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ALGORITHM

PROBLEM
The problem we consider is non-blind deconvolution
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when the PSF (blur) is not fully known or exactly estimated by a blind de-
convolution method, artifacts appear in the sharp reconstruction.
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e We address deblurring when blur is uncertain by introducing a prior on
the sharp image.

e The prior is built by exploiting the partial knowledge of the blur.

CONTRIBUTIONS

e A novel non-local image prior built directly from the blurry input.

e A unified framework that combines dictionary-based and non-local ap-
proaches.

e A consensus strategy that exploits partial knowledge about the blur to
discard correspondences due to the blur.

PATCH-BASED FRAMEWORK

Each patch of the image is forced
to be an average of

. similar patches from the same
iImage

and patches from an external
dictionary

Averaging of non-local corresponding patches is effective to remove arti-
facts such as noise.

SELF-SIMILARITIES IN BLURRED IMAGES

When we apply the above procedure to a blurred image incorrect corre-
spondences may be generated.
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Sharp Image

a) Sharp image of text, and two similar

c) Set of similar patches from the
patches (red squares).

blurred image. Which of these are cor-
respondences also in the sharp image?

set of dominant blur peaks
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b) Blurred version of the previous im-
age.

d) The correlated patches shown in (a)
are obtained by overlapping the corre-
spondence sets of the two patches.
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The image prior is connected to the patch-based framework as

Dictionary formed of Image Prior
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where C'is a matrix that defines correspondences between patches. For any

pair of patches i, j we define C; ; = cif j € C; and 0 otherwise. ¢ is defined
such that Zj Ci,j = 1.
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where k identifies the central row of the
matrix

where (. ¢+ defines similar patches within the blurred image, and C.,; de-

fines for each patch of the blurred image similar patches in the dictionary
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The sharp image is then estimated by minimising the following energy
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RESULTS

Selected areas from
real blurred images.

Deblurring results with the
algorithm of Cho et al. [1].

Deblurring results with
our algorithm.

Project webpage
http://www.iam.unibe.ch/~cvg/dperrone/
uncertainblur/
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