
BeNeFri Summer School 2009 on Dependable
Systems

Marc Brogle, Torsten Braun (eds.)

Technical Report IAM-09-006, September 8, 2009

Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch

BeNeFri Summer School 2009 on Dependable
Systems

Marc Brogle, Sabina Serbu, Dragan Milic, Markus Anwan-
der, Philipp Hurni, Christian Spielvogel, Claire Fautsch,
Derin Harmanci, Lucas Charles, Heiko Sturzrehm, Gerald
Wagenknecht, Torsten Braun, Thomas Staub, Carolin
Latze, Ronny Standtke

Technical Report IAM-09-006, September 8, 2009

CR Categories and Subject Descriptors:
C.2.1 [Computer-Communication Networks]: Network Architecture and
Design; C.2.2 [Computer-Communication Networks]: Network Protocols;
C.2.3 [Computer-Communication Networks]: Network Operations; C.2.4
[Computer-Communication Networks]: Distributed Systems

General Terms:
Design, Management, Measurement, Performance, Reliability, Security,
Evoting

Additional Key Words:
peer-to-peer, wireless mesh networks, wireless sensor networks, overlay
multicast, network security, anonymity, transactions, evoting

Institut für Informatik und angewandte Mathematik, Universität Bern

Abstract
The BeNeFri Summer School 2009 on Dependable Systems in Schloss
Münchenwiler from June 10-12 was organized by four research groups
from the Universities of Bern, Fribourg and Neuchâtel. The University of
Bern was represented by the research group “Computer Networks and
Distributed System” of the Institute of Computer Science and Applied
Mathematics at the University of Bern, headed by Prof. Torsten Braun.
The research group “Telecommunications, Networks, Security” of the De-
partment of Computer Science, headed by Prof. Ulrich Ultes-Nitsche, rep-
resented the University of Fribourg. The University of Neuchâtel was rep-
resented by two research groups from the “computer science department
(IIUN)”, namely “distributed systems” headed by Prof. Peter Kropf and
“dependable systems and networks” headed by Prof. Pascal Felber. The
focus of this retreat was to present and discuss recent research results
and currently ongoing research activities of the members of the four re-
search groups. The research group members gave twenty-two presenta-
tions, from the areas of overlay networks, wireless mesh and sensor net-
works, network security, distributed systems, zero-proof knowledge, trans-
actions and security in e-voting. Extensive time (typically 45 minutes per
talk) has been allocated to allow detailed presentations and discussions.
This technical report summarizes the various talks and describes mostly
unpublished work that is currently in progress.

Contents
1 Quality of Service for ”NICE” Overlay Multicasting 1

1.1 Introduction . 1
1.2 NICE Overlay Multicast . 2
1.3 QoS for NICE Overlay Multicast 3
1.4 Evaluation . 4
1.5 Normal NICE and QoS Enabled NICE 5
1.6 NICE using Soft QoS . 5
1.7 NICE with Node to Root RTT Constraints 6
1.8 Conclusion . 7

2 Hypercube-like P2P Overlay for Flexible Routing 9
2.1 Introduction . 9
2.2 Discussion . 10

2.2.1 Overlay Structure . 10
2.2.2 Overlay Routing . 11

2.3 Conclusion and Outlook . 13

3 NetICE9 15
3.1 Introduction . 15
3.2 VIVALDI’s Instability . 16
3.3 Reasons for VIVALDI’s Instability 16
3.4 NetICE9 . 18

3.4.1 Crystallization . 18
3.4.2 Choice of Neighbors 19

3.5 Evaluation . 21
3.6 Conclusion . 21

4 Energy efficient Multihop Linklayer Protocol 25
4.1 Introduction . 25
4.2 Discussion . 25
4.3 Conclusion and Outlook . 27

5 Adaptivity of Energy-Efficient MAC Protocols 31
5.1 Introduction . 31
5.2 Discussion . 31

5.2.1 Simulation Settings 32
5.2.2 Energy-Throughput and Energy-Latency Tradeoffs . 33

5.3 Conclusion and Outlook . 35

6 Scalable Video Streaming to Mobile Devices 37
6.1 Introduction . 37
6.2 Temporal Scalability . 38
6.3 Spatial Scalability . 39
6.4 Scalable Coding: Signal-to-Noise-Ratio Scalability 41

7 Challenges in Domain Specific Information Retrieval 43
7.1 Introduction . 43
7.2 Discussion . 43

7.2.1 Social Science . 44
7.2.2 Blogsphere . 45
7.2.3 Biomedicine . 46

7.3 Conclusion and Outlook . 47

8 Testing and evaluating Distributed Algorithms 49
8.1 Introduction . 49
8.2 Discussion . 49

8.2.1 Challenges from pseudocode to implementation . . 49
8.2.2 teDA framework . 51
8.2.3 Challenges addressed by teDA 52

8.3 Conclusion and Outlook . 54

9 Transactional memory applied to Application Server 55
9.1 Introduction . 55
9.2 Discussion . 56
9.3 Results . 57
9.4 Conclusion and Outlook . 58

10 Event Stream Processing meets Software Transactional Mem-
ory 61
10.1 Introduction . 61
10.2 Discussion . 61

10.2.1 Requirements . 62
10.2.2 Enhanced Component 62
10.2.3 Evalution . 63

10.3 Conclusion and Outlook . 64

11 Reliable Multicast in IP-based Wireless Sensor Networks 67
11.1 Introduction . 67
11.2 Designing Multicast in WSNs 67

11.2.1 Overlay Multicast . 68

11.2.2 Reliability . 69
11.2.3 Implementation and Evaluation 69

11.3 Conclusion and Outlook . 71

12 Cooperative Cognitive Context-aware Composable (Co)4 Vir-
tual Wireless Mesh Networks 73
12.1 Introduction . 73
12.2 Wireless Mesh Networks 73

12.2.1 Roaming and Cooperation in Wireless Mesh Networks 74
12.2.2 Virtual Wireless Mesh Networks 75

12.3 Cognitive Wireless Mesh Networks 75
12.3.1 Cognitive Networks 76
12.3.2 Cognitive Mesh Node Architecture 77

12.4 Conclusion and Outlook . 78

13 Supporting Wireless Mesh Networks during their Life Cycle 81
13.1 Introduction . 81
13.2 Challenges . 82
13.3 Contributions . 83

13.3.1 VirtualMesh: An Emulation Framework for Wireless
Mesh Networks in OMNeT++ 83

13.3.2 ADAM: Administration and Deployment of Ad-hoc
Mesh networks . 84

13.3.3 ViSuC: Video Support for Constructions 85
13.3.4 CTI-Mesh: Wireless Mesh Networks for Intercon-

nection of Remote Sites to Fixed Broadband Net-
works (Feasibility Study) 85

13.3.5 ATOM: Adaptive Transport Over Multipaths 85
13.4 Conclusion and Outlook . 86

14 EAP-TPM - A new authentication method for 802.11 based net-
works 89
14.1 Motivation . 89
14.2 Trusted Computing . 90
14.3 EAP-TPM . 92
14.4 Conclusion and Outlook . 93

15 Modularization of the NIO Framework and Misuse prevention
in PGA 95
15.1 Modularization of the NIO Framework 95

15.1.1 Introduction to NIO 95

15.1.2 Introduction to the NIO Framework 95
15.1.3 Modularization . 96

15.2 Misuse prevention in PGA 99
15.2.1 Introduction to PGA 99
15.2.2 Misuse prevention 99

Quality of Service for ”NICE” Overlay Multicasting 1

1 Quality of Service for ”NICE” Over-
lay Multicasting

Marc Brogle, University of Bern
brogle@iam.unibe.ch

1.1 Introduction
Efficient and concurrent distribution of data from one sender to multiple
receivers can be achieved using the multicast paradigm. The implementa-
tion of the multicast paradigm for the Internet is called IP Multicast [1]. IP
Multicast is though not widely deployed, and therefore not available for end
users in the Internet today. This is mainly due to security concerns, com-
plex provider billing agreements, configuration complexity, etc. Applica-
tion Layer Multicast (ALM) [2], which normally runs on-top of Peer-to-Peer
(P2P) [3] networks, offers a solution to the limited availability of IP Multi-
cast. Improving P2P and ALM protocols by introducing Quality of Service
(QoS) functionality could offer additional benefits for end users.
Our OM-QoS (Quality of Service for Overlay Multicast) framework [4, 5, 6]
is a solution to enable QoS for various P2P/ALM protocols and frame-
works. The OM-QoS framework enables multicast trees to support QoS
regarding the construction of the paths from the multicast root node to
the leaf nodes. Each node has its own QoS requirements represented as
a QoS class. QoS classes can consist of a dedicated parameter, such as
bandwidth, or a combination of multiple parameters that are though limited
to influence only one hop (or P2P link) at a time. The following limitations
apply to the QoS class construct: There is a total order relation for all QoS
classes; QoS class parameters depend not on link length and number of
hops in the network; there is a finite number of QoS classes. Therefore e.g.
end-to-end delays over multiple hops are not considered in the QoS class
construct. But a combination of bandwidth and hop-by-hop jitter is possi-
ble. The muticast tree is now built in such way that all the paths from the
root to the leaf nodes have monotonically decreasing QoS requirements.
Such a QoS aware tree is shown in Fig. 1.1. The thicker lines between
nodes represent higher QoS requirements.
In this analysis of the QoS for the NICE [7] protocol, we do not only look
at the general QoS class concept introduced by OM-QoS. We also add
mechanisms to support guarantees regarding node to multicast root de-
lays in terms of round trip time (RTT).

2 IAM-09-006

monotonically
decreasing

QoS requirements

Root

Leaf

Figure 1.1: QoS Supporting Multicast Tree

1.2 NICE Overlay Multicast

NICE hierarchically arranges nodes in clusters and layers as depicted in
Fig. 1.2. If nodes are in the same cluster, they are called cluster mates.
Each cluster has a cluster leader, which is known by all other cluster
mates. Clusters have a size between k and 3k − 1 nodes. The value k
is a predefined cluster constant that is larger than zero. Cluster leaders
are determined using the graph-theoretic center calculation as presented
in [7]. Cluster leaders are also members of the next higher layer. Layers
consists of one or multiple clusters and are ordered from the bottom layer
zero to the top layer n. In the top layer, only one cluster with one node in it
exists, which is then the root of the NICE network and its multicast tree.
Five invariants that have to be fulfilled at any time specify the structure of
a NICE network. 1) A node is only in one cluster on each layer. 2) A node
in layer L is also in layers L−1, ..., 0. 3) A node not in layer L can not be in
any higher layer (L+ i, i ≥ 1). 4) The cluster size is between k and 3k− 1,
with k being a constant larger than zero. 5) There is no more than logk N
layers and the top layer only has one node (the root).
When a node joins a NICE network, it contacts the root node, which is the
cluster leader of the top layer. The root node returns a list of all cluster
leaders on the next lower layer. The joining node contacts every of those
cluster leaders and determines the closest node to itself in terms of RTT.
The closest node is then contacted to report back its own cluster mates
in its lower layer. The closest node of these reported nodes is then again
determined and contacted. This process is continued on all layers from
top to down until a cluster in layer 0 is reached. The node then joins that
specific cluster. Nodes that are physically close end up being in the same
cluster when this mechanism is used.

Quality of Service for ”NICE” Overlay Multicasting 3

b
c

a

d
e

f
g

h

i

k

lj

a f g j

f g

Layer1

Layer 0

Layer 2

Figure 1.2: NICE Overlay Multicast

When a node leaves the network, it should ideally inform all its cluster
mates of its intention before doing so. Then, the cluster leader and the
other cluster mates can take appropriate action and update their routing
and neighborhood tables. If a node suddenly disappears, then the clus-
ter leader and the cluster mates only recognize the departure of the node
by missing heartbeat messages, which have to be sent periodically by all
nodes in a cluster.
Maintenance of NICE consists of refinement operations to maintain an op-
timal tree structure. Refinement operations consist of merging two clus-
ters, splitting clusters, or to determine new cluster leaders. They are only
invoked by cluster leaders when invalid or not optimized states are de-
tected in its appropriate clusters.

1.3 QoS for NICE Overlay Multicast
To support QoS for NICE Overlay Multicast, only a minor modification of
the NICE protocol has to be performed. Creating QoS aware trees can
be achieved by changing the cluster leader determination process. The
cluster leaders are now determined by the nodes having the highest QoS
class in the cluster (see Fig. 1.3) instead of using the graph theoretic cen-
ter calculation. This approach is explained in more detail in [6].
To support node to root RTT constraints, the join process has to be modi-
fied. Instead of determining the node, which is closest to the joining node
on each layer, the joining node also takes the node to root RTT of the re-
ported cluster leaders into account. It then selects one of the nodes, which
will provide a node to root RTT below its own node to root RTT constraint.
The node that offers the maximum node to root RTT still below its own
node to root RTT constraint will be selected from those candidates.

4 IAM-09-006

1
2

3

2

2

5
5

3

2

1

3
4

3 5 5 4

5 5

Figure 1.3: NICE Overlay Multicast with QoS Support

1.4 Evaluation

We evaluated NICE with OM-QoS using the OMNet++ [8] simulator. The
basic NICE protocol with enhancements for further reliability using hand-
shakes for split and merge operations, cluster-leader transfers, root trans-
fers and leaving has been implemented for the evaluation.
The following scenarios have been evaluated. Static hard QoS guaranteed
by the underlying network; dynamic soft QoS based on measurements of-
fering a best-effort QoS service; and node to root RTT guarantees.
In the hard QoS scenario, the QoS guarantees remain static. Once the
QoS reservations have been performed, the underlaying network will guar-
antee the QoS for the time the node remains in the NICE network. Using
soft QoS, which is based on measurements between nodes, the QoS ca-
pabilities of a node can change over time. Therefore, links between nodes
do not necessarily support the required QoS anymore after a certain time.
Then, the node has to find a new parent that supports the initially required
QoS on the link between the node and the new parent. Finally, in the
node to root RTT scenarios, nodes determine a maximum upper bound
constraint for their node to root RTT value. This value is in the range of
25ms–50ms. We then check if this constraint is fulfilled for the normal
NICE mode and for the NICE network, which uses a modified join pro-
cess. We only look at the node to root RTT value directly after the node
has joined the NICE network. Finally, we used 13 distance matrices and
also varied the arrival, departure, maintance and QoS related values using
3 random seeds. This leads to 780 simulation runs per scenario. We also
removed 0.5% of the min. and 0.5% of the max. values in the simulation
results of the different runs.

Quality of Service for ”NICE” Overlay Multicasting 5

1.5 Normal NICE and QoS Enabled NICE

 0

 20

 40

 60

 80

 100

 200 500 800 1100 1400 1700 2000

%

Number of Nodes

Mean

Min

Max

(a) Node to Root Qos, normal NICE

 0

 20

 40

 60

 80

 100

 200 500 800 1100 1400 1700 2000

%

Number of Nodes

(b) Node to Root QoS, NICE QoS aware

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 200 500 800 1100 1400 1700 2000

ti
m

e
 (

s
)

Number of Nodes

(c) Node to Root RTT, normal NICE

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 200 500 800 1100 1400 1700 2000

ti
m

e
 (

s
)

Number of Nodes

(d) Node to Root RTT, NICE QoS aware

Figure 1.4: Comparing normal NICE with QoS aware NICE

Figure 1.4 compares normal NICE with QoS enabled NICE using static
hard QoS guarantees. The value for k was set to 5. The range of the
QoS classes was between 0 and 255. We use the normal cluster leader
determination process for normal NICE mode and QoS classes were not
taken into account. Nevertheless, we analyzed how many paths satisfy
the property of monotonically decreasing QoS requirements as described
before in a normal NICE network. On average, only 30% of the paths hold
the property as shown in Fig. 1.4(a). Using QoS aware NICE as shown
in Fig. 1.4(b), 100% of the paths fulfill the QoS requirements. The node
to root RTT is presented in Figures 1.4(c) and 1.4(d). Since normal NICE
optimizes the RTT between nodes in the same cluster, the average node
to root RTT is between 20ms–40ms. In the QoS aware NICE, the average
node to root RTT is between 30ms–60ms. Therefore, using QoS adds
some overhead in terms of node to root RTT.

1.6 NICE using Soft QoS
The results for dynamic soft QoS are presented in Figure 1.5 with k = 5
and 256 QoS classes. While in a NICE network, the QoS guarantees of
a node can fail up to 5 times. Figure 1.5(a) shows that using soft QoS
does not have a negative impact on the percentage of multicast messages

6 IAM-09-006

 0

 20

 40

 60

 80

 100

 200 500 800 1100 1400 1700 2000

%

Number of Nodes

Mean

Min

Max

(a) Percentage of Multicast Received

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 200 500 800 1100 1400 1700 2000

ti
m

e
 (

s
)

Number of Nodes

(b) Rejoin Duration

Figure 1.5: QoS aware NICE in a Dynamic Soft QoS Environment

received on average. In Fig. 1.5(b), the rejoin duration is presented. The
average rejoin duration is around 20ms with a maximum around 50ms.

1.7 NICE with Node to Root RTT Constraints

 0

 20

 40

 60

 80

 100

 200 500 800 1100 1400 1700 2000

%

Number of Nodes

Mean

Min

Max

(a) RTT Constraints Fulfilled, Normal Join

 0

 20

 40

 60

 80

 100

 200 500 800 1100 1400 1700 2000

%

Number of Nodes

(b) RTT Constraints Fulfilled, Modified Join

Figure 1.6: Comparing QoS aware NICE with Normal and Modified Join

In Fig. 1.6, we compare QoS aware NICE with the normal join process and
with a modified join process. The modified version takes the node to root
RTT constraints into account. Nodes select a random node to root RTT
constraint in the range of 25ms–50ms. In Fig. 1.6(a), the percentage of
nodes that have their node to root RTT constraints fulfilled using the normal
join process is presented. In Fig. 1.6(b), the percentage of nodes having
fulfilled those constraints using the modified join process are depicted.
Note that the fulfillment of the constraints is checked only directly after
a node has joined successfully a NICE network. Using the modified join
process enables almost all nodes to have their constraints fulfilled, while
for the normal join process, almost half of the nodes do not have their
constraints fulfilled for larger number of nodes.

Quality of Service for ”NICE” Overlay Multicasting 7

1.8 Conclusion
We presented and evaluated the OM-QoS solution to introduce QoS sup-
port for the NICE Overlay Multicast network. The evaluations show that
using QoS introduces only a slight overhead in terms of delay compared to
normal NICE. The overhead is introduced because of the modified cluster
leader determination mechanism. Other aspects of NICE are not signif-
icantly altered. We also presented a solution to guarantee certain node
to root RTT constraints directly after joining the NICE network. This is
achieved using an altered join mechanism.

References
[1] S. Deering, “Host extensions for IP multicasting.” RFC1112, 1989.

[2] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,
“A survey of application-layer multicast protocols,” Communications
Surveys & Tutorials, IEEE, vol. 9, no. 3, 2007.

[3] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” Communica-
tions Surveys & Tutorials, IEEE, 2005.

[4] M. Brogle, D. Milic, and T. Braun, “QoS enabled multicast for struc-
tured P2P networks,” in P2PM Workshop at the 4th IEEE Consumer
Communications and Networking Conference, IEEE, January 2007.

[5] M. Brogle, D. Milic, and T. Braun, “Supporting IP multicast streaming
using overlay networks,” in QShine: International Conference on Het-
erogeneous Networking for Quality, Reliability, Security and Robust-
ness, ACM Press, Aug. 2007.

[6] M. Brogle, D. Milic, and T. Braun, “Quality of service for peer-to-peer
based networked virtual environments,” in P2P-NVE 2008 Workshop
at the 14th IEEE International Conference on Parallel and Distributed
Systems, (Melbourne, Victoria, Australia), IEEE, December 2008.

[7] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” in Proceedings of the 2002 conference on Appli-
cations, technologies, architectures, and protocols for computer com-
munications, vol. 32, (New York, NY, USA), ACM, 2002.

[8] Website, “OMNET++, online: http://www.omnetpp.org,” 2009.

8 IAM-09-006

Hypercube-like P2P Overlay for Flexible Routing 9

2 Hypercube-like P2P Overlay for Flex-
ible Routing

Sabina Serbu, University of Neuchâtel
sabina.serbu@unine.ch

2.1 Introduction
In structured peer-to-peer systems, lookup queries follow a certain path
given by the routing strategy selection from the routing tables. The path
choice can influence the result of the query, the overlay and the underlay
network, in terms of accessibility (the information is not found even though
it exists), response time (the query takes too long to be answered), or
load (the resources at the underlaying level are not equally used). Some
of them may get even worse under popular queries, when typically some
overlay and underlay links are heavily used, while others are not used at
all. In this paper we will deal this kind of demands by providing redun-
dant paths in the overlay structure and allowing to make the right choice
between them.
Our solution is based on the HYPEER overlay [1], a logarithmic node de-
gree DHT with a structure that approximates a hypercube. The choice
for the hypercube is justified by its support to provide redundant paths.
There are other papers that use hypercubes, as [2, 3, 4], however with
only limited purpose, such as balancing the request load, dissemination
and building routes on demand, respectively.
In this work we refine the HYPEER overlay mostly with regard to routing.
Because of the overlay or lookup demands, query lookups have to be re-
stricted in order to fulfill each demand. Thus, we define new routing strate-
gies to comply with the most popular demands, as shortest path length,
fault tolerance in case of churn, routing load balancing and low delay path
length, while allowing for scalability.
As all other DHTs, HYPEER uses an identifier space where the nodes and
the keys obtain IDs in a form of a sequence of binary digits. To route
towards a node responsible for the requested key, several intermediate
nodes are traversed such that the digits from the source identifier are suc-
cessively replaced by the digits of the key identifier. The structure can
be represented as a ring, but also as a hypercube, where each node has
neighbors at exponentially-away distances. This offers the possibility of
treating the exponents in any order when routing from source to destina-

10 IAM-09-006

22+23+27:

22+27+23:

27+23+22:

Figure 2.1: Examples of paths on a distance of 140 between the source
and the destination nodes.

tion, which tunes the number of remaining redundant paths. Thus, one
could think of any lookup or overlay demand that can be solved through
routing and define how to make the choice for the next hop. Combinations
of the routing strategies can be thought of in order to comply with several
demands, however the trade-off is rather obvious.

2.2 Discussion
One of the most known systems with a ring structure is Chord [5]. Each
node in Chord has a set of m = log(N) neighbors, where each neigh-
bor is the first node encountered clockwise on the ring after a distance
of 2i, where i < m. This means that the identifiers of the neighbors are at
least 2i away. When the requests are routed, they follow steps of size 2i+ε,
where ε depends on the placement of the nodes on the ring. All links are
unidirectional and the routing is clockwise. HYPEER follows the same idea
of having m neighbors at exponential distances, but additionally it adds
accuracy in the neighbors positions, i.e. it controls the placement of the
nodes on the structure, for their identifiers to be at exactly 2i away. This
way, the requests would follow hops of size 2i, that could be taken in any
order, which opens way to alternative routing strategies.
As an example, it is straight forward to see that a distance of 140 from
node 44 to node 184 can be covered by three hops of 22, 23 and 27 in
any order, since addition (their sum is 140) is commutative. The number of
possible paths is permutations of the number of hops, which in this case
is 3!=6. Three out of the six possible paths are shown in Figure 2.1.

2.2.1 Overlay Structure

Definition We call an aligned neighbor a node whose identifier is ex-
actly 2i away from the current node. An exact link is a link that points
towards an aligned neighbor.

Hypercube-like P2P Overlay for Flexible Routing 11

The HYPEER structure spans over a space of 2m identifiers (where m is
the number of bits for each identifier), and can be represented as a classic
ring, but, more particularly and which is of more interest for the routing
strategies due to its dimensions, as an approximation of a hypercube.
Ideally, all nodes have only aligned neighbors (i.e., all IDs in the identifier
space are taken), or all nodes have an aligned neighbor at each of the
highest x dimensions (i.e., all IDs of the highest x dimensions in the iden-
tifier space are taken), where x < log(N) and N is the number of nodes
in the system. However, this cannot happen in the context of peer-to-peer
systems, where nodes join and leave all the time, thus the structure can-
not be stable. Moreover, all identifiers cannot be taken, otherwise there
will be no more room for new node arrivals. This means that by default
there are nodes that do not have neighbors on some dimension (i.e., at
some 2i away). In order not to leave those routing table entries empty, we
make them point to the first node on the ring after 2i away, as in Chord. As
a consequence, most of the nodes will have neighbors at exactly 2i away
(aligned neighbors), but also, and with a lower probability, neighbors that
are at least 2i away. Our contribution, when comparing with Chord, is to
significantly increase the chances for the structure to have exact links in
order to adopt new routing strategies.
To control the placement of the nodes on the identifier space, we do not
rely on a hash function to obtain the identifiers of the nodes, instead we
delegate an existing node na to assign an identifier for a new node nb.
Node na picks its highest dimension that does not contain an aligned
neighbor and gives that identifier to nb. Thus, nb becomes a new aligned
neighbor of na.

2.2.2 Overlay Routing

We define four HYPEER-specific routing strategies that send the requests
clockwise on the ring structure, which keeps the routing path in O(logN)
hops. All make use of the aligned neighbors. A node computes the re-
maining distance to the destination as a sum of exponential hops (with
base 2), and chooses an aligned neighbor that lies at one such exponen-
tial distance. These latter neighbors are called eligible aligned neighbors.
Thus, when the request is forwarded, the estimated distance to the desti-
nation decreases by a 2i, and the expected number of hops (which is the
same for all routing strategies) by one. The only difference between these
routing strategies is the choice of i.

12 IAM-09-006

0001011110

11100

11000

10100

10010

01100

01010

01000

00100

00110

00000

10000

10110

(a) SP -HYPEER

00000

0001011110

11100

11000

10100

10010

10000

01100

01010

01000

00100

00110

10110

(b) FT -HYPEER

0001011110

11100

11000

10100

10010

01100

01010

01000

00100

00110

00000

10000

10110

(c) LB-HYPEER

0001011110

11100

11000

10100

10010

01100

01010

01000

00100

00110

00000

10000

10110

(d) PR-HYPEER

Figure 2.2: Routing path from node 00010 to node 11000 for each routing
strategy.

Shortest Path routing. SP -HYPEER uses the furthest eligible aligned
neighbor. This is a greedy-like routing strategy, where a request follows
long hops in the beginning and then shorter hops towards the end, which
under churn is expected to provide the shortest average routing path.

Fault Tolerant routing. FT -HYPEER uses the closest eligible aligned
neighbor. A request follows short hops in the beginning and then larger
ones towards the end, the identifier space between the current node and
the destination being at each hop larger than for SP -HYPEER, which in-
creases the fault tolerance on the request path, as noted in [6].

Load Balancing routing. LB-HYPEER uses a random eligible aligned
neighbor, which is expected to balance the routing load (the load induced
by all requests that are forwarded by a node towards their destinations) on

Hypercube-like P2P Overlay for Flexible Routing 13

the outgoing links, and thus, even under Zipf-like requests, to reduce the
path convergence.

Proximity routing. PR-HYPEER chooses the eligible aligned neighbor
that can be reachable in the lowest delay. It is a local decision which is
expected to give on average a lower delay routing path than for the other
routing strategies.

An example of lookup under no failures is shown in Figure 2.2.
Node 00010 is issuing a lookup request for key 11000, thus the hops to
be followed are of sizes 21, 22 and 24. In (a), SP -HYPEER makes hops
of decreasing size: 24, 22 and 21. Conversely, in (b), FT -HYPEER makes
hops of increasing size. In (c), LB-HYPEER chooses randomly, in this
example first the hop of 22, then 24 and finally 21. In (d), PR-HYPEER
chooses among the three eligible aligned neighbors 00100, 00110 and
10010 the delay-closest one, which we consider to be 00110; then, at
node 00110, among the two eligible neighbors 01000 and 10110 the delay
closest one, considered to be 01000; the last hop is the remaining eligible
aligned neighbor, which is the destination.

2.3 Conclusion and Outlook
HYPEER is based on the idea of sending the requests on exponential dis-
tances, on hops of 2i with different i. The structure controls the node place-
ment in its identifier space, with neighbors located at exponential distances
of 2i, which makes the structure be thought of also as an approximation
of a hypercube. The structure has been shown to be uniform and regular,
which is key to deterministically locate redundant paths and route around
failures.
We use the awareness of the placement of the nodes in order to achieve
shorter average path length, better fault tolerance, better load balancing
and lower average path delay. Our preliminary results on the four HYPEER
routing strategies have shown that each routing strategy achieves its goal,
while maintaining the overlay costs low.
The overlay is scalable, so one could think of any overlay/lookup demand
that can be complied with by routing, and tune the choice of the aligned
neighbors to be used in the routing strategy. Moreover, the routing strate-
gies could be used alternatively: either each request is sent with a certain
routing strategy until it reaches the destination, or the choice is done at
each hop. A node that is able to detect unequal routing load on its links or

14 IAM-09-006

a high rate of churn, could route the request using either the load balanc-
ing or the fault tolerant routing strategies. Thus, the overlay routing may
be adaptable to current overlay conditions.
Moreover, replication can be easily applied to HYPEER, using the classical
strategy of Plaxton-type overlays [7] of replicating one hop before the node
that owns a popular object. More precisely for HYPEER, replication is ex-
pected to be highly efficient at the nodes for which that node is an aligned
neighbor, since these nodes share most of the traffic for that destination.
HYPEER is thus a scalable, adaptive and extendable hypercube-like over-
lay that complies with overlay/lookup demands through flexible choice rout-
ing.

References
[1] S. Serbu, P. Kropf, and P. Felber, Improving the Dependability of Prefix-

Based Routing in DHTs, vol. 4803, pp. 206–225. Springer, 2007.

[2] T. Locher, S. Schmid, and R. Watternhofer, “eQuus: A Provably Robust
and Locality-Aware Peer-to-Peer System,” in Proceedings of the 6th
International Conference on Peer-to-Peer Computing, pp. 3–11, 2006.

[3] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “HyperCuP –
Hypercubes, Ontologies and Efficient Search on P2P Networks,” in
First Workshop on Agents and P2P Computing Springer LNCS 2530,
pp. 112–124, 2002.

[4] J. I. Alvarez-Hamelin, A. C. Viana, and M. D. Amorim, “DHT-based
Functionalities Using Hypercubes,” in Proceedings of World Computer
Congress IFIP WCC, vol. 212, pp. 157–176, 2006.

[5] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Appli-
cations,” in Proceedings of ACM SIGCOMM, pp. 149–160, 2001.

[6] S. Serbu, P. Kropf, and P. Felber, “Fault-Tolerant P2P Networks: How
Dependable is Greedy Routing?,” in Workshop on Dependable Appli-
cation Support in Self-Organising Networks DASSON, 2007.

[7] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing Nearby
Copies of Replicated Objects in a Distributed Environment,” in Pro-
ceedings of the 9th annual ACM symposium on Parallel algorithms and
architectures SPAA, (New York, NY, USA), pp. 311–320, ACM, 1997.

NetICE9 15

3 NetICE9
Dragan Milic, University of Bern
milic@iam.unibe.ch

3.1 Introduction
Embedding RTTs into virtual spaces to obtain an efficient RTT prediction
scheme has been a research topic for almost a decade [1, 2, 3, 4, 5, 6,
7, 8]. To date, all methods proposed can be classified as either landmark-
based or landmark-less. Landmark-less approaches usually perform a
distributed simulation of the physical system. Such a simulation incre-
mentally decreases the total error of the embedding of RTTs in the virtual
space and converges toward an optimal solution.
Landmark-less approaches are usually completely distributed without any
central components. This makes them very resilient to host failures and
network outages. On the downside, landmark-less approaches are usu-
ally quite sensitive to violations of assumptions underlying the simulation.
For example, one of the most commonly made assumptions is that the
triangle inequality holds for the measured RTTs. As shown in [9, 10, 11],
however, this is not always the case in the Internet. Such violations lead
to undesired effects such as the permanent oscillations of host positions
in the simulation; or even worse, the rotation and translation of the whole
system within the virtual space. Those effects lead to unstable host po-
sitions, making them useful only for a limited time even if there were no
changes in the underlying network.
We propose NetICE9, an improvement of the VIVALDI [3] approach.1. Net-
ICE9, like VIVALDI, is a distributed simulation of a physical system. This
means that each host calculates its position in the virtual space without
knowing the whole system. The only information each host has is about
its neighbors. Unlike VIVALDI, which simulates a system of hosts con-
nected by springs, NetICE9 is a simulation of a crystallization process.
This means that NetICE9 simulates the creation of a crystal structure in a
virtual space, where each host corresponds to one atom within this struc-
ture. The forces which determine the relative positions of the atoms are
proportional to the difference between measured RTTs and distances in
the virtual space representing them. In a crystal, those forces are in bal-
ance. Essentially, each atom is positioned in such a way that the forces

1The name NetICE9 was inspired by a fictional ice isomere named ice-nine described
in Kurt Vonnegut’s novel Cat’s Cradle

16 IAM-09-006

of repulsion from and attraction to its neighbors are in balance. We also
present results of our simulations based on RTTs measured in the Internet
[12, 13].

3.2 VIVALDI’s Instability
Being fully distributed, it does not require any infrastructure and is very
robust against churn. On the other hand, as we will show, VIVALDI tends
to be unstable. By instability we mean permanent change of host positions
in the virtual space.
The most severe source of the instability is the movement of the whole
system, i.e. all hosts participating in the distributed simulation performed
by VIVALDI. Since VIVALDI never reaches a stable state, local oscillations
never cease. Those small local oscillations of one hosts affects the hosts
with it as a neighbor. This change then affects their neighbors and so
on. As the final effect, the whole system does not stand still in the virtual
space, but instead it translates and rotates.
Movement of the whole system in the virtual space does not change the
RTT prediction obtained through VIVALDI much, since the relative posi-
tions of the hosts in the virtual space do not change much. But, if we
consider how such positions are used, it turns out that the system move-
ment poses a problem. Positions of the hosts are usually used in order to
predict RTTs. If the positions are constantly changing, we must obtain a
new position of the host, to which we would like to have an RTT estimate.
By doing so, we could also just perform an RTT measurement itself, since
it involves the same amount of communication. Hence, being able to rely
on a host position for a longer time of period is desired.

3.3 Reasons for VIVALDI’s Instability
Three host whose RTTs do not satisfy the triangle inequality may be suf-
ficient to render a VIVALDI system unstable. For example, those RTTs
could be 2.5, 3 and 8. Each time one host tries to correct its position rel-
ative to another host, it will either decrease the “predicted” value of the
RTT 8 or increase one of the other two RTTs (2.5 or 3) to have larger pre-
dicted values. Since VIVALDI always optimizes one (randomly chosen)
RTT prediction, it never reaches a stable state, since decreasing error in
one direction increases the error in the other, which must be then compen-
sated in turn. Figure 3.1 illustrates such a behaviour, that we describe as

NetICE9 17

“host chasing”. At each simulation step, one hosts tries to reduce its RTT
prediction to other host. By doing so, it increases the embedding error to-
wards all other host. This increased embedding error then gets corrected
by another host, which in turn increases other embedding errors. The re-
sult of this behaviours is the translation of the whole system through the
virtual space.

Figure 3.1: An example of “host chasing” in VIVALDI caused by a triangle
inequality violation

Another drawback of VIVALDI arises from the fact that VIVALDI does not
require the “is a neighbor” relation to be bidirectional. A bidirectional “is
a neighbor” relation means, that if host A optimizes its position relative to
host B, then B should optimize its position relative to A. In practice, each
host chooses a fixed number of random neighbor hosts and optimizes its
position in the VIVALDI system relative to them. This means, if there is
no optimal solution (i.e. some of the properties of the metric space are
violated by the measured RTTs), hosts will be oscillating around their (the-
oretically) optimal position.
Figure 3.2 show what could happend, when the “is a neighbor of” relation
is only one way. The host in the middle of the figure tries optimizing its
position relative to the neighbors, which at each optimization step leads to
a new position of the host, since the neighbors will never move themselves
towards the host in the center. If the relation “is a neighbor of” would be
bi-directional, the neighbors of the host in the center would also move
towards that host, which would reduce oscillation of its position.

18 IAM-09-006

Figure 3.2: An example of oscillations in VIVALDI caused by lack of bi-
directional “is a neighbor of” relation

3.4 NetICE9

3.4.1 Crystallization

The basic idea of NetICE9 is to simulate the process of crystallization.
Within NetICE9, each host is considered to be an atom that should be
embedded into a crystal structure. The crystal structure consists of other
atoms positioned within the virtual space in such a way that the forces
of repulsion and attraction between them are in balance. We define the
force between two atoms to be the difference between the predicted and
measured RTT. If this difference is negative, there is a repulsion force be-
tween two atoms. Positive difference means the attraction force between
two atoms.
Each host determines its own position within the crystal structure. In order
to do so, it has a set of neighbors. To each of those neighbors, it period-
ically measures RTT. At the same time, the host also queries each of the
neighbors about its current position in the virtual space and current moving
speed (how fast did the neighbor change its position in the virtual space
lately). The host uses this information in order to update its own position.
Updating the position is done by minimizing the objective function (1). This
objective function is very similar to the one used by GNP, with the differ-
ence that we are using neighbors as landmarks and that each neighbor is
weighted according to its moving speed. The larger the moving speed of
the neighbor is, the lower is the weight. The whole process of updating the
position of a host is described in Algorithm 1.
The rationale behind using such an algorithm is determining the position
of the host using all available information. VIVALDI uses a much simpler
approach, where the optimization is done only towards one neighbor. In

NetICE9 19

the case, where there is no optimal embedding possible, this approach
will result in oscillations of the host positions. Those oscillations then have
rippling effect on the whole system, as shown in Section 3.2. If we perform
the optimization in that way, we propose in Algorithm 1, the host position
will remain stable if the positions, velocities and RTTs remain stable. We
assume that this would greatly improve both stability and precision (reduce
the embedding error) of the system.

fe(CH) :=
m∑

i=1

1

1 + (VNi
· 1000)

· (d(CH, CNi
)− d̂HNi

)2 (1)

Algorithm 1 NetICE9 algorithm for updating host position in a virtual
space
Require: N Set of neighbors
Require: Tu Update interval
Require: Pc Current position of the host
Require: Vp Previous EWMA of host’s speed
Require: α Dampening factor for EWMA

for n ∈ N do
(RTTS[n], POS[n], SPEED[n]) ← Query(n) {Query a neighbor
about its current speed (EWMA), position and measure RTT to it}

end for
Pp ← Pc {Store the current position of the host as the previous position}

Pc ←Minimization(RTT, POS, SPEED,Pp) {Determine the new posi-
tion of the host using function minimization. Parameters for the objective
functions are RTTs, current positions and current speed of the neigh-
bors. Use the previous position of the host as the starting point for the
function minimization.}
delta ← |Pp − Pc] {Calculate the distance between the old and the new
position}
V ← delta/Tu {Calculate the moving speed of the host}
Vp ← α · V + (1− α) · Vp {Update the EWMA of the host velocity}
return Pc, Vp

3.4.2 Choice of Neighbors

A crystal structure implies aligning of atoms relative to its direct neigh-
bors. Doing so in order to obtain an RTT embedding is not the best idea.

20 IAM-09-006

The authors of VIVALDI [3] showed that using only nearest neighbors for
embedding yields in bad results of predicting RTTs of distant neighbors.
Instead, they propose using a small portion of distant neighbors, in order
to give a host a sense of global position in the network.
We were also assuming that using a bidirectional “is a neighbor of” relation
would significantly reduce the rippling effect of local oscillations of hosts to
the whole system. The reason for this assumption is that if a bidirectional
“is a neighbor of” relation is used, the rippling effect of local oscillations
will be reduced, since the effect of local oscillations of two hosts would go
both ways and cancel out each other. The problem was that there are not
many neighbor selection strategies that have both of those properties. This
is why we developed our own neighbor selection strategy called Fisheye
[14].
Fisheye is a topology aware overlay network building protocol, which is
able to give each host a fisheye-view of an overlay network. A fisheye-
view of an overlay network is a choice of c hosts from the overlay network
with special properties. Those properties are geographical diversity and
fisheye distribution of neighbors.
Geographical diversity means that the choice of neighbors is evenly dis-
tributed around the host. Fisheye distribution of neighbors means that the
density of chosen neighbors decreases with the distance to the host.
We achieve those properties by performing a distributed gravity force min-
imization algorithm as described in [14]. Figure 3.3 shows an example,
how such a choice of neighbors looks like. An interesting feature of our

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

fisheye center fisheye view other hosts

Figure 3.3: Example of fisheye view calculated using gravity force mini-
mization algorithm.

Fisheye approach is, that it does not require embedding of hosts into a
virtual space. Instead, it is based only on measured RTTs.
We also developed a version of our overlay network building protocol,

NetICE9 21

which is able to create a Fisheye overlay network with bidirectional “is
a neighbor” relation. This overlay network is the one we are using as a
neighbor selection for our NetICE9 approach.

3.5 Evaluation
To evaluate the precision and stability of our approach, we compared it to
the precision and stability of VIVALDI. To do this, we implemented VIVALDI
in an event-based network simulator [15].
The network model of the simulation is the same one used by Dabek et al.
in their original evaluation of VIVALDI[3]. Each message within the network
is delayed by half the RTT between two hosts. The RTT information for our
model was obtained from RTT measurements from the Internet. For input
data we hat two data sets. One set (denoted as Planet-Lab) contains a
full RTT distance matrix of 217 different hosts obtained from the “all sites
ping” experiment [12]. The other data set (denoted as KING) contains a full
RTT distance matrix of 462 hosts, which was obtained using the King[13]
method.
In each run of the simulation, we started a new instance of a host every
100ms until all hosts were active. This means that all hosts are active
by the time the simulation has been running for 21.7 s in the case of the
Planet-Lab data or after 46.2 s in the case of the KING data set. For each
embedding we used a 5-dimensional Euclidean space as the virtual space.
We limited the number of chosen neighbors (c) to maximally 18. We kept
each simulation running for 800 s (simulation time).
We compared the median of the relative embedding errors and average
host speed in the virtual space for VIVALDI using a random neighbor
choice, VIVALDI with a bidirectional fisheye neighbor choice and NetICE9
(a combination of bidirectional fisheye neighbor choice and positioning rel-
ative to all neighbors). We performed this comparison for both the Planet-
Lab and the KING data set. Results of this comparison can be seen in
Figures 3.4(a) - 3.4(d).

3.6 Conclusion
We have identified two major sources of VIVALDI’s instability: One, it does
not choose its neighbors symmetrically. Two, it optimizes towards only one
neighbor at a time and disregards all information known about the other
neighbors. In order to avoid these problems, we proposed a new approach

22 IAM-09-006

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800

R
el

at
iv

e
E

rr
or

 (
M

ed
ia

n)

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-BD

NetICE9

(a) Median of embedding error for NetICE9
compared with VIVALDI using Planet-Lab
data.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 H
os

t S
pe

ed

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-BD

NetICE9

(b) Average host speed in the virtual space
for for NetICE9 compared with VIVALDI using
Planet-Lab data.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800

R
el

at
iv

e
E

rr
or

 (
M

ed
ia

n)

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-BD

NETICE9

(c) Median of embedding error for NetICE9
compared with VIVALDI using KING data.

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 H
os

t S
pe

ed

Simulation Time (s)

VIVALDI RAND
VIVALDI FISHEYE-UD
VIVALDI FISHEYE-BD

(d) Average host speed in the virtual space
for for NetICE9 compared with VIVALDI using
KING data.

we named NetICE9. Similar to VIVALDI, NetICE9 is also a fully distributed
simulation of a physical system. Unlike VIVALDI, however, NetICE9 simu-
lates the creation of a crystal structure. In this crystal structure, every atom
(i.e. every host) positions itself relative to its surrounding atoms (hosts). In
order to have a stable system, we chose the surrounding of each atom in
such a way that the whole crystal remained stable (i.e. the atoms of the
crystal do not move). To achieve this, we propose using such a choice of
neighbors that the“is a neighbor of” relation is bidirectional (A is a neighbor
of B iff. B is a neighbor of A). Also, motivated by results presented by the
authors of VIVALDI, the choice of neighbors should be geographically di-
verse. This means that for an ideal RTT prediction scheme, a mix of close
and remote neighbors should be used. One choice of neighbors fulfilling
both of those properties is the fisheye[14] overlay network.

NetICE9 23

We have evaluated the NetICE9 approach by comparing it to VIVALDI and
GNP. For the evaluation we used a simulation based on RTTs measured
in the Internet. Our evaluation focused mainly on aspects of stability and
precision of RTT embedding. The evaluation showed that NetICE9 outper-
forms VIVALDI in terms of both precision of RTT embedding and stability.

References
[1] T. S. E. Ng and H. Zhang, “Predicting internet network distance

with coordiantes-based approaches,” in IEEE Infocom02, (New York /
USA), June 23-27 2002.

[2] T. S. E. Ng and H. Zhang, “A network positioning system for the inter-
net,” in USENIX 2004, (Boston MA, USA), pp. 141–154, June 2004.

[3] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentral-
ized network coordinate system,” in SIGCOMM ’04, (New York, NY,
USA), pp. 15–26, ACM Press, 2004.

[4] M. Costa, M. Castro, A. Rowstron, and P. Key, “Pic: Practical internet
coordinates for distance estimation,” in International Conference on
Distributed Systems, (Tokyo, Japan), March 2004.

[5] H. Lim, J. C. Hou, and C.-H. Choi, “Constructing internet coordinate
system based on delay measurement,” in Internet Measurement Con-
fgerence 03, October 2003.

[6] Y. Shavitt and T. Tankel, “Big-bang simulation for embedding network
distances in euclidean space,” IEEE/ACM Trans. Netw., vol. 12, no. 6,
pp. 993–1006, 2004.

[7] Y. Shavitt and T. Tankel, “On the curvature of the internet and its us-
age for overlay constructi on and distance estimation,” in INFOCOM
2004. Twenty-third AnnualJoint Conference of the IEEE Com puter
and Communications Societies, (Hong Kong / PRC), pp. 374–384,
March 7-11 2004.

[8] L. Tang and M. Crovella, “Virtual landmarks for the internet,” in Inter-
net Measurement Confgerence 03, October 2003.

[9] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha, “On suitability of euclidean
embedding of internet hosts,” in SIGMETRICS ’06/Performance ’06:

24 IAM-09-006

Proceedings of the joint international conference on Measurement
and modeling of computer systems, (New York, NY, USA), pp. 157–
168, ACM, 2006.

[10] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang,
“Measurement based analysis, modeling, and synthesis of the inter-
net delay space,” in IMC ’06: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, (New York, NY, USA), pp. 85–
98, ACM, 2006.

[11] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft, “On the
accuracy of embeddings for internet coordinate systems,” in In IMC,
2005.

[12] C. Yoshikawa, “Planetlab all-sites-pings experiment url:
http://ping.ececs.uc.edu/ping/,” 2006.

[13] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating la-
tency between arbitrary internet end hosts,” in SIGCOMM Internet
Measurement Workshop 2002, 2002.

[14] D. Milic and T. Braun, “Fisheye: Topology aware choice of peers for
overlay networks (submitted for publication),” 2009.

[15] “OMNET++ community site.” Available: http://www.omnetpp.org,
2009.

Energy efficient Multihop Linklayer Protocol 25

4 Energy efficient Multihop Linklayer
Protocol

Markus Anwander, University of Bern
anwander@iam.unibe.ch

4.1 Introduction
The Medium Access Control (MAC) layer tries to ensure that no two nodes
are interfering with each other’s transmissions, and deals with the situa-
tion when they do. In wireless sensor networks (WSNs) the MAC layer
has an additional aspect. Sensor nodes are generally battery-operated
that makes energy consumption is very important. The radio is usually
the component that consumes most energy. Therefore main strategy
of energy efficient mac protocols to save energy is to keep the periods
of active radio transceiver as short as possible and shut down unused
radio transceivers immediately. Energy efficient MAC protocols can be
mainly categorized as either time division multiple access (TDMA) based
or contention based MAC protocols. TDMA based protocols allocate to
each node an exclusive time-slot for communication. In these time-slots
collision-free media access is guaranteed. Therefore TDMA based pro-
tocols need a very accurate synchronization. Contention based protocols
usually require a less accurate synchronization, when using a RTS/CTS
exchange to enable collision-free media access. When using preamble
sampling, no synchronization between the nodes is required.
A new generation of sensor motes, such as the MicaZ, TelosB, and iMote,
make use of the Chipcon CC2420 802.15.4 radio. Instead of transmitting
a raw bit stream, this type of packetizing radio takes as input the payload
of the packet, and the radio module inserts its own preamble, header in-
formation and CRC. In comparison to other radio modules the CC2420 is
very energy efficient.

4.2 Discussion
X-MAC is a MAC protocol that is working with the IEEE 808.15.4 conform
CC2420 radio modul. It uses preamble sampling for media access. There-
fore it is possible to use asynchronous listen-sleep cycles enables X-MAC
and adaptive listen-and-sleep cycles. To calculate an optimal listen-sleep
cycles, X-MAC estimates the traffic load to make a traffic prediction. The

26 IAM-09-006

likelihood of k packets arriving over a period of n · t can be modelled as
a Bernoulli process of n trials with probability of success Pd(t). The au-
thors of [1] show that P̂ d(t) = k

n
is an optimal instantaneous estimate of

the traffic load Pd(t).
A disadvantage of X-MAC is that no hop to hop acknowledgement are
provided. This results in a high packet loss in larger multihop WSNs. To
minimize the packet loss we try to implement hop to hop reliability with pos-
itive acknowledgments. The new protocol is called: Burst enabled Energy
efficient Adaptive MAC protocol (BEAM).
First implementation show that traffic prediction has to consider retrans-
missions. X-MAC just drops packet without any retransmission for reliabil-
ity. BEAM retransmits packets after biterrors. This leads to a considerable
different behavior between X-MAC and BEAM in case of interferences or
collisions. Figure 4.1 shows that shorter sleep cycles can result in a lower
energy consumption for BEAM.

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

En
er

gy
 [m

W
]

duty cycle [%]

Average energy consumption per node depending on duty cylce
10 byte application payload every 500 ms

data in X-MAC mode
BEAM with data strobes

BEAM with header strobes

Figure 4.1: Energy consumption with different duty cycles

This is mainly caused by less required header strobes. An other effect is
that less header strobes also lead to less interference.

Energy efficient Multihop Linklayer Protocol 27

It was not possible to find an optimal traffic prediction including retransmis-
sions by using values like LQI (Link Quality Indication), CORR (CC2420
correlation value), RSSI (Received Signal Strength Indication), error rate
or packet size. Main reason is the impossibility of analyzing a corrupt
frame and the hidden node problem. To solve that problem we introduce
a traffic indicator a. To calculate the traffic indicator every node adds the
amount of expected packets for a target node to 2 unused bits of the IEEE
802.15.4 header. Out of the received amount of expected packets the re-
ceiver nodes calculates its traffic indicator a. The new traffic prediction for
BEAM, enhanced by the traffic indicator, is a P̂d(t) = k· a

n
.

We found out that a significant part our hidden node problem is caused
by the omnet++ radio modell that is designed for IEEE 802.11 radios. To
calculate the biterror probability respectively the Packet Reception Rate
(PRR) the Signal-to-noise ratio (SNR) is used. A CC2420 radio can re-
ceive packets with a much less SNR than a IEEE 802.11 radio can do. We
adjust the radio modell of omnet++ with the SNR/PRR values determined
in [2].

The current biterror probability is calculated by:

1−
(

0.5 · e−32· SNR· bandwidth
bitrate

)length

4.3 Conclusion and Outlook

Current results show that BEAM requires less energy in larger multihop
scenarios with reliability. In scenarios with low packet flow and low bit
errors negative acknowledgements seems to the better choice in view of
energy efficiency. In scenarios with higher packet flow and higher bit errors
positive acknowledgements seems to the better choice in view of energy
efficiency and reliability. Figure 4.2 shows the energy consumption of reli-
able BEAM und unreliable X-MAC. BEAM has no packet loss, X-MAC over
90%. Four connections are sending every second a packet over 6 hops.

28 IAM-09-006

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100 110

En
er

gy
 [m

W
]

Application Payload (UDP) [byte]

4 Connections

X-MAC
BEAM with header strobes

BEAM with data strobes

Figure 4.2: Energy consumption of reliable BEAM und unreliable X-MAC

We would like to analyse the behavior of a hop to hop reliability realized
with negative acknowledgements. This kind of negative acknowledge-
ments should have considerable advantages to the already implemented
end to end reliability with negative acknowledgements. In a hop to hop
mode no additional sequence numbers are required and expensive end to
end retransmissions can be avoided.
An other idea is to a redundancy layer between the MAC and the network
layer. This layer would add or remove dynamically redundant information
to the payload depending on the received amount of negative acknowl-
edgements.

References
[1] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: a short

preamble mac protocol for duty-cycled wireless sensor networks,” in
SenSys ’06: Proceedings of the 4th international conference on Em-
bedded networked sensor systems, (New York, NY, USA), pp. 307–
320, ACM Press, 2006.

Energy efficient Multihop Linklayer Protocol 29

[2] H. Lee, A. Cerpa, and P. Levis, “Improving wireless simulation through
noise modeling,” in IPSN ’07: Proceedings of the 6th international con-
ference on Information processing in sensor networks, (New York, NY,
USA), pp. 21–30, ACM, 2007.

30 IAM-09-006

Adaptivity of Energy-Efficient MAC Protocols 31

5 Adaptivity of Energy-Efficient MAC
Protocols

Philipp Hurni, University of Bern
hurni@iam.unibe.ch

5.1 Introduction
Energy efficiency is a major concern in the design of Wireless Sensor Net-
works (WSNs) and their communication protocols. As the radio transceiver
typically accounts for a major portion of a WSN node’s energy consump-
tion, researchers have proposed Energy-Efficient Medium Access (E2-
MAC) protocols that switch the radio transceiver off for a major part of the
time. Such protocols typically trade off energy-efficiency versus classical
quality of service parameters (e.g. throughput, latency, reliability). Today’s
E2-MAC protocols are able to deliver little amounts of data with a low en-
ergy footprint, but introduce severe restrictions with respect to throughput
and latency. Regrettably, they yet fail to adapt to varying traffic loads and
changing requirements of the imposed traffic load.
In my most recent work, I evaluated the energy-throughput and energy-
latency tradeoff of today’s most prominent E2-MAC protocols for WSNs.
I have motivated the need for more flexible and traffic-adaptive E2-MAC
protocols.

5.2 Discussion
E2-MAC protocols differ in how nodes organize the access to the shared
radio channel. [1] distinguishes three classes of organization random ac-
cess, slotted access and frame-based access. In slotted access protocols,
nodes are synchronized to a common sleep/wake pattern. Nodes wake up
at designated instants of time to exchange pending traffic. S-MAC [2] is the
most prominent protocol of this kind. S-MAC synchronizes the wake-up’s
of the nodes in so-called synchronization clusters. In each slot, nodes stay
awake for an active window of fixed duration. S-MAC applies an RTS-CTS
scheme for collision avoidance.
Random access protocols are generally based on contention mechanisms
to avoid collisions, and do not rely on synchronized clocks, which makes
these protocols rather simple and cheap with respect to the maintenance
overhead. Prominent protocols of this class are WiseMAC [3] and B-MAC

32 IAM-09-006

[4]. In WiseMAC, nodes periodically wake up to sense the carrier for the
presence of a preamble signal, a busy tone that alerts nodes to stay awake
for the upcoming frame transmission. A preamble is prepended to each
frame to alert the receiving node in its sampling interval. By learning each
other’s schedules, nodes can minimize the length of the preambles. B-
MAC employs a similar wake-up tone scheme to alert receivers, being
called low power listening (LPL).
A couple of concepts has yet been applied to reach traffic-adaptive pro-
tocol behavior in today’s literature on E2-MAC protocols. In T-MAC [5],
an increased traffic-adaptivity of the S-MAC [2] protocol is achieved by
prolonging the duty cycles of the nodes when so-called activation events
occur. However, simulations show that the adaptivity of the protocol is
still very limited. T-MAC shuts down the radio still too aggressively and
introduces a high delay for multi-hop transmissions. X-MAC [6] is a re-
cent E2-MAC protocol based on asynchronous listen-intervals. For each
packet, X-MAC sends out a strobe of preambles, in between which the
receiver can signalize reception-readiness with a so-called early ack. The
authors derive a formula for optimal wake/sleep intervals given traffic at a
constant rate and outline a mechanism to let X-MAC adapt the duty cy-
cle and the sleep/wake interval to best accomodate the traffic load in the
network.

5.2.1 Simulation Settings

We implemented S-MAC, T-MAC, B-MAC, WiseMAC, X-MAC and the ref-
erence protocols IdealMAC and simple energy-unconstrained CSMA in the
OMNeT++ Network Simulator [7] using the Mobility Framework (MF) [8],
which supports simulations of wireless ad hoc and mobile networks on top
of OMNeT++. We applied the current, voltage and transmission rate pa-
rameters of the CC1020 [9], a byte-level radio transceiver in the 804-940
MHz ISM frequency band. The CC1020 is used by the MSB430 sensor
nodes platform [10], which we intend to use in the near future for prototyp-
ing maximally traffic-adaptive E2-MAC protocols on real sensor hardware.
For the slotted protocols S-MAC and T-MAC, we assume that the nodes’
wake-up intervals are synchronized from the beginning of the experiment
(the same assumption is found in many MAC studies, e.g. in [3]). For
WiseMAC, we assume that nodes are able to sense transmissions in the
channel from stations within their carrier sensing range ∼ 2× transmission
range to implement a cheap collision avoidance. Such a mechanism can
be accomplished by most of today’s radio transceivers by observing the

Adaptivity of Energy-Efficient MAC Protocols 33

onboard RSSI value and setting appropriate thresholds.
In order to allow for a fair comparison, we implemented a packet burst
transfer mode for each simulated E2-MAC protocol, such that nodes can
transmit queued packet trains in a burst. Nodes can signalize that they
have pending packets to the receiver and continue transmitting packets in
a burst, receiving an acknowledgmenet for each frame.

5.2.2 Energy-Throughput and Energy-Latency Tradeoffs

Figure 5.1: Throughput vs. Energy-Efficiency

E2-MAC protocols typically trade off quality of service versus higher
energy-efficiency. Generally, they introduce higher delays and restrain
the maximum achievable throughput. In this section, we examine these
tradeoffs with the simulated E2-MAC protocols. By running each protocol
with different parameter settings, we thoroughly investigated the behavior
of each of the simulated E2-MAC protocol mechanisms, and not just the
behavior of one particular parameter choice. We refer to one parameter
tuple for a protocol as a configuration hereafter, e.g. one configuration for
WiseMAC would be [Basic Interval=200ms, Wake Ratio=1% (2ms)].
Figure 5.1 and 5.2 illustrate the energy-throughput and energy-latency
tradeoffs of the simulated E2-MAC protocols. Each dot represents the
results of one particular protocol configuration in the simulation experi-
ment. In Figure 5.1, the tradeoff between maximum achieved throughput
and energy-efficiency of the simulated E2-MAC protocols becomes very
well visible. CSMA being energy-unconstrained has a very high maximum
throughput. However, with CSMA not turning off the transceiver during
the low-traffic phases, its energy-efficiency (measured in kBit/J) remains

34 IAM-09-006

very low. The IdealMAC protocol, in which a receiver node always knows
when to switch the transceiver to the receive mode to receive packets, has
both a high throughput and a very high energy-efficiency. IdealMAC illus-
trates where the theoretic lower and upper bounds of the E2-MAC protocol
problems are - it is not possible to reach a higher throughput nor a higher
efficiency than IdealMAC. No E2-MAC protocol will ever get beyond the
rectangle that is spanned by IdealMAC in Figure 5.1.
With T-MAC and WiseMAC, the different choices of the frame-length and
basic interval parameter values result in dots forming curves that resem-
ble indifference curves. The curves visualize how much maximum achiev-
able throughput the existing protocols need to give up to reach a higher
energy-efficiency, when moving from the top leftmost dot towards the lower
rightmost dot, and vice-vera. E.g. if WiseMAC is being operated with a
very large interval between two wake-up’s, the protocol almost reaches
the energy-efficiency of IdealMAC, but then only achieves a very limited
throughput.
The X-MAC protocol with its wake-cycle adaptation algorithm reaches a
mediocre throughput and tolerable delay at a reasonable efficiency, but
its performance lags behind that of WiseMAC. The main reason for this
is the high per-packet overhead of the preamble strobes. One crucial ad-
vantage of X-MAC’s strobed preamble mechanism is the possibility to let
nodes adapt their wake-sleep cycles to the traffic rate. Nodes with short
wake-sleep cycles will respond earlier with an early ACK to the strobed
preambles than nodes with a long wake-sleep cycle. Hence the proto-
col yet offers self-configuration and adaptation capabilities, while with the
other protocols, e.g. WiseMAC and T-MAC, the interval between two wake-
up’s remains constant and does not adapt to the traffic rate.

Figure 5.2: Delay vs. Energy-Efficiency

Adaptivity of Energy-Efficient MAC Protocols 35

Figure 5.2 similarly depicts the tradeoff between average packet delay and
energy-efficiency. One can observe that CSMA exhibits a very low aver-
age delay at the cost of a very low energy-efficiency. IdealMAC reaches
both, a very low delay at a very high energy-efficiency. IdealMAC again il-
lustrates the lower bounds of the E2-MAC protocol problem - while it is not
possible to reach a higher throughput than IdealMAC, it is neither possible
to reach a lower average delay. One can clearly see the energy-latency
tradeoff with the different configurations of T-MAC and WiseMAC. When
increasing the energy-efficiency of the protocol configurations by increas-
ing the interval between two wake-ups, the delay accordingly increases,
too. While T-MAC can achieve a lower delay, WiseMAC exhibits a higher
energy-efficency.

5.3 Conclusion and Outlook

With this study I have explored the design space of a number of existing
E2-MAC protocols with respect to their ability to react to changing traf-
fic conditions. Today’s protocols surely still are from the goal to have an
E2-MAC protocol that truly allocates the radio transceiver in an on-demand
manner.
Our intention is to develop an E2-MAC that is able to achieve a very high
efficiency in case of low traffic (as e.g. WiseMAC), but that is capable
to adapt its behavior in case of higher traffic, to exploit the entire chan-
nel capacity and to achieve a throughput that is similar to that of energy-
unconstrained CSMA. Such a behavior would be very advantageous in
many event-based WSN application scenarios, and would constitute a real
novelty in the design space of E2-MAC protocols.
We will study mechanisms to let nodes allocate enough resources (by turn-
ing/keeping the radio on) to handle increasing traffic load and load peaks in
a timely manner. By adaptively switching from one configuration to another
at run-time, e.g. by shortening the interval in-between two wake-ups when
sensing increasing load, nodes reach higher throughput rates in case of
high traffic, and switch back to high energy-efficiency at sparse low-rate
traffic. Although this may sound straightforward, countless non-trivial prob-
lems are certain to arise, as nodes will have to communicate their current
configuration among neighboring nodes, which is in turn certain to impact
on the energy-efficiency.

36 IAM-09-006

References
[1] K. Langendoen, “Medium access control in wirelss sensor networks,”

Nova Science Publishers, May 2008. Bookchapter.

[2] W. Ye, J. Heidemann, and D. Estrin, “An Energy Efficient MAC pro-
tocol for Wireless Sensor Networks,” IEEE Conference on Computer
Communications (INFOCOM), 2002.

[3] A. El-Hoiydi and J.-D. Decotignie, “WiseMAC: An Ultra Low Power
MAC Protocol for Multihop Wireless Sensor Networks,” ALGOSEN-
SORS, 2004.

[4] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), 2004.

[5] T. Van Dam and K. Langendoen, “An Adaptive Energy Efficient MAC
Protocol for Wireless Sensor Networks (TMAC),” Intl. Conference on
Embedded Networked Sensor Systems (SenSys), 2003.

[6] M. Buettner, G. V. Y., E. Anderson, and R. Han, “X-MAC: a short
preamble MAC protocol for duty-cycled wireless sensor networks,”
Intl. Conference on Embedded Networked Sensor Systems (SenSys),
2006.

[7] A. Varga, “The omnet++ discrete event simulation system,” European
Simulation Multiconference, 2001. http://www.omnetpp.org.

[8] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and H. Karl, “A
mobility framework for omnet++,” 3rd Intl. OMNeT++ Workshop, 2003.
http://mobility-fw.sourceforge.net.

[9] Texas Instruments CC1020, “Single-Chip FSK/OOK CMOS RF
Transceiver for Narrowband Apps in 402-470 and 804-940 MHz
Range,” http://focus.ti.com/docs/prod/folders/print/cc1020.html, last
visit March 2008.

[10] M. Baar, E. Koeppe, A. Liers, and J. Schiller, “The scatterweb msb-
430 platform for wireless sensor networks,” SICS Contiki Hands-On
Workshop, Kista, Sweden, 2007.

Scalable Video Streaming to Mobile Devices 37

6 Scalable Video Streaming to Mobile
Devices

Christian Spielvogel, University of Neuchâtel
christian.spielvogel@unine.ch

6.1 Introduction
Video streaming is a technique to transport frames from a sender to a
receiver where they are displayed as soon as they are received. The ad-
vantages of this frame based — immediate playback are the low start up
delay and the fact that no storage space is required by the receiver. Prob-
lems are caused by insufficient network or host resources that make real
time playback impossible. Effects from insufficient network resources are
congestion and packet loss. Effects from insufficient host resources are
lost or delayed pictures resulting from the fact that mobile devices are not
able to decode and downscale the received content in a timely manner.
A solution to these problems is provided by Scalable Video Streaming
based on Scalable Video Coding. Scalable Video Coding produces mul-
tiple dependent streams of the same content, called layers. The advan-
tage of these layers is the possibility of adapting the media characteristics
(frame rate, resolution, bit rate) without transcoding. The adaptation can
be performed in the temporal, spatial or quality domain. Scalable Video
Coding in the temporal domain can be applied to support heterogeneous
devices with different frame rates. Devices with sufficient resources get
the full frame rate (e.g., 30 frames per second), devices with limited re-
sources, like mobile devices, receive a limited number of layers resulting
in a lower frame rate (e.g., 15 frames per second).
An application scenario for Scalable Video Coding in the spatial domain is
the support of devices with different resolutions. For example an HDTV-
set with a resolution of 1650x1080 pixels would need all layers to render
the video in high quality without using interpolation – for a smart phone
it would be sufficient to receive only the base layer with a resolution of
320x480 pixels that can be displayed without discarding pixels.
A scenario for Scalable Video Coding in the quality domain is graceful
degradation. Graceful degradation is the process of selecting a couple of
enhancement layers that are not transmitted in case of insufficient network
bandwidth. By dropping descriptions it is possible to adapt the required
bandwidth of the stream to the available bandwidth of the network and

38 IAM-09-006

avoid random loss.
In the following sections I am going to explain Scalable Video Coding in
the temporal, spatial and quality domain in more detail.

6.2 Temporal Scalability
Temporal scaling is used to encode a raw video sequence into multiple
layers, each having the same spatial resolution but different frame rates.
Decoding only the base layer results in a lower frame rate than that of the
original stream. Each enhancement layer stores the missing frames, thus
increasing the frame rate with every enhancement layer that is decoded. A
block diagram for an encoder producing one base and one enhancement
layer can be found in Figure 6.1. According to [1] the base layer and

Figure 6.1: Block diagram temporal scalable encoder Scheme

enhancement layer are created in 6 steps. The steps 1 and 6 are identical
for the both layers whereas steps 2 to 5 are only required to produce the
enhancement layer.

1. The raw video is temporally down-sampled, transformed using the
discrete cosine transform (DCT) and quantized. Temporal down-
sampling is achieved by skipping frames. For example a down-
sampling ratio of 2:1 is achieved by skipping every second frame.

2. In order to produce the enhancement layer each frame is recon-
structed by inverse quantization and the inverse discrete cosine
transform

Scalable Video Streaming to Mobile Devices 39

3. The input for the enhancement layer is temporally up-sampled to
the original frame rate. An exemplary sampling rate of 1:2, can be
achieved by duplicating every frame.

4. The difference between the reconstructed and the original frames is
calculated, known as the residual.

5. The residual is transformed using the discrete cosine transformation
and quantization

6. The quantized coefficients of the (1) base- and (2) enhancement
layers are encoded using variable length coding

To decode the base and enhancement layers (1) variable length coding,
(2) inverse quantization and (3) inverse cosine transformation have to be
applied. The base layer frames are then temporally up-sampled and com-
bined with the difference information stored in the enhancement-layer. A
block diagram for a decoder can be found in Figure 6.2.

Figure 6.2: Block diagram temporal scalable decoder

6.3 Spatial Scalability
Spatial scaling is used to encode a video sequence into multiple layers
having the same frame rate but different spatial resolutions. When only
the base layer is decoded the spatial resolution of the resulting video is
below the one of the original stream. Decoding the enhancement layer
increases the spatial resolution to the original size. A block diagram for the
encoder can be found in Figure 6.3. According to [1] base layer and the
enhancement layer are created using 6 steps. Once again step 1 and 6

40 IAM-09-006

Figure 6.3: Block diagram spatial scalable encoder

are identical for the both layers whereas, steps 2 to 5 are only applied to
the enhancement layer.

1. The raw video is spatially down-sampled, transformed using DCT
and quantized to get the input for both layers

2. To produce the enhancement layer each frame is reconstructed using
inverse quantization and the inverse discrete cosine transform

3. Each frame is spatially up-sampled to the original size using interpo-
lation

4. For the enhancement layer each frame is up-sampled and subtracted
from the original image. This difference is known as the residual

5. The residual is transformed using the discrete cosine transformation
and quantized

6. The coefficients from the (1) base- and (2) enhancement layers are
encoded using variable length coding

In order to decode the (1) base- and (2) enhancement layers variable
length coding, inverse quantization and inverse cosine transformation have
to be applied. Each base-layer frame is spatially up-sampled and com-
bined with the residual stored in the enhancement-layer. A block diagram
of decoding process can be found in Figure 6.4.

Scalable Video Streaming to Mobile Devices 41

Figure 6.4: Block diagram spatial scalable decoder

6.4 Scalable Coding: Signal-to-Noise-Ratio
Scalability

Signal-to-noise ratio (SNR) scaling is used to code a video sequence into
multiple layers at the same frame rate and spatial resolution with differing
quantization accuracies. The DCT coefficients in the base layer are quan-
tized with a coarse quantizer and the subsequent differences to the original
quality are stored in the enhancement layers. A block diagram of an SNR-
scalable encoder can be found in Figure 6.5. The encoder produces one

Figure 6.5: Block diagram signal-to-noise scalable encoder

base layer and one enhancement layer. According to [1] the base layer is
created by transforming the raw video using the discrete cosine transform,
quantizing the coefficients and applying variable length coding. The differ-
ences between the highly quantized base layer and the original stream are
stored in the enhancement layer using the following steps:

42 IAM-09-006

1. The input for producing the enhancement layer is the quantized base
layer

2. The DCT coefficients are reconstructed by inverse quantization

3. The reconstructed DCT coefficients are subtracted from the original
DCT coefficients. The difference between the DCT coefficients is
called residual

4. The residual is quantized by a quantization parameter smaller than
the one of the base layer.

5. The quantized bits of each layer are coded using variable length cod-
ing

The steps for decoding a SNR scalable video can be found in Figure 6.6.
Both the base and the enhancement layers must be decoded using vari-

Figure 6.6: Signal-to-Noise Scalable Decoder Scheme

able length coding and inverse quantization. Following this base-layer is
modified by the differences stored in the enhancement layer.

References
[1] Dapeng Wu, Yiwei Hou and Ya-Qin Zhang, “Scalable video coding and

transport over broadband wirelessnetworks,” Proceedings of the IEEE,
vol. 89, pp. 6–20, Jan 2001.

Challenges in Domain Specific Information Retrieval 43

7 Challenges in Domain Specific Infor-
mation Retrieval

Claire Fautsch, University of Neuchâtel
claire.fautsch@unine.ch

7.1 Introduction
Over the last years the amount of electronic data constantly grew and with
it the need for efficient information retrieval systems. The data has not
only to be made available, but the user also wants to search the available
data to satisfy his information needs. A particular case is for example
the increasing number of electronically available scientific journals or the
emergence of web logs (blogs). In these cases an efficient domain specific
information retrieval system is needed. A computer scientist for example
will not look for relevant information regarding his domain in a collection
of papers issued from a biomedical journal. Consequently the information
retrieval system used by the computer scientist can be adapted to show a
maximum performance in the domain of computer science, taking account
of particularities such as technical language or formulae. The same would
be true for any other user looking for information in a particular domain.
Hence domain specific information retrieval raises various challenges. In
the remain of this technical report, we will present our current work in the
field of domain specific information retrieval by means of three different
domains.

7.2 Discussion
One of the main goals of domain specific information retrieval (DS IR)
is to optimize retrieval systems to efficiently retrieve relevant documents
from a collection containing documents from the given domain. Usually
the given domain would first be studied to distinguish characteristics and
particularities of the domain and then retrieval system would be adapted
to consider these.
In DS IR we might for example use a thesaurus or ontologies to extend
documents and queries and thus improve retrieval effectiveness. For ex-
ample while for a computer scientist “Windows” might obviously stand for
an operating system, in other domains this word has a complete other
meaning. By extending the query with “OS” and “Microsoft” for example,

44 IAM-09-006

the query is disambiguated. On the other hand two users might be study-
ing the same object, but using different terms such as for example biolo-
gists and medics. In our work, we mainly focus on three domains, namely
social science, blogsphere and biomedicine. In the following sections we
will give an overview of each of these domains, elaborate the various chal-
lenges brought up by them and present our solutions.

7.2.1 Social Science

Our first domain of interest is the social science domain. We conducted
several experiments on this domain using a German collection of biblio-
graphic records, the GIRT (German Indexing and Retrieval Test database)
corpus in its fourth version (GIRT4-DE) made available through the CLEF2

evaluation campaign. The collection contains 150,000 records from SO-
LIS (Social Science Literature) and FORIS (Current research in the field of
social science). Each record contains a title and abstract as well as manu-
ally added keywords extracted from a controlled vocabulary. Furthermore
we used a machine readable version of the German-English Thesaurus
for Social Science3 as well as 125 queries deployed in the domain specific
tracks of the CLEF evaluation campaigns from 2004 to 2008. For more
information on this collection see [1].
In addition to particularities due to the morphology of the German lan-
guage rather then the domain (e.g., compound words such as “Computer-
sicherheit” instead of “Sicherheit des Computers”), an interesting feature
of this collection is the availability of manually added keywords and of a
thesaurus. Due to these facts, the question if manually added keywords
really improve retrieval results aroused. In [2] we showed that for the given
collection manually added keywords actually improve retrieval results by
+13.5% (MAP4 from 0.2748 to 0.3119). However adding keywords man-
ually is expensive (time and money) if they are not added directly by the
author and a human annotator knowledgeable in the domain is needed.
We thus wanted to see if eventually automatically added keywords ex-
tracted from the thesaurus yield the same improvements. Based on the
Jacquard similarity, we extended each document with the k (k = 50 for our
tests) most adapted keywords from the available thesaurus. As presented

2http://www.clef-campaign.org/
3http://www.gesis.org/en/services/tools-standards/social-science-thesaurus/
4Retrieval measure used in IR to evaluate the quality of the returned results. It varies

between 0.0 (no relevant item found) to 1.0 (all relevant items found at the top of the
ranked list containing the results)

Challenges in Domain Specific Information Retrieval 45

in [2], we could not improve the mean average precision (MAP), in con-
trary MAP values decrease by 25.76%. By analyzing the results in detail,
we observed that we have an improvement for 22 queries compared to
manual expansion.
In a second step, rather then expanding documents we tried to expand
the queries. This is mainly interesting if the user searching for information
is not knowledgeable in the domain and thus the query formulation lacks
domain specific terminology. Our experiments did however not show any
improvements for the MAP (+0.31%). By analyzing the results in more
detail, we see that we have an improvement for 52 queries and a decrease
for 72 queries.
The main reason why automatic document and query expansion do not
yield the same improvement as manual expansion is the difficulty to take
into account context information for automatic expansion as would do a
human annotator.

7.2.2 Blogsphere

During the last years web logs, so called blogs, overwhelmed the World
Wide Web. Easy to use publishing tools, free web space as well as a
growing community promoted the popularity of blogs. Together with the
often subjective content of the posts, the growing amount of blogs con-
stitutes an interesting playground for domain specific information retrieval
and opinion minding.
To analyze this second domain of our choice we used the Blogs06 col-
lection made available through the TREC5 evaluation campaign. Among
others, this collection contains 3,215,171 permalink documents crawled
between December 2005 and February 2006. A total of 150 queries are
available for this collection, deployed in the Blog track during the 2006th
to 2008th editions of TREC. For a more detailed description of this corpus
see [3].
We pursuit two objectives in the blogsphere, first we wanted to improve fac-
tual retrieval and second propose an approach for opinion minding. The
aim of factual retrieval is to find blog posts relevant to a given query. The
first observations made showed that contrary to ad-hoc retrieval stemming
hurts retrieval performance and queries are very short and often proper
names or company names. Consequently we proposed to ignore stem-
ming and complete the index by using compound constructions as index-
ing units. Several test runs showed that both strategies would considerably

5http://trec.nist.gov/

46 IAM-09-006

improve retrieval, as shown in [4, 5]. Furthermore we used Wikipedia to
enlarge queries and thus obtained an average improvement of +2.75%
([5]).
The second objective was to propose a first basic framework for opinion
minding. The task is to automatically separate blog posts into opinion-
ated and non-opinionated posts and determine whether an opinionated
post contains a positive, negative or mixed opinion. We proposed two ap-
proaches based on characteristic vocabulary to assign one of four opinion
flags to each document (positive, negative, mixed or neutral). These ap-
proaches are still at a very early stage of development, but first results can
be found in [5]. A major conclusion is that before applying opinion detec-
tion features it is important to have a solid baseline retrieving documents
relevant to the given query.

7.2.3 Biomedicine

Last but not least, we investigated domain specific information retrieval
on the biomedical domain. Due to its very specific language the biomed-
ical domain provides interesting challenges for domain specific informa-
tion retrieval. Furthermore the growing availability of electronic versions of
biomedical journals claims highly efficient retrieval systems adapted to the
domain.
To evaluate information retrieval in this particular domain, we used a col-
lection of 162,259 documents extracted from 49 biomedical journals as
well as 36 queries expressing real information needs from biologists and
relating to one of 14 possible biological entities (e.g., antibodies or gene),
both made available through the TREC evaluation campaign.
As proposed already by others ([6]), one of our suggestions to improve
retrieval was to enlarge the queries with orthographic variants since the
orthography of several domain specific terms is not always well defined
in the biomedical domain (Creutzfeld-Jakob or Creutzfeldt-Jacob, Crohn
or Krohn, Nurr77 or Nurr-77). Due to the high density and importance
of specific words in biomedical documents, our second suggestion was
to give more weight to specific words in the query than to general words
(e.g., “D.N.A” is more important than “change”). To fulfill this assignment
we used the WordNet6 thesaurus. The results presented in [7] show that it
is important to have good baseline retrieval. These additional information
improve results but not on a large scale.

6http://wordnet.princeton.edu/

Challenges in Domain Specific Information Retrieval 47

7.3 Conclusion and Outlook
We analyzed three domains and tried to improve information retrieval on
these domains. After these experiments a few characteristics of domain
specific information retrieval can be pointed out. Each domain has its par-
ticularities and retrieval should be subsequently adapted to take account of
these. For each domain it is however important to have a solid baseline re-
trieval system. A good “general” retrieval model will also work in a specific
domain. A good method proved to be to first do baseline retrieval and then
add a second layer to the system adding domain specific features such as
query expansion or spell checking. Furthermore external resources, such
as Wikipedia, WordNet or thesauri can help to improve retrieval.
Our future attention will be on one side in eventually improving opinion
detection and on the other side in investigating new domains such as for
example intellectual property and prior arts search. Additionally we want
to present a generic model taking into account domain specific information
but usable on all domains without adaptation.

Acknowledgments This research was supported in part by the Swiss
NSF under Grant #200021-113273.

References
[1] M. Kluck, “Die girt-testdatenbank als gegenstand informationswis-

senschaftlicher evaluation,” in ISI (B. Bekavac, J. Herget, and M. Rit-
tberger, eds.), vol. 42 of Schriften zur Informationswissenschaft,
pp. 247–268, Hochschulverband fr Informationswissenschaft, 2004.

[2] C. Fautsch and J. Savoy, “Comparison between manually and automat-
ically assigned descriptors based on a German bibliographic collec-
tion,” in Proceedings of the 6th International Workshop on Text-based
Information Retrieval (TIR 2009), 2009.

[3] C. Macdonald and I. Ounis, “The TREC Blogs06 collection : Creating
and analysing a blog test collection,” DCS Technical Report Series,
2006.

[4] C. Fautsch and J. Savoy, “Stratgies de recherche dans la blogosphre,”
Document Numrique, vol. 11, pp. 109–132, 2008.

48 IAM-09-006

[5] C. Fautsch and J. Savoy, “UniNE at TREC 2008: Fact and opinion
retrieval in the blogsphere,” in In The Seventeenth Text REtrieval Con-
ference Proceedings (TREC 2008), 2008.

[6] S. Abdou and J. Savoy, “Searching in Medline: Query expansion and
manual indexing evaluation,” Information Processing & Management,
vol. 44, pp. 781–789, 2008.

[7] C. Fautsch and J. Savoy, “Ir-specific searches at trec 2007: Genomics
and blog experiments,” in The Sixteenth Text REtrieval Conference
(TREC 2007) Proceedings, 2007.

Testing and evaluating Distributed Algorithms 49

8 Testing and evaluating Distributed
Algorithms

Derin Harmanci, University of Neuchâtel
derin.harmanci@unine.ch

8.1 Introduction
While developping distributed algorithms are inherently difficult, their im-
plementation on a set of distributed machines that use message passing
as a communication means is also complicated and time-consuming. Un-
fortunately, there is no other way than an implementation for testing and
evaluation of an distributed algorithm. Although it is possible to implement
a distributed algorithm in a simulation environment for a single machine,
testing and evaluating an algorithm fully is not possible without an imple-
mentation on a testbed with physically distributed machines. Moreover,
the execution time of a distributed algorithm on multiple machines is po-
tentially much faster than a single machine simulation environment. In this
report, we focus on the challenges of implementing a distributed algorithm
on multiple machines and how to cut-down those implementation efforts
using the teDA framework that has been developped for classroom use.

8.2 Discussion
Having designed a distributed algorithm (based on message passing), we
would ideally like to transform its pseudocode into an implemetation in a
programming language without much effort. For such a transform, func-
tions that correspond to the initialization of the algorithm and to the actions
that should be taken by the algorithm upon receipt of messages should be
enough, as depicted in Figure 8.1. Although this transformation seems
simple, there are many issues to be handled for realizing it. The remaining
of the document discusses the challenges in this tranformation, introduces
of the teDA framework, points out how teDA addresses the challenges.

8.2.1 Challenges from pseudocode to implementation

The underlying challenges to implement a pseudocode with a program-
ming language is that apart from transforming the core code that cor-

50 IAM-09-006

Figure 8.1: Ideal implementation effort in transforming an existing pseu-
docode to a programming language.

responds to the distributed algorithm, we need to introduce other code
addressing several issues to enable a decently working implementation.
Those issues can be listed as follows:

• Messaging subsystem: This is a fundamental subsystem for the
functionality of any distributed system, which should implement the
sending and reception of the messages between seperate processes
of the distributed algorithm. The major challenge in the design of
the messaging system is providing the transparency in the message
transport. The distributed algorithm implementation generally does
not care where the source and destination of the messages are, it
just requests that a message is conveyed from one process to the
other through send() and receive() primitives. However, the pro-
cesses can be on the same machine, on seperate machines of the
same network or on different networks physically distant from each
other. The messaging subsystem should manage those different
cases without any visible distinction for the algorithm code.

• Control and monitoring: Since we think about a multiple machine
implementation it is not practical to think about a debugger. Thus,
the ability to monitor events or states of processes is necessary for
testing and debugging. Moreover, monitoring is also important for a
tested algorithm since external factors that effect algorithm execution
can be detected using such mechanism.

• Injecting failures and unexpected events: To fully test a dis-
tributed algorithm, one needs to test whether it is resilient to failures
and whether it reacts correctly upon unexpected events. For this rea-
son, a module that generates such failures and unexpected events
in a controlled manner is of great value.

Testing and evaluating Distributed Algorithms 51

• Deployment: Although seems to be a minor issue, deploying a
distributed algorithm implementation on multiple (possibly heteroge-
neous) machines is a very cumbersome and unavoidable task. Again
deployment should handle many transparency issues so that the al-
gorithm can just be deployed on selected machines and started by
the user in a simple manner.

• Topology generation: The virtual topology that is assumed by the
algorithm needs to be generated on the existing physical topology.
The user of the algorithm should be able to define the mapping be-
tween the virtual and physical topologies. Also, it should be possible
to generate randomly some known topologies to enable rapid testing
and evaluation of the algorithm.

8.2.2 teDA framework

As the previous section suggests, there are many issues that awaits a dis-
tributed algorithm designer for distributed environment realization. Mean-
while, an important observation is that all those issues are common to any
distributed algorithm (based on message passing), so a tool that provides
code modules to be reused and automates some tasks would help over-
come those challenges. That is exactly the goal of teDA (test and evaluate
Distributed Algorithms). Although some studies like teDA exist [1], teDA
was specifically designed for classroom use.
teDA [2] is designed as a middleware in Java language. The choice of
the middleware design and the Java language is no coincidence, because
teDA targets many transparency issues over heterogeneous platforms in-
cluding message passing service between different machines. By design,
the middleware expects that each process of the distributed algorithm is
a java class which is, generally speaking, named as a node application.
It also provides an additional specialized class called master application.
Master application class is not part of the target distributed algorithm but
is a control and monitor aid for the user. Several actions performed by the
master application are starting the deployment, starting and stoping the al-
gorithm execution and monitoring the other node applications and sending
specific messages to insert node failures or message delays.
teDA provides two simple-to-use programming interfaces for transforming
pseudocode to Java code. Both interfaces have the same philosophy
and we show only the simple interface here just to demonstrate the
ease-of-use of the provided interfaces:

52 IAM-09-006

public interface ApplicationLayer {
public void startExecution();
public void messageArrived(int msgType);
public void incommingBufferOverflow(int msgType);
public void outgoingBufferOverflow(int msgType);
}

The first two functions of the interface correspond exactly to the desired transfor-
mation shown in Figure 8.1, whereas the last two functions are added to control
message buffer overflows if required. With this interface we see that teDA is pro-
vides the ideal interface we need for transforming pseudocode to Java code.

8.2.3 Challenges addressed by teDA

Below we introduce the architecture of teDA as well as its different features
through an analysis of how it addresses the challenges mentioned in Section
8.2.1.

Figure 8.2: Communication Manager of teDA middleware is reponsible for
messaging.

Messaging subsystem: The core of the messaging subsystem is the Com-
munication Manager (CM) which is depicted in Figure 8.2. CM is the part of
teDA which provides the messaging service. It is replicated on each physical
machine on which the distributed algorithm runs. The sending of the messages
between the processes (nodes in the figure) of the same physical machine
(node machine in figure) is directly managed by the CM, while the messages
to be sent to distant machines are collected in a FIFO outgoing queue and
forwarded to the destination machine using a network routing layer. The distant
machines receiving the message resolve the target process for the message,

Testing and evaluating Distributed Algorithms 53

sends a notification to the corresponding process and puts the message to a
queue of messages of the same type. For transportation of messages between
distant networks teDA chooses to have machines which serve as gateways and
communication between distant networks always pass through those machines.
teDA installs a Gateway application on those gateway machines, This application
works like node applications but its task is to forward messages to (or receive
messages from) distant networks. Figure 8.3 below shows the distribution of the
middleware and how it abstracts the messaging between the processes (node
applications) of the distributed algorithm.

Figure 8.3: Distribution of teDA middleware components over multiple net-
work sites.

Control and monitoring & Injecting failures and unexpected events: teDA
mainly uses the messages sent from the master application to node applications
to address all those issues. Different type of messages serve for different
purposes. For example, the master application can send a ping message to
check whether a node application is alive, or it can send pause/resume messages
to pause/resume node applications. There is also a message type to set the an
additional delay before notification of node application for a message arrival.

Deployment: The deployment of the distributed algorithm is triggered by the
master application and it is handled by the gateway applications on gateway ma-
chines. The master application packages the distributed application code, teDA
middleware code, topology information and application specific configuration
information into a single package. It sends this package to the gateway machine
responsible for the local network. Then master application unpacks the package
in the gateway machine and starts teDA middleware and launces a gateway
application on the gateway machine. Once this is done the gateway application
reads the topology information and forward the package either on other machines

54 IAM-09-006

in the local network or to gateways of the distant networks. The gateway appli-
cations of the distant machines are then generated by the gateway application
of the local network. All the gateway applications unpack the packages on the
machines of their local network and start the node applications that are to be run
on each machine. When all node applications are up and running, gateway ap-
plications inform master application and the distributed application is ready to run.

Topology generation: Topology generation is done by parsing an input XML file.
The XML file structure directly reflects the physical topology where the distributed
application will run (the pyhsical machines are identified by their IP addresses).
The node applications that are to run on a given machine are listed inside the
XML entry for that machine. Also, each node application can have its customized
parameters, but those customized parameters needs to be parsed by the corre-
sponding node application.

8.3 Conclusion and Outlook
In this report, an overview of teDA framework has been discussed. We have seen
that teDA solves many issues of heterogeneity over network machines and it pro-
vides decent platform-independence for implementing distributed algorithms on
distrubuted machines. As a tool, teDA provides ready-to-use solutions for cum-
bersome tasks in implementing distributed algorithms and for this reason it is a
good candidate for easy prototyping of distributed algorithms. By the same to-
ken, it also serves well as a distributed algorithms course aid. With such a tool,
students can gain experience in algorithms following either client-server or peer-
to-peer paradigms, and evaluate their performances. The permenant/temporary
pausing mechanism allows testing fault-tolerance of algorithms. Deferred execu-
tion and random termination of processes (node applications) would also provide
algorithm development assuming dynamic inclusion and removal of nodes. Last
but not the least, it is also possible to evaluate an algorithm’s scalability for large
number of nodes using teDA.

References
[1] P. Urbán, X. Défago, and A. Schiper, “Neko: A single environment to simu-

late and prototype distributed algorithms,” Journal of Information Science and
Engineering, vol. 18, pp. 981–997, November 2002.

[2] S. Serbu, M. Schiely, Y. Thiessoz, M. Seifriz, D. Harmanci, M. Sitz, N. Juillerat,
B. Hirsbrunner, and P. Kropf, “teDA User Guide,” tech. rep., Universities of
Neuchâtel and Fribourg, 2009.

Transactional memory applied to Application Server 55

9 Transactional memory applied to
Application Server

Lucas Charles, University of Neuchâtel
lucas.charles@unine.ch

9.1 Introduction
While modern computers provide multiple cores, programming multi-threaded ap-
plications is still a hard and error prone task. In the context of Java EE, concurrent
applications usually rely on transactions to ensure the consistency of their data.
For instance, a web-shop does not want two consumers to buy the same item,
therefore, it needs to ensure that one cannot validate the purchase of an item that
might be sold out. To cover this scenatio, Java EE provides transactions through
its JTA specification. Which in turn is implemented by Java EE application server
such as JBoss. We define a set of operations for which one guarantee that every
operations take effect or none of them. If a transaction reaches the end of its
execution, it is said to commit, otherwise it is said to abort. A transaction has the
following properties (ACID) :

1. Atomicity : Every operations within the transaction will take effect if the
transaction commit.

2. Consistency : No data will be left in an intermediate state.

3. Isolation : One cannot read intermediate values.

4. Durability : Changes performed by a committed transaction cannot be re-
voked.

Usually, a rollback mechanism allows to restart an aborted transaction at the be-
ginning of its execution. A software transactional memory (STM), is a mechanism
first introduced by Shavit et al. [1] which relies on optimistic assumption to man-
age concurrency in a multi-threaded application. Nowadays, STM have gained
lots of reasearch interests due to the fact that multi-core machines have become
ubiquitous. Allowing more concurrency while avoiding the usage of locks and
boosting performance if persistence is not required from a web applications leads
to the following goals. Providing a concurrent stateful session bean for the Java
EE specification, which by running only in memory will avoid the cost of the per-
sistence layer. This work is closely related to the EJB 3.1 specifiaction that will
contain a singleton sessions bean to manage concurrent accesses. Also a com-
parable approch has been taken by Cachopo et al. [2], where they use a database

56 IAM-09-006

to ensure synchronization among distributed servers, whereas we did not con-
sider ditributed servers. For our experiment, we used LSA-STM developed by
Riegel et al. [3].

9.2 Discussion
The benchmark is implemented as a crossword game which can be played either
by human players or by computers to perform decent simulations. The experi-
ments consist of several java clients, accessing the sever to solve the game. For
the needs of the simulation and to ensure the consistency of the results through-
out the simulation, clients never solve the problem. They, instead perform random
reads and random writes. As stated before, concurrency is managed by using

J2SE JVM

Client #1

Client #2

Client #3

Test application

EJB container

Bean

Bean

Bean Data

layer

JBoss

Figure 9.1: Benchmark testing environment.

entity beans, a global lock and a STM. They ensure concurrency and have the
following properties :

• Entity Bean :

– Supported by the hsqldb, bundled with JBoss.

– Support some degree of concurrency.

– Will write things temporarily on the disk to ensure perstistence.

• Coarse-grained Locking :

– Stateful Session Bean, sharing data through static fields.

– We use a global lock which covers every shared data.

• Optimistic :

Transactional memory applied to Application Server 57

– A static field represent the grid, on which we call instance method.

– The grid methods are implemented using calls to the STM, to read or
write a word or a letter.

The last mechanism, because of its speculative execution allows the situations
presented in Figure 9.2, where conflicts can happen between several concurrent
accesses. Thus the STM has to resolve them.

w1

w2

w3

w1

w2

w3

w1

w2

w3

Figure 9.2: Three transactions concurrently entering words w1, w2, and w3

in the crossword application. Left. Transactions do not conflict and can
all commit. Center. Transactions entering words w1 and w2 conflict and
only one can commit. Right. All transactions conflict, but aborting the one
entering w2 allows the two others to commit.

9.3 Results
The results were influenced by three factors; the number of clients accessing
the server, the delay used to simulate a payload to avoid serialization due to
the network and the size of the grid used for the experiment. In Figure 9.3 we
present the results obtained for a grid of size 10x10. One can see that under
a big contention, and with few data to manage the entity bean outperforms the
STM. One can notice as well that the conflict rate for a delay of zero ms is null,
this is due to the serialization effect the network has, as the time to transfer a
request is by far longer than the execution of the read and write operations.
Another intersting result shown in Figure 9.4, is how the STM behaves regarding
the size of the grid, One can see that the size of the grid does not have a real
impact on the STM performance, whereas other techniques suffer when the grid
is getting bigger.

58 IAM-09-006

No delay 4 ms delay

of clients

th
ro

ug
hp

ut
 (

w
rit

es
/s

)

1 4 8 12 16 20 24 28 32

0
10

0
20

0
30

0
40

0
50

0
60

0

●
● ● ● ● ● ● ● ● ● ● ● ● ●

● Bean
Lock
STM

of clients

th
ro

ug
hp

ut
 (

w
rit

es
/s

)

1 4 8 12 16 20 24 28 32

0
20

40
60

80

●

●

●

●

●

●
●

● ● ● ● ● ● ●

● Bean
Lock
STM

8 ms delay Conflict rate (STM)

of clients

th
ro

ug
hp

ut
 (

w
rit

es
/s

)

1 4 8 12 16 20 24 28 32

0
10

20
30

40
50

●

●

●

●

●

●

●

●
●

● ● ● ● ●

● Bean
Lock
STM

of clients

co
nf

lic
t r

at
e

(%
)

1 4 8 12 16 20 24 28 32

0
10

20
30

40
50

60

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● delay 0 ms
delay 4 ms
delay 8 ms

Figure 9.3: Influence of the delay under high contention, with a 10x10
grid. Top left. No delay. Top right. 4ms delay between letters. Bottom
left. 8ms delay between letters. Bottom right. Conflict rate for the STM
strategy.

9.4 Conclusion and Outlook

In this experiment we compared three different techniques to manage concur-
rency in the context of Java EE web applications. We compared entity beans,
which are the most common way to achieve synhronization, with a rather un-
usual global lock scheme and another new method using STM. We implemented
a benchmark that allowed us to tune the degree of contention on the server. We
ran the experiment to cover a wide range of contention degrees and reported the
results. The results obtained show that the STM provides significant improve-
ments over the two other techniques and thus is a good candidate to implement a
lightweight concurrent stateful beans, especially when no persistence is required.

Transactional memory applied to Application Server 59

Entity bean Global lock

of clients

th
ro

ug
hp

ut

(w
rit

es
/s

)

1 4 8 12 16 20 24 28 32

0
10

20
30

40
50

●

●

●

●

●

●

●
●

● ● ● ● ● ●

● grid 10x10
grid 30x30
grid 50x50

of clients
th

ro
ug

hp
ut

(w

rit
es

/s
)

1 4 8 12 16 20 24 28 32

0
5

10
15 ●

● ● ●
● ● ● ● ● ● ● ● ● ●

● grid 10x10
grid 30x30
grid 50x50

STM

of clients

th
ro

ug
hp

ut

(w
rit

es
/s

)

1 4 8 12 16 20 24 28 32

0
20

40
60

80

●

●

●

●

●

●
●

●
●

●
● ●

●
●

● grid 10x10
grid 30x30
grid 50x50

Figure 9.4: Influence of the grid size with 4ms delay between letters. Top
left. Entity bean. Top right. Global lock. Bottom. STM.

Acknowledgment
This work was supported in part by European Union grant FP7-ICT-2007-1
(project VELOX).

References
[1] N. Shavit and D. Touitou, “Software transactional memory,” Distributed Com-

puting, vol. 10, no. 2, pp. 99–116, 1997.

[2] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory trans-
actions,” in Proceedings of SCOOL, 2005.

[3] T. Riegel, P. Felber, and C. Fetzer, “A lazy snapshot algorithm with eager
validation,” in In Proceedings of DISC, September 2006.

60 IAM-09-006

Event Stream Processing meets Software Transactional Memory 61

10 Event Stream Processing meets
Software Transactional Memory

Heiko Sturzrehm, University of Neuchâtel
heiko.sturzrehm@unine.ch

10.1 Introduction
Operations on data streams are done by so called Event Stream Process-
ing (ESP) applications [1]. They typically transform a high amount of low-level
events into fewer, more significant high-level ones. This conversion is usually per-
formed by different components that are traversed by the events. Components
are able to filter, aggregate or transform the data transported by the events.
Operations on events can be classified as either stateless or stateful. For state-
less components, the output stream only depends on the individual input events,
e.g., when filtering out events whose values are below a certain threshold. It is
easy to improve the throughput of stateless components by just replicating them.
On the other hand, stateful components process events that depend on other
events or on some state stored by the component, e.g., when computing the
aggregate value of the last n events. In this case multiple instances would have
to maintain their common state consistent. Events usually have to be processed
in a certain order by a stateful component, either because of interaction between
the events or because the state of the whole component relies on an ordered
processing of the events. As a consequence, parallel or out-of-order processing
is typically not feasible.
A solution to this parallelization problems can be software transactional mem-
ory (STM) [2]. It will dynamically detect dependencies between events, if any,
and will sequentialize the processing only when necessary (possibly delaying, or
aborting and restarting some transactions). Without speculative execution, ESP
components would not only have to execute events sequentially one at a time,
but may have to wait idle when events are not received in the right order. As we
shall see, the increased parallelism of merging ESP and STM yields substantial
performance benefits.

10.2 Discussion
A first approach to merge ESP and STM was proposed by Brito et al. [3] where
the TinySTM [4] was altered. A major disadvantage of this work is the strong
connection to the LSA algorithm used by TinySTM. In later work (TM-Stream [5]),
the DSTM2 [6] framework was used. It allows to apply different STM algorithms.

62 IAM-09-006

10.2.1 Requirements

Both systems make some assumptions about the way ESP components behave
and about the environment.
First, the events receive a logical timestamp as they enter the system. These
timestamps need to be unique. To keep that assumption valid throughout the
system, each time an event is discarded (e.g., a filter that drops an irrelevant
event) a null event is inserted to carry the timestamp through the system.
Second, the algorithms written by the user to process the events should obey
certain constraints. All user defined functions should guarantee progress. Fur-
thermore, from within a transaction no external actions can be executed.
Third, we assume that a node has sufficient memory to keep (out-of-order) events
in memory until they can be processed and committed.
Finally, we assume that the connections between the components are reliable
and events cannot be lost.

10.2.2 Enhanced Component

A stateful component enhanced with support for speculative execution is similar
to a regular component from the outside. It supports input and output queues.
The main difference is that while events in the input queues may be unsorted, in
the output queue, they will be sorted according to their timestamps.
An enhanced ESP component has several threads working in parallel. The num-
ber of threads typically depends on the processing capabilities (number of cores)
of the system that hosts the component. Each thread can access the input queues
and retrieve events to be processed. The manipulation of the event is performed
in the context of a transaction, which means that modifications are invisible to
other threads until the transaction commits.
The STM-enhanced components use an underlying timebased STM (TinySTM [4]
or DSTM2 [6]) that utilizes a shared commit counter to maintain consistent snap-
shots of memory locations read by transactions without incurring the cost of in-
cremental validation. Commit timestamps are essentially used to linearize trans-
actions and detect whether the content of a memory location can be safely ac-
cessed (i.e., is consistent with the transaction execution order). We rely on the
use of commit timestamps in our speculative parallelization approach.
Unlike the classical behavior of an STM, transactions cannot complete in any or-
der and threads do not automatically commit their transactions. Instead, transac-
tions have preassigned commit timestamps (determined according to the times-
tamp of the associated events). A thread checks if a transaction can commit by
comparing its timestamp with the current commit counter of the component. If
both are equal, the transaction commits and the event can be sent to the output
queue. Otherwise, the whole transaction is suspended and inserted in a waiting
list. Each time a new event is processed, the list is checked to see if a waiting

Event Stream Processing meets Software Transactional Memory 63

transaction can now be committed. It may happen that a transaction in the waiting
list is aborted due to a conflict with another transaction. In that case it is restated.
As for a regular ESP component, the developer of an enhanced ESP component
must provide a function that implements the actual event processing, which shall
be protected by a transaction. In addition, s/he may provide other functions which
will be executed in different states of the transaction, e.g., after a successful com-
pletion of a transaction.

10.2.3 Evalution
In order to evaluate our proposals, we are showing an excerpt of the TM-Stream
results. Further information can be found in [3] and [5]. First, TM-Stream is com-
pared with a common sequential component. The tests were run on an 16-core
machine with 4 AMD QuadCore processors at 2.20 GHz running Linux 2.6.25
(64-bit) and Java 1.6 10. The runtime of all experiments was 20 seconds with a
warmup period of 1 second. Each point in the following graphs represents the
average of three measurements.
The sample application network consists of 5 components as shown in Fig-
ure 10.1. Events are generated in the Input Adapter and processed in a Stateless
Component, which can mix the order of the event as they are processed by sev-
eral parallel threads with a random process time (0 ≤ process time < 100ns).
Afterwards, the events are processed in a Stateful Component, which receives
the events in the sequence given by the Stateless Component but have to pro-
cess them in order. Then, the events are checked in the Correlator and, finally,
they are collected in the Output Adapter that checks their order and produces the
statistics.

Correlator Output AdapterInput Adapter Stateless Component Stateful Component
Figure 10.1: Streaming setup

The stateful sequential component first sorts incoming events and then processes
them in order. For the TM-Stream component, we consider a processing method
where every 23rd event has a concurrent access to a local state, i.e., event ei
must be committed before the events ei+(n∗23)∀n > 0 can be processed. The
prime number 23 was chosen to avoid possible side effects between numbers of
threads and the events, since there wouldn’t be a speed-up anymore if we have
less local states then parallel threads. As already proposed in [3], a predictor is
used to delay the processing of those events to minimize aborts. In our case no
event is processed if it is more then 22 time units in the future, which makes it a
perfect predictor without any abort (except upon conflicting transactions).

64 IAM-09-006

10 100 1000
0

2

4

6

8

10

12

14

16

(a) Variable Threads and 0% Contention.

10 100 1000
0

1

2

3

4

5

6

7

8

(b) Variable Contention and 8 Threads.

Figure 10.2: Speed-up of events arriving out-of-order.

For the experiments, the stateless component consists of 8 parallel threads that
can produce events out-of-order. The results is shown in Figure 10.2(a). From
the figure one can observe that, with increasing processing time per event, the
speed-up of the TM-Stream component (with respect to the sequential compo-
nent) improves. Apparently, each configuration has an optimum that is related to
the processing time and the number of parallel working threads. At that point, all
threads are fully utilized. This behavior is reflected by the speed-up figure in which
the speculative components with more than 1 thread reach a maximum value and
then remain flat. Figure 10.2(a) also gives a good indication of the scaling with
multiple threads: the speed-up almost reaches the number of threads, which is a
very good result.
In another experiment we artificially generated contention, i.e., a certain amount
of events are also accessing the local state of their following events. The TM-
Stream component is using 8 threads in parallel for this setup and the events
arrive out-of-order. As a result the abort rate of the STM is increased and events
have to be reprocessed, which lowers the speed-up significantly. This becomes
apparent in Figure 10.2(b) where the speed-up is reduced dramatically with higher
contention. Finally, with more than 20% contention, TM-Stream becomes slower
than the sequential implementation.

10.3 Conclusion and Outlook
In this technical report we showed a method to improve parallel processing in
event stream processing. For speculative processing of events in parallel and
delay the commit of the associated transaction until we have successfully pro-
cessed preceding events, a software transactional memory is used. Both sys-
tems can handle ordered as well as unordered incoming events. Within a reason-

Event Stream Processing meets Software Transactional Memory 65

able processing time (≥ 100µsec) they scales almost linearly with the number of
threads for stateful components. Unfortunately this good scaling can be annihi-
lated through too much contention. Nonetheless it can reduce the working hours
for parallelizing ESPs.

Acknowledgment
This research was partly supported by the Swiss National Science Foundation
under grant number 5005-67322 (NCCR-MICS).

References
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widow, “Model and issues

in data stream systems,” in Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems (PODS’02),
(Madison, USA), pp. 1–16, ACM Press, New York, NY, June 2002.

[2] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural support
for lock-free data structures,” in Proceedings of the Twentieth Annual Interna-
tional Symposium on Computer Architecture, 1993.

[3] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber, “Speculative out-of-order
event processing with software transactional memory,” in Proceedings of the
Second Conference on Distributed Event-Based Systems, (Rome, Italy), July
2008.

[4] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of word-
based software transactional memory,” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2008.

[5] H. Sturzrehm, P. Felber, and C. Fetzer, “Tm-stream: an stm framework for
distributed event stream processing,” in Proceedings of the 23rd IEEE Inter-
national Parallel and Distributed Processing Symposium, 2009.

[6] M. Herlihy, V. Luchangco, and M. Moir, “A flexible framework for implement-
ing software transactional memory,” in OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, (New York, NY, USA), pp. 253–262, ACM, 2006.

66 IAM-09-006

Reliable Multicast in IP-based Wireless Sensor Networks 67

11 Reliable Multicast in IP-based Wire-
less Sensor Networks

Gerald Wagenknecht, University of Bern
wagen@iam.unibe.ch

11.1 Introduction
A Wireless Sensor Network (WSN) consists of a number of sensor nodes, which
may run different applications for different tasks such as event detection, local-
ization, tracking, and monitoring. Such applications should be configured and
updated during the life-time of the sensor nodes and over the network [1]. An
update with many unicast connections to the nodes is very inefficient and con-
sumes resources such as bandwidth and energy. Thus it is obvious that multicast
communication may benefit the management of WSNs by reducing the number of
transmitted packets. To access WSNs via the Internet, a IP-based communication
is required [2]. Thus multicast communication should be IP-based as well.
Numerous research has been done about multicast in WSNs. In [3] a multicast
protocol called BAM (Branch Aggregation Multicast) is presented, which supports
single hop link layer multicast and multi-hop multicast via branch aggregation.
VLM2 (Very Lightweight Mobile Multicast) [4] is a multicast routing protocol for
sensor nodes, which provides multicast from a base station to any sensor node,
unicast connections from a sensor node to the base station, and mobility. In [5]
the authors present an effective all-in-one solution for unicasting, anycasting and
multicasting in WSNs. The authors of [6] adapt ADMR (Adaptive Demand-driven
Multicast Routing), a multicast protocol for MANETS, on a real wireless sensor
node (MICAz). The authors of [7] analyze IP Multicast and show that it is possible
to use it in WSNs. Further there are several multicast solutions for WSNs which
are based on the geographical position of the sensor nodes in the network [8, 9].

11.2 Designing Multicast in WSNs
Because energy, memory and CPU power are limited in WSNs, existing multicast
solutions for wired networks can not be simply ported to WSNs, This implies the
following challenges. In wired networks, routers are handling packet replication
and forwarding, clients just send and receive simple IP UDP datagrams. Because
there are not dedicated routing nodes in WSNs routing functionality for IP Multi-
cast would need to be introduced into each sensor node. Group management is
normally concentrated on the routers that communicate with each other to handle
multicast trees. The management for groups and multicast trees requires memory
and processing power, which is limited on sensor nodes. In general, IP Multicast

68 IAM-09-006

is designed to scale on large network groups with multiple receivers and senders.
In practical WSNs typically the amount of nodes is rather low. Also the amount of
active trees and general management communication should be kept to a mini-
mum. Existing Overlay Multicast [10] solutions (such as Scribe/Pastry, CHORD,
Bayeux) are not taking the wireless nature and limited capabilities of sensor nodes
into account. Several other issues concerning liveliness, wireless communication
and collisions exist. Also reliability for a WSN multicast solution would also be
desirable, which are required by code updates and other critical tasks.
Multicasting in WSNs can be designed in two different ways, reliable IP Multicast
and Overlay Multicast as described in [11]. Both approaches have source-driven
and receiver-driven designs and are centrally managed as well as decentrally.
We will distinguish between two node types. Branching nodes have to duplicate
packets and store state information about receivers and/or about other branching
nodes. Forwarding nodes have less or no information about the multicast state
and just forward the multicast data to one neighbor. We will also limit our discus-
sion to core-based trees, where only the dedicated root node will disseminate the
data. Our Overlay Multicast protocol implementation is called Sensor Node Over-
lay Multicast (SNOMC) protocol, and our IP Multicast adoption is called Reliable
IP Multicast (REMC) protocol. In this report we will only look at Overlay Multicast
/ SNOMC (see Figures 11.1(a) and 11.1(b)).

(a) centralized (b) decentralized

Figure 11.1: Overlay Multicast.

11.2.1 Overlay Multicast
For the source-driven scenario we can use a decentralized as well as a central-
ized approach. In the decentralized approach, the source sends the list of all
receivers of the multicast data to its one-hop neighbors. The neighbor nodes
check if all receivers in the list can be reached through which next-hop neigh-
bors. If nodes from the list can be reached via different neighbors, the list is split
and forwarded to the respective neighbors. The node splitting the list becomes a
branching node. UDP connections for the overlay network links are established

Reliable Multicast in IP-based Wireless Sensor Networks 69

between the source, every forwarder, the branching node and the receivers when
the corresponding multicast tree becomes active. New nodes are added or re-
moved to/from the multicast tree by sending a join/leave message from the source
as described before. Only when a tree is inactive, new nodes can be added. Ev-
ery node updates its role accordingly to the new members. Upon reactivation of
the modified tree, the overlay link connections are opened between all members
of the tree. Then the data is transmitted using this overlay links.
In the receiver-driven decentralized approach, receivers send the join message
to their neighbor responsible for the default route to the source. Every node on
the route to the source becomes a forwarder or a branching node, if it is already
a forwarder. Every node prepares its UDP overlay links to the next neighbors
accordingly. Receivers that want to leave a group send a leave message towards
the source. Forwarders and branching nodes on the path update their status and
forward the leave message further.
In the source-driven centralized approach, the source node determines all re-
quired branching nodes ahead. Therefore, the source also creates the complete
distribution tree that is required for a multicast group. The branching nodes are
then notified, process the information and further forward these notifications. For-
warding nodes have no additional information and tasks.
For the centralized receiver-driven approach, the join/leave messages from the
receivers are forwarded to the source, which manages the tree as described for
the source-driven centralized approach.

11.2.2 Reliability

To support end-to-end reliability in overlay multicast, we design a simple mech-
anisms based on intermediate caching on branching nodes, negative ACKs and
a closing positive ACK. Every packet has a sequence number. If a packet gets
lost, the receiver sends an according NACK message back to the next branching
node, which retransmit the lost packet. When all packets successfully arrived the
receiver sends a closing positive ACK to the source. On branching nodes the
closing positive ACKs are collected and forwarded together to the next branching
node or source.

11.2.3 Implementation and Evaluation

We implemented source-driven decentralized mode of SNOMC in the OMNeT++
simulator. SNOMC is embedded in our IP-based protocol stack and shown in
Figure 11.2(a). The protocol stack contains a beacon-less 802.15.4 MAC proto-
col, the Hop-to-Hop Reliability (H2HR) protocol to support reliability for the upper
transport protocols, the TCP Support for Sensor Nodes (TSS) protocol to support
optimizations for TCP, and our both multicast protocols SNOMC and REMC. To

70 IAM-09-006

optimize the performance of the protocols we designed a cross layer interface. All
protocols can exchange information across the layers.

(a) Protocol stack. (b) Simulation scenario

Figure 11.2

We compared source-driven decentralized mode of SNOMC with UDP and
TCP/TSS. The scenario is shown in Figure 11.2(b). It is a grid with 64 nodes.
Using UDP and TCP we have three connections from node 0 to nodes 7, 56, and
63. Using SNOMC we have the according distribution tree. We transmit 1000
bytes from the source to the receivers. The hop-to-hop reliability is ensured using
H2HR. Using UDP we use a simple NACK-based end-to-end reliability mecha-
nism.
The results of the simulation are shown in Figures 11.3. As expected the multicast
communication with SNOMC (d/s) is more efficient in terms of time and number
of transmitted packet compared with UDP and TCP.

(a) Distribution time. (b) Number of transmitted packets.

Figure 11.3: Comparison of SNMOC (d/s), UDP/E2E, and TCP/TSS.

Reliable Multicast in IP-based Wireless Sensor Networks 71

11.3 Conclusion and Outlook
We introduced different schemes of multicast communication in WSNs and pre-
sented Overlay Multicast in more detail. Further we presented a simple end-to-
end reliability mechanism based on negative ACKs and a closing postive ACK.
We showed that our SNOMC (d/s) protocol reduces the transmission cost sig-
nificantly compared with UDP and TCP. The main weakness of the current state
of the work, that we only consider static routing tables. We will think about to
combine the multicast schemes with a kind of on-demand routing scheme and
afterwards we can compare both possibilities and see how much it costs to es-
tablish the route (and so the tree) on-demand.
The next steps are completing the 4 modes of SNOMC and the developing of
REMC (integration into IP Multicast / IGMP). Further, we want to compare our
solution with Directed Diffusion and FROMS [12]. And at least we want to imple-
ment the protocols on real sensor nodes. We want to integrate them into Contikis
uIP / SICSLoWPAN protocol stack.

References
[1] G. Wagenknecht, M. Anwander, T. Braun, T. Staub, J. Matheka, and S. Mor-

genthaler, “MARWIS: A Management Architecture for Heterogeneous Wire-
less Sensor Networks,” in WWIC’08, (Tampere, Finland), pp. 177–188, May
2008.

[2] M. Anwander, G. Wagenknecht, and T. Braun, “Management of Wireless
Sensor Networks using TCP/IP,” in IWSNE’08, (Santorini Island, Greece),
pp. 1–8, June 2008.

[3] A. Okura, T. Ihara, and A. Miura, “BAM: Branch Aggregation Multicast for
Wireless Sensor Networks,” in MASS’05, (Washington, DC, USA), Novem-
ber 2005.

[4] A. Sheth, B. Shucker, and R. Han, “VLM2: A Very Lightweight Mobile Mul-
ticast System For Wireless Sensor Networks,” in WCNC’03, (New Orleans,
LA, USA), pp. 1936–1941, March 2003.

[5] R. Flury and R. Wattenhofer, “Routing, Anycast, and Multicast for Mesh and
Sensor Networks,” in INFOCOM’07, (Anchorage, Alaska, USA), pp. 946–
954, March 2007.

[6] B. Chen, K. Muniswamy-Reddy, and M. Welsh, “Ad-Hoc Multicast Routing on
Resource-Limited Sensor Nodes,” in REALMAN’06, (Florence, Italy), pp. 87–
94, May 2006.

72 IAM-09-006

[7] J. S. Silva, T. Camilo, P. Pinto, R. Ruivo, A. Rodrigues, F. Gaudncio, and
F. Boavida, “Multicast and IP Multicast Support in Wireless Sensor Net-
works,” Journal of Networks, vol. 3, no. 3, pp. 19–26, 2008.

[8] D. Koutsonikolas, S. Das, Y. C. Hu, and I. Stojmenovic, “Hierarchical Ge-
ographic Multicast Routing for Wireless Sensor Networks,” in SENSOR-
COMM’07, (Valencia, Spain), pp. 347–354, October 2007.

[9] J. A. Sanchez, P. M. Ruiz, and I. Stojmenovic, “Energy Efficient Geographic
Multicast Routing for Sensor and Actuator Networks,” Computer Communi-
cations, vol. 30, no. 13, pp. 2519–2531, 2007.

[10] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A
Survey of Application-Layer Multicast Protocols,” Communications Surveys
& Tutorials, vol. 9, no. 3, pp. 58–74, 2007.

[11] G. Wagenknecht, M. Anwander, M. Brogle, and T. Braun, “Reliable Multicast
in Wireless Sensor Networks,” in FGSN’08, (Berlin, Germany), pp. 69–72,
September 2008.

[12] A. Förster and A. L. Murphy, “FROMS: Feedback Routing for Optimizing Mul-
tiple Sinks in WSN with Reinforcement Learning,” in ISSNIP’07, (Melbourne,
Australia), pp. 371–376, December 2007.

Cooperative Cognitive Context-aware Composable (Co)4 Virt. WMNs 73

12 Cooperative Cognitive Context-
aware Composable (Co)4 Virtual
Wireless Mesh Networks

Torsten Braun, University of Bern
braun@iam.unibe.ch

12.1 Introduction
Roaming is common in today’s cellular wireless networks based on Wireless
LAN or GPRS network access. Customers registered at one network operator
/ provider (e.g., operator A in cf. Fig.12.1) can get network access after register-
ing at another operator (e.g., operator B). Both operators must agree on a roam-
ing agreement in advance, which regulates the terms and conditions of mutual
network access by the other partner’s customers.

Figure 12.1: Roaming in Wireless Networks

12.2 Wireless Mesh Networks
Wireless mesh networks consist of wireless routers and can extend wireless net-
work coverage in urban areas, provide connectivity in rural or developing areas,
provide communication infrastructure in emergency situations, where no network
infrastructure exists, interconnect sensor or vehicular networks with infrastructure
networks, or provide backbone networks for wireless community networks. In
contrast to cellular wireless networks, multiple wireless hops are on a communi-
cation path.

74 IAM-09-006

12.2.1 Roaming and Cooperation in Wireless Mesh Net-
works

Also in such a wireless mesh network environment roaming makes much sense.
In this case, roaming is implemented by allowing a user registered at operator
A to connect to a wireless mesh node operated by operator B (B1in Fig. 12.2).
B1 then forwards the data to one of the mesh nodes of A (A1). The data is then
forwarded towards the fixed network of B, either via mesh nodes of B only (if at
all possible) or via mesh nodes of both A and B.
Roaming requires that operators / providers cooperate with each other. A coop-
eration agreement must be established among them that defines the rules and
procedures of the inter-provider cooperation. For example, it should be defined
what kind of foreign customers can get access to an operator’s network, which
are the services to be offered, and what kind of pricing scheme will be applied.
In the case of cooperation, different data flows among the mesh nodes will occur.
Management information within a operator’s network will be exchanged among
the nodes belonging to a single operator, while information specifying the type of
inter-domain cooperation will be exchanged among nodes belonging to different
operators.

Figure 12.2: Cooperative Wireless Mesh Network

A valid question to be discussed is whether operators should at all be willing to co-
operate with other operators. However, there are several benefits for cooperation
in wireless mesh networks:

Cooperative Cognitive Context-aware Composable (Co)4 Virt. WMNs 75

• By sharing wireless mesh nodes among each other, the network coverage
for all cooperating operators can be increased.

• Sharing resources such as wireless mesh nodes and frequencies can re-
duce the equipment and operation costs of a wireless mesh network.

• Interferences can be reduced by reducing the transmission power required
to reach a close node of another operator instead of a far node of its own,
cf. Figure 12.3.

• In the same scenario, communication with far nodes typically requires us-
age of lower bit rates than in case of close nodes. Therefore, the commu-
nication lasts longer and the frequencies are occupied for a longer time.
Communication with close nodes of another operator is more efficient in
terms of radio resource usage.

Figure 12.3: Cooperation in Wireless Mesh Networks

12.2.2 Virtual Wireless Mesh Networks

Cooperation in wireless mesh networks can be implemented by virtualization
techniques. A mesh nodes belongs to a certain operator, but different mesh rout-
ing entities can be run on such a physical mesh node. This may result in multiple
different virtual mesh nodes, one for each operator to be supported, cf. Fig. 12.4.
Since wireless mesh nodes are expected to run Linux based operating systems,
virtual machines can be used for implementing multiple virtual mesh nodes on a
single physical node. To support virtualization on lower layers (MAC, physical),
different frequencies can be used (frequency multiplexing). Alternatively, time or
code multiplexing could be applied.

12.3 Cognitive Wireless Mesh Networks
Wireless mesh nodes should be managed in an autonomic way in order to allow
automatic management and to limit management costs. However, wireless mesh

76 IAM-09-006

Figure 12.4: Virtual Wireless Mesh Networks

nodes are not always physically accessible, e.g., when placed on roofs that are
difficult to access or in areas, where land owners do only allow infrequent physical
access. Disruptions and failures must be expected also due to the operation of
wireless mesh nodes in rough environments, e.g., in alpine environments with low
temperatures and strong winds. Therefore, automatic recovery from disruptions
or failures is required. Moreover, configuration inconsistencies must be detected
and repaired. We propose a cognitive and context-aware management approach
to select the most appropriate parameters and to optimize resource usage based
on learned experiences considering context information, e.g., location information
or environmental data. The final goal of such a cognitive envronment is to provide
self-managing, self-optimizing, and self-healing wireless mesh networks.

12.3.1 Cognitive Networks

A cognitive network is a network with a cognitive process that can perceive cur-
rent network conditions, and then plan, decide, and act on those conditions [1].
Figure 12.5 the OODA (observe, orient, decide, act) process: The network and
physical environment is observed, relevant observations are extracted and based
on previously learned experiences a decision is taken. The decision results in
several actions such as reconfiguration of network elements. The learning pro-
cess stores the decisions, the previous network / environment state, the decisions
taken, and the resulting network / environment state. Thus, we can build some
experience, which actions under which conditions are successful or not. Learning
can be assisted by artificial intelligence and machine-learning techniques. Fu-
ture decisions should take end-to-end goals such as Quality-of-Experience (QoE)
monitored on application layers into account.

Cooperative Cognitive Context-aware Composable (Co)4 Virt. WMNs 77

Figure 12.5: OODA Principle in Cognitive Networks

12.3.2 Cognitive Mesh Node Architecture

Figure 12.6 shows a possible cognitive wireless mesh node architecture. The
node communicates via external interfaces to other components such as the op-
erator to which it belongs in order to exchange configuration and monitoring in-
formation, peer mesh nodes in order to exchange measurement or cooperation
information, network sensors in order to retrieve network status information and
measurements, as well as other physical sensors providing external context infor-
mation such as humidity or location information.

Figure 12.6: Cognitive Mesh Node Architecture

The internal node architecture is based on a cross-layer architecture. We assume
that we have a layered design with traditional protocols such as physical layers,

78 IAM-09-006

MAC protocols, routing protocols, transport protocols, and application layer pro-
tocols, where the latter two are only needed for end systems supporting end-user
applications. The individual protocol elements consist of functions required by the
protocol to be implemented, but also include cognitive elements that allow to de-
cide about the parameters and operation modes to be configured for the respec-
tive protocol. Each wireless mesh node has a Cognitive Management & Control
Plane, which interacts with the cross-layer protocol stack to set parameters and
modes of all protocol layers.
The main part of this Cognitive Management & Control Plane is the Cognitive
Controller as the cognitive decision making unit. It performs reasoning, triggers
actions, and employs learning strategies to optimize system and network oper-
ation over time based on historical information. It collaborates with optimization
modules and selects the optimization mechanisms depending on the type of the
problem and the policies applied. The Cognitive Controller makes its decisions
based on monitoring information retrieved from the protocol stack through the
cross-layer interface, external context data available through, e.g., sensorial in-
formation, and information based on the historical data stored in the Cognitive
Knowledge Repository.
The Cognitive Knowledge Repository, which has been insipred by [2], assists
the Cognitive Controller by storing information elements such as protocol con-
figurations and parameters, resulting performance as well as QoE parameters
that have been measured by a QoE measurement entity linked to the application
layers. The Cognitive Knowledge Repository holds information gathered from ex-
ternal context sources (e.g. external spectrum sensors) and peers. It is in charge
of exchanging information with peers to facilitate distributed optimizations. This
is necessary to be able to optimize performance parameters across the whole
network.
For scalability and robustness, we explore Peer-to-Peer concepts for exchanging
such knowledge information with peer nodes. The set of Cognitive Knowledge
Repositories of all nodes forms a distributed knowledge plane that holds network
wide information. In the same way, management functions located in the Cog-
nitive Management & Control Plane can access the information at the Cognitive
Knowledge Repository and decide based on that about management operations
to be performed. By coordinating decisions among peers, distributed cross-layer
optimization will be possible. While the cross-layer approaches in [3] are limited
to single nodes, we allow cross-layer information exchange between nodes.

12.4 Conclusion and Outlook
We propose the concept of cooperative wireless mesh networks in order to im-
prove the efficiency and operating costs of a wireless mesh network infrastructure.
To automate network management, self-* properties shall be achieved by a cog-
nitive wireless mesh network architecture. Specific learning algorithms inspired

Cooperative Cognitive Context-aware Composable (Co)4 Virt. WMNs 79

by phenomena observed in nature must be developed.

References
[1] R. W. Thomas, D. H. Friend, L. A. Dasilva, and A. B. Mackenzie, “Cognitive

networks: adaptation and learning to achieve end-to-end performance objec-
tives,” Communications Magazine, IEEE, vol. 44, pp. 51–57, Dec. 2006.

[2] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A knowledge
plane for the internet,” in SIGCOMM ’03: Proceedings of the 2003 confer-
ence on Applications, technologies, architectures, and protocols for computer
communications, (New York, NY, USA), pp. 3–10, ACM, 2003.

[3] V. Srivastava and M. Motani, “Cross-layer design: a survey and the road
ahead,” Communications Magazine, IEEE, vol. 43, pp. 112–119, Dec. 2005.

80 IAM-09-006

Supporting Wireless Mesh Networks during their Life Cycle 81

13 Supporting Wireless Mesh Net-
works during their Life Cycle

Thomas Staub, University of Bern
staub@iam.unibe.ch

13.1 Introduction

Wireless mesh networks (WMN) are evolving to an important access technology
for wireless broadband services. They provide a cost efficient way to intercon-
nect isolated networks as well as to enhance wireless network coverage. WMNs
usually consist of static mesh routers and mobile or static mesh clients. Both sup-
port multi-hop communication and may act as routers. WMNs offer a robust and
redundant communication infrastructure. As in every other network, a WMN and
services running on top of it traverse a life cycle, which is split into the following
four parts (see Figure 13.1):

Development: In order to provide new services to the customer, the network and
the protocols have to be specified, implemented, and evaluated. Usually,
these development steps are performed in a network simulator. Afterwards,
the protocols and services have to implemented on the target platform.

Testing: During the testing phase, the services and network are tested on the
target platforms. Therefore the protocol and service specifications as well
as the simulation code has to be migrated and then extensively tested on a
real test bed (pre-deployment testing).

Deployment: After the pre-deployment testing the network can be roll out and
deployed. The locations of the network nodes have to be specified, the
software has to be deployed on the target nodes, and the network configu-
ration has to be setup and distributed.

Maintenance: As soon as the network has been deployed, the maintenance
phase starts. During maintenance software updates have to be applied
to the network nodes operating system to fix software bugs and to include
new functionality. Moreover, the network has to be reconfigured to meet the
changing requirements of the users. New requirements may further lead to
new development phases.

82 IAM-09-006

Ma
int
en
an
ce

Development

Te
sti
ng

Deployment

Figure 13.1: WMN life cycle with four phases

13.2 Challenges
In all phases of the WMN life cycle, challenges for the network engineers occur.
In development, it is mainly the accuracy of the simulation model which cannot
cover all environmental influence. In the testing phase, the migration to the target
platform and the limitation (scale, management) of the test bed cause problems.
Afterwards, in the deployment phase, the challenges are more bureaucratic (node
locations, regulations) or depend on the weather conditions. Whereas in the main-
tenance phase, erroneous software or configuration updates may require costly
on-site repairs, which are further complicated by physical access restrictions.
The challenges during the development are due to the accuracy of the simulation
model. Results of the simulation are influenced by the selection of the wireless
propagation model. The propagation model may be to simple to accurately model
the real environment. In addition, the influence of the operating system and the
drivers are not covered in the network simulations. This includes cross-layer in-
teractions, which are implemented more easily in the network simulation.
In the testing phase the migration to the real hardware is difficult. The programmer
has to consider the limitations of the target platforms. The embedded devices are
usually restricted in RAM, storage, and CPU power. They further require an oper-
ating system and tools, which are especially tailored for them. Different CPU ar-
chitectures lead to cross-compilation and therefore necessitate an additional step
for setting up a cross-compilation tool-chain (cross-compiler, cross-linker etc.).
After the implementation on the target platform, the new service has to be tested
in a test bed. Here, several limitations appear. The number of nodes in a test

Supporting Wireless Mesh Networks during their Life Cycle 83

bed is usually limited and therefore does not support scalability tests. The man-
agement of the test bed is difficult. Configuration errors during tests may lead to
unavailable nodes and therefore require on-site repairs of the nodes.
There are several problems the network engineer is facing during the deployment
phase. Besides some software problems such as the stability of existing wire-
less network drivers, there are regulatory issues, finding accurate node sites and
getting agreements with the land owners, and the weather that require weather
sealing of the nodes, lightning protection, and storm-proof fastening of the masts.
The challenge in the maintenance phase is having remote access to all nodes
even in situations with faulty software updates or configuration error. After de-
ployment the nodes are deployed in areas with restricted access (e.g., roof tops)
or in hostile environment. Any software or configuration update can break the
remote connectivity of the node in case of errors.

13.3 Contributions
Our five contributions to meet the challenges above are manifolded (see Fig-
ure 13.2). The first contribution is the architecture VirtualMesh, which fills the gap
between development in a network simulator and testing in a test bed. It pro-
vides support for extensive predeployment tests. Our second contribution ADAM
(Administration and Deployment of Ad-hoc Mesh networks) covers the creation
of an operating systems tailored for the embedded devices in a WMN and the
safe maintenance of the WMN. ViSuC (Visual Support for Constructions) - our
third contribution - handles the deployment of a temporary WMN, which should
be “as easy as winking”. The next contribution is CTI-Mesh, which is a feasibility
study for WMNs as access network for a weather station. Finally, ATOM (Adap-
tive Transport over Multipaths) provides a solution for supporting real-time traffic
in WMNs.

13.3.1 VirtualMesh: An Emulation Framework for Wire-
less Mesh Networks in OMNeT++

VirtualMesh [1, 2] faces the problems of simulations not covering operating sys-
tem timings, time-consuming prototype testing in a real test bed, and the lack of
large test beds for scalability tests. The key idea of VirtualMesh is to combine the
features of simulation (scalability, fast and flexible testing) and testing on real sys-
tems (operating system timings, real software). It runs the real software on top of
a simulated network. It provides a virtualization of a complete wireless mesh net-
work by using host virtualization (XEN) for the mesh nodes and redirecting their
wireless network traffic to a network simulator. For the Linux networking stack,
the introduced virtual driver behaves as a normal wireless driver although it is
performing the traffic redirection to the simulator. VirtualMesh is fully transparent

84 IAM-09-006

s

Development Testing MaintenanceDeployment

ATOM

ADAM

ViSuC

Virtual - Mesh CTI - Mesh

Figure 13.2: Own contributions in the WMN life cycle

to all the software above the network driver and provides flexible testing by the
simulated network.

13.3.2 ADAM: Administration and Deployment of Ad-hoc
Mesh networks

A deployment of a WMN requires an operating system, which is tailored for the
embedded nodes. As the network can consists of different node types (e.g., Mer-
aki Mini, ALIX, and WRAP), the operating system has to run on different platforms
(CPU architecture). We need different cross-compilation tool-chains. But never-
theless, the same basic functionality for all node types should be provided. More-
over, the operating system should provide safe software update and configuration
management facilities in order to avoid inaccessible nodes.
ADAM (Administration and Deployment of Adhoc Mesh networks) [3, 4, 5] pro-
vides solutions for a common operating system and safe software update and
configuration management. ADAM includes a image build process which directly
supports cross-compilation and individual build configuration for the three node
types (Meraki Mini, ALIX, and WRAP). The ADAM build and management system
is highly modular and can be easily extended with additional software packages
or ported to a new node type. It fully supports IPv6, flexible management nodes,
and ad-hoc routing protocols. ADAM further provides mechanisms for deploy-
ment and configuration a wireless mesh network. It guarantees the availability of
the network despite configuration errors or faulty software updates by the mean
of various fallback behaviors. It even provides a safe update of the operating
system.

Supporting Wireless Mesh Networks during their Life Cycle 85

13.3.3 ViSuC: Video Support for Constructions

We have started the implementation of a temporary WMN based system to sup-
port video communication in large construction sites, which faces the problem of
missing communication facilities at the time of electric installation. By providing
video communication over an “easy-to-install” temporary WMN, the requirement
of costly on-site visits by an electrical engineer is reduced.

13.3.4 CTI-Mesh: Wireless Mesh Networks for Intercon-
nection of Remote Sites to Fixed Broadband Net-
works (Feasibility Study)

CTI-Mesh [6] provides actual deployment and maintenance experiences. We in-
vestigate whether wireless mesh networks (WMNs) are appropriate for connect-
ing sensor networks or other devices deployed in remote areas, where no fixed
network access is available, to a fixed broadband network. To support a variety of
application scenarios, the WMN must meet reliability requirements and bandwidth
in the 10 Mbps range over distances of several 10 km, e.g., by using directional
radio transmission. During the project a WMN based on IEEE 802.11a/h (5 GHz)
has to be deployed in the area of Neuchâtel and Payerne.
For the project we have mounted one mesh node on the roof of the University of
Neuchâtel and another mesh node on the roof of SwissMeteo at Payerne. Inter-
mediate nodes equipped with solar equipment (panels, chargers, and batteries)
have been placed on the hills in the area to interconnect Payerne with the fiber
network in Neuchâtel.
The network has been first tested on a small area in front of the weather station.
Afterwards, the nodes have been moved to their final locations. First measure-
ments show the necessity of a careful selection of the node locations, a good
alignment of the antennas, and a strong tensioning of the antenna masts. In addi-
tion, aspects like birds using masts as raised blinds, storms, and the subsidence
of tripod due to rain have to be considered during the deployment.
With the experiences gained from the deployment, we are now able to easily di-
mension further outdoor wireless mesh networks (approved equipment, possible
distances, planning and setup time).

13.3.5 ATOM: Adaptive Transport Over Multipaths

Real-time communication in WMN is challenging. Due to the erroneous nature
of the wireless medium, individual links are varying heavily in their quality of ser-
vice. This affects real-time communications such as video conferencing by out-
ages, artifacts, or stumbles. ATOM (Adaptive Transport over Multipaths) [7, 8]

86 IAM-09-006

reduces the problems of real-time transmissions over WMNs by using path diver-
sity and multi-stream coding. This works as the characteristics of multiple paths
are usually uncorrelated, i.e., the delay, jitter, and loss rate of the paths differ a
lot from each other. Therefore, the transmission over multiple paths can be used
to compensate for the dynamic and unpredictable nature of WMNs. In order to
exploit this path diversity for improving the quality of the real-time transmission,
a robust multi-path routing protocol and a mechanism for selecting appropriate
coding and path allocation for the given network conditions are needed. At ses-
sion establishment, ATOM decides on the used parameter set (encodings, paths
etc.) considering current network conditions and collected historic data. After
session establishment, the effect of this decision is continuously monitored and if
necessary adapted.

13.4 Conclusion and Outlook
We provide a manifold framework for supporting a WMN during its life cycle. The
key modules provide the following functionality: operating system builder, safe
software and configuration updates (ADAM), fast prototyping and testing, scala-
bility test of real implementation (VirtualMesh), “as easy as winking” deployment
of a temporary WMN (ViSuC), deployment experiences, real deployment (CTI-
Mesh), and support for real-time applications in WMNs (ATOM). During the next
months, the finishing implementation and evaluation of the modules is envisioned.

References
[1] T. Staub, R. Gantenbein, and T. Braun, “Virtualmesh: An emulation framework

for wireless mesh networks in omnet++,” in The 2nd International Workshop
on OMNeT++ (OMNeT++ 2009) held in conjuction with the 2nd International
Conference on Simulation Tools and Techniques, Rome, Italy, March 2009.

[2] T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: An emulation framework
for wireless mesh networks in OMNeT++,” Simulation: Transactions of the
Society for Modeling and Simulation International, submitted 2009.

[3] T. Staub, D. Balsiger, M. Lustenberger, and T. Braun, “Secure remote man-
agement and software distribution for wireless mesh networks,” in 7th Interna-
tional Workshop on Applications and Services in Wireless Networks (ASWN
2007), Santander, Spain, pp. 47–54, May 2007.

[4] D. Balsiger and M. Lustenberger, “Secure remote management and software
distribution for wireless mesh networks.” Computer science project, Septem-
ber 2007.

Supporting Wireless Mesh Networks during their Life Cycle 87

[5] D. Balsiger, “Administration and deployment of wireless mesh networks,” Mas-
ter’s thesis, University of Bern, April 2009.

[6] T. Staub, M. Brogle, K. Baumann, and T. Braun, “Wireless mesh networks for
interconnection of remote sites to fixed broadband networks,” in Third ERCIM
Workshop on eMobility, University of Twente, Enschede, The Netherlands,
pp. 97–98, May 2009.

[7] T. Staub and T. Braun, “Atom: Adaptive transport over multipaths in wireless
mesh networks,” in 2nd ERCIM Workshop on eMobility, Tampere, Finland,
May 2008.

[8] T. Staub and T. Braun, “Supporting real-time communication in wireless mesh
networks,” in 1st Workshop on Wireless Broadband Access for Communities
and Rural Developing Regions - WIRELESS4D’08 held at 1st International
Conference on M4D , Karlstad University, Sweden, Karlstad University Press,
December 2008.

88 IAM-09-006

EAP-TPM - A new authentication method for 802.11 based networks 89

14 EAP-TPM - A new authentication
method for 802.11 based networks

Carolin Latze, University of Fribourg
carolin.latze@unifr.ch

14.1 Motivation
Public wireless networks require another type of user authentication than private
networks at home. It is usually sufficient to have any type of encryption like WPA
[1] or WPA2 without a special user authentication in private wireless networks.
The situation is different for public hotspots since those are usually operated by
an internet service provider (ISP) that needs to identify his users for legal and ac-
counting reasons. Common authentication methods for that purpose are captive
portals, EAP-TLS [2], and EAP-SIM [3], each with their specific advantages and
disadvantages discussed in the remainder of this section.
Captive portals use a standard web-browser as authentication device by redirect-
ing the first DNS request to the portal. An example of such a portal is shown in
Figure 14.1. The page is obviously rather full with advertisements and other con-
tents and will be hard to view on a browser of an embedded device like a mobile
phone. Beside the bad scalability due to the packet filtering, captive portals are
not really comfortable for the user. The reason why they are usually deployed in
every hotspot is that they provide a good fall-back for unregistered users that can
use their credit card to get temporary access.
The EAP-TLS [2] protocol provides mutual authentication based on X.509 cer-
tificates, which makes it a very secure protocol. However the need for X.509
certificates on the client side makes it hardly usable for normal users since the
certificate requesting process is terribly complicated. Figure 14.2 shows an ex-
ample certificate request form as it is used today. Even for an experienced user
it is not trivial to fill in the required fields, a normal user will be completely lost.
Furthermore in order to make EAP-TLS secure, the user’s private key should be
stored in a tamper resistant device making it even more complicated for the user.
In order to circumvent the need for X.509 client certificate but with a similar level of
security, EAP-SIM [3] has been introduced and deployed. SIM cards are authen-
tication devices users are used to. They allow for a comfortable authentication
protocol but obviously EAP-SIM needs a SIM slot in the user’s mobile device. Al-
though that is given for mobile phones and some notebooks there are still a lot
of device without SIM slot. There are already solutions where the user connects
his mobile phone to the notebook to use the mobile phones SIM slot, but as SIMs
only allow for single sessions, connecting his phone to his notebook for WLAN au-
thentication prevents the user from receiving or making any phone calls. However

90 IAM-09-006

Figure 14.1: Captive Portal Page at the University of Fribourg

since EAP-SIM is a lot more comfortable from the user’s point of view, hotspots in
Switzerland implement EAP-SIM rather than EAP-TLS.
Since all three authentication methods mentioned above have problematic dis-
advantages, a new authentication method based on trusted computing has been
introduced at the IETF in 2009 [4] that tries to overcome all the problems men-
tioned above.

14.2 Trusted Computing
The Trusted Computing Group (TCG) [5] is a standardization body formed to stan-
dardize the trusted platform module (TPM) and other trusted computing building
blocks. The standard for the TPM that is used in the new authentication method
has been written in 2002 and specifies a tamper resistant hardware token provid-
ing secure storage for hashes and keys. Furthermore it provides some crypto-
graphic functions that are security critical. However, the TPM is no cryptographic
co-processor. In fact the TPM is a rather slow module. The nice features of the
TPM needed in the new authentication protocol are the possibility to identify it
uniquely worldwide and the so called TPM identities. TPM identities are X.509
certificates bound to a certain TPM that can be used for authentication and attes-

EAP-TPM - A new authentication method for 802.11 based networks 91

Figure 14.2: Certificate Request Form of http://www.swissdigicert.ch

tation purposes.
Figure 14.3 shows the process of requesting a new TPM identity. The three left
most entities TPM, TSS, and Software are located on the client, whereas the
PCA is located somewhere in the network. The trusted software stack (TSS) is
the library communicating directly with the TPM. It further implements functions
that are not that security critical and can therefore be implemented in software
only. The software is the user interface on the client PC. The authority that issues
a new identity is a special certificate authority called privacy CA (PCA).
The first step during the identity retrieval process is TPM MakeIdentity which cre-
ates a so called identity binding. The identity binding is a signed collection of
the public identity key and its name (chosen by the TPM owner) and the name of
the PCA the user wants to request the identity from. The next (software) step is
to collect all the certificates needed by the PCA to evaluate the request: the en-
dorsement credential, the platform credential, and the conformance credentials.
Those three credentials together with the identity binding are put together during
TPM CollateIdentityRequest and sent to the PCA. The PCA evaluates the data
and issues the new identity. In order to protect that identity against tampering, the
PCA encrypts it using a symmetric key that will be encrypted using the identity’s
public key. After having received the new identity it is up to the TPM to verify it. In
order to do so, it decrypts the symmetric key and - if the decryption was success-

92 IAM-09-006

TPM TSS Software PCA

TPM_MakeIdentity

TPM_CollateIdentity
Request

Check request and
Issue identity cred

TPM_ActivateIdentity

TPM_RecoverTPM
Identity

Figure 14.3: TPM Identity Retrieval

ful - releases the key to the host platform (TPM ActivateIdentity). The last step
is done at the TSS. TPM RecoverTPMIdentity decrypts the identity certificate us-
ing the symmetric key. The software is now able to use the identity certificate for
further applications.
As the TPM identifies itself during this process (it may also hold a lost of accept-
able PCAs), there is no need for user interaction.

14.3 EAP-TPM
EAP-TPM as specified in [4] makes use of the fact that TPMs become more and
more ubiquitous in consumer hardware. Together with the TPM identities they
allow for a secure and user-friendly authentication scheme. EAP-TPM is based on
EAP-TLS with only slightly modifications. The first modification is that the signing
and hashing during the TLS handshake is done on the TPM. The second is the
need for other certificate checks on the authentication server. It is necessary that
the server verifies the certificate according to the specification released by the
TCG [5]. EAP-TPM behaves slightly different for TLS 1.2 and TLS prior to 1.2.
TLS 1.2 [6] uses standard signatures during the TLS handshake which allows
to use the signing only identity certificate directly. Unfortunately, TLS prior to
1.2 [7] uses a non standard concatenation of an MD5 and a SHA1 hash during its
handshake which requires some workaround in order to use the identity certificate

EAP-TPM - A new authentication method for 802.11 based networks 93

anyway. The EAP-TPM mode for TLS prior to 1.2 uses the identity certificate to
create a so called certified key. That key is bound to the TPM and its identity
and requires no additional user interaction to create it. Afterwards a self-signed
certificate has to be created using that certified key which will then be used during
the handshake. In order for the authentication server to be able to verify the self
signed certificate a new TLS handshake message will be specified (following [8])
that allows to sent the identity certificate during the handshake too. The server
has then all the information he needs to verify the client.
A proof of concept implementation of EAP-TPM can be downloaded at [9]. This
implementation supports TLS prior to 1.2 only and makes use of a verification
service holding all the identity certificates instead of using the supplemental data
message.

14.4 Conclusion and Outlook
The EAP-TPM proof of concept implementation has shown promising results
leading to a first real-world reference implementation done at Swisscom [10]. The
standardization process for EAP-TPM is still in progress at the IETF [4].

References
[1] “IEEE Standard for Information technology - Telecommunication and infor-

mation exchange between systems - Local and metropolitan area networks
- Specific requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” 2007.

[2] D. Simon, B. Aboba, and R. Hurst, “The EAP TLS Authentication Protocol.”
RFC 5216, 2008.

[3] H. Haverinen and J. Salowey, “Extensible Authentication Protocol Method for
Global System for Mobile Communications (GSM) Subscriber Identity Mod-
ules (EAP-SIM).” RFC 4186, 2006.

[4] C. Latze, U. Ultes-Nitsche, and F. Baumgartner, “Extensible Authentica-
tion Protocol Method for Trusted Computing Groups (TCG) Trusted Platform
Modules.” Work in Progress, 2009.

[5] “http://www.trustedcomputinggroup.org,” 2009.

[6] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2.” RFC 5246, 2008.

[7] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.1.” RFC 5246, 2006.

94 IAM-09-006

[8] S. Santesson, “TLS Handshake Message for Supplemental Data.” RFC
4689, 2006.

[9] C. Latze, “EAP-TPM Proof of Concept Implemenation.”
http://diuf.unifr.ch/people/latzec, year = 2008.

[10] C. Latze and J. Hiller, “EAP-TPM A New Authentication Protocol for IEEE
802.11 Based Network.” Demonstrations of the IEEE Conference on Local
Computer Networks (LCN), 2009.

Modularization of the NIO Framework and Misuse prevention in PGA 95

15 Modularization of the NIO Frame-
work and Misuse prevention in
PGA

Ronny Standtke, University of Fribourg
ronny.standtke@unifr.ch

15.1 Modularization of the NIO Framework

15.1.1 Introduction to NIO

A new input/output (NIO) library was introduced with Java 1.4. It provides high-
speed, block-oriented I/O and takes advantage of low-level optimizations in a way
that the original I/O package could not, without using native code. But actually
creating network applications with the NIO library has always been very difficult
because the paradigm shifted from synchronous to asynchronous I/O. A program-
mer using NIO suddenly has to deal with a lot of complex new issues, e.g. in-
complete read/write operations, data buffering, buffer overflows, buffer flipping,
managing channel interest operations, queue handling, thread pools, thread syn-
chronization, etc.
A programmer first has to take care of all this issues and must implement a lot of
boilerplate code just to get a little working NIO network application. The issues
are even doubled when using NIO with SSL. Things that have been very simple
with the classic I/O (e.g. waiting for an SSL handshake to complete) are now
extremely complicated.

15.1.2 Introduction to the NIO Framework

The NIO Framework is a library on top of NIO that hides most of the complexity
of plain NIO. With the NIO Framework one can implement high-performance Java
network applications without having to deal with all the nasty details of NIO. The
issues above are resolved while the performance is preserved. In addition to that
the NIO Framework provides many I/O building blocks for application program-
mers, e.g. dummy traffic, traffic shaping and traffic accounting.
The NIO Framework is an Open Source project and can be downloaded from
http://nioframework.sourceforge.net.

96 IAM-09-006

ChannelHandler

Reader Writer

C
ha
nn
el

T
2

T
3

T
1

T
4

Figure 15.1: I/O Transformation example

15.1.3 Modularization

When application data units (objects, messages, etc.) have to be transmitted
over a TCP network connection, they have to be transformed into a serialized
representation of bytes.
There are many ways to represent application data and there are also many ways
to serialize data into a byte stream. Therefore, there are countless transforma-
tions between application space and network space imaginable.
The first approach to this problem in the NIO Framework was to provide an exten-
sible hierarchy of classes, where every class dealt with a certain transformation
(e.g. string serialization, SSL encryption). This architecture turned out to be very
simple and efficient. The downside of this approach was that every combina-
tion of transformations required its own implementing class. Changing the order
or composition of transformations was very difficult and much too inflexible for a
generic framework.
The second and current approach to message transformation is to implement a
set of transformer classes were each class offers just a certain transformation. An
application programmer can put these transformer classes together into a hierar-
chy of almost arbitrary order. Almost no programming effort is required besides
assembling the needed classes of the transformation hierarchy in the desired or-
der.
A diagrammatic example of the I/O transformation architecture is shown in Figure
15.1.
The shapes Tx are the transformation classes. When writing to a channel, the
ChannelHandler hands the application level data units to one of the input trans-
formation classes T1, T2 or T3 (depending on the type of input it just accepted).
Every transformation class transforms the data and hands it over to its next trans-
former until it reaches the Writer, which writes the final byte stream to the channel

Modularization of the NIO Framework and Misuse prevention in PGA 97

and handles many channel specific problems, e.g. incomplete write operations.
When reading from a channel, the Reader handles the channel specific problems,
e.g. connection closing and read buffer reallocations. After reading a byte stream
from the Channel, the Reader passes the data to T4, which transforms the data.
The ChannelHandler can get the application level messages from T4.
There are four basic I/O models for the transformation classes Tx. In ascending
order of complexity they are:

• 1:1 (one type of input, one type of output)

• 1:N (one type of input, different types of output)

• N:1 (different types of input, one kind of output)

• N:M (different types of input, different types of output)

Every model is valid insofar as one can establish a fully functional transformation
hierarchy with any of these I/O models. While the 1:1 model would be the most
simple one, transformation classes of the N:M model would have the highest flex-
ibility. The interesting thing to note here is that with respect to flexibility every
transformation class of the more complex models can be replaced by chaining
several transformation classes of the 1:1 model. While trying to implement proto-
types for all models above it became clear that the most simple API was provided
by using Java Generics and the 1:1 model. Another advantage of the 1:1 model
is the encouragement of code reuse, because every transformation should be
implemented in a separate class.
The elegance and simplicity comes at the small price of an almost immeasurable
performance loss. Currently, Java Generics are implemented by type erasure:
generic type information is present only at compile time, after which it is erased
by the compiler. The compiler automatically inserts cast operations into the byte
code at necessary places which may cause a tiny performance loss. Using the
1:1 model results in slightly longer transformation chains, more involved objects
and more locking and unlocking when passing data through a transformation hi-
erarchy.

Forwarders and Transformers

For the current version of the Java NIO Framework the following set of forwarders
and transformers (forwarders with a certain transformation) have been created.
There are basic forwarders and composite forwarders. Basic forwarders do not
depend on other forwarders. Basic forwarders have been created e.g. for buffer-
ing, prefixing, framing, encrypting and decrypting data and forwarders that deal
with all the NIO details when reading from or writing to a Channel. The imple-
mented forwarders for generating and parsing data streams that are padded with
dummy traffic are composite forwarders that use the available basic forwarders
and transformers as building blocks.

98 IAM-09-006

input

Frame
1

Type
(DATA)

Frame
2 input

2
Type

(DATA)

partial copy partial copy

input
1

Figure 15.2: buffer splitting with partial data copies

content

Frame
1

Type
(DATA)

Frame
2

duplicate 2
of input

Type
(DATA)

duplicate 1
of input

position limit position limit

input

position limit

Figure 15.3: buffer splitting with buffer duplication and content sharing

Prevention of redundant copy operations

When using a complex hierarchy of forwarders and transformers data is buffered
at different places in that hierarchy. When forwarding data through this hierarchy
it happens very often that only a part of the buffered data has to be forwarded.
The classical and simple approach to this problem is to create safety copies of
the individual parts (see Figure 15.2). Unfortunately, this approach lowers the I/O
performance of the whole hierarchy and uses unnecessary amounts of RAM.

For storing data in its forwarders and transformers, the Java NIO Framework uses
Java ByteBuffers. These ByteBuffers have an interesting feature: They can be
duplicated without copying data around in memory. Instead, the content of dupli-
cated buffers will be shared but the context information (position, limit, capacity,
...) can be set independently. By creating ByteBuffer duplicates and setting their
positions and limits in subsequent order, data packages can be broken up into
smaller parts and forwarded through a hierarchy of forwarders and transformers
without creating unnecessary partial copies (see Fig 15.3).

Modularization of the NIO Framework and Misuse prevention in PGA 99

15.2 Misuse prevention in PGA
15.2.1 Introduction to PGA
There are several anonymity architectures for Internet communication in use to-
day. They are either unsafe or very complex. The PGA (”Pretty Good Anonymity”)
architecture is an anonymity service that aims to provide a high level of protection
and is still simple enough to enable high-bandwidth, low-latency Internet commu-
nications. The PGA architecture uses a single-node anonymity service provider
in combination with dummy traffic.

15.2.2 Misuse prevention
An anonymity service provider operates in an area of conflict. On one side the
provider wants to deliver a trustworthy service but on the other side misuse of
the service should be prevented. To be able to prevent misuse, the anonymity
service provider must execute a very detailed analysis of the traffic before serving
it, which contradicts the first goal of providing a trustworthy service.
A reasonable middle ground is ”misuse discouragement”, i.e. not to prevent mis-
use but to be able to detect it and react accordingly. For the PGA project this mid-
dle ground is reached by optionally logging communication circumstances. When
using PGA, the anonymity service provider can switch on a logging function that
records:

• time-stamp

• source IP

• destination host name

• resolved destination IP

• destination port

• success or failure of the connection attempt

There are several security mechanisms in the PGA implementation to make this
function transparent for the users of the anonymity service and also to protect the
anonymity service provider against itself:

User notification: Whenever the anonymity service provider switches the log-
ging feature on or off it is signalled to all users of the service and displayed
in the GUI of the PGA client program.

Encryption: The recorded logging data is very sensitive information. Therefore
it must always be stored on an encrypting file system. This protects the

100 IAM-09-006

data in case of physical theft of the storage media. While the records are
written to the file system, the encrypting file system is in an ”open” state,
i.e. the system processes can read from and write data to it. To protect the
logging data against compromization by hacking into the PGA server itself,
it can be encrypted with a public key. It is recommended to use an external
public key for this task, e.g. from a notary.

Filtering: It should not be necessary to record all connection attempts that are
made over the anonymity service. Therefore the PGA implementation al-
lows to configure regular expressions that define what will be logged and
what not.

Retention period: The recorded logs are automatically removed after a config-
ured retention period.

The definition of filters and a retention period are directed to the well established
principle of data avoidance and data economy.

