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Abstract—Many applications of wireless sensor networks require 
external network connectivity to enable communication between 
monitoring / controlling entities and sensors. By using the 
TCP/IP protocols inside the sensor network, external connectivity 
can be achieved to any other IP node at the edge or outside the 
sensor network. TCP can then be used for remote management 
and reprogramming of sensor nodes. However, high bit error 
rates lead to energy inefficiencies that reduce the lifetime of a 
sensor network. This paper introduces an approach to support 
energy-efficient operation of TCP in sensor networks. The 
concept called TCP Support for Sensor nodes (TSS) allows 
intermediate sensor nodes to cache TCP segments and to perform 
local retransmissions in case of errors. TSS does not forward a 
cached segment until it knows that the previous segment has been 
successfully received by the next hop node. This forms a kind of 
congestion control and reduces the total number of packets in the 
sensor network. Simulations show that TSS significantly reduces 
the number of TCP segment and acknowledgement transmissions 
compared to TCP without TSS.  
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I. 

A. 

INTRODUCTION 

Motivation and Application Scenarios 
Wireless sensor networks are composed of a large number of 
radio-equipped sensor devices that autonomously form 
networks through which sensor data is transported. The 
devices are typically severely resource-constrained in terms of 
energy, processing power, memory, and communication 
bandwidth. Many applications of wireless sensor networks 
require an external connection to monitoring and controlling 
entities (sinks) that consume sensor data and interact with the 
sensor devices.  
Running TCP/IP in the sensor network allows connecting the 
sensor network directly to IP-based network infrastructures 
without proxies or middle-boxes. To deploy a sensor network, 
we just need Internet connectivity, which can also be achieved 
by sensor nodes with GPRS or WLAN interfaces. This even 
allows putting the sink into the fixed part of the IP network. In 
particular for disaster recovery, deployment would be simpler 
and faster, when only a single type of sensor node but no other 
nodes such as protocol proxies or sinks needs to be deployed. 
In such a scenario each sensor device is able to communicate 
via TCP/IP. A single standard protocol suite can then be used. 
Data to and from the sensor network can be routed via any 
device with Internet connectivity rather than via sinks or 
protocol proxy nodes only. This also simplifies to maintain 

connectivity of the sensor network. Routing all traffic via a 
single or a few sinks could easily lead to network partitioning 
due to the heavy load put on nodes close to the sinks. On the 
other hand, sensor nodes with IP connectivity not only allow 
distributing the forwarding load but also deploying sensor 
nodes without having gateways at many smaller areas.  
Data transport in IP-based sensor networks can be performed 
using UDP and TCP. UDP is used for sensor data and other 
information that do not use reliable byte-stream unicast 
transmission. TCP should be used for administrative tasks that 
require reliability and compatibility with existing application 
protocols. Examples of such tasks are configuration and 
monitoring of individual sensor nodes as well as download of 
binary code and data aggregation descriptions to sensor nodes. 
In particular, downloading code to designated nodes such as 
cluster heads in a certain geographical region requires a 
reliable unicast protocol.  
Figure 1

Figure 1: TCP connections in a sensor network 

 shows possible TCP connections in a sensor network. 
The sink has two TCP connections for configuring the black 
sensor nodes, while a kind of multicast overlay tree consisting 
of several (grey) sensor nodes can be established for code or 
query distribution based on TCP connections. Reliable 
multicast might be required, if a group of sensor nodes but not 
all sensor nodes need to be configured or reprogrammed. A 
subset of homogeneous nodes in a heterogeneous environment 
may form a group and all group members need to receive the 
same binary code image. Moreover, members of a group may 
perform the same task such as object tracking in a certain area. 
Other sensor nodes may be responsible for other tasks such as 
temperature monitoring. Sensor nodes with the same task 
belong to the same group and need to be configured 
appropriately.  
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B. Challenges with TCP/IP in Wireless Sensor Networks 
On might argue that TCP/IP implementations consume too 
many sensor network resources. However, recent work 
showed that TCP/IP can be implemented on sensor nodes with 
limited processing power and memory [1].  
TCP/IP may result in relatively large headers that may add 
significant overhead in case of short packets. However, we 
assume that TCP is mainly used for configuration and 
programming tasks, where a rather high amount of data is 
transferred and packets become rather large. Moreover, we 
propose to develop a TCP/IP header compression scheme for 
sensor networks. Due to the stateful approach proposed in this 
paper such a scheme should be feasible, but we leave this 
issue for future work.  
Other problems to be solved for TCP/IP in sensor networks 
are related to addressing. While in traditional IP networks IP 
addresses are assigned to each network interface based on the 
network topology, IP-based sensor networks may use spatial 
IP address assignment based on node locations, which might 
be relative to a base station location [2].  
While in traditional IP networks, packets are transparently 
routed through the network based on the network topology, 
data centric routing mechanisms are often preferable in 
wireless sensor networks [3]. To implement data centric 
routing in IP-based sensor networks, application overlay 
networks might be used.  
It is also well known that TCP has serious performance 
problems in wireless networks [4]. One problem is that TCP, 
which has been designed for wired networks with low bit error 
rates, interprets packet loss as an indication of congestion and 
decreases its transmission rate in case of a lost packet. This 
results in low throughput. The main problem for sensor 
networks operating autonomously with constrained power 
supply is the energy-inefficiency of TCP. This is caused by 
TCP's end-to-end retransmission scheme requiring that lost 
packets are retransmitted by the original sender of the packet. 
In a multi-hop network, the retransmitted packets must be 
forwarded by all intermediate nodes from sender to receiver, 
thus consuming valuable energy at every hop. In general, end-
to-end error recovery is not a good approach for reliable 
transport in sensor networks, because the per-hop packet loss 
rate may be in the range of 5% to 10% or even higher [5]. 

C. 

D. 

II. 

A. 

TCP Support for Sensor Networks 
In this paper we introduce an approach that overcomes the 
energy efficiency and performance problems: TCP Support for 
Sensor nodes (TSS). TSS lets intermediate nodes cache TCP 
data segments and perform local retransmissions after packet 
loss has been detected. TSS does not require any changes to 
TCP or the TCP implementations at end points. An 
intermediate node caches a TCP segment until it knows that 
the next-hop node has received it. A TCP segment with the 
next higher sequence number than the one in the cache will 
not be forwarded but stored in a buffer. The buffer can only 
store a single packet and can be used for the packet with the 
next sequence number. This mechanism causes a kind of 
backpressure at the nodes along the path towards the sender 

and is intended to reduce the number of packet transmissions. 
Furthermore, TSS uses an aggressive TCP acknowledgement 
recovery mechanism to repair TCP acknowledgement loss, 
because TCP acknowledgements are important for several 
TSS mechanisms. Our results show that TSS significantly 
enhances TCP performance both in terms of the overall 
number of transmitted TCP segments and throughput.  

Overview 
While TSS focuses on TCP support, several protocols for 
reliable data transfer in sensor networks introduce new 
transport protocols and do not attempt to support TCP 
operation. Section II gives an overview about related work in 
this area. We propose to use TCP for reliable data transfer in 
sensor networks and introduce TSS in Section III. Section IV 
describes performance results for reliable TCP data transfer 
across a multi-hop wireless sensor network using TSS. Section 
V concludes the paper. 

RELATED WORK 

Reliable Data Transport 
TSS extends ideas that have been introduced by Distributed 
TCP Caching (DTC) [6]. DTC aims to avoid energy-costly 
end-to-end retransmissions by caching TCP segments inside 
the network and retransmitting segments locally, i.e. from the 
intermediate sensor nodes’ caches, when packet loss occurs. 
DTC assumes limited memory resources available for caching 
and proposes to cache a single segment per node. Nodes try to 
cache segments that have presumably not been received by the 
next node. To achieve that each segment may be cached 
somewhere in the sensor network, nodes cache TCP segments 
with the highest segment number seen based on a certain 
probability. DTC uses implicit or explicit link layer 
acknowledgements in order to detect packet loss at the next 
hop. Segments are locked in the cache indicating that it should 
not be overwritten by a TCP segment with a higher sequence 
number. A locked segment is removed from the cache only 
when a TCP acknowledgement acknowledging the cached 
segment is received, or when the segment times out. Each 
node measures the round-trip time (rtt) to the receiver and sets 
the retransmission timeout to 1.5 * rtt. Since these rtt values 
are lower than those estimated by the TCP end points, the 
intermediate nodes are able to perform retransmissions earlier 
than the TCP end points. DTC uses the TCP selective 
acknowledgement (SACK) option to detect packet loss and to 
inform other nodes about the segments locked in the cache. 
DTC does not cache and retransmit TCP acknowledgements, 
but locally regenerates a TCP acknowledgement when an 
intermediate node sees a TCP data segment, for which it has 
already received and forwarded a TCP acknowledgement. TSS 
mainly differs from DTC by the backpressure mechanism that 
keeps segments in the cache until a node knows that the 
previous segments have been received by the next hop node. 
This allows implementing some kind of congestion control 
mechanism based on backpressure signals at the sender. TSS 
does not use TCP options such as selective acknowledgements 



and retransmissions and hence requires less re-sequencing 
buffers at the receiver. 
TSS extends DTC, while DTC has been inspired by the Snoop 
[4] protocol. Snoop has been developed for supporting TCP 
over wireless access networks. The Snoop agent is deployed at 
an intermediate system between the wireless and wired part of 
the network. The agent buffers TCP segments that have not 
yet been acknowledged by the receiver and detects TCP 
segment loss by analysing TCP acknowledgements. The agent 
can perform local retransmissions and suppress TCP 
acknowledgements in order to avoid duplicate acknowledge-
ments at the sender. Duplicate acknowledgements might cause 
end to end retransmissions for packets that could also be 
recovered locally by the agent.  
Reliable Multi-Segment Transport (RMST) [7] has been 
designed for its use together with directed diffusion. RMST is 
used for sensor data transfer but not for control data transfer 
such as TSS. It can provide a caching mechanism within the 
intermediate nodes, but requires additional negative 
acknowledgement (NACK) messages. These are sent by an 
intermediate node to its upstream neighbour, when it detects, 
e.g. using timeouts, holes in the data flow. As a reaction on 
NACK messages, an upstream node can retransmit cached 
packets. The authors assume a limited number of bytes in 
flight (< 5 KB) and that the intermediate nodes can completely 
cache this amount of data. For packet loss rates below 10 % 
the combined caching and NACK mechanism is more efficient 
than pure link level ARQ approaches. On the other hand, 
processing of NACK messages in end points only is extremely 
inefficient for packet loss rates above 10 %. These results are 
consistent with design principles of TSS. Similar as RMST, 
TSS uses caching and local retransmissions by intermediate 
nodes without introducing pure link level ARQ, but relies on 
information from transport packets only.  
Pump Slowly Fetch Quickly (PSFQ) [5] is a reliable transport 
protocol for re-tasking and re-programming of sensor nodes. 
The main PSFQ idea is to pump data rather slowly towards the 
receiving sensor nodes, but to recover missing data locally 
from intermediate nodes. The pump operation aims to support 
quick forwarding in case of no errors and behaves like a store 
and forward approach in situations with a high number of 
errors. The pump operation is based on broadcasting packets 
hop-by-hop from source to destination. Segment numbers are 
used to discover duplicates. Nodes receiving a packet add 
random delays before re-broadcasting in order to avoid 
collisions. While packet forwarding based on re-broadcasting 
have significant advantages in dynamic environments such as 
mobile ad-hoc networks and networks with unsynchronized 
sleep cycles [8], simulation experiments have shown that 
already a low number of packet losses due to congestion or bit 
errors can cause a significant number of duplicated packets. 
Duplicates, however, cause unnecessary packet reception, 
processing and transmissions, which should be avoided in 
energy-efficient sensor networks. The fetch operation is based 
on proactively requesting retransmissions from neighbour 
nodes using NACK messages. If the last message of a packet 
sequence is lost, a fetch operation is triggered by a timeout. 

Multiple lost messages can be recovered in a single fetch 
operation. In addition to NACK messages, PSFQ introduces 
report messages for reporting the reception status at the 
destination to the source. The backpressure mechanism of TSS 
has a similar effect as the pump operation: Packet forwarding 
will be slowed down as soon as errors are detected by the 
intermediate nodes. A TSS node stops forwarding a packet, if 
previous packets have not been forwarded by successor nodes. 
PSFQ is focusing on code distribution using broadcast. 
Broadcasting is efficient and feasible to program and 
configure homogeneous sensor nodes. TSS rather focuses on 
communication with single nodes or smaller groups of nodes. 
PSFQ introduces NACK messages, while TSS supports 
standard mechanisms based on TCP acknowledgements and 
timeouts.  
Event-to-Sink Reliable Transport (ESRT) [9] aims to support 
reliable sensor data transport in wireless networks. It includes 
congestion control and mechanisms to achieve reliability. 
Reliability is controlled by adapting a rate at which the sink 
sends state reports back to the source. The frequency of the 
reports depends on the observed and desired reliability as well 
as the needs from congestion control. As in the case of PSFQ, 
a special protocol has been proposed, while no transport 
protocol extensions are required in TSS.  

B. Congestion Control 
Congestion control is very important in wireless sensor 
networks, because overloading a wireless network by too 
many transmissions can increase the collision probability. 
Collisions lead to packet losses and unnecessary 
retransmissions, which make sensor network operation 
energy-inefficient. TCP congestion control limits the 
maximum window size according to the slow start congestion 
control algorithm. However, it even might make sense to 
further limit the window dependent on the number of 
intermediate hops in a wireless multi-hop network, because 
the optimal window size in terms of throughput might be 
below the window size of standard TCP [10]. For example, it 
has been proposed to limit the maximum congestion window 
size to h/4 (h: number of hops) in a chain of nodes that are 200 
m away from each other and have 250 m transmission range 
and 550 m interference range. This result shows that it might 
be beneficial to limit the TCP congestion window in wireless 
multi-hop networks. The backpressure mechanism used in 
TSS (cf. Section III.A.4) has a similar effect and can limit the 
packets in transit to an appropriate number, if the TCP source 
implementation makes use of the backpressure signal from the 
TSS implementation on the local node.  
Congestion Detection and Avoidance (CODA) [11] is based 
on congestion detection by monitoring channel utilization and 
buffer occupancy at the receiver. Detected congestion 
situations are signalled towards the source using backpressure 
signals (open-loop). Nodes receiving backpressure signals 
throttle down their transmission. In addition, a closed-loop 
mechanism operates on a longer time-scale. Based on 
acknowledgements received from the sink, sources regulate 
themselves. Lost acknowledgements result in reducing the rate 



at the source. Again, in contrast to TSS, new signalling 
messages need to be introduced into CODA.  

C. 

III. 

A. 

1) 

2) 

Caching for Recovery from Disconnection 
While several approaches perform packet caching for local 
retransmissions in case of packet loss due to congestion or 
lossy channels, other related works apply caching to recover 
from more serious errors such as disconnection of networks or 
route breaks.  
The design of a smart link layer is proposed in [11]. Packets 
might be re-received after a disconnection in order to re-
trigger TCP after a longer disconnection period by putting 
TCP packets such as acknowledgements again into the input 
TCP queue. Re-sending packets to the peer can also facilitate 
restart of TCP in such a case. The proposed mechanisms are 
rather orthogonal to the concepts proposed in this paper.  
In [13] it is also proposed to hold copies of forwarded packets 
in a cache. When a downstream node encounters an error with 
packet forwarding, a route error message might be sent to the 
upstream node. The cached packet can then be retransmitted 
possibly on multiple alternative routes in order to repair the 
route break.  
TCP with BUffering capability and Sequence information 
(TCP-BUS) [14] proposes to buffer packets during route 
disconnection and re-establishment. After a route becomes 
available again, buffered packets are retransmitted by 
intermediate nodes. Special control messages are used to 
indicate route breaks and re-establishments. TCP can adapt its 
behaviour dependent on the knowledge that packets have been 
lost for other reasons than congestion. TSS does not explicitly 
focus on route breaks but can be applied to such failures as 
well.  

TCP SUPPORT FOR SENSOR NODES 

Protocol Mechanisms 
TCP Support for Sensor nodes (TSS) aims to support energy-
efficient operation of sensor nodes and forms a layer between 
TCP and the routing layer to be implemented in a 
communication protocol stack of sensor nodes. TSS should 
ideally be implemented in TCP sensor nodes with senders and 
receivers as well as in intermediate sensor nodes that relay 
TCP (data) segments and acknowledgements of a TCP 
connection. TSS tries to reduce the number of transmissions 
by several mechanisms: 

• Caching of packets that might not have been received 
by the successor node (next node) based on 
overhearing and TCP acknowledgement spoofing. 

• Local retransmission of TCP segments based on 
round trip time estimation.  

• TCP acknowledgement regeneration and recovery 
based on forwarding delay estimation and 
overhearing. 

• A backpressure mechanism avoiding that a node 
forwards a packet if the successor node might not 
have received all previous packets.  

The TSS mechanisms do not require explicit link or MAC 
level acknowledgements, but TCP segments and 

acknowledgements are the only packets that are needed. This 
approach further reduces the amount of transmissions and can 
be used on top of any kind of sensor network MAC layer. By 
ensuring in sequence arrival of TCP segments at the 
destination, TSS avoids any re-sequencing buffer and selective 
acknowledgement / retransmission extensions in TCP.  

Caching 
An intermediate node caches a segment until it is sure that the 
successor node towards the destination has received the 
segment. A node knows this when it detects that the successor 
node has forwarded the segment (implicit acknowledgement) 
or when it spoofs a TCP acknowledgement that has been sent 
from the destination toward the source of the TCP segment. 
Nodes are assumed to listen to packet transmissions of their 
neighbour nodes in order to be able to detect whether the 
neighbour nodes have forwarded TCP segments. One might 
argue that forcing sensor nodes to overhear packets does not 
support energy efficient operation. On the other hand, a 
forwarding node should only listen to other’s transmissions for 
a very short time. An alternative would be explicit link level 
acknowledgements. However, this would not only require the 
node to listen and receive but also the successor node to 
transmit an additional acknowledgement packet. Typically, a 
packet will be forwarded immediately by the successor node 
and only in case of packet loss a node must overhear for the 
whole retransmission timeout interval (cf. subsection IV.B.4)). 
A packet that is known to be received by the successor node 
will be removed from the cache. In addition to the cache, TSS 
requires another packet buffer (simply called buffer hereafter) 
for temporarily storing the next packet that is waiting to be 
forwarded to the successor node.  

Local Retransmissions of TCP Segments 
All intermediate nodes are able to perform local 
retransmissions, when they assume that a cached segment has 
not been received by the successor node towards the 
destination. Retransmissions are triggered by timeouts, which 
requires intelligent setting of timeout values. The 
retransmission timeout is set to 1.5 * rtt and allows to repair 
even multiple packet losses before an end-to-end 
retransmission timeout is triggered. TSS simulations showed 
that a retransmission timeout of 2 * rtt performs slightly 
worse. The maximum number of local retransmissions has 
been limited to four. It might happen that a node’s 
retransmission timeout expires, if it has received an overheard 
packet header with an error and dropped that implicit 
acknowledgement. Then, the node retransmits a TCP data 
segment although that one has already been received and 
forwarded by the successor node. In this case, the already 
correctly forwarded TCP segment should not be forwarded 
again. Forwarding should be prevented by a small history list 
consisting of the last few (here: ten) forwarded packets to 
filter out all segments that have been forwarded previously. 
Retransmitted TCP segments can be uniquely identified by the 
source address and the IP identification field. Of course, end-
to-end retransmissions should not be filtered in order to 
support end-to-end recovery in serious error situations. 



3) Regeneration and Recovery of TCP Acknowledgements 
TCP acknowledgements are extremely important for TSS, 
since several mechanisms such as round-trip-time estimation, 
retransmission, and caching depend on it. Experiments have 
shown that loss of acknowledgements may have a severe 
impact on the amount of TCP segment transmissions. TSS 
deploys two mechanisms for retransmissions of TCP 
acknowledgements that help to decrease the number of TCP 
segment transmissions significantly: a local acknowledgement 
regeneration mechanism and an aggressive recovery 
mechanism. The local acknowledgement regeneration 
mechanism becomes active when a node receives a TCP data 
segment, which has already been acknowledged by the 
destination. In that case, the TCP segment is dropped and a 
TCP acknowledgement with the highest acknowledgement 
number is regenerated and transmitted toward the source. The 
aggressive recovery mechanism recovers TCP 
acknowledgements, if a node has not discovered the 
forwarding of the TCP acknowledgements by the successor 
node. Since TCP acknowledgements should usually be 
forwarded without significant delay towards the sender of 
TCP segments, each node measures the time between its own 
TCP acknowledgement transmission to the successor node and 
the overhearing of the TCP acknowledgement transmission 
from the successor node towards the TCP segment sender 
(source). Similar as for the rtt estimation we use exponential 
averaging. We set the TCP acknowledgement retransmission 
timeout to the double average value. After timeout expiration, 
a TCP acknowledgement is recovered using the highest 
acknowledgement number.  

4) 

B. 

Backpressure Mechanism 
If the successor of a node has not forwarded all received 
packets, there might be a problem in the network. For 
example, the network might be congested or packet 
forwarding does not make progress, because a previous TCP 
segment with bit error needs to be recovered first. If a node 
would continue with packet forwarding in such a case, the risk 
of unnecessary transmissions would be rather high. In a 
congestion situation, a forwarded segment might easily get 
lost then. The same is true in case of a lost packet due to bit 
errors. In such a situation all caches on subsequent nodes are 
occupied and the transmission of a new packet would not be 
protected by caching. For that reason, a TSS node stops any 
forwarding of subsequent packets until it knows that all earlier 
packets have been received and forwarded by its successor. 
Successful forwarding can be detected by overhearing the 
forwarded packet or by detecting a TCP acknowledgment for 
that TCP segment. If packet forwarding stops at some point, 
all other nodes in the chain behind the stopping node will also 
stop their transmissions until progress is detected at their 
respective successor nodes. In case of a lost packet (due to 
congestion or bit errors) packet loss should be recovered by 
the node that forwarded the packet at last. In that case, we 
have to avoid that retransmissions are triggered by nodes 
behind the recovering node, i.e. the nodes closer to the sender. 
This can be achieved by increasing the retransmission 
timeouts at the nodes closer to the sender. For that reason, the 

mechanism ensuring that the retransmission timeouts increase 
along the nodes from the receiver to the sender as explained in 
subsection III.A.2) perfectly fits to the backpressure 
mechanism. The backpressure mechanism should also be 
implemented at the sender end point. We propose to not 
increase the TCP congestion window as long as there are a 
certain (here: three) number of packets waiting at the sender 
for transmission.  

Example Operation 
Figure 2

Figure 2: TSS operation in case of a lost TCP segment 

 illustrates the operation of TSS. The first segment is 
forwarded without error from sender to receiver, while the 
second segment is lost between nodes 4 and 3. We assume 
here that node 5 overhears the forwarded packet from 4 to 3 
and that node 5 therefore assumes that node 4 has successfully 
forwarded the segment to 3. This situation can easily occur, if 
node 4 is closer to node 5 than to node 3 or if the transmission 
from 4 to 3 is disturbed by another transmission such as from 
1 to 2, while the latter one does not disturb the transmission 
from 4 to 5. In our example, node 4 caches the second 
segment and will time out. In order to avoid that node 4 has to 
drop the third segment sent by node 5, we have to provide a 
buffer for the third segment. This segment will not be 
forwarded by node 4 and, therefore, node 5 will stop 
forwarding subsequent packets. Assuming the nodes have 
measured the rtt as described in the previous section, node 4 
times out before node 5, retransmits the second segment to 
node 3 and will continue with transmitting the third segment. 
Node 5 will overhear the transmission of the third segment 
and continue with forwarding the fourth packet. In general, the 
timeouts (resulting from the measured rtts) at nodes closer to 
the TCP receiver must be smaller than the timeouts at nodes 
closer to the sender. If we assume the minimum round trip 
measured for the first segment, we see that node 4 times out 
before node 5. More severe problems result from multiple 
packet losses. For example, if in our scenario the 
retransmission of the second segment by node 4 would be 
unsuccessful again, nodes 5 would time out too early and 
retransmit unnecessarily.  
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In another scenario shown in  an error might occur 
with the second segment between nodes 4 and 3. The segment 
is correctly received by node 4 and node 3 forwards it 
correctly to node 2. However, node 4 does not even receive 
the packet header of the second packet forwarded from node 3 
to node 2. Therefore, node 4 assumes that the second packet 
has not been received by node 3 and stops the transmission of 
new packets. After a while the TCP acknowledgement for 
segment 2 arrives at node 4, which can then continue to 
forward the third segment.  

Figure 3

Figure 3: TSS operation in case of an overhearing error 
 

C. Pseudo Code 
The operation of a TSS node in an intermediate system is 
presented in more detail by the C-like pseudo code below. The 
first part (1) describes acknowledgement timeout processing, 
i.e. when the node has not detected the forwarding of an 
acknowledgement by the next node towards the source. This 
implements the aggressive recovery scheme for TCP 
acknowledgements.  
The second part (2) shows processing in case of a TCP 
segment retransmission timeout. Retransmissions are only 
performed, if the data to be retransmitted have not been 
confirmed by an implicit acknowledgement or by an TCP 
acknowledgement.  
The main part (3) describes processing of received 
acknowledgement and data segment packets. Part 3a describes 
normal processing, when a TCP data segment or TCP 
acknowledgement has been received for forwarding. A newly 
received acknowledgement might confirm that some data have 
been received by the successor node. In that case, a segment 
waiting in the buffer might be forwarded by the node. The 
received acknowledgement might also stop an ongoing rtt 
measurement. If the acknowledgement acknowledges 
previously acknowledged data again, we drop it, but forward it 
towards the source otherwise. Data processing in part 3a is 
applied to packets that need to be forwarded towards the 
destination. If there is a gap between the packet’s sequence 
number and the sequence number of the highest byte 
transmitted, the packet is discarded. Otherwise, if there is a 
gap between the packet’s sequence number and the sequence 

number that the successor node has received, the packet needs 
to be stored in the buffer before it can be forwarded. The 
packet may also include data that has all been acknowledged 
by the destination. In that case, it is not forwarded further, but 
an acknowledgement is regenerated and sent towards the 
source. If all transmitted data have been confirmed and the 
packet contains the next unconfirmed byte, the packet can be 
forwarded immediately and a new rtt measurement might be 
started if such a measurement is not yet going on.  
Part 3b shows processing of an overheard packet. In case of an 
acknowledgement, the acknowledgement timer is cancelled 
and the time needed by the upstream node to forward an 
acknowledgement is measured for calculating the 
acknowledgement retransmission timeout. For an overheard 
data packet that has been cached, the retransmission timer is 
cancelled as well and the cache is released. If there is another 
packet waiting in the buffer, it will be forwarded if it is 
eligible. However, the forwarding must be delayed in order to 
reduce the risk of collisions. Simulations have shown that 
immediate forwarding significantly increases the collision 
probability.  
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switch(event){ 
 case ack_timeout: // -1- ACK 5
  retransmit_ack(acknowledged); 
  start_timer(ack_timer, acknowledged,  

γattempts++ * ack_forwarding_time); 
  break; 
 case retransmission_timeout: // -2- 
  sequence_no = 

sequence_number_of_packet_to_be_retransmitted;  
  if ((sequence_no + length > confirmed){ 
   retransmit_data(sequence_no); 
   if (number_of_retransmissions > limit) 
    delete(cache);} 
  break; 
 default: // -3- 
  if (packet_has_bit_error || ttl_expired || 

(own_address != next_address) &&  
(own_address != previous_address)) 

delete(packet); 
  else if (next_address == own_address) { // -3a- 
   switch (type_of_packet){ 
    case ack: 
     acknowledged = max(ack_no - 1, acknowledged); 
     if ((acknowledged > confirmed) &&  

((byte[acknowledged+1]∩buffered_packet)≠ Ø)){ 
       forward(buffered_packet); 
       move(buffered_packet, cache); 
       transmitted =  
        sequence_number_of_buffered_packet +  

length-1; 
start_timer(retransmission_timer, 

  sequence_no, β * rtt); 
       confirmed = acknowledged;} 
     if (ongoing_rtt_measurement &&  

(ack_no > rtt_sequence_no)){     
rtt= (1–α) * rtt + α * 
(current_time–start_of_measurement); 

ongoing_rtt_measurement = FALSE;} 
if (ack_no <= ack_forwarded) 
delete(packet); 

else { 
forward(packet); 
start_timer(ack_timer, ackno,  
γ * ack_forwarding_time); 

attempts = 1;} 
break; 



case data: 
if (sequence_no > transmitted + 1) 
delete(packet); 

else if ((sequence_no > confirmed + 1) &&  
(buffer_is_empty ||  
(sequence_no < seqno_of_buffer))) 

move(packet, buffer); 
else if (sequence_no + length – 1  
<= acknowledged){  

       retransmit_ack(acknowledged); 
start_timer(ack_timer,acknowledged, 
γ*ack_forwarding_time); 

       attempts = 1; 
delete(packet);} 

else if ((transmitted == confirmed) &&  
(byte[confirmed + 1] ∩ packet) ≠ Ø)){ 

if (! ongoing_rtt_measurement){ 
ongoing_rtt_measurement = TRUE; 
rtt_sequence_no = sequence_no; 
start_of_measurement = current_time;} 

        forward(packet); 
        transmitted = sequence_no + length - 1; 
        move(packet, cache); 
        start_timer(retransmission_timer,  

sequence_no, β * rtt);} 
else 

delete(packet);} 
  else if (own_address == previous_address){ //-3b- 
   switch (type_of_packet){ 
    case ack: 
     ack_forwarding_time =  

(1 – α) * ack_forwarding_time + α * 
(current_time – transmission_time(ack_no)); 

     cancel(ack_timer, ack_no); 
     ack_forwarded = ackno; 
     break; 
    case data: 
     if (sequence_no + length – 1 > confirmed){ 
      cancel(retransmission_timer, sequence_no); 
      delete(cache); 

confirmed = sequence_no + length - 1; 
      if (byte[confirmed + 1]∩buffered_packet ≠ Ø){ 
       forward_delayed(buffer); 
       transmitted = sequence_no_of_buffered_packet  

+ length - 1; 
       move(buffer, cache); 

start_timer(retransmission_timer, 
sequence_no_of_buffer, β * rtt);}}} 

  delete(packet);}} 

IV. 

A. 

PERFORMANCE EVALUATION 

Simulation Scenarios and Parameters 
TSS has been evaluated using simulations with Omnet++ [15], 
because of its power and simplicity and because DTC has 
been evaluated by this tool too. The used simulation scenario 
is depicted in . The TCP sender implementation at 
node 10 and the TCP receiver implementation at node 0 
exchange 1000 TCP segments with a payload size of 1000 bits 
plus TCP/IP and MAC header (= 20 + 20 + 12 bytes = 416 
bits). Two end points and nine intermediate nodes (nodes 1-9) 
with a distance of 200 m between each node are 
interconnected in a chain structure. A transmission range of 
200 m is feasible with various sensor nodes such as ESB [16] 
or WiseNet [17] nodes in outdoor environments. The chain 
scenario in  shows a rather typical scenario in sensor 
networks, when a sink needs to configure a single node. Cross 
traffic does not occur, if there is a single sink communicating 

with a single node or a group of nodes at one instant. For 
multiple TCP connections in a multicast overlay we expect 
interferences rather at the sink or branch nodes. Moreover, 
TCP connections may compete with sensor data flows from 
sources to sinks. Interference issues are left for future work.  

10 9 8 7 6 5 4 3 1 02 
receiversender

 

Figure 4

Figure 4

Figure 4: Simulation scenario 

The TSS implementation running on each node includes a 
CSMA MAC implementation, which senses the transmission 
medium and backs off in case of a busy medium. In order to 
save energy we back off without sensing the medium for a 
random time between 1τ and 3τ with τ = time to transmit a 
1000 bit payload TCP segment. Furthermore, we assume equal 
transmission power of all senders. A receiver can correctly 
receive a packet from a sender if it is not further away than 
200 m and the signal to noise ratio is less than 10 dB. A 
receiver can detect an ongoing transmission if it receives a 
signal that is equivalent to a sender 500 m away.  
Intentionally, we did not implement an RTS/CTS collision 
avoidance scheme, since such a scheme may be very costly, 
create a 40 % overhead and may not avoid all collision 
situations [18], in particular when RTS/CTS packets can not 
be received correctly. Note that RTS/CTS doubles the number 
of packet / acknowledgement transmissions. We rather 
propose to avoid collisions on a higher layer than MAC level. 
For example, if a node has recently forwarded a segment to 
the receiver, subsequent segments should not be forwarded 
immediately but slightly delayed. We implemented such a 
collision avoidance scheme in TSS by the function 
forward_delayed used in the last case statement of the 
pseudo code at Section III.C. This approach is somewhat 
similar to the adaptive rate control scheme proposed in [18]. 
We also assume that the MAC layer does not use explicit 
acknowledgements. Again explicit acknowledgements are 
considered as too costly. The bit rate of the wireless network 
is 100 kbps. Moreover, we assume that a node considered an 
overheard TCP segment as correctly received, if the TCP/IP 
and MAC header (416 bits) has been received without error. 
We investigated certain uniformly distributed bit error rates 
[19], in particular no (0), low (10-6), medium (10-5) and high 
(10-4) bit error rates. Such error models are rather 
disadvantageous for our scheme, since a single bit error 
temporarily stops packet forwarding in a chain of nodes. The 
bit error rates used result in up to 15 % packet error rates. 
Similar packet error rates have been used in [7] and measured 
for connected networks in [20]. For throughput and packet 



transmission measurements we performed 100 simulation runs 
per experiment with 1000 TCP segment transmissions from 
source to destination. For local rtt measurements, overhearing 
time evaluation, and congestion control considerations we 
performed a single simulation run with medium bit error rate.  
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B. 
1) 

Performance Results 
Packet transmissions 

The number of packet transmissions is the most important 
metric, because the energy efficiency strongly depends on it. 
Table 1 shows the number of TCP data segment and 
acknowledgement transmissions for different bit error rates. 
Bit error rate 0 10-6 10-5 10-4

TCP 
transmitted TCP 
segments  1067600 1081090 1197001 3499974
transmitted TCP ACKs 1001000 1003015 1019395 1217739
total number of packets 2068600 2084105 2216396 4717713
e2e retransmissions 33300 34494 45991 474776
throughput [bps] 1955 1811 831 7
TSS (backpressure in end point) 
transmitted TCP 
segments  1002061 1016829 1058486 1231501
transmitted TCP ACKs 1001600 1000467 1002887 1075384
total number of packets 2003661 2017296 2061373 2306885
e2e retransmissions 0 146 233 1552
throughput [bps] 4997 4412 2969 465
TSS (maximum congestion window = 3) 
transmitted TCP 
segments  1002061 1011693 1046849 1200717
transmitted TCP ACKs 1001600 1003210 1015297 1092203
total number of packets 2003661 2014903 2062146 2292920
e2e retransmissions 0 199 417 1909
throughput [bps] 4997 4309 2626 288
Optimal number of 
transmitted TCP 
segments 1001500 1002919 1015782 1153852

Figure 6: Packet transmissions of TCP and TSS 

Figure 6

For TSS we used two variants: In the first variant 
(backpressure in end point) we combined the backpressure 
mechanism with the TCP congestion control. The congestion 
window is increased after receiving a TCP acknowledgement, 
if there are more than a certain number (here: three) TCP 
segments waiting for transmission at the source node. In the 
second variant (maximum congestion window = 3), we limited 
the maximum congestion window dependent on the number of 
hops according to [10].  
The first TSS variant resulted in better throughput 
performance, but required slightly more packet transmissions. 
Note that the first variant is independent from the topology, 
but has a similar effect as the limitation used in the second 
variant. In particular for higher bit error rates the throughput 
improvement is higher. For high bit error rates several packets 
might be cached and buffered in the sensor network, but might 
wait for forwarding due to the timeout based retransmission 
mechanisms. Therefore, we consider the first variant as a 
better choice than the second.  

Table 1: Packet transmissions and throughput 
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We see that due to the CSMA MAC layer, there are always a 
certain but low number of collisions that result in corrupted 
packets. Therefore, TSS already performs better than TCP for 
no and low bit error rates. In particular for medium and high 
bit error rates, the difference in packet transmissions between 
TSS and TCP becomes evident ( ). The main reasons 
for the high number of packet transmissions required for TCP 
without running TSS in the sensor nodes are the many end to 
end transmissions. The optimal number of TCP segment 
transmissions is calculated by 
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, BER: bit error rate,  
PER: packet error rate. Figure 5: Throughput of TCP and TSS 



The difference between the TCP segment transmissions using 
TSS and the optimal number is rather low for all bit error 
rates. Note that retransmissions due to collisions for 
calculating the optimal number of transmitted TCP segments 
are not considered. Considering this fact suggests that TSS 
performs nearly optimal for all investigated bit error rates. The 
performance of DTC and TSS has been compared in a 
previous publication using a collision free TDMA MAC layer 
[21]. For packet error rates below 5 % DTC and TSS have a 
similar number of total packet transmissions, while the total 
number of packet transmissions is somewhat lower for TSS in 
case of packet error rates above 10 %. TSS results in a lower 
number of TCP data segments, while the number of 
acknowledgements is always higher compared to DTC. This 
results from the aggressive acknowledgement recovery 
scheme implemented in TSS, while DTC does not implement 
such a scheme.  

2) 

3) 

Throughput 
Table 1 shows also the resulting throughput of TCP with and 
without TSS. Note that we did not optimize TSS for 
throughput, because the main goal was to keep the number of 
transmissions as low as possible. Nevertheless, the throughput 
with TSS is always significantly higher than for TCP only. For 
no or low bit error rates we achieve a throughput of nearly 5 
kbps. Compared with the network bandwidth of 100 kbps, this 
is a reduction by a factor of 20. First, we have to take into 
account that TCP acknowledgements consume a rather high 
fraction of the capacity and the TCP/IP/MAC header overhead 
is rather high. Each payload byte causes nearly another byte to 
be transmitted in the header part of the TCP segment or the 
TCP acknowledgement. This could be improved by TCP/IP 
header compression. Second, packets need to be forwarded 10 
times and spatial reuse is rather limited in our investigated 
scenario. Typically two nodes can send simultaneously. Based 
on these investigations, we can not expect a total throughput 
of more than 10 kbps. A further reduction of the throughput is 
caused by the delay of the CSMA MAC scheme, the occurring 
collisions, and TCP congestion control. We see in Table 1 that 
TSS has rather low throughput decrease up to the medium bit 
error rate, while TCP without TSS drops significantly already 
for medium bit error rates. For high bit error rates the packet 
error rate is approximately 14 % per link. In that case, nearly 
every packet is dropped for TCP without TSS on the path from 
source to destination. The TCP throughput is therefore close to 
0, while TSS can at least achieve some low throughput (

). For such high bit error rates, the packet sizes could be 
decreased in order to decrease the packet error rate for a given 
bit error rate.  

Figure 
5

Local RTT Measurements 
The local retransmission scheme deployed at the TSS nodes 
depends on the estimation of the round trip time between the 
node and the destination. The retransmission timeout is set to 
1.5 * rtt, while the rtt is calculated using exponential 
averaging of rtt samples. To support fast convergence, we 
initialize the rtt value by the delay measured during a 
SYN/SYNACK exchange during TCP connection 
establishment.  shows that the average rtt values used 

for retransmission timeout calculation decrease at the nodes 
that are closer to the destination and further away from the 
source. This is exactly the behaviour we need for the local 
retransmission and backpressure schemes as explained in 
Section III.A.  

Figure 7

Figure 7: average round trip times per node 

Figure 8

Figure 8: exponential average round trip time at nodes 1 

, , and Figure 10 show the rtt development at 
nodes 1 (close to destination), 5 (in the middle between source 
and destination), and node 9 (close to source) for a single 
simulation run (exchange of 1000 packets) and medium bit 
error rate. Despite a few spikes the rtt values are rather close 
to an average value. All simulations for rtt measurements have 
been performed using TSS with backpressure in the end point. 
The same variant has been used in the following subsections 
too.  

Figure 9

Figure 9: exponential average round trip time at node 5 
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Figure 10: exponential average round trip time at node 9 

4) Overhearing Time 
Figure 11: Overhearing time (cumulative distribution 

function) 
Another issue to be investigated is the problem that has been 
caused by using implicit acknowledgements as discussed in 
Section III.A. After a node has forwarded a packet it needs to 
overhear its successor’s transmission. This requires a node to 
stay in idle state and prevents it from going into any sleep 
state. In the worst case, a node needs to listen for the time 
interval for which a packet is stored in the cache. This time is 
limited by the retransmission timeout interval. Figure 11 
measures the time a packet is stored in the retransmission 
buffer until the transmitted packet is either overheard or the 
retransmission timeout expires. These time values include at 
least two packet transmissions, i.e. the transmission from the 
first node to its successor and the transmission by the 
successor node. For a packet size of 1416 bits and 100 kbps 
link, this time must be at least 28 ms plus a small back-off 
time. Figure 11 plots the cumulative distribution function for 
these times. To get the results we performed again a single 
simulation run transmitting 1000 packets with medium bit 
error rate and measured the time values at node 5. We see that 
in 97 % of the cases, the packet is overheard after 
approximately 28 ms. However, due to packet loss and 
retransmission timeout expirations, the time values go up to 
280 ms, but in average a node must store the packet 33.5 ms 
only, which is less than 20 % above the minimum value.  
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Figure 12: Number of packets in flight for 11 hops 
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Link level acknowledgements may be an alternative to 
overhearing. However, if we assume that transmitting a bit is 
50 % more costly than receiving or overhearing a bit, 
transmission of link level acknowledgements with 24 bytes (= 
1416 bits * 20 % / 1.5 / 8) costs more energy than overhearing. 
This simple calculation does even not consider startup costs 
for turning on the transmitter in case of link level 
acknowledgement transmissions.  
 

Figure 13: Number of packets in flight for 21 hops 

 
 
 
 
 



5) Congestion Control Issues 
The backpressure based congestion control limits the 
maximum congestion window for TSS to approximately 15 in 
all investigated TSS scenarios. However, the number of 
packets in flight is much lower. We measure the number of 
packets in flight after each segment has been sent by 
determining how many segments did not yet arrive at the 
receiver.  and show the probability for the 
number of packets in flight between the sender and the 
receiver for a scenario with 11 and 21 hops respectively. The 
values for the packets in flight are in most cases lower than 
h/4 (h = number of hops) as proposed by [10]. The average 
values are 1.4 and 2.5 respectively. This shows that the 
backpressure mechanism effectively limits the number of 
packets in flight to a similar number that has been proposed by 
other related work on congestion control in multi-hop wireless 
networks as discussed in Section II.B. Note that in our case, 
we do not have to know the number of hops between sender 
and receiver, but the backpressure mechanism adapts 
automatically to an appropriate value. 

Figure 12 Figure 13

V. CONCLUSIONS 
TCP support in wireless sensor networks is desirable to allow 
direct communication of sensor nodes with other systems for 
various purposes such as configuration, re-programming or 
management. This paper showed that even in scenarios with 
high error rates, TCP can be used and implemented in an 
energy-efficient way. This requires some protocol support in 
intermediate nodes that are able to store TCP segments for 
possible local retransmissions. The mechanisms presented in 
this paper drastically reduce the number of TCP segment 
transmissions that are needed to transfer a certain amount of 
data across a wireless sensor network with relatively high bit / 
packet error rates. Moreover, a novel congestion control 
mechanism has been proposed, which is effective as well as 
simple to implement and deploy.  
Future work will analyse the performance in more complex 
network scenarios such as tree structures and consider 
background data traffic from sensors to the sink as well as 
multiple TCP connections originating at the sink. Additional 
work needs to be done for considering more complex bit error 
patterns [22]. We also plan to integrate scheduling 
mechanisms for sleep cycles and consider real implementation 
on available sensor node hardware. Further reduction of 
transmissions might be achieved by combining data and 
acknowledgement transmissions. Also, packet sizes need to be 
adapted in case of very high bit error rates. Another issue is 
the application of header compression in order to reduce the 
header overhead of TCP segments and acknowledgements. 
Since the TSS nodes store some state for a TCP connection, 
this seems to be a rather logical extension.  
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