ADAM: Administration and Deployment of Adhoc Mesh networks

Thomas Staub*, Simon Morgenthaler®, Daniel Balsiger*, Paul Kim Goode* and Torsten Braun*
*Institute of Computer Science and Applied Mathematics
University of Bern
Neubriickstrasse 10
CH-3012 Bern, Switzerland
Email: {staub|morgenthaler|balsiger|goode|braun} @iam.unibe.ch

Abstract—Costly on-site node repairs in wireless mesh net-
works (WMNs) can be required due to misconfiguration,
corrupt software updates, or unavailability during updates.
We propose ADAM as a novel management framework that
guarantees accessibility of individual nodes in these situations.
ADAM uses a decentralised distribution mechanism and self-
healing mechanisms for safe configuration and software up-
dates. In order to implement the ADAM management and
self-healing mechanisms, an easy-to-learn and extendable build
system for a small footprint embedded Linux distribution for
WMNs has been developed. The paper presents the ADAM
concept, the build system for the Linux distribution and the
management architecture.

Keywords-wireless mesh networks; software distribution;
network configuration; network management

I. INTRODUCTION

Wireless Mesh Networks (WMNs) are one of the key
technologies to provide ubiquitous network access to end
users and sensing equipment. They offer a cost-efficient last-
mile access network to cover wide areas with broadband
network services. Existing deployments are either related
to research such as MIT Roofnet [1], Berlin RoofNet [2],
Heraklion MESH [3], WiLDNet [4] and QuRiNet [5] or
provide public network services in a metropolitan area such
as community networks. Most of these networks cover
large geographical areas and include node locations that are
difficult to reach, e.g., roof tops. In addition, they may be
deployed in hostile environments such as deserts, mountain
or arctic regions. Physical access to certain node sites may be
very restricted or even impossible at all due to administrative
or technical reasons. In general, all on-site repairs are time-
consuming and costly. Therefore, their number should be
minimised.

During the network lifetime, reconfiguration and software
updates are necessary in any WMN. Unfortunately, faulty re-
configurations and software updates may disrupt the nodes’
network connectivity and then manual on-site repairs are
required. The three main reasons for on-site repairs are
modified network parameters, corrupt software updates, and
nodes that become unavailable during the processing of up-
dates. First, modifications of network parameters, especially
the radio parameters such as reducing transmission power
or changing the wireless channel, may drastically impact

978-1-4577-0351-5/11/$26.00 ©2011 IEEE

the network topology or even cause disconnection of some
nodes from the network. Second, a corrupt software update
may prevent a node from working correctly. Third, some
nodes may be temporary unavailable during the reconfigu-
ration or software update distribution. Afterwards, they may
not able to integrate themselves into the network due to
modifications missed during their disconnection from the
network. Examples are solar-powered nodes with drained
batteries or transmission difficulties due to special weather
conditions. Without any self-healing mechanism providing
an automatic recovery, costly physical access is required to
repair these disconnected nodes.

Our contribution is a novel management framework for
WMNs called Administration and Deployment of Adhoc
Networks (ADAM) that avoids the described on-site node re-
pairs caused by configuration errors, faulty software updates,
missed configuration updates and environmental changes.
ADAM improves accessibility of individual nodes in any
circumstance. Its management architecture is based on de-
centralised distribution of software images and network con-
figurations as well as on self-healing mechanisms. Besides
the main contribution, which is a flexible and extensible
framework to set up and maintain a heterogeneous WMN
by safe reconfigurations and software updates, the ADAM
framework provides a simple, intuitive build system for an
embedded Linux distribution. This build system automates
all steps required to compile and generate a Linux distribu-
tion optimised for WMNs from source archives.

The remainder of the paper is organised as follows. In
Section II, different build systems for embedded devices and
management architectures for WMNs are discussed. Section
IIT presents the core concepts of the ADAM build and
management architecture. Section IV describes the ADAM
build system. Section V presents the implementation of
management architecture. We conclude with Section VI.

II. RELATED WORK

Linux is often used as the operating system for embedded
systems such as wireless mesh nodes. Several different dis-
tributions and build systems tailored for embedded systems
exist. In order to be suitable for our ADAM framework, the
build system has to fulfil the following requirements:

o Seamless integration of management functionalities

incl. splitting binaries and configuration

o Support for multiple CPU architectures

e System with a small memory footprint

o Similar software on all supported platforms

o Easily extendable for additional software.

In the following, three existing cross compilation build
systems are discussed. The OpenWrt [6] Linux distribution
is tailored for embedded devices. It uses the small C library
replacement pClibe to reduce the footprint of the compiled
software, which is also used by ADAM. OpenWrt uses a
package manager based approach for software installation on
the nodes. This provides a high flexibility for customisation
of individual nodes with existing packages, but requires
a read/write file system on the secondary storage. Often,
more RAM memory than secondary storage is available on
inexpensive wireless mesh nodes (e.g., OpenMesh OM1P
with 32 MB RAM and 8 MB flash storage). In this case, a
compressed read-only software image can hold more soft-
ware and, therefore, provide more functionality. In contrast
to the targeted decentralised distribution approach, packages
can only be retrieved from a central instance, to which each
node has to connect during the update. There is no support
to get cached updates from neighbours. Another drawback
of the package manager based approach is that binaries and
configuration data are combined in one single package. It
would, therefore, require a major effort to adapt OpenWrt
to split software and configuration images for ADAM.

OpenEmbedded (OE) [7] is a collection of recipes for
the BitBake [8] tool to automatically compile and install
packages for an embedded Linux system. In OE, the cus-
tomisation of the compilation and installation process is
highly flexible. A separation of binaries and configuration
data could therefore be implemented. Unfortunately, OE
is difficult to understand due to its complexity. Another
drawback is the poor support of pClibc for build compact
software images. Angstrom [9] is a user-friendly OE distri-
bution. OE also shares the drawbacks of package manager
based software installation of OpenWrt.

A different approach for building a Linux system is the
manual from Linux From Scratch (LFS) [10]. It provides
step-by-step instructions to manually build a Linux sys-
tem from the available sources. Cross compilation aspects
are handled by the subproject Cross Linux From Scratch
(CLFS). Being a collection of documentation, its major dis-
advantage is the missing automated build process. Neverthe-
less, instructions found in CFLS helped in the development
of the ADAM build system.

The main aspect of ADAM is management of heteroge-
neous WMNs. Besides Simple Network Management Proto-
col (SNMP), CAPWAP (RFC 5414, RFC 5416) and Broad-
band Forum’s TR-069, existing management approaches
tailored for WMNs include MAYA [11], JANUS [12], DA-
MON [13], ATMA [14], MeshMan [15] and Abaré [16].

MAYA is based on OpenWrt and AODV routing. It provides
mechanisms to configure multiple selected nodes either
over remote secure shell or by sending an encrypted UDP
packet. It relies on a working routing protocol and cannot
handle nodes off line during configuration time, which is
possible with ADAM. ATMA is a management framework
for wireless test beds. It deploys a parallel multi-hop WMN
to provide out-of-band centralised management of the actual
testbed. Although, this might be a reasonable approach for
test bed management, it is not suitable for productive net-
works. JANUS is a fully distributed agent based monitoring
architecture using a p2p overlay network for communication.
Besides missing management capabilities, the JAVA-based
implementation cannot be run on resource-restricted devices.
Meshman is a management architecture providing an SNMP
replacement that considers network dynamics in WMNSs. By
combining source routing and a hierarchical address scheme,
it is independent of the routing scheme used. The current
implementation only provides information retrieval, but no
configuration. Abaré provides a software-assisted process for
installation and management of a WMN. It is based on a
central database to co-ordinate the management. Firmware
is delivered individually to each node. Compared to ADAM,
it cannot cope with misconfigured nodes.

In ADAM, we have solved the drawbacks of the predeces-
sor architecture “Secure Remote Management and Software
Distribution for Wireless Mesh Networks” SRM [17]. SRM
requires some fixed network parameters, e.g., ESSID, and
externally synchronised clocks. Moreover, only a small set
of network parameters can be configured. The build system
of SRM is limited to x86 compatible nodes and does not
support cross compilation. In contrast, ADAM provides
a complete cross-compilation build system and increased
flexibility in management with a more modular approach
including full IPv6 support and configuration of network
services.

III. ADAM: CONCEPT AND ARCHITECTURE

The three main concepts of ADAM are:
o Decentralised distribution of software images and net-
work configurations
o Self-healing mechanisms
o Separation of node specific configuration and binary
software images that are specific for a node type
The first main concept of ADAM is a decentralised mech-
anism for distributing software and configuration updates.
Each node periodically (every 2 min) pulls new software or
configuration updates from its one-hop neighbours. Updates
are therefore propagated from one node to the other through-
out the network. This update mechanism works independent
of the routing protocol used. If a node is not reachable
during the reconfiguration, it fetches the updates when it
is up again. If the gathered updates target the node, they
are automatically applied. The successful application and

network connectivity are supported by self-healing mecha-
nisms, which are the second main concept of ADAM.

The self-healing abilities of ADAM are manifold. They
include monitoring of the network topology during updates,
detection of isolated nodes, and automatic rollback to the
latest running software if a software update fails to boot
properly. Monitoring of the network topology and appropri-
ate reaction is the first self-healing mechanism. If the net-
work parameters that may disrupt network connectivity, such
as a lower transmission power, are modified, self-healing
mechanisms recover the network connectivity if necessary.
For example, if the self-healing mechanism discovers a re-
duced number of neighbours after lowering the transmission
power, it step-wisely increases the transmission in order to
reach at least predefined network connectivity. The detection
of isolated nodes is the second self-healing mechanism. It
supports that temporarily unavailable nodes can be reinte-
grated into the network, even if the network configuration
has completely changed during their absence. Isolated nodes
may discover their state and follow an automatic lost node
procedure for re-joining the network. The final self-healing
mechanism takes care of faulty software updates. Although
ADAM uses checksums to detect data corruption and to
guarantee error-free transmission of updates, the configured
software updates may contain errors that prevent the nodes
from properly booting after the update. If such errors occur,
an automatic rollback process is started. The node then
automatically reboots and loads the latest known working
software.

ADAM separates software and configuration data on a
node to exploit similarities between the nodes and reduce the
amount of transferred data in a network. It is not efficient to
just distribute a software image for each individual node.
Most software such as the operating system kernel and
binaries for tools and applications are the same for similar
types of nodes. Therefore, each node in an ADAM network
contains two image files. One image file holds the operating
system kernel and the binaries. This image is the same for
all nodes of a similar type. The other image just holds all
the node specific parts. These are mainly configuration files,
which can vary for individual nodes. ADAM even splits
up this configuration image into the normal configuration
files and a special network configuration file. This network
configuration file holds all dynamic network parameters,
from which the normal configuration files are automatically
generated. Therefore, ADAM must usually only distribute
this network configuration file with a size of 10 KB for
each node and the software image per node type (<6 MB).
This drastically reduces the total amount of transferred data
for an update.

IV. ADAM: BUILD SYSTEM

No existing build system for an embedded Linux dis-
tribution (e.g., OpenWrt, OE or CFLS) properly supports

all requirements for ADAM, e.g., splitting binaries and
configuration. As none was suitable for the implementation
of ADAM management approach, we decided to develop
an own easy to understand build system based on the
documentation of CFLS and some patches from OpenWrt.

The ADAM build system is especially tailored for WMNs
and supports several target platforms. To prove heterogeneity
support, we currently use nodes from three vendors, namely
PCEngines ALIX and WRAP embedded boards, Open-Mesh
Mini and OM1P, and Meraki Mini. The nodes differ in their
processor architecture (x86 compatible, MIPS), their amount
of RAM (32 - 256 MB) and secondary storage (8 MB - 4
GB). Despite these significant differences, all nodes provide
similar functionality of installed utilities and software to
the user. ADAM provides a build system that produces
software and configuration images for different node types.
The operating system is a fully customised embedded Linux.
It offers all key functionalities for a WMN node within a
small memory footprint (< 6 MB), which is a key factor for
the deployment on embedded systems. In order to achieve
this small footprint, the ;Clibc that requires only 400 KB of
storage replaces the standard C library and BusyBox replaces
the standard UNIX tools (e.g., sh, cp, mv, grep, sed, and
awk), saving more than 4 MB of storage. In contrast to
OpenWrt, the Linux kernel and the binaries are stored in a
read-only compressed image on secondary storage, which is
decompressed to the RAM during run-time. This results in
up to 6 MB additional software packed on the OM1P (8§ MB
secondary storage) compared to running OpenWrt with a file
system on the secondary storage.

The goal of the ADAM build system is to simplify all
necessary steps for image creation. It avoids a steep learning
curve for new users by focusing on functionalities used in
WMNs. It provides a simple and intuitive command line
interface. It is easily extendable with additional software
packages as well as to other hardware platforms by integrat-
ing new build profiles. Moreover, the software requirements
of ADAM are moderate. A standard desktop machine with a
current Linux distribution (Fedora, Ubuntu, Debian, Gentoo)
providing the ordinary development and build tools such
as the GNU compiler collection (gcc) and its standard
development tools is sufficient for using ADAM.

The ADAM build system consists of two tools, namely the
build-tool to compile the software and the image-tool to pack
the software correctly into the images. Figure 1 illustrates the
necessary steps to build a Linux distribution for an ADAM
mesh node. In step 1, after installation of the ADAM build
system, the set-up procedure is started by the build-tool.
It creates a build environment for the target platform by
adding a user on the local machine. The command shell
environment of the new user, e.g., alix-builder, is set up with
all necessary parameters for the cross compilation process,
such as library and compiler paths. The parameters are
defined in the build profile of the selected target platform.

| Setup Build Environment ~——— ADAM Build Environment *

\=)
i Buidprofile | [Cross Compiler
| Binutils

Package
Build Scripts

Binaries

i& Init Scripts.

[I
@! Generate Software and I — System Scripts
L
|

Configuration Images . .)
v v v
-| Configuration Image || <board> Image
cr ic L
Keys ﬁ

Network
Configurations i

‘ Software Sources

@ ' Generate Network i
| Configuration |
]
et
I Inject Keys and Network f c 3
| Configuration into | Image 7
: Configuration Image 1l

I

O [reomren |

Figure 1. Steps of the build and setup process for a node.

In step 2, the tool-chain for the cross compilation is set up
and installed for the user. The operating system headers are
installed. Then, machine-specific Executable and Linkable
Format (ELF) binary tools, the intermediate cross compiler,
the C library pClibe for the target platform and the final
cross compiler are compiled and installed one after the other.
The final cross compiler is used to compile all software
packages for the target platform in step 3. An individual
software package in ADAM is defined as a recipe for
compilation and installation. It is implemented as simple
shell script. This package script downloads the particular
package source archive, decompresses it, applies necessary
patches, configures it for cross compiling and installs the
binaries and configuration files to the correct directories after
successful compilation. In step 4, the image-tool is used
to generate the software image for the target platform and
individual configuration images for each node. In the steps 5
and 6, cryptographic key pairs for the distribution engine and
the network configuration for each node are generated. The
node-specific keys and the network configurations are then
injected into the configuration image of the corresponding
node in step 7. In the final step, the generated Linux system
images are loaded on the secondary storage of the new nodes
or distributed using the ADAM distribution engine.

Besides software and configuration image, the image-tool
creates another image type - the stand-alone image. This
specific image is fully self-contained and does not require
any configuration image. In ADAM, it is only used for test
purposes and the installation of normal software images on
the secondary storage of Meraki and OpenMesh nodes. The
boot loader of these nodes does not support writing files
larger than 5 MB to the secondary storage. Therefore, a
stand-alone image is booted over the network to write the
software images under the temporary Linux system.

PCEngines ALIX/ WRAP
(Compact Flash Card 256MB,
2 partitions)

System RAM Meraki Mini,
OpenMesh OM1P

Linux kernel (NAND Flash 8MB,
/ \ 3 partitions)

Partition 1 (~32MB,
Root filesystem N

GRUB bootloader files
3 L~ read-writable
ALIX/WRAP image 1 L1 - changes lost on reboot

[Coniig 4T Config node03 [J
_‘LI‘"’ Log & state files

’ RAM disk

Meraki / OpenMesh
image

ALIX / WRAP image 2

ALIX / WRAP image 3

Partition 2
GRUB bootloader files
Config alixo1 [
Config wrap02 [
Config demo01 [0

Available for
user-space programs

Log & state files

Figure 2. Run time layout of system RAM and the secondary storage for
PCEngines ALIX/WRAP, Meraki Mini and OpenMesh OM1P nodes.

Figure 2 shows the run time memory layout of ADAM
nodes. Depending on the platform, a node can store multiple
software and configuration images. During run time, a
software image and a configuration image are mapped to
a root file system. As the state, such as random seeds and
log files, should not be lost, when software or configuration
images are exchanged, it is stored in a special permanent
storage on the node, which is also mapped to the root file
system in the RAM.

Figure 3 illustrates the boot process of an ADAM node.
After being switched on, the boot loader reads the boot
configuration and then loads the Linux kernel and the initial
RAM based file system from the software image. During
OS initialisation, the kernel then loads the root file system.
After initialisation, the content of configuration image is
mapped on top of the root file system, the permanent storage
with the node’s state and log files is mounted in the system.

Power on Node
Secondary Storage
Bootloader |< ---------------------- F Bootloader Files

OS Kernel / Root
File System Loaded | System RAM

Linux Kernel

Root Filesystem
Binaries

Linux Kernel

OS Initialisation o

________ 1 Config [m]
Configuration Liacan=co®®
e e L Log & State Files

Permanent |
Storage Loaded

Start Log Services

Service

Start Configured O Binaries

Network Services

Time

Start Scheduler
&)
Wl ADAM Distribution Engine

ADAM Functional

Figure 3. Detailed boot process.

The Linux system applies the network configuration, starts
the configured system services including the time-based job
scheduler. The system is now fully functional and the job
scheduler periodically starts the ADAM distribution engine.

V. ADAM: MANAGEMENT OPERATION

After initial installation, each node holds a software
image and a configuration image with the initial network
configuration. The node is physically deployed at the final
location (e.g., on a rooftop). Henceforth, physical access to
the node may be costly or difficult. The node should there-
fore be completely managed from remote by the ADAM
configuration framework. The configuration framework is a
complete redesign using some basic ideas from SRM [17].

ﬁ ADAM Management Framework

Distributed Data Node's Software
g ~—{]
= Software
& 08 Kernel, Binaries
=
2 |e—>
Wireless Mesh E Configuration Module
Network = Network 15§
k] @ Network
a ‘ Configuration
E New Node Module
2 Public Keys
= Command Module Configuration
Image
‘Commands

Time
Sync

Monitoring
and
Self-Healing

Figure 4. General ADAM management architecture.

Figure 4 shows the general ADAM management archi-
tecture. It consists of the ADAM distribution engine and
modules for network configuration, integration of new nodes,
software update and a generic command module. The mod-
ules are described in the following subsections.

A. ADAM Distribution Engine

The ADAM distribution engine for configuration and soft-
ware updates is based on cfengine [18], which is a powerful
utility for organising and distributing system administration
tasks. The communication is encrypted using separate pub-
lic/private key pairs for each node. This guarantees that only
authorised nodes participate in the network, but requires time
synchronisation. The decentralised distribution approach of
ADAM can cope with nodes that are unreachable during
configuration. Each node periodically starts reachable peers
detection, synchronises its clock, connects to all its detected
one-hop neighbours and checks the availability of newer
network configurations or software images. If there are
updates available, they are pulled by the node. This epidemic
distribution works without a configured routing protocol.
In order to be independent of other network configuration
settings, the ADAM distribution engine communicates over
a dedicated IPv6 network. The dedicated IPv6 management
network is always present and cannot be switched off.

Upon reception of new network configurations or new
software, the node automatically applies them using the

configuration and the software update module, if it is the
target. Otherwise, the files just remain in the exchange
storage.

B. Configuration Module

The configuration module is started by the
ADAM distribution engine if a new network
configuration (<hostname>.conf) has been received. The
<hostname>.conf file contains key value pairs for most
configuration parameters, e.g., ethO_IP="130.92.66.40".
These dynamic parameters are used to generate and
update most of the other configuration files. If the file
name matches the host name of the node, the configuration
module automatically applies the new network configuration
to the node, restarts the network interfaces, and reloads all
affected system services.

C. New Node Module

The ADAM distribution engine only accepts communi-
cations from known nodes. In order to guarantee encrypted
communication, it has to know the public keys of all its
communication peers. The new node module handles the
integration of new nodes, of which public keys and network
configurations are unknown within the network.

A newly set-up node includes already all configurations
and keys of the other network nodes. In contrast, the already
deployed nodes are not aware of the new node. The network
administrator provides the public key and network config-
uration of the new node to the new node module, which
then distributes them using the ADAM distribution engine.
If the ADAM web configuration tool is used to generate
the new configuration, keys and network configurations are
automatically handed over to the new node module.

D. Software Update Module

The software update is responsible for applying a new
software image to the node. Software images are distributed
together with an update file that contains detailed informa-
tion about the specific update action. It contains the file
name of the software image, the node type, the update
version and a checksum of the software image. If the node
retrieves a new software image by the ADAM distribution
engine, the software update module checks if node type,
version and check-sum match. If positive, the module calls
the update procedure specific for the node type. A safe
update procedure, as described in SRM [17], is started on
nodes with sufficient secondary storage capacity. This uses
an additional update partition on the secondary storage and
the Grub boot loader. The update partition holds a secondary
set of boot loader configuration that boots the current image.
In case of an update, the software update module copies the
update image to the first partition and adjusts the boot entry
on the first partition to boot the update image. The node
is rebooted. During start-up, the boot loader rewrites the

Master Boot Record to point to the safe entries on the second
partition. If the update image can be successfully booted, the
update is made permanent by replacing the standard image
and readjusting the boot loader files. Otherwise, a boot flag
of Linux enforces a reboot, if a kernel panic occurs or the
root file system could be reloaded. In this case, the node
automatically reboots and loads the standard image using
the correct boot loader configuration on the second partition.
In this way, a safe update of the software image can be
guaranteed in any circumstances.

Platforms without sufficient secondary storage do not
support this safe update procedure. Consequently, a failed
software update requires physical access in case of such
platforms, e.g., Meraki Mini and the OpenMesh OM1P.

E. Command Module

The node-specific configuration images are not directly
distributed as a whole image over the ADAM distribution
engine due to the huge transmission overhead. There are
usually only potentially small changes in the configuration
image. Adding, removing and modifying configuration files
in the configuration image is performed by the generic
command module. This module can execute user-defined
commands on user-defined groups of nodes. The com-
mands are then only executed on the specified nodes. The
commands are written in a command file, which is then
propagated together with data files within the network using
the ADAM distribution engine. For example, if a bug fix
for the file hotplug2.rules should be applied to some nodes,
a command file with instructions for the file replacement is
copied together with the new file to the exchange directory of
a node. ADAM then distributes the files within the network
and the bug fix is applied on all specified nodes.

FE. Lost Node Detection

There are scenarios, in which a node can totally loose
connectivity to all other network peers due to misconfigura-
tion that is not properly handled by sanity checks during the
updates. After a predefined time-out without any network
connection (2 h recommended due to decentralised distri-
bution mechanism and update time on low cost nodes), the
node therefore resets its transmission power to the maximum
value and then searches on all wireless channels for an ad-
hoc network with the service set identifier that matches an
IPv6 prefix. If such a permanent IPv6 management network
is found, the node connects to it and then fetches a new
network configuration.

VI. CONCLUSIONS

ADAM provides a secure and safe management archi-
tecture for WMNSs. It improves connectivity between the
network nodes and avoids costly onsite repairs by a de-
centralised distribution mechanism, safe configuration and
software updates, and self-healing mechanisms. ADAM can

cope with unavailable nodes and automatically repairs con-
figuration and software update errors. It does not require
a co-located backbone network for management. ADAM
provides a user-friendly, easy to understand and extendable
build system for a customised embedded Linux operating
system for WMNs. The ADAM framework is released under
GPLV2 license [19]. It has been used in several projects, e.g.,
CTI-Mesh [20], WISEBED [21] and A4-Mesh [22].

REFERENCES

[1] J. C. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Ar-
chitecture and Evaluation of an Unplanned 802.11b Mesh
Network,” in MobiCom ’05, Cologne, Aug. 28 - Sept. 2 2005.

[2] R. Sombrutzki, A. Zubow, M. Kurth, and J.-P. Redlich, “Self-
Organization in Community Mesh Networks - The Berlin
RoofNet,” in OpComm, Berlin, Germany, September 2006.

[3] V. Angelakis, M. Genetzakis, N. Kossifidis, K. Mathioudakis
et al., “Heraklion MESH: An Experimental Metropolitan
Multi-Radio Mesh Network,” in WinTECH ’'07, Montreal,
Canada, Sept. 2007.

[4] R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian,
and E. Brewer, “WiLDNet: Design and Implementation of
High Performance WiFi Based Long Distance Networks,” in
4th USENIX NSDI’07, Cambridge, MA, USA, April 2007.

[5] D. Wu and P. Mohapatra, “QuRiNet: A Wide-Area Wireless
Mesh Testbed for Research and Experimental Evaluations,”
in COMSNETS, Jan. 2010.

[6] “OpenWrt,” http://openwrt.org.

[7] “OpenEmbedded,” http://www.openembedded.org.

[8] “BitBake,” http://developer.berlios.de/projects/bitbake.

[9] “Angstrém,” http://www.angstrom-distribution.org.

[10] “Linux From Scratch,” http://www.linuxfromscratch.org.

[11] D. Manzano, J.-C. Cano, C. Calafate, and P. Manzoni,
“MAYA: A Tool For Wireless Mesh Networks Management,”
MASS, Oct. 2007.

[12] R. Riggio, N. Scalabrino, D. Miorandi, and I. Chlamtac,
“JANUS: A Framework for Distributed Management of Wire-
less Mesh Networks,” in TridentCom 2007, Orlando, Florida,
USA, May 21-23 2007.

[13] K. N. Ramachandran, E. M. Belding-Royer, and K. C.
Almeroth, “DAMON: A Distributed Architecture for Moni-
toring Multi-Hop Mobile Networks,” in I[EEE SECON, Santa
Clara, CA, USA, Oct. 4 - 7 2004.

[14] K. N. Ramachandran, K. C.Almeroth, and E. M. Belding-
Royer, “A Framework for the Management of Large-Scale
Wireless Network Testbeds,” in WiNMee, Riva del Garda,
Trentino, Italy, April 3 2005.

[15] V. Aseeja and R. Zheng, “MeshMan: A Management Frame-
work for Wireless Mesh Networks,” in IM ’09, June 2009.

[16] B. Pinheiro, V. Nascimento, E. Cerqueira, W. Moreira, and
A. Abelém, “Abaré: A Coordinated and Autonomous Frame-
work for Deployment and Management of wireless mesh
networks,” in LNCS, vol. 6157. Springer, 2010.

[17] T. Staub, D. Balsiger, M. Lustenberger, and T. Braun, “Secure
Remote Management and Software Distribution for Wireless
Mesh Networks,” in ASWN, Santander, Spain, May 2007.

[18] M. Burgess, “A Tiny Overview of Cfengine: Convergent
Maintenance Agent,” in MARS/ICINCO, Barcelona, Spain,
Sept. 2005.

[19] “ADAM,” http://rvs.unibe.ch/research/software.html.

[20] “CTI-Mesh,” http://cti-mesh.ch.

[21] “WISEBED,” http://wisebed.eu.

[22] “A4-Mesh,” http://a4-mesh.unibe.ch.

