz ~ xz(yz)

@ pairing p with projections pg and p1
@ defining axioms for the natural numbers N with 0, sy
(successor) and py (predecessor)

@ definition by numerical cases dy on N

T. Strahm On the proof theory of type 2 functionals

Formal framework

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).
The non-logical axioms of BON include:

@ partial combinatory algebra:

kry =z, sxyl Asxyz ~ xz(yz)

pairing p with projections pg and p;
defining axioms for the natural numbers N with 0, sy
(successor) and py (predecessor)

definition by numerical cases dy on N

primitive recursion ry on N (optional)

T. Strahm On the proof theory of type 2 functionals

Formal framework

Additional axioms and sets of natural numbers

T. Strahm On the proof theory of type 2 functionals

Formal framework

Additional axioms and sets of natural numbers

Totality (Tot)
(Vz,y)yl

Extensionality (Ext)

(Vr)(fr~gx) — f=g

T. Strahm On the proof theory of type 2 functionals

Formal framework

Additional axioms and sets of natural numbers

Totality (Tot)
(Vz,y)yl

Extensionality (Ext)

(Vr)(fr~gx) — f=g

Sets of natural numbers

T. Strahm On the proof theory of type 2 functionals

Formal framework

Additional axioms and sets of natural numbers

Totality (Tot)
(Vz,y)yl

Extensionality (Ext)
(Vo)(fz ~gz) — f=g
Sets of natural numbers
are represented via their total characteristic functions:

fePN) & (VreN)(fx=0V fz=1)

T. Strahm On the proof theory of type 2 functionals

Formal framework

Consequences of the partial combinatory algebra axioms

T. Strahm On the proof theory of type 2 functionals

Formal framework

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

T. Strahm On the proof theory of type 2 functionals

Formal framework

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

@ explicit definitions (A-abstraction)

T. Strahm On the proof theory of type 2 functionals

Formal framework

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

e explicit definitions (A-abstraction)

@ recursion theorem

fixf| A (Va)(fixfz ~ f(fixf)z)

T. Strahm On the proof theory of type 2 functionals

Formal framework

Induction principles on N

T. Strahm On the proof theory of type 2 functionals

Formal framework

Induction principles on N

Set induction on N (S-Iy)

FePIN)AfO=0A (Vz e N)(fr=0— f(z') =0)
— (Vz € N)(fz =0)

T. Strahm On the proof theory of type 2 functionals

Formal framework

Induction principles on N

Set induction on N (S-Iy)

FePIN)AfO=0A (Vz e N)(fr=0— f(z') =0)
— (Vz € N)(fz =0)

N induction on N (N-Iy)

T. Strahm On the proof theory of type 2 functionals

Formal framework

Induction principles on N

Set induction on N (S-Iy)

FePIN)AfO=0A (Vz e N)(fr=0— f(z') =0)
— (Vz € N)(fz =0)

N induction on N (N-Iy)

FOENA (Vz € N)(fr €N — f(z') € N) — (Vz € N)(fzr € N)

T. Strahm On the proof theory of type 2 functionals

Formal framework

Induction principles on N

Set induction on N (S-Iy)

FePIN)AfO=0A (Vz e N)(fr=0— f(z') =0)
— (Vz € N)(fz =0)

N induction on N (N-Iy)
foeNA Nz eN)(freN— f(z') eN) — (Vo € N)(fr € N)

Formula induction on N (L-ly)

T. Strahm On the proof theory of type 2 functionals

Formal framework

Induction principles on N

Set induction on N (S-Iy)

FePIN)AfO=0A (Vz e N)(fr=0— f(z') =0)
— (Vz € N)(fz =0)

N induction on N (N-Iy)
foeNA Nz eN)(freN— f(z') eN) — (Vo € N)(fr € N)

Formula induction on N (L-ly)

The full induction schema.

T. Strahm On the proof theory of type 2 functionals

Formal framework

A folklore theorem

@ BON + (S-Iy) = BON + (N-ly) = PRA.
© BON + (L-Iy) = PA.

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

© The non-constructive p-operator and the E; functional

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

The type two functionals Ey and E;

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

The type two functionals Ey and E;

a, 3,7, : N—N.

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

The type two functionals Ey and E;

a7ﬂ777"':N_>N-
@ The Eq functional:

0 dna(n) =0,
Eo() :{ 1 eIse() /

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

The type two functionals Ey and E;

a7ﬂ777"' :N—N.
@ The Eg functional:

i ={ § o=

@ The E; functional:

B = { g, =0

1 else

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Some facts from recursion theory

I wi[I] recursiveinI re.inl

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Some facts from recursion theory

I wi[I] recursiveinI re.inl

Ey wp L, NP(N) X;on L,

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Some facts from recursion theory

I wi[I] recursiveinI re.inl

Ey wp L, NP(N) X;on L,
Eq o Lio N P(N) 31 on Lio

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Formalizing the functionals in the applicative setting

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Formalizing the functionals in the applicative setting

The p functional
@ (u1) fe(N—N) < ufeN,

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Formalizing the functionals in the applicative setting

The p functional
o (ul) fe(N—N) < ufeN,
o (n2) fe(N—=N)A(FzeN)(fr=0) — f(uf)=0.

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Formalizing the functionals in the applicative setting

The p functional
o (1) fe(N—=N) < pufeN,
o (12) fe(N—N)AEzeN)(fz=0) — f(uf) =0,

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Formalizing the functionals in the applicative setting

The p functional
o (1) fe(N—=N) < pufeN,
o (12) fe(N—N)AEzeN)(fz=0) — f(uf) =0,

The E; functional
o (E;.1) fe(N® —N) « E;feN,

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Formalizing the functionals in the applicative setting

The p functional
o (1) fe(N—=N) < pufeN,
o (12) fe(N—N)AEzeN)(fz=0) — f(uf) =0,

The E; functional
o (E;.1) fe(N®>—N) « E;feN,
o (E1.2) fe(N2—=N) —

[(3g € N— N)(Vz e N)(f(g2")(gx) =0) < E1f =0].

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Proof theory of 11 (or Ep)

@ BON(u) + (S-In) = PA,

@ BON(u) + (N-ly) = (Al-CR),

© BON(u) + (L-Iy) = (Al-CA).
Furthermore, all these equivalences also hold in the presence of
(Tot) and (Ext).

T. Strahm On the proof theory of type 2 functionals

Functionals Eg and E;

Proof theory of E;

Theorem (Jager, S.)
© BON(1,Er) + (S-y) = (AL-CA) ,
@ BON(1,E1) + (N-Iy) = (A}-CR),

© BON(u, Eqp) + (L-Iy) = (A-CA).

Furthermore, all these equivalences also hold in the presence of
(Tot) and (Ext).

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

© Applicative theories based on primitive recursive operations

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Schliter's partial enumerative algebra

@ Define a weakening of a partial combinatory algebra for
enumerated classes of functions

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Schliter's partial enumerative algebra

@ Define a weakening of a partial combinatory algebra for
enumerated classes of functions

@ It is not necessarily assumed that the enumerating function
itself belongs to that class of functions

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Schliter's partial enumerative algebra

@ Define a weakening of a partial combinatory algebra for
enumerated classes of functions

@ It is not necessarily assumed that the enumerating function
itself belongs to that class of functions

@ Standard interpretation in the primitive recursive indices
possible

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Schliter's partial enumerative algebra

@ Define a weakening of a partial combinatory algebra for
enumerated classes of functions

@ It is not necessarily assumed that the enumerating function
itself belongs to that class of functions

@ Standard interpretation in the primitive recursive indices
possible

@ Aim: study the proof theory of this new algebra augmented
with the type two functionals 1 and E;

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

The theory PRON

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a,b and i:

o kxy ==z ir=x

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a,b and i:

o kxy ==z iz=x

® po{z,y) =z A p1(z,y) =y

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a,b and i:

o kxy ==z iz=x

°® po(z,y) =z A p1(z,y) =y
o a(z,y)| A alz,y)z = (v2,y2)

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial
combinatory algebra by the following three axioms, using two new
combinators a,b and i:

o kxy ==z iz=x
po(z,y) =2 A p1(z,y) =
alz,y)l A a(z,y)z = (zz yZ>
b{z,y)| A blx,y)z = z(yz)

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Explicit definitions in PRON

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Explicit definitions in PRON

Define a variable = to be in argument position in a term ¢, if z or
something computed out of it is not applied to anything else. In
this case we get \-abstraction as usual:

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Explicit definitions in PRON

Define a variable = to be in argument position in a term ¢, if z or
something computed out of it is not applied to anything else. In
this case we get \-abstraction as usual:

(Ax.t) A (Azt)r ~t

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Explicit definitions in PRON

Define a variable = to be in argument position in a term ¢, if z or
something computed out of it is not applied to anything else. In
this case we get \-abstraction as usual:

(Ax.t) A (Azt)r ~t

e Not allowed: \z.zxz(yz), Az.(z)o(x)1

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Explicit definitions in PRON

Define a variable = to be in argument position in a term ¢, if z or
something computed out of it is not applied to anything else. In
this case we get \-abstraction as usual:

(Ax.t) A (Azt)r ~t

e Not allowed: A\z.zz(yz), Az.(x)o(x):
e Allowed: \z.(xz,yz)

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Proof theory of 1 (or Ey) on the basis of PRON

Theorem (Steiner, S.)
@ PRON(u) + (S-In) = PA,
@ PRON(u) + (L-ly) = (I1{-CA).

T. Strahm On the proof theory of type 2 functionals

Primitive recursive operations

Proof theory of E; on the basis of PRON

Theorem (Steiner, S.)
@ PRON(i, E1) + (S-Iy)
@ PRON(y, E;) + (L-In)

(I-CA)I,
(IT1-CA).

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

@ Bounded applicative theories and higher type feasibility

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Bounded applicative theories and higher type functionals

General program

@ Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Bounded applicative theories and higher type functionals

General program

@ Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

@ Exhibit relationship to systems of bounded arithmetic, higher
type functionals

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Bounded applicative theories and higher type functionals

General program

@ Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

@ Exhibit relationship to systems of bounded arithmetic, higher
type functionals

@ Higher types arise naturally in an untyped applicative setting!

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Bounded applicative theories and higher type functionals

General program

@ Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

@ Exhibit relationship to systems of bounded arithmetic, higher
type functionals

@ Higher types arise naturally in an untyped applicative setting!

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Bounded applicative theories and higher type functionals

General program

@ Set up and study of bounded Feferman-style applicative
theories capturing various complexity classes in a uniform way

@ Exhibit relationship to systems of bounded arithmetic, higher
type functionals

@ Higher types arise naturally in an untyped applicative setting!

In the sequel: Presentation of an applicative theory PT which
characterizes the type 2 basic feasible functionals

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

The language of PT

L is a first order language for the logic of partial terms:

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

The language of PT

L is a first order language for the logic of partial terms:

@ constants k, s, p, po, P1, dw, € So, S1, Pw, *, X

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

The language of PT

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, dw, €, So, S1, Pw, *, X

@ relation symbols =, |, W

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

The language of PT

L is a first order language for the logic of partial terms:
@ constants k, s, p, po, P1, dw, €, So, S1, Pw, *, X
@ relation symbols =, |, W

@ arbitrary term application o

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Basic axioms of PT

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:

@ partial combinatory algebra

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:

@ partial combinatory algebra

@ pairing and projections

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:
@ partial combinatory algebra
@ pairing and projections
@ defining axioms for the binary words W with e and the binary
successors sg and sy, predecessor dy and definition by cases
dW on W

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical
axioms include:
@ partial combinatory algebra
@ pairing and projections
@ defining axioms for the binary words W with e and the binary
successors sg and s3, predecessor dy and definition by cases
dW on W

@ word concatenation * and word multiplication x

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

A natural induction principle for PT

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

A natural induction principle for PT

b
Yw-formulas

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

A natural induction principle for PT

b
Yw-formulas

Formulas A(z) of the form

(3y € W)(y < fo A B(f,2,9))

for B positive and W-free

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

A natural induction principle for PT

b
Yw-formulas

Formulas A(z) of the form

(Jy e W)(y < fo A B(f,7,y))
for B positive and W-free

E(’N—induction on W

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

A natural induction principle for PT

b
Yw-formulas

Formulas A(z) of the form

By e W)(y < fo AB(f,2,y))
for B positive and W-free
E(’N—induction on W

W —=W A A(e) A (Vx € W)(A(z) — A(sox) A A(s1))
— (Vz e W)A(x)

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

PT characterizes the type 2 basic feasible functionals

The provably total type two functionals of PT coincide with BFF,
the basic feasible functionals of type two.

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Final remark and an open problem

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Final remark and an open problem

PT and PV¥

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Final remark and an open problem

PT and PV¥

Indeed, the basic feasible functionals in all finite types are provably
total in PT.

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Final remark and an open problem

PT and PV¥

Indeed, the basic feasible functionals in all finite types are provably
total in PT.

Question

Is every provably total functional of type > 3 of PT basic feasible?

T. Strahm On the proof theory of type 2 functionals

Higher type feasibility

Final remark and an open problem

PT and PV¥

Indeed, the basic feasible functionals in all finite types are provably
total in PT.

Question
Is every provably total functional of type > 3 of PT basic feasible?

Conjecture: Yes

T. Strahm On the proof theory of type 2 functionals

	The formal framework of applicative theories
	The non-constructive -operator and the E1 functional
	Applicative theories based on primitive recursive operations
	Bounded applicative theories and higher type feasibility

