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Abstract

The wide spread adoption of cellular phones equipped with global positioning
system (GPS ) sensors makes the exploration of pedestrian mobility patterns
possible. Discovering relevant places can be achieved through accumulating
GPS coordinates. This thesis demonstrates a spatio-temporal analysis on
collected geo-location points to discover Zones of Interest (ZOIs) of pedestri-
ans to understand underlying movement patterns. This analysis involves the
discovery of Points of Interest (POIs) based on selected criteria and then an
aggregation of these POIs to obtain the ZOIs. Furthermore, a new Markov
based model to predict long distance trajectories of pedestrians is introduced.
The model is capable of choosing between the first and second order Markov
chain in order to accommodate to the different movement behaviours of indi-
vidual pedesterians and the available trace data. To quantify the movement
behaviour of users an existing Periodicity Detection algorithm is modified to
achieve a better task-specific, computational performance. In addition, the
adaptive Markov model is evaluated and compared to other current trajec-
tory prediction methods using the real-life Mobile Data Challenge (MDC )
dataset. The proposed model achieves a precision of up to 86% and a recall
of up to 84% for predicting future trajectories of users in the MDC dataset.
The thesis further presents a mechanism to predict the number of pedestri-
ans in urban areas traveling on the same trajectory at a future point in time.
This mechanism combines the adaptive Markov model with an existing next
Place Prediction algorithm and a means of storing and aggregating predicted
trajectories for multiple users.
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Abstract

With the explosive growth of location-based service on mobile devices, predict-

ing users’ future locations and trajectories is of increasing importance to support

proactive information services. In this paper, we model this problem as a super-

vised learning task and propose to use ensemble learning methods with hybrid

features to solve it. We characterize the properties of users’ visited locations

and movement patterns and then extract feature types (temporal, spatial, and

system) to quantify the correlation between locations and features. Finally, we

apply ensemble methods to predict users’ future locations with extracted fea-

tures. Moreover, we design an adaptive Markov Chain model to predict users’

trajectories between two locations. To evaluate the system performance, we use

a real-life dataset from the Nokia Mobile Data Challenge. Experiment results

unveil interesting findings: (1) For individual predictors, Bayes Networks out-

perform all others when data quality is good, while J48 delivers the best results

when data quality is bad; (2) Ensemble predictors outperform individual pre-

dictors in general under all conditions; and (3) Ensemble predictor performance

depends on the user movement patterns.
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and trajectory prediction.
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1. Introduction

Smart-phones are becoming part of people’s daily life. Increasing pervasive

usage of location-based services and smart-phones around the world contributed

to vast and rapid growth of mobility data volume. The large size of heteroge-

neous mobility data gives rise to new opportunities for discovering characteris-5

tics and movement patterns of human mobility behaviors. Mobile data normally

consists of historical information of users’ visiting sequence, which includes the

detailed context of the visited locations and corresponding time-stamps.

Future location prediction is a specific topic in mobile data analysis. The

knowledge of mobile user positions fosters applications that need to know this10

information to operate efficiently. Examples of such services are traffic control,

location-based advertising, mobile network management, etc. Many location-

based services depend on the current or future locations of users. In addition

to location prediction, predicting trajectories between two locations is also of

great importance, which helps to optimize travel paths between two locations.15

The type of dataset plays an important role in accurate location prediction

as the prediction models learn user movement patterns from collected data.

The Nokia Mobile Data Challenge (MDC) dataset [1] holds great potential for

providing fine-quality information for predicting users’ next places. It includes

the mobility profiles of nearly 180 users for almost 2 years. From the study20

of the MDC dataset and the ground truth, we could find out that the visits

of certain places follow some regular patterns. Moreover, people behaviors at

specific locations also provide useful information for certain predictions.

In this work, we formulate the location prediction problem as a standard

supervised machine learning task, where an user-place pair is represented by a25

set of features and the future places are considered as targets. Our goal is to ex-

tract and properly select as many useful features as possible, and build accurate

classifiers (both individual and ensemble ones) with those features. We prefer to

extract features that have discriminative information among different locations,

such that locations can be identified from the observed features. Machine learn-30
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ing techniques have been widely used to discover behaviors and patterns based

on large-scale empirical data. Machine learning algorithms can take advantages

of training data to capture characteristics of the unknown probability distri-

bution among different locations. They could automatically learn to recognize

complex patterns and make intelligent decisions based on the learned knowledge.35

In this work, we use WEKA [2], which is a comprehensive open source tool for

machine learning and data mining. WEKA provides implementations of multi-

ple machine learning algorithms, and we propose to apply ensemble methods to

combine multiple individual predictors to achieve the best performance.

Machine learning can only make accurate classification, if high discriminative40

features are constructed and useful patterns can be observed from the defined

features. However, traditional location prediction methods often separately con-

sider spatial or temporal context information [3] [4]. Although there have been

some efforts to integrate spatial and temporal features for location prediction,

most of them suffer from over-fitting problems due to the large number of spatial-45

temporal trajectory patterns. Some existing works model next place prediction

as a classification problem [5] [6]. However, issues such as the consideration of

other rich contextual data, such as accelerometer, Bluetooth/WiFi connectivity,

call/SMS logs, information about running applications have not been investi-

gated systematically. In order to accurately predict the future place of a user,50

it is fundamental to identify and extract a number of descriptive features for

each place visited by the user.

Therefore, this work focuses on extracting discriminative features among

different locations, such as temporal, spatial, and smart-phone system features.

With these features, we apply ensemble learning techniques to improve the55

location prediction accuracy. The main contributions of this work are as follows.

• First, we systematically characterize the properties of users’ visited places

and movement patterns from a real-life dataset and then extract various

types of features (temporal, spatial, and smartphone system features) to

quantify the correlations between places and features.60
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• Second, with the extracted features, we propose to apply ensemble learning

techniques to improve the crowd location prediction performance by inte-

grating multiple individual predictors. We conducted detailed experiments

for users with different movement types and trace qualities to show the

superiority of ensemble predictors over individual predictors. Moreover,65

we also measure the algorithm execution time to show that the superior-

performance of ensemble predictors comes at a price of higher computa-

tion overheads. This detailed analysis enables us to understand which

algorithms could achieve the best performance under what conditions.

• Third, we analyze the performance of different individual and ensemble70

learning predictors from a mathematical perspective and conduct the time

complexity analysis of each algorithm to theoretically understand why

there are significant performance differences.

• Fourth, we propose an adaptive Markov Chain-based trajectory predic-

tion approach, which adaptively selects the first-order or the second-order75

Markov Chain model to predict the future trajectory of mobile users based

on dataset conditions.

• Fifth, from the experimental and theoretical analysis, we analyze how the

prediction performance is affected by various factors such as mobility trace

qualities, extracted features, user movement patterns, predictor models,80

etc. This knowledge enables us to further design an adaptive prediction

system, which dynamically selects predictors based on dataset and smart-

phone conditions, to guarantee the required system performance.

The structure of this paper is as follows. Section 2 discusses existing efforts

on location prediction from mobile data. Section 3 describes the dataset that has85

been used in this work. Section 4 details how we define the features and which

features are used in our prediction system. Section 5 explains the individual

and ensemble predictors that are used in this study. Section 6 discusses the

performance evaluation, and the paper concludes in Section 7.
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2. Related Work90

With a large number of built-in sensors, smartphones are able to record rich

types of quality data without the need of any additional devices. Compared

to the check-in data collected from the location-based social networks such as

Foursquare [7], which only records the discrete checked-in data at different lo-

cations, smartphones have the unique advantage to record data in a continuous95

way. Therefore, human mobility analysis has become an active research topic

thanks to the fast development of continuous location tracking techniques. Song

et al. [8] presented a study on predictability of human mobility by analyzing

the entropy of location traces. Several prediction methods have been proposed

for human mobility in different contexts. Ashbrook et al. [9] introduced to100

extract significant places and represent location traces as strings and then use

Markov models to predict the next place that a user will visit. NextPlace [10]

proposed a location prediction solution based on nonlinear time series analysis

of the arrival and staying duration of users in relevant places. However, the work

is only focusing on GPS coordinates-based prediction. Zhao et al. [11] designed105

a Dynamic Bayesian Network-based model to predict the future cells of mobile

users to optimize telecommunication network operations. He et al. [12] de-

scribed a time-based Markov predictor for the location prediction of stationary

and mobile users. However, their works are limited to specific methods, which

can only produce a prediction accuracy of nearly 60%. Moreover, the transition110

matrix-based approaches have clear drawbacks, since they take only the visit

logs as model inputs, but completely ignore the rich context information.

In the next place prediction task of Nokia Mobile Data Challenge 2012, the

best methods relied only on spatial-temporal information to predict future lo-

cations [13], [14], [15], [16]. For instance, Lu et al. [16] focused on using the115

transitions between places for each individual user, as well as the time con-

text, to make predictions. They also tried to explore other context information

such as call-logs and accelerometer data in the current place. However, they only

applied a support vector machine (SVM) for each user to predict their future lo-
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cations. Tran et al. [17] applied an user-specific decision tree, which was learned120

from each user’s movement history, to predict their future locations. However,

their works were limited to the decision tree-based predictor. [18] proposed to

learn the time distribution for each place as well as the transition patterns be-

tween places by using the kernel density estimation to capture spatial-temporal

context features. Zhu et al. [19] introduced a feature engineering mechanism to125

predict semantic meaning of places. However, their works were also limited to

very few individual classifiers. As we can see, most of the existing works focused

on applying only individual machine learning algorithms to improve prediction

accuracy. However, ensemble learning has been proven to obtain better per-

formance than could be obtained from any of the constituent algorithms alone130

[20] [21]. Therefore, we focus on applying different ensemble learning methods

to optimize location prediction accuracy. Trajectory prediction estimates the

path between two locations. In [22], authors proposed a solution considering

users’ movement patterns among different zones of interest. However, it’s a pure

statistical approach, which does not include any future location predictions.135

3. MDC Dataset

Our experiment data is from the Nokia Mobile Data Challenge (MDC) [1],

a dataset that was collected using Nokia N95 smartphones on a 24/7 basis in

Switzerland from October 2009 to March 2011. About 180 volunteers partici-

pated in the campaign, where they were asked to carry the smartphones during140

their daily life with recording software running in the background. Even though

volunteers agreed to carry the smartphones during the campaign, their different

behaviors lead to different trace qualities. Moreover, users also had different

movement patterns, and some users traveled regularly while others did not.

Based on these observations, we divided the users into multiple categories, de-145

pending on the number of available data points, so called instances, which have

been recorded and the movement patterns of the mobile users.
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3.1. User Classification

3.1.1. User Trace Quality

Different behaviors of users lead to different trace qualities. Some users carry150

the smartphones all the time. Therefore, the recorded data is complete and use-

ful for making prediction. However, some others forgot to carry the devices

or to charge them in time, such that data recordings are non-continuous and

useless for prediction. In the MDC dataset, whenever a user stayed in a place

for more than 10 minutes, an entry will be created in the table. The instance155

includes: User ID, Place ID, Starting Time, Ending Time. Samp Dist Corr,

which means a user with User ID has arrived at a place (with Place ID) from

Starting Time and left the place at Ending Time. Therefore, we define 5 cat-

egories of quality, depending on the number of instances recorded in a user’s

movement traces.160

• Very good: ≥ 1500instances

• Good: 1200-1500 instances

• OK: 1000-1200 instances

• Bad: 800-1000 instances

• Very bad: ≤ 800 instances165

3.1.2. User Movement Patterns

In addition to the trace quality, user movement patterns also have signifi-

cant impact on location prediction. Users had different mobility patterns. Some

users moved regularly, they traveled between home and office during working

days with a homogeneous movement pattern, and, thus, it is easy to find out170

patterns. However, some other users traveled randomly and visited many differ-

ent places for very few times during the data collection period. Their movements

are heterogeneous and it is hard to predict their future locations even though

the recorded number of data entries is high. Based on this, we defined two types

of user movements: homogeneous and heterogeneous. Homogeneous movement175

means that the user’s mobility pattern is quite regular and repeatable, and the

user visits some places quite frequently. In contrast, heterogeneous movement

means that the movement traces are rather random and non-repeatable. In

the experiments we retrieved the visited places of each user, and classify users’
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Figure 1: Homogeneous and heterogeneous movements.

movements types based on the number of places a user has visited and the num-180

ber of the visit. Figure 1 shows an example of homogeneous and heterogeneous

movement types, where the user visits very few places frequently homogeneous

movement pattern and visited many different places occasionally for heteroge-

neous movement types.

3.2. Place Category185

The raw location data from the MDC dataset were recorded as sequences of

GPS coordinates. In our work, we defined places as circular areas that around

GPS coordinate points. As most works on MDC-based location prediction, we

defined ten categories of places, which are shown in Table 1.

Table 1: Visited Place Categories

Label Place Label Place

1 Home 6 Outdoor sports

2 Friend home 7 Indoor sports

3 Office 8 Restaurant

4 Transportation 9 Shop

5 Friend office 10 Holiday
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Place 
ID 1 Trajectory 1

Trajectory 2

Cell 1 Cell 2Place 
ID 2

Place 
ID 3

Place 
ID 4

Place 
ID 5

Cell 3
Cell 4

Figure 2: Mobile user trajectories.

3.3. User Trajectory190

A mobile user can take different paths to move from one place to another.

In Fig.2, the user has two possible trajectories to go from place id 1 to 5, via

different other places while being connected to different cells. Thanks to the

availability of connected cell ID in the MDC dataset, we are able to extract corre-

lations between users’ trajectories with their movement behaviors. We formally195

define a trajectory t between two places as a sequence t = {cell1, cell2, ..., celln},

which contains all the GSM cells that the user connected to while moving from

one place to another one. Furthermore, we define Ti,j = {t1, t2, ..., tn} as the

set of all trajectories between places i and j.

4. Features200

As stated before, a proper feature construction is fundamental to apply

supervised machine learning algorithms to make accurate prediction. Therefore,

we need to construct features from a tremendous amount of raw data and assign

a set of features (feature vector) to each user-place pair. Feature selection is

a process of selecting a subset of relevant features (attributes) for their use in205

prediction model construction. It is the process of choosing a subset of original

features such that the feature space is optimally adapted and the appropriate

features are selected for classification. The collected MDC raw data is of huge

size. Therefore, it is important to select a subset of data by creating feature

sets, and identify redundant and irrelevant information. Table 3 shows the210

association between all the features and places that are used in this work.
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4.1. Feature Construction

Most of the MDC-based prediction works use only temporal or spatial fea-

tures. We combine both and additionally consider the smartphone system-

related features, which include context like battery level, charging frequency,215

detected WiFi network, etc. Below we describe the three categories of features

that are used in our system.

4.1.1. Temporal Features

Temporal features include context information relevant to the staying time

of a visit. Our visits to certain places tend to have some temporal characteristics220

that are relevant to the places. For instance, we stay at offices normally between

8:00 to 12:00 and 14:00 to 18:00, and we are at restaurants for lunch between

12:00 to 14:00. Below we detail the extracted temporal features and the feature-

place association. We used a time granularity of 1 hour to divide a day of 24

hours. An example of a day time decomposition is shown in Figure 3.225

Figure 3: Day time decomposition.

• Weekday: to indicate which weekday is the visit.

• Leaving time: the ending time of the visit. We defined 6 time intervals,

and each time period could be mapped to a specific place. For instance,

if the visit is between 07:00 and 08:00, then the place is a transportation

hub of a certain probability.230

• Duration: time duration of the visit at a place.
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4.1.2. Spatial Features

Spatial features include context relevant to the geographical information of

the visits. We have selected the following feature.

• Visiting frequency: how often to re-visit a place.235

4.1.3. System Features

Smartphone system features also have discriminative characteristics in differ-

ent places, and include context information relevant to the smartphone’s system

information. We suppose that this information is also helpful when predicting

users’ future locations. For instance, places like restaurants or homes tend to240

have more WiFi networks visible than other places, and people tend to have

different types of applications running on their phones when they are working

in the office or enjoying holidays in a resort.

• WiFi connection: the number of visible WiFi networks.

• Acceleration variation: movement speed variation, which can be de-245

rived from the smartphones’ motion sensors. It can be used to detect

changes of movement types, for instance a change from slow speed to fast

speed probably means the user is at the transportation places.

• Running application: the type of running application. This feature is

mainly used to detect that whether the users are in indoor or outdoor250

environments. For instance, map applications are mostly used outdoors,

while a connected WiFi network indicates the user is more probably in an

indoor environment. These information could further help us to improve

the location prediction accuracy.

• Smartphone profile statement: profile of the phone, for instance nor-255

mal or silent mode. Silent mode is more used during office time or concerts,

which helps us to predict those places.

• Charging frequency: how often the smartphones are charged during

the whole period of data collection. People tend to charge their phones in

offices and home, which helps us to detect home and office areas.260
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Table 2: Feature coefficients

Feature Coefficient

Detected WLAN (1-4) 97.2

Charging frequency (90-100) 85.35

Acceleration variation 32.06

Staying duration (48-120) 30.19

Leaving time (12:30-14:00) 20.5

Frequency of visit (20-60) 29.89

Weekday (Thursday) 21.44

Is weekend 7.41

4.2. Feature Importance

Given the extracted features, the next step is to select those features that

influence the prediction output more than others. WEKA has many algorithms

to do this automatically, and we choose the Logistic Regression algorithm [23].

The Logistic Regression algorithm is very efficient for the MDC data set, since265

it has both nominal and numerical features. Table 2 represents the feature coef-

ficients, which are generated automatically by Logistic Regression from WEKA.

It shows that Detected WLAN has the best contribution for the prediction re-

sult. The Charging frequency, Acceleration variation and Duration of staying

at a place are ranked on second level, third level features include the Visiting270

frequency and Leaving Time and the Week day is the feature with lowest impact

on prediction output.

5. Predictors

In this section, we describe the predictors we used to evaluate our prediction

system. We focus on the individual predictors as well as on ensemble predictors.275

5.1. Individual Predictor

Three categories of individual predictors are mostly used in machine learn-

ing: Decision Tree predictors, Bayes predictors, and Neural Networks predic-

tors/Multilayer perceptron.
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Table 3: Place-Feature Correlation

Place

Feature Leaving

Time

Duration

(Minutes)
Weekday

Visit

Freq.

# Visible

WiFi

Acce.

Var. (M/s2)

Running

APP

Phone

Profile

Charge

Freq.

Home 20:00∼07:00 [480, 2880) MON to SUN [300, 450] [1, 4) [10, 100) Indoor Normal [250, 300)

Work
08:00∼12:30

13:30∼18:30
[120, 480) MON to FRI [200, 300) [4, 6) [10, 100) Indoor Silent [90, 250)

Restau. 07:00∼09:00 [40, 120) MON to SAT [60, 250) [6, 12) − − Normal −

Transp.
07:00∼08:30

18:00∼19:30
[0, 40) MON to SUN [20, 100) [4, 6) [100, ) − Normal −

Outdoor

Sports
12:00∼14:00 [0, 60) SAT to SUN [15, 70) − [50, 100) Outdoor Normal −

Indoor

Sports
18:00∼20:00 [0, 60) SAT to SUN [15,80) [1, 3) [50, 100) − Normal −

Shopping

Center
− [40, 120) FRI to SAT [30, 130) [6, 12) [10, 100) Outdoor Normal −

Holiday

Resorts
− − − [5, 30) − − Outdoor Normal −

Friend

Home
19:00∼22:00 [60, 180) FRI to SUN [5, 10) [1, 4) [10, 100) − Normal [20, 90)

Friend

Office
− − − − [4, 6) [10, 100) − Normal −

5.1.1. Decision Tree280

A decision tree is a hierarchical structure for classifying objects, composed

of nodes that correspond to primitive classification decisions. At the top of the

tree is the root node that specifies the first dividing criterion. The root, and

every non-leaf node, has multiple child nodes, which can be classified further

by checking other criteria. The root node contains all the visits of the training285

data, while child nodes contain those visits that match the dividing criteria

along the path from root to that node. In our experiments, we used the J48

and the Random Forest algorithms. J48 is one of the mostly used statistical

classifier, and Random Forest is a combination of tree predictors such that each

tree depends on the values of a random vector sampled independently. Figure290

4 shows a J48 tree, in which the first dividing feature is the number of detected

WLAN networks, and the features along the path towards the leaf are: duration

of a visit in a place, acceleration variation, charging frequency, leaving time from

a place, visit frequency of a place, whether the visit is on a weekday or not. The

feature ranking is consistent with the feature coefficient shown in Table 2.295
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Figure 4: A J48 decision tree.

5.1.2. Bayesian Networks

Bayesian Networks are a class of statistical models to define conditional de-

pendencies between attributes and parent node, represented by a graph. To do

so, the Bayesian Network uses a Directed Acyclic Graph (DAG), to create con-

nections between a set of attributes A={attribute1, attribute2, ..., attributen}300

and the parent node. In our case the parent node is visited Place-IDs, be-

cause we believed that the current place has a strong connection with the user’s

next place. Figure 5 shows an example of the Directed Acyclic Graph with the

extracted features and parent node.

Figure 5: A Directed Acyclic Graph (DAG) of Bayesian networks.
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5.1.3. Neural Networks305

Artificial Neural Networks are a mathematical model to solve a variety of

problems in pattern recognition and classification. ANNs can be viewed as

weighted directed graphs in which defined attributes are input layer, classes

(Place-IDs) are output layer and directed edges with weights are connections

between input and output. In this work, we used the WEKA implementation of310

ANNs called Multilayer Perceptron (MLP). Figure 6 shows the MLP with ex-

tracted features in our case. In this model, connections are organized into layers

that have unidirectional connections between them. Weights are determined to

allow the network to produce answers as close as possible to the known correct

answers. The network usually must learn the connection weight from available315

training patterns. Performance is improved over time by iteratively updating

the weights in the network.

Figure 6: A typical two-layer Multilayer Perceptron Architecture.
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5.2. Ensemble Predictors

Ensemble learning is an approach to combine individual predictors to achieve

better performance. As different users have different mobility patterns, there320

is no single predictor that could outperform the others for all users. Therefore,

we focus on finding suitable models for different mobility pattern and combine

the models to deliver the optimized performance. The task of constructing an

ensemble classifier can be broken into two sub-tasks: (1) selecting diverse set

of base classifiers with acceptable performance; and (2) appropriate combina-325

tions of their predictions with appropriate weights. In this work, three types of

ensemble predictors are applied: Boosting, Bagging, and Stacking.

5.2.1. Boosting

Boosting is an ensemble method that begins with a base classifier, which is

selected from a first experiment results performed on the training data. A second330

classifier is then created behind it to focus on the instances in the training data

that the first classifier got wrong. The process continues to add classifiers, until

an accurate threshold is reached. The AdaBoost algorithm was the first practical

boosting algorithm that is widely used and studied in numerous applications and

research fields [24]. We use it to integrate J48, Random Forest, Bayes Networks,335

Naive Bayes and MLP.

5.2.2. Bagging

Bagging is an ensemble method that divides the training data set into sev-

eral subsets with the same sizes. Then, it creates a classifier for each subset.

Afterwards, the final decisions are calculated by getting average values from the340

results obtained using the individual data sets. In this work, we used Bagging

to integrate J48, Random Forest, Bayes Networks, Naive Bayes and MLP.

5.2.3. Stacking

Stacking focuses on a function to combine the outputs of the base learners us-

ing a meta-learner, which called Simple Logistic. In this work, we integratedJ48,345

Bayes Networks, and MLP with Stacking.
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6. Performance Evaluation

This section presents the experimentation parameters and detailed perfor-

mance evaluation of the discussed prediction methods. The evaluation metrics

we used are prediction accuracy and prediction execution time, which indicate350

how accurate the algorithm is and how long it takes to generate the prediction

results. From these evaluation results, we further analyze the potential influenc-

ing factors on the prediction accuracy performance. We highlight the impacts

of temporal and hybrid features, as well as trace quality. Finally, the paper also

includes the theoretical analysis about the performance of different algorithms355

under different conditions.

All experiments were run on a laptop running Windows 8.1 Enterprise with

Intel vPro (64-bit-X68 architecture) core i7 CPU 3.2 GHz and 16 GB memory.

6.1. Machine Learning Approaches and Parameters

6.1.1. Location Prediction360

In this work we use WEKA [2] to discover the behaviors and mobility pat-

terns of the mobile users by learning from their historical trajectories. WEKA

includes several types of machine learning algorithms, such as Tree-based, Bayesian

Networks-based and Neural Network-based. Moreover, it also provides ensemble

learning methods, such as Bagging, Boosting and Stacking. We study the per-365

formance of J48, Random Forest, Bayes Networks, Naive Bayes and Multilayer

Perceptron (MLP) algorithms. In order to improve the accuracy of individual

algorithms, we apply Boosting and Bagging to individual algorithms and apply

Stacking to integrate multiple individual predictors. We carry out all experi-

ments using temporal+spatial features and hybrid (temporal+spatial+system)370

features. The experiments are performed using traced data sets of fifteen users,

which are randomly selected from different quality categories, and results are

averaged over those users. For each user, we divide available trace data into ten

subsets using 10-fold cross-validation, in which one of the 10 subsets is used as

the testing set and the other 9 subsets are put together to form a training set.375

Table 4 shows some of the experiment parameters.
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Table 4: Experiments parameters.

Parameter Definition Value

Confidence factor Reduce the size of the decision tree by removing in-

significant nodes

0.25

Number of objects Minimum number of instances per leaf in the decision

tree

2

Hidden layers Hidden layers of the neural network 45-55

Validation Number of iterations to run after observing lower pre-

diction accuracy in Boosting

2

Maximum depth Maximum depth of a tree in J48 and Random Forest 1000

level

Training time Duration of training for individual algorithms per it-

eration in Boosting

300 sec

h Number of neurons at each hidden layer Stacking 3

o Number of outputs in MLP Stacking 100-160

i Number of iterations in MLP Stacking 5

T Number of trees to generate in Random Forest 20

L Number of possible iterations for individual algo-

rithms in Boosting

5

N Number of new generated training sets in Bagging 10

J Number of new generated training sets in Stacking 10

6.1.2. Trajectory Prediction

For trajectory prediction, we have developed a novel adaptive Markov Chain-

based model. As defined in Section 3.3, Ti,j is a set of trajectories Ti,j =

{t1, t2, t3, ..., tn}, where each trajectory tn is a set of m connected cells such

that tn ∈ Ti,j : {cell1, cell2, cell3, ..., cellm}. For each subset tn the first cell is

located in Place-ID = i and the last cell is located in Place-ID = j. In addition,

connected cells on trajectories between two places i and j do not appear on other

trajectories starting from place i towards other places. As shown in Fig. 7, the

model compares the detected periodicity (P ) with a predefined threshold value

(Pth) to decide either the first order or the second order Markov Chain model

should be applied. The First Order Markov Chain is applied if the user’s mobil-

ity pattern between two places is regular (homogeneous movements). For place

pairs where the user’s mobility pattern is irregular (heterogeneous movements),

the Second Order Markov Chain is used. We use the periodicity detection ap-

proach proposed in [25] to identify the user movement types and detect the
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changes of user movement patterns such that the corresponding Markov Chain

model is applied. With this model, the probability of the next cell in a trajectory

is given by:

Pr(celli+1) =

 Pr(celli+1 | celli) if P ≤ Pth
Pr(celli+1 | celli, celli−1) if P > Pth

In the experiments, for a given Ti,j = {t1, t2, ..., tn} we use the threshold

value Pth =
∑n
i=1

|ti|
n , which denotes the mean length of a trajectory in Ti,j .

Place 
ID i

Place 
ID  j

A sequence of connected cells as input

Cell 1
Cell 2 …

Cell n

Periodicity
Detection

First Order MC

Second Order MC

Cell
i

Cell 
i+1

Cell
i

Cell 
i+1

Cell
i-1

P > P_th

P <P_th

Cell 4
Cell 5 …

Cell m

Trajectory t1

Trajectory t2

Figure 7: Adaptive Markov Chain-based Trajectory Prediction.

6.2. Evaluation Results380

In this subsection, we present the evaluation results of different predictors.

We focus on two metrics: prediction accuracy and prediction time. Location

prediction accuracy refers to the percentages of correct location prediction, and

prediction time refers to the execution time of performing the prediction task.

For trajectory prediction accuracy, we use the metrics of precision and recall,385

as defined in the work of [22].

6.2.1. Location Prediction Accuracy of Individual Algorithms

This subsection details the prediction accuracy results of individual algo-

rithms. We first present the average prediction accuracy of all the users with

different trace qualities. Then, we discuss more details about the prediction390

accuracy of users with homogeneous and heterogeneous movement patterns.
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Fig. 8 and Fig. 9 show the average prediction accuracy of all the users for

different individual algorithms using temporal, spatial, and hybrid features. The

results clearly show that the Decision Trees family (specially J48 ) outperform

others, when using the trace data with lower quality, and Bayes Networks pro-395

vides better performance (> 84% accuracy) when the data is with higher quality.

Moreover, it can be observed that the estimated accuracy is improved signif-

icantly if the hybrid features are used instead of using only temporal+spatial

features. For instance, Bayes Networks delivers an accuracy of 84.76% with hy-

brid features, while only 55.47% can be reached with temporal+spatial features.400

Figure 8: Prediction accuracy of individual algorithms using Temporal+Spatial features.

Figure 9: Prediction accuracy of individual algorithms using Hybrid features.
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Fig. 10 shows two confusion matrices that help to explain the nature of the

errors made by the classifier with different features[26]. A confusion matrix is

a table that is often used to describe the performance of a classifier on a set of

test data for which the true values are known. For instance, row 1 of the table

shows that 78 places with real class type = 1 were wrongly predicted as class 2,405

and 171 places with real class type = 1 were correctly predicted. These matrices

are generated by the J48 algorithm over the 10 most visited places (indicated

by IDs). For instance, Fig. 10a shows that when the predictor uses only the

temporal+spatial features, prediction accuracy is lower and several incorrect

predictions are observed. Fig. 10b shows that the number of correct predictions410

are significantly improved when the hybrid features are used.

(a) Temporal. (b) Hybrid.

Figure 10: Confusion matrices using different features.

Next, we present the prediction accuracies of individual predictors for users

with homogeneous and heterogeneous movement patterns. As shown in Fig. 11,

the Bayes Networks scheme delivers the best performance for both movement

patterns, which is consistent with its superior performance presented in Fig. 9.415

6.2.2. Location Prediction Accuracy of Ensemble Methods

In this subsection, we present the prediction accuracy of different ensemble

learning algorithms. Same as for the individual algorithms, we first present the

average prediction accuracy of ensemble learning algorithms for all users. Then,
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Figure 11: Prediction accuracy of individual predictors with hybrid features for homogeneous

and heterogeneous movements

we discuss more details about the prediction accuracy of users with homogeneous420

and heterogeneous movement patterns.

Fig. 12 and Fig. 13 present the prediction results of Boosting and Bagging

using hybrid features. The graphs show that using Boosting, prediction accu-

racy is improved by around 10% compared to when individual algorithms are

applied. It can also be observed that Boosting outperforms Bagging. Different425

algorithms provide different prediction performance values. For instance, J48

using Boosting performs better when the traced data is of low quality. However,

using traced data with higher quality, the integration of the Bayes Networks and

Boosting outperforms the others.

Figure 12: Prediction accuracy of Boosting.
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Figure 13: Prediction accuracy of Bagging.

Fig. 14 shows the evaluation results of the Stacking learning method built430

by Simple logistics as a meta-learner for the hybrid features. Due to generating

higher accuracy results by J48, Bayes Networks, and MLP, we decided to inte-

grate them using Stacking. Random Forest and Naive Bayes are ignored as they

do not improve prediction accuracy. The graph shows that by integrating J48

and MLP, prediction performance is improved by 10% to 14% compared to the435

individual algorithms even for trace data with low quality. Another significant

improvement can be observed when J48 is integrated with Bayes Networks and

MLP mechanisms, particularly when the trace data is of high quality.

Figure 14: Prediction accuracy of Stacking
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Next, we discuss the prediction accuracies of ensemble predictors for users

with different movement patterns. We take user 5927 as an example, and as440

shown in Fig. 15, Boosting delivers better results than Bagging for both move-

ment patterns, which is also consistent with the results presented in Fig. 12

- 13. Therefore, from Fig. 11 and Fig. 15 we see that Boosting significantly

outperforms individual predictors for homogeneous movements, while for het-

erogeneous movements, their performance are similar to each others. Therefore,445

an adaptive model selection mechanism should be developed based on the de-

tected movement patterns such that the appropriate predictors can be applied

to guarantee optimal prediction performance.

Figure 15: Prediction accuracy of Boosting and Bagging with hybrid features for homogeneous

and heterogeneous movements

6.2.3. Location Prediction Execution Time of Individual Algorithms

In addition to prediction accuracy, we also measure the prediction execution450

time of each individual algorithm using temporal+spatial features and hybrid

features. The obtained results, as shown in Fig. 16 and Fig.17, indicate that

the Decision Tree and Bayes families could generate the prediction faster. MLP

is the one requiring more execution time compared to the others.
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Figure 16: Average execution time of individual algorithms using Temporal+Spatial features.

Figure 17: Average execution time of individual algorithms using Hybrid features.

6.2.4. Location Prediction Execution Time of Ensemble Methods455

Fig. 18 - 23 present the average execution time of Boosting, Bagging and

Stacking learning methods, using temporal+spatial and hybrid features. The

results show that Boosting outperforms Bagging for different algorithms. When

J48 and MLP are combined using Stacking, the execution time is 12’012 seconds

for very good quality traces and 109 seconds for very bad quality traces. When460

J48, Bayes Networks and MLP are combined with Stacking, the execution time

is 15’078 seconds for very good quality traces and 187 seconds for very bad

quality traces.
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Figure 18: Average execution time of Boosting with Temporal+Spatial features.

Figure 19: Average execution time of Boosting with Hybrid features.

Figure 20: Average execution time of Bagging with Temporal+Spatial features.
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Figure 21: Average execution time of Bagging with Hybrid features.

Figure 22: Average execution time of Stacking with Temporal+Spatial features.

Figure 23: Average execution time of Stacking with Hybrid features.
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6.2.5. Trajectory Prediction Accuracy

This subsection discusses the results of our trajectory prediction algorithm.465

We take user 5927 as an example, whose mobility trace includes both homoge-

neous and heterogeneous movement patterns. Fig. 24 - 25 show the predicted

trajectories for one transition with connected cells between location ID 2 to 3

and 4 to 5 for user 5927, in which black dots are GPS coordinates, red circles

indicate the frequently visited places, and the yellow circles are the sequence470

of cells that the user will be connected between the places. Since the exact

coverage areas of the GSM cells are not known, we estimated their position by

calculating the mean position of the user within a time window of one minute

when a GSM entry was registered. As shown in Fig. 26, our proposed adaptive

Markov Chain model could achieve a trajectory prediction accuracy of nearly475

80% for homogeneous movements and 70% for heterogeneous movements for

user 5927.

Figure 24: Trajectory prediction of user 5927 between location ID 2 and 3.
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Figure 25: Trajectory prediction of user 5927 between location ID 4 and 5.

Figure 26: Trajectory prediction accuracy of user 5927 between place IDs
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6.3. Location and Trajectory Prediction Accuracy Comparison with Past Studies

In this section, we present the location and trajectory prediction performance

comparison with past correlated studies to show the superiority of our solutions.480

For location prediction, we take relevant location prediction accuracy results

from [16] [6], which are the winners of the mobility prediction task in the Nokia

Mobile Data Challenge. The results are shown in Table 5.

Table 5: Accuracy comparison of location prediction approaches.

Work Algorithms Features Best Accuracy (%)

Our work Stacking Hybrid features 83.37

HKUST [16] Gradient Boosting Trees Limited hybrid features 76.32

EPFL [6] Blending Temporal features 56.22

As we can see from Table 5, our solutions significantly outperform the others.

This is because in [6], authors applied the Blending technique, which is an en-485

semble learning approach similar to Stacking, to deliver the best accuracy using

only temporal features. They considered information such as starting/ending

time of a visit, the visit is on weekday or weekend. In [16], authors explored

temporal and smartphone system features with the Gradient Boosting Trees ap-

proach. However, they did not consider a wide range of features as we did. For490

instance, they only used the mean and variance of visit duration at a place for

the temporal features. Therefore, by applying ensemble learning using a wide

range of hybrid features, our solutions provide the best performance.

For trajectory prediction, we compare our work to the trajectory estimation

using the adaptive, mean and F-score optimization threshold [22]. All methods495

were implemented using the GSM cell representation of the trajectories as input

data. We use the performance metrics of precision and recall, as defined in the

work of [22]. The results are shown in Table 6.
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Table 6: Precision and recall comparison of trajectory prediction approaches.

Work Method Precision (%) Recall (%)

Our work Markov Chain 81.92 68.00

Chapuis et al. [22] Mean threshold 60.30 92.81

F1 optimization threshold 70.42 89.51

Adaptive threshold 70.42 89.51

As shown in the Table 6, our methods outperform all trajectory estimation

methods proposed in work of Chapuis et al. [22] significantly in terms of pre-500

cision but it is outperformed in terms of recall. The lower recall number can

be explained by looking at how the proposed adaptive Markov Chain predicts

full trajectories. When dealing with predicting the full trajectory starting from

one place, the adaptive Markov Chain sequentially adds the next most probable

cell to the predicted trajectory. Considering the case that starting from some505

cells the transition probabilities to two different cells is high, one of them will

be left out from the prediction, since only the cell with the highest transition

probability is added. Therefore, for evaluating the performance of the adaptive

Markov Chain-based trajectory prediction mechanism, it is better to use pre-

diction accuracy as a metric. This is because as opposed to other methods [22],510

the cells in the trajectory are predicted in order. Using the Markov Chain as a

predictor also has the advantage that after the mis-prediction of a cell, a new

trajectory starting from the actual cell can be generated.

6.4. Algorithm Complexity Analysis

In this subsection, we present computational complexity of individual and515

ensemble algorithms. In machine learning, model complexity often depends on

the number of extracted features and samples in the training set. Decision

trees are the fastest known algorithms, the run time cost to construct a decision

tree is O(nsamplesmfeatureslog(nsamples)). In general, the Bayes Networks are

powerful algorithms and efficient in terms of execution time. Their run time is520

O(2mfeatures−2(msamplesnfeatures))[27]. nsamples, mfeatures represent number

of records in training set and number of features, respectively. MLP has a high
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Table 7: Time complexity comparison

Learning algorithm Complexity

Decision tree (DT) O(28,800)

Bayes network (BN) O(614,400)

MLP O(500× 107)

Boosting + DT O(144× 103)

Bagging + DT O(288× 103)

Stacking + (DT + MLP + BN) O(501× 108)

time complexity. Suppose that there are nsamples training samples, mfeatures

features, k hidden layers, each containing h neurons and o output neurons. The

time complexity of MLP is O(n × m × kh × o × i), where i is the number525

of iterations. Since MLP has a high execution time, it is advisable to start

with a smaller number of hidden layers for training [28]. In ensemble learning,

execution time of meta-learners is negligible and they have not much impact on

running time of base classifiers. Running time of Boosting is O(L×f), where f is

the runtime of the base classifier and T is number of iterations. Time complexity530

for Bagging is O(N ×f), where N is number of new generated training sets and

f is run time of individual algorithm [29]. Stacking applies several individual

learner to training data and then combines output of them using a meta-learner.

The overall complexity of stacking is O(f1 + f2 + f3, ..., fn) n=1,...,N, where

fn denotes time complexity of each individual learner. Table 7 presents time535

complexity comparison for individual and ensemble learning algorithms. For

this experiment we choose user 5925 with 1200 records in the training set and

8 extracted features. As we can observe, the time complexity follows the same

ordering of execution time as shown in Fig.17, 19, 21, and 23.

6.5. Theoretical Analysis540

In this section, we analyze the performance of different predictors from a

mathematical perspective. We aim to find out the impacting factors of difference

predictors, and understand theoretically why they have different performance

under different conditions.
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Figure 27: Prediction accuracy of J48 and Bayes Networks

6.5.1. Analysis of Individual Algorithms Performance545

Section 6.2.1 presents the prediction accuracies of individual predictors. As

we can see from the results, Decision Tree-based approaches (especially the J48

algorithm) outperform others when the trace data is of lower quality, while the

Bayes Networks scheme provides better performance (> 84% accuracy) for trace

data with higher quality. To better understand these behaviors, we highlight550

the performance comparison of J48 and Bayes Networks by decomposing the

mathematical components of each model to explain why different predictors

have different performance. Fig. 27 shows the average prediction accuracy of

the J48 and Bayes Networks algorithms using temporal or hybrid features as a

function of trace qualities, which are summarized in Fig. 8. It is interesting to555

observe that for both cases, J48 outperforms Bayes Networks when the quality

of traced data is low (e.g., with 100-500 instances). This is due to the fact that

the algorithms relying on the decision tree use the surrogate splits approach,

which is a method to estimate missing data, to overcome the deficit of missing

data on the trace files [30]. However, Bayes Networks do not have a future560

action in presence of a trace file with a lot of missing data, and its prediction is

based only on available data.

When making a prediction, J48 estimates the missing instances based on

the present ones, resulting in higher accuracy of the prediction outcomes. The

missing instances can be either numerical attributes (e.g., leaving time, duration565
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of staying in each place, place id, etc), or nominal attributes (e.g., application

type, etc), whose values could be missing randomly. The missing attribute

parameters with nominal value can be estimated based on available instances

with the same attribute. Assuming that the day of visiting a particular place

(e.g., Place-ID = 1) for a user is missing, the surrogate split approach [31]570

can estimate the missing value (e.g., day of a visit), knowing that (using users

previous trajectories) on which day the user often visits the location with the

same Place-ID. Our problem can be modelled by Eq. 1.

V̂i,j u argmaxvi,j∈(ai)|σai = vi,j and y = yip D| (1)

V̂i,j defines the estimated parameter, vi,j represents the missing parameter of

attribute ai with index j, σai includes the subset of missing parameters for

attribute ai, y
i
p shows the value of the target attribute (e.g., duration time,

application type) and D is the provided data set. If the missing parameter of

attribute ai has a numerical value, the estimation is performed by calculating

the mean (average) of the existing data instances with the same attribute. The

outcome of the estimation of the decision tree-based algorithms is more simi-

lar to the original data if there is no continuously missing data on the trace

files. As shown in Fig. 27, the J48 and Bayes Networks algorithms generate

similar results if the trace data is of low quality (e.g., with 100-200 instances).

J48 performs better for improved quality of trace data (e.g., with 200-500 in-

stances). However, it is interesting to observe that Bayes Networks overtake

J48, if the quality is better (e.g., with 700-1500 instances). This is due to the

fact that Bayes Networks follows a graphical model, making possible relations

between the parameters with particular probabilities [32]. When the number of

existing instances raises, the generated graph used in the model requires more

computation overhead, but resulting in more accurate prediction. The graph is

integrated with a set of local probability distributions to define the joint prob-

ability distribution [33]. The joint probability distribution is defined in Eq. 2.
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Pr(X|m, θ) = Πn
i=1Pr(X

i|Π(Xi), θ) (2)

Xi, denotes attributes in DAG, Π(Xi) shows the set of parents (e.g., Place-ID

= 1, Place-ID = 2,...), θ is a vector of conditional probabilities, m represents575

the DAG model and local probability distributions are the distributions corre-

sponding to the terms in the product of Eq. 2.

Figure 28: Directed Acyclic Graph (DAG) of Bayes Networks.

6.5.2. Analysis of Ensemble Learning Algorithm Performance

As presented in Fig. 13 and 14, the experiment results show that the inte-

gration of the individual algorithms (e.g., J48, Bayes Networks and MLP) using

ensemble learning methods can efficiently improve prediction accuracy. This is

because for machine learning algorithms, the bias error and variance error, as

explained in Eq. 3, are the main components of the prediction errors. However,

all ensemble learning methods are able to mitigate these errors such that the

prediction performance could be enhanced. The bias error defines the difference

between values of the expected prediction (average of estimated predictions)

and the real one. The variance error determines the variability of the prediction

accuracy due to small modifications in the training set.

Err(X) = bias error2 + variance error + noise error

= (E[g(x)]− f(x))2 + E[(g(x)− E[g(x)])2] + ε2e

(3)

f(x), g(x), E[g(x)] and ε2e denote the correct value to predict (Place ID), es-

timated prediction calculated by the algorithm, expected prediction, and noise580
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error, respectively. Ensemble predictors can be applied to enhance the predic-

tion performance of individual algorithms by mitigating the variance error.

Even though ensemble learning could deliver better prediction accuracy than

individual algorithms, they also perform differently according to how they ad-

dress the variance error. Bagging does this by creating N new subsets of training

data with the same size, as shown in Table 4. The new data sets are generated

from the original data, randomly sampled and replaced [34]. Therefore, the

total variance (Z) will be decreased as it is divided among the newly generated

training data sets. Variance of each new subset can be calculated using Eq. 4.

V ariancej =
1

N
V ar(Z) j = 1, ..., N (4)

For Bagging, the training phase is performed independently over all the new

data sets. Later, as shown in Eq. 5, the final prediction accuracy (PrBagging)

is obtained by getting a simple-averaging over the outcomes computed in each

new data set (ej). This implies that there is no mechanism in Bagging to specify

whether the parameters are classified correctly or not. This means that all the

parameters appear with the same probability in newly generated data sets [35].

PrBagging =
1

N
ΣNj=1ej j = 1, ..., N (5)

Boosting applies a sequential model in the learning phases [36]. After each

iteration, the weights of parameters are determined based on the current pre-

diction error, as shown in Eq. 6. Next, the weights are assigned to uncorrected

classified parameters. Therefore, the wrongly-classified parameters will appear

in the new training set with bigger weights than the correctly classified ones.

This repetition decreases the diversity of the parameters in the training sets,

which results in a reduction of the variance and consequently a better prediction

performance. The parameters used in this equation 6 are listed in Table 8.

wh+1
t =

wht β
(1−lth)
h

ΣNi=1w
h
i β

(1−lth)

h

, w1
t ∈ [0, 1], ΣNt=1w

1
t = 1 (6)
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Table 8: The notations and definition of parameters

Parameter Name Parameter Definition

w1
t = [1, ..., wN ] Set of possible weights for the first step of

iterations, usually w1
t =

1

N
h = 1, ..., L Number of iterations in Boosting

lht = 0, 1 Prediction in iteration h is incorrect (=0) /

correct (=1)

β
(1−lth)

h Current prediction error of algorithm in iter-

ation h

wh
t Current weight at iteration h

wh+1
t Calculated weight for iteration h+1

For Stacking, different kinds of individual algorithms can be integrated to

improve performance. Stacking achieves this through two steps. Firstly, the

given data set of D = {(yn, xn), n = 1, ..., N} is randomly split into J smaller

data sets (parameters defined in Table 4). The generated sets have almost equal

sizes, denoted by the d1, ..., dJ . Thereafter, the individual algorithms (level-0

algorithms) carry out prediction on the generated data sets independently [37].

The outcomes of each prediction algorithm (e.g., visited place in our scenario)

can be defined using Eq. 7:

zkn = {(P (d1)
k (xn), ..., P

(dj)
k (xn)), k = 1, ...,K, n = 1, ..., N} (7)

P
(dj)
k (xn) denotes the prediction of individual algorithms for each instance x in

the newly generated data sets (dj). Later, a new data set is created using the

IDs of the visited places (yn) and the output of the K individual algorithms

(zkn). Formally, the new data set is represented as:

LLevel−1 = {(yn, z1,n, ..., zk,n), n = 1, ..., N} (8)

LLevel−1 defines the input data for the second step, including the predicted val-

ues for each visited place. This input is different from the one for the first step.

The input of the first step includes the Place-ID and extracted features from585

the trace data. Next, the meta-learner (Level-1 algorithm) uses the Weighted

Majority method [38][39] to further improve prediction accuracy. Weighted

Majority is an approach to decide weights of each algorithm based on their

individual prediction performances.
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Based on the aforementioned description, we could imagine that a particular590

algorithm could only provide a low prediction accuracy, due to the high variance

of the data set used in the learning phase. Afterwards, the Weighted Majority

method can be applied to enhance the accuracy of the final prediction by getting

benefits of other algorithms, which provides more accurate results.

7. Conclusions595

In this paper, we model the future place prediction problem as a standard

supervised learning task and ensemble learning methods with hybrid types of

features. Our approach characterizes the properties of users’ movement pat-

terns and visited places, then extracts rich types of features (temporal, spatial,

and system features) to quantify the correlation between places and features.600

Finally, we propose to use ensemble learning approaches to predict users’ future

locations. Additionally, we also propose an adaptive Markov Chain-based model

for trajectory prediction. Our system is extensively evaluated using real-world

datasets, and experiment results unveil interesting findings: (1) For individual

predictors, Bayes Networks outperform all others when data quality is good,605

while J48 delivers the best results when data quality is bad; (2) Ensemble pre-

dictors outperform individual predictors in general under all conditions; and (3)

Ensemble predictor performance depends on user movement patterns.
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Abstract—The growing ubiquity of smart-phones equipped
with built-in sensors and global positioning system (GPS) has
resulted in the collection of large volumes of mobility data without
the need of any additional devices. The large size of heterogeneous
mobility data gives rise to rapid development of location-based
services (LBSs). The predictability of mobile users’ behavior is
essential to enhance LBSs. To predict human mobility, many
techniques have been proposed. However, existing techniques
require good data quality to guarantee optimal performance.
In this paper, we proposed a hybrid Markov chain to predict
mobile users’ future locations. Our model constantly adapts to
available user trace quality to select either the first order or the
second order Markov chain. Compared to existing solutions, our
model is adaptive to discrete gaps in data trace. In addition,
we implemented a proper mechanism to predict congestion in
city areas. To help us understanding complex user behaviors,
we have also proposed a technique benefiting both temporal
and spatial parameters to extract Zone of Interests (ZOIs). To
evaluate the algorithms performance, we use a real-life dataset
from the Nokia Mobile Data Challenge (MDC) collected around
Lake Geneva region from 180 users. We found a satisfactory
user future location prediction accuracy of 70 − 84% and area
congestion prediction accuracy of 65− 73% for the users.

Index Terms—Mobile analysis, Mobility and Congestion Pre-
diction, Mobility Behavior, Location based Services.

I. INTRODUCTION

Extracting meaningful information from collected trace data
of users to determine their movement pattern is an important
part of location-based services (LBSs). For example, to predict
future behavior of a mobile user, mobility predictors rely on
clustering techniques to capture a user’s Individual Zone of
Interests (I-ZOIs) from collected trace data. Intuitively, an I-
ZOI is a city area that is frequently visited by a user and the
user spends considerable time in this region. Typically, LBSs
are using mobility prediction as a means to improve quality
of service by providing context-aware information to users
beforehand.

In recent years, we have seen a rapid proliferation in the
number of services such as Google Now, which proactively
collects rich contextual data, such as Bluetooth/WiFi connec-
tivity, call/SMS log, information about running applications,
to deliver information to users that they may need in daily
life activities. Another popular service, Moves enables au-
tomatically recording of any walking, cycling and running
of users and displaying pertinent information, such as trav-
eled distance, duration and calories burned for each activity.
Similarly, Google Maps is a web mapping service to predict
future location of users based on the movement history. It is

apparent from the above examples that location based services
are thriving, providing a remarkable opportunity to collect
fine grained data about visited places of users. This source
of user mobility offers new possibilities to tackle established
research problems on human mobility. In addition to mobility
prediction, area congestion prediction in large cities is also
of great importance. The past decades have witnessed a rapid
development of modern cities accompanied with an increasing
demand for mobility [1], accounting for the conflict between
the limited resource capacities and the increment of traffic
demand reflected by severe user congestion in hot spot regions.
Induced by such a problem, several negative impacts arise for
citizens, e.g., economic losses, reduction of travel efficiency
and accessing to resources. Fortunately, smart-phone and LBS
data have been employed to explore and predict congested
areas in cities.

The type of dataset plays an important role in accurate
location prediction as the prediction algorithms learn user
movement patterns from collected data. To evaluate perfor-
mance of implemented algorithms, we use a real-life dataset
from the Nokia Mobile Data Challenge, collected around Lake
Geneva from 180 users.

In this work, the fundamental goal is to formulate the
location prediction problem using a Mobility Markov Chain
model (MMC). We propose a dynamic Markov chain-based
model, which adaptively selects the first-order or the second-
order Markov chain model based on the available trace quality.
We propose a clustering algorithm to discover frequently
visited places by the user and integrate it with a mobility
predictor to predict a user’s future behavior. Moreover, in
order to estimate number of users in frequently visited places
we propose a congestion prediction algorithm. The system
overview is depicted in Figure 1. The contributions of the
paper can be summarized as follows:

• We design a mobility prediction algorithm that benefits
from both the first-order Markov chain and the second-
order Markov chain to forecast users’ future location.

• We propose the Zone of Interest discovery scheme, which
helps us to model the mobility behavior of users.

• We introduce a proper mechanism to predict congestion
in frequently visited places by users.

• We evaluate our methodology using a real-life dataset,
obtaining consistently satisfactory results.

The remainder of the paper is organized as follows. Section



II discusses research efforts. Section III presents our system
model and introduces some formal definitions and notations
used in the paper. Sections IV and V discuss the methodology
to evaluate the mobility model and demonstrate obtained
results respectively. Finally, Section VI concludes the paper
by sketching future research directions.

II. RELATED WORK

Understanding human mobility by mining raw GPS logs
has been a long-standing subject in academic research [2],
[3]. These approaches rely on clustering user visits to extract
hot spots. Clustering is a form of unsupervised learning that
groups objects that are similar into the same cluster while
putting objects that are dissimilar into different clusters. The
premier research in adapting the data clustering algorithms
for modeling mobility behavior [4] proposes to iteratively
extract hot spots of users. Montoliu et al. proposed a clustering
algorithm [5], where GPS coordinates (latitude and longitude)
are clustered in the temporal domain to detect the stay points
that are used to derive frequently visited regions using a grid-
based clustering approach. Several other clustering algorithms
such as Density-Time (DT) clustering [6], Density-Join able
(DJ) [7] and Time-Density (TD) clustering [8] have also been
proposed to detect clusters, which are then considered as
frequently visited places.

The above techniques use several temporal bounds to clas-
sify a particular region as a cluster. Some parameters include
maximum distance between the collected locations, maximum
and minimum time bound, cluster shapes. However, if we only
take into account the temporal bounds, this leads to some inac-
curacies in estimating the total number of clusters belonging to
a user. As opposed to using only temporal metrics to cluster
the individual regions, we form the clustering algorithm by
benefiting both temporal and spatial metrics (instantaneous
velocity, average velocity) to quantify the correlation between
visited regions.

Regarding the prediction techniques, a majority of existing
works first formulate a mobility model and consequently
use it to make prediction [9],[10]. Numerous map-matching
algorithms have been proposed to predict user mobility. How-
ever, most existing map-matching techniques are not always
practicable and need additional services such as network con-
nectivity [11]. Such schemes completely ignore the trace data
with poor quality and just consider users with qood quality
of trace data. Our work consists of estimating the frequently
visited locations, in which a user spends considerable amount
of time, and then attaining the hybrid Markov chain model,
which adaptively selects from the first-order or the second
order Markov chain, depending on the quality of user traces
to predict future behavior of the users.

Forecasting of urban congestion has become an active
research topic thanks to the fast development of continuous
location tracking techniques. A wide spread techniques derives
from pure time-series models like Autoregressive Integrated
Moving Average (ARIMA) [12], [13], a fine tuned version
of random walk algorithm. In [14], Olszewski uses Markov

chains to obtain the probability distribution of overflow queue.
The algorithm estimates the mean queue and its variance under
different conditions such as stationary and non-stationary
arrival processes. However, the existing techniques are not well
suited to predict time of congestion. Therefore, we utilize the
area congestion predictor with a tunable time threshold, which
means the temporal granularity of the algorithm is tunable
and based on application requirements it could be adjusted in
seconds or minutes scales.

III. SYSTEM MODEL

The system overview is depicted in Figure 1. The proposed
system model involves three main layers: Common Zone of
Interest (C-ZOI) Discovery, Individual Zone of Interest (I-ZOI)
Prediction and Common Zone of Interest (C-ZOI) Congestion
Prediction. The relevant notations and system component
definitions are explained in following subsections.

GPS Log Clustering
Group

Clustering
I-ZOI

Discovery

Congestion
Prediction

Next Congested 
C-ZOI

Next I-ZOI
Hybrid

Markov Chain
Labelling

C-ZOI

C-ZOI Discovery

I-ZOI Prediction

C-ZOI Congestion Prediction

Fig. 1: Overview of the System Model.

A. Locations and Places
Mobile devices have the potential to track users’ vis-

ited locations using the Global Positioning System (GPS).
The device regularly collects a user’s raw location logs
as a list L = [loc1, loc2, loc3, ..., locn], where loci =
(α, β, t, v) is a tuple representing a location point in the format
(latitude, longitude, timestamp, velocity). The rest of the
paper uses the notations loc.α, loc.β, loc.t and loc.v for the
location point elements. In addition to GPS coordinates, users’
daily activities consist of some places that they find useful or
where they spend a considerable amount of time. This work
focuses on places, which we refer to Zone of Interest (ZOI)
hereafter.

B. Common Zone of Interest (C-ZOI) Discovery
Intuitively, an Individual Zone of Interest (I-ZOI) is a cluster

group that is frequently visited by a user and a Common Zone
of Interest (C-ZOI) depicts a region covering several of I-
ZOIs. In order to extract the C-ZOIs of users based on the
location history L, we must first introduce the notations of
cluster and cluster group. A cluster represents a hot spot in an
encapsulated area. It includes a subset of locations with similar
temporal (e.g., visiting time, visitation repeatability rate) and
spatial (e.g., speed, acceleration) features. A cluster group is
an aggregation of intersected clusters.



1) Cluster Discovery: Location points with common tem-
poral and spatial characteristics are considered as a clus-
ter. ∆dmax, emax, emin and v ∈ R, represents the dis-
tance expressed in meters, maximum velocity, minimum ve-
locity and instantaneous velocity expressed in meters per
second, respectively. In addition, ∆tmin ∈ N is a time
duration expressed in minutes. We introduce two functions:
ClusterCentroid ([loc1, loc2, loc3, ..., locn]), to compute the
centroid of visited location points, and Distance ([loci, locj ]),
which measures the Euclidean distance between the two loca-
tions loci and locj . A subset l ⊆ L becomes a cluster if the
following conditions in Equation 1, 2, 3 and 4 are met:
∀loci, loci+1 ∈ l :

Distance (centroid (loc1, ..., loci) , loci+1) ≤ ∆dmax (1)

locn.t− loc1.t ≥ ∆tmin (2)

emin ≤
n∑
i=1

vi
n
≤ emax (3)

@l′ 6= : l ⊂ l′ (4)

A cluster is a 4-item tuple c = (αc, βc,∆r, l), where αc
and βc ∈ R are the latitude and longitude coordinates of the
centroid, ∆r ∈ R is it’s radius in meters, and l ∈ L is the
subset of locations belonging to c. The average of all loc.α and
loc.β of the locations contained in the subset l is the centroid
(αc, βc) of the cluster, which is designated as c.centroid. We
introduce C, the set of clusters extracted from the location log
of a user as C = {c1, c2, c3, ..., cn}. Disjointness of discovered
clusters can not be guaranteed by equations 1, 2, 3 and 4 that
is in turn to explain cluster group construction in next step.

2) Cluster Group Discovery: A cluster group includes a set
of overlapped clusters. Thus, we define equation 5 to check
whether two clusters ci, cj ∈ C are intersected or not.

Distance (ci.centroid, cj .centroid)

− (ci.∆r + cj .∆r) < 0
(5)

A cluster group is a 4-item tuple cg =
(αcg, βcg,∆r, {c1, c2, c3, ...}), where αcg , βcg and ∆r ∈ R,
{c1, c2, c3, ...} ∈ C are latitude, longitude, radius and array
of clusters constituting g respectively. (αcg, βcg) represents
the centroid of the cluster group, which is the mean of all the
clusters formed g, and ∆r must be compared to enclose all
the individual clusters present in g. G contains the n cluster
groups belonging to a user as G = {cg1, cg2, cg3, ..., cgn}

3) Individual Zone of Interest (I-ZOI): An I-ZOI refers
to a visited region by a user frequently and during daily
activities. We define two constants minCountThreshold
and maxTimeDifference ∈ N representing the mini-
mum threshold of visits and the maximum time difference
threshold between two consecutive visits, respectively. Then,
CountV isits(cg) is a function that counts the number of
clusters included in cluster group cg, and timeDuration(G)
is a function that returns the duration between two consecutive
visited dates of cluster group cg in G. A cluster group cg ∈ G

is transformed into an I-ZOI z if the conditions of Equation
6 and 7 are met:

CountV isits(cg) ≥ minCountThreshold (6)

timeDifference(G) ≤ maxTimeDifference (7)

An I-ZOI z is a 6-item tuple z =
(αz, βz,∆r, IDzone, {g1, g2, g3, ..., gn} , TID), where αz ,
βz and ∆r ∈ R, IDzone ∈ N and {g1, g2, g3, ..., gn} ∈ G are
the latitude, longitude, radius, Zone-ID and group clusters
becoming an I-ZOI. TID represents visiting dates of the
I-ZOI by each user. The set Z is finally the set of I-ZOIs
of the user such that Z = {z1, z2, z3, ..., zn}. As shown in
Figure 2, the set of discovered cluster groups are depicted
by intersected yellow circles. Finally, the cluster groups that
could satisfy above conditions are considered as I-ZOIs.

Fig. 2: I-ZOI construction from cluster groups of location points.

4) Common Zone of Interest (C-ZOI): A C-ZOI is
an aggregation of adjacent I-ZOIs. We introduce a
constant distanceThreshold ∈ N to represent the
maximum threshold of distance between each I-ZOIs.
Distance (I − ZOIi.centroid, I − ZOIj .centroid) is
a function to compute Euclidean distance between the
I − ZOIi and I − ZOIj . I-ZOIs are grouped whenever the
following condition in Equation 8 is satisfied:

Distance (I − ZOIi.centroid, I − ZOIj .centroid)

≤ distanceThresold
(8)

A C-ZOI is a 6-item tuple C − ZOI =
(αcz, βcz,∆r, IDcz, {ZOI1, ZOI2, ZOI3, ..., ZOIn} , TID),
where αcz , βcz and ∆r ∈ R, IDcz ∈ N and
{ZOI1, ZOI2, ZOI3, ..., ZOIn} ∈ Z are the latitude,
longitude, radius, C-ZOI-ID and group of I-ZOIs,
respectively. The last item of the tuple indicates visiting
dates of the C-ZOI by each user. Finally, we introduce
CZ, which contains the n C-ZOIs belonging to users as
CA = {C − ZOI1, C − ZOI2, C − ZOI3, ..., C − ZOIn}.
Figure 3 shows an example of extracted C-ZOIs for a group
of users. Each C-ZOI encapsulates a set of nearby I-ZOIs.



Fig. 3: C-ZOIs construction from I-ZOIs.

C. Individual Zone of Interest (I-ZOI) Prediction

This module predicts the users’ future locations (I-ZOI).
The mobility model represents the movement of mobile users
and how their locations change over time. One of the intuitive
methods to determine a mobile node’s movement pattern, is
the attempt to trace and capture some sort of regularity in the
user mobility. Such behavior regularity could be considered
as a user’s profile and utilized to estimate places a user may
visit in future. The proposed mobility prediction scheme in
this paper is based on a hybrid Markov chain model, which
adaptively selects from the first-order or the second-order
Markov chain, depending on the availability and quality of
user traces. The proposed hybrid Markov model benefits from
both the first-order Markov chain [15] and the second-order
Markov chain. The rationale behind using a hybrid predictor
is that the standard first-order Markov chain algorithms are
memoryless models, which means that the input for the next-
place prediction task includes current visited location, current
time and the day of week that the user is in the movement.
The second-order Markov chain model is slightly different.
In addition to current state, it benefits from previous state to
predict future location. Indeed, such information is very useful:
if a user is currently at a city center, e.g., a restaurant, knowing
whether he/she was at work or at home just before greatly
helps in predicting his/her next move. However, we experience
for some users periods (ranging from a few seconds to a
few minutes) with no information about their behavior, when
trace data includes discrete gaps, the 2-order state information
conditions will not met, which led to poor performance for
the second-order Markov predictor.

The proposed hybrid model is illustrated in Figure 4, in
which a Markov chain state consists of a time step and an I-
ZOI ID. Equation 9 defines the calculation of future location
probability, in which Zi represents an I-ZOI with ID i, D
indicates the day of the week (e.g., Saturday), Ti defines the
time of the day D (e.g., 13:22:43 h), and λp determines the
future time interval.

Fig. 4: Hybrid Markov Chain.

Pr(Zi+1(t+ 2λp)) =


Pr(Zi+1|Z(t+ λp) = Zi,

D, T (t+ λp) = Ti)
Zi−1 = 0

Pr(Zi+1|Z(t) = Zi−1, Z(t+ λp) = Zi,
T (t) = Ti−1,T (t+ λp) = Ti, D)

Zi−1 6= 0

(9)

Equation 9 can be considered as a location-dependent
distribution and a time-dependent distribution (as expressed
in Equations 10 and 13). As shown in Equation 13, both the
time-dependency and location-dependency distributions in the
second-order Markov chain model benefiting from current and
previous state information (e.g., time, day and location). The
location dependent distribution can be modeled as a Mobility
Markov Chain (MMC). The MMC is described by a state-
transition matrix including the user’s I-ZOIs, which are the
states and all the transitions among them. These transitions are
collected during training period of the predictor by considering
a tunable time threshold (e.g., each minutes) on the given days
of the week (e.g., all Wednesdays, all Thursdays and etc.). For
the case of the second-order Markov chain, the counting of
transition frequency happens only when the user’s movement
is continuously following the sequence of two states.

Pr(Zi+1|Z(t+ λp) = Zi, T (t+ λp) = Ti, D) (10)

=Pr(Zi+1|Z(t+ λp) = Zi) (11)

+Pr(T (t+ λp) = Ti, D) (12)

Pr(Zi+1|Z(t) = Zi−1, Z(t+ λp) = Zi, T (t) = Ti−1, T (t+ λp) = Ti, D)
(13)

=Pr(Zi+1|Z(t) = Zi−1, Z(t+ λp) = Zi) (14)

+Pr(T (t) = Ti−1, T (t+ λp) = Ti, D) (15)

D. Common Zone of Interest (C-ZOI) Congestion Prediction

From the probability distribution of the users’ future visited
I-ZOIs, we can further estimate the number of users that
may visit and stay in a C-ZOI together at a future moment.
Therefore, next, we target at predicting the probability dis-
tribution of the number of users that may visit together a



specific C-ZOI within a given time. As explained in Section
III, nearby I-ZOIs are covered by C-ZOIs. In these regions
users either do not move or they move very slowly and
users are spending a considerable amount of time together
in each C-ZOI. Each of these hot spot regions are candidates
to host a significant number of users (pedestrians). Then, we
define the AreaCongestionThreshold (M), which refers to the
number of predicted users in each C-ZOI. The congestion
prediction model counts the number of predicted users in each
C-ZOI. If the number of users exceed the defined threshold,
we assume that this region will experience congestion within
the next λc minutes. Predicting the number of users will help
us to facilitate tasks such as resource management, logistic
administration, and urban planning. For instance, if we know
how many users will be in a specific C-ZOI between time t and
t+λc we could optimize placement of resources in the city or
dynamically adapt those resources, while taking into account
the number of users. Equation 16 defines the probability of
having M users visiting C − ZOIi at time t + λc, which is
derived from the estimated number of upcoming and outgoing
of users in C −ZOIi at time t+ λc. The parameters used in
this equation are listed in Table I.

P
{
NC−ZOIi

(t+ λc) = M
}

=∑
m

P
{
NC−ZOIi

(t+ λc) = M | NC−ZOIi
(t) = m

}
×

P
{
NC−ZOIi

(t) = m
}

=∑
m

〈
∑

n1,n2,n1−n2=4m

P
{
Nin,C−ZOIi

(t+ λc) = n1

}
×

P
{
Nout,C−ZOIi

(t+ λc) = n2

}
〉 × P

{
NC−ZOIi

(t) = m
}

(16)

In Equation 16, P {Nin,C−ZOIi
(t+ λc)

} describes the prob-
ability of having n1 users that may move into C−ZOIi at time
t + λc and P

{
Nout,C−ZOIi

(t+ λc)
} indicates the probability

of having n2 users may moving out from C − ZOIi at time
t + λc. These probabilities can be calculated using Equation
17.

P
{
Nin,Ci

(t+ λc) = n1

}
=

∑
A1∈FC

i′ (t)

∏
j1∈A1

Pj1

∏
j′1∈A

c
1

(
1− Pj′1

)
×

P
{
Nout,Ci

(t+ λc) = n2

}
=

∑
A2∈FCi(t)

∏
j2∈A2

Pj2

∏
j′2∈A

c
2

(
1− Pj′2

)
(17)

IV. EVALUATION

In this section, we present an evaluation methodology
to validate the proposed user mobility and area congestion
prediction models.

1) Dataset: In order to make mobility and congestion
prediction, historical user traces are required. We used a
mobility data trace collected during the Nokia Mobile Data
Challenge (MDC) [16], which is a large-scale research ini-
tiative aimed at generating innovations around smart phone-
based research. This dataset includes rich context information
from the mobile phones for around 180 users around the lake

TABLE I: Area congestion prediction algorithm parameters.

Parameter Name Parameter Definition
Zi State i in the Markov chain
Pr {Zi+1(t)} Probability of at State (i+ 1) at t
C − ZOIi, Uj C-ZOI ID i, User ID j
D, Ti Weekday and time of being at State i
λc, t Future time interval and current time
C = {C − ZOI1, .., i}, |C| = I Set of C-ZOIs, I is the total numbers
U = {User1, .., j}, |U | = J Set of Users, J is the total numbers
NC−ZOIi

(t), NC−ZOIi
(t+λc) Number of Users in C-ZOI i at time t and

t+λc (e.g., m and M)
Nin,C−ZOIi

(t+ λc) Number of Users that may move to C-ZOI
i at time t+λc (e.g., n1)

Nout,C−ZOIi
(t+ λc) Number of Users that may move from C-

ZOI i at time t+λc (e.g., n2)
FC−ZOIi(t)

Subset of all users in C−ZOIi at time t
FC−ZOI

i′ (t)
Subset of all users out of C − ZOIi at
time t

Pj1 , Userj1 ∈ FC−ZOI
i′ (t)

P{Userj1 is in FC−ZOI
i′ (t)

at time t}
× P{Userj1 moves to C −
ZOIi at time t+λc}

Pj2 , Userj2 ∈ FC−ZOIi(t)
P{Userj2 is in FC−ZOIi(t)

at time t}
× P{Userj2 moves from C −
ZOIi at time t+λc}

Geneva region in Switzerland from October 2009 to March
2011. The mean duration of the participants, which mainly
consisted of professionals and university students, was about
14 months. It includes Global Positioning System (GPS) in-
formation, running applications, chat records, calling records,
etc. However, for mobility and congestion predictions, we are
only interested in GPS location information, which are more
than 10 million location points. For each user, we separated
available data into two parts: the first part is the learning data
set (L) and the rest is the testing data set (T ). The learning
data set includes the first 70% of user data. It is used to drive
the states for both algorithms and to determine their transition
probability matrix. The testing data set T contains the last 30%
of the traces, which is used to test and evaluate the accuracy
of the proposed prediction algorithms.

2) User Trace Quality: Different behaviors of users lead
to different trace qualities. Some users carry the smart-phone
all the time. However, some others forgot to carry the devices
or had to charge them, such that data recordings are non-
continuous. As learned from our previous experiences [17]
[18], the number of valid states (with a time stamp and I-ZOI
ID) in the drived hybrid Markov chain for each user depend
on the quality of data trace in each day. Therefore, we first
classify the dataset into two groups (good or poor quality)
based on the number of recorded instances during the whole
data collection period. We choose five users with good quality
of trace data (e.g., 500000-400000 records) and five users with
poor quality of trace data (e.g., 250000-350000 records).

3) Evaluation Metrics: Prediction accuracy measures the
accuracy of the location prediction algorithm. We randomly
select 10% of the states out of all the Markov chain states
(e.g., states from 9 AM to 11 AM) derived for each particular
weekday from the training data set L for each user. Afterwards,
the prediction algorithm is performed for each of the selected
states to estimate the possible future visited I-ZOI(s) for
mobility prediction in the next λp minutes. These states have
been chosen as random testing points. We check the transition



probability for states during the same period of time in the
testing data set T as well. Afterwards, the Mean Absolute
Error (MAE) of the possible transitions of the corresponding
testing points is calculated according to Equation 18. To
evaluate performance of the area congestion predictor we
define two metrics: (i) density of users, which counts the
number of users that may move to each C-ZOI; (ii) area
congestion prediction accuracy, which represents probability
of moving users to a C-ZOI in a specific day of week and is
calculated by average of future location prediction accuracies
of users in each C-ZOI drived from Equation 18.

MAE =
1

N

N∑
i=1

| PriL− PriT |, Accuracy = (1−MAE)× 100 (18)

4) Experimental Settings: We describe the experimentation
parameters of the discussed clustering, mobility prediction,
and congestion prediction algorithms. In order to determine
the parameters we analyze traced data for users with at least
10 months duration of collected data. Then, we read the data-
points sequentially according to the recorded time stamps.
Table II shows the experiment parameters and the associated
values in our assessment.

TABLE II: Experiments parameters.

Parameter Definition Value
∆dmax Maximum Euclidean distance between centroid of

location points and next location
60 m

∆tmin Minimum time threshold of staying in each location
point

15 min

emax Maximum instantaneous velocity threshold 50 m/s
emin Minimum instantaneous velocity threshold 0
M Number of predicted users in each C-ZOI 6
minCountTh Minimum number of visits of each cluster group 60
maxTimeDiff Maximum time difference between two consecutive

visits of a cluster group by a user
24 h

DistanceTh Maximum Euclidean distance between two I-ZOIs 500 m
λp Time threshold for hybrid-MC algorithm 1 min
λc Time threshold for area congestion prediction algo-

rithm
15 min

V. EVALUATION RESULTS

1) Mobility Prediction Accuracy Results: This subsection
details the prediction accuracy results of the proposed hybrid
predictor, the first order and the second order Markov chain.
We first present the average prediction accuracy of all the users
with different trace qualities. Then, we discuss more details
about the prediction accuracy per day, for users with poor and
good trace qualities.

Figures 5 and 6 show the prediction accuracy of different
MMC predictors for users with good and poor quality of
mobility traces. We define two categories of quality depending
on the number of instances recorded in a user’s movement
traces. We randomly choose 5 User IDs (5973, 5928, 5993,
5977, 5925) from the group of good quality trace data, and
5 User IDs (6177, 5927, 5969, 6037, 5961) from the group
of poor quality trace data. As we can see from Figure 5, the
hybrid predictor can deliver a average prediction accuracy over
all weekdays and weekends of nearly 83% for User-ID 5928.
Moreover, it can be observed from Figure 6 that the estimated
accuracy is improved significantly when the hybrid predictor

Fig. 5: Prediction accuracy for users with good quality.

Fig. 6: Prediction accuracy for users with poor quality.

Fig. 7: Prediction accuracy per day for User-5928.

Fig. 8: Prediction accuracy per day for User-6037.

used for users with poor quality trace data. For instance, it
delivers an average accuracy of 63% for User-IDs 6177 and
5927. The results clearly demonstrate that the hybrid predictor
outperform others, while using the traced data with either poor
or good quality. Figures 7 and 8 show the prediction accuracy
of three different predictors per each day. This helps us to
explain the advantages of the hybrid predictor compared to the



Fig. 9: Trace qualities of User IDs 5928/6037 on weekdays.

first-order and second-order Markov chains. From defined user
categories we randomly select User-ID 5928 and User-ID 6037
as the representatives of users with good and poor qualities.
The graphs show that the hybrid predictor performs better than
the first-order and the second-order MC predictors for both
categories. To explain the performance difference of mobility
predictors for these two users, we next discuss the data quality
of User-ID 5928 and 6037. Figure 9 depicts mobility traces of
users over a year, shown as a matrices, where each column is
a minute of the day and each line indicates the number of days
with valid trace data (with time stamp and GPS coordinates).
We map each interval of valid records to continuous pulses,
and leave blank intervals time during which we have no
information about users’ locations. To count the number of
days with valid trace records, we introduce a threshold, which
counts the days with more than 1500 records as valid days
for prediction. If a user has less than 1500 records in one
day. Then data of that specific day will not be included in
the prediction. This is because such a low number of records
happen most probably due to imperfect geolocation sensors
or network unavailability. Therefore, collected traces for these
users are not valid and should not be included in the prediction
procedure. Figure 6 illustrates that for User-ID 6037, the
hybrid predictor can only deliver an accuracy of around 52%
for Monday. This situation arises typically because location
data are partly available. For User-ID 5928, due to having
continuous intervals of collected GPS records at a high number
of days with valid trace data between 80 to 100, the hybrid
predictor has improved performance (81% to 83%) for all
weekdays.

2) Congestion Prediction Accuracy Results: In addition
to estimating future locations of mobile users, we are also
interested in area congestion prediction. In this subsection, we
present the prediction accuracy of the congestion prediction
algorithm. Then we discuss more details about the number of
predicted users in each Common-ZOI.

We explore the predictability of congestion by using GPS
records. We focus on the extracted Common-ZOIs in Lausanne
by predicting the number of users that may move and stay
together in each common hot spot. Figure 10 depicts the results
of the congestion prediction algorithm for time-of-days (08:00

Fig. 10: Area congestion prediction accuracy.

h, 12:00 h, 18:00 h and 22:00 h). The graph shows that the
congestion prediction algorithm achieves accuracies exceeding
70% for C-ZOIs. In addition to congestion prediction accuracy,
we also count the number of users in each Common-ZOI for
time-of-days (08:00 h, 12:00 h, 18:00 h and 22:00 h). Figure
11 shows the variation of population during the corresponding
hour. We observe that in the evening the population tends
to move towards the city suburbias (C-ZOI 1, C-ZOI 5),
going back home for dinner. An opposite trend is observed
at 08:00 AM and 12:00 PM, when there is a significant in-
flow towards the city center or universities (C-ZOI 2, C-ZOI 3
and C-ZOI 4). Although we can not compare these population
densities against a proper ground truth, we remark that the
model represents very reasonable results that match well to
the movements of inhabitants in the city of Lausanne.

VI. CONCLUSIONS
With the explosive growth of location-based service on

mobile devices, predicting users’ future locations is of increas-
ing importance to support proactive information services. In
this paper, we introduce a hybrid predictor to estimate future
locations of a user. Further, we propose a technique to discover
hot spot regions for users by relying on spatial and temporal
constraints. The achieved results over real world mobility
traces validates our proposed algorithms, which achieve more
than 81% correct predictions for users. More important, we
present a novel approach to predict congestion in hot spot
regions using GPS coordinates. This achieves accuracy ex-
ceeding 70% for discovered Common-ZOIs from the available
dataset.



Fig. 11: Density of users in each Common-ZOI. a) Wednesday at 08:00 h. b) Wednesday at 12:00 h. c) Wednesday at 18:00
h. d) Wednesday at 22:00 h.

For future improvements we will focus on predicting tra-
jectories of mobile users that they use for transition among
I-ZOIs. We will also improve our area congestion prediction
algorithm by applying congestion classification models to clas-
sify the predicted congestion to slight congestion, moderate
congestion and severe congestion.
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Abstract—The prevalence of smartphones equipped with global
positioning system (GPS) has enabled researchers to excavate
users mobility patterns in the cities. The knowledge of users’
behavior, such as their locations, plays significant role in location-
based services (LBSs), resource management, logistic adminis-
tration and urban planning. To understand complex behavior
of humans we utilize spatio-temporal analysis on collected geo-
location points to exploit Individual Zone of Interests (I-ZOIs)
in urban areas. In addition, we designed a hybrid Markov chain
model to forecast future locations of pedestrians. Compared to
existing mobility prediction methodologies, our predictor can
adapt it’s behavior constantly based on the quality of existing
traced data to switch between first-order or second-order Markov
chain. Besides, we propose a model to predict city area congestion.
More specifically, the model predicts the number of users in a
specific area of a city by discovering the regular mobility patterns
of a group of users. We conducted comprehensive empirical
experiments using a real-life dataset, namely the Mobile Data
Challenge (MDC) dataset, which was collected in the city of
Lausanne in Switzerland with around 180 participants. We found
a satisfactory user future location prediction accuracy of 70−84%
and area congestion prediction accuracy of 65−73% for the users.

Index Terms—Mobile analysis, Mobility and Congestion Pre-
diction, Mobility Behavior, Location based Services.

I. INTRODUCTION

Extracting meaningful information from collected trace data
of users to determine their movement pattern is an important
part of location-based services (LBSs). For example, to predict
future behavior of a mobile user, mobility predictors rely on
clustering techniques to capture a user’s Individual Zone of
Interests (I-ZOIs) from collected trace data. Intuitively, an I-
ZOI is a city area that an individual user visits frequently and
the user spends considerable time in this region. Typically,
LBSs are using mobility prediction as a means to improve
quality of service by providing context-aware information to
users beforehand.

In the last decade, with the increasing adoption of services
such as Google Now, which proactively collects data, such
as Bluetooth/WiFi connectivity, call/SMS log, information
about running applications, large size of heterogeneous data
is accumulated. This knowledge is essential for humans in
their daily life activities. Another popular service, Moves
enables automatic recording of any walking, cycling, and
running of users and displays pertinent information, such
as traveled distance, duration and calories burned for each
activity. Similarly, Google Maps is a web mapping service to
predict future location of users based on the movement history.

It is apparent from the above examples that location based
services are prospering, giving a notable chance to collect
contextual data about visited location of users. This source
of user mobility provides new possibilities to probe human
mobility in large cities. In addition to mobility prediction, area
congestion prediction in large cities is also of great importance.
The past decades have witnessed a rapid development of
modern cities accompanied with an increasing demand for
mobility [1], accounting for the conflict between the limited
resource capacities and the increase of traffic demand reflected
by severe user congestion in hot spot regions. Induced by such
a problem, several negative impacts arise for citizens, e.g.,
economic losses, reduction of travel efficiency and accessing
to resources. Fortunately, accumulated data from smartphones
and LBSs have been used to forecast congested areas in smart
cities.

The type of dataset plays an important role in accurate
location prediction as the prediction algorithms learn user
movement patterns from collected data [2]. To examine pre-
diction performance of proposed models, we use a large scale,
real-world dataset from the Nokia Mobile Data Challenge,
collected in the city of Lausanne by almost 180 participants.

In this work, the fundamental goal is to formulate the
location prediction problem using a Mobility Markov Chain
model (MMC). We propose a dynamic Markov chain-based
model, which adaptively selects the first-order or the second-
order Markov chain model based on the available trace quality.
We propose a clustering algorithm to discover frequently
visited places by the user and integrate it with a mobility
predictor to predict a user’s future behavior. Moreover, in
order to estimate number of users in frequently visited places
we propose a congestion prediction algorithm. The system
overview is depicted in Figure 1. The contributions of our
paper are as follows:

• We design a mobility prediction algorithm that benefits
from both the first-order Markov chain and the second-
order Markov chain to forecast users’ future location.

• We propose the Zone of Interest discovery scheme, which
helps us to model the mobility behavior of users.

• We introduce a mechanism to predict congestion areas
that are frequently visited by users.

• We evaluate our mobility and congestion predictors us-
ing a real-life dataset, obtaining consistently satisfactory
results.



The remainder of the paper is organized as follows. Section
II discusses research efforts. Section III presents our system
model and introduces some preliminaries used in the paper.
Sections IV and V discuss the methodology to evaluate the
mobility model and demonstrate obtained results respectively.
Finally, in Section VI we conclude our paper by sketching
future research directions.

II. RELATED WORK

Understanding human mobility by mining raw GPS logs
has been a long-standing subject in academic research [3], [4].
These approaches rely on clustering user visits to extract hot
spots. A clustering algorithm attempts to partition m observed
objects into n clusters, where each cluster is characterized
with the similarity of objects within a cluster. The premier re-
search in adapting the data clustering algorithms for modeling
mobility behavior [5] proposes to iteratively extract hot spots
of users. Montoliu et al. proposed a clustering algorithm [6],
where GPS coordinates (latitude and longitude) are clustered
in the temporal domain to detect the stay points that are used to
derive frequently visited regions using a grid-based clustering
approach. Several other clustering algorithms such as Density-
Time (DT) clustering [7], Density-Join able (DJ) [8] and
Time-Density (TD) clustering [9] have also been proposed to
detect clusters, which are then considered as frequently visited
places.

The above techniques use several temporal bounds to
classify a particular region as a cluster. Some parameters
include maximum distance between the collected locations,
maximum/minimum time bound of visited places and cluster
shapes. However, if we only take into account the temporal
bounds, this leads to some inaccuracies in estimating the total
number of clusters belonging to a user. As opposed to using
only temporal metrics to cluster the individual regions, we
form the clustering algorithm by benefiting both temporal and
spatial metrics (instantaneous velocity, average velocity) to
quantify the correlation between visited regions.

Regarding the mobility prediction methods, a majority of
proposed models first explore movement patters and con-
sequently employ it to predict next movements [10],[11].
Numerous map-matching algorithms have been proposed to
predict user mobility [12],[13]. However, most existing map-
matching algorithms are not always feasible and need con-
tinuous network connection [14]. In recent years mobility
Markov chain (MMC) algorithms have been used widely to
forecast future behavior of users, due to their simplicity,
low execution time and good prediction performance [15].
In [16] authors have found that Markov-based algorithms are
performing better than more complex and more memory con-
suming algorithms such as Sampled Pattern Matching (SPM)
or Prediction by Partial Matching (PPM). The author in [2]
proves that Neural network based approaches suffer from high
computation complexity. In [17] authors proposed Markov-
based algorithm to predict next location using non-Gaussian
data. Using higher order Markov-based algorithms proposed in
[18]. The authors in [19],[20],[21] integrate Markov predictors

with other algorithms to improve prediction performance. Such
schemes completely ignore the trace data with poor quality and
just consider users with good quality of trace data. Our work
consists of estimating the frequently visited locations, and then
attaining the hybrid Markov chain model, which adaptively
chooses from the first-order or the second order Markov chain,
based on the quality of mobility trace to predict future behavior
of the users.

Due to continued developments in location tracking tech-
niques, forecasting of urban congestion has become an active
research topic. In [22] and [23] authors proposed to use Au-
toregressive Integrated Moving Average (ARIMA) algorithm to
analyze time series data. In [24], the author uses Markov-based
algorithm to calculate the probability distribution of overflow
queue. The algorithm is able to estimate mean queue and its
variance for stationary and non-stationary arrival processes.
However, the existing techniques are not well suited to predict
time of congestion. Therefore, we utilize the area congestion
predictor with a tunable time threshold, which means accord-
ing to our requirements the algorithm can determine time of
users’ congestion in scales of seconds or minutes.

III. SYSTEM MODEL

The system overview is depicted in Figure 1. The proposed
system model involves three main layers: Common Zone of
Interest (C-ZOI) Discovery, Individual Zone of Interest (I-ZOI)
Prediction and Common Zone of Interest (C-ZOI) Congestion
Prediction. The relevant notations and system component
definitions are explained in the following subsections.

GPS Log Clustering
Group

Clustering
I-ZOI

Discovery

Congestion
Prediction

Next Congested 
C-ZOI

Next I-ZOI
Hybrid

Markov Chain
Labelling

C-ZOI

C-ZOI Discovery

I-ZOI Prediction

C-ZOI Congestion Prediction

Fig. 1: Overview of the System Model.

A. Locations and Places

Mobile devices have the potential to track users’ vis-
ited locations using the Global Positioning System (GPS).
The device regularly collects a user’s raw location logs
as a list L = [loc1, loc2, loc3, ..., locn], where loci =
(α, β, t, v) is a tuple representing a location point in the format
(latitude, longitude, timestamp, velocity). The rest of the
paper uses the notations loc.α, loc.β, loc.t and loc.v for the
location point elements. In addition to GPS coordinates, users’
daily activities consist of some places that they find useful or
where they spend a considerable amount of time. This work



focuses on places, which we refer to Zone of Interest (ZOI)
hereafter.

B. Common Zone of Interest (C-ZOI) Discovery

Intuitively, an Individual Zone of Interest (I-ZOI) is a cluster
group that is frequently visited by a user and a Common Zone
of Interest (C-ZOI) depicts a region covering multiple I-ZOIs.
Conceptually, each C-ZOI represents a region, where several
users are interested to visit frequently and spend considerable
amount of time. In order to extract the C-ZOIs of users based
on the location history L, we must first introduce the notations
of cluster and cluster group. A cluster is a set of visited
location points with similar temporal (e.g., visiting time) and
spatial (e.g., instantaneous velocity) features. A cluster group
is an aggregation of intersected clusters.

1) Cluster Discovery: A cluster represents a subset of suc-
cessive location points in L, which are confined with similar
temporal and spatial features. ∆dmax, emax, emin and v ∈ R
represents the distance expressed in meters, maximum veloc-
ity, minimum velocity and instantaneous velocity expressed
in meters per second, respectively. In addition, ∆tmin ∈
N is a time duration expressed in minutes. We introduce
two functions: ClusterCentroid ([loc1, loc2, loc3, ..., locn]),
to compute the centroid of visited location points, and
Distance ([loci, locj ]), which measures the Euclidean dis-
tance between the two locations loci and locj . A subset l ⊆ L
becomes a cluster if the following conditions in Equation 1,
2, 3 and 4 are met:
∀loci, loci+1 ∈ l :

Distance (centroid (loc1, ..., loci) , loci+1) ≤ ∆dmax (1)

locnt− loc1t ≥ ∆tmin (2)

emin ≤
n∑
i=1

vi
n
≤ emax (3)

@l′ 6= : l ⊂ l′ (4)

A cluster is a 4-item tuple c = (αc, βc, r, l), where αc
and βc ∈ R are the latitude and longitude coordinates of
the centroid, r ∈ R is it’s radius in meters, and l ∈ L is
the subset of locations belonging to c. The average of all
loc.α and loc.β of the locations contained in the subset l
is the centroid (αc, βc) of the cluster, which is designated
as c.centroid. We introduce C, the set of clusters extracted
from the location log of a user as C = {c1, c2, c3, ..., cn}.
Disjointness of discovered clusters can not be guaranteed by
equations 1, 2, 3 and 4. Therefore, construction of cluster
group is required and explained in the next step.

2) Cluster Group Discovery: A cluster group includes a set
of overlapped clusters. Thus, we define equation 5 to check
whether two clusters ci, cj ∈ C are intersected or not.

Distance (ci.centroid, cj .centroid)

− (cir + cjr) < 0
(5)

A cluster group is a 4-item tuple cg =
(αcg, βcg, r, {c1, c2, c3, ...}), where αcg , βcg and r ∈ R,

{c1, c2, c3, ...} ∈ C are latitude, longitude, radius and array
of clusters constituting g respectively. (αcg, βcg) represents
the centroid of the cluster group, which is the mean of all
the clusters formed g, and r must be compared to enclose all
the individual clusters present in g. G contains the n cluster
groups belonging to a user as G = {cg1, cg2, cg3, ..., cgn}

3) Individual Zone of Interest (I-ZOI): An I-ZOI refers
to a frequently visited region by a user during daily
activities. We define two constants minCountThreshold
and maxTimeDifference ∈ N representing the mini-
mum threshold of visits and the maximum time difference
threshold between two consecutive visits, respectively. Then,
CountV isits(cg) is a function that counts the number of
clusters included in cluster group cg, and timeDuration(G)
is a function that returns the duration between two consecutive
visited dates of cluster group cg in G. A cluster group cg ∈ G
is transformed into an I-ZOI z if the conditions of Equation
6 and 7 are met:

CountV isits(cg) ≥ minCountThreshold (6)

timeDifference(G) ≤ maxTimeDifference (7)

An I-ZOI z is a 6-item tuple z =
(αz, βz, r, IDzone, {g1, g2, g3, ..., gn} , TID), where αz ,
βz and r ∈ R, IDzone ∈ N and {g1, g2, g3, ..., gn} ∈ G are
the latitude, longitude, radius, Zone-ID and group clusters
becoming an I-ZOI. TID represents visiting dates of the
I-ZOI by each user. The set Z is finally the set of I-ZOIs
of the user such that Z = {z1, z2, z3, ..., zn}. As shown in
Figure 2, the sets of discovered cluster groups are depicted
by intersected yellow circles. Finally, the cluster groups that
could satisfy above conditions are considered as I-ZOIs.

Fig. 2: I-ZOI construction from cluster groups of location points.

4) Common Zone of Interest (C-ZOI): A C-ZOI is
an aggregation of adjacent I-ZOIs. We introduce a
constant distanceThreshold ∈ N to represent the
maximum threshold of distance between each I-ZOIs.
Distance (I − ZOIicentroid, I − ZOIjcentroid) is a func-
tion to compute the Euclidean distance between the I−ZOIi
and I − ZOIj . I-ZOIs are grouped whenever the following



condition in Equation 8 is satisfied:

Distance (I − ZOIicentroid, I − ZOIjcentroid)

≤ distanceThresold
(8)

A C-ZOI is a 6-item tuple C − ZOI =
(αcz, βcz, r, IDcz, {ZOI1, ZOI2, ZOI3, ..., ZOIn} , TID),
where αcz , βcz and r ∈ R, IDcz ∈ N and
{ZOI1, ZOI2, ZOI3, ..., ZOIn} ∈ Z are the latitude,
longitude, radius, C-ZOI-ID and group of I-ZOIs,
respectively. The last item of the tuple indicates visiting
dates of the C-ZOI by each user. Finally, we introduce
CZ, which contains the n C-ZOIs belonging to users as
CA = {C − ZOI1, C − ZOI2, C − ZOI3, ..., C − ZOIn}.
Figure 3 shows an example of extracted C-ZOIs for a group
of users. Each C-ZOI encapsulates a set of nearby I-ZOIs.

Fig. 3: C-ZOIs construction from I-ZOIs.

C. Individual Zone of Interest (I-ZOI) Prediction

This module predicts the users’ future locations (I-ZOI). The
mobility model represents the movement of mobile users and
how their locations change over time. Collected mobility traces
of users during their movements could be used to explore
some sort of regularities in their daily life. This knowledge
is utilized by a mobility predictor to forecast locations that
a user may visit in future. The proposed mobility prediction
scheme in this paper is based on a hybrid Markov chain
model, which adaptively switch between the first-order or the
second-order Markov chain, depending on the availability and
quality of collected user traces. The proposed hybrid Markov
model benefits from both the first-order Markov chain [25] and
the second-order Markov chain. The rationale behind using a
hybrid predictor is that the standard first-order Markov chain
algorithms are memoryless models [26], which means that
the mobility predictor only benefits from current temporal
(time and day of week) and spatial (location) to predict next
movement. However, the second-order Markov chain model
benefits from previous state in addition to current state to
predict future location. Actually, this information is really
beneficial: if a user is currently at a city center, e.g., a
restaurant, knowing whether he/she was at work or at home
just before greatly helps in estimating his/her future behavior.
However, we observe for some users trace data with discrete

gaps (ranging from a few seconds to a few minutes). In these
cases the 2-order state information conditions will not met,
which led to poor performance for the second-order Markov
predictor [26].

Fig. 4: Hybrid Markov Chain.

The proposed hybrid model is illustrated in Figure 4, in
which a Markov chain state consists of a time step and an I-
ZOI ID. Equation 9 defines the calculation of a future location
probability, in which Zi represents an I-ZOI with ID i, D
indicates the day of the week (e.g., Saturday), Ti defines the
time of the day D (e.g., 13:22:43 h), and λp determines the
future time interval.

Pr(Zi+1(t+ 2λp)) =


Pr(Zi+1|Z(t+ λp) = Zi,

D, T (t+ λp) = Ti)
Zi−1 = 0

Pr(Zi+1|Z(t) = Zi−1, Z(t+ λp) = Zi,
T (t) = Ti−1,T (t+ λp) = Ti, D)

Zi−1 6= 0

(9)

Equation 9 can be considered as a location-dependent
distribution and a time-dependent distribution (as expressed in
Equations 10 and 13). As shown in Equation 13, both the time-
dependent and location-dependent distributions in the second-
order Markov chain model benefit from current and previous
state information (e.g., time, day and location). The location
dependent distribution can be modeled as a Mobility Markov
Chain (MMC). The MMC is described by a transition matrix,
which includes discovered I-ZOIs per each single user and all
the calculated transitions between them. The mobility predictor
obtains these transitions during training step by considering a
tunable time threshold (e.g., each minutes) on the given days
of the week (e.g., all Wednesdays, all Thursdays and etc.). The
second-order Markov chain calculates transition probabilities
among states only if two successive states are present in traced
data.

For the case of the second-order Markov chain, the counting
of transition frequency happens only when the user’s move-
ment is continuously following the sequence of two states.

Pr(Zi+1|Z(t+ λp) = Zi, T (t+ λp) = Ti, D) (10)

=Pr(Zi+1|Z(t+ λp) = Zi) (11)

+Pr(T (t+ λp) = Ti, D) (12)



Pr(Zi+1|Z(t) = Zi−1, Z(t+ λp) = Zi, T (t) = Ti−1, T (t+ λp) = Ti, D)
(13)

=Pr(Zi+1|Z(t) = Zi−1, Z(t+ λp) = Zi) (14)

+Pr(T (t) = Ti−1, T (t+ λp) = Ti, D) (15)

D. Common Zone of Interest (C-ZOI) Congestion Prediction
From the probability distribution of the users’ future visited

I-ZOIs, we can further estimate the number of users that
may visit and stay in a C-ZOI together at a future moment.
Therefore, next, we target at predicting the probability dis-
tribution of the number of users that may visit together a
specific C-ZOI within a given time. As explained in Section
III, nearby I-ZOIs are covered by C-ZOIs. In these regions
users either do not move or they move very slowly and users
are spending a considerable amount of time together in each
C-ZOI. Each of these hot spot regions are candidates to host
a significant number of users (pedestrians). Then, we define
the AreaCongestionThreshold (M), which refers to the number
of predicted users in each C-ZOI. The congestion prediction
model counts the number of predicted users in each C-ZOI.
If the number of users exceeds the defined threshold, we
assume that this region will experience congestion within the
next λc minutes. Predicting the number of users will help
us to facilitate tasks such as resource management, logistic
administration, and urban planning. For instance, if we know
how many users will be in a specific C-ZOI between time t
and t + λc we could optimize placement of resources (e.g.,
bandwidth allocation, public transportation ) in the city or
dynamically adapt those resources, while taking into account
the number of users. Equation 16 defines the probability of
having M users visiting C − ZOIi at time t + λc, which is
derived from the estimated number of upcoming and outgoing
of users in C −ZOIi at time t+ λc. The parameters used in
this equation are listed in Table I.

P
{
NC−ZOIi

(t+ λc) = M
}

=∑
m

P
{
NC−ZOIi

(t+ λc) = M | NC−ZOIi
(t) = m

}
×

P
{
NC−ZOIi

(t) = m
}

=∑
m

〈
∑

n1,n2,n1−n2=4m

P
{
Nin,C−ZOIi

(t+ λc) = n1

}
×

P
{
Nout,C−ZOIi

(t+ λc) = n2

}
〉 × P

{
NC−ZOIi

(t) = m
}

(16)

In Equation 16, P {Nin,C−ZOIi
(t+ λc)

} describes the prob-
ability of having n1 users that may move into C−ZOIi at time
t + λc and P

{
Nout,C−ZOIi

(t+ λc)
} indicates the probability

of having n2 users may moving out from C − ZOIi at time
t + λc. These probabilities can be calculated using Equation
17.

P
{
Nin,Ci

(t+ λc) = n1

}
=

∑
A1∈FC

i′ (t)

∏
j1∈A1

Pj1

∏
j′1∈A

c
1

(
1− Pj′1

)
×

P
{
Nout,Ci

(t+ λc) = n2

}
=

∑
A2∈FCi(t)

∏
j2∈A2

Pj2

∏
j′2∈A

c
2

(
1− Pj′2

)
(17)

TABLE I: Area congestion prediction algorithm parameters.

Parameter Name Parameter Definition
Zi State i in the Markov chain
Pr {Zi+1(t)} Probability of at State (i+ 1) at t
C − ZOIi, Uj C-ZOI ID i, User ID j
D, Ti Weekday and time of being at State i
λc, t Future time interval and current time
C = {C − ZOI1, .., i}, |C| = I Set of C-ZOIs, I is the total numbers
U = {User1, .., j}, |U | = J Set of Users, J is the total numbers
NC−ZOIi

(t), NC−ZOIi
(t+λc) Number of Users in C-ZOI i at time t and

t+λc (e.g., m and M)
Nin,C−ZOIi

(t+ λc) Number of Users that may move to C-ZOI
i at time t+λc (e.g., n1)

Nout,C−ZOIi
(t+ λc) Number of Users that may move from C-

ZOI i at time t+λc (e.g., n2)
FC−ZOIi(t)

Subset of all users in C−ZOIi at time t
FC−ZOI

i′ (t)
Subset of all users out of C − ZOIi at
time t

Pj1 , Userj1 ∈ FC−ZOI
i′ (t)

P{Userj1 is in FC−ZOI
i′ (t)

at time t}
× P{Userj1 moves to C −
ZOIi at time t+λc}

Pj2 , Userj2 ∈ FC−ZOIi(t)
P{Userj2 is in FC−ZOIi(t)

at time t}
× P{Userj2 moves from C −
ZOIi at time t+λc}

IV. EVALUATION

In this section, we present an evaluation methodology
to validate the proposed user mobility and area congestion
prediction models.

1) Dataset: In order to train mobility and congestion pre-
diction algorithms, accumulated traced data of users’ move-
ments is needed. In this research, we are relying on collected
trace data in Nokia Mobile Data Challenge (MDC) dataset.
[27]. This dataset contains records of almost 180 smartphones
conducted by residents around the lake Geneva in Switzerland.
The data records on which our work is based cover a duration
over 17 months from October 2009 to March 2011. The basic
demographic documents show that the participants are mostly
young individuals and university students [27]. The dataset
includes data generated from sensors and applications, such as
visited locations (GPS coordinates), movement (instantaneous
velocity), proximity (Bluetooth), communication (Cell-IDs,
WLAN-IDs), etc. However, for mobility and congestion pre-
dictions, GPS coordinates of visited places and corresponding
time stamps are required, which are nearly 10 million location
points. To evaluate prediction performance of both mobility
and congestion predictors, we divided collected mobility trace
data of each single user to two parts: (i) dataset (L): which
contains 70% of data as learning dataset. (ii) dataset (T ):
which contains the rest of traced data (30%) as testing dataset.
Learning dataset is used to obtain states for both algorithms
and to determine their transition probability matrix. The testing
dataset is used to test and evaluate the accuracy of the proposed
prediction algorithms.

2) User Trace Quality: Quality of collected traces depends
to behavior of pedestrians. Some users keep the smartphone
with them self everyday. However, others sometimes forgot
to carry the devices or had to charge them, such that data
recordings are non-continuous. As learned from our previous



experiences [28] [29], the number of valid states (with a time
stamp and I-ZOI ID) in the drived hybrid Markov chain for
each user depend on the quality of data trace in each day.
Therefore, we first classify the dataset into two groups (good
or poor quality) based on the number of recorded instances
during the whole data collection period. We choose five users
with good quality of trace data (e.g., 500000-400000 records)
and five users with poor quality of trace data (e.g., 250000-
350000 records).

3) Evaluation Metrics: Prediction accuracy measures the
accuracy of the location prediction algorithm. We select states
out of all the Markov chain states (e.g., states from 9 AM to
11 AM) derived for each particular weekday from the training
dataset L for each user. Afterwards, the prediction algorithm
is performed for each of the selected states to estimate the
possible future visited I-ZOI(s) for mobility prediction in the
next λp minutes. We check the transition probability for states
during the same period of time in the testing data set T as well.
Afterwards, the Mean Absolute Error (MAE) of the possible
transitions of the corresponding testing points is calculated
according to Equation 18. To evaluate performance of the
area congestion predictor we define two metrics: (i) density
of users, which counts the number of users that may move to
each C-ZOI; (ii) area congestion prediction accuracy, which
represents probability of moving users to a C-ZOI in a specific
day of week and is calculated by average of future location
prediction accuracies of users in each C-ZOI drived from
Equation 18.

MAE =
1

N

N∑
i=1

| PriL− PriT |, Accuracy = (1−MAE)× 100 (18)

4) Experimental Settings: We describe the experimentation
parameters of the discussed clustering, mobility prediction,
and congestion prediction algorithms. In order to determine
the parameters we analyze traced data for users with at least
10 months duration of collected data. Then, we read the data-
points sequentially according to the recorded time stamps.
Table II shows the experiment parameters and the associated
values in our assessment.

TABLE II: Experiments parameters.

Parameter Definition Value
∆dmax Maximum Euclidean distance between centroid of

location points and next location
60 m

∆tmin Minimum time threshold of staying in each location
point

15 min

emax Maximum instantaneous velocity threshold 50 m/s
emin Minimum instantaneous velocity threshold 0
M Number of predicted users in each C-ZOI 6
minCountTh Minimum number of visits of each cluster group 60
maxTimeDiff Maximum time difference between two consecutive

visits of a cluster group by a user
24 h

DistanceTh Maximum Euclidean distance between two I-ZOIs 500 m
λp Time threshold for hybrid-MC algorithm 1 min
λc Time threshold for area congestion prediction algo-

rithm
15 min

V. EVALUATION RESULTS

1) Mobility Prediction Accuracy Results: This subsection
details the prediction accuracy results of the proposed hybrid

Fig. 5: Prediction accuracy for users with good quality.

Fig. 6: Prediction accuracy for users with poor quality.

Fig. 7: Prediction accuracy per day for User-5928.

Fig. 8: Prediction accuracy per day for User-6037.

predictor, the first order and the second order Markov chain.
We first present the average prediction accuracy of all the users
with different trace qualities. Then, we discuss more details
about the prediction accuracy per day, for users with poor and
good trace qualities.

Figures 5 and 6 show the prediction accuracy of different
MMC predictors for users with good and poor quality of



Fig. 9: Trace qualities of User IDs 5928/6037 on weekdays.

mobility traces. We define two categories of quality depending
on the number of instances recorded in a user’s movement
traces. We randomly choose 5 User IDs (5973, 5928, 5993,
5977, 5925) from the group of good quality trace data, and
5 User IDs (6177, 5927, 5969, 6037, 5961) from the group
of poor quality trace data. As we can see from Figure 5, the
hybrid predictor can deliver an average prediction accuracy
over all weekdays and weekends of nearly 83% for User-ID
5928. Moreover, it can be observed from Figure 6 that the
estimated accuracy is improved significantly when the hybrid
predictor used for users with poor quality trace data. For
instance, it delivers an average accuracy of 63% for User-
IDs 6177 and 5927. The results clearly demonstrate that the
hybrid predictor outperform others, while using the traced data
with either poor or good quality. Figures 7 and 8 show the
prediction accuracy of three different predictors for each day.
This helps us to explain the advantages of the hybrid predictor
compared to the first-order and second-order Markov chains.
From defined user categories we randomly select User-ID 5928
and User-ID 6037 as the representatives of users with good
and poor qualities. The graphs show that the hybrid predictor
performs better than the first-order and the second-order MC
predictors for both categories. To explain the performance
difference of mobility predictors for these two users, we next
discuss the data quality of User-ID 5928 and 6037. Figure
9 depicts mobility traces of users over a year, shown as a
matrix, where each column is a minute of the day and each line
indicates the number of days with valid trace data (with time
stamp and GPS coordinates). We map each interval of valid
records to continuous pulses, and leave blank intervals time
during which we have no information about users’ locations.
To count the number of days with valid trace records, we
introduce a threshold, which counts the days with more than
1500 records as valid days for prediction. If a user has less
than 1500 records in one day, the data of that specific day will
not be included in the prediction. This is because such a low
number of records happen most probably because of network
connectivity issues or defective sensors. Therefore, collected
traces for these users are not valid and should not be included
in the prediction procedure. Figure 6 illustrates that for User-
ID 6037, the hybrid predictor can only deliver an accuracy

of around 52% for Monday. This situation arises typically
because location data are partly available. For User-ID 5928,
due to having continuous intervals of collected GPS records
at a high number of days with valid trace data between 80 to
100, the hybrid predictor has improved performance (81% to
83%) for all weekdays.

2) Congestion Prediction Accuracy Results: In addition
to estimating future locations of mobile users, we are also
interested in area congestion prediction. In this subsection, we
present the prediction accuracy of the congestion prediction
algorithm. Then we discuss more details about the number of
predicted users in each C-ZOI.

Fig. 10: Area congestion prediction accuracy.

We examine the predictability of congestion by employing
recorded GPS coordinates of all available users in the dataset.
We focus on the extracted C-ZOIs in the city of Lausanne
by predicting the number of users that may move and stay
together in each common hot spot. Figure 10 depicts the results
of the congestion prediction algorithm for time-of-days (08:00
h, 12:00 h, 18:00 h and 22:00 h). The graph shows that the
congestion prediction algorithm achieves accuracies exceeding
70% for C-ZOIs. In addition to congestion prediction accuracy,
we also count the number of users in each C-ZOI for time-of-
days (08:00 h, 12:00 h, 18:00 h and 22:00 h). Figure 11 shows
the density of pedestrians for different hours. We observe
that in the evening the users have tendency to travel towards
the city suburbias (C-ZOI 1, C-ZOI 5), going back home for
dinner. An inverse behavior is detected at 08:00 AM and 12:00
PM, when the most of flows are toward the universities or city
center (C-ZOI 2, C-ZOI 3 and C-ZOI 4). Although we can not



Fig. 11: Density of users in each C-ZOI. a) Wednesday at 08:00 h. b) Wednesday at 12:00 h. c) Wednesday at 18:00 h. d)
Wednesday at 22:00 h.

compare these population densities against a proper ground
truth, we remark that the model represents very reasonable
results that match well to the movements of inhabitants in the
city of Lausanne.

VI. CONCLUSIONS

With the explosive growth of location-based service on
mobile devices, predicting users’ future locations is of increas-
ing importance to support proactive information services. In
this paper, we introduce a hybrid predictor to estimate future
locations of a user. Further, we propose a technique to discover
hot spot regions for users by relying on spatial and temporal
constraints. The achieved results over real world mobility
traces validate our proposed algorithms, which achieve more
than 81% correct predictions for users. More important, we
present a novel approach to predict congestion in hot spot
regions using GPS coordinates. This achieves accuracies ex-
ceeding 70% for discovered C-ZOIs from the available dataset.

For future enhancements we will concentrate on predicting
trajectories of mobile users that they use for transition among
I-ZOIs. We will also improve our area congestion prediction
algorithm by applying congestion classification models to clas-
sify the predicted congestion to slight congestion, moderate
congestion and severe congestion. Furthermore, to foster our
hybrid predictor we are planning to employ a time series-
based periodicity detection algorithm to recognize variations
in pedestrians’ behaviors, and apply the appropriate mobility
predictor accordingly. We will also conduct extensive practical
experiments to compare our mobility predictor with other
Markov chain-based algorithms on other large scale datasets.
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Abstract—Increasing adoption of cellular phones equipped
with global positioning system (GPS) chips enables the explo-
ration of pedestrians’ mobility patterns. Tasks such as discovering
hot-spots in large cities can be addressed through the usage of
accumulated GPS coordinates. In this work we utilize spatio-
temporal analysis on collected geo-location points to discover
Zone of Interests (ZOIs) of pedestrians in large cities to under-
stand people’s dynamics. We design an adaptive Markov model
to forecast long distance trajectories of pedestrians, which adapts
it’s behavior constantly by switching from a first or second
order Markov chain based on the quality of traced data and
user’s mobility patterns. From the predicted trajectories, we
further introduce a mechanism to predict congested trajectories
by estimating the number of pedestrians who may take the
same trajectory in a future moment. We conduct comprehensive
empirical experiments using a real-life dataset, namely the
Mobile Data Challenge (MDC) dataset with 185 participants.
Our mechanisms can deliver a satisfactory pedestrian trajectory
prediction with a precision of 86% and a recall of 84%.

Index Terms—Mobile analysis, Mobility and Congestion Pre-
diction, Mobility Behavior, Location based Services.

I. INTRODUCTION

Due to prevalence of location-based applications huge
amount of mobility trace of pedestrians collected in urban
cities. Such data encapsulates all visited locations and mimics
the identity, behaviors, and interests of an individual or a group
of users [1]. Therefore, analyzing collected data could reveal
frequently visited places of users, formally called Zone of
Interests (ZOIs). A ZOI is a region that an entity is interested
to spend a significant duration of time and visits it frequently.
Detecting such regions is an essential component for making
cities smart, particularly with regards to traffic management,
mobile network resource allocation, early congestion warning,
etc.

User trajectory prediction has great research value and broad
application prospects. For users, trajectory prediction can pro-
vide opportunities for better travel planning, such as informing
drivers on the highway about the traffic condition beforehand.
For service providers, trajectory prediction can help them to
offer users personalized location-based services (LBSs) in real
time and update user geographic information. In addition to
trajectory prediction, congestion prediction in trajectories is an
important precondition to alleviate traffic congestion in large-
scale urban areas. Currently, the growth of location-aware
technologies and location based Internet services enrich the
variety of human mobility information. This knowledge has
been employed to explore and predict pedestrian congestion in

trajectories. In this paper, we introduce a spatio-temporal based
clustering algorithm to extract users’ ZOIs. The discovered
ZOIs are used to train our mobility predictor to predict next
visited ZOI. The implemented algorithm constantly chooses
the first order or the second order Markov chain, based on
the quality of mobility trace to predict future location of
the users. The utilized mobility predictor has a tunable time
threshold, which means according to our requirements the
algorithm can determine next location of the users in scales
of minutes or hours. More details regarding to the process
of feeding the mobility predictor to estimate next location of
users can be found in our previous works [2] [3]. We then
extract observed trajectories among ZOIs, which will be used
to train our trajectory predictor to predict a future trajectory
that the user will take to move from a specific ZOI to another
one. We propose an adaptive Markov chain-based model to
predict future trajectories, which uses a periodicity detection
algorithm to capture the trend of user’s mobility and then
adapts it’s behavior constantly based on the user’s movement
to switch between the first-order or the second-order Markov
chain. More important, we propose a trajectory congestion
predictor to estimate the number of users in each trajectory
at different time granularities. In this work, we use a real life
dataset, namely, the Nokia Mobile Data Challenge (MDC) [4].
The dataset collected in Switzerland around lake Geneva from
October 2009 to March 2011 by almost 185 volunteers. In a
series of experiments to evaluate the prediction performance
of proposed algorithms, the results show superior performance
over other trajectory prediction in terms of precision and recall.

The rest of this paper is organized as follows. We briefly
review the related work in Section II and provide an overview
of our prediction framework in Section III. Sections IV and V
discuss the methodology to evaluate the trajectory prediction
model and demonstrate obtained results respectively. Finally,
in Section VI we discuss about our conclusions and future
work.

II. RELATED WORK

The proliferation and ubiquity of collected GPS location
points (e.g., latitude and longitude) have generated notable
interest in the analysis of moving object’s trace data to extract
hot-spots. Clustering is one of the most popular data-mining
methods, not only due to its exploratory power but also
because it is the preprocessing step or subroutine for other
techniques [5]. A clustering algorithm attempts to partition



m observed objects into n clusters, where each cluster is
characterized with the similarity of objects within a cluster.
The premier contribution in adopting the data clustering tech-
niques for hot-spot detection was made by Ashbrook et al
[6]. They propose an iterative approach to extract hot-spots
by imposing a set of temporal constraints. k-shape and k-
Multishape clustering techniques are proposed in [5]. The
techniques relay on a scalable iterative refinement procedure.

Most of the introduced time-series mining algorithms, in-
cluding clustering, critically rely on some temporal constraints
(e.g., distance measure). However, according to our extensive
experiments on the MDC dataset, using only temporal bounds
can cause some uncertainties in regards to the detected hot-
spot regions of users. Therefore, in this article, we define a
novel algorithm, which uses both temporal and spatial metrics
(e.g., average velocity, instantaneous velocity) to detect user’s
ZOIs.

Time granularity is an important aspect of future trajectory
prediction, which can be classified into near future and distant
future predictions. The majority of the published works up
to now concentrated on near future prediction in the order
of minutes (e.g.,10 to 15 minutes) by benefiting from the R-
tree based indexing technique [7], [8]. However, our work is
able to predict future distant trajectories with granularity of
several hours. Tayeb et al. [9] uses PMR-Quadtrees [10] for
predicting the future linear trajectories. This method assumes
that objects move according to a linear function (e.g., homo-
geneous movement), which severely limits their applicability
as in practice movements are more complex and individual
objects may follow different motion patterns. In order to
overcome this drawback, we utilize an adaptive Markov chain
model to perform distant future trajectory prediction by using
periodicity detection to detect movement patterns. Depending
on the periodicity of movement the predictor selects the first-
order or the second-order Markov chain adaptively.

For pedestrians, traveling through overcrowded trajectories
is one of the major reasons of discomfort. Therefore, the
problem of predicting the trajectories congestion has attracted
a great amount of attention in recent years. Various con-
gestion prediction methods have been implemented to help
effective resource management in dense smart cities. Vinay
et al designed ARIMA to forecast traffic congestion in urban
areas [11]. Chuishi et al. [12] uses collected location data of
smartphones to study crowdedness of mobile users. In [13]
authors attempted to reveal urban crowding patterns using
Automated Fare Collection (AFC) system data. They studied
spatial and temporal patterns of crowds to predict congested
routes. Pan et al. implemented a method to detect and predict
traffic congestions using mobile users social network data and
mobility patterns [14].

These techniques have some deficiencies for trajectory con-
gestion prediction. First, the main drawback of these models
is their inability to estimate the specific time of predicted
congestion in trajectories, since these models are just working
on spatial granularity (location of congestion), which means
the algorithm outputs only the number of users in each

specific trajectory without any timing information. Second,
these works focus on near future trajectory prediction on the
order of meters. Third, current methods like tree structures
demand high complexity and memory usage. To overcome
these shortcomings we propose a model, which improves
prior methods with the ability to predict congestion in distant
trajectories with estimating the time of congestion. Moreover,
the propsed technique dose not demand costly actions as
opposed to existing tree structures.

Fig. 1: Overview of the System Model.

III. SYSTEM MODEL

Figure 1 shows the overall system architecture. The pro-
posed system model involves four main layers: (1) Zone of
Interest (ZOI) discovery, (2) Predicting next ZOI, (3) Predict-
ing next trajectory among discovered ZOIs and (4) Trajectory
congestion prediction. In the first layer of the system model,
we utilize spatio-temporal analysis to detect ZOIs for each
individual user. The discovered ZOIs are the input for the
second layer, where our mobility predictor estimates future
ZOIs for each user. The third layer relies on the outputs of
layers 1 and 2 to predict trajectories among two ZOIs. Further-
more, layer 3 is using GPS logs to discover trajectories among
two ZOIs. The discovered trajectories serve as training data
for the trajectory predictor to exploit pedestrians’ movement
patterns. Finally, our trajectory congestion predictor in layer 4
utilizes the outputs of our mobility and trajectory predictor to
estimate density of pedestrians in each trajectory. The relevant
notations and system component definitions are explained in
the following subsections.

A. Zone of Interest (ZOI)

Conceptually, a ZOI specifies a geographical area in which
the user in question spends a significant amount of time (e.g.,
home, workplace, gym). We first define GPS trace data as
a chronologically ordered list L = [loc1, loc2, loc3, ..., locn],
where loci = (lat, lng, t, v) is a tuple representing a location
record specified by the latitude, longitude, time stamp and
the velocity at the given point in time, respectively. Extracting
ZOIs of a user based on the location trace L then is a multi-step
process. To understand the process we must first introduce the
terms cluster and group cluster. A cluster consists of a subset
of successive location points in the trace data L, which are
confined according to defined temporal and spatial constraints.



Intersecting clusters are aggregated as a group cluster. Group
clusters, where the user spends a significant amount of time,
are selected as a ZOI.

1) Cluster Discovery: For each single user, the trace data
(L) is split into subsets li ∈ L where li = [loci, loci+1,
. . . , loci+n ]. We first define the time interval ∆tmax ∈ N
(e.g., 10 to 20 minutes). Each subset li consists of a series
of chronologically successive GPS locations that confine to
|locit - loci+nt

| ≤ ∆tmax. We then define the parameter
rcluster ∈ R as a distance in meters (e.g., 40 to 60 meters)
denoting the maximum radius of a cluster. Furthermore, we
define minpoints ∈ N as the minimal number of locations
points in a cluster (e.g., 10 to 20 location points). Lastly,
vmax ∈ R denotes the maximum average acceleration (e.g., 4
to 8 m/s). A subset li is considered as a cluster if the following
constraints are fulfilled:

distance(centroid(loc1, ..., loci), loci + 1) ≤ rcluster ∀loci ∈ li (1)

|li| ≥ min points (2)∑
loci∈li

vi

|li|
≤ vmax (3)

A cluster is then specified by a 4−item tuple c = (clat, clng,
rcluster, Tci ). clat,clng denote the latitude and longitude of
the cluster. rcluster measured in meters denotes the maximum
distance between the centroid and any given location in the
subset li the cluster was discovered from. Lastly Tci is a
list containing the time stamps for all location records in li.
Since the clusters are discovered only for locations within a
given time period ∆t multiple clusters for a single user may
geographically intersect, which leads to the next step of the
group cluster discovery.

2) Group Cluster Discovery: Two clusters ci and cj belong
to the same group cluster if Equation 4 is fulfilled:

distance(centroid(ci), centroid(cj)) ≤ ci.∆r + ci.∆r (4)

A group cluster (gc) is specified by a 5-tuple gc = ( clat,
clng, ∆r , Tc). clat and clng denote the central position of the
circular group cluster, which is given by the average clat and
clng of the clusters belonging to this group cluster. ∆r denotes
the radius in meters. The radius is chosen to be minimum
distance which still encloses all the clusters belonging to this
group cluster. Tc is a set of time stamps given by equation 5.

Tgc =
⋃

ci∈gc
Tci (5)

G = {gc1, gc2, . . . , gcn} is the set of all discovered group
clusters for a given user.

3) ZOI Discovery: A Zone of Interest (ZOI) is denoted as
zi =( clat, clng, ∆r, id), where the values of clat, clng and
∆r remain the same as for the group cluster that is selected
as a ZOI. The id is a unique ZOI identifier for a specific user.
We consider a group cluster to be suitable as a ZOI if the
number of time stamps (cardinality of the set Tc) is greater
than a specific threshold tsmin ∈ N (900 time stamps). The
discovered ZOIs are aggregated as the set Z = {z1, z2, . . .

zn }, with n as the total number of ZOIs discovered for a
specific user. As shown in Figure 2, the set of discovered
ZOIs are depicted by intersected blue circles. Each blue circle
represents extracted clusters.

Fig. 2: Discovered ZOIs for a specific user

Fig. 3: Projecting a location point onto the grid-cell with Google S2
geometry library.

B. Trajectory Extraction

A trajectory is an observed path when a user travels from
one ZOI to another one. A pedestrian can choose different
paths to travel between his/her ZOIs. A list of all observed
trajectories per each single user among ZOIi to ZOIj are
accumulated in Tri,j = [tr1, tr2, tr3, .., trn]. After discov-
ering the paths, the next step is space partitioning. We use
the Python Google S2 geometry Library 1 to partition the
geographical space into grid-cells. Each grid-cell is a four
corners cell, which covers a specific region on earth. As
shown in Figure 3 the library hierarchically maps spatial
location points of a sphere (the earth in our case) into grid-
cells in several steps. First of all, the library surrounds the
earth with a cube. Then, the location point p is projected
onto faces of the cube to transform GPS coordinates of p to
the three coordinates x, y and z. Since same area grid-cells
on the cube have different sizes when mapped back to the
sphere, a quadratic-transform is performed i.e., (face, u, v)
is transformed to (face, s, t) before partitioning the region
into a grid-cell. Generated grid-cells are accumulated into
a set of Grid-cells = { gCell1, gCell2,..., gCellm}, which
demonstrates distinct locations on earth. Each observed path
trk is partitioned into a sub-list of l visited grid-cells such that
trk ∈ Tri,j : {gCell1, gCell2, ..., gCelll}. Given the GPS
coordinates, the location of any moving object at a specific
time can be mapped to a grid-cell. In this research, we generate
cells with 1 square kilometer area, which means every 1 km2

on earth’s surface is represented by a rectangular grid-cell.
Each grid-cell is uniquely identified by a 64-bit Cell-ID. Figure
4 illustrate an example of possible trajectories between two
discovered ZOIs, which are represented by successive cells.

1http://s2geometry.io/



Fig. 4: Detected trajectories between two discovered ZOIs for a
specific user.

C. Trajectory Prediction

In this section, we introduce a novel trajectory predictor to
estimate the future trajectory of pedestrians, which is defined
as a series of grid-cells between two ZOIs. The proposed tra-
jectory prediction scheme in this paper is based on the adaptive
Markov chain, which integrates the first-order Markov chain
and the second-order Markov chain with a decision process
to select one of the available predictors [2]. The proposed
model is able to adapt it’s behavior according to the availability
of paths (trk) in Ti,j and the user’s movement behavior
among his/her ZOIs to maximize prediction performance,
while reducing memory usage and execution time. The second
order Markov chain has gained wide popularity in trajectory
prediction tasks compared to the first order Markov chain
because this predictor incorporates the current state and one
state before to estimate next movement of users [2]. Actually,
this information is really beneficial: some users have repetitive
transitions, they take certain trajectories to travel between
ZOIs (e.g., home and workplace), and therefore, learning and
predicting their patterns is easy. On the other hand, some other
users travel at random and choose different trajectories to reach
ZOIs. It is tough to predict their next trajectories, but knowing
previous states of these users greatly helps in estimating
their future movements. However, the second order Markov
chain has a high complexity. Memory demand of the second
order Markov chain is O(N3) and size of generated transition
probability matrix is N2(N−1) [15]. Unlike the second order
Markov chain the first order Markov chain is slightly different,
as only the current state is taken into account to estimate
future movements of users. Therefore, it has lower complexity,
memory demand of the first order Markov chain is O(N2)
and the size of the generated transition probability matrix is
N(N−1). In the MDC dataset we observed some users’ trace
data with discrete gaps (ranging from a few seconds to a few
minutes). In these cases the second order state information
conditions were not be met, because the second order Markov
chain calculates transition probabilities among states only if
two successive states are present in Tri,j . Therefore, it leads
to poor performance for the second order Markov predictor.
Based on these observations, we add a decision process to
the trajectory predictor to choose either the first order or the
second order Markov chain according to the availability of data
and type of movements. Details about this multi-step decision
process are explained in sections III-C1 and III-C2.

The proposed adaptive model is illustrated in Figure 5, in
which the sequence of visited grid-cells between ZOIi and

Fig. 5: Adaptive Markov chain

ZOIj is the input for the model. Data quantity and periodicity
detection units are part of the decision process. The first order
and the second order Markov based algorithms are available
predictors in the adaptive Markov chain. Finally, the trajectory
aggregator stores sequence of consecutive predicted grid-cells
to form the next trajectory. Equation 6 defines the calculation
of a next trajectory probability, in which gCelli represents a
grid-cell with ID i, CFi,j is the calculated confidence factor
of a trajectory among ZOIi and ZOIj , CFth is the confidence
factor threshold, |Tri,j | indicates the number of observed paths
between two ZOI i and j, and Tth is the threshold of observed
paths between to ZOIi and ZOIj . These parameters and
thresholds are explained in the next sections.

Equation 6 is an integration of the first and the second order
Markov chains (as expressed in Equations 7 and 8). As shown
in Equation 7, to estimate the next grid-cell, the first order
Markov chain only benefits from current state information
(grid Cell-IDs), where the second order Markov chain benefits
from both current and previous grid-cells (Equation 8).

Pr(celli+1) =

{
Pr(celli+1|celli) if CFi,j > CFth ∨ |Tri,j | < Tth

Pr(celli+1|celli, celli−1) otherwise
(6)

Pr(celli|celli−1) =

∑
tr∈Tri,j

(tri = celli ∧ tri−1 = celli−1)∑
tr∈Tri,j

(tri−1 = celli−1)
(7)

Pr(celli|celli−1, celli−2) =∑
tr∈Tri,j

(tri = celli ∧ tri−1 = celli−1 ∧ tri−2 = celli−2)∑
tr∈Tri,j

(tri−1 = celli−1 ∧ tri−2 = celli−2)
(8)

1) Data Quantity: The number of collected valid records
(with GPS coordinates and timestamp) in traces depends on
the behavior of users. Some users keep smartphones with
themselves everyday. However, others sometimes forgot to
carry the devices or had to charge them, such that data
recordings are non-continuous. As learned from our previous
experiences [2] [16], the utilization of two state information
by the second order Markov chain could increase predic-
tion performance, when current and previous visited states
information are available. However, when trace data includes



discrete gaps, the second order state transition conditions will
not be met, which leads to poor performance for the second
order predictor. Based on these experiences, data quantity
analysis serves as the first decision step in future trajectory
prediction. We use the cardinality of Tri,j (|Tri,j |) as a
metric to measure quantity of collected traced data. When
the number of observed paths between two ZOIs i and j in
Tri,j during collecting the dataset for a given user is below
a certain threshold (Trth =150 paths), then the adaptive
Markov chain always utilizes the first order Markov chain for
trajectory prediction. Otherwise, the decision process is passed
onto the periodicity detection algorithm, which is presented in
the next section.

2) Periodicity Detection: In this section, we present a
periodicity detection algorithm to efficiently classify the users
movement between two ZOIs as either homogeneous or het-
erogeneous. The periodicity detection algorithm that we use in
this work is a modification of the segment periodicity detection
algorithm presented in [17], where the authors defined a
time series to be periodic with a period PT , if the time
series can be divided into equal-length segments, each of
length PT , that are almost identical. In our application we
define C to be a series of grid-cells, given by combining the
trajectories in Ti,j . An example of such a series would be
C = (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4), where the integer numbers
indicate the unique ID for each grid-cell. To formalize the
periodicity detection we define Ci as the time series C shifted
by i positions to the right. In this case, leaving the first i entries
undefined (indicated by the ’*’ character) and discarding
the last i entries (e.g. C4 = (∗, ∗, ∗, ∗, 1, 2, 3, 4, 1, 2, 3, 4)).
To compare the similarity of two sequences we utilize the
Hamming distance [18] as defined by Equation 9.

H(C,CPT
) =

n−1∑
j=0

{
1 if Cj = CPTj

0 if Cj 6= CPTj

(9)

Intuitively, H measures the number of identical grid-cells
at the same position in the original and the shifted time series.
Furthermore, we define the confidence factor CFi,j ∈ [0, 1] for
a given period PT and a time series C according to Equation
10.

CFi,j = max
CFi,j

:
H(C,C)

|C| − PT
≥ CFi,j (10)

The confidence factor measures the number of matching
symbols at the same position, between the original time series
C and the shifted time series CPT

, in comparison to the
number of possible matches. In their work [17], the authors
describe an algorithm to find PT with the highest CFi,j across
all possible periods, with a time complexity of O(nlogn).
In our case, it is apparent that the periods with the highest
confidence factors need to be reasonably close to the average
length of the transitions in Tri,j . Therefore, we only consider
the period lengths PT ∈ [1, λ * avg length Tri,j], with λ (e.g.,
1.1 to 1.2) as a fixed parameter to ensure that period lengths
slightly above the average length of the transitions in Tri,j

are considered as well. Our modified periodicity algorithm
runs in O(n) as specified by Algorithm 1. The algorithm
outputs the period PT ∈ [1, λ * avg length Tri,j] with the
highest confidence factor and the corresponding confidence
factor itself. If CFi,j ≥ CFth with CFi,j being the confidence

Algorithm 1: Periodicity detection algorithm to find high-
est confidence factor CFi,j and corresponding period PT

1 find CFi,j (Tri,j , λ);
Input : Set of Trajectories Ti,j , λ coefficient
Output: max. confidence factor and corresponding period PT

2 Define C = [tr1, . . . trn−1] tri ∈ Tri,j ;
3 Define x-dimensional Vector X, x = λ ∗ avg length Ti,j ;
4 for i ∈ [0, λ ∗ avg length Tri,j ] do
5 Xi = H (C,Ci)
6 end
7 CF = 1 ;
8 while True do
9 for PT ∈ [0, λ ∗ avg length Tri,j ] do

10 if Xi

|Tri,j |−PT
≥ CFi,j then

11 return (CFi,j , PT );
12 else
13 reduce CFi,j

14 end
15 end
16 end

factor returned by the algorithm and CFth being a previously
defined threshold (e.g., 0.25 to 0.35) the movement is classified
as homogeneous. Therefore, the first order Markov chain is
selected, otherwise the second order Markov chain is selected.
Figure 6 shows the period lengths and the corresponding
confidence factors for different users. For example for user
5993 and the transitions between ZOIs 2 and 3, the period
PT with the highest confidence factor is PT = 8 and the
corresponding confidence factor CFi,j = 0.28. Considering
CFth = 0.25, determined through our experiments, the first
order Markov chain is used in this case, because the movement
behavior of the user between the two ZOIs is classified to be
homogeneous.

Fig. 6: Confidence Factor for different periods and trajectories

D. Trajectory Congestion Prediction

In this subsection we illustrate how mobility and trajectory
predictors can be combined to predict congestion in trajecto-
ries. The key aspect is to predict the future trajectories between
predicted future ZOIs for multiple users during the same time
frame. By storing and aggregating the predicted trajectories
for multiple users we can determine from which grid-cells
users pass most often. Consequently, some means of storing



the trajectories of multiple users needs to be introduced. We
use an inverted index which is made up of n different entries,
n denotes the number of unique grid-cells in all the predicted
trajectories that are currently stored. Each entry is indexed
by a specific, unique grid Cell − ID which occurs in at
least one predicted trajectory. The entries contain at least one
and up to m (4 − item) tuples (user-id, pi,i+1 ,tstart, tend).
The User − ID is the unique identifier of a user and pi,i+1

∈ [0, 1] is the probability of moving to the next ZOI. tstart,
tend denotes the time the user leaves the current ZOIi and
the time the user will arrive at the predicted ZOIi+1. The
system as seen in Fig 7 integrates the adaptive Markov chain
and the hybrid Markov chain [3] with the inverted index. The
trajectory congestion prediction is a multi-step process:

Fig. 7: Trajectory congestion predictor

1) Current location record of the user is received. Using the
latitude and longitude of the location record, the system
checks whether the user is currently in a ZOI. This step
hands the id of the ZOIi where the user is in.

2) The current ZOIi and the current time stamp (tstart),
which are part of the location record, are passed to the
hybrid Markov chain. The algorithm predicts the next
ZOIi+1, as well as tend, which is a time stamp, and
indicate when the user will arrive to ZOIi+1. Lastly,
pi,i+1 ∈ [0, 1] is returned, which gives us the probability
of this next place prediction. From the outputs of the
hybrid Markov chain the tuple that will be stored in the
inverted index can already by formed. The tuple is (user-
id, pi,i+1 ,tstart, tend), where the first item is the user-id
and the other items can be directly assumed from the
hybrid Markov chain output.

3) The next step is to predict the next trajectory for the user.
Using the current ZOIi from step 1 and the predicted
ZOIi+1 from step 2, the trajectory between these two
places can be predicted using the adaptive Markov chain.
The output of the algorithm is an ordered list of grid-
cells which the user will pass through when moving
from ZOIi to ZOIi+1. These grid-cells correspond to
the indexes in the inverted index where we will store the
tuple formed in step 2.

4) At last, the inverted index is updated. First, old tuples
for the user in question are removed from the inverted
index as they hold deprecated information. Then for each
grid-cell in the predicted trajectory from step 3 the tuple

(user-id, pi,i+1 ,tstart, tend) is added to the corresponding
entry in the inverted index.

These 4 steps are repeated for each user every time a new
location record is received. The inverted index is organized
to contain one entry for each grid-cell. For each user that
is predicted to pass through a given grid-cell an additional
tuple is added to the corresponding entry. Therefore, by
monitoring the number of tuples of each entry we can deduct
how many users will pass through the respective grid-cell.
Considering tstart and tend stored in the tuples we can
make a prediction about number of users who may move
through certain grid-cells at the next time threshold λc (e.g.,
next 10 or 30 minutes).

IV. EVALUATION

In this section, we discuss an evaluation methodology to
validate the proposed trajectory and congestion predictors.

A. Dataset

To evaluate the prediction performance of our approach,
we are relying on the Mobile Data Challenge (MDC) dataset
[4], which contains large-scale records conducted by 185
participants from the city of Lausanne in Switzerland. The
collected data on which our research is based spans a period
over 14 months. Since for some pairs of ZOIs only a small
number of transitions were recorded, a 10-fold cross-validation
method was chosen in order to maximize the training data
available to our trajectory predictor. The available transitions
between two ZOIs were divided into 10 parts with an equal
number of transitions. Then 9 parts were used for training the
trajectory predictor while the last part was used for the testing
of the algorithm. The results were subsequently averaged over
all possible combinations of the different parts as training and
testing data.

B. Evaluation Metrics

To interpret the success of the proposed adaptive Markov
chain we used metrics which are commonly accepted in
information retrieval [19]: precision and recall. These metrics
indicate the relationship between the numbers of True Positive
(11), False Positive (12), and False Negative (13).

TP = gCelli ∈ Tpi,j ∧ gCelli ∈ Tri,j (11)

FP = gCelli ∈ Tpi,j ∧ gCelli /∈ Tri,j (12)

FN = gCelli /∈ Tpi,j ∧ gCelli ∈ Tri,j (13)

Tpi,j , Tri,j are trajectories predicted by adaptive Markov
chain and the observed trajectory, which is extracted accord-
ing to a user’s movement history among ZOIi and ZOIj ,
respectively. Besides, gCelli is a grid-cell such that gCelli ∈:
{gCell1, gCell2, gCell3, ..., gCellm} i = 0, 1, 2, 3, ...,m.
Using these values precision and recall can be transformed
to our domain and defined as follows:
• Precision: The part of the predicted trajectory (Tpi,j)

that truly belongs to the observed trajectory (Tri,j).
• Recall: The part of the observed trajectory (Tri,j) that

is correctly estimated.



As we explain in section III-B, the observed trajectory
(Tri,j) includes several discretized transitions (trk), which
show different paths among ZOIi and ZOIj . To measure av-
erage precision and recall for each set of observed trajectories
we are defining functions AvgPrecision(Tpi,j , T ri,j) and
AvgRecal(Tpi,j , T ri,j), in Equations 14 and 15, respectively.

AvgPrecision (Tpi,j , T ri,j) =∑
trk∈Tri,j

TP (Tpi,j , trk)∑
trk∈Tri,j

(TP (Tpi,j , trk) + FP (Tpi,j , trk))
(14)

AvgRecall (Tpi,j , T rk) = ∑
trk∈Tri,j

TP (Tpi,j , trk)∑
trk∈Tri,j

(TP (Tpi,j , trk) + FN (Tpi,j , trk))
(15)

C. Experimental settings

The parameters used to form the system model’s compo-
nents (clustering, trajectory prediction and trajectory con-
gestion prediction) and their associated values are shown in
Table I. These values are determined by analyzing trends of
pedestrians with at least 10 months collected mobility trace in
the MDC dataset.

TABLE I: Experiments parameters.

Parameter Definition Value
tmax Time window for cluster discovery 10 min
∆rmax Maximal radius of a cluster 60 m
emax Maximal velocity 8

ms−1

minpoints Minimal number of location records per cluster 10
tsmin Minimal time stamps per ZOI 200
Tth Threshold for observed paths between two ZOIi

and ZOIj
150

CFth Threshold for confidence factor of observed trajec-
tory between two ZOIi and ZOIj

0.25

λc Time threshold for trajectory congestion prediction
algorithm

20 min

V. EVALUATION RESULTS

A. Trajectory Prediction Results

In this subsection, we examine the trajectory prediction
performance of the proposed adaptive Markov chain. We
conducted detailed experiments to compare the performance
of the proposed predictor to various trajectory estimation
methods [20]. Each of these estimation methods generate a
non-sequential set of grid-cells to represent future trajectories
between two ZOIs. The set of selected grid-cells consists of
all grid-cells, which occur more often than a certain threshold
in the training data. The three methods of adaptive threshold,
F-score optimization threshold and mean threshold generate
different thresholds.

Through the experiments, we were able to obtain the
average prediction precision and average prediction recall.
We choose 4 User IDs (5927, 5938, 5976, 5993) and one
source ZOI and destination ZOI for each user. Figures 8 and 9
present the average precision and average recall results for the

Fig. 8: Prediction precision

Fig. 9: Prediction recall

different users and combination of ZOIs. Figure 8 shows the
better performance of the adaptive Markov chain in terms of
precision when compared to the other methods. The adaptive
Markov chain achieved the highest average precision of 86%.
Figure 9 shows that no predictor achieved the highest average
recall over all test cases.

B. Trajectory Congestion Prediction Results

In addition to predicting next trajectories of pedestrians,
we are also interested to predict the number of users that
may take the same trajectory to travel among two ZOIs.
When the density of predicted users in a trajectory is more
than other trajectories we can assume that this trajectory will
be congested. Figure 10 displays the predicted density of
users for different time interval of a day. We found that in
the early morning (08 : 00 to 08 : 20) the pedestrians
have a tendency to take trajectories that are mostly in the
city center, going to transportation hubs. We observed that
in the morning to afternoon (10 : 00 to 10 : 20, 15 :
40 to 16 : 00 and 17 : 40 to 18 : 00) most of the
pedestrians’ flows are around universities. This is because,
most of the participants during collecting the MDC dataset
were associated with the Universities of Lausanne and EPFL,
therefore, predicting congestion in trajectories around those
universities can be expected. Although we can not compare
these population densities against a proper ground truth, we
remark that the model represents very reasonable results that
match well to the movement of inhabitants in the city of
Lausanne.

VI. CONCLUSIONS

A huge volume of geo-location points are being ubiqui-
tously accumulated as pedestrians’ traced data. Extracting



Fig. 10: Congestion in Trajectories at different times of day

meaningful information from collected data to feed predic-
tors (e.g., mobility predictor, trajectory predictor, trajectory
congestion predictor ) is indeed at the heart of many LBSs,
such as traffic congestion forecasting, public-transportation
optimization, etc. Through this work, we address three key
challenges associated to collected datasets: (i) We propose
a technique to discover ZOIs for pedestrians by relying on
spatial and temporal analysis. (ii) Our extensive experiments
on the MDC dataset show that the trajectories taken by
pedestrians are often complex and as such, the pedestrians’
movement types should be considered to predict future tra-
jectories. Therefore, we propose an adaptive Markov chain
as a trajectory predictor, which can constantly adapts it’s
behavior according to regularities of pedestrians. (iii) To
estimate number of users in trajectories we introduce a novel
approach based on inverted indexing, which is well suited in
the context of large scale datasets. To examine our algorithms
we conducted comprehensive experiments using a real-life
dataset, namely the Mobile Data Challenge (MDC) dataset.
We found satisfactory pedestrians future trajectory prediction
precision of 86% and recall of 84% for the available users.

We observed that certain families of algorithms are more
suited for particular mobility behavior. Our future work will
be an attempt to have an ensemble trajectory predictor to select
a suitable predictor according to behavioral changes, to attain
higher prediction performance.
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