Virtual Routers:
A Novel Approach for QoS Performance
Evaluation

Florian Baumgartner! and Torsten Braun

Institute of Computer Science and Applied Mathematics
University of Berne
Neubriickstrasse 10, CH-3012 Berne, Switzerland
baumgart|braun@iam.unibe.ch

Abstract. Implementation and Evaluation of new Internet communica-
tion systems face some general problems. The implementation of Qual-
ity of Service concepts in kernel space is complex and time consuming,
while the final setup of the evaluation networks lacks the desired size
and flexibility. The usual alternative simulation cannot cope with the
real world. This paper presents a concept to combine real components
like hosts and routers with simulated nodes. This simplifies the setup
of huge test scenarios and the implementation of new concepts, while
keeping the evaluation results realistic. This paper presents the concept
and the implementation of virtual routers by its application in a Differ-

entiated Services Networks.

1 Introduction

A general problem in research on networking is the demand for setting up test
beds of sufficient size and complexity to show the desired results or to prove a
new concept. Alternatively network simulators like ns [ns] or OpNet [opn] can be
used to prototype a device or a protocol in the special simulation environment
and to run the desired tests. So the simulation normally precedes the setup of
the test scenario in a laboratory. Nevertheless there are couple of drawbacks
using this approach:

— The simulations can often only cover only a single aspect of the problem,
ignoring side effects.

— Especially for application oriented research simulators lack complexity. So
realistic traffic sources and sinks are missing as well as fully functional pro-
tocol implementations.

— Ad hoc implementations on real platforms are often extremely time consum-
ing (Linux kernel hacking).

— The evaluation of new components depends on realistic traffic. Simulators
normally allow to define an abstract traffic type or to simulate load based
on a real network’s traffic logs, but lack interactive real time evaluation.

— Most simulators are not able to combine real network components with sim-
ulated environments, a functionality, which can be very suitable during the
development or debugging of programs.

Because of this, we propose an approach, to combine reality with simulations,
using real devices, wherever needed and emulate the rest.

2 Softlink Device and Virtual Router

The basic idea of combining real hardware with emulated topology is shown on
figure 1. The core mechanism is that of a Virtual Router (VR) emulating a real
IP packet forwarder. Each VR as a couple of interfaces attached, which can be
connected to other interfaces of VRs (the dashed lines) or via softlink device to
the local host. Each host might run multiple VRs.

Host A Host B Host C Host D
sol0 etho ethO oo sol0 | soll
if0 if0 if0 ifo | if1 |2
eth0 g
VRB R
it if0 | if1 if1 if1 if2 | if4
1 1 T 1 T

network connection

Fig. 1. The components of a VR

The network layer of the host system should not detect any differences be-
tween the real network and the emulated topology. So it is possible to define
an emulated topology consisting over multiple VRs distributed of several ma-
chines. The communication between the real world and the emulated topology
is achieved by the softlink devices. Such a softlink device acts as an interface
between the operating systems network layer and a virtual router. For the OS
kernel/user space it looks like a normal Ethernet device, transporting data to
user space and vice versa. The only additional functionality is the truncating
of the Ethernet headers, so raw IP is transferred to user space. For later ver-
sions this truncating should be omitted, requiring the processing of raw Ethernet
frames in user space. Then the type of the encapsulated datagram could be an-
alyzed to distinguish between different protocols. The softlink device has been
implemented as a Linux Kernel module for kernels > 2.2.12.

Host Access/IP Layer

token token
bucket NAT E : bucket
filter filter

connector
udp/softlink

Ay

connector
udp/softlink

-Y-_ A

Fig. 2. The components of a VR

Virtual Routers (VRs) are used to realize the network topology to be emu-
lated. Figure 2 shows the principal architecture of the program. Following the
primary task the architecture is focusing on IP routing. The VR is completely
implemented in plain C++, making the source extensible and easy to port.

The central forwarding mechanism (central circle) acts on standard routing
rules, but was extended to allow routing decisions by source addresses, port
numbers, protocol fields and TOS values.

As an interface to programs running on this virtual host, the VR will imple-
ment usual IP stacks with TCP, UDP and ICMP. Actually only a simple ICMP
stack for debugging purposes is implemented, allowing a ping to the virtual host.

The main work regarding IP processing is assigned to the interface com-
ponents underlying the routing mechanism. Figure 2 shows two of them. Each
interface can be connected to a softlink device, acting as a transition point to
the real network or to another VR-interface. For the connection to other VR
interfaces we use UDP.

Received data is first processed by an IP address translation unit (NAT).
After that step packets are delivered to the host filter. This unit is programmable
and allows the processing of specific streams at higher layers. This simplifies the
implementation of certain daemons, but it also a great facility to process streams
during transmission (e.g. video- or audio data). As a default the host filter only
checks for TP packets addressed to the virtual host and the Router Alert Option
[Kat97].

Acting as sender, data is also transported through host filter and NAT to be
put to the queueing system before transmitted by the softlink device or sent via
UDP. A token bucket filter preceding the connector is used to limit the maximum
bandwidth of the interface.

Because of it’s flexibility the queueing system is the most complex part of
the interface. It consists of a pool of components like queues, filters, shapers,

schedulers. The actual implementation offers the following components: a generic
classifier, a Token Bucket Filter, a drop tail queue, a Random Early Detection
queue (RED) [FJ93]), a Weighted Fair Queueing (WFQ) scheduler, a simple
Round Robin (RR) scheduler and a Priority Round Robin (PRR) scheduler.
Additional components are a RED queue with three drop precedences (TRIO),
a special marker for differentiated services and a Priority Weighted Fair Queueing
(PWFQ) scheduler for the implementation of Expedited [JNP98] and Assured
Forwarding [HBWW98]. The configuration of the queuing system can be com-
pletely done at runtime via API or command line interface (CLI). The object
oriented implementation of the queueing system and it’s components makes it
easy to add or modify single functionalities.

For the configuration of the VR a command line interface and an API has
been implemented. The API allows programs, running on the virtual host, to
alter interface setting, routing rules and so on. The command line interface is
accessible via console or external! telnet.

3 Network Setup

3.1 A minimal Setup

In theory any network topology can be realized on only one host. However, before
things get complicated we will demonstrate the most simple setup first, using

only one VR, being connected to a host.
The host gets an additional interface so10 with the IP address 10.1.1.1 using
the softlink device.

sol0 Link encap:Ethernet
HWaddr 00:53:4F:46:54:4C inet addr:10.1.1.1
Bcast:10.1.1.255 Mask:255.255.255.0
MTU:1500 Metric:1
UP BROADCAST RUNNING NOARP MULTICAST
[...]

We choose here non routed addressed of the type 10.x.x.x. As a next step
we setup the VR. We configure an interface if0 with the address 10.1.1.2 and
connect it to the sol0, setup a minimum base queuing system consisting only
of a single drop tail queue and set the according routing rules.

#

Interface SETUP

#

interface if0 10.1.1.2 255.255.255.0

! This telnet connection is not provided by the VR, but by the host making it indepen-
dent from any changes made to the VR. This simplifies setup of multiple machines

crucially, because no changes to interfaces setup or queueing mechanisms can harm

the TCP connection used for the configuration

interface if0 connect /dev/solQ
interface if0 sqc create droptail
interface if0Q sqc chain 0 to 1

interface if0 sqc chain 1 to 0

ROUTING TABLE

#

route add 10.1.1.0 255.255.255.0 if0
route add 0.0.0.0 0.0.0.0 if0

Now we can test the scenario by pinging to the ICMP stack of the VR. A
ping 10.1.1.2 results in:

PING 10.1.1.2 (10.1.1.2): 56 data bytes

64 bytes from 10.1.1.2: icmp_seq=0 tt1=187 0.5 ms
64 bytes from 10.1.1.2: icmp_seq=1 tt1=187 0.2 ms
64 bytes from 10.1.1.2: icmp_seq=2 tt1=187 0.2 ms

Following these example it is easy to setup bigger topologies. To connect two
VRs via UDP only the command interface if0 connect /dev/sol0 must be
modified.

3.2 A TCP capable (Tunnelling) Setup

The minimal example has shown how a VR can be setup like a normal router
connected to our host. But even if we can ping to the VR, it is not possible to
open a TCP connection between our host and the VR, because of the missing
TCP and UDP stacks. So we need two real hosts as source and sink and two
VRs to transport the traffic over.

Figure 3 shows the principal setup of the two hosts. Source and sink are real
machines, so we do not need to rely on a (more or less complete) simulative
TCP implementation in the VRs, but can use wide spread, comparable TCP
implementations of the host systems. When we open a TCP connection from
Host A to 10.1.3.1, the traffic is routed over s010 to VR A, is then encapsulated
in UDP packets and transported over some kind of UDP tunnel (the dashed line
in figure 3) to Host B (to be more exactly to 130.92.70.7) and so to VR B which
decapsulates the traffic and forwards it to so10 on Host B.

It is easy to see, that each host can serve as more than a source or a sink.
Which each softlink device added to the host and the VR you gain a source
respectively a sink. Of course the number of VRs is limited by the number of
tunnels the physical connection between the hosts can manage. But as long as the
configured bandwidth of the VRs’ interfaces is small compared to the available
bandwidth of the host there are no problems to be expected.

#

Interface SETUP

#

interface if0 10.1.1.1 255.255.255.0

interface if0 connect /dev/sol0

Fig.3. A TCP capable Setup with two hosts and two VRs

interface ifQ sqc create droptail
interface if0Q sqc chain 0 to 1
interface ifQ sqc chain 1 to 0

#

interface ifl 10.1.2.1 255.255.255.0
interface ifl connect 130.92.70.7:8042 8041
interface ifl sqc create droptail
interface ifl sqc chain 0 to 1
interface ifl sqc chain 1 to 0

#

ROUTING TABLE

#

route add 10.1.1.0 255.255.255.0 if0
route add 10.1.2.0 255.255.255.255 if1l
route add 10.1.3.0 255.255.255.255 if1l
route add 0.0.0.0 0.0.0.0 if0

The script shows the setup of VR A. VR B has to be configured in an
analogous way. VR A has it’s interface if0 connected to the softlink device on

Host A and the interface ifl via UDP tunnel to the according interface on VR
B.

3.3 Using Address Translation for Network Setup

On a long term it is not satisfying, that for the use of higher protocols at least
two machines have to be used. Even if with Gigabit Ethernet the physically
available bandwidth is no scarce resource this problem limits the usability of
VRs. At the moment the VR has no TCP or UDP stack, requiring real hosts
as end systems. So at for a minumum setup at least two systems are necessary.
This was the reason why the already mentioned Network Address Translation
unit was added to the interface structure (see Figure 2). In the following we will
give a short example how to use NAT to route IP packets through a VR.

Host Source Host

10.1.1.1 —10.1.1.42 10.1.1.42—10.1.1.1
VR VR
ifONAT in ifO NAT out
10.1.1.1 —10.1.2.1 10.1.2.1—10.1.1.1
VR VR
if1 NAT out if1 NAT in
10.1.2.42 —= 10.1.2.1 10.1.2.1 —= 10.1.2.42

Host Sink Host

Fig. 4. A Setup using Network Address Translation features

Figure 4 shows the IP address translations occurring during forwarding through
the router. Each address pair represents the source and destination IP addresses
of the ICMP ping packet at each state in the VR. The interface comes with two
NAT filters, one for incoming packets and the destination address and one for
outgoing packets and the source address.

It should be mentioned, that the source host and the sink host are the same
machine, but on two different softlink interfaces. (10.1.1.1 and 10.1.2.1). The
source connects to a dummy address 10.1.1.42, being routed over the VR, which
converts during transmission the packet’s destination address to 10.1.2.1 and the
source address to 10.1.2.42. Any response sent to 10.1.2.42 will be converted in
an analogous way.

#

Interface SETUP

#

interface if0 10.1.1.2 255.255.255.0

interface ifQ connect /dev/sol0

interface ifl 10.1.2.2 255.255.255.0

interface ifl connect /dev/soll

#

MAP IP ADDRESSES

#

interface if0 rmq add 10.1.1.42 255.255.255.255 10.1.2.1
interface ifl smq add 10.1.1.1 255.255.255.255 10.1.2.42
#

interface ifl rmq add 10.1.2.42 255.255.255.255 10.1.1.1
interface if0Q smq add 10.1.2.1 255.255.255.255 10.1.1.42
#

[... Setup of Queueing Systems ...]

#

ROUTING TABLE

#

route add 10.1.1.0 255.255.255.0 if0
route add 10.1.2.0 255.255.255.0 if1
route add 0.0.0.0 0.0.0.0 if0

Now we will apply a simple queueing system to the interfaces. Figure 5 shows
the setup for bandwidth reservation. The classifier C forwards packets according
to their header data to different queues (@1 and @2) with the branch over (¢
being limited by a token bucket filter. As scheduler a standard Round Robin is
used limiting all non TCP traffic to a maximum of 2 Mbps.

Figure 6 shows a simple evaluation of this queueing system with an aggressive
UDP and a TCP flow. The TCP datagrams are forwarded over QQo, UDP over Q.
The token bucket filter T is set to a bandwidth of 2 Mbps. The VR interfaces are
limited to 4 Mbps. The UDP source sends in intervals, to visualize the reaction
of TCP and the queueing system to massive UDP bursts.

One can clearly observe, how the TCP bandwidth decreases from 4 to 2
Mbps, when UDP uses the available bandwidth of 2 Mbps. The short peak of
the TCP flow below the guaranteed bandwidth is caused by TCP congestion
control. The graph was obtained by a setup using one VR with two interfaces
and network address translation (NAT) as shown on figure 4, so the TCP source
and the TCP sink where hosted on the same machine.

QL T

Q.

Fig. 5. A minimum queueing system setup for bandwidth allocation

This scenario is comparable with a real setup of three machines, one acting
as sink, one as intermediate router and one as source.

4 Differentiated Services Setup with Virtual Routers

In this section we show how a typical Differentiated Service evaluation scenario
can be setup using Virtual Routers. Of coarse any mixture of real and virtual
components is possible, so VRs might play a role during developing real im-
plementations for debuging purposes, without occupying a whole pool of unix
workstations and routers.

TCP flow
UDP flow - - -

[Mbps]

IS
T

3‘0 [sec]

Fig. 6. Bandwidth allocation to specific a TCP flow

4.1 Setup of a DiffServ Queueing System

Figure 7 shows a possible configuration of an VRs queueing system for Differen-
tiated Services.

EF

AF
<1

BE

Fig. 7. A Differentiated Services Queueing System with an Best Effort, an Expedited

Forwarding and a Queue for one Assured Forwarding class

The first component BM is a generic DS marker, measuring flows and re-
classifying them according to their Service Level Agreement. C is the classifier
forwarding the packets to the according queues. The queues for Expedidted For-
warding (EF) and for Best Effort Traffic (BE) are standard drop tail queues.
Assured Forwarding (AF) traffic is sent to a TRIO queue (Three state RED
with in and out [FJ93]), dropping packets according to their ToS field values.
The scheduler S is a Priority Weighted Fair Queueing (PWFQ) scheduler. This
scheduler has been specially designed at our institute for the implementation of
Differentiated Services and allows to favour some queues as priority queueing
and to allocate a share of the available reosources to the others as WFQ does.
So EF packets get the absolute priority while the other queues get a share of the

bandwidth according to their weight. To prevent EF traffic to block all other
flows, EF is limited by a token bucket filter.

4.2 Setup of the Evaluation Topology

In this section we describe a setup for a Differentiated Services evaluation and
it’s port to an VR architecture. As a basis for the network layout we use the
topology of the SWITCH network in Switzerland. Figure 8 shows the existing
network and the representation with Virtual Routers. Each access network is
realised by one softlink device. Of course a more complex setup of the access
network could also be implemented. The nodes of the SWITCH network are
emulated on three hosts, each running several instances of Virtual Routers.

5 Summary and Outlook

The idea of Virtual Routers and softlink devices presented here has proven useful
for the quick developement and evaluation of new traffic conditioning equipment
and for emulating bigger testbeds for the debugging of 'real’ programs.

The results available so far correspond measurements on real hardware. Of
course Virtual Routers are not capable to emulate exactly a real network be-
haviour and will never be. Especially physical effects like link delays are hard
to emulate. Fortunately these effects are small in fast full switched local area
networks available today.

Future extensions will focus on two objectives: managability and portability.
So work on a graphical user interface for the setup and control of multiple Virtual
Routers distributed over multiple hosts has just started and even direct interfaces
to topology generators like Tiers [CDZ96] are planned. The goal is to allow the
setup of evaluation scenarios with dozens of routers distributed over a pool of
workstations in a time you usually need to configure one device.

Because of better portability between Virtual Routers and real machines an
port of Berkeley Sockets to the VR platform is planed, allowing to run programs
under a VR environment using the same techniques to access the network as on
real unix hosts. These enfolds also the implementation of an Active Networking
environments and the according protocols like the Active Network Encapsulation
Protocol (ANEP) [ABG197], providing a platform for the evaluation of Active
Networking and traffic control cooperation.

6 Acknowledgement

The work described in this paper is part of the work done in the project ’Qual-
ity of Service support for the Internet Based on Intelligent Network Elements’
funded by the Swiss National Science Foundation (project no 2100-055789.98/1).
Parts of the implementation platform were funded by the SNF R Equip project
no. 2160-53299.98/1.

US-Link New York
UUNET (56 Mbps)

—— ATM STM-1
— Leasedline
@O diAx POPsZH/GE/BE UniBAS

J U
y o

SNL

UniFR @

Host C
I Host A
|
I SNL = | UniBE UniBAS PSI ' UnisG
I NAZ 1 |h'
CSCs
I "—'-|: UNISI

—— L

UniL EPFL I_

ETHZH UnizZH JRC

I UniGE

|
'I_L
CERN -|_|_ [J

1 Interface between VRs

UniNE UniFR . .
" " I | nterface to Host OS (Softline Device)

| I |

Fig. 8. The SWITCH network (from http://www.switch.ch/lan/national.html) and it’s
representation with Virtual Routers

References

[ABGT97] D. Scott Alexander, Bob Braden, Carl A. Gunter, Alden W. Jackson, An-

[CDZ96]

[FJ93]

gelos D. Keromytis, Gary J. Minden, and David Wetherall. Active network
encapsulation protocol. RFC draft, July 1997.

K. Calvert, M.B. Doar, and E.-W. Zegura. Modeling internet topology.
IEEE Global Telecommunications Conference/GLOBECOM’96, London,
November 1996.

Sally Floyd and Van Jacobson. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on Networking, August 1993.

[HBWW98] Juha Heinanen, Fred Baker, Walter Weiss, and John Wroclawski. Assured

[ISI81]

[INP9g]

[Kat97]

[ns]

[opn]

forwarding phb group. Internet Draft draft-ietf-diffserv-af-02.txt,
October 1998. work in progress.

University of Southern California Information Sciences Institute. Internet
protocol. RFC 791, September 1981.

Van Jacobson, K. Nichols, and K. Poduri. An expedited forwarding phb.
Internet Draft draft-ietf-diffserv-af-02.txt, October 1998. work in
progress.

D. Katz. Ip router alert option. RFC 2113, February 1997.
Ucb/lbnl/vint network simulator - ns (version 2). URL: http://www-
mash.CS.Berkeley. EDU /ns/.

Opnet modeler. URL: http://www.mil3.com.

