
TCP Support for Sensor Networks

Torsten Braun
University of Bern, Switzerland

braun@iam.unibe.ch

Thiemo Voigt and Adam Dunkels
Swedish Institute of Computer Science

thiemo@sics.se, adam@sics.se

Abstract—Many applications of wireless sensor networks require
external network connectivity to enable communication between
monitoring / controlling entities and sensors. By using the
TCP/IP protocols inside the sensor network, external connectivity
can be achieved to any other IP node at the edge or outside the
sensor network. TCP can then be used for remote management
and reprogramming of sensor nodes. However, high bit error
rates lead to energy inefficiencies that reduce the lifetime of a
sensor network. This paper introduces an approach to support
energy-efficient operation of TCP in sensor networks. The
concept called TCP Support for Sensor nodes (TSS) allows
intermediate sensor nodes to cache TCP segments and to perform
local retransmissions in case of errors. TSS does not forward a
cached segment until it knows that the previous segment has been
successfully received by the next hop node. This forms a kind of
congestion control and reduces the total number of packets in the
sensor network. Simulations show that TSS significantly reduces
the number of TCP segment and acknowledgement transmissions
compared to TCP without TSS.

Keywords-Sensor Networks, Transport Control Protocol

I.

A.

INTRODUCTION

Motivation and Application Scenarios
Wireless sensor networks are composed of a large number of
radio-equipped sensor devices that autonomously form
networks through which sensor data is transported. The
devices are typically severely resource-constrained in terms of
energy, processing power, memory, and communication
bandwidth. Many applications of wireless sensor networks
require an external connection to monitoring and controlling
entities (sinks) that consume sensor data and interact with the
sensor devices.
Running TCP/IP in the sensor network allows connecting the
sensor network directly to IP-based network infrastructures
without proxies or middle-boxes. To deploy a sensor network,
we just need Internet connectivity, which can also be achieved
by sensor nodes with GPRS or WLAN interfaces. This even
allows putting the sink into the fixed part of the IP network. In
particular for disaster recovery, deployment would be simpler
and faster, when only a single type of sensor node but no other
nodes such as protocol proxies or sinks needs to be deployed.
In such a scenario each sensor device is able to communicate
via TCP/IP. A single standard protocol suite can then be used.
Data to and from the sensor network can be routed via any
device with Internet connectivity rather than via sinks or
protocol proxy nodes only. This also simplifies to maintain

connectivity of the sensor network. Routing all traffic via a
single or a few sinks could easily lead to network partitioning
due to the heavy load put on nodes close to the sinks. On the
other hand, sensor nodes with IP connectivity not only allow
distributing the forwarding load but also deploying sensor
nodes without having gateways at many smaller areas.
Data transport in IP-based sensor networks can be performed
using UDP and TCP. UDP is used for sensor data and other
information that do not use reliable byte-stream unicast
transmission. TCP should be used for administrative tasks that
require reliability and compatibility with existing application
protocols. Examples of such tasks are configuration and
monitoring of individual sensor nodes as well as download of
binary code and data aggregation descriptions to sensor nodes.
In particular, downloading code to designated nodes such as
cluster heads in a certain geographical region requires a
reliable unicast protocol.
Figure 1

Figure 1: TCP connections in a sensor network

 shows possible TCP connections in a sensor network.
The sink has two TCP connections for configuring the black
sensor nodes, while a kind of multicast overlay tree consisting
of several (grey) sensor nodes can be established for code or
query distribution based on TCP connections. Reliable
multicast might be required, if a group of sensor nodes but not
all sensor nodes need to be configured or reprogrammed. A
subset of homogeneous nodes in a heterogeneous environment
may form a group and all group members need to receive the
same binary code image. Moreover, members of a group may
perform the same task such as object tracking in a certain area.
Other sensor nodes may be responsible for other tasks such as
temperature monitoring. Sensor nodes with the same task
belong to the same group and need to be configured
appropriately.

Sink

B. Challenges with TCP/IP in Wireless Sensor Networks
On might argue that TCP/IP implementations consume too
many sensor network resources. However, recent work
showed that TCP/IP can be implemented on sensor nodes with
limited processing power and memory [1].
TCP/IP may result in relatively large headers that may add
significant overhead in case of short packets. However, we
assume that TCP is mainly used for configuration and
programming tasks, where a rather high amount of data is
transferred and packets become rather large. Moreover, we
propose to develop a TCP/IP header compression scheme for
sensor networks. Due to the stateful approach proposed in this
paper such a scheme should be feasible, but we leave this
issue for future work.
Other problems to be solved for TCP/IP in sensor networks
are related to addressing. While in traditional IP networks IP
addresses are assigned to each network interface based on the
network topology, IP-based sensor networks may use spatial
IP address assignment based on node locations, which might
be relative to a base station location [2].
While in traditional IP networks, packets are transparently
routed through the network based on the network topology,
data centric routing mechanisms are often preferable in
wireless sensor networks [3]. To implement data centric
routing in IP-based sensor networks, application overlay
networks might be used.
It is also well known that TCP has serious performance
problems in wireless networks [4]. One problem is that TCP,
which has been designed for wired networks with low bit error
rates, interprets packet loss as an indication of congestion and
decreases its transmission rate in case of a lost packet. This
results in low throughput. The main problem for sensor
networks operating autonomously with constrained power
supply is the energy-inefficiency of TCP. This is caused by
TCP's end-to-end retransmission scheme requiring that lost
packets are retransmitted by the original sender of the packet.
In a multi-hop network, the retransmitted packets must be
forwarded by all intermediate nodes from sender to receiver,
thus consuming valuable energy at every hop. In general, end-
to-end error recovery is not a good approach for reliable
transport in sensor networks, because the per-hop packet loss
rate may be in the range of 5% to 10% or even higher [5].

C.

D.

II.

A.

TCP Support for Sensor Networks
In this paper we introduce an approach that overcomes the
energy efficiency and performance problems: TCP Support for
Sensor nodes (TSS). TSS lets intermediate nodes cache TCP
data segments and perform local retransmissions after packet
loss has been detected. TSS does not require any changes to
TCP or the TCP implementations at end points. An
intermediate node caches a TCP segment until it knows that
the next-hop node has received it. A TCP segment with the
next higher sequence number than the one in the cache will
not be forwarded but stored in a buffer. The buffer can only
store a single packet and can be used for the packet with the
next sequence number. This mechanism causes a kind of
backpressure at the nodes along the path towards the sender

and is intended to reduce the number of packet transmissions.
Furthermore, TSS uses an aggressive TCP acknowledgement
recovery mechanism to repair TCP acknowledgement loss,
because TCP acknowledgements are important for several
TSS mechanisms. Our results show that TSS significantly
enhances TCP performance both in terms of the overall
number of transmitted TCP segments and throughput.

Overview
While TSS focuses on TCP support, several protocols for
reliable data transfer in sensor networks introduce new
transport protocols and do not attempt to support TCP
operation. Section II gives an overview about related work in
this area. We propose to use TCP for reliable data transfer in
sensor networks and introduce TSS in Section III. Section IV
describes performance results for reliable TCP data transfer
across a multi-hop wireless sensor network using TSS. Section
V concludes the paper.

RELATED WORK

Reliable Data Transport
TSS extends ideas that have been introduced by Distributed
TCP Caching (DTC) [6]. DTC aims to avoid energy-costly
end-to-end retransmissions by caching TCP segments inside
the network and retransmitting segments locally, i.e. from the
intermediate sensor nodes’ caches, when packet loss occurs.
DTC assumes limited memory resources available for caching
and proposes to cache a single segment per node. Nodes try to
cache segments that have presumably not been received by the
next node. To achieve that each segment may be cached
somewhere in the sensor network, nodes cache TCP segments
with the highest segment number seen based on a certain
probability. DTC uses implicit or explicit link layer
acknowledgements in order to detect packet loss at the next
hop. Segments are locked in the cache indicating that it should
not be overwritten by a TCP segment with a higher sequence
number. A locked segment is removed from the cache only
when a TCP acknowledgement acknowledging the cached
segment is received, or when the segment times out. Each
node measures the round-trip time (rtt) to the receiver and sets
the retransmission timeout to 1.5 * rtt. Since these rtt values
are lower than those estimated by the TCP end points, the
intermediate nodes are able to perform retransmissions earlier
than the TCP end points. DTC uses the TCP selective
acknowledgement (SACK) option to detect packet loss and to
inform other nodes about the segments locked in the cache.
DTC does not cache and retransmit TCP acknowledgements,
but locally regenerates a TCP acknowledgement when an
intermediate node sees a TCP data segment, for which it has
already received and forwarded a TCP acknowledgement. TSS
mainly differs from DTC by the backpressure mechanism that
keeps segments in the cache until a node knows that the
previous segments have been received by the next hop node.
This allows implementing some kind of congestion control
mechanism based on backpressure signals at the sender. TSS
does not use TCP options such as selective acknowledgements

and retransmissions and hence requires less re-sequencing
buffers at the receiver.
TSS extends DTC, while DTC has been inspired by the Snoop
[4] protocol. Snoop has been developed for supporting TCP
over wireless access networks. The Snoop agent is deployed at
an intermediate system between the wireless and wired part of
the network. The agent buffers TCP segments that have not
yet been acknowledged by the receiver and detects TCP
segment loss by analysing TCP acknowledgements. The agent
can perform local retransmissions and suppress TCP
acknowledgements in order to avoid duplicate acknowledge-
ments at the sender. Duplicate acknowledgements might cause
end to end retransmissions for packets that could also be
recovered locally by the agent.
Reliable Multi-Segment Transport (RMST) [7] has been
designed for its use together with directed diffusion. RMST is
used for sensor data transfer but not for control data transfer
such as TSS. It can provide a caching mechanism within the
intermediate nodes, but requires additional negative
acknowledgement (NACK) messages. These are sent by an
intermediate node to its upstream neighbour, when it detects,
e.g. using timeouts, holes in the data flow. As a reaction on
NACK messages, an upstream node can retransmit cached
packets. The authors assume a limited number of bytes in
flight (< 5 KB) and that the intermediate nodes can completely
cache this amount of data. For packet loss rates below 10 %
the combined caching and NACK mechanism is more efficient
than pure link level ARQ approaches. On the other hand,
processing of NACK messages in end points only is extremely
inefficient for packet loss rates above 10 %. These results are
consistent with design principles of TSS. Similar as RMST,
TSS uses caching and local retransmissions by intermediate
nodes without introducing pure link level ARQ, but relies on
information from transport packets only.
Pump Slowly Fetch Quickly (PSFQ) [5] is a reliable transport
protocol for re-tasking and re-programming of sensor nodes.
The main PSFQ idea is to pump data rather slowly towards the
receiving sensor nodes, but to recover missing data locally
from intermediate nodes. The pump operation aims to support
quick forwarding in case of no errors and behaves like a store
and forward approach in situations with a high number of
errors. The pump operation is based on broadcasting packets
hop-by-hop from source to destination. Segment numbers are
used to discover duplicates. Nodes receiving a packet add
random delays before re-broadcasting in order to avoid
collisions. While packet forwarding based on re-broadcasting
have significant advantages in dynamic environments such as
mobile ad-hoc networks and networks with unsynchronized
sleep cycles [8], simulation experiments have shown that
already a low number of packet losses due to congestion or bit
errors can cause a significant number of duplicated packets.
Duplicates, however, cause unnecessary packet reception,
processing and transmissions, which should be avoided in
energy-efficient sensor networks. The fetch operation is based
on proactively requesting retransmissions from neighbour
nodes using NACK messages. If the last message of a packet
sequence is lost, a fetch operation is triggered by a timeout.

Multiple lost messages can be recovered in a single fetch
operation. In addition to NACK messages, PSFQ introduces
report messages for reporting the reception status at the
destination to the source. The backpressure mechanism of TSS
has a similar effect as the pump operation: Packet forwarding
will be slowed down as soon as errors are detected by the
intermediate nodes. A TSS node stops forwarding a packet, if
previous packets have not been forwarded by successor nodes.
PSFQ is focusing on code distribution using broadcast.
Broadcasting is efficient and feasible to program and
configure homogeneous sensor nodes. TSS rather focuses on
communication with single nodes or smaller groups of nodes.
PSFQ introduces NACK messages, while TSS supports
standard mechanisms based on TCP acknowledgements and
timeouts.
Event-to-Sink Reliable Transport (ESRT) [9] aims to support
reliable sensor data transport in wireless networks. It includes
congestion control and mechanisms to achieve reliability.
Reliability is controlled by adapting a rate at which the sink
sends state reports back to the source. The frequency of the
reports depends on the observed and desired reliability as well
as the needs from congestion control. As in the case of PSFQ,
a special protocol has been proposed, while no transport
protocol extensions are required in TSS.

B. Congestion Control
Congestion control is very important in wireless sensor
networks, because overloading a wireless network by too
many transmissions can increase the collision probability.
Collisions lead to packet losses and unnecessary
retransmissions, which make sensor network operation
energy-inefficient. TCP congestion control limits the
maximum window size according to the slow start congestion
control algorithm. However, it even might make sense to
further limit the window dependent on the number of
intermediate hops in a wireless multi-hop network, because
the optimal window size in terms of throughput might be
below the window size of standard TCP [10]. For example, it
has been proposed to limit the maximum congestion window
size to h/4 (h: number of hops) in a chain of nodes that are 200
m away from each other and have 250 m transmission range
and 550 m interference range. This result shows that it might
be beneficial to limit the TCP congestion window in wireless
multi-hop networks. The backpressure mechanism used in
TSS (cf. Section III.A.4) has a similar effect and can limit the
packets in transit to an appropriate number, if the TCP source
implementation makes use of the backpressure signal from the
TSS implementation on the local node.
Congestion Detection and Avoidance (CODA) [11] is based
on congestion detection by monitoring channel utilization and
buffer occupancy at the receiver. Detected congestion
situations are signalled towards the source using backpressure
signals (open-loop). Nodes receiving backpressure signals
throttle down their transmission. In addition, a closed-loop
mechanism operates on a longer time-scale. Based on
acknowledgements received from the sink, sources regulate
themselves. Lost acknowledgements result in reducing the rate

at the source. Again, in contrast to TSS, new signalling
messages need to be introduced into CODA.

C.

III.

A.

1)

2)

Caching for Recovery from Disconnection
While several approaches perform packet caching for local
retransmissions in case of packet loss due to congestion or
lossy channels, other related works apply caching to recover
from more serious errors such as disconnection of networks or
route breaks.
The design of a smart link layer is proposed in [11]. Packets
might be re-received after a disconnection in order to re-
trigger TCP after a longer disconnection period by putting
TCP packets such as acknowledgements again into the input
TCP queue. Re-sending packets to the peer can also facilitate
restart of TCP in such a case. The proposed mechanisms are
rather orthogonal to the concepts proposed in this paper.
In [13] it is also proposed to hold copies of forwarded packets
in a cache. When a downstream node encounters an error with
packet forwarding, a route error message might be sent to the
upstream node. The cached packet can then be retransmitted
possibly on multiple alternative routes in order to repair the
route break.
TCP with BUffering capability and Sequence information
(TCP-BUS) [14] proposes to buffer packets during route
disconnection and re-establishment. After a route becomes
available again, buffered packets are retransmitted by
intermediate nodes. Special control messages are used to
indicate route breaks and re-establishments. TCP can adapt its
behaviour dependent on the knowledge that packets have been
lost for other reasons than congestion. TSS does not explicitly
focus on route breaks but can be applied to such failures as
well.

TCP SUPPORT FOR SENSOR NODES

Protocol Mechanisms
TCP Support for Sensor nodes (TSS) aims to support energy-
efficient operation of sensor nodes and forms a layer between
TCP and the routing layer to be implemented in a
communication protocol stack of sensor nodes. TSS should
ideally be implemented in TCP sensor nodes with senders and
receivers as well as in intermediate sensor nodes that relay
TCP (data) segments and acknowledgements of a TCP
connection. TSS tries to reduce the number of transmissions
by several mechanisms:

• Caching of packets that might not have been received
by the successor node (next node) based on
overhearing and TCP acknowledgement spoofing.

• Local retransmission of TCP segments based on
round trip time estimation.

• TCP acknowledgement regeneration and recovery
based on forwarding delay estimation and
overhearing.

• A backpressure mechanism avoiding that a node
forwards a packet if the successor node might not
have received all previous packets.

The TSS mechanisms do not require explicit link or MAC
level acknowledgements, but TCP segments and

acknowledgements are the only packets that are needed. This
approach further reduces the amount of transmissions and can
be used on top of any kind of sensor network MAC layer. By
ensuring in sequence arrival of TCP segments at the
destination, TSS avoids any re-sequencing buffer and selective
acknowledgement / retransmission extensions in TCP.

Caching
An intermediate node caches a segment until it is sure that the
successor node towards the destination has received the
segment. A node knows this when it detects that the successor
node has forwarded the segment (implicit acknowledgement)
or when it spoofs a TCP acknowledgement that has been sent
from the destination toward the source of the TCP segment.
Nodes are assumed to listen to packet transmissions of their
neighbour nodes in order to be able to detect whether the
neighbour nodes have forwarded TCP segments. One might
argue that forcing sensor nodes to overhear packets does not
support energy efficient operation. On the other hand, a
forwarding node should only listen to other’s transmissions for
a very short time. An alternative would be explicit link level
acknowledgements. However, this would not only require the
node to listen and receive but also the successor node to
transmit an additional acknowledgement packet. Typically, a
packet will be forwarded immediately by the successor node
and only in case of packet loss a node must overhear for the
whole retransmission timeout interval (cf. subsection IV.B.4)).
A packet that is known to be received by the successor node
will be removed from the cache. In addition to the cache, TSS
requires another packet buffer (simply called buffer hereafter)
for temporarily storing the next packet that is waiting to be
forwarded to the successor node.

Local Retransmissions of TCP Segments
All intermediate nodes are able to perform local
retransmissions, when they assume that a cached segment has
not been received by the successor node towards the
destination. Retransmissions are triggered by timeouts, which
requires intelligent setting of timeout values. The
retransmission timeout is set to 1.5 * rtt and allows to repair
even multiple packet losses before an end-to-end
retransmission timeout is triggered. TSS simulations showed
that a retransmission timeout of 2 * rtt performs slightly
worse. The maximum number of local retransmissions has
been limited to four. It might happen that a node’s
retransmission timeout expires, if it has received an overheard
packet header with an error and dropped that implicit
acknowledgement. Then, the node retransmits a TCP data
segment although that one has already been received and
forwarded by the successor node. In this case, the already
correctly forwarded TCP segment should not be forwarded
again. Forwarding should be prevented by a small history list
consisting of the last few (here: ten) forwarded packets to
filter out all segments that have been forwarded previously.
Retransmitted TCP segments can be uniquely identified by the
source address and the IP identification field. Of course, end-
to-end retransmissions should not be filtered in order to
support end-to-end recovery in serious error situations.

3) Regeneration and Recovery of TCP Acknowledgements
TCP acknowledgements are extremely important for TSS,
since several mechanisms such as round-trip-time estimation,
retransmission, and caching depend on it. Experiments have
shown that loss of acknowledgements may have a severe
impact on the amount of TCP segment transmissions. TSS
deploys two mechanisms for retransmissions of TCP
acknowledgements that help to decrease the number of TCP
segment transmissions significantly: a local acknowledgement
regeneration mechanism and an aggressive recovery
mechanism. The local acknowledgement regeneration
mechanism becomes active when a node receives a TCP data
segment, which has already been acknowledged by the
destination. In that case, the TCP segment is dropped and a
TCP acknowledgement with the highest acknowledgement
number is regenerated and transmitted toward the source. The
aggressive recovery mechanism recovers TCP
acknowledgements, if a node has not discovered the
forwarding of the TCP acknowledgements by the successor
node. Since TCP acknowledgements should usually be
forwarded without significant delay towards the sender of
TCP segments, each node measures the time between its own
TCP acknowledgement transmission to the successor node and
the overhearing of the TCP acknowledgement transmission
from the successor node towards the TCP segment sender
(source). Similar as for the rtt estimation we use exponential
averaging. We set the TCP acknowledgement retransmission
timeout to the double average value. After timeout expiration,
a TCP acknowledgement is recovered using the highest
acknowledgement number.

4)

B.

Backpressure Mechanism
If the successor of a node has not forwarded all received
packets, there might be a problem in the network. For
example, the network might be congested or packet
forwarding does not make progress, because a previous TCP
segment with bit error needs to be recovered first. If a node
would continue with packet forwarding in such a case, the risk
of unnecessary transmissions would be rather high. In a
congestion situation, a forwarded segment might easily get
lost then. The same is true in case of a lost packet due to bit
errors. In such a situation all caches on subsequent nodes are
occupied and the transmission of a new packet would not be
protected by caching. For that reason, a TSS node stops any
forwarding of subsequent packets until it knows that all earlier
packets have been received and forwarded by its successor.
Successful forwarding can be detected by overhearing the
forwarded packet or by detecting a TCP acknowledgment for
that TCP segment. If packet forwarding stops at some point,
all other nodes in the chain behind the stopping node will also
stop their transmissions until progress is detected at their
respective successor nodes. In case of a lost packet (due to
congestion or bit errors) packet loss should be recovered by
the node that forwarded the packet at last. In that case, we
have to avoid that retransmissions are triggered by nodes
behind the recovering node, i.e. the nodes closer to the sender.
This can be achieved by increasing the retransmission
timeouts at the nodes closer to the sender. For that reason, the

mechanism ensuring that the retransmission timeouts increase
along the nodes from the receiver to the sender as explained in
subsection III.A.2) perfectly fits to the backpressure
mechanism. The backpressure mechanism should also be
implemented at the sender end point. We propose to not
increase the TCP congestion window as long as there are a
certain (here: three) number of packets waiting at the sender
for transmission.

Example Operation
Figure 2

Figure 2: TSS operation in case of a lost TCP segment

 illustrates the operation of TSS. The first segment is
forwarded without error from sender to receiver, while the
second segment is lost between nodes 4 and 3. We assume
here that node 5 overhears the forwarded packet from 4 to 3
and that node 5 therefore assumes that node 4 has successfully
forwarded the segment to 3. This situation can easily occur, if
node 4 is closer to node 5 than to node 3 or if the transmission
from 4 to 3 is disturbed by another transmission such as from
1 to 2, while the latter one does not disturb the transmission
from 4 to 5. In our example, node 4 caches the second
segment and will time out. In order to avoid that node 4 has to
drop the third segment sent by node 5, we have to provide a
buffer for the third segment. This segment will not be
forwarded by node 4 and, therefore, node 5 will stop
forwarding subsequent packets. Assuming the nodes have
measured the rtt as described in the previous section, node 4
times out before node 5, retransmits the second segment to
node 3 and will continue with transmitting the third segment.
Node 5 will overhear the transmission of the third segment
and continue with forwarding the fourth packet. In general, the
timeouts (resulting from the measured rtts) at nodes closer to
the TCP receiver must be smaller than the timeouts at nodes
closer to the sender. If we assume the minimum round trip
measured for the first segment, we see that node 4 times out
before node 5. More severe problems result from multiple
packet losses. For example, if in our scenario the
retransmission of the second segment by node 4 would be
unsuccessful again, nodes 5 would time out too early and
retransmit unnecessarily.
10 9 8 7 6 5 4 3 2 1 01

2
3
4

ACK 2

2
3

4
ACK 3

ACK 4
4

ACK 5

In another scenario shown in an error might occur
with the second segment between nodes 4 and 3. The segment
is correctly received by node 4 and node 3 forwards it
correctly to node 2. However, node 4 does not even receive
the packet header of the second packet forwarded from node 3
to node 2. Therefore, node 4 assumes that the second packet
has not been received by node 3 and stops the transmission of
new packets. After a while the TCP acknowledgement for
segment 2 arrives at node 4, which can then continue to
forward the third segment.

Figure 3

Figure 3: TSS operation in case of an overhearing error

C. Pseudo Code
The operation of a TSS node in an intermediate system is
presented in more detail by the C-like pseudo code below. The
first part (1) describes acknowledgement timeout processing,
i.e. when the node has not detected the forwarding of an
acknowledgement by the next node towards the source. This
implements the aggressive recovery scheme for TCP
acknowledgements.
The second part (2) shows processing in case of a TCP
segment retransmission timeout. Retransmissions are only
performed, if the data to be retransmitted have not been
confirmed by an implicit acknowledgement or by an TCP
acknowledgement.
The main part (3) describes processing of received
acknowledgement and data segment packets. Part 3a describes
normal processing, when a TCP data segment or TCP
acknowledgement has been received for forwarding. A newly
received acknowledgement might confirm that some data have
been received by the successor node. In that case, a segment
waiting in the buffer might be forwarded by the node. The
received acknowledgement might also stop an ongoing rtt
measurement. If the acknowledgement acknowledges
previously acknowledged data again, we drop it, but forward it
towards the source otherwise. Data processing in part 3a is
applied to packets that need to be forwarded towards the
destination. If there is a gap between the packet’s sequence
number and the sequence number of the highest byte
transmitted, the packet is discarded. Otherwise, if there is a
gap between the packet’s sequence number and the sequence

number that the successor node has received, the packet needs
to be stored in the buffer before it can be forwarded. The
packet may also include data that has all been acknowledged
by the destination. In that case, it is not forwarded further, but
an acknowledgement is regenerated and sent towards the
source. If all transmitted data have been confirmed and the
packet contains the next unconfirmed byte, the packet can be
forwarded immediately and a new rtt measurement might be
started if such a measurement is not yet going on.
Part 3b shows processing of an overheard packet. In case of an
acknowledgement, the acknowledgement timer is cancelled
and the time needed by the upstream node to forward an
acknowledgement is measured for calculating the
acknowledgement retransmission timeout. For an overheard
data packet that has been cached, the retransmission timer is
cancelled as well and the cache is released. If there is another
packet waiting in the buffer, it will be forwarded if it is
eligible. However, the forwarding must be delayed in order to
reduce the risk of collisions. Simulations have shown that
immediate forwarding significantly increases the collision
probability.

10 9 8 7 6 5 4 3 2 1 0

2
1

3
4

ACK 22

ACK 3
3 4

4 ACK 4
switch(event){
 case ack_timeout: // -1- ACK 5
 retransmit_ack(acknowledged);
 start_timer(ack_timer, acknowledged,

γattempts++ * ack_forwarding_time);
 break;
 case retransmission_timeout: // -2-
 sequence_no =

sequence_number_of_packet_to_be_retransmitted;
 if ((sequence_no + length > confirmed){
 retransmit_data(sequence_no);
 if (number_of_retransmissions > limit)
 delete(cache);}
 break;
 default: // -3-
 if (packet_has_bit_error || ttl_expired ||

(own_address != next_address) &&
(own_address != previous_address))

delete(packet);
 else if (next_address == own_address) { // -3a-
 switch (type_of_packet){
 case ack:
 acknowledged = max(ack_no - 1, acknowledged);
 if ((acknowledged > confirmed) &&

((byte[acknowledged+1]∩buffered_packet)≠ Ø)){
 forward(buffered_packet);
 move(buffered_packet, cache);
 transmitted =
 sequence_number_of_buffered_packet +

length-1;
start_timer(retransmission_timer,

 sequence_no, β * rtt);
 confirmed = acknowledged;}
 if (ongoing_rtt_measurement &&

(ack_no > rtt_sequence_no)){
rtt= (1–α) * rtt + α *
(current_time–start_of_measurement);

ongoing_rtt_measurement = FALSE;}
if (ack_no <= ack_forwarded)
delete(packet);

else {
forward(packet);
start_timer(ack_timer, ackno,
γ * ack_forwarding_time);

attempts = 1;}
break;

case data:
if (sequence_no > transmitted + 1)
delete(packet);

else if ((sequence_no > confirmed + 1) &&
(buffer_is_empty ||
(sequence_no < seqno_of_buffer)))

move(packet, buffer);
else if (sequence_no + length – 1
<= acknowledged){

 retransmit_ack(acknowledged);
start_timer(ack_timer,acknowledged,
γ*ack_forwarding_time);

 attempts = 1;
delete(packet);}

else if ((transmitted == confirmed) &&
(byte[confirmed + 1] ∩ packet) ≠ Ø)){

if (! ongoing_rtt_measurement){
ongoing_rtt_measurement = TRUE;
rtt_sequence_no = sequence_no;
start_of_measurement = current_time;}

 forward(packet);
 transmitted = sequence_no + length - 1;
 move(packet, cache);
 start_timer(retransmission_timer,

sequence_no, β * rtt);}
else

delete(packet);}
 else if (own_address == previous_address){ //-3b-
 switch (type_of_packet){
 case ack:
 ack_forwarding_time =

(1 – α) * ack_forwarding_time + α *
(current_time – transmission_time(ack_no));

 cancel(ack_timer, ack_no);
 ack_forwarded = ackno;
 break;
 case data:
 if (sequence_no + length – 1 > confirmed){
 cancel(retransmission_timer, sequence_no);
 delete(cache);

confirmed = sequence_no + length - 1;
 if (byte[confirmed + 1]∩buffered_packet ≠ Ø){
 forward_delayed(buffer);
 transmitted = sequence_no_of_buffered_packet

+ length - 1;
 move(buffer, cache);

start_timer(retransmission_timer,
sequence_no_of_buffer, β * rtt);}}}

 delete(packet);}}

IV.

A.

PERFORMANCE EVALUATION

Simulation Scenarios and Parameters
TSS has been evaluated using simulations with Omnet++ [15],
because of its power and simplicity and because DTC has
been evaluated by this tool too. The used simulation scenario
is depicted in . The TCP sender implementation at
node 10 and the TCP receiver implementation at node 0
exchange 1000 TCP segments with a payload size of 1000 bits
plus TCP/IP and MAC header (= 20 + 20 + 12 bytes = 416
bits). Two end points and nine intermediate nodes (nodes 1-9)
with a distance of 200 m between each node are
interconnected in a chain structure. A transmission range of
200 m is feasible with various sensor nodes such as ESB [16]
or WiseNet [17] nodes in outdoor environments. The chain
scenario in shows a rather typical scenario in sensor
networks, when a sink needs to configure a single node. Cross
traffic does not occur, if there is a single sink communicating

with a single node or a group of nodes at one instant. For
multiple TCP connections in a multicast overlay we expect
interferences rather at the sink or branch nodes. Moreover,
TCP connections may compete with sensor data flows from
sources to sinks. Interference issues are left for future work.

10 9 8 7 6 5 4 3 1 02
receiversender

Figure 4

Figure 4

Figure 4: Simulation scenario

The TSS implementation running on each node includes a
CSMA MAC implementation, which senses the transmission
medium and backs off in case of a busy medium. In order to
save energy we back off without sensing the medium for a
random time between 1τ and 3τ with τ = time to transmit a
1000 bit payload TCP segment. Furthermore, we assume equal
transmission power of all senders. A receiver can correctly
receive a packet from a sender if it is not further away than
200 m and the signal to noise ratio is less than 10 dB. A
receiver can detect an ongoing transmission if it receives a
signal that is equivalent to a sender 500 m away.
Intentionally, we did not implement an RTS/CTS collision
avoidance scheme, since such a scheme may be very costly,
create a 40 % overhead and may not avoid all collision
situations [18], in particular when RTS/CTS packets can not
be received correctly. Note that RTS/CTS doubles the number
of packet / acknowledgement transmissions. We rather
propose to avoid collisions on a higher layer than MAC level.
For example, if a node has recently forwarded a segment to
the receiver, subsequent segments should not be forwarded
immediately but slightly delayed. We implemented such a
collision avoidance scheme in TSS by the function
forward_delayed used in the last case statement of the
pseudo code at Section III.C. This approach is somewhat
similar to the adaptive rate control scheme proposed in [18].
We also assume that the MAC layer does not use explicit
acknowledgements. Again explicit acknowledgements are
considered as too costly. The bit rate of the wireless network
is 100 kbps. Moreover, we assume that a node considered an
overheard TCP segment as correctly received, if the TCP/IP
and MAC header (416 bits) has been received without error.
We investigated certain uniformly distributed bit error rates
[19], in particular no (0), low (10-6), medium (10-5) and high
(10-4) bit error rates. Such error models are rather
disadvantageous for our scheme, since a single bit error
temporarily stops packet forwarding in a chain of nodes. The
bit error rates used result in up to 15 % packet error rates.
Similar packet error rates have been used in [7] and measured
for connected networks in [20]. For throughput and packet

transmission measurements we performed 100 simulation runs
per experiment with 1000 TCP segment transmissions from
source to destination. For local rtt measurements, overhearing
time evaluation, and congestion control considerations we
performed a single simulation run with medium bit error rate.

1000000

1500000

2000000

2500000

3000000

3500000

0.0E+00 1.0E-06 1.0E-05 1.0E-04

bit error rate

of

 tr
an

sm
is

si
on

s

transmitted TCP segments (TCP)
transmitted TCP ACKs (TCP)
transmitted TCP ACKs (TSS)
transmitted TCP segments (optimal)
transmitted TCP segments (TSS)

B.
1)

Performance Results
Packet transmissions

The number of packet transmissions is the most important
metric, because the energy efficiency strongly depends on it.
Table 1 shows the number of TCP data segment and
acknowledgement transmissions for different bit error rates.
Bit error rate 0 10-6 10-5 10-4

TCP
transmitted TCP
segments 1067600 1081090 1197001 3499974
transmitted TCP ACKs 1001000 1003015 1019395 1217739
total number of packets 2068600 2084105 2216396 4717713
e2e retransmissions 33300 34494 45991 474776
throughput [bps] 1955 1811 831 7
TSS (backpressure in end point)
transmitted TCP
segments 1002061 1016829 1058486 1231501
transmitted TCP ACKs 1001600 1000467 1002887 1075384
total number of packets 2003661 2017296 2061373 2306885
e2e retransmissions 0 146 233 1552
throughput [bps] 4997 4412 2969 465
TSS (maximum congestion window = 3)
transmitted TCP
segments 1002061 1011693 1046849 1200717
transmitted TCP ACKs 1001600 1003210 1015297 1092203
total number of packets 2003661 2014903 2062146 2292920
e2e retransmissions 0 199 417 1909
throughput [bps] 4997 4309 2626 288
Optimal number of
transmitted TCP
segments 1001500 1002919 1015782 1153852

Figure 6: Packet transmissions of TCP and TSS

Figure 6

For TSS we used two variants: In the first variant
(backpressure in end point) we combined the backpressure
mechanism with the TCP congestion control. The congestion
window is increased after receiving a TCP acknowledgement,
if there are more than a certain number (here: three) TCP
segments waiting for transmission at the source node. In the
second variant (maximum congestion window = 3), we limited
the maximum congestion window dependent on the number of
hops according to [10].
The first TSS variant resulted in better throughput
performance, but required slightly more packet transmissions.
Note that the first variant is independent from the topology,
but has a similar effect as the limitation used in the second
variant. In particular for higher bit error rates the throughput
improvement is higher. For high bit error rates several packets
might be cached and buffered in the sensor network, but might
wait for forwarding due to the timeout based retransmission
mechanisms. Therefore, we consider the first variant as a
better choice than the second.

Table 1: Packet transmissions and throughput

0

1000

2000

3000

4000

5000

6000

0.0E+00 1.0E-06 1.0E-05 1.0E-04

bit error rate

th
ro

ug
hp

ut
 [b

it/
s]

throughput (TCP) throughput (TSS)

We see that due to the CSMA MAC layer, there are always a
certain but low number of collisions that result in corrupted
packets. Therefore, TSS already performs better than TCP for
no and low bit error rates. In particular for medium and high
bit error rates, the difference in packet transmissions between
TSS and TCP becomes evident (). The main reasons
for the high number of packet transmissions required for TCP
without running TSS in the sensor nodes are the many end to
end transmissions. The optimal number of TCP segment
transmissions is calculated by

)0(
1

1
=•

−
PERforpacketsofnumber

PER
nBERPER)1(1 −−=

,

, BER: bit error rate,
PER: packet error rate. Figure 5: Throughput of TCP and TSS

The difference between the TCP segment transmissions using
TSS and the optimal number is rather low for all bit error
rates. Note that retransmissions due to collisions for
calculating the optimal number of transmitted TCP segments
are not considered. Considering this fact suggests that TSS
performs nearly optimal for all investigated bit error rates. The
performance of DTC and TSS has been compared in a
previous publication using a collision free TDMA MAC layer
[21]. For packet error rates below 5 % DTC and TSS have a
similar number of total packet transmissions, while the total
number of packet transmissions is somewhat lower for TSS in
case of packet error rates above 10 %. TSS results in a lower
number of TCP data segments, while the number of
acknowledgements is always higher compared to DTC. This
results from the aggressive acknowledgement recovery
scheme implemented in TSS, while DTC does not implement
such a scheme.

2)

3)

Throughput
Table 1 shows also the resulting throughput of TCP with and
without TSS. Note that we did not optimize TSS for
throughput, because the main goal was to keep the number of
transmissions as low as possible. Nevertheless, the throughput
with TSS is always significantly higher than for TCP only. For
no or low bit error rates we achieve a throughput of nearly 5
kbps. Compared with the network bandwidth of 100 kbps, this
is a reduction by a factor of 20. First, we have to take into
account that TCP acknowledgements consume a rather high
fraction of the capacity and the TCP/IP/MAC header overhead
is rather high. Each payload byte causes nearly another byte to
be transmitted in the header part of the TCP segment or the
TCP acknowledgement. This could be improved by TCP/IP
header compression. Second, packets need to be forwarded 10
times and spatial reuse is rather limited in our investigated
scenario. Typically two nodes can send simultaneously. Based
on these investigations, we can not expect a total throughput
of more than 10 kbps. A further reduction of the throughput is
caused by the delay of the CSMA MAC scheme, the occurring
collisions, and TCP congestion control. We see in Table 1 that
TSS has rather low throughput decrease up to the medium bit
error rate, while TCP without TSS drops significantly already
for medium bit error rates. For high bit error rates the packet
error rate is approximately 14 % per link. In that case, nearly
every packet is dropped for TCP without TSS on the path from
source to destination. The TCP throughput is therefore close to
0, while TSS can at least achieve some low throughput (

). For such high bit error rates, the packet sizes could be
decreased in order to decrease the packet error rate for a given
bit error rate.

Figure
5

Local RTT Measurements
The local retransmission scheme deployed at the TSS nodes
depends on the estimation of the round trip time between the
node and the destination. The retransmission timeout is set to
1.5 * rtt, while the rtt is calculated using exponential
averaging of rtt samples. To support fast convergence, we
initialize the rtt value by the delay measured during a
SYN/SYNACK exchange during TCP connection
establishment. shows that the average rtt values used

for retransmission timeout calculation decrease at the nodes
that are closer to the destination and further away from the
source. This is exactly the behaviour we need for the local
retransmission and backpressure schemes as explained in
Section III.A.

Figure 7

Figure 7: average round trip times per node

Figure 8

Figure 8: exponential average round trip time at nodes 1

, , and Figure 10 show the rtt development at
nodes 1 (close to destination), 5 (in the middle between source
and destination), and node 9 (close to source) for a single
simulation run (exchange of 1000 packets) and medium bit
error rate. Despite a few spikes the rtt values are rather close
to an average value. All simulations for rtt measurements have
been performed using TSS with backpressure in the end point.
The same variant has been used in the following subsections
too.

Figure 9

Figure 9: exponential average round trip time at node 5

0

0.05

0.1

0.15

0.2

0.25

0.3

9 8 7 6 5 4 3 2 1

node
ro

un
d

tri
p

tim
e

[s
]

node 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 100 200 300 400 500 600 700 800 900 1000

sample

ro
un

d
tri

p
tim

e
[s

]

node 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700 800 900 1000

sample

ro
un

d
tri

p
tim

e
[s

]

node 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800 900 1000

sample

ro
un

d
tri

p
tim

e
[s

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.05 0.10 0.15 0.20 0.25

overhearing t ime [s]

Figure 10: exponential average round trip time at node 9

4) Overhearing Time
Figure 11: Overhearing time (cumulative distribution

function)
Another issue to be investigated is the problem that has been
caused by using implicit acknowledgements as discussed in
Section III.A. After a node has forwarded a packet it needs to
overhear its successor’s transmission. This requires a node to
stay in idle state and prevents it from going into any sleep
state. In the worst case, a node needs to listen for the time
interval for which a packet is stored in the cache. This time is
limited by the retransmission timeout interval. Figure 11
measures the time a packet is stored in the retransmission
buffer until the transmitted packet is either overheard or the
retransmission timeout expires. These time values include at
least two packet transmissions, i.e. the transmission from the
first node to its successor and the transmission by the
successor node. For a packet size of 1416 bits and 100 kbps
link, this time must be at least 28 ms plus a small back-off
time. Figure 11 plots the cumulative distribution function for
these times. To get the results we performed again a single
simulation run transmitting 1000 packets with medium bit
error rate and measured the time values at node 5. We see that
in 97 % of the cases, the packet is overheard after
approximately 28 ms. However, due to packet loss and
retransmission timeout expirations, the time values go up to
280 ms, but in average a node must store the packet 33.5 ms
only, which is less than 20 % above the minimum value.

0
0.1

0.2
0.3
0.4

0.5
0.6

0.7
0.8

1 2 3 4

of packets in flight

pr
ob

ab
ili

ty

Figure 12: Number of packets in flight for 11 hops

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9

of packets in flight

pr
ob

ab
ili

ty

Link level acknowledgements may be an alternative to
overhearing. However, if we assume that transmitting a bit is
50 % more costly than receiving or overhearing a bit,
transmission of link level acknowledgements with 24 bytes (=
1416 bits * 20 % / 1.5 / 8) costs more energy than overhearing.
This simple calculation does even not consider startup costs
for turning on the transmitter in case of link level
acknowledgement transmissions.

Figure 13: Number of packets in flight for 21 hops

5) Congestion Control Issues
The backpressure based congestion control limits the
maximum congestion window for TSS to approximately 15 in
all investigated TSS scenarios. However, the number of
packets in flight is much lower. We measure the number of
packets in flight after each segment has been sent by
determining how many segments did not yet arrive at the
receiver. and show the probability for the
number of packets in flight between the sender and the
receiver for a scenario with 11 and 21 hops respectively. The
values for the packets in flight are in most cases lower than
h/4 (h = number of hops) as proposed by [10]. The average
values are 1.4 and 2.5 respectively. This shows that the
backpressure mechanism effectively limits the number of
packets in flight to a similar number that has been proposed by
other related work on congestion control in multi-hop wireless
networks as discussed in Section II.B. Note that in our case,
we do not have to know the number of hops between sender
and receiver, but the backpressure mechanism adapts
automatically to an appropriate value.

Figure 12 Figure 13

V. CONCLUSIONS
TCP support in wireless sensor networks is desirable to allow
direct communication of sensor nodes with other systems for
various purposes such as configuration, re-programming or
management. This paper showed that even in scenarios with
high error rates, TCP can be used and implemented in an
energy-efficient way. This requires some protocol support in
intermediate nodes that are able to store TCP segments for
possible local retransmissions. The mechanisms presented in
this paper drastically reduce the number of TCP segment
transmissions that are needed to transfer a certain amount of
data across a wireless sensor network with relatively high bit /
packet error rates. Moreover, a novel congestion control
mechanism has been proposed, which is effective as well as
simple to implement and deploy.
Future work will analyse the performance in more complex
network scenarios such as tree structures and consider
background data traffic from sensors to the sink as well as
multiple TCP connections originating at the sink. Additional
work needs to be done for considering more complex bit error
patterns [22]. We also plan to integrate scheduling
mechanisms for sleep cycles and consider real implementation
on available sensor node hardware. Further reduction of
transmissions might be achieved by combining data and
acknowledgement transmissions. Also, packet sizes need to be
adapted in case of very high bit error rates. Another issue is
the application of header compression in order to reduce the
header overhead of TCP segments and acknowledgements.
Since the TSS nodes store some state for a TCP connection,
this seems to be a rather logical extension.

REFERENCES
1. A. Dunkels: Full TCP/IP for 8-bit Architectures, ACM

MobiSys, pp. 85-98, San Francisco, May 2003.
2. A. Dunkels, T. Voigt, J. Alonso: Making TCP/IP Viable

for Wireless Sensor Networks, Work in Progress Session

at 1st European Workshop on Wireless Sensor Networks
(EWSN 2004), Berlin, January 2004

3. D. Estrin, R. Govidan, J. Heidemann and S. Kumar. Next
century challenges: scalable coordination in sensor
networks, Mobile Computing and Networking, pp. 263-
270, 1999.

4. H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz.
Improving TCP/IP performance over wireless networks.
ACM MobiCom, pp. 2-11, November 1995.

5. C.-Y. Wan, A. Campbell, L. Krishnamurthy: PSFQ: A
Reliable Transport Protocol for Wireless Sensor
Networks, 1st ACM International Workshop on Wireless
Sensor Networks and Applications, Atlanta, September
28, 2002

6. A. Dunkels, T. Voigt, H. Ritter, and J. Alonso:
Distributed TCP Caching for Wireless Sensor Networks.
Annual Mediterranean Ad Hoc Networking Workshop,
Bodrum, Turkey, June 2004.

7. F. Stamn, J. Heidemann: RMST: Reliable Data Transport
in Sensor Networks, 1st IEEE International Workshop on
Sensor Net Protocols and Applications, Anchorage, May
11, 2003

8. M. Heissenbüttel, T. Braun, Th. Bernoulli, and M.
Waelchli: BLR: Beacon-Less Routing Algorithm for
Mobile Ad-Hoc Networks, Computer Communications
Journal, Elsevier, Vol. 27, No. 11, pp. 1076-1086, July
2004

9. Y. Sankarasubramanian, Ö. Ankan, I. F. Akyildiz: ESRT:
Event-to-Sink Reliable Transport in Wireless Sensor
Networks, ACM MobiHoc, Anaheim, June 1-3, 2003

10. Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, M. Gerla: The
Impact of Multihop Wireless Channel on TCP
Throughput and Loss, IEEE Infocom, San Francisco,
March 30 - April 3, 2003

11. C.-Y. Wan, S. Eisenman, A. Campbell: CODA:
Congestion Detection and Avoidance in Sensor Networks,
ACM SenSys, Los Angeles, November 3-5, 2003

12. J. Scott, G. Mapp: Link Layer-Based TCP Optimisation
for Disconnecting Networks, ACM SigComm Computer
Communications Review, Vol. 33, No. 5, October 2003.

13. A. Valera, W. Seah, S. Rao: Cooperative Packet Caching
and Shortest Multipath Routing in Mobile Ad hoc
Networks, IEEE Infocom, San Francisco, March 30 -
April 3, 2003

14. D. Kim, C-K Toh and Y. Choi: TCP-BuS: Improving
TCP Performance in Wireless Ad Hoc Networks, Journal
of Communications and Networks, Vol. 3, No. 2 June
2001

15. Omnet++: Discrete Event Simulation System, web page,
visited 2004-11-21, http://www.omnetpp.org

16. J. Schiller, A. Liers, H. Ritter, R. Winter, T. Voigt:
ScatterWeb - Low Power Sensor Nodes and Energy
Aware Routing, Hawaii International Conference On
System Sciences (HICSS 2005), Hawaii, USA, January
2005

http://www.omnetpp.org/

17. C. Enz, A. El-Hoiydi, J.-D. Decotignie, V. Peiris:
WiseNET: An Ultra-Low Power Wireless Sensor
Network Solution, IEEE Computer, August 2004, pp. 62

18. A. Woo, D. Culler: A Transmission Control Scheme for
Media Access in Sensor Networks, ACM Mobicom,
Rome, 2001

19. A. Gurtov, Sally Floyd: Modeling Wireless Links for
Transport Protocols, ACM SIGCOMM CCR, Vol. 34,
No. 2, April 2004

20. A. Woo, T. Tong, D. Culler: Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor
Networks, ACM SenSys, 2003, November 5-7, 2003, Los
Angeles

21. T. Braun, Th. Voigt, A. Dunkels: Energy-Efficient TCP
Operation in Wireless Sensor Networks, Praxis der
Informationsverarbeitung und Kommunikation (PIK),
special issue on Wireless Sensor Networks, No. 2, 2005.

22. A. Köpke, A. Willig, and H. Karl: Chaotic Maps as
Parsimonious Bit Error Models of Wireless Channels,
IEEE INFOCOM, San Francisco, California,USA, March
2003

