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We consider the problem of non-blind deconvolution of images cor-
rupted by a blur that is not accurately known. A common choice for non-
blind deconvolution algorithms is to use methods that rely on an exact
blur estimate. However, small errors in the blur estimate result in visi-
ble artifacts in the restored image, which may not be removed by future
iterations.

We propose a novel image prior to remove artifacts introduced by blur
errors. To achieve this goal we use a dictionary-based prior learned only
from the input blurred image and a database of images, and propose a
method to prune ambiguities in the prior due to blur.

Consider an observed degraded image g

g = k ∗ f +n (1)

where ∗ is the convolution operator, k is a blur kernel, or point spread
function (PSF), f is the noiseless and sharp image, and n is additive noise
generated during the acquisition process. The aim of image deblurring is
to estimate the noiseless image f given the noisy image g and the kernel
k.

The imaging model in (1) can be written as a matrix-vector operation.

~g = K~f +~n (2)

However, typically the linear system has infinite solutions due to the noise
n being larger than the smallest singular values of the matrix K.

One way to obtain a unique solution is to introduce additional linear
equations, which we call image priors, via a matrix A and a vector~b

A~f =~b (3)

To enforce this regularity, we consider applying the same linear con-
straints to all pixels in patches of L×L pixels. For this purpose, we extract
patches of L×L pixels centered at each pixel of the image f , rearrange
the pixel intensities of each patch as a column vector and collect all such
vectors into a matrix F ∈ RL2×N , where N is the number of pixels in f .
We can then write our prior as

F = DC, (4)

We choose a dictionary made of a mix of both an external dictionary D0
and the image itself (D = [D0 F ]).

To learn C, we face two important challenges: The first challenge is
that F is typically not available and the second is that we do not have
enough equations to obtain a unique matrix C.

To deal with the first challenge, we extract noisy and blurred patches
Gi from the image g = k ∗ f +n. Let B be the matrix of patches extracted
from the blurred noiseless image b = k∗ f . Since B = KF = KDC, we can
express the blurred patches in B in terms of the blurred dictionary E ,KD
using the same correspondence matrix C.

The second challenge, i.e., the non uniqueness of the matrix C is due
to the overcompleteness of the dictionary D. We introduce additional con-
straints on C by exploiting image self-similarities. We consider a patch at
pixel i, Bi, found as a weighted average of similar patches D j extracted
from either the same image or from a dictionary of patches. Specifically,
if we consider all the patches as vectors in RL2

, then we have

Bi =
M

∑
j=1

D j
φ(Di,D j)

∑
M
`=1 φ(Di,D`)

, i = 1, . . . ,N, (5)
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Figure 1: Example of ambiguous correspondence correction. In this toy exam-
ple we show the correction performed by the correlation-based method. The PSF
consists of only two peaks, which result in an overlap of two copies of the sharp
image with two relative shifts. (a) Sharp image of text, and two correct corre-
spondences (red squares) of the character ‘w’. (b) Blurred version of the previous
image which leads to additional incorrect correspondences. (c) Selected patch (red
square) and the area corresponding to the second peak of the PSF (blue circle).
(d) The correlated patches shown in (a) are obtained by overlapping the correspon-
dence sets of the two patches (blue circles and red squares).

where φ is a positive semi-definite kernel that measures the similarity
between two patches. In our work we use the following kernel,

φ(Di,D j) =

{
1 ‖Di−D j‖2

2 ≤ ε2

0 otherwise
(6)

where ε is proportional to the standard deviation of noise. It is easy to see
that (5) can be written in matrix form as

B = DCnlm, (7)

where D is a matrix of patches (D = [G E0] in our case) and {Cnlm} j,i =
φ(Di,D j)

∑
M
`=1 φ(Di,D`)

is the correspondence matrix obtained from the procedure in
eq. (5).

When we apply this procedure to a blurred image, incorrect corre-
spondences may be generated. We distinguish two types: false negatives,
i.e., correspondences found in the sharp image, but not in the blurred one,
and false positives, i.e., correspondences present in the burred image but
not in the sharp one. In Fig. 1 we provide a synthetic example to illustrate
why blur generates false positives.

To reduce the false positives we suggest to use our (partial) knowl-
edge of the blur. Formally, let Cp = { j ∈ Z : ||Bp−Bp+ j||2 ≤ ε2} be the
set of correspondences for the pixel p learned from the blurred image and
let K = {i ∈ Z : |max(k)− ki| ≤ τ} be the set of non-zero entries of the
PSF k, where τ is a threshold based on blur noise. For each patch cen-
tered at p we enforce that its improved set of correspondences Ĉp be the
intersection of all the correspondence sets of patches at pixels with rela-
tive displacement given by the main PSF peaks, i.e., where the consensus
is full: Ĉp =

⋂
i∈K Ci.

We finally pose the problem of recovering the sharp image f via the
following convex optimization problem

min
f ,n,e

1
2
‖A~f −~b‖2

2 +β‖∇ f‖2 +
λ

2
‖n‖2

2 + γ‖e‖1

subject to g = h∗ f +n+ e
(8)

In the experimental validation our algorithm performance is overall better
than the state-of-the-art methods when the blur kernel is noisy.


