Searching for Backbones —
A High-Performance Parallel Algorithm for
Solving Combinatorial Optimization Problems

Johannes Schneider

Physik-Institut, Universitat Zirich-Irchel, Winterthurerstr. 190, CH-8057 Ziirich

Abstract

A highly efficient parallel algorithm called Searching for Backbones (SfB) is pro-
posed: based on the fact, that many parts of a good configuration for a given
optimization problem are the same in all other good solutions, SfB reduces the
complexity of this problem by finding these “backbones” and eliminating them in
order to get even better solutions in a very short time. Applications and results are
presented for the Traveling Salesman Problem and the Vehicle Routing Problem.

Key words: Massive Parallelization, Optimization, Traveling Salesman Problem
PACS: 02.50.Ga, 05.10.Ln, 89.20.-a, 89.40.+k, 89.90.+n

1 Introduction

One of the main tasks in the fields of Computational Physics, Applied Math-
ematics, and Operations Research consists of finding a (quasi) optimum solu-
tion for a proposed problem according to a given energy/objective/cost func-
tion/Hamiltonian H. Many problems in this field belong to the class NP-
complete, i.e., there are no analytical algorithms by which these complex
problems can be solved in polynomial time. If the instance of the consid-
ered problem is of a large size, heuristic methods have to be used in order
to achieve relatively good results or even the global optimum in a reason-
able time. Many heuristics are constructive: starting from a tabula rasa, the

Email address: Johannes.Schneider@physik.uni-regensburg.de (Johannes
Schneider).

URL: http://rphibml.physik.uni-regensburg.de/"scj04369 (Johannes
Schneider).

Preprint submitted to Electronic Notes in Future Generation Computer Systems11 April 2001

various parts of the problem are introduced successively according to certain
rules, until a complete solution, which fulfills all constraints, is received at the
end. Alternatively, iterative improvement algorithms start from one or several
randomly built (or already preoptimized) configurations and try to improve
the already reached quality by a series of moves (0; — 0;11), which change
a configuration only slightly. Using Greedy-like algorithms, which only allow
for improvements, often the optimization process soon ends up in a high-lying
local minimum near the starting point in the energy landscape, failing much
better configurations.

There are a few approaches to overcome this problem. Physical optimization
algorithms introduce a temperature-like control parameter 7" in order to al-
low for some deteriorations and therefore to climb over barriers in the energy
landscape. T is gradually reduced from a high value to zero. By that way,
the optimization process is stepwise altered from the Random Walk mode,
in which (nearly) every move is allowed, to the Greedy mode, in which ev-
ery deterioration is forbidden. The system is transferred from a high-energetic
unordered configuration to a low-energetic ordered solution. The various al-
gorithms only differ in the exact choice of the transition rule: working with
Simulated Annealing [1], mostly the Metropolis criterion [2] is used, which
accepts every improvement; deteriorations are only allowed with a certain
probability depending on the temperature 7' and on the energy difference
AH = H(o;;1) — H(0;) between the actual configuration o; and the tentative
new configuration ;1 [3]. In case of rejection, ;41 is set to o;. Threshold Ac-
cepting (TA) [4], an algorithm closely related to SA [5], uses a deterministic
update rule [6]: TA accepts every move which does not worsen a configuration
more than a certain threshold 7'

Other improvement heuristics use e.g. Tabu principles (Already exploited parts
of the energy landscape must not be visited again) or Darwin’s “survival of
the fittest” (Individua with a large fitness get more chances for reproduction,
whereas bad individua have to commit suicide) [7].

2 Searching for Backbones

Comparing different good configurations for a given optimization problem,
mostly many parts being equal in all of them can be found. Obviously, these
“backbones” are already optimally solved. Each further serial optimization
run wastes computing time in order to determine these backbones. This time
could better be used for other parts of the problem, which are obviously more
difficult to solve, such that better results could be found.

2.1 Modus Operandsi

Searching for Backbones [8,9] is a parallel algorithm that makes use of the ex-
istence of backbones: it tries to find the global optimum or at least a very good
configuration of the considered problem by a series of iterations. In the first
iteration, a certain number p of independent optimization runs is performed,
which produce a set of reasonable good solutions. All slave processors send
their results to the master, which compares them and determines the equal
parts. As these backbones are equally found in all different, independently
generated configurations, they are assumed to be locally optimal.

Even more, the determined backbones shall be considered as part of the global
optimum. From this idea, it follows that any further search for the optimum
of the considered problem can be simplified: if the backbones (i.e. the easy
parts of the problem) are held constant, the optimization process is able to
concentrate on other parts, which are more difficult to solve. Hopefully, bet-
ter solutions can be generated, which coincide in more equal parts than the
previous configurations. Therefore, the strategy is as follows: the master re-
turns the information about the backbones back to the slave processors. In
this second iteration, the slaves independently perform new optimization runs,
in which the already determined backbones must not be destroyed, and de-
liver their results again to the master. These new results are assumed to be
of a higher quality than the previous ones and to provide a better represen-
tation of the already optimally solved parts of the problem. Therefore, the
old configurations are neglected. However, their inheritance consists of the old
backbone set, which is part of all new solutions. These are again compared for
equal parts. Usually, they coincide in more parts, such that more and longer
backbones are found. This procedure is repeated in further iterations:

The master sends information about the backbones to the slaves.

The slaves perform p independent optimization runs considering the back-
bones.

The slaves send their results back to the master.

The master determines a new set of backbones.

If the various solutions still differ, goto step 1.

The algorithm ends with an output of the final solution.

2.2 Application to the Traveling Salesman Problem

The application of this parallel algorithm on a given optimization problem can
easily be demonstrated on the Traveling Salesman Problem (TSP): a TSP is
given by a distance matrix D with D(i,j) denoting the distance between the

nodes ¢ and j. The traveling salesperson has the task to find the shortest closed
tour touching each of the N cities exactly once. Coding each configuration o
as a permutation of (1...N), the objective function H can be written as

H(o) = D(o(N),0(1) + 3 D(0(i), o(i + 1). (1)

=1

Many heuristics have been developed for finding a good solution for this NP-
complete problem [10]. If such a heuristic contains enough random choices to
sample the whole configuration space for good solutions (It is not sufficient to
produce at least some slightly different results), then it can be used as a basic
serial optimization algorithm for SfB. Physical optimization algorithms like
TA, which shall be considered throughout this paper, meet this constraint.

Traditionally, the Swap has been used as move for the TSP. It exchanges
two nodes in the tour. Lin introduced the Lin-2-Opt (L20), which cuts two
connections and turns of the two resulting parts of the tour around. The L20
leads to better results than the Swap [11]. Additionally, one variant of the
Lin-3-Opt (L30) which eachanges two succeeding parts of the tour without
altering their directions shall be used as move, since the L.30 leads to better
results than the L20 [11]. According to my experience, using both the L20
and this L3O leads to even better results [8,5].

Let us consider a small example of a symmetric (i.e. D(3,7) = D(j,7) V (4,7))
TSP with N = 10 nodes and p = 4 processors. The four solutions shall be:

0912345678
0321456789
0976548123
0456783219

Comparing these solutions, the master creates a symmetric overlap matrix

p N
EDIDN T IOR (5j,av(k—1) + 5j,a"(k+1)) (2)

v=1k=1

(with ¢¥(0) = ¢”(N) and 0”(1) = 0”(NN + 1)) between the single nodes, i.e.,
one gets an overlap according to configuation ¢ between the nodes 7 and j, if
j is either predecessor or successor of i in the solution ¢”. If ng(i, j) = p, then
j is neighbored to 7 in all solutions. It follows that ¢ and j belong to the same

backbone in this case. For the example above, the overlap matrix

0 00210001 4

00401 00O0T1 2

04 04000000

2 04 01 00O0T1T0
11010400710

=10 000404000

0O 00O 0O 40400

0 00O OO M4°0 31

11 01 1 0 0 3 01

4 2 0 0 0 0 0 1 1 0

and the backbone set
{ 0 9 , 1 2 3 , 4 5 6 7 , 8 }

are retrieved. These backbones have to be coded for the next iterations, such
that the verification whether a backbone is destroyed is as simple and time
saving as possible. One way to achieve this is coding each backbone by a pair
of nodes:

0 9 |=|01

1 2 3 |=| 2 3

4 5 6 7 |=|4 5
8 |=| 6

Backbones consisting of only one node are put twice in the tour, such that the
following tour is returned to the slaves:

0-1 2—-3 4-5 6-6

The “-” symbols indicate that these odd connections must not be destroyed,
the slaves are only allowed to cut the tour after the 2nd, the 4th, the 6th, ...
node, which is very simple to implement. Additionally, a 7 x 7 distance matrix
D is returned to the slaves, which consists of e.g. the following entries:

D(0,1) = D(0,9), D(2,3) = D(1,2) + D(2,3), D(0,6) = D(0,8)

The slaves perform independently their optimization runs and deliver their
results back to the master, e.g.:

0-12-36-64-5
1-04-52-36-6
0-16—-63-25—-4
1-04-56-63—-2

The master uses the old backbone set in order to decode the solutions of the
slaves:

0912384567
9045671238
0983217654
9045678321

One finds that the new backbone set is smaller than the previous one and
proceeds with the algorithm until a final common solution is found.

2.3 Discussion of the Algorithm

Searching for Backbones can thus be considered as an algorithm, which grad-
ually reduces the complexity of a problem. The definition, determination and
coding of backbones is strongly problem dependent, e.g., it is sufficient to
code each backbone by only one node if the TSP is totally asymmetric [5].
However, the definition of an item which shall be identified as a backbone is
mostly relatively straightforward. Often the definition can be adopted from a
simpler problem, which serves as a substructure of the considered problem,
e.g. the considerations made for the TSP can simply be transferred to Vehicle
Routing Problems.

The problem of determing a proper value for p has to be solved for every new
problem: if p is too large, the solutions often exhibit too many differences, such
that (nearly) no backbones can be built. However, a too small value of p would
lead to false assumptions: false backbones could be built because some parts
of the configuration space are not represented in the set of solutions. p has
to be large enough to provide a good statistical significance. Therefore, there
must exist a medium sized optimum value for p. Alternatively, backbones can
be built from the p best solutions out of p results, if one wants to work with a
large p but faces the problem that no convergence can be achieved with this

p-

3 Computational Results for the TSP

Reinelt collected several TSP instances in his library TSPLIB95 [12]. For many
instances, like the problem of the 127 beergardens in the area of Augsburg, the
optimum solution is already found in the first iteration of the SfB algorithm by
the basic serial optimization run. Therefore, a more difficult TSP instance shall
be considered, the PCB442 problem consisting of N = 442 drilling holes on a
curcuit, which was introduced by Grotschel and mathematically exactly solved
by Holland [13], who found one optimum solution with Hy = 50783.5475.. . ..
However, this instance has a highly degenerate ground state, a fact which leads
to large difficulties for many optimization algorithms. The SfB algorithm is
expected not to converge either for medium or for large p.

SfB and the underlying serial optimization algorithm TA are implemented in
Fortran 77. The message passing system Message Passing Interface is used.
The program was run on Intel Paragons with queues for 2" (1 < n < 7)
processors; each of them produces exactly one solution, which are sent to the
master processor. The algorithm stops if their energy values are identical or if
1000 iterations are performed at maximum.

3.1 Improvement of the Results

First of all, the improvement of the results shall be investigated. Figure 1
shows the decrease of the energy with an increasing number of iterations for
different processor numbers p = 2". The first iteration produces solutions
analogously to simple serial optimization runs. Using a small p, all energies
converge against a common value. At large values of p, the minimum and max-
imum lengths show large fluctuations between successive iterations, whereas
the mean value fluctuates much less. It shows a significant decrease, especially
in the first 10 iterations.

3.2 Convergence of the Algorithm

Secondly, the convergence of the algorithm is very interesting especially for
the considered PCB442 problem due to its degenerate ground state. This can
be best seen at the number of the nodes in the distance matrix and in the tour.
Their decrease is shown for different p in Fig. 2. Of course, their number is 442
in the first iteration. Due to the coding explained in section 2.2 the number
of nodes in the tour can be up to twice as large as 442 if the single solutions
differ so much that many backbones consist only of one node. It increases
between the first and the second iteration for p > 2. After that, it decreases

53500 | -
53000 | p=2 .
52500
52000
51500 | -
51000 | .

energy

53500 - -
53000 |- p=4 -
52500
52000
51500
51000

53500
53000
52500
52000
51500
51000

53500 | i
53000 p=16 R
52500 | . |
52000 | e P) ‘ -
51500 - NN /\ﬂ\v/\vf\l*\/\’\\” . i
51000 F T PO A AN LU T S

53500 B
53000 |- p=32 .
52500 - | i
52000 ST T T ‘\/\\"\\v/’\/\'\' A Av A !A‘\l Wh M A ,y \/v\, i ,"/t’”;%l”ﬂ‘wo’\"\th MW \M. . ”W@v
51500 i
51000 | e P A S g

1 ||||||||\ 1 ||I

i Sk
53500 | T T T T T T TTT T T T T T T TTT T T T T LI I_
53000 . p=64 .
52500 | -

52000 F R VAP SV WY “ i «‘\”rw,h,vm,:m,\:};wm M ,M*MWMWWM

51500 | .

I R . A o
51000 F T R R A A A AT vM«.«Mv\wwm«w\ww “‘WWW

1 1 11 17 111 1 1 1

53500 [1
53000 p=128 R
52500 r e - AN IENN o b i

52000 | Ty AmvwwMﬂwwwWWW’MMMMMMMWWMNWWMWWNM
51500 [~--.
51000 + - Sem—e T TTTTTTE N R T AN\ \ - /\ 0 ; ' ‘/\ ’\w r"“\A’\“‘\,"\‘M""\NM"J“‘ MW’-MN«;MWWNWWWWW

1 10 100 1000
iteration

Fig. 1. Decrease of the minimum, mean, and maximum energies of the PCB442
problem with an increasing number of iterations, if working with Searching for
Backbones on different processor numbers p.

500 i i i 1000

% 450 900 |
2 400 & 800 |
E o g50| iid s 7000 .
Q -
£ 300 _ = 600 |
o 250 | . x % 0 500 [, %
© Q
= 200 f IS 400
0 c
kS 150 f #* 300
2 100 | ; ‘ 200 |
o I S S] 100 | .
3 . x . . 0 Pt & | |
1 10 100 1000 10000 1 10 100 1000 10000
iteration iteration

Fig. 2. Development of the number of nodes in the distance matrix (left) and in the
tour (right) with increasing number of iterations for different processor numbers p.

monotonically. With an increasing number of iterations, this decrease becomes
gradually, only seldomly backbones can be unified. Obviously, there are some
small parts which are easily solved in the first iterations. However, it takes
many iterations to get further commonness between the different solutions
and to be thus able to unify short backbones to longer ones.

Other observables can easily be derived from the number of nodes in the tour:
the number of the backbones is half as large as the number of nodes. The
mean backbone length is given as the ratio between the original number of
points (e.g. 442) and the number of backbones. It stays between 1 and 2 for
large p and slowly increases for medium sized p (8 < p < 32).

Obviously, there are some nodes in this PCB442 problem, which cannot be
connected with certain other nodes in a nontrivial way. Using p > 4, the
probability that all solutions locally vote for the same possibility is very small,
such that the minimum backbone length stays 1 [8].

3.8 Further Results

Usually, a speedup is considered if working on a parallel computer. It is de-
fined as S(p) = C1/C, with C; denoting the calculation time on ¢ processors.
This definiton, however, is only suitable if the solution process for a problem
can simply be divided between different processors. Working with Searching
for Backbones, other definitions must be found. Remembering the statement
that SfB reduces the complexity of a problem, observables which describe this
complexity and influence the calculation time in each iteration have to be
investigated.

The first approach leading to such observables are the numbers of the remain-
ing nodes in the distance matrix and in the tour, which were already shown
in Fig. 2. These numbers strongly influence the calculation time per iteration.

2500

2000

1500

time

1000}

500 %N
™ e, T
0 3 L *V & L
1 10 100 1000 10000
iteration

Fig. 3. Decrease of the calculation time spent in each iteration for different processor
numbers p.

Figure 3 shows the calculation time for each iteration from the time when the
master starts to send its data to the slaves to the moment in which it receives
all new results. Due to the coding, the calculation time increases between the
first and second iteration for p > 4. After that, it decreases monotonically.

1 TR — ; 1
S i p=l28 —— -
s sopHE s pl
S =64 —— 0.95 |
08 = x M -FJ_S=32 coe | .
e F p=16 = 09 b+
p=8 - ;
0.6 A2 =4 % 1] 085 .
. s L ¢
04 1~ x : W 1 0.8]
B 0.75
0.2 ’ ;
0.7 ¢
0 : . : 0.65 : . :
1 10 100 1000 10000 1 10 100 1000 10000
Iteration Iteration

Fig. 4. Order parameters ¢ (left) and 9 (right) for different processor numbers p.

Upon these reflections, a parameter ¢ which measures to which extent the
system is already solved [8,9] shall be considered:

Z - 5"S(i7j)7p
i,
P— 4’ 3
¢(ns) oN (3)

with the Kronecker symbol §. It was shown that ¢ is a good order parameter
reflecting the remaining complexity of a problem [14]. If all solutions are the
same, the nodes 7 and j are connected in every solution if they are neighbored
in at least one solution, such that ¢ = 1. If there are so many differences
between the various solutions that no backbone can be built, then ¢ = 0. The

10

curves in Fig. 4 for ¢ are similar to those in Fig. 2, they simply seem to be
only mirrored horizontally. Already at the beginning, more than 15% of the
nodes have the same point as predecessor or successor in all solutions for all
considered p. The problem is even more simplified in the following iterations.
Due to the large degeneracy of the ground state and thus also of other local
optima, ¢ cannot reach a value of 1 for large p.

A further order parameter, which measures the number of zeros in the edge
matrix, is defined by

—2N + (1 = pg(i)0)

If all solutions are identical, then ¢ = 1, if they are totally different, then
1 = 0. Of course, ¢ is equal to 9 for p = 2 (for the proof see [9]); for larger p,
¢ is always smaller than ¢ (see Fig. 4) as expected.

4 Solution of the PCB442 Problem

4000 T T T T T 4000 T T T T T

T
3500 | 1
@ &
o8 N
3000 | 000 & &
N2
2o o .
foed
2500 - oo > a
OO0
Lol
2000 | ¢$<> N
o] 5/
¢
% L °
1500 F ¥ o FOUNINA

/P
1000 F T
2
/F

3500

3000

2500

2000

1500

1000

500 500

0 I I I I I I 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Fig. 5. The 89 backbones of the PCB442 problem found by comparing over one
million optimum solutions (left); Super backbone of the PCB442 problem (right):
fixing the direction of an arbitrary backbone consisting of at least three nodes, the
directions of all other backbones except 16 blinkers (which consist of two nodes
each) are determined.

Using the 32 best solutions of 128 independently produced configurations in
the SfB algorithm, more than one million optimum solutions with minimum

11

energy could be found. Comparing all these solutions, 89 backbones can be
identified, which are shown in Fig. 5. However, these 89 backbones are not
independent of each other. They are only cut at some positions where a local
degeneracy exists, such that there are at least two possibilities to connect them
optimally. If the direction of a backbone which consists of at least three nodes
is fixed, one finds that the directions of all other backbones are also fixed
except 16 blinkers, which consist of two nodes each. Therefore, the PCB442
problem introduced by Grotschel consists of a super backbone of 369 nodes,
16 blinkers of length 2, and 41 single nodes. This local determination of the
overall direction is a speciality of the PCB442 problem, since counterexamples
can simply be found [5].

5 Computational Results for the VRP

The Vehicle Routing Problem consists of a basic Multi Traveling Salesmen
Problem, i.e. several salespersons deliver/fetch goods of a certain size/amount
m to/from n customers, with the additional constraint that their trucks have
only a finite capacity. Usually, the case is considered that the k& salespersons
start and end their tour at the same node, which is called depot, and that all
trucks have the same capacity . A configuration is therefore given by a two
dimensional array o with o(i,1) denoting the i th customer in the tour of the
[th traveling salesperson.

The concept of penalty functions is well suited to handle constraints: if a con-
figuration is not feasible due to at least one overloaded truck, then it is not
forbidden during the optimization process. It is only punished by enlarging
its energy, such that hopefully the optimization process, which searches for
configurations with minimum energy, ends in a feasible solution. Each con-
straint is mapped on such a penalty energy, which is simply added to the
Hamiltonian. These considerations yield to the Hamiltonian [5]

Ho)= 3§ Do), 00 +1,1)

=1 =1

(5)

=1 1=2

Y <Nfz—1m(a(¢,) -+ 7> 0 (Ng m(o (1)) — n>

with an additional offset v, the Lagrange multiplier A, and the Heaviside
function ©(z) = 1 if z > 0 and 0 otherwise. There are N, customers in tour
I. The first addend in equation (5) is the conventional TSP part summarizing
over the edges used in the configuration o. The second addend weights the
overloadings of the single trucks [with a factor A > 0. The Heaviside function

12

is needed to punish only overloadings.

Now the question remains how to define a backbone. There are two obvious
choices reflecting general properties of the VRP:

e Considering the VRP as a distribution problem (i.e. the customers are dis-
tributed on the tours of the various trucks), one can put two customers
together in a backbone if they are in the same tour in all solutions.

e Alternatively, the VRP can be viewed as a sequencing problem. Analogously
to the TSP, an edge matrix

p k N—1
0s(6,7) =D D Sigvq) - (59',0"(«1—1,1) + 5',0"(q+1,l)) (6)
v=11=1 q=2

(1,7 > 1) can be built, which considers the sequence of customers in the
tour but neglects the connections to the depot (node No. 1).

Working with this second definition on p = 32 processors, the Searching for
Backbones algorithm was able to reproduce the best results and to produce
even new world records [5] for all instances in a collection of libraries composed
by P. Augerat [15]. The new values are given in table 1. The results provided
for the PLIB in [15] are shady: a verification for the small P-n16-k8 instance
by a run with an exact Branch & Bound algorithm led to an optimum value
of 450, which is larger than the value of 435 given in the literature. Therefore,
a comparison was not drawn for the PLIB.

6 Conclusion

I presented a very powerful algorithm for solving combinatorial optimization
problems: Searching for Backbones tries to find equal parts in different so-
lutions for a given optimization problem. These backbones are assumed to
be already optimally solved and are held constant during the remaining part
of the optimization process, such that the complexity of the problem is re-
duced and even better solutions can be found. The strength of this algorithm
was demonstrated for the Traveling Salesman Problem and the Vehicle Rout-
ing Problem. The ansatz described in this paper for the TSP can simply be
transferred on any other sequencing problem, e.g., good results are achieved
for supply chain problems [16]. The algorithm can also be extended to other
types of problems; I will continue the research on problems with binary vari-
ables, such as satisfiability problems and error correcting codes, in which also
structures which are common to all solutions can be found.

13

Table 1

New optimum values found by the Searching for Backbones algorithm for instances
of the ALIB, BLIB, COUNTRYLIB, EILLIB, FISHERLIB, and MLIB. The values
from the literature [15] are given for comparison.

COUNTRYLIB
Problem Lit. | SfB
FRB-n51-k5 | 4197 | 4195
FRC-n51-k5 | 3774 | 3772

ALIB

Problem Lit. | SfB

A-n39-kb 825 | 822
A-n39-k6 833 | 831
A-n45-k6 948 | 944

EILLIB
A-n60-k9 | 1408 | 1354
Problem Lit. | SfB
A-n61-k9 | 1035 | 1034
E-n30-k4 - | 903
A-n62-k8 | 1290 | 1288
E-n76-k7 683 | 682

A-n63-k9 | 1634 | 1616
A-n63-k10 | 1315 | 1314
A-n64-k9 | 1402 | 1401
A-n65-k9 | 1177 | 1174
A-n69-k9 | 1168 | 1159
A-n80-k10 | 1764 | 1763

E-n76-k10 832 | 830
E-n76-k14 1032 | 1021
E-n101-k8 817 | 815
E-n101-k14 | 1077 | 1070

FISHERLIB
Problem Lit. | SfB
BLIB

F-n45-k4 728 | 721
Problem Lit. | SfB

F-n72-k4 238 | 237
B-n50-k8 1313 | 1312

F-n135-k7 1165 | 1148

B-n51-k7 | 1104 | 1032
B-n57-k7 | 1278 | 1153
B-n63-k10 | 1537 | 1497
B-n64-k9 862 | 861
B-n66-k9 | 1374 | 1316
B-n67-k10 | 1033 | 1032
B-n68-k9 | 1304 | 1272
B-n78-k10 | 1266 | 1221

MLIB
Problem Lit. | SfB
M-n121-k7 | 1065 | 1034
M-n151-k12 | 1053 | 1021
M-n200-k16 - | 1530
M-n200-k17 - | 1303

14

Acknowledgment

I kindly acknowledge huge grants of computation time by the John von Neu-
mann - Institute for Computing at the Forschungszentrum Jiilich (former
Hochstleistungsrechenzentrum) and the Swiss Federal Institute of Technology
Zurich (ETHZ). Part of the work has been supported by the Swiss National
Science Foundation.

References

[1] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, Science 220, 671 (1983).

[2] N.Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,
J. Chem. Phys. 21, 1087 (1953).

[3] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics,
2nd edition, Springer (Berlin, Germany, 1992).

[4] G. Dueck and T. Scheuer, J. Comp. Phys. 90, 161 (1990).

[6] J. Schneider, Effiziente parallelisierbare physikalische Optimierungsverfahren,
PhD thesis (University of Regensburg, Germany, 1999).

[6] P. Moscato and J. F. Fontanari, Phys. Lett. A 146, 204 (1990).

[7] E. Schéneburg, F. Heinzmann and S. Feddersen, Genetische Algorithmen und
Ewvolutionsstrategien, Addison-Wesley (Bonn, Germany, 1994).

[8] J. Schneider, Parallelisierung physikalischer Optimierungsverfahren, diploma
thesis (University of Regensburg, Germany, 1995).

[9] J. Schneider, Ch. Froschhammer, I. Morgenstern, Th. Husslein and J. M. Singer,
Comp. Phys. Comm. 96, 173 (1996).

[10] G. Reinelt, The Traveling Salesman, Lecture Notes in Computer Science 840,
Springer (Berlin, Germany, 1994).

[11] P. F. Stadler and W. Schnabl, Phys. Lett. A 161, 337 (1992).

[12]
http://www.informatik.uni-heidelberg.de/groups/comopt/software/TSPLIBI5.

[13] M. Grotschel and O. Holland, Math. Prog. 51, 141 (1991).

[14] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky, Nature
400, 133 (1999).

[15] http://www-apache.imag.fr/~paugerat/VRP/INSTANCES.

[16] J. Schneider, J. Britze, A. Ebersbach, I. Morgenstern and M. Puchta, Int. J.
Mod. Phys. C 11, 949 (2000).

15

