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Abstract

We evaluate the beaviour of a implementation of a Differentiated Services router based
on a Linux PC. Our results show, that both per-hop-behaviours — expedited and assured
forwarding — are able to provide a guaranteed bandwidth together with a very small delay
and jitter even in a highly congested network.
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1 Introduction

Differentiated Services (DiffServ) is a well known concept to support Quality of
Service in the Internet. It is — unlike Integrated Services — based on flow ag-
gregation and therefore without the need of multifield classification at each hop.
Resources are reserved for any flow aggregation e.g. for all flows between two
subnets. These reservations are rather static since dynamic reservations for single
connections do not scale.

IP packets are marked with different priorities, either by an end system or a router.
According to the different priority classes, the DiffServ routers reserve correspond-
ing shares of resources, i.e. bandwidth and buffer space. Packets are marked by
writing a DiffServ Codepoint (DSCP) into the Type of Service - byte (ToS byte)
of the IP header. Currently the first six bits of the ToS byte are used for the DSCP
[NBBB98]. DiffServ routers map the packet’s DSCP to a per-hop behaviour. A
PHB (per-hop behaviour) is a forwarding behaviour which a router performs on
a packet [JNP99,HBWW99]. In DiffServ such a forwarding behaviour is built of
a combination of several components. These components are discussed in section
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1.2. All router implementations should support the recommended DSCP-to-PHB
mapping. A chain of routers supporting the same PHB will provide an end-to-end
Quality of Service.

In this paper we will give a short introduction to the DiffServ concepts we used to
implement Differentiated Services on a Linux Router. The performance evaluation
of this implementation is the main topic of the paper. We will give a description
of the test scenario we built in our computer networks laboratory, as well as an
overwiew of the evaluation methods. Finally we will present the results regarding
bandwith, delay and jitter of 5 MBit/s UDP and TCP traffic using expedited and
assured forwarding and compare those results to the performance of best effort
traffic forwarding.

1.1 Per Hop Behaviour (PHB)

Several services and their corresponding DSCPs have been defined in the Internet
community. Nowadays, DiffServ is mainly based on the two traffic classes (called
expedited and assured forwarding) defined in [JNP99] and [HBWW99].

Expedited Forwarding (EF) is also known as premium service [JNP99]. This
service shall provide low delay, low loss and low jitter at a fixed rate. It will appear
to the endpoints like a “virtual leased line”. To fulfill those requirements, traffic
marked for expedited forwarding has to meet very short queues. Therefore, one has
to ensure that there is not more EF traffic arriving at one router than the router’s
configuration allows to be transported. The departure rate of a traffic flow at each
hop should be independent of the characteristics of any other traffic arriving at the
router. DiffServ routers will give EF packets priority over other traffic but strictly
police any traffic exceeding the negotiated limit to prevent EF traffic to starve out
other traffic. Another very important issue is that reordering EF packets must not
appear.

Assured Forwarding (AF) defines a service assuring a high probability to trans-
fer the traffic through the network as long as the bandwidth does not exceed the
negotiated limit. Traffic exceeding the profile will be forwarded too, but it will be
dropped with higher probability in case of congestion. It is also very important, that
reordering of packets of the same microflow is strictly forbidden again.

Four different AF classes are defined, each allocationg a specific share of resources
and thus having a different level of forwarding assurance. Within these classes
packets can be marked with three possible drop precedence values. In case of con-
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Fig. 1. Combination of DiffServ Components in a Router

gestion the in-profile traffic will be protected by dropping packets with higher drop
precedence.

1.2 DiffServ Components

Each DiffServ router implementation consists of of different components (see Fig-
ure 1), which interact in a certain way to ensure the proper forwarding of traffic
according to the requirements of the individual PHBs. Not all components are re-
quired in each DiffServ node. It depends on whether the concept is required in
a DiffServ node or not. Those components provide different traffic conditioning
functions that range from simple marking to complex shaping and policing actions.
The specific parts of a DiffServ router — also called traffic conditioners — are

Classifier: This component forwards the traffic to different service handlers. Clas-
sification can depend on multiple IP-header fields, such as adresses / port num-
bers or protocol IDs (multi-field classifier) or the DSCP only (behaviour aggre-
gate classifier).

Meter: The meter measures the bandwidth of the incoming traffic aggregates and
provides this information to the marker or the shaper/dropper.

Marker: The marker writes a specific DSCP into the IP header. This depends ei-
ther on a static mapping described in the traffic profile or some dynamic input
from the meter.

Shaper: This component stores and forwards the incoming traffic. It is responsible
for the compliance to the traffic profile and assures that by delaying or dropping
packets. A shaper therefore provides some burst protection for the network be-
hind it.

1.3 DiffServ Router Types

The combination of the different traffic conditioners presented in section 1.2 allows
us to build several DiffServ router types (see [BBC+98]).

A Boundary Router is located at the borders of a DiffServ domain. Several sub-
types can be specified according to the location of the router in the forwarding
path:
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An Ingress Router (see Figure 2) is located at the entry point of a traffic stream
into the domain. It carries most of the traffic conditioning work, because the
traffic has not been aggregated yet. Normally an ingress router architecture
consists of

� a classifier, that forwards the packets to the correct service handler,
� several service handlers for the different PHBs (expedited and assured

forwarding),
� queueing disciplines to perform shaping and policing to the flows and
� a scheduler, that has to ensure, that each single service class has enough

bandwidth available, but does not exceed the negotiated limits.
An Egress Router is located at the exit point of a traffic stream. It has to ensure

by traffic conditioning that the agreement about the amount of traffic leaving
the DiffServ domain is met.

Interior Routers can take full advantage of the traffic aggregation. The architec-
ture is much simpler than the architecture of a boundary router (see Figure 3).
Interior routers simply handle the traffic according to the configuration concern-
ing the service classes. As the traffic should be correctly shaped by the ingress
routers, the core routers directly store the traffic in the queues. Traffic condition-
ing is only performed to detect possible misconfiguration of the border routers
and to minimize the damage caused by that.

2 Configuration of a Linux DS-Router

The implementation of Differentiated Services on a Linux router [BSE+00] pro-
vides a full set of traffic conditioning modules enabling a user to set up any kind of
DiffServ router (i.e. boundary and core routers). Those modules include a marker,
a classifier= scheduler, service handlers for EF and AF and several queueing dis-
ciplines such as token bucket filters, FIFO and TRIO (see section 2.1) queues. All
traffic conditioners have been implemented as kernel modules that can be activated
by thetc command, which is part of theiproute package [Kuz]. This com-
mand can set the parameters of the queueing disciplines (bandwidth, buffer space
...) and can combine the traffic conditioners to form the configuration of a particular
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DiffServ router interface (boundary or interior router, see also Figures 2 and 3).

The information, which flows will get a certain service, is stored in a table within
the router’s kernel-memory. A kernel module together with an user interface pro-
gram has been developed to support creating and changing those tables during
runtime. The tables contain the source and destination subnet addresses of each
privileged flow, marking information (the DSCP) and metering limits (bandwidth
values) for the service handlers. IPv4 as well as IPv6 addresses are supported.

2.1 Traffic Conditioner Modules

Theservice handler is the marking module of our implementation. It compares
all incoming packets to the flows held in its table and writes the according DSCP
into the IP header. Since this module has no metering functionality the dropping
probabilities of AF packets are set by theprecedence handlermodule (see
below).

Thedsclsfr module is a combination of a BA classifier and a scheduler. The classi-
fication procedure is executed when enqueueing a packet and forwards the pack-
ets according to their DSCPs to one of seven traffic conditioners. Those con-
ditioners are intended to handle the four assured forwarding classes, expedited
forwarding traffic, network control traffic and best effort traffic. The scheduling
performed by thedequeue function is a combination of priority scheduling and
weighted fair queueing. The highest priority is assigned to expedited forwarding
traffic, the second highest priority to network control traffic and the third prior-
ity to the remaining five traffic classes. Those five classes — four for assured
forwarding and one for best effort — are handled by the weighted fair queueing
algorithm. The weights are configurable and can be specified via the command
line.

Theprecedence handler is a color - aware two-rate three color marker [HG99].
The AF-PHB defines four independent service classes, each operating at three
levels of dropping probability. Traffic below the negotiated bandwidth limit has
the lowest probability of getting dropped (“is marked green”). A packet is marked
“yellow” (to a higher dropping probability), if it does not exceed a certain exceed-
bandwidth. All other traffic is marked “red”. Theprecedence handler spec-
ifies the color-part of the AF-DSCP (see [HBWW99]), while preserving the color
of already marked incoming packets.

Thepremium shaper is a conditioner for metering and classifying expedited for-
warding traffic in ingress routers. According to [JNP99] each expedited forward-
ing traffic must be shaped to the negotiated rate. This module offers the possi-
bility of shaping a certain number of flows (currently up to 256) independently
to different bandwidth values by offering multi-field classification based on IP
adresses, port numbers and protocol ID. For each flow a separate token bucket
filter that is configured to the maximum bandwidth / burst size parameters has to

5



be installed.
TheTRIO queue is a modification of the well-known RED queueing algorithm

[FJ93]. While the RED algorithm uses one dropping probability function, the
TRIO queue uses three dropping functions, one for each color of the three color
marker described above. By combining a properly configured TRIO queue with
theprecedence handlerwe can ensure increasing dropping probability for
yellow and red packets while sustaining the order of the packets within the AF
flow.

2.2 Example of an Linux Ingress Router Configuration

There is a major difference between the implementation architecture of the Diff-
Serv routers shown in Figures 2 and 3 and the actual arrangement of traffic condi-
tioners within a Linux router: While in Figures 2 and 3 all conditioners are passed
only once by each packet, the arrangement of traffic conditioners by thetc com-
mand is a tree (see Figure 4), and therefore a packet has to pass each conditioner
twice. Additionally the classifier has to perform the scheduling simultaneously (see
the description of thedsclsfr module above). The different service classes are
handled by appropriate service handlers (i.e.precedence handler or pre-
mium shaper) or directly forwarded to queues (see Figure 4). To install a traffic
conditioner at the correct location within the forwarding path thetc command
needs three parameters: Each traffic conditioner has a unique ID (calledhandle),
a parent (thehandle of the parent conditioner in the tree), and aclass id,
which indicates the position the conditioner occupies within multiple child con-
ditioners. For example, if thedsclsfr in Figure 4 hashandle 1, thepre-
mium shaper would haveparent 1 andclass id 5. Those three parameters,
together with other, conditioner-specific parameters (e.g. queue length) are passed
to thetc command.

Flow description information cannot be passed to the traffic conditioners via the
command line. This information is stored in tables, allocated by thedstable
module. This module can handle several table IDs and the conditioner modules can
access the tables by using the correct ID. It is therefore possible to install a table
with all EF flows and a second one with all AF flows and pass the table IDs to
the correct service handlers. The communication between the tables and the traffic
conditioning modules is done by a API provided by thedstable module.
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3 Evaluation and Tests

3.1 Testnetwork Design

The main problem of designing a test network for our implementation is the limi-
tation of hardware resources (Linux PCs, Ethernet cards, ...) in a laboratory, while
trying to show the availability of end-to-end quality of service in large backbone
networks.

If we look to typical ISP network topologies, we recognize, that usually there are
only very few backbone routers (mainly 3 – 6), between an ingress and an egress
router. Therefore we set up a test network consisting of three routers: an ingress
router, an interior router and an egress router (see Figure 5).

To simulate a highly congested router our small “backbone” has been flooded by
an aggressive UDP sender, that sends full 100 MBit/s traffic to the receiver on each
of its three links. At each outgoing router interface the DiffServ traffic from the
sender has therefore to be protected against a heavy background traffic load.

Since the number of hops does not influence the service provisioning significantly
we can estimate the behaviour of the DiffServ traffic classes (i.e. the provision of
bandwidth and certain delay and jitter limits) for large-scale backbones.

3.2 Performance Measurement Procedures

In our test network we used full duplex 100BaseTx connections. As mentioned in
section 3.1 the Host A sends UDP and TCP traffic to Host B, that is marked by
the expedited and assured forwarding DSCP. The background traffic from Host C
has three different routes to Host B. Therefore each DiffServ router has to drop
100 MBit/s (= 50%) of the incoming traffic at the outgoing interface (see Figure 5).
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Fig. 5. Testnetwork topology

A couple of self-programmed tools were used for the load generation. These allow
to set various parameters, including ports, bandwidth and packet size (only for UDP
traffic). The sender program transmits a packet of the specified size, then waits for
a time t

t =
packet size
bandwidth

and transmits the next packet. Waiting can be implemented in two ways: The first
possibility is to get the actual time again and again, and send the packet as soon
as the calculated time interval has passed (busy waiting). This consumes a lot of
computing power, but gives an accuracy of about 10 �s. The second possibility is
to wait for an operating system call to resume. The main drawback of this method
is, that the accuracy of the Linux operating system is limited to 10 ms – 1 ms.

Both waiting algorithms have been implemented for the UDP sender, whereas only
the second has been implemented for TCP. Since the TCP implementation queues
the packets in order to form a traffic stream, higher timing accuracy would be lost
in this case.

The packet payload consists of an identification number to calculate loss rates and
two timestamp fields, that have been used to calculate the end-to-end delay and
jitter as shown in Figure 6. Before starting the tests, a two minute period of delay
measurements without background traffic have been performed. The sender writes
its local time t0 to the first field, the receiver writes its local time T0 to the second
field and sends the packet back to the sender. Together with the arriving time of
the packet at the sender t1 and assuming that the transmission time is equal in
both directions (we may assume that, since there is no background traffic and no
congestion) we can easily calculate the delay

d =
1

2
(t1 � t0)

and the clockskew
c = T0 � t0 � d:

Figure 7 illustrates the drift between sender and receiver clocks before the first
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test. An obvious linear trend can be observed and assuming that this linear trend is
constant during the measurements, we can compute the delay of each single packet.
To estimate the trend, two different statistical methods were used: a standard least
squares and a M-estimate method (minimizing absolute deviation).

The least squares method is obviously more sensitive to data that shows a large
deviation from the linear trend because the error in this case is not normally dis-
tributed. Therefore, the results of the more robust method have been used in future
calculations.

Now we can measure the delay and jitter during the tests (see packets 2 and 3 in
Figure 6): estimating the clockskew

c(t) = a � t + b

the delay of a packet is calculated by

d = T1 � t2 � c(t2):

The jitter is calculated using two subsequent packets: according to [JNP99] jitter is
defined by

j = jT2 � T1 � (t3 � t2)j:

This can be explained by Figure 6: packet 3 is a little bit slower (solid line) than
packet 2 (dashed line). The difference of those two packets’ speed is exactly the
expression in the definition above. Taking the absolute value we ensure, that slower
and faster packets do not average the jitter to zero.

The delay and jitter values are measured by the receiver during a configurable
timescale and the average of that values is used in the graphs shown in section
3.3. The timescale used in the results section was 100 ms, which is a good com-
promise between the need of an accurate image of the behaviour of the DiffServ
network and the limited timing accuracy of the Linux routers.
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The overall duration of each test was 10 minutes to get a statistically significant
amount of data, that allows us to predict the behaviour of a Linux DiffServ router
as accurately as possible.

3.3 Results

Tests without DiffServ

In order to be able to compare our results to the results achieved with best effort
forwarding, we performed some measurements without DiffServ. The throughput,
the delay and the jitter have been measured for a 5 MBit/s UDP flow from host A
to host B (see Figure 5).

During the first test there was no background traffic at all. Under these circum-
stances we can see, that the backbone of three routers creates a delay of just 1 ms
(see Figure 9). No packet loss can be recognized in Figure 8, and the jitter is at the
lowest limit of the computer’s time accuracy. For most of the time we get a jitter
lower than 2 �s. There is no other way to explain the variance of the jitter than by
the randomness of the router’s interrupts.

The second initial test was designed to test unprotected UDP traffic from Host A
to Host B against the 100 MBit/s background traffic generated from Host C. The
flow’s bandwidth was again 5 MBit/s.

In Figure 11 we can see, that the background traffic of Host C causes serious losses
even to the connectionless UDP traffic. Approximately 1 MBit/s of the sender traffic
can cross the network only. This is a loss of approximately 80%. Also, the variance
of the througput is considerably large.

The delay of the flow is approximately 28 ms (see Figure 12). Obviously, the traffic
always meets full queues at each router due to the constant background traffic.
Therefore, a packet has to wait until the maximum queue length has been for-
warded. Since the default queue length of the FIFO queues in the routers is 100
packets we expect a delay of

d = 3 �
100 � (1024 + 8 + 20 + 122) � 8 Bit

100 MBit/s
= 28:2 ms

which shows the excellent accuracy of the delay measurement procedure. The val-
ues in the parentheses are the payload size (1024), the UDP header size (8), the IP
header length (20) and the size of the Ethernet 802.3 header and tail (122) in bytes.

The jitter of this flow has a lower bound of 2 ms and a high variance (see Figure
13). Compared to the jitter values of the last series which has been lower by three
orders of magnitude (Figure 10) we can see the big randomness of the packets
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Results for UDP without DiffServ
and background traffic
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Results for UDP without DiffServ
but with background traffic
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Fig. 12. Delay for 5 Mbit/s UDP
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Fig. 13. Jitter for 5 Mbit/s UDP

being enqueued or dropped in the routers. This randomness results from the way,
how the Linux-kernel internally handles incoming packets and forwardes them to
the outgoing queue.

UDP

The UDP tests have been performed with a reservation of 5 MBit/s. We performed
four different runs, sending 2, 4, 5 and 10 Mbit/s from host A to host B (see Figure
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5) with UDP payload size of 200, 400, 500 and 1000 bytes. The results presented
here have been achieved by using the busy-waiting UDP sender (see section 3.2).
Together with the varying UDP payload this ensures a constant bit rate sender mea-
sured over very short time intervals together with a constant packet frequency. This
is especially important for explaining the results for assured forwarding below.

Expedited Forwarding During the tests of the EF PHB all queues have been
configured to a maximum throughput of 5 MBit/s and a maximum delay of 25 ms.
This results in an increasing queue length for faster UDP senders, but this approach
ensures an equal burst protection for each test run and makes it easier to compare
the results.

Figure 14 shows the throughput for all runs (2, 4, 5 and 10 MBit/s). We can see, that
in any case the bandwidth is surely provided up to the negotiated limit, regardless of
the amount of EF traffic that flows through the router. This means, that the 2 and the
4 Mbit/s sender suffers almost no loss, but the 5 MBit/s sender looses 7.66% of it’s
packets, while the 10 MBit/s sender looses even 52.1% of it’s packets. The reason
why the 5 Mbit/s sender looses packets, although 5 MBit/s have been reserved, is,
that the token bucket filter has a very small queue and therefore a bursty sender
may fill up the token bucket filter and some packets are dropped.

The delay of those four flows is shown in Figure 15. As we can see, DiffServ
provides a delay of less than 5 ms as long as the sender meets the bandwidth limi-
tations.

It is rather difficult to deduct the delay of 5 ms. The only thing we can say is, that
it is not due to the TBF queue, because logging the fill-state of the queue showed,
that there were never more than 2 packets in the queue (=0.17 ms delay). Therefore
most of the delay comes from the processing inside a DiffServ router, which can
hardly be measured with the required accuracy.

If the sender tries to transmit more traffic than allowed, the traffic shaper in the
ingress router will create a delay according to the size of its token bucket filter. In
the case of the third test (5 MBit/s Sender and 5 MBit/s reserved) it is the restrictive
burst protection of the token bucket filter, that is responsible for the high delay, as
already discussed above.

The jitter has a sharp lower bound of approximately 0.6 ms for the bandwith val-
ues less than 10 Mbit/s and a large variance which is decreasing when sending
at a higher rate. For the 10 MBit/s sender the jitter increases to 0.8 ms but at a
smaller variance. We assume, that the token bucket filter cannot dequeue packets in
equidistant timesteps — especially at higher rates — and so causes a higher jitter.
However, it can dequeue a packet each time it is called, as it’s queue is always full,
and so the variance of the jitter is small.
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Results for UDP traffic with 5 MBit/s
EF reservation
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Fig. 14. Bandwidth for 5 Mbit/s EF reserva-
tion
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Fig. 16. Jitter for 5 Mbit/s EF reservation

Results for UDP traffic with 5 MBit/s
AF reservation
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Fig. 17. Bandwidth for 5 Mbit/s AF reser-
vation
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Fig. 18. Delay for 5 Mbit/s AF reservation
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Fig. 19. Jitter for 5 Mbit/s AF reservation

Assured Forwarding The parameter settings for the four AF test runs have been
chosen to allow a simple estimation of the results. This prediction is very difficult
because of the random behaviour of the TRIO queue. Only in case of one AF flow
of a certain class and using only two of the three possible colors an easy prediction
is possible. Therefore the precedence handler has been configured to mark
all exceeding traffic as red. The dropping of red traffic started at the beginning of the
queue and stopped at 20% queue length (i.e. all red packet are dropped), whereas
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green traffic was dropped at 80% to 100% queue length. The queue length was 200
packets.

Figure 17 shows a similar behaviour for the flows below the limit but also clearly
shows the difference between EF and AF in handling out-of-profile traffic. While
being strictly shaped in the former case (see Figure 14) we observe a significant
amount of out-of-profile traffic crossing the routers in the latter case. This amount
heavily depends on the configuration of the TRIO queue and the behaviour of the
sender.

We can assume, that the fill-state of the TRIO queue is very small, because we
assigned a 40% weight to the assured service class and we transmitted with a low
rate. Therefore, a sender with no or just little bursts has a higher probability of
seeing no or little queues. Its high dropping precedence traffic will also not be
dropped at a very high rate although the TRIO queue starts dropping packets at
the very beginning. It is therefore possible for the 10 Mbit/s sender to get almost
9 MBit/s across the network with a reserved rate of 5 MBit/s (see Figure 17).

The delays of the four flows in Figure 18 show a timely constant behaviour with
values between 3 and 4 ms. The delay for senders with lower rates or exactly at
the rate of the precedence handler show a random distribution, whereas the out-
of-profile sender at 10 MBit/s has periodical oscillations. We assume, that those
oszillations are caused by the random number functions used by the TRIO queue.

The jitter for each test was about 0.5 ms at a large variance which became smaller
for higher rates (see Figure 19).

Summary EF is a good mechanism to provide UDP bandwidth under a heavy
background load. The packets are forwarded almost without loss (< 0.001%) as
long as the sender rate is below the configured rate of the traffic shaper. The be-
haviour of our sender and the burst protection of the token bucket filter resulted in
some packet loss and filled the queues during the test when sending exactly at the
TBF’s limit.

The delay shows an increase from about 1 ms to about 4 ms compared to the empty
network (see Figure 9) but this is a large gain compared to the situation without
DiffServ, when we see a delay of about 30 ms (see Figure 12).

The jitter increases by three orders of magnitude when we have additional back-
ground traffic (Figures 10 and 13) but DiffServ is also able to provide better results
for the jitter by a factor of 5 – 10 (Figures 16 and Figures 13).

AF also proves to be able to protect UDP bandwidth against heavy background
traffic. There is no obvious drawback of using assured instead of expedited for-
warding for UDP traffic. The delay values are even smaller for AF traffic at a rate
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directly at the negotiated limit or higher, becuase there is no strict shaping of the
flow that could result in filled queues. The jitter values don’t even seem to depend
on the DiffServ service type, they are almost the same for assured and expedited
forwarding.

TCP

The TCP tests were performed with a bandwith reservation of 5 MBit/s, too. Like
during the UDP tests we had four test runs with TCP senders restricted to a maxi-
mum bandwidth of 2, 4, 5 and 10 MBit/s. The TCP implementation of the sending
host A set the payload size of the TCP packets itself.

Expedited Forwarding The queue settings — especially the queue length — had
to be adjusted to the specific TCP behaviour. Since the packet frequency cannot be
adjusted like for the UDP sender, we had to weaken the burst protection, because
otherwise some TCP packets would be dropped causing TCP’s congestion control
mechanism to reduce the bandwidth. This would severely affect the DiffServ tests.
Therefore we used a queue, that was four times larger than the queue used for the
UDP tests. The queue length results in a constant maximum delay of 100 ms.

The bandwidth plot for expedited forwarding with TCP shows a very large vari-
ation (see Figure 20), especially for values at or higher than the rate limit of the
token bucket filter. This behaviour is a result of the TCP congestion control func-
tion which decreases bandwidth after a single packet loss. At a timescale of 100 ms
those bandwidth breakdowns can be observed in the plot, the use of larger timescales
would smoothen the plot. For lower bandwith values, the influence of the conges-
tion control is not very significant.

The delay is approximately 5 ms for the two senders with 2 and 4 MBit/s (see
Figure 21). Since the congestion control limits the bandwidth to values below the
rate of the token bucket filter, the queue is not filled up and therefore the delay is
also approx. 5 ms, even for the sender at the negotiated limit. In particular, TCP
senders with higher rates fill up the queue before the congestion control can limit
the bandwidth and so the maximum delay of 100 ms can occur in these cases.

The jitter values decrease with increasing bandwidth from 10 to 3 ms. This can
be explained by the stream-oriented TCP service. Due to that feature it is not so
simple to influence the TCP packet size and the transmitting frequency as it was in
the UDP case. The TCP sender will send a few packets at a high rate and then wait,
until the average bandwith is below the TBF’s limit. Therefore, the queue length a
TCP packet will encounter at the router is not constant for all packets, resulting in
a higher jitter.
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Results for TCP traffic with 5 MBit/s
EF reservation
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Fig. 20. Bandwidth for 5 Mbit/s EF reserva-
tion
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Fig. 21. Delay for 5 Mbit/s EF reservation
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Fig. 22. Jitter for 5 Mbit/s EF reservation

Results for TCP traffic with 5 MBit/s
AF reservation

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600

ba
nd

w
id

th
 [

M
bi

t/s
]

time[s]

2 Mbit/s TCP Sender
4 Mbit/s TCP Sender
5 Mbit/s TCP Sender

10 Mbit/s TCP Sender

Fig. 23. Bandwidth for 5 Mbit/s AF reser-
vation
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Fig. 24. Delay for 5 Mbit/s AF reservation
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Fig. 25. Jitter for 5 Mbit/s AF reservation

Assured Forwarding The queue settings for assured forwarding did not change,
because the TRIO queue length is set in units of packets and not bytes. Therefore,
we used the same 200 packet queue as during the UDP test series.

We can see that for AF the bandwidth is not as constant as for EF (see Figure 23).
This can be explained by the use of a TRIO queue, that randomly drops packets,
even if the buffer is not filled up. Therefore, especially for higher bandwidth values
there is a certain probability for packet loss and in that case TCP’s congestion
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control decreases the bandwidth. On the other hand, the sender is now allowed to
send more than the negotiated limit. All these issues give the large variation of
bandwidth for assured service.

The AF delay is 6 -7 ms as long as the sender meets the rate of the precedence
handler, i.e. if the AF traffic is marked with low dropping precedence (see Figure
24). For higher bandwith, some packets will be marked as high dropping prece-
dence and probably get lost. The retransmission of those packets results in a larger
delay and a high delay variation. In this case, also the jitter varies significantly (see
Figure 25) compared to the jitter during the former tests.

Summary The results show, that even for rates below the limitation of the shaper
the TCP bandwidth is much more irregular than for UDP. Averaging at a larger
timescale would show better behaviour, but for applications which need a constant
bandwidth at a small timescale the congestion control is a serious obstacle.

The delay of TCP is in the same range as the delay for UDP packets, but we have
to reserve a buffer space four times as large to weaken the burst protection. This
results in high delay for higher rates than negotiated.

The jitter values for TCP are larger than for UDP. This is mainly due to the different
algorithms we used for the sender programs. Since TCP does not allow to specify
the packet size we could not increase the packet frequency and therefore the time
between two subsequent packets could be up to 20 ms (see discussion in section
3.2).

AF is not the optimal choice for TCP, because TCP cannot take advantage of the
possibility of sending out-of-profile traffic. This is due to TCP’s congestion control,
because out-of-profile packets will be dropped with a higher probability, causing
TCP to reduce the bandwidth. Therefore, we can see frequent bandwidth break-
downs and because of retransmissions a great variance in delay will occur.

3.4 Conclusion

In this paper we gave a short overview of our implementation of a DiffServ router
based on Linux. A short description of the available kernel modules and a descrip-
tion of the router’s configuration used during the performance evaluation have been
presented. During this performance evaluation we tested the behaviour of UDP and
TCP flows, that used either expedited or assured forwarding. Our results show, that
it is possible to protect certain flows against aggressive UDP background traffic.
Both, expedited and assured forwarding are able to provide a guaranteed band-
width together with very low delay and jitter. Compared with today’s best effort

17



traffic forwarding we have smaller delay and jitter by a factor of 5. We can con-
clude, that DiffServ is a reliable and scalable concept to support Quality of Service
in the Internet.

References

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
architecture for differentiated services. RFC 2475, December 1998.

[BSE+00] T. Braun, M. Scheidegger, H. Einsiedler, G. Stattenberger, and K. Jonas.
A linux implementation of a differentiated services router. In Sathya Rao
and Kaare Ingar Sletta, editors, Next Generation Networks — Networks
and Services for the Information Society, volume 1938 of Lecture Notes in
Computer Science, pages 302 – 315, October 2000.

[FJ93] S. Floyd and V. Jacobsen. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4), August 1993.

[HBWW99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured forwarding PHB
group. RFC 2597, June 1999.

[HG99] J. Heinanen and R. Guerin. A two rate three color marker. RFC 2698,
September 1999.

[JNP99] V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding PHB. RFC
2598, June 1999.

[Kuz] Alexey Kuznetsov. iproute2 release 990824. ftp://ftp.sunet.se/ pub/ Linux/
ip-routing/ iproute2-2.2.4-now-ss990824.tar.gz.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differentiated
services field (DS field in the IPv4 and IPv6 headers. RFC 2474, December
1998.

18


