PERFORMANCE COMPARISON OF NATIVE
MULTICAST VERSUS OVERLAY MULTICAST

Informatikprojekt
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Luca Bettosini
2008

Leiter der Arbeit:
Professor Dr. Torsten Braun

Betreuer der Arbeit:
Marc Brogle
Dragan Milic

Institut far Informatik und angewandte Mathematik

Contents

1 Introduction

1.1 Multicast e e
1.2 TP Multicast e e
1.3 Overlay Multicast e e e
1.4 Delayand Jitter L e e
1.5 Purpose and Expectations oL
1.6 Structure of the Thesis L

2 Experiment Setup

2.1 Smartbitso e e e e
2.2 Configuration of the Computers

2.2.1 Configuration for IP Multicast,

2.2.2 Configuration for Overlay Multicast
2.3 Network Topologies e e
24 Code
2.5 Performed Measurements

3 Experiment Results and Evaluation

3.1 Native Multicast Results
3.1.1 Chain Topologies e
3.1.2 TreeTopologies e
3.2 Overlay Multicast Results e
3.2.1 Chain Topologies o v v i e e e e
322 TreeTopologies. e
33 Evaluation e

4 Conclusion and Outlook

Appendices

A Computer Hardware and Software Specifications
B Smartbits Code Example 1

C Smartbits Code Example 2

[, WY, TN S S I =Y

— O O 0 0 33

25

27

31

33

37

Chapter 1

Introduction

1.1 Multicast

Multicast is a communication paradigm for delivering data to a specific group of recipients simultane-
ously. The senders (usually one) need only to send one transmission stream to the network, from where
the stream is distributed to the interested receivers [1]. This paradigm differs from the unicast and broad-
cast paradigm, where each transmission stream can only be transmitted to one or all recipients.

In the Internet the multicast paradigm has been implemented in the form of IP Multicast [2]. Although IP
Multicast has been suggested and specified almost twenty years ago, it has never been widely deployed
and used by the commercial Internet service providers (ISP). Some reasons for this are [1]:

o [P Multicast must be supported and enabled by all routers on the path from source to destination.
e Additional inter-ISP coordination is required (policy issues of inter-domain routing).
o [P Multicast routing can be very resource intensive.

But despite these problems IP Multicast is a powerful implementation of the multicast paradigm.

1.2 |IP Multicast

IP Multicast is an extension of the Internet Protocol (IP) [3] to support multicasting. Instead of sending
the IP datagram to one receiver using unicast, the datagram can be submitted to a set of zero or more
receivers by only using one IP destination address. Such a multicast datagram has the same reliability as
a regular unicast datagram, meaning that the arrival of the datagram at the destination is not guaranteed.
Hosts (receivers and senders) can join listening to a specific IP Multicast address. All hosts listening to
the same IP Multicast address are called members of this address. This membership is dynamic, meaning
that hosts can join and leave an IP Multicast group. Furthermore, they can be member of more than one
group at a time and there is no restriction on how many users can join a multicast group nor where they
are located in the network.

There are two types of multicast groups. There is the permanent group with a fixed assigned IP address
(not a permanent membership). These groups are mostly used for administrative purposes and can have
zero members. The other type of groups are transient groups. These groups only exist, when at least
one host has joined the group. Both groups can be identified by their IP address. Multicast groups are
using class D IP addresses, meaning that the multicast groups have 1110 as their high-order four bits.
In the “dotted decimal” notation, multicast groups have a range between 224.0.0.0 and 239.255.255.255.
Within this range there are several IP addresses, which are reserved for adminstration (routing protocols,

maintenance protocols, ...) or are reserved by the Internet Assigned Numbers Authority (IANA) [4].

For transmitting information within these groups, the forwarding of the IP Multicast datagrams between
different networks is handled by specific routers with multicast availability. Within a local network a
host transmits [P Multicast datagrams directly to all immediately-neighboring members of the desig-
nated multicast group as local multicast. Depending on the time-to-live (TTL) [3] value in the datagram,
the multicast router forwards the datagram to all other connected networks, which are interested in this
multicast group. Within these interested networks, the multicast router forwards the datagram as local
multicast.

With the Internet Group Management Protocol (IGMP) [2] multicast routers are able to find out, which
networks attached to them want to receive datagrams of which multicast group. At the moment there are
three existing versions of IGMP: IGMPv1 [2], IGMPv2 [5] and IGMPv3 [6].

With IGMPv1 multicast routers send Host Membership Query messages to their attached networks. These
queries are sent to the all-host group (address 224.0.0.1) with an IP TTL of 1. All hosts receiving this
query respond to it with a Host Membership Report message for each multicast group, from which they
want to receive data. To reduce the flood of reports generated by the hosts, two techniques are used:

1. After receiving a query, the host does not reply immediately by sending the reports. Instead the host
starts a report delay timer with a different, randomly-chosen value between zero and X seconds,
for each multicast group membership. After a timer expires the report for the corresponding group
is generated and sent back to the originator of the query. With this technique the flush of reports is
spread over an X second interval.

2. After receiving a query, the host does not send back the report to the originator. Instead the report
is sent out to the multicast group address, to which the report belongs to, with a TTL of one. By
doing this, other members of the group within the same network can overhear the report. After
a host hears a report for a group, of which it is member of, the host stops its own timer for that
group and does not generate a report for that group. With this technique the flush of reports will
be reduced, normally the multicast router will only receive one report for every multicast group,
which has members in that specific network.

The multicast router sends the queries periodically out to refresh its knowledge of memberships present
within a network. If it does not receive a report for a particular group after some numbers of queries, the
router can assume that no host within this network is member of that group and that it does not have to
forward datagrams from that group to this network anymore (implicit leave).

With IGMPv2 [5] the problem of having two multicast routers attached to one network was solved.
Depending on the IP address of a multicast router it can now act as a querier or non-querier. There
exists normally only one querier in a physical network. All multicast routers start up as a querier on
each attached network and after receiving query messages from another multicast router, the multicast
router with the higher IP starts acting as a non-querier and stops sending query messages to this specific
attached network. Besides the ability of a host to send Leave Messages (when a host wants to leave a
specific multicast group) back to the querier was implemented in IGMPv2 to reduce network traffic. In
addition, multicast routers can send two kinds of membership queries: a general query, to learn which
groups have members on the attached networks, and a group-specific query to learn if a particular group
has any member in the attached network.

In IGMPv3 [6] the support for “source filtering” was added to IGMP. ”’Source filtering” is the ability of a
system to report interest in receiving only packets from a specific source address.

1.3 Overlay Multicast

Overlay multicast, also called end system multicast or application level multicast, was proposed as a
new group communication paradigm in place of IP Multicast due to the deployment problem of native
multicast. A virtual topology can be built to form an overlay network on top of the physical Internet. Each
link in the virtual topology is a unicast tunnel in the physical network. The IP layer provides a best-effort
unicast datagram service, while the overlay network implements all the multicast functionalities such as
dynamic membership maintenance, packet duplication and multicast routing [7].

PC1 PC3
PC2 PC4
PC1 PC3
PC2 PC4
PC1 PC3
PC2 PC4

c)

Figure 1.1: a) unicast b) native multicast c) overlay multicast

In Fig. 1.1 the main differences between unicast, native multicast and overlay multicast are shown. In Fig.
1.1 a) the host PC1 is sending packets using unicast to the tree receivers PC1, PC2 and PC3. The routers
R1 and R2 are not required to support IP Multicast. However in Fig. 1.1 b) the host PC1 is sending the
packets using IP Multicast, here the routers need to support the native multicast paradigm. Furthermore, a
reduction of network traffic occurs, the host is sending the packets only once instead of tree times. In Fig
1.1 c) the overlay multicast paradigm is implemented in the receivers PC2, PC3, PC4 and in the host PC1
system. The host is sending the packets using multicast. Using overlay multicast, the packets are now
sent over the virtual topology to the receivers using unicast tunnels in the physical networks. Therefore
the routers are again not required to support multicast.

In the paper ”Supporting IP Multicast Streaming Using Overlay Networks” [1] a performance evaluation

between the IP Multicast and overlay multicast was done. The authors performed real-time measure-
ments with two different topologies, as shown in Fig. 1.2, measuring throughput and packet loss. Both
topologies were chain topologies, one consisted of two and the other of five computers.

First Scenario

Traffic B.ZP Multicast B.ZP Multicast Traffic
G Middleware Middleware Capturing
enerator Host Host

Second Scenario

Traffic P2P Multicast P2P Multicast P2P Multicast| P2P Multicast; P2P Multicast Traffic
G Middleware Middleware Middleware Middleware Middleware Capturing
enerator Host Host Host Host Host

Figure 1.2: Scenarios for the Multicast Middleware performance evaluation

The packets were generated and captured using the MGEN traffic-generating tool. For each scenario a
total of 24 packet flows with different sending rates, ranging from 11 to 241 Mbps in steps of 10 Mbps,
were generated. Each packet consisted of 1 024 bytes payload and the packet flow was sent for 120 sec-
onds.

The results showed that the packet loss for a bandwidth up to 100 Mbps was negligible for both scenarios.
But over a 100 Mbps bandwidth the packet loss increased significantly. Overall the packet loss was less
than 4% for a bandwidth up to 155 Mbps. Furthermore no significant difference between the packet loss
for both scenarios was recognized and therefore the authors suggested that the impact of network scaling
for the Multicast Middleware is minimal. It was also shown that an instance of the Multicast Middleware
can deliver a maximum of 210 Mbps bandwidth and that the jitter increased with the number of peers
involved in transporting the traffic.

1.4 Delay and Jitter

The common definition of a delay is the amount of time by which an event is deferred. In the network
environment latency refers to the delay associated with the delivery of media stream data between two
points in the switching fabric. Latency for a given path through a switching fabric is the sum of the
following three types of delay that may be present in a given implementation [8]:

e Transmission Delay
The Transmission delay refers to the delay introduced by the encoding, framing or packetizing of
the media stream.

e Propagation Delay
The Propagation delay refers to the delay associated with the propagation of the signal over the
transmission facility used to implement the media stream channel. In this paper the propagation
delay will not be an issue due the small network distances.

e Processing Delay
Processing delay refers to any incremental delay introduced in a switching fabric for processing
each packet in a packetized media stream. Sources of processing delay include time required for
interpreting and updating headers, time required for determining how to route the packet and, most
significantly, any buffering required prior to the forwarding of the packet. As we can see later, this
delay plays a major part in our measurements.

o Jitter
The Jitter refers to the variance in the latency described above. The latency associated with a given
media stream channel may be constant (in which case there is no jitter) or it may change from
moment to moment.

1.5 Purpose and Expectations

The purpose of this thesis is to compare the efficiency of native IP Multicast and Application Layer
Overlay Multicast (ALM) "packet forwarding”. In particular we compare the bandwidth, the delay and
the jitter between native IP Multicast and ALM. We expect to show that an ALM is a valid and efficient
solution to enable multicast on a given infrastructure.

1.6 Structure of the Thesis

This paper is structured as follows. In the next chapter we describe the setup of the test environment.
Furthermore, a short explanation of the code used to control the network performance analysis system
Smartbits is given. In chapter 3 the results are presented and commented. In the last chapter we summa-
rize our results and give an overview of future work.

Chapter 2

Experiment Setup

To perform measurements for the comparison of native multicast and overlay multicast, a real time
experiment environment was set up. This environment consisted of seven computers and a network
performance analysis system called ”Smartbits”. The idea of this experiment was to create a specific
multicast data stream with Smartbits, sending it to the network built with the computers and capturing the
packets at the end of the network with Smarbits. With this setup we measured the delay and the packet
loss for each packet in the data stream. We made measurements with different data streams varying in
packet payload and network throughput.

2.1 Smartbits

Smartbits is a high-density network performance analysis test system, which consists of a chassis
and multiple modules. For this experiment we used the SmartBits 600B chassis with the module
”SmartMetrics 10/100 Base-T Ethernet LAN-3101B”. This configuration of the Smartbits [9] had six
10/100 Mbit LAN ports on the front side of the device, to send or capture data. It can be controlled over
another Ethernet port or a serial console, which are both located on the backside.

There are several ways how to work with a Smartbits device. Spirent Communicaton, the manufacturer
of Smartbits, delivers several software packages with the device. For our experiment, the data analysis
provided by this software was not sufficient for our needs, it only provides high level summary details.
Another way to communicate with Smartbits is over an open-source script language “tool command
language (TCL)” or over the language C.

For our experiment we used TCL. Spirent provides a simple command library, in which every command
for all Smartbits modules and chassis are written. Smartbits accepts all commands provided by this
library without an error message, but delivers not always the expected result. Only a small set of the
commands was working properly with our device.

2.2 Configuration of the Computers

The operating system on all computers was Fedora-Core 5. For a detailed hardware and software specifi-
cation we refer to Appendix A.

2.21

To enable IP Multicast on the computers, we used the tool called SMCRoute [10]. SMCRoute is a
command line tool to manipulate the multicast routes of the Linux kernel and allows us to maintain static
IP Multicast routes. Generally multicast routes exist in the kernel only as long as smcroute is running.
For simplification we used static routes.

To establish an IP Multicast network, the Network Interface Cards (NICs) were activated with a fixed
IP address according to the network topology setup. Afterward the tool smcroute was started with
the command smcroute -d. Finally the static IP Multicast routes were established using the command
smcroute -a <Inputlntf> <OriginlpAdr> 224.1.2.3 <Outputlntf>. These operations had to be done on
every computer in the network topology.

Configuration for IP Multicast

2.2.2 Configuration for Overlay Multicast

To enable overlay multicast on the computers we used the Multicast Middleware package [11]. The
Multicast Middleware enables the transparent use of ALM mechanisms. This is achieved by a virtual
network interface (TAP) intercepting and forwarding IP Multicast packets to the Multicast Middleware
[1]. The TAP mechanism is used by the Multicast Middleware to emulate an IP Multicast router attached
to the Ethernet network. All IP Multicast traffic will be redirected to the Multicast Middleware entity on
the end system, where it will be send to other end systems using a P2P ALM mechanism. Furthermore,
the Multicast Middleware can send IP Multicast traffic back to the end system through the same virtual
network interface. The packet flow is described in Fig. 2.1.

EI g
: Sender l iy : Receiver 18
App MM 2 App MM g
5 | . t 2
; | ' ; ; | ’ ;
g UDP | IGMP | TCP | i, g UDP | IGMP | TCP | i,
s L s
; P 2B P 2
: l i) ; | i)
: v = : i =
1 ' @ 1)
g TAP NET X g TAP NET X
- L

«+«—— Multicast Packet (UDP)
Host Boundaries

P2P Data Packet (TCP)

Kernel / User Space
Separator

Figure 2.1: Packet flow between Applications and the Multicast Middleware

To establish an overlay multicast network, the Multicast Middleware needs to be installed
on every computer in the network. As well as for IP Multicast, the NICs need to be acti-
vated with a fixed IP address according to the network topology setup. Afterward the file

start-middleware.sh needs to be reconfigured. @~ We need to set the master node on the line:
export MASTER_ NODE=${MASTER_NODE:=<INPUT>/2222}. For the first computer in the
network topology, the <INPUT>> is its own IP address. For all other computers the </NPUT> is the IP
address of its parent.

After this reconfiguration, the Multicast Middleware can be started with the command
sh start-middleware.sh. Furthermore, on the computers directly linked to the Smartbits, the TAP-
interface, generated by the Multicast Middleware, needs to be bridged with the NICs, which are directly
connected to the Smarbits. To establish bridges between the NICs and TAPs, we used the bridge-util
package. A bridge can be created using the brctl command and needs then to be activated using ifconfig.
This bridging is necessary to allow the Multicast Middleware to intercept the packets sent from and
deliver to the Smartbits.

Furthermore, on the computers directly liked to the Smartbits, we need to create a bridge between the
TAP-interface, generated by the Multicast Middleware, and the local NIC. A bridge can be created using
the bretl command and needs then to be activated using ifconfig. This bridging is necessary to allow the
Multicast Middleware to intercept the packets sent from and deliver to the Smartbits.

2.3 Network Topologies

For our measurements we defined five different network topologies. Fig. 2.2 a)-c) show the different
computer chains. We have chosen this kind of setup to see the behavior of the packet delay and the
packet loss in a linear scalable network chain. The multicast interface can forward the packets without
copying them to the next computer.

Fig. 2.2 d) and e) are both tree topologies. This setup was chosen to examine the behavior in a network,
where the multicast interface has to copy the packets to forward them on multiple interfaces.

2.4 Code

As mentioned above, we controlled the Smartbits over a TCL interface. We have created two similar files
to generate a multicast datastream for the native multicast and for the overlay multicast network. For the
native multicast network we disabled the IGMP messages, due to the fact that we used static multicast
routes. And for the overlay multicast network we enabled the IGMP messages.The full code is attached
in Appendix B. See also [12, 13].

In both example codes the network ports are initialized first. The port number one (iHub 0, iSlot 0,
iPort 0) is always used as the outgoing port, the other ports are used to capture the data. Then a package
stream 1is created in which every packet obtains a unique signature for identification. Afterwards the
intercepting of packets at the receiving ports is enabled. Finally the data stream is sent to the network
through the outgoing port and the receiving ports intercept all packets, which have passed the network
successfully and Smartbits provides the packet number, the time when the packet was sent, the time
when the packet was intercepted and the delay.

For a proper setup of the Smartbits we have defined several variables, which are listed below.

Variables:

set ipAdr 10.0.0.2

The ipAdr variable is used by the smartlib.tcl and needs to be set to connect to the Smartbits.

a)

Output[192:1683.1 19216832 oo |192.1684.1 19216842 o, [19216851
Smartbits
Input[182.168.5.2
b)
Outpuf{192.1683.1 19216832 . [1921684.1 19216842 p, [19216851 19216852 e [192.1686.1
Smartbits
Input|192.168.7.2 19216871 pg [192.1686.2
c)
Oupuf|192168.0.1 _ 10216802 o, [19216821 10216822 o, |192.1683.1 _192.16832| o5 [192.168.4.1
19216871 p, [192.16862 19216861 s [19216852 10216851 g [1921684.2
Smartbits
19216872 p; [192.1688.1
Input|192.168.8.2
d) 12632 o [o216851
192.168.3.1
w2ten32] o, [leadeedt toptensy Lo JeRiselt
192.168.1.1 192.168.6.1
19216812 py 19216881 [19216842| o, [192168.91 19216862 . [192.16810.1 [19216862] ,, [192.168.11.1
192.168.3.1
Output4l
~ |ho2.1688.2
Smartbits 1497 168.9.2
Input
192.168.10.2
192.168.11.2
e) 192.168.3.2 192.168.1.1
P3
192.168.2.1
19216822 o, 21884 hoyteg1g| L, [192.168.11.1
192.168.5.1
192.168.3.1
Output
19216852 ps o0l l19p 168300 o, [192.168.10.1
 [192.168.8.1 192.168.6.1
Smaribits |1, 168.9.1
Input
192.168.10.1
192.168.11.1
192.16862] g 192.168,8.1|192.168.7.2 by [192.168.9.1

Figure 2.2: The different topologies used for the experiments (P1-P7 are Linux computers used as multicast routers)

set iHub 0
set iSlot O
set iPort O

These variables together define an Ethernet port. iHub identifies the destination SmartBits chassis,
iSlot the destination slot and iPort the destination port. For our test the iHub and iSlot were always
set to zero, as we only had one chassis and one module in the Smartbits.

set advRegisterInput 0x0080

This variable specifies the network technology. In our experiment it was set to 100-Base-TX.

set Speed2 0x0008

Defines the values for MII Register 1: Set variable for the network card to I00MHZ.

set ctrlRegisterInput 0xE410

Defines the values for control register MII Register 0. In our experiment we used the following
settings: (PHY reset, Enable loopback mode, Speed Selection: 100MB, Auto Negotiation Disable,
Power Down: Normal Operation, Isolate: Normal Operation, Restart Auto Negotiation: Normal,
Duplex mode: Half-Duplex, Collision Test: Disable).

set streamNumber 1

Defines how many data stream have to be generated.

set numFrames 56000

Defines how many frames to send per data stream.

set gap 4000

Defines the inter-packet gap for packets transmitted on a addressed port (1 bit time = 10 nanosec-
onds).

set datalLength 559

Defines the frame length of a packet without CRC information. It is the payload of a package with
47 Bytes of header information.

To generate varied data steams, only the variables datal.ength, numFrames and gap need to be changed.

2.5 Performed Measurements

To analyze the behavior of native multicast and overlay multicast we have defined three packet payloads
and for each packet payload five throughput measurements. Due to the fact that we cannot enter the
throughput, only the inter-packet gap in our code, we have made the measurements for every topology
with the following settings:

11

Table 2.1: Traffic charactristics

Payload | Data length | Network load | Inter-packet gap | # packets
(Bytes) (Bytes) (mbps) (bit time)

32 79 1.0 61 000 8 000

32 79 5.0 11 600 40 000

32 79 10.0 5500 80 000

32 79 24.8 1720 130 000

32 79 49.6 485 130 000

512 559 1.0 430 000 1200

512 559 24.8 12 500 28 000

512 559 49.6 4 000 56 000

512 559 75.2 1 100 85 000

512 559 84.8 450 95 000

1024 1071 1.0 830 000 600

1024 1071 24.8 24000 15 000

1024 1071 49.6 7700 29 000

1024 1071 75.2 2250 44000

1024 1071 84.8 960 50 000

12

Chapter 3

Experiment Results and Evaluation

In our experiment we conducted measurements with five different network topologies. For every topology
we performed fifteen measurements, varying network load and payload. Altogether we completed 75
measurements with IP Multicast and equivalent with overlay multicast. During the experiment, we faced
several problems. We had some technical problems with the network interface cards (NICs), every once
a while they crashed in the middle of an experiment. We discovered that when the Smartbits generated
too heavy traffic, meaning that the inter-packet gap was too small, the NIC could not handle the traffic
anymore and crashed. Furthermore, we had several problems with faulty memory blocks.

3.1 Native Multicast Results

3.1.1 Chain Topologies

In the measurements with the chain topologies (Fig. 2.2 a-c), we had some packets loss. As shown in Fig.
3.1, Fig. 3.2 and Fig. 3.3 most of the packets got lost with the 32 bytes packet payload configuration.
But overall the packet loss was more or less constant in all three topologies. For the configuration with a
payload of 1 024 bytes, we measured the least packet loss.

T T
32 bytes payload
1.8 |- 512 bytes payload == - |
1024 bytes payload -------
16 - 1
1.4 1

1.2 B

0.8 - S -1

lost packets (%)
=
T

0.6 - N i
04 N i

02 | N 4

T T rr i e e |TEYCRPEYFRECER LY EA TRy Y 4 e | ss e v T

10 20 30 40 50 60 70 80 90
network load (Mbps)

Figure 3.1: Packet loss with IP Multicast in topology a)

13

lost packets (%)

lost packets (%)

1.8
1.6
1.4
1.2

0.8
0.6

0.4

1.8
1.6
1.4
12

0.8
0.6

0.4

T T

32 bytes payload
512 bytes payload ==+ -
1024 bytes payload -------

e DT T b e Pt % B) o el Pl A APl ok 128 3 i oY Pt 8 o e

30 40 50 60 70 80 90
network load (Mbps)
Figure 3.2: Packet loss with IP Multicast in topology b)
T T T T T T T T
32 bytes payload
512 bytes payload ==+ - E
1024 bytes payload -------
T T T L 1718 o0 W[e b v e m e e e A Al) B) P T e it % A et £t o e cmumn T TUTL
20 30 40 50 60 70 80 90

network load (Mbps)

Figure 3.3: Packet loss with IP Multicast in topology c)

14

The latencies for the chain topologies as shown in Fig. 3.4, Fig. 3.5 and Fig. 3.6 were linear to the
number of computers. In addition the network load had nearly no influence on the latency. However for
the configurations with a network load of one Mbps, the latency was a little higher comparing to the other
configurations. This deviation grew with a higher payload as well as with the number of computers in the
topology chain. A reason for this deviation could be the high inter-gap time between the packets, which
could cause a short delay at the kernel-forwarding.

180 T T T T T T T T T T T T T T T

[N

N

o
T
1

i

N

o
T

Payload: 32 bytes; Network load: 1 Mbps
Payload: 32 bytes; Network load: 5 Mbps
Payload: 32 bytes; Network load: 10 Mbps ~_|
Payload: 32 bytes; Network load: 24.8 Mbps
Payload: 32 bytes; Network load: 49.6 Mbps
Payload: 512 bytes; Network load: 1 Mbps ~_|
Payload: 512 bytes; Network load: 24.8 Mbps
Payload: 512 bytes; Network load: 49.6 Mbps
Payload: 512 bytes; Network load: 75.2 Mbps _|
: Payload: 512 bytes; Network load: 84.8 Mbps

: Payload: 1024 bytes; Network load: 1 Mbps

: Payload: 1024 bytes; Network load: 24.8 Mbps |
: Payload: 1024 bytes; Network load: 49.6 Mbps
: Payload: 1024 bytes; Network load: 75.2 Mbps
— 15: Payload: 1024 bytes; Network load: 84.8 Mbps |

i

o

o
T

o<}
o
T

latency (u sec)

=
QoaNOURWNE

(=3
=}
T
[
[

Py
S
T
B
INAIN)

20 |-

200 -1

[N

a1

o
T

Payload: 32 bytes; Network load: 1 Mbps -1
Payload: 32 bytes; Network load: 5 Mbps
Payload: 32 bytes; Network load: 10 Mbps
Payload: 32 bytes; Network load: 24.8 Mbps
Payload: 32 bytes; Network load: 49.6 Mbps
Payload: 512 bytes; Network load: 1 Mbps
Payload: 512 bytes; Network load: 24.8 Mbps -
Payload: 512 bytes; Network load: 49.6 Mbps
Payload: 512 bytes; Network load: 75.2 Mbps
Payload: 512 bytes; Network load: 84.8 Mbps
: Payload: 1024 bytes; Network load: 1 Mbps

: Payload: 1024 bytes; Network load: 24.8 Mbps
: Payload: 1024 bytes; Network load: 49.6 Mbps™|
: Payload: 1024 bytes; Network load: 75.2 Mbps
15: Payload: 1024 bytes; Network load: 84.8 Mbps

=

(=3

o
T

latency (p sec)

i
CoXNoOURwWNE

PR
WN P

i
'S

Figure 3.5: Latency w/o 5% outliers and with IP Multicast in topology b)

15

350 T T T T T T T T T T T T T T T
——
300 [~ -1
250 - -1
1: Payload: 32 bytes; Network load: 1 Mbps
< 2: Payload: 32 bytes; Network load: 5 Mbps
2 200 ——— —— 3: Payload: 32 bytes; Network load: 10 Mbps -
= "4: Payload: 32 bytes; Network load: 24.8 Mbps
= 5: Payload: 32 bytes; Network load: 49.6 Mbps
o 6: Payload: 512 bytes; Network load: 1 Mbps
o 150 |- 7: Payload: 512 bytes; Network load: 24.8 Mbps —|
< 8: Payload: 512 bytes; Network load: 49.6 Mbps
9: Payload: 512 bytes; Network load: 75.2 Mbps
. 10: Payload: 512 bytes; Network load: 84.8 Mbps
100 - ! . 11: Payload: 1024 bytes; Network load: 1 Mbps -
. —_ L —_ 12: Payload: 1024 bytes; Network load: 24.8 Mbps
13: Payload: 1024 bytes; Network load: 49.6 Mbps
14: Payload: 1024 bytes; Network load: 75.2 Mbps
50 - 15: Payload: 1024 bytes; Network load: 84.8 Mbps™]
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.6: Latency w/o 5% outliers and with IP Multicast in topology c)

3.1.2 Tree Topologies

For the tree topologies we measured the packet loss and the latency from the output of every computer
located at the end of the tree. As shown in the first tree topology (Fig. 2.2 d) we measured the output
from PC1, PC4, PC6 and PC7. The packet loss as well as the latency were more or less identical for these
four end points. Therefore we only show the measurement results from PC4.

Compared to the chain topologies, the packet loss in Fig. 3.7 did not change significantly although, for
configurations with higher payload, the packet loss increased a little.

2 T T T T : . | |
32 bytes payload
1.8 512 bytes payload ==+ - i
1024 bytes payload -------
16 |
14 |
S
>~ 12 |
1]
()
S 1|]
@
Q.
3 08 |
o
0.6 - |
04 |
02 k... |
mm—— LU
° = 90

network load (Mbps)

Figure 3.7: Packet loss with IP Multicast in topology d) for PC4

Considering the latency for this topology in Fig. 3.8, it was almost equal for every configuration. Com-
paring to the chain topology, where the latency was linear to the number of computers, the latency had a
different behavior in the tree topology.

Furthermore, we had two configurations with a bigger jitter as on the average. For configurations with a
small payload and a high network load the jitter seems to increase. This behavior could be caused by the

16

small inter-packet gap, and the amount of packets sent to the computers, as with this configuration the
kernel cannot transfer the packets quickly enough and they get queued.

300 T T T T T T T T T T T T T T T
Payload: 32 bytes; Network load: 1 Mbps
Payload: 32 bytes; Network load: 5 Mbps
Payload: 32 bytes; Network load: 10 Mbps
Payload: 32 bytes; Network load: 24.8 Mbps -
Payload: 32 bytes; Network load: 49.6 Mbps
Payload: 512 bytes; Network load: 1 Mbps
Payload: 512 bytes; Network load: 24.8 Mbps
Payload: 512 bytes; Network load: 49.6 Mbps
Payload: 512 bytes; Network load: 75.2 Mbps
Payload: 512 bytes; Network load: 84.8 Mbps -
Payload: 1024 bytes; Network load: 1 Mbps i
: Payload: 1024 bytes; Network load: 24.8 Mbps 1
150 |- 13: Payload: 1024 bytes; Network load: 49.6 Mbps !
14: Payload: 1024 bytes; Network load: 75.2 Mbps |
15: Payload: 1024 bytes; Network load: 84.8 Mbps !

I

I

i

I

I

i

250

200

PR
NRoooNOORWNE

latency (1 sec)

100 -

50 — —— — — — _

Figure 3.8: Latency w/o 5% outliers and with IP Multicast in topology d) for PC4

For the second tree topology (Fig. 2.2 e) we captured the data on the different depths of the tree. The
packet losses for PC1 (tree depth 1), PC4 (tree depth 2), PC6 (tree depth 3) and PC7 (tree depth 3) were
equal and therefore we only show the packet loss for PC1 in Fig. 3.9 and for PC6 in Fig. 3.11. It can be
compared to the diagrams we have seen in the first tree topology.

T T
32 bytes payload
1.8 |- 512 bytes payload == - |
1024 bytes payload -------

14 -

12 B

0.8 -

lost packets (%)
=
T
1

06 | .
04k .

02 b e 4

10 20 30 40 50 60 70 80 90
network load (Mbps)

Figure 3.9: Packet loss with IP Multicast in topology e) for PC1

Considering the latency for this tree topology, we can see almost the same behavior. The latencies of
PC1 and PC4 (Fig. 3.10) are almost equal and we have the same behavior as for topology in Fig. 2.2 d).
But if we look at the latency of PC6 and PC7 (Fig. 3.12), a deviation from the average is shown for
configurations with small payload and high network load. Furthermore, the jitter is increased at these
configurations.

17

latency (u sec)

lost packets (%)

300

250 -

200 -

150 [~

100 [~

50 -

N e
TRWNEPOQOONDUIRWNE

T
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
: Payload:
: Payload:
: Payload:
: Payload:

T T T T
32 bytes; Network load: 1 Mbps
32 bytes; Network load: 5 Mbps
32 bytes; Network load: 10 Mbps
32 bytes; Network load: 24.8 Mbps |
32 bytes; Network load: 49.6 Mbps
512 bytes; Network load: 1 Mbps
512 bytes; Network load: 24.8 Mbps
512 bytes; Network load: 49.6 Mbps
512 bytes; Network load: 75.2 Mbps]
512 bytes; Network load: 84.8 Mbps
1024 bytes; Network load: 1 Mbps
1024 bytes; Network load: 24.8 Mbps
1024 bytes; Network load: 49.6 Mbps{
1024 bytes; Network load: 75.2 Mbps
1024 bytes; Network load: 84.8 Mbps

1.8
1.6
1.4
12

0.8
0.6
0.4
0.2

12 13 14 15

Figure 3.10: Latency w/o 5% outliers and with I[P Multicast in topology e) for PC1

32 i3ytes payloadl
512 bytes payload ==+
1024 bytes payload -------

network load (Mbps)

90

Figure 3.11: Packet loss with IP Multicast in topology e) for PC6

300 T T T T T T T T T T T T T

T T
Payload: 32 bytes; Network load: 1 Mbps
Payload: 32 bytes; Network load: 5 Mbps
Payload: 32 bytes; Network load: 10 Mbps
250 | _ Payload: 32 bytes; Network load: 24.8 Mbps
Payload: 32 bytes; Network load: 49.6 Mbps
Payload: 512 bytes; Network load: 1 Mbps
Payload: 512 bytes; Network load: 24.8 Mbps
Payload: 512 bytes; Network load: 49.6 Mbps
Payload: 512 bytes; Network load: 75.2 Mbps]
Payload: 512 bytes; Network load: 84.8 Mbps
: Payload: 1024 bytes; Network load: 1 Mbps
: Payload: 1024 bytes; Network load: 24.8 Mbps
: Payload: 1024 bytes; Network load: 49.6 Mbps-]
: Payload: 1024 bytes; Network load: 75.2 Mbps
15: Payload: 1024 bytes; Network load: 84.8 Mbps

100 | = == i

200

=
QoeNoOURWNE

[N
[

150 - J—

B
NN

latency (u sec)

50 |- -

Figure 3.12: Latency w/o 5% outliers and with IP Multicast in topology e) for PC6

3.2 Overlay Multicast Results
3.2.1 Chain Topologies

We conducted the same measurements from Section 3.1 with overlay multicast enabled on the computers.
For the chain topologies (Fig. 2.2 a-c) the packet losses are shown (Fig. 3.13, Fig. 3.14 and Fig. 3.15).
Comparing to the native multicast measurements for the same topologies the packet losses have increased
heavily. For the configurations with 32 bytes payload in all three topologies, the packet loss grew rapidly
up to 90 percent.

100 ¢ ' T T T T T T T

: 32 bytes payload 3

i 512 bytes payload ===]

: 1024 bytes payload ------- 1

10 -]

F . :

: K4]
g - .
S ‘/
2 r y
2 8
S 1 3 ‘.//]
CI: ;
3 i -

./:
O.l F ../]

F .

F .

: ~‘/.

5 LU EL LI IO

0.01 ! L= f . . .
10 20 30 40 50 60 70 20 %

network load (Mbps)

Figure 3.13: Packet loss with overlay multicast in topology a)

For small network load (1mbps) the packet loss had the same behavior as with native multicast (Fig. 3.4,
Fig. 3.5 and Fig. 3.6). And for the configurations with a payload of 1 024 bytes the packet loss was
also comparable with native multicast. The slight decrease of the packet loss for the configurations with
1 024 bytes payload can be explained with the conversion of the packet loss into percentage.

19

Comparing the measurements with 512 bytes payload to native multicast (Fig. 3.4), the packet loss
increased up to 16 percent.

100 ¢
0F 3
s E
0
g L i
[} E
© E
[=
19}
o
0.1 3 E
0.01
90
network load (Mbps)
32 bytes payload 512 bytes payload == - 1024 bytes payload -------
Figure 3.14: Packet loss with overlay multicast in topology b)
100 3
0F 3
s E E
0
5]
3 1k E
S E
o
19}
o
0.1 3 E
0.01
90

network load (Mbps)
512 bytes payload == - 1024 bytes payload -------

32 bytes payload
Figure 3.15: Packet loss with overlay multicast in topology c)

For the latency measured upon the chain topologies (Fig. 3.16, Fig. 3.17 and Fig. 3.18), we saw a
different behavior as with native multicast. For configurations with a payload of only 32 bytes, the
measurements with a network load up to 10 Mbps provided acceptable results. For network load greater
than 20 Mbps the delay was too big. The results for the configurations with a payload of 512 bytes and
1 024 bytes were also acceptable. However with a network load of 1 Mbps we had a large jitter. The best
results were provided with a 1 024 bytes payload and a network load between 24.8 and 84.8 Mbps, but
comparing with native multicast the average delay with overlay multicast was much higher. The different
behavior of the measurements (in Fig. 3.16, Fig. 3.17 and Fig. 3.18) can be explained with locking
issues in the Multicast Middleware. With more peers in the chain topology (Fig. 3.17 and Fig. 3.18), the
behavior observed got worse.

20

latency (u sec)

latency (u sec)

1€+006

100000

10000

1000

100

10

1e+006

100000

10000

1000

100

10:
11:

VANRARWNE

12:
13:
14:
15:

Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:

32 bytes; Network load:
32 bytes; Network loa
32 bytes; Network loa
32 bytes; Network loa
32 bytes; Network load: 49.

512 bytes; Network load: 1 Mbps |
512 bytes; Network load: 24.8 Mbps
512 bytes; Network load: 49.6 Mbps
512 bytes; Network load: 75.2 Mbps |
512 bytes; Network load: 84.8 Mbps
1024 bytes; Network load: 1 Mbps _|
1024 bytes; Network load: 24.8 Mbps{
1024 bytes; Network load: 49.6 Mbps|
1024 bytes; Network load: 75.2 Mbps|
1024 bytes; Network load: 84.8 Mbps|

—

1

%L—JALA‘—

11

12

13 14 15

Figure 3.16: Latency w/o 5% outliers and with overlay multicast in topology a)

{

+
%

10:
11:
12:
13:
14:

QRNOARANE

Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:
Payload:

: Payload:

32 bytes; Network load: 49.6 Mbps

512 bytes; Network load: 1 Mbps -
512 bytes; Network load: 24.8 Mbps 3§
512 bytes; Network load: 49.6 Mbps §
512 bytes; Network load: 75.2 Mbps 7
512 bytes; Network load: 84.8 Mbps 7
1024 bytes; Network load: 1 Mbps
1024 bytes; Network load: 24.8 Mbps|
1024 bytes; Network load: 49.6 Mbps|
1024 bytes; Network load: 75.2 Mbps|
1024 bytes; Network load: 84.8 Mbps]

Figure 3.17: Latency w/o 5% outliers and with overlay multicast in topology b)

21

1e+006 T T T T T T T T T T T T T T T

1: Payload: 32 bytes; Network load: 1 Mbps

2: Payload: 32 bytes; Network load: 5 Mbps

3: Payload: 32 bytes; Network load: 10 Mbps |
4: Payload: 32 bytes; Network load: 24.8 Mbps

! 5: Payload: 32 bytes; Network load: 49.6 Mbps
D 6: Payload: 512 bytes; Network load: 1 Mbps ~ —|
T
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
i
|
I

100000

7: Payload: 512 bytes; Network load: 24.8 Mbps J

8: Payload: 512 bytes; Network load: 49.6 Mbps 4§

D 9: Payload: 512 bytes; Network load: 75.2 Mbps 7
10: Payload: 512 bytes; Network load: 84.8 Mbps

11: Payload: 1024 bytes; Network load: 1 Mbps
12: Payload: 1024 bytes; Network load: 24.8 Mbps]

13: Payload: 1024 bytes; Network load: 49.6 Mbpsj
14: Payload: 1024 bytes; Network load: 75.2 Mbps|
15: Payload: 1024 bytes; Network load: 84.8 Mbps

10000

latency (u sec)

1000

Figure 3.18: Latency w/o 5% outliers and with overlay multicast in topology c)

3.2.2 Tree Topologies

Below we present the results for the measurements performed with overlay multicast in the first tree
topologies (Fig. 2.2 d). Equal to the results we measured with native multicast in section 3.1.2, the
packet loss on the different paths were similar. Therefore we only present the packet loss measured from
the output of PC4 in Fig. 3.19. We had a very high average packet loss in this topology compared to
the results from the chain topologies with overlay multicast. Again this behavior can be explained with
locking issues from the Multicast Middleware.

100 3 T T T + T T T]
2] i
g i
S 10 | -
© 1 4
o H 4
B3 ! 1
k] i]
i
]
i]
!
1 1 1 1 Iy 1 1 : 1
10 20 30 40 50 60 70 80 90
network load (Mbps)

32 bytes payload 512 bytes payload == - 1024 bytes payload -------
Figure 3.19: Packet loss with overlay multicast in topology d) for PC4

Also for the latency we present only one measurement from PC4, as the measurements of the other paths
were almost equal. Considering the results in Fig. 3.20, we have huge differences between the different

22

results. Only for configurations with a small network load the latency is in an acceptable range.

For

configurations with a higher network load the latency and the jitter are growing heavily.

latency (1 sec)

1e+006

100000

10000

1000

100

E T T T T T T T T T T T T T T 3

: = = - :
: T —— =

E | . | ! ! ! T 3

: | L T3

r | | | | | ! E

o ! | I I | ! -
! ! | | ! !

= ! ! | | . ! -

| o -3

F —_ L |]

r E | } 3 - — ===]
| | i i

E i | .

E ; i = | | | E

E L —— 1 E

| | | | | | | | | | | | | |
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1: Payload: 32 bytes; Network load: 1 Mbps
2: Payload: 32 bytes; Network load: 5 Mbps
3: Payload: 32 bytes; Network load: 10 Mbps
4: Payload: 32 bytes; Network load: 24.8 Mbps
5: Payload: 32 bytes; Network load: 49.6 Mbps
6: Payload: 512 bytes; Network load: 1 Mbps
7: Payload: 512 bytes; Network load: 24.8 Mbps
8: Payload: 512 bytes; Network load: 49.6 Mbps
9: Payload: 512 bytes; Network load: 75.2 Mbps
10: Payload: 512 bytes; Network load: 84.8 Mbps
11: Payload: 1024 bytes; Network load: 1 Mbps
12: Payload: 1024 bytes; Network load: 24.8 Mbps
13: Payload: 1024 bytes; Network load: 49.6 Mbps
14: Payload: 1024 bytes; Network load: 75.2 Mbps
15: Payload: 1024 bytes; Network load: 84.8 Mbps

Figure 3.20: Latency w/o 5% outliers and with overlay multicast in topology d) for PC4

For the second tree topology (Fig. 2.2 e) we measured the data on the different depths of the tree. The
measurements for the packet loss showed an equal result on all paths for the different depths in the tree,
therefore we only present the packet loss for PC4 in Fig. 3.21. Similar to the first tree topology we have
a high packet loss for all configurations compared to the results from the chain topologies with overlay

multicast.
100 f
S
0
g
X 10
®©
o
]
o
1

10 20 30 40 50 0 S - -
network load (Mbps)
512 bytes payload == -

32 bytes payload 1024 bytes payload -------

Figure 3.21: Packet loss with overlay multicast in topology e) for PC4

For the latency in this topology we had almost an equal latency on every depth of the tree we measured,
therefore we only show the result of PC4 in Fig. 3.22. Similar to the results of the first tree topology the
average latency is extremely high. Only for a few configurations with high payload and low network load
the latency is in an acceptable range.

23

1e+006

E T T T T T T T T T T T T T T T 3
C B=e | = \ []
! |
I

100000 | ! ! } | = ‘ $ 4
F | | =
3 3 | ! ! i | ! b
b - | | i ! | | | 4

= J— | | | ! | | |
S 10000 3 E } } } } } 1 } E
c F 1 =
! E | ! ! | | —_ =
5 i == | 1 1 = ! | === b

| I I —4 ! | — I |] |
woop L £ | | o L
E | . 1 i E
F 1 — — ——]

100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1: Payload: 32 bytes; Network load: 1 Mbps
2: Payload: 32 bytes; Network load: 5 Mbps
3: Payload: 32 bytes; Network load: 10 Mbps
4: Payload: 32 bytes; Network load: 24.8 Mbps
5: Payload: 32 bytes; Network load: 49.6 Mbps
6: Payload: 512 bytes; Network load: 1 Mbps
7: Payload: 512 bytes; Network load: 24.8 Mbps
8: Payload: 512 bytes; Network load: 49.6 Mbps
9: Payload: 512 bytes; Network load: 75.2 Mbps
10: Payload: 512 bytes; Network load: 84.8 Mbps
11: Payload: 1024 bytes; Network load: 1 Mbps
12: Payload: 1024 bytes; Network load: 24.8 Mbps
13: Payload: 1024 bytes; Network load: 49.6 Mbps
14: Payload: 1024 bytes; Network load: 75.2 Mbps
15: Payload: 1024 bytes; Network load: 84.8 Mbps

Figure 3.22: Latency w/o 5% outliers and with overlay multicast in topology e) for PC4

3.3 Evaluation

Our results have shown that the overlay multicast has a higher average latency and a higher packet loss
as IP Multicast. That the overlay multicast has a higher latency was expected, due to the fact that routing
is not performed in the kernel itself. The higher packet loss though was not expected. We explain this
behavior with the queuing and dropping of packets.

The measurements with IP Multicast have shown that the packet loss was below 0.2 percent for all con-
figurations with chain topologies (Fig. 3.1, Fig. 3.2 and Fig. 3.3) as well as with tree topologies (Fig. 3.7,
Fig. 3.9 and Fig. 3.11). However, for the measurements with configurations of 32 bytes payload we have
seen an increase of the packet loss in all topologies almost linear to the network load. For measurements
with a network load below 10 Mbps, the packet loss was higher as with a network load greater than 10
Mbps. The latency in the measurements with [P Multicast behaved as expected.

The measurements with overlay multicast have shown that the packet loss has increased comparing to IP
Multicast. In the chain topologies (Fig. 3.13, Fig. 3.14 and Fig. 3.15) as well as in the tree topologies
(Fig. 3.19 and Fig. 3.21) the packet loss increased up to 90 percent for the configurations with 32 bytes
payload and a network load of 24.8 Mbps. For the configuration with 512 bytes payload the packet loss
increased significantly from a network load of 49.6 Mbps. For the configurations with 1 024 bytes pay-
load the packet loss remained below one percent for the chain topologies and increased up to 90 percent
for the tree topologies with a network load of 75.2 Mbps. The latencies for the measurements with over-
lay multicast has increased significantly comparing to IP Multicast. An explanation for this result could
be that the Multicast Middleware is not suitable for small hops (hops with short delays). The distance
and therefore the delay between the PCs was extremely short and had an influence on the queuing of the
packets.

Comparing the two multicast implementations, we have shown that IP Multicast delivers better results
with a bigger variety in relation to the payload and network load. Overlay multicast has shown acceptable
results with a payload of 1 024 bytes and a network load between 49.6 Mbps and 75.2 Mbps in a chain
topology network. Finally, for tree topology with overlay multicast, the results were acceptable for small
payload and small network load.

24

Chapter 4

Conclusion and Outlook

In this paper we have compared the performance of native IP Multicast with overlay multicast in a real
time experiment. We have described how we have set up the experiment and how we have performed the
measurements using IP Multicast for native multicast and the Multicast Middleware for overlay multicast.
To conduct the measurements we have used a network performance analysis system called ”Smartbits”.
We have performed the measurements on different topologies varying network load and payload.

The results of our experiment shows that the Multicast Middleware performs fairly with a payload of
1 024 bytes and a network load between 49.6 Mbps and 75.2 Mbps in a chain topology network. Fur-
thermore, we have conducted measurements in tree topology networks. The Multicast Middleware only
delivered acceptable results for measurements with small payload and small network load. The reason
for this result was that we used only a local network topology with small delays.

To improve our results, we could conduct further measurements using a larger topology of computers or
using the open platform PlanetLab. Also measurements could be performed with background traffic in
the network.

25

Bibliography

[1] M. Brogle, D. Milic, and T. Braun, “Supporting IP Multicast Streaming Using Overlay Networks.”
QShine: International Conference on Heterogeneous Networking for Quality, Reliability, Security
and Robustness, Vancouver, British Columbia, Canada,August 14 - 17 2007.

[2] S. Deering, “Host extensions for IP multicasting,” RFC 1112 (Standard), Aug. 1989, updated by
RFC 2236. [Online]. Available: http://www.ietf.org/rfc/rfc1112.txt

[3] J. Postel, “Internet Protocol,” RFC 791 (Standard), Sept. 1981, updated by RFC 1349. [Online].
Available: http://www.ietf.org/rfc/rfc791.txt

[4] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper, “IANA Guidelines for IPv4 Multicast
Address Assignments,” RFC 3171 (Best Current Practice), Aug. 2001. [Online]. Available:
http://www.ietf.org/rfc/rfc3171.txt

[5] W. Fenner, “Internet Group Management Protocol, Version 2,” RFC 2236 (Proposed Standard),
Nov. 1997, obsoleted by RFC 3376. [Online]. Available: http://www.ietf.org/rfc/rfc2236.txt

[6] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, “Internet Group Management
Protocol, Version 3,” RFC 3376 (Proposed Standard), Oct. 2002, updated by RFC 4604. [Online].
Available: http://www.ietf.org/rfc/rfc3376.txt

[7] S. Fahmy and M. Kwon, “Characterizing overlay multicast networks,” in Network Protocols,
2003. Proceedings. 11th IEEE International Conference on, 2003, pp. 61-70. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs\ _all.jsp?arnumber=1249757

[81 M. Bayer, Computer Telephony Demystified: Putting CTI, Media Services, and IP Telephony to
Work with CDROM. Mcgraw Hill Book Co, 2000.

[9] Installation Guide SmartBits 600x/6000x, Spirent Communication Inc.
[10] C. Schill, “SMC route.” [Online]. Available: http://www.cschill.de/smcroute/

[11] D. Milic and M. Brogle, “Euqos multicast middleware.” [Online]. Available: http://www.iam.unibe.
ch/~rvs/research/euqos/mcast-4.0.4_r701.zip

[12] SmartLib Command Reference Volume 2, Spirent Communication Inc., 2003.

[13] SmartLib Command Reference Volume 1, Spirent Communication Inc., 2003.

27

Appendices

29

Appendix A

Computer Hardware and Software

Specifications

Table A.1: Hardware of the computers used for the experiments

Processor Intel Pentium IV 3.00 GHz
Memory 2x 512GB Take M5 DDR 400 CL 2.5
Motherboard ASUS P4S800-MX

Bios version

Rev. 0501

Additional Network Card Interface (NIC):

1x SiS 900/7016 100 Mbps Onboard
2x Realtek, RTL-8169 1 000 Mbps

Hard Disk

Hitachi Deskstar 7K80 80GB
HDS728080PLAT20

31

Table A.2: Software on the computers used for the experiments

Operating System Fedora Core 5 (2.6.20-1.2307)
Kernel 2.6.20-1.2307
Services running: acpid
gpm
haldaemon
irgbalance
kudzu
network
sshd
syslog
Additional Software:
To create a bridge between two Ifaces:
sysfsutil V. 1.3.0-1.2.1
bridge-util V. 1.0.6-1.2
Native multicast support:
] SMC Route \ V.0.92

Overlay multicast support:

| Multicast Middleware

| V.30 Jan 2006

32

Appendix B

Smartbits Code Example 1

This is the code to generate one multicast stream (payload: 512 Bytes, throughput: 49.6 Mbps) without

generating IGMP messages.

Load smartlib.tcl
set libPath “/usr/local/smartbits/smartlib/include/smartlib.tcl”

Smartbits Configuration Port Address
set ipAddr 10.0.0.2

Port Configuration
set iHub 0
set iSlot 0
set iPort 0

set iHub2 0
set iSlot2 0
set iPort2 1

set auto negoatiation advertisement register
set advRegisterInput 0x0080
Technology ability : 100 Base—TX

set Speed2 0x0008
100MegFull = 0x0101 ; 10MegFull 0x0041
Speed2 100MHz: 0x0008 ; 10 MHz: 0x0004

####### set control register input
set ctrlRegisterInput 0xE410
0x1204 = on

Numbers of Stream to create
set streamNumber |

Numbers of Frames to send
set numFrames 56000

set gap 4000

Frames per Second
set framesPerSecond 2000

or
Load Percent (0 — 100)
set loadPerCent 60

Set registeraddress

set controlReg 0
control register address
set advertiseReg 4

auto negotiation advertisement register address

Frame Length (no CRC) 0 — 2148 for Ethernet
set dataLength 559

Load Smartlib
if "smartlib.tcl” is not loaded, try to source it from the default path
if { ! [info exists __SMARTLIB.TCL_.] } {
if {[file exists S$libPath]} {
source $libPath
} else {
#Enter the location of the ”"smartlib.tcl” file or enter "Q” or
while {1} {
puts "Could.not.find.the~file.$libPath.”
puts “Enter.the.path_of_.smartlib.tcl, or.q-to.exit.”
gets stdin libPath
if {$libPath == "q” || S$libPath == "Q"} {
exit

}
if {[file exists $libPath]} {

33

q

to quit

67 source $libPath

68 break

69 }

70

71 }

7 }

73 }

74

75 ### Link to Smartbits

76 proc linkSMB {ip} {

77 if {[ETGetLinkStatus] < 1} {

78 puts “SmartBits.chassis.IP.address:.$ip”

79 NSSocketLink $ip 16385 $:RESERVE_ALL

80 }

81 }

82

83 ###sets mii register to value of word

84 proc writeMII {H S P word register } {

85 set address [getMIIAddress $H $S $P]

86 LIBCMD HTWriteMIl S$address S$register $word $H $S SP

87 }

88

89

90 proc getMIIAddress {H S P} {

91 set address 77

92 set con.reg 77

93 LIBCMD HTFindMIIAddress address con.reg $H $S $P

94 return Saddress

95 }

96

97 ### simeple wait for user input routine

98 proc press2Continue {} {

99 puts “_Press .ENTER_.to._continue”

100 gets stdin response

101 }

102

103 ### create new Streams

104 proc createStreamArray {H S P numStreams} {

105 struct-new ip StreamIP=$numStreams

106 for {set i 0} {$i < $numStreams} {inmer i} {

107 set ip(Si.ucActive) 1
108 ### ucActive: 1 = enable Stream ; 0 disable Stream
109 set ip(S$i.ucProtocolType) $:STREAM_PROTOCOL_TCP
110 set ip($i.uiFrameLength) $::dataLength
111 ### Frame Length not counting CRC 0 —2148 for Ethernet
112 set ip(S$i.ucTagField) 1

113 ### 0 = off ; 1 = insert signature into each frame
114 set ip($i.Protocol) 4
115 ### 4 = ip on the IP assigned list

116 set ip($i.TimeToLive) O0xFF

117 set ip($i.DestinationMAC.0) 0x01

118 #PCl 0x00 Routerl 0x00 Router2 0x00
119 set ip($i.DestinationMAC.1) 0x00

120 #PCl OxI1 Routerl 0x15 Router2 0xI5

121 set ip($i.DestinationMAC.2) 0xSe

122 #PC1 0x6B Routerl 0xf9 Router2 0xf9

123 set ip($i.DestinationMAC.3) 0x01

124 #PCl 0x34 Routerl 0x56 Router2 0x56

125 set ip(S$i.DestinationMAC.4) 0x02

126 #PCl 0x9A Routerl Oxbe Router2 Oxba

127 set ip(S$i.DestinationMAC.5) 0x03

128 #PCl 0x23 Routerl Oxe0 Router2 0xd8

129 set ip($i.SourceMAC.0) 0x00

130 set ip($i.SourceMAC.1) 0x00

131 set ip($i.SourceMAC.2) 0x01

132 set ip($i.SourceMAC.3) 0x00

133 set ip($i.SourceMAC.4) 0x00

134 set ip($i.SourceMAC.5) 0x01

135 set ip($i.DestinationIP.0) 224

136 set ip($i.DestinationIP.1) 1

137 set ip($i.DestinationIP.2) 2

138 set ip($i.DestinationIP.3) 3

139 set ip($i.SourcelP.0) 192

140 set ip(Si.SourcelP.1) 168

141 set ip(Si.SourcelP.2) 3

142 set ip(Si.SourcelP.3) 1

143 set ip($i.Netmask.0) 255

144 set ip($i.Netmask.1) 255

145 set ip($i.Netmask.2) 255

146 set ip($i.Netmask.3) 0

147 set ip($i.Gateway.0) 192

148 set ip($i.Gateway.l) 168

149 set ip($i.Gateway.2) 3

150 set ip($i.Gateway.3) 2

151 set ip ($i.ulARPGap) 1000
152 ### the time between ARPs in 100ns

153 }

154 LIBCMD HTSetStructure $:L3_DEFINE_IP.STREAM 0 0 0 ip 0 SH $S S$P
155 }

156

157 ### create Stream Extensions

158 proc create_extension {H S P frameRate } {

159 set numStreams [get.streamcount $H $S S$P]

160 struct-new L3X L3StreamExtension

161 for {set index 1} {Sindex < $numStreams} {incr index} {
162 set L3X(ulFrameRate) SframeRate
163 ### frame transmit rate, in packets per second

34

164 set L3X(ucIPHeaderChecksumError) 1

165 ### 1 = enable ; 0 = disable

166 set L3X(ucIPTotalLengthError) 1

167 ### 1 = enable ; 0 = disable

168 set L3X(ucCRCErrorEnable) 1

169 ### 1 = enable ; 0 = disable

170 set L3X(ucDataCheckEnable) 1

171 ### 1 = enable pazload check error ; 0 = disable

172 set L3X(ucDatalntegrityErrorEnable) 1

173 ### 1 = enable ; 0 = disable

174 set L3X(ulBGPatternIndex) 0

175 ### index of the stream background fill pattern

176 ### that defined by L3StreamBGConfig

177 set L3X(ucRandomBGEnable) 1

178 ### 1 = enable ; 0 = disable

179 puts “creating-extension-S$index”

180 LIBCMD HTSetStructure $:L3.MOD.STREAM.EXTENSION Sindex 0 0 L3X 0 $H $S $P
181 }

182 }

183

184 ###Restarts capture on target card to capture all received frames##############H

185 proc resetCapture {H S P} {

186 struct.new CapSetup NSCaptureSetup

187 set CapSetup (ulCaptureMode) $:CAPTURE.MODE_FILTER.ON_EVENTS

188 ### Choose between:

189 ### — CAPTURE_.MODE_FILTER.ON_EVENTS

190 ### — CAPTURE-MODE.START-ON.EVENTS

191 ### — CAPTURE.MODE_STOP.ON_.EVENTS

192 set CapSetup(ulCaptureEvents) $:CAPTURE-EVENTS_ALL_FRAMES

193 ### Choose between: see list

194 LIBCMD HTSetStructure $:NS-CAPTURE.SETUP 0 0 0 CapSetup 0 $H $S $P

195 ### Set structure

196 }

197

198 ### reset Rawtags

199 proc resetRawtags { HS P} {

200 LIBCMD HTSetCommand $::L3_HIST_.RAW_TAGS 0 0 0 0 $H $S $P

201 }

202

203 ### display the results

204 proc displayRawtags {H S P numFrames} {

205 set actLatency 0

206 set avgLatency 0

207 set minLatency 0

208 set maxLatency 0

209 struct.new rt Layer3HistTagInfo

210 ### rt contains the singature field information for the Raw Tag

211 ###histogramm. A Separate record is generated for each SmartBit

212 ###test frame (containing a signature) received at this port.

213 set recordsOnCard [getRecord $H $S $P]

214 ### get the number of histogram records captured on the target

215 if {$recordsOnCard < 1} {

216 puts "No.records._captured._on_Hub_$H_Slot_$S_Port_$P”

217 } else {

218 puts - >
219 puts “_Data:”

220 puts ”"_Pack.Nr.: TX_Time: RX_Time: RX—TX:."”
221 for {set i 0} {$i < SrecordsOnCard} {iner i} {

222 LIBCMD HTGetStructure $::L3_HIST.RAW_TAGS.INFO $i 0 0 rt 0 $H $S $P
223 set actLatency [expr (S$rt(ulReceiveTime) — $rt(ulTransmitTime)) /10.0]
224 ###get the information for each frame

225 puts —nonewline "_[expro$i+]] e mmmmmn Ox[format.%X.$rt(ulTransmitTime)]”
226 ### Print Number of the frame and timestamp when this frame left Smartbit
227 puts —nonewline 7. Ox [format.%X..$rt(ulReceiveTime)] .. =
228 ### Print timestamp when this frame was received by Smartbits
229 puts “.__S$actLatency.uS”

230 ### Print latency

231 set avgLatency [expr SavgLatency + SactLatency]

232 if { $i == || $minLatency > SactLatency } {

233 set minLatency $actLatency

234 }

235 if { $i == || $maxLatency < SactLatency } {

236 set maxLatency $actLatency

237 }

238 }

239 puts ™ o
240 puts “Average.latency.=_[expr_$avgLatency/_(-$recordsOnCard)]”

241 puts “Min_.latency .=.SminLatency.”

242 puts "Max_latency .=_$maxLatency.”

243

244 puts “Number.of._packets.send:.$SnumFrames”

245 puts “Number.of.packets.received:.$recordsOnCard”

246 puts “Lost.packets:.[expr.$numFrames.—.$recordsOnCard]”

247 }

248

249 ### Returns numbers of records on card

250 proc getRecord { HS P } {

251 struct.new ActiveTestInfo Layer3HistActiveTest

252 LIBCMD HTGetStructure $::L3_HIST_ACTIVE_TEST.INFO 0 0 0 ActiveTestInfo 0 $SH $S $P
253 set records_on_card $ActiveTestInfo(ulRecords)

254 return $records-on-card

255 }

256

257 ## Returns number of streams on card

258 proc get.streamcount {H S P} {

259 struct.new DefStreams ULong

260 LIBCMD HTGetStructure $:L3_DEFINED_.STREAM_.COUNT.INFO 0 0 0 DefStreams 0 $SH $S S$P

35

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

return $DefStreams(ul)

I

Uses NSCalculateGap to set TX as Packets Per Second ##########HHHHHHHHIHHHH
proc setFramesPerSecond {H S P speed dataLength framesPerSecond} {
set gap 77
NSCalculateGap $::PPS.TO.GAP.BITS $speed S$dataLength $framesPerSecond gap $H $S SP
puts "_Gap-ist.Sgap”
return S$gap

}

Uses NSCalculateGap to set TX as load percent
Returns the GAP value needed to set the requested rate
proc setLoad {H S P speed dataLength loadPercent} {
set gap 77
NSCalculateGap $::PERCENT.LOAD.TO.GAP.BITS $speed S$dataLength $loadPercent gap $H $S $P
return S$gap

MAIN PROGRAM

linkSMB $ipAddr
connect to SmartBits
HGSetGroup 7”7
clear groups
HGAddtoGroup $iHub $iSlot $iPort
add port 1 to the group
HGAddtoGroup $iHub2 $iSlot2 SiPort2
add port 2 to the group
writeMII $iHub $iSlot $iPort $advRegisterInput $advertiseReg
set auto negotiation Register
writeMII SiHub2 $iSlot2 $iPort2 SadvRegisterInput SadvertiseReg
set auto negotiation Register
writeMII $iHub $iSlot $iPort S$ctrlRegisterInput S$controlReg
set control register
writeMII $iHub2 $iSlot2 $iPort2 $ctriRegisterInput $controlReg
set control register
after 1000
Wait 1000
Specifies the interpacket gap that is to be transmitted on the addressed port
LIBCMD HTGap $gap SiHub $iSlot $iPort
or
###LIBCMD HTGap [setFramesPerSecond $iHub $iSlot $iPort $Speed2 SdataLength S$framesPerSecond] $iHub $iSlot
or
###LIBCMD HTGap [setLoad $iHub $iSlot $iPort $Speed2 SdataLength $loadPerCent] $iHub $iSlot $iPort
puts "Creating.a.stream”
createStreamArray $iHub $iSlot $iPort $streamNumber
create a stream
create-extension $iHub $iSlot $iPort $framesPerSecond
create stream extension
puts “Transmit.and.capture.the._stream!!”
press2Continue
resetCapture $iHub2 $iSlot2 $iPort2
Restarts capture on target card to capture all received frames
LIBCMD HTTransmitMode $SINGLE.BURST.MODE $iHub $iSlot $iPort
Sets port to transmit a single burst of packets, then stop
LIBCMD HTBurstCount $numFrames SiHub $iSlot $iPort
Sets the number of packets to transmit in a single burst from a SmartCard
resetRawtags $iHub2 $iSlot2 $iPort2
LIBCMD HGStop
Simultaneously halts the transmission of packets from all ports associated
with the PortIDGroup defined by the previous HGSetGroup command
LIBCMD HTSetCommand $::NS_CAPTURE_START 0 0 0 0 $iHub $iSlot $iPort
Start capture
LIBCMD HGRun SHTRUN
###Sets up the run state for all ports associated with the PortIDGroup
after 100000
WAIT
LIBCMD HGRun $HTSTOP
###Sets up the run state for all ports associated with the PortIDGroup
LIBCMD HTSetCommand $::NS_.CAPTURE.STOP 0 0 0 0 $iHub $iSlot S$iPort
Stop capture
displayRawtags $iHub2 $iSlot2 S$iPort2 $numFrames
display results
ETUnLink
disconnect from SmartBits

SiPort

36

Appendix C

Smartbits Code Example 2

This is the code to generate one multicast stream (payload: 512 Bytes, throughput: 49.6 Mbps) with
generating IGMP messages.

Load

set

smartlib.tcl

libPath ”/usr/local/smartbits/smartlib/include/smartlib.tcl”

Smartbits Configuration Port Address

set

ipAddr 10.0.0.2

Port Configuration

set iHub 0

set iSlot 0
set iPort 0
set iHub2 0
set iSlot2 0
set iPort2 1

set auto negoatiation advertisement register

set advRegisterInput 0x0080
Technology ability : 100 Base—TX
set Speed2 0x0008
100MegFull = 0x0101 ; 10MegFull 0x0041
Speed2 100MHz: 0x0008 ; 10 MHz: 0x0004
####### set control register input
set ctrlRegisterInput 0xE410
0x1204 = on
Numbers of Stream to create
set streamNumber |
Numbers of Frames to send
set numFrames 56000
set gap 4000
Frames per Second
set framesPerSecond 2000
or
Load Percent (0 — 100)
set loadPerCent 60
Set registeraddress
set controlReg 0
control register address
set advertiseReg 4
auto negotiation advertisement register address
Frame Length (no CRC) 0 — 2148 for Ethernet
set dataLength 559

Load Smartlib
if "smartlib.tcl” is not loaded, try to source it from the default path

##

if { ! [info exists __SMARTLIB.TCL_.] } {

if {[file exists SlibPath]} {
source $libPath

} else {

#Enter the location of the ”"smartlib.tcl” file or enter "Q”

while {1} {
puts "Could.not.find.the~file.$libPath.”

puts “Enter.the.path_of_.smartlib.tcl, or.q-to.exit.”

gets stdin libPath
if {$libPath == "q” || SlibPath == "Q"} {
exit

}
if {[file exists $libPath]} {

37

or

q

to quit

67 source $libPath

68 break

69 }

70

71 }

7 }

73 }

74

75 ### Link to Smartbits

76 proc linkSMB {ip} {

77 if {[ETGetLinkStatus] < 1} {

78 puts “SmartBits.chassis.IP.address:.$ip”

79 NSSocketLink $ip 16385 $:RESERVE_ALL

80 }

81 }

82

83 ###sets mii register to value of word

84 proc writeMII {H S P word register } {

85 set address [getMIIAddress $H $S $P]

86 LIBCMD HTWriteMIl S$address S$register $word $H $S SP

87 }

88

89

90 proc getMIIAddress {H S P} {

91 set address 77

92 set con.reg 77

93 LIBCMD HTFindMIIAddress address con.reg $H $S $P

94 return Saddress

95 }

96

97 ### simeple wait for user input routine

98 proc press2Continue {} {

99 puts “_Press .ENTER_.to._continue”

100 gets stdin response

101 }

102

103 ### create new Streams

104 proc createStreamArray {H S P numStreams} {

105 struct-new ip StreamIP=$numStreams

106 for {set i 0} {$i < $numStreams} {inmer i} {

107 set ip(Si.ucActive) 1
108 ### ucActive: 1 = enable Stream ; 0 disable Stream
109 set ip(S$i.ucProtocolType) $:STREAM_PROTOCOL_TCP
110 set ip($i.uiFrameLength) $::dataLength
111 ### Frame Length not counting CRC 0 —2148 for Ethernet
112 set ip(S$i.ucTagField) 1

113 ### 0 = off ; 1 = insert signature into each frame
114 set ip($i.Protocol) 4
115 ### 4 = ip on the IP assigned list

116 set ip($i.TimeToLive) O0xFF

117 set ip($i.DestinationMAC.0) 0x01

118 #PCl 0x00 Routerl 0x00 Router2 0x00
119 set ip($i.DestinationMAC.1) 0x00

120 #PCl OxI1 Routerl 0x15 Router2 0xI5

121 set ip($i.DestinationMAC.2) 0xSe

122 #PC1 0x6B Routerl 0xf9 Router2 0xf9

123 set ip($i.DestinationMAC.3) 0x01

124 #PCl 0x34 Routerl 0x56 Router2 0x56

125 set ip(S$i.DestinationMAC.4) 0x02

126 #PCl 0x9A Routerl Oxbe Router2 Oxba

127 set ip(S$i.DestinationMAC.5) 0x03

128 #PCl 0x23 Routerl Oxe0 Router2 0xd8

129 set ip($i.SourceMAC.0) 0x00

130 set ip($i.SourceMAC.1) 0x00

131 set ip($i.SourceMAC.2) 0x01

132 set ip($i.SourceMAC.3) 0x00

133 set ip($i.SourceMAC.4) 0x00

134 set ip($i.SourceMAC.5) 0x01

135 set ip($i.DestinationIP.0) 224

136 set ip($i.DestinationIP.1) 1

137 set ip($i.DestinationIP.2) 2

138 set ip($i.DestinationIP.3) 3

139 set ip($i.SourcelP.0) 192

140 set ip(Si.SourcelP.1) 168

141 set ip(Si.SourcelP.2) 3

142 set ip(Si.SourcelP.3) 1

143 set ip($i.Netmask.0) 255

144 set ip($i.Netmask.1) 255

145 set ip($i.Netmask.2) 255

146 set ip($i.Netmask.3) 0

147 set ip($i.Gateway.0) 192

148 set ip($i.Gateway.l) 168

149 set ip($i.Gateway.2) 3

150 set ip($i.Gateway.3) 2

151 set ip ($i.ulARPGap) 1000
152 ### the time between ARPs in 100ns

153 }

154 LIBCMD HTSetStructure $:L3_DEFINE_IP.STREAM 0 0 0 ip 0 SH $S S$P
155 }

156

157 ### create new Streams for receiver port2

158 proc createStream2Array {H S P numStreams} {

159 struct-new ip StreamIP=$numStreams

160 for {set i 0} {$i < $numStreams} {inmer i} {

161 set ip(Si.ucActive) 1
162 ### ucActive: 1 = enable Stream ; 0 disable Stream
163 set ip($i.ucProtocolType) $::STREAM_PROTOCOL.TCP

38

164 set ip($i.uiFrameLength) $::dataLength
165 ### Frame Length not counting CRC 0 —2148 for Ethernet
166 set ip(Si.ucTagField) 1

167 ### 0 = off : 1 = insert signature into each frame
168 set ip($i.Protocol) 4
169 ### 4 = ip on the IP assigned list

170 set ip($i.TimeToLive) 0xFF

171 set ip($i.DestinationMAC.0) 0x01

172 #PC1 0x00 Routerl 0x00 Router2 0x00

173 set ip($i.DestinationMAC.1) 0x00

174 #PCl OxI1 Routerl 0x15 Router2 0xI5

175 set ip($i.DestinationMAC.2) 0xSe

176 #PC1 0x6B Routerl 0xf9 Router2 0xf9

177 set ip($i.DestinationMAC.3) 0x01

178 #PCl 0x34 Routerl 0x56 Router2 0x56

179 set ip($i.DestinationMAC.4) 0x02

180 #PCl 0x9A Routerl Oxbe Router2 Oxba

181 set ip($i.DestinationMAC.5) 0x03

182 #PC1 0x23 Routerl 0Oxe0 Router2 0xd8

183 set ip(Si.SourceMAC.0) 0x00

184 set ip(Si.SourceMAC.1) 0x00

185 set ip(S$i.SourceMAC.2) 0x04

186 set ip(S$i.SourceMAC.3) 0x00

187 set ip(Si.SourceMAC.4) 0x00

188 set ip(Si.SourceMAC.5) 0x06

189 set ip($i.DestinationIP.0) 224

190 set ip($i.DestinationIP.1) 1

191 set ip($i.DestinationIP.2) 2

192 set ip($i.DestinationIP.3) 3

193 set ip($i.SourcelP.0) 192

194 set ip($i.SourcelP.1) 168

195 set ip($i.SourcelP.2) 5

196 set ip(S$i.SourcelP.3) 2

197 set ip($i.Netmask.0) 255

198 set ip($i.Netmask.1) 255

199 set ip($i.Netmask.2) 255

200 set ip(S$i.Netmask.3) 0

201 set ip(S$i.Gateway.0) 192

202 set ip(S$i.Gateway.l) 168

203 set ip(S$i.Gateway.2) 5

204 set ip(S$i.Gateway.3) 1

205 set ip($i.ulARPGap) 1000
206 ### the time between ARPs in 100ns

207 }

208 LIBCMD HTSetStructure $::L3_DEFINE_IP.STREAM 0 0 0 ip 0 $H $S SP
209 }

210

211 ### create Stream Extensions

212 proc create_extension {H S P frameRate } {

213 set numStreams [get_.streamcount $H $S $P]

214 struct-new L3X L3StreamExtension

215 for {set index 1} {Sindex < $numStreams} {incr index} {
216 set L3X(ulFrameRate) $frameRate
217 ### frame transmit rate, in packets per second

218 set L3X(ucIPHeaderChecksumError) 1

219 ### 1 = enable ; 0 = disable

220 set L3X(ucIPTotalLengthError) 1

221 ### 1 = enable ; 0 = disable

222 set L3X(ucCRCErrorEnable) 1

223 ### 1 = enable ; 0 = disable

224 set L3X(ucDataCheckEnable) 1

225 ### 1 = enable pazload check error ; 0 = disable
226 set L3X(ucDatalntegrityErrorEnable) 1

227 ### 1 = enable ; 0 = disable

228 set L3X(ulBGPatternlndex) 0

229 ### index of the stream background fill pattern
230 ### that defined by L3StreamBGConfig

231 set L3X(ucRandomBGEnable) 1

232 ### 1 = enable ; 0 = disable

233 puts “creating.extension.S$index”

234 LIBCMD HTSetStructure $:L3.MOD.STREAM.EXTENSION Sindex 0 0 L3X 0 $H $S $P
235

236 }

237

238 ###Restarts capture on target card to capture all received frames##############H
239 proc resetCapture {H S P} {

240 struct.new CapSetup NSCaptureSetup

241 set CapSetup (ulCaptureMode) $:CAPTURE.MODE_FILTER.ON_EVENTS
242 ### Choose between:

243 ### — CAPTURE_.MODE_FILTER.ON_EVENTS

244 ### — CAPTURE-MODE.START-ON.EVENTS

245 ### — CAPTURE.MODE_STOP.ON_EVENTS

246 set CapSetup(ulCaptureEvents) $:CAPTURE-EVENTS_ALL_FRAMES
247 ### Choose between: see list

248 LIBCMD HTSetStructure $:NS_.CAPTURE.SETUP 0 0 0 CapSetup 0 $H S$S $P
249 ### Set structure

250 }

251

252 ### reset Rawtags

253 proc resetRawtags { HS P} {

254 LIBCMD HTSetCommand $::L3.HIST.RAW.TAGS 0 0 0 0 $H $S $P
255 }

256

257 ### display the results

258 proc displayRawtags {H S P numFrames} {

259 set actLatency 0

260 set avgLatency 0

39

261 set minLatency 0

262 set maxLatency 0

263 struct.new rt Layer3HistTagInfo

264 ### rt contains the singature field information for the Raw Tag

265 ###histogramm. A Separate record is generated for each SmartBit

266 ###test frame (containing a signature) received at this port.

267 set recordsOnCard [getRecord $H $S S$P]

268 ### get the number of histogram records captured on the target

269 if {SrecordsOnCard < 1} {

270 puts "No.records.captured.on.Hub_$H.Slot_.$S_Port_.$P"

271 } else {

272 puts - 3

273 puts "_Data:”

274 puts 7_Pack.Nr.: TX.Time: RX_Time: RX—-TX:.”
275 for {set i 0} {$i < SrecordsOnCard} {incr i} {

276 LIBCMD HTGetStructure $::L3_.HIST.-RAW.TAGS-INFO $i 0 0 rt 0 $H $S $P
277 set actLatency [expr ($rt(ulReceiveTime) — $rt(ulTransmitTime)) /10.0]
278 ###get the information for each frame

279 puts —nonewline " _[expro$i+l]acmmmannn Ox[format. %X.$rt(ulTransmitTime)]”
280 ### Print Number of the frame and timestamp when this frame left Smartbit
281 puts —nonewline ... Ox [format.%X--$rt(ulReceiveTime) | cummmmn ”
282 ### Print timestamp when this frame was received by Smartbits
283 puts "__S$actLatency._uS”

284 ### Print latency

285 set avgLatency [expr SavgLatency + SactLatency]

286 if { $i == 0 || $minLatency > $actLatency } {

287 set minLatency $actLatency

288 }

289 if { $i == || $maxLatency < $actLatency } {

290 set maxLatency $actLatency

291 1

292 }

293 puts - =

294 puts "Average.latency.=_[expr_$avgLatency/_(-$recordsOnCard)]”

295 puts "Min_latency $minLatency.”

296 puts "Max_latency._=_$maxLatency.”

297

298 puts “Number.of.packets.send:.$numFrames™

299 puts “Number.of._packets.received:.$recordsOnCard”

300 puts “Lost.packets:.[expr.$numFrames.—.$recordsOnCard]”

301 }

302

303 ### Returns numbers of records on card

304 proc getRecord { HS P } {

305 struct.new ActiveTestInfo Layer3HistActiveTest

306 LIBCMD HTGetStructure $:L3_HIST_ACTIVE_.TEST_.INFO 0 0 0 ActiveTestInfo 0 $H $S $P
307 set records_on_.card $SActiveTestInfo(ulRecords)

308 return $records-on-card

309 }

310

311 ## Returns number of streams on card

312 proc get.streamcount {H S P} {

313 struct.new DefStreams ULong

314 LIBCMD HTGetStructure $:L3_.DEFINED_STREAM_COUNT.INFO 0 0 0 DefStreams 0 $H $S $P
315 return $DefStreams(ul)

316 }

317

318 ### Uses NSCalculateGap to set TX as Packets Per Second ##############F###FH#HIH##

319 proc setFramesPerSecond {H S P speed dataLength framesPerSecond} {

320 set gap 77

321 NSCalculateGap $::PPS.TO.GAP.BITS $speed S$dataLength $framesPerSecond gap $H $S SP
322 puts "_Gap-ist.$gap”

323 return $gap

324 }

325

326 ### Uses NSCalculateGap to set TX as load percent

327 ## Returns the GAP value needed to set the requested rate

328 proc setLoad {H S P speed dataLength loadPercent} {

329 set gap 77

330 NSCalculateGap $::PERCENT.LOAD.TO.GAP.BITS $speed S$dataLength $loadPercent gap $H $S $P
331 return S$gap

332 }

333

334

335

336 MAIN PROGRAM

337

338

339 linkSMB $ipAddr

340 ### connect to SmartBits

341 HGSetGroup 7”7

342 ### clear groups

343 HGAddtoGroup $iHub $iSlot $iPort

344 ### add port 1 to the group

345 HGAddtoGroup $iHub2 $iSlot2 SiPort2

346 ### add port 2 to the group

347 writeMII $iHub $iSlot $iPort $advRegisterInput $advertiseReg

348 ### set auto negotiation Register

349 writeMII SiHub2 $iSlot2 $iPort2 SadvRegisterInput SadvertiseReg

350 ### set auto negotiation Register

351 writeMII $iHub $iSlot $iPort S$ctrlRegisterInput S$controlReg

352 ### set control register

353 writeMII $iHub2 $iSlot2 $iPort2 $ctrlRegisterInput $controlReg

354 ### set control register

355 after 1000

356 ### Wait 1000

357 ## Specifies the interpacket gap that is to be transmitted on the addressed port

40

358 LIBCMD HTGap $gap $iHub $iSlot $iPort

359 LIBCMD HTGap $gap $iHub2 $iSlot2 $iPort2

360

361 ### or

362 ###LIBCMD HTGap [setFramesPerSecond $iHub $iSlot SiPort $Speed2 $dataLength $framesPerSecond] $iHub $iSlot $iPort
363 ### or

364 ###LIBCMD HTGap [setLoad $iHub S$iSlot S$iPort $Speed2 $dataLength $loadPerCent] SiHub $iSlot $iPort
365 puts "Creating.a.stream”

366 createStreamArray $iHub $iSlot S$iPort $streamNumber

367 createStream2Array $iHub2 $iSlot2 SiPort2 $streamNumber

368

369 ### create a stream

370 create_extension $iHub $iSlot $iPort $framesPerSecond

371 create_extension S$iHub2 $iSlot2 $iPort2 S$framesPerSecond

372

373 ### create stream extension

374 puts "Transmit.and.capture—the._stream!!”

375 NEW CODE

376

377 # Set L3 address on cards

378

379 puts "Setting .L3_Address”

380 catch {unset L3Addr}

381 struct.new L3Addr Layer3Address

382 set L3Addr(szMACAddress) {00 00 01 00 00 O1}

383 set L3Addr(IP) {192 168 3 1}

384 set L3Addr(Gateway) {192 168 3 2}

385 set L3Addr(PingTargetAddress) {192 168 3 2}

386 set L3Addr(Netmask) {255 255 255 0}

387 set L3Addr(iControl) 0

388 set L3Addr(iPingTime) 0

389 set L3Addr(iSNMPTime) 0

390 set L3Addr(iRIPTime) 0

391 LIBCMD HTLayer3SetAddress L3Addr $iHub $iSlot $iPort

392 # set for second card

393 set L3Addr(szMACAddress) {00 00 04 00 00 06}

394 set L3Addr(IP) {192 168 5 2}

395 set L3Addr(Gateway) {192 168 5 1}

396 set L3Addr(PingTargetAddress) {192 168 5 1}

397

398

399 LIBCMD HTLayer3SetAddress L3Addr $iHub2 $iSlot2 $iPort2

400 unset L3Addr

401

402

403 struct.new Init NSIGMPConfig

404 set Init(ucVersion) 1

405 set Init(ucOptions) $IGMP.INIT.ALWAYS_SEND.V2_LEAVE_REQUEST
406 ##set Init(ucOptions) 0

407

408 ##MD HTSetCommand $SNS.IGMP.CONFIG 0 0 0 Init $iHub SiSlot SiPort

409 LIBCMD HTSetCommand $NSJIGMP.CONFIG 0 0 0 Init $iHub2 $iSlot2 $iPort2
410

411 catch {unset addr2}

412 struct_.new addr2 NSIGMPAddress

413 set addr2(ucIPAddress) {224 1 2 3}

414 ##BCMD HTSetCommand $NS_IGMP_JOIN 0 0 0 addr2 S$iHub $iSlot $iPort

415 LIBCMD HTSetCommand $NS_IGMP_JOIN 0 0 0 addr2 SiHub2 $iSlot2 $iPort2
416 after 1000

417

418

419

420

421

422 press2Continue

423 resetCapture S$iHub2 $iSlot2 $iPort2

424 ### Restarts capture on target card to capture all received frames
425 LIBCMD HTTransmitMode $SINGLE.BURST_MODE $iHub $iSlot $iPort

426 ### Sets port to transmit a single burst of packets, then stop
427 LIBCMD HTBurstCount $numFrames SiHub $iSlot $iPort

428 ### Sets the number of packets to transmit in a single burst from a SmartCard
429 resetRawtags $iHub2 $iSlot2 $iPort2

430 LIBCMD HGStop

431 ### Simultaneously halts the transmission of packets from all ports associated
432 ### with the PortIDGroup defined by the previous HGSetGroup command
433 LIBCMD HTSetCommand $::NS_CAPTURE.START 0 0 0 0 $iHub $iSlot $iPort
434 ### Start capture

435 LIBCMD HGRun $HTRUN

436 ###Sets up the run state for all ports associated with the PortIDGroup
437 after 20000

438 ### WAIT

439 LIBCMD HGRun SHTSTOP

440 ###Sets up the run state for all ports associated with the PortIDGroup
441 LIBCMD HTSetCommand $::NS_CAPTURE.STOP 0 0 0 0 $iHub $iSlot SiPort

142 ### Stop capture

443 displayRawtags $iHub2 $iSlot2 $iPort2 $numFrames

444 ### display results

445 ETUnLink

446 ### disconnect from SmartBits

447

41

